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Abstract

“One person’s noise is another person’s signal.” [2]  Outlier detection is used not only to clean up datasets, but also to discover useful anomalies, such as criminal activities in electronic commerce, terrorist threats, agricultural pest infestations, etc. Thus, outlier detection is critically important in the information-based society. Traditionally, outlier detection is followed by clustering process. The whole data set has to be processed to detect outliers. In this paper, we present a local cluster-based outlier detection method using a vertical data representation, P-tree
. Our contributions are: a) We propose a consistent factor (CF); b) We develop an efficient CF-based outlier detection method for large datasets. The efficiency comes from both the efficient pruning process and the eliminating of the pre-clustering process; c) The performance is further improved by means of P-tree
. We tested our method with NHL and NBA data. It shows a six time improvement in speed compared to the contemporary state-of-art clustering-based outlier detection approach, CBLOF[9] .

1. Introduction

With advances in information technology, staggering volume of data is collected in database. In some domains, the volume of interesting data is already measured in terabytes and will soon reach petabytes. Considerable research has been done to improve knowledge discovery (KDD) in order to meet these demands.
The problem of mining rare event, deviant objects, and exceptions is critically important in many domains, such as electronic commerce, network, surveillance, and health monitoring. Outlier mining is drawing more and more attentions. The current outlier mining approaches can be classified as five categories: statistic-based [1], distance-based [2]
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In this paper, we propose a fast cluster-based outlier detection method with efficient pruning using a vertical data model P-Trees. Our method is based on a novel consistent measurement, consistent factor (CF). CF indicates the degree at which a point p is locally consistent with other points in datasets in term of average distance. Unlike the current cluster-based outlier detection approaches, our method saves the pre-clustering process, which is the first step of current approaches. Our algorithm has two advantages. First, the save of clustering beforehand speeds up outlier detection significantly. Second, although our main purpose is to find outliers, our method can form consistent regions, which are subset of clusters, as well. We will explore how to merge consistent regions into clusters in our extended work. 
A feature of our method worthy to be mentioned is that our method is adaptive to the local distribution of datasets. The process automatically adjusts step size of neighborhood expanding according to the average distance of the neighborhoods. A small radius is used for dense data to guarantee the accuracy, and a large radius is used for sparse data to gain speed.

A vertical data representation, P-Tree, is used to speed up our method further. The calculation of CF using P-Trees is very fast. P-trees are very efficient for neighborhood search by its logical operations. P-trees can also be used as a self-index for certain subsets of the data. In this paper, P-trees are used as indexes for unprocessed subset, consistent region subset and outlier subset. Pruning is efficiently executed on these index P-trees. 

Our method was tested over NHL and NBA datasets. Experiments show that our method has a six times speed improvement over the current state-of-art cluster-based outlier detection approach, CBLOF.

This paper is organized as follows. Related work is reviewed in section 2; the P-Trees are reviewed in section 3; in section 4, we describe our outlier detection method using P-trees; performance and computation complexity analysis are discussed in section 5; finally we conclude the paper in section 6.

2. Related Work

In this section, we will briefly review the current five outlier approaches, i.e. statistic-based, clustering-based, distance-based, density-based and deviation-based.

There are two sub-approaches in statistic approaches. Barnett and Lewis provide a comprehensive treatment for distribution-based methods, listing about 100 discordance tests for normal, exponential, Poisson, and binomial distributions [1]. Another statistic approach is depth-based approach – outliers are more likely to be data objects with smaller depths. The distribution-based methods can not guarantee finding outliers because in some situations neither standard models nor standard tests are available for the observed distributions. Depth-based methods are inefficient for high dimensional large datasets. 

In deviation-based approach outliers are identified by examining the main characteristics of objects in a dataset. Objects that “deviate” from these characteristics are considered outliers. Two main methods are sequential exception technique by Agrawal & Raghavan [12] and an OLAP approach by Sarawagi & Agrwal [13]. These methods work well with dynamic datasets, but the problem is the difficulties in choosing a suitable dissimilarity function [12]

 REF _Ref65221001 \r \h 
 \* MERGEFORMAT [13]

 REF _Ref65221025 \r \h 
 \* MERGEFORMAT [19].

Knorr and Ng proposed a unified definition of outliers using distance-based approach [2]
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[4]. They show that for many discordance tests in statistics, if an object O is an outlier according to a specific discordance test, then O is also a distance-based outlier given the outlier percentage and the distance threshold. However, the methods can not achieve good performance with high dimensional datasets and fail to find local outliers in non-uniform distributed datasets. 

Breunig et al. proposed a density-based approach [6]. Their notion of outliers is local. So the method does not suffer from local density problem and can mine outliers over non-uniform distributed datasets. However, the method needs three scans, and the computational cost of neighborhood searching in the method is high, which makes the method inefficient. Another density-based approach was introduced by Papadimitriou & Kiragawa [7] using local correlation integral (LOCI). This method selects a point as an outlier if its multi-granularity deviation factor (MDEF) deviates three times from the standard deviation of MDEF (
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 is high.

