Hands-On Lab

Windows Server AppFabric Hosting:

Lab 3b - Going Deeper with Workflow Services
Lab version:

1.0.0

Last updated:

7/27/2010
[image: image1.png]Microsoft®* | Windows

.
F 8F NET | Fodon,

|[image: image2.png]£7 Windows Server
AppFabric

|[image: image3.png]Windows
Communication
Foundation

N Mucrosoftm

Contents
3Overview

4Starting Materials

5Exercise 1: Building the LabelingService

5Task 1 – Updating the LabelingService workflow

13Exercise 2: Enhancing the OrderFulfillmentService to Call Other Services

13Task 1 – Creating the Inventory Service Client Activities

14Task 2 – Adding the ReserveOrder Client Activity to the OrderFulfillment Service

15Task 3 – Creating the Credit Card Processing Client Activity

17Task 4 – Using the ASMX Credit Card Processing Service Client Activity

21Summary

Overview

 In this lab, you will become familiar with designing and executing workflow services. First, you will build the LabelingService workflow using the FlowChart modeling style. In addition, you will complete the design of the OrderFulfillmentService workflow service by adding activities to it that call out to the InventoryService and CreditCardProcessing services.
Objectives
Workflow Services definitions can act as both services and as clients of other services. In this lab you will become familiar with:
Building Workflow Services
Using the FlowChart modeling style for Workflow Services
Using and configuring correlation
Building client activities that call other workflow services and ASMX services
Setup
You must perform the following steps to prepare your computer for this lab:
1. Complete the Development Environment Setup lab.
2. Read the Fourth Coffee Solution Overview to understand the solution that is implemented in these labs.
3. To simplify the process of registering the numerous Fourth Coffee applications with IIS, we have provided a utility called LabStarter that you should run as the first step in any lab.

4. To use it, run LabStarter.exe from the %InstallFolder%\Assets directory and click the button corresponding to the Lab exercise you wish to open. This will perform the requisite configuration and then open the desired solution in Visual Studio for you automatically.

Exercises

This Hands-On Lab comprises the following exercises:

5. Building LabelingService (FlowChart Workflow Service)
6. Enhancing the OrderFulfillmentService to call other services
Estimated time to complete this lab: 60 minutes.

Starting Materials
Use the LabStarter as described in the Setup section to begin this lab.

Note: Inside each exercise folder, you will find an end folder containing a solution with the completed lab exercise.
Exercise 1: Building the LabelingService

In this exercise, you build out the LabelingService using the FlowChart’s FlowDecision activity and create a loop that causes the workflow service instance to wait until the CleanupProof operation, also added here, is called.
Task 1 – Updating the LabelingService workflow
7. Open the starter solution for this exercise as described in the Starting Materials section.

8. Build the solution.

9. From the LabelingService project, open LabelingService.xamlx. It should look as follows:
[image: image4.png]4, LabelingServiceFlow

Start

A
#3 ProcessLabel Request

OperationName ProcessLabel

Content View message.

A4
3 SendReplyToProcessLabel Request

Request | ProcessLabel Request

Content Define...

v
VA LabelGenerstorPlsceHolder

Text | Entera VB expression

10. Select the LabelingServiceFlow activity, and add the following variable:

	Name
	Variable Type
	Scope

	cleanupWasCalled
	Boolean
	LabelingServiceFlow

11. You will add two operations after the LabelGenerator PlaceHolder activity. One will handle proof approval and another will cause the deletion of the proof image when the workflow instance should complete and cleanup after itself. In order for a flowchart workflow service to support waiting on two operations, you need to place both operations either in a parallel or a pick activity. In this situation, we use a Pick because we will want the rest of the FlowChart to execute as soon as one of the two possible events comes in. Add a Pick activity below LabelGenerator, and connect it to the bottom output of the LabelGenerator.

