Requirements analysis and system specification

First stage of software life cycle is “creating the xe "requirements analysis"

xe "analysis: requirements analysis"requirements analysis and xe "system specification"

xe "specification: system specification"system specification.”

· These were intimidatingly-named documents that could become big projects themselves!

· The requirements analysis says “Make a list of the guidelines we will use to know when the job is done and the customer is satisfied.” Some call this step requirements gathering.

· The system specification says “Here’s a description of what the program will do (not how) to satisfy the requirements.” Some distinguish requirements gathering and system analysis steps

· The requirements analysis is really a contract between you and the customer (an OOSE theme)

· The system specification is a top-level exploration into the problem and in some sense a discovery of whether it can be done and how long it will take

· This process of exploration is also called requirements elicitation or domain analysis:

· Goal is to understand the customer’s problem (though customer may not fully understand it)

"Editor with undo" handout illustrates a very simple, initial system specification

· Why is it a good idea to keep the initial document small and concise?

· Fosters initial buy-in and agreement by everyone on the team

· What’s the purpose of purpose statement? Why is scope also important? Why definitions?

· Note that specification includes functional and non-functional requirements.
· Functional requirements describe system behavior. Where are these in my document?
· Non-functional requirements describe other desired system attributes. Some examples?

· Product cost (how do measure cost?)

· Performance (efficiency, response time? Should we also mention startup time?)

· Portability (target platforms?)

· Availability (how much down time is acceptable?)

· Security (can it prevent intrusion?)

· Safety (can it avoid damage to people or environment?)

· Maintainability

Desiderata for a requirements specification:
· Should say what, not how Why?

· Correct: does what the client wants.
· This quality is like motherhood and apple pie How can you accomplish this?

· Ask the client: keep a list of questions for the client

· Prototyping: explore the risky aspects of the system with the client

· Verifiable: can determine whether the requirements have been met

· But how do verify a requirement like “user-friendly” or “it should never crash”?
· Unambiguous: every requirement has only one interpretation. Again, easier said than done.
· Complete: nothing relevant TBD, has everything designers need to create the software
· Consistent: no internal conflicts, e.g., If you call an input "Start and Stop" in one place, don't call it "Start/Stop" in another.
· Understandable: can customers and developers understand it well enough to buy into it?

· Can there be a tension between understandability and the other desiderata?

· Modifiable: requirements change; changes should be noted and agreed upon!

Use cases are a useful brainstorming technique for developing a requirements analysis

· First developed by Ivar Jacobson and now part of the UML (Unified Modeling Language)
· Emphasizes user’s point of view, using the system, using the user’s language (hence use cases)

· A "use case" is a set of cases or scenarios for using a system, tied together by a common user goal

· Essentially descriptive answers to questions that start with “What does the system do if …” E.g., “What does the auto-teller do if a customer has just deposited a check within 24 hours and there’s not enough in the account without the check to provide the desired withdrawal?” The use-case model then describes what the auto-teller does in that situation.

Two kinds of use case documents: use case text and UML use case diagram
· The text provides the detailed description of a particular use case

· The diagram provides an overview of interactions between actors and use cases

Here's an example of a use case text (from Fowler and Scott, UML Distilled):

Use Case: Buy a Product

1. Customer browsers through catalog and selects items to buy

2. Customer goes to check out

3. Customer fills in shipping information (address; next-day or 3-day delivery)

4. System presents full pricing information, including shipping

5. Customer fills in credit card information

6. System authorizes purchase

7. System confirms sale immediately

8. System sends confirming email to customer

Alternative: Authorization Failure
At step 6, system fails to authorize credit purchase

Allow customer to re-enter credit card information and re-try

Alternative: Regular customer

3a. System displays current shipping information, pricing information,

and last four digits of credit card information

3b. Customer may accept or override these defaults

Return to primary scenario at step 6

· [image: image1.png]<<<<<<<<<<

..............

This is a use case diagram

· Stick figures represent actors (human or

computer systems in roles), such as Trader

· Ellipses represent use cases (behavior or
functionality as seen by users)

· What can user do with the system?

· E.g., Trader interacts with Trader
 Contract
via a Trade Commodities transaction

· <<include>> inserts a chunk of behavior

Might also want to include preconditions and You may want to add pre-conditions and post-conditions in each use case:
· What is the state of affairs before and after the use case occurs? Why?

Some heuristics for writing use case text:

· Avoid implementation specific language in use cases, such as IF-THEN-ELSE or GUI elements or even specific people or departments

Which is better: “The clerk pushes the OK button.” “The clerk signifies the transaction is done.” (The latter defers a UI consideration until design.)

· Write user cases with the user’s vocabulary, the way a users would describe performing the task

· Use cases never initiate actions; actors do. Actors can be people, computer systems or any external entity that initiate an action. A use case interaction produces something of value to an actor.

· Create use cases and requirements incrementally and iteratively.

· Start with an outline or high-level description, working from a problem statement and statement of work (scope), then broaden and deepen, then narrow and prune, and finally fine-tune.

Jacobson claims the following advantages for use-case models:

· A systematic and intuitive means of capturing functional requirements

· Visual representation facilitates communication between user and system analyst

· Text descriptions of Actors and Use Cases can supplement diagrams
· On the other hand, use case diagrams can help identify objects & show state/transition flow
· UML recommends creating statechart diagrams with explicit start, stop, intermediate states
· Drives the whole development process: analysis starts with use cases; design and implementation testing realizes them

· Starting point for early design of user interface prototype (why design UI prototype early?)

· Implementation details or language can be added to use cases later in the life cycle

· Use cases also support maintenance, especially documentation and user training? How so?
� EMBED Word.Picture.8 ���

3

[image: image2.png]<<<<<<<<<<

..............

_997266082.doc
[image: image1.png]<<<<<<<<<<

..............