12. Set the DisplayName property for the Pick to: Pick Approve or Cleanup
 [image: image5.png]A LabelGenerator PlaceHolder

Text | Entera VB expression

9 Pick

Double-click to view

13. Double-click on the Pick to drill into it.

14. In the Trigger of the left PickBranch in the Pick activity, drop a Receive activity, and configure it with the following property values:
	Property Name
	Value

	DisplayName
	ApproveProof Request

	OperationName
	ApproveProof

	ServiceContractName
	ILabelService

	Content
	Set Message data field to: myOrder

15. Next, configure the correlation to use the OrderId. To do this, click the ellipses next to CorrelatesOn. In the CorrelatesWith text box, enter “handle” without quotes, and in the grid below choose OrderId: string. The completed dialog should look as follows:
[image: image6.png]Comelatesiitn _handie
XPath Queries:

Key Query

kel smibody/xg00rder/xg0Orderdd

Double click on property

16. Drag and drop a Sequence activity into the Action area of the leftmost PickBranch and change its DisplayName to Do Approval.

17. Right click on the ApproveProof Request activity and chose Create Send Reply.

18. Select the Do Approval sequence and click paste. The completed left pick branch should appear as follows:
[image: image7.png]Content View message..

Action

5 Do Approval

5 SendReplyToApproveProof Request

Content Define...

Request ApproveProof Request

»

19. In the Trigger of the right PickBranch in the Pick activity, drop a Receive activity, and configure it with the following property values:
	Property Name
	Value

	DisplayName
	CleanupProof Request

	OperationName
	CleanupProof

	ServiceContractName
	ILabelService

	Content
	Set Message data field to: myOrder

20. Next, configure the correlation to use the OrderId. To do this, click the ellipses next to CorrelatesOn. In the CorrelatesWith text box, enter “handle” without quotes, and in the grid below choose OrderId: string.

21. Drag and drop a Sequence activity into the Action area of the leftmost PickBranch and change its DisplayName to Do Cleanup.

22. Right click on the CleanupProof Request activity and chose Create Send Reply.

23. Select the Do Cleanup sequence and click paste.

24. Above the SendReply, drag and drop an Assign activity the gives the cleanupWasCalled variable a value of True. The completed right pick branch should appear as follows:
[image: image8.png]Content View message..

Action

4 Do Cleonup

A8 Assign

cleanupWasCalled = True

5 SendReplyToCleanupProof Request
Request _ CleanupProof Request

Content Define...

25. Drill back up to the WorkflowService (use the breadcrumbs at the top left of the Workflow Designer window).

26. Drag a FlowDecision from the FlowChart section of the toolbox and drop it below the Pick. Connect the Pick to the Decision.
[image: image9.png]9 Pick Approve or Cleanup

Double-click to view

13

&

Decision

27. Set the Condition property on the Decision to cleanupWasCalled. This controls which branch the decision will take, depending on if the value of cleanupWasCalled is true or false. Next you will configure these branches.

28. For the moment, we will use a place-holder activity in lieu of the activity that actually deletes the generated label (this will get replaced in a later custom activity lab). For now, we will just have to leave the generated labels where they are. Drag and drop an Assign activity below and to the left of the decision and set generatedLabelPathPlaceholder to generatedLabelPath.

29. Connect the True side of the Decision to the DeleteLabel as shown:
 [image: image10.emf]
30. Now, connect the False branch of the Decision back up to the Pick Approve or Cleanup as follows:
 [image: image11.emf]
31. Now you have a loop, that so long as CleanUp proof is not called, the workflow instance will wait for it to be called. When CleanupProof is called, the image will be deleted (once we create this activity) and only then does the workflow instance complete:
[image: image12.emf]
Exercise 1 Verification

In order to verify that you have correctly performed all steps of exercise 1, proceed as follows:
Verification 1

In this verification, you will execute an instance of the LabelingService workflow using a console client.
32. Build the solution.

33. Set the TestClient project as the startup project, press Ctrl+F5 to run the project without debugging.

34. When prompted for which service to test, type 4 and press enter.

35. When prompted press ENTER to cleanup. Your output should look as follows: [image: image13.png]he Fourth Coffee Quick Tester
hoose a service to test:
="Order Fulfillment
2 - Credit Card Processing
3 - Inventory
4 - Labeling
- Order State

our choice (enter digit, press ENTER>:

[Labe subnitted for processing. Result:
Label approved. Result:
ress ENIER to cleanup

Labe1 cleaned up.
[Execution Complete. Press ENTER to exit.

Exercise 2: Enhancing the OrderFulfillmentService to Call Other Services

In this exercise, you update the service orchestration OrderFulfillmentService which sequences calls to the various services required in processing an order. Most orchestration services rely on client activities that act as proxies to the remote service. In this exercise, you will build client activities that are proxies to the InventoryService, the CreditCardProcessingService and add both of these activities to their proper place in the order fulfillment workflow.
Task 1 – Creating the Inventory Service Client Activities
In the code-based approach to WCF, proxies are types created via add service reference to enable calling a remote service. In Workflow Services, these same proxies are surfaced as a custom activity that is usable from a workflow. In this task, you will create the client proxy activity that the OrderFulfillmentService will use to call the InventoryService.
Note: The following procedure demonstrates a workaround for a known issue when adding service references to activity libraries that reuse referenced types.
36. Open the solution. You can continue working with the completed solution from Lab 3b\Exercise 1 or open the starter solution for this exercise as described in the Starting Materials section.

37. Add a new Activity Library project called InventoryServiceClient to the project.

38. To the InventoryServiceClient project, add a project reference to the Entities project.

39. Rename the Activity1.xaml to PlaceHolder.xaml.
Note: You must keep at least one xaml activity in the project root in order for Visual Studio to compile the XAML of the activities created by Add Service Reference into output assembly. PlaceHolder.xaml only serves this purpose— is not used by any of the workflows.
40. Bring up the properties for the InventoryService project (the actual service, not the client project just added), on the Web tab ensure that the project is set to the IIS Virtual Directory http://localhost/InventoryService and that you can browse to http://localhost/InventoryService/InventoryService.xamlx. You may need to enable net.pipe for the service.
41. Return to the InventoryServiceClient project. Right click on the project and select Add Service Reference.

42. In the Add Service Reference window, paste http://localhost/InventoryService/InventoryService.xamlx into the Address field and click Go.

43. Change the value in the Namespace to InventoryService and click OK to generate the client proxy activity.
44. Expand the Service References folder and then the InventoryService node.
Note: If you cannot expand the InventoryService node, click the node and then click the Show All Files button at the top left of Solution Explorer, as shown below:
[image: image14.png]

45. Expand Reference.svcmap.

46. Observe that three XAML files have been added, representing a custom activity for each operation exposed by the InventoryService. Double click on the Reference.cs to view the generated proxy code. Notice that this file does not contain definitions for the types defined in our Entities assembly (e.g., FourthCoffee.Entities.Order).

47. Build the project.
Task 2 – Adding the ReserveOrder Client Activity to the OrderFulfillment Service

Now you will add this activity to the OrderFulfillmentService.
48. From the OrderFulfillmentService project, add a project reference to the InventoryServiceClient.

49. Double click on OrderFullfilmentService.xamlx in the OrderFullfillmentService project to open it in the workflow designer.
50. Scroll down to the Reserve Order Sequence, and drop a ReserveOrder activity from the toolbox at the beginning of the sequence as shown:
[image: image15.png](5 Reserve Order.

% Check for Reserve Failure
Condition
confirmationNumbe

Unable to reserve one or more items.”
Then Eise

R Throw Faled to Reserve Drep activiy here

»

»

51. Set the value of the Order property to myOrder on the ReserveOrder activity.
52. Set the value of the _string output property (the return value of the operation) to confirmationNumber on the ReserveOrder activity.
53. Open the web.config. Just above the closing </client> element, add the following endpoint address (which provides the endpoint used by the ReserveOrder activity):

XAML

<endpoint address="http://localhost/InventoryService/InventoryService.xamlx" binding="basicHttpBinding" contract="IInventory" name="BasicHttpBinding_IInventory" />
Task 3 – Creating the Credit Card Processing Client Activity

Next, you will create the client activity library for the credit card processing service.
54. Add a new Activity Library project called CCClient to the project.

55. Rename the Activity1.xaml to PlaceHolder.xaml.

56. Bring up the properties for the CC project (the actual service, not the client project just added), on the Web tab ensure that the project is set to the IIS Virtual Directory http://localhost/CC.
57. Return to the CCClient project. Right click on the project and select Add Service Reference.

58. In the Add Service Reference window, paste http://localhost/CC/CreditCardProcessingService.asmx into the Address field and click Go.

59. Change the value in the Namespace to CC and click OK to generate the client proxy activity.
60. Add a project reference to the Entities project.
Note: We add the reference to the Entities project after adding the service reference because the automatic generation of service reference activities is not supported when types, such as those within the Entities project, are reused. The steps that follow present a workaround to ensure that the activity generated uses the types available in the Entities assembly where applicable.
61. In Solution Explorer, expand Service References, CC, Reference.svcmap and double click Reference.cs to open it.
62. Delete the following classes:
CreditCardOrder

Billing

Address

CreditCardResult
63. Add a using statement for the Entities namespace:

C#
using FourthCoffee.Entities;

64. Within the VerifyPurchaseRequestBody, change the type of the cardOrder property and parameter in the constructor so that it references the type from the Entities assembly. The quick way to do this is to delete the CCClient.CC prefix on the cardOrder identifiers:

C#

public partial class VerifyPurchaseRequestBody {

 [System.Runtime.Serialization.DataMemberAttribute(EmitDefaultValue=false, Order=0)]

 public CreditCardOrder cardOrder;

 public VerifyPurchaseRequestBody() {

 }

 public VerifyPurchaseRequestBody(CreditCardOrder cardOrder) {

 this.cardOrder = cardOrder;

 }

}

65. Similarly, within VerifyPurchaseResponseBody, update the VerifyPurchaseResult identifier so that it type is just CreditCardResult:

C#

public partial class VerifyPurchaseResponseBody {

 [System.Runtime.Serialization.DataMemberAttribute(EmitDefaultValue=false, Order=0)]

 public CreditCardResult VerifyPurchaseResult;

 public VerifyPurchaseResponseBody() {

 }

 public VerifyPurchaseResponseBody(CreditCardResult VerifyPurchaseResult) {

 this.VerifyPurchaseResult = VerifyPurchaseResult;

 }

}

66. Build the project.
Task 4 – Using the ASMX Credit Card Processing Service Client Activity

In this task, you add the VerifyPurchase activity to the OrderFulfillmentService.
67. From the OrderFulfillmentService project, add a project reference to the CCClient project.
68. Drag a VerifyPurchase activity from the toolbox into the Process as shown:
[image: image16.png]Updstestatus

CalculateOrderAmount

TargetType

TargetObject

OrderFulfilmentDec =

Entera VB expression

MethodName

CalculateOrderamount

>

69. Configure the properties of the VerifyPurchase activity as follows:

	Property Name
	Value

	Body
	New CClient.CC.VerifyPurchaseRequestBody(creditCardPurchaseOrder)

	outBody
	asmxCreditCardPurchaseResponseBody

70. Create the asmxCreditCardPurchaseResponseBody variable with the following properties:

	Name
	Variable Type
	Scope

	asmxCreditCardPurchaseResponseBody
	VerifyPurchaseResponseBody
	Process Credit Card

71. After the VerifyPurchase activity, add an Assign activity that extracts the result from the response body. It will need the following properties:
	Property Name
	Value

	To
	creditCardAuthorization

	Value
	asmxCreditCardPurchaseResponseBody.VerifyPurchaseResult

72. The sequence should now look as follows:
[image: image17.png]Verifypurchase

creditCardAuthorizat = asmxCreditCardPurcl

»

73. Build the project.
Exercise 2 Verification

In order to verify that you have correctly performed all steps of exercise 2, proceed as follows:
Verification 1
In this verification, you will execute an instance of the OrderFulfillmentService workflow using a console client.
74. Set the TestClient project as the startup project, press Ctrl+F5 to run the project without debugging.
75. When prompted for which service to test type 1 and press enter.

76. When prompted if “Should CC verify pass” enter Y and press enter.

77. When prompted if “Should inventory quantity pass?” enter Y and press enter.

78. Press ENTER when prompted to approve the proof.

79. The output should look similar to the following:

[image: image18.png][The Buzz Shoppe Quick Tester
[Choose a service to test:
Order Fulfillment
Credit Card Processing
Inventory
Labeling
5 - Order State

[tour choice Conter digit, press ENTER):

[Should CC verify pass? [¥/N1
ly
[Should inventory quantity pass? [¥/N1

ly
[Order c534ceha-38hc—4199-82c1-0d39494e865 subnitted. Response: InProgress
[Press ENTER to approve proof.

[Lahel marked as ready.
iorkf Low complete.
[Execution Complete. Press ENTER to exit.

Summary

In this lab you have built a stand alone service (the LabelingService) and a service orchestration (the OrderFulfillmentService). Along the way you have seen how to easily how to build client activities that call other services, and package them in their own assemblies for easy distribution.
	1
	