A few clustering approaches, such as CLARANS, DBSCAN and BIRCH are developed with exceptions-handling capacities. However, their main objectives are clustering. Outliers are byproduct of clustering. Most clustering methods are developed to optimize clustering processes, but not outlier detecting processes [3]. Su, et al proposed the initial work for cluster-based outlier detection [8]. In the method, small clusters are identified as outliers. However, they failed to consider distance between small clusters and their closest large cluster into consideration.  Actually, that distance is critical important. When a small cluster is very close to another large cluster, although the small cluster contains few points, those points are more to be clustering boundary points than to be outliers. Therefore, they should not be considered as outliers. At least those points have lower outlierness.  Su, et al ‘s method failed to give outlierness for outlier points. He, et al introduced a new definition of cluster-based local outlier and an outlier factor, called CBLOF (Cluster-based Local Outlier Factor)[9]. Based on their definition, they proposed an outlier detection algorithm, findCBLOF. The overall cost of their findCBLOF is O (2N) by using a Squeezer clustering method[10]. The method is very efficient. Although, in their method, outlier detection is tightly coupled with the clustering process, it is true that data are pre-clustering is needed before detecting outliers. Also, their method can only deal with categorical data.

Our method belongs to cluster-based approaches. We take consistent factor (CF) as a measurement. Based on CF, our method can detect outliers with efficient pruning. It is the first time that the notion of CF is introduced as our best knowledge. 

3. Review of P-trees

Most data mining algorithms assume that the data being mined have some sort of structure such as relational tables in databases or data cubes in data warehouses [19]. Traditionally, data are represented horizontally and processed tuple by tuple (i.e. row by row) in the database and data mining areas. The traditional horizontally oriented record structures are known to scale poorly with very large datasets. 

In previous work, we proposed a novel vertical data structure, the P-Trees. In the P-Trees approach, we decompose attributes of relational tables into separate files by bit position and compress the vertical bit files using a data-mining-ready structure called the P-trees. Instead of processing horizontal data vertically, we process these vertical P-trees horizontally through fast logical operations. Since P-trees remarkably compress the data and the P-trees logical operations scale extremely well, this vertical data structure has the potential to address the non-scalability with respect to size. A number of papers on P-tree based data mining algorithms have been published, in which it was explored and proved that P-trees facilitate efficient data mining on large datasets significantly [20].  

In this section, we briefly review some useful features, which will be used in this paper, of P-Tree, including its optimized logical operations. 

3.1. Construction of P-Trees

Given a data set with d attributes, X = (A1, A2 … Ad), and the binary representation of the jth attribute Aj as bj.m, bj.m-1,..., bj.i, …, bj.1, bj.0, we decompose each attribute into bit files, one file for each bit position [14]. To build a P-tree, a bit file is recursively partitioned into halves and each half into sub-halves until the sub-half is pure entirely 1-bits or entirely 0-bits.

The detailed construction of P-trees is illustrated by an example in Figure 1. For simplicity, assume each transaction has one attribute. We represent the attribute as binary values, e.g., (7)10 = (111)2. Then vertically decompose them into three separate bit files shown in b). The corresponding basic P-trees, P1, P2 and P3, are constructed, which are shown in c), d) and e).

As shown in e) of figure 1, the root value, also called the root count, of P1 tree is 3, which is the ‘1-bit’ count of the entire bit file. The second level of P1 contains ‘1-bit’ counts of the two halves, which are 0 and 3.

[image: image3.png]
Figure 1 Construction of P-Tree

3.2. P-Tree Operations

Logical AND, OR and NOT are the most frequently used operations of the P-trees. For efficient implementation, we use a variation of P-trees, called Pure-1 trees (P1-trees). A tree is pure-1 (denoted as P1) if all the values in the sub-tree are 1’s. Figure 2 shows the P1-trees corresponding to the P-trees in c), d), and e) of figure 1. Figure 3 shows the result of AND (a), OR (b) and NOT (c) operations of P-Trees.

[image: image4.png]
Figure 2
P1-trees for the transaction set 

3.3. Predicated P-Trees
There are many variants of predicated P-Trees, such as value P-Trees, tuple P-Trees, mask P-Trees, etc. We will describe inequality P-Trees in this section, which will be used to search for neighbors in section 4.3.
[image: image5.png]
Figure 3AND, OR and NOT Operations

Inequality P-trees: An inequality P-tree represents data points within a data set X satisfying an inequality predicate, such as x>v and x<v. Without loss of generality, we will discuss two inequality P-trees: 
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Calculation of
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: Let x be a data point within a data set X, x be an m-bit data, and Pm, Pm-1, …, P0 be P-trees for vertical bit files of X. Let v = bm…bi…b0, where bi is ith binary bit value of v, and 
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1) opi is  ( if bi=1, opi is  ( otherwise;
2)  ( stands for OR, and ( for AND.
3)  the operators are right binding; 
4)  right binding means operators are associated from right to left, e.g., P2 op2 P1 op1 P0 is equivalent to (P2 op2 (P1 op1 P0)). For example, the inequality tree Px ≥101 = (P2 ( (P  ( P0)).
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. Let x be a data point within a data set X, x be an m-bit data set, and P’m, P’m-1, … P’0 be the complement set for the vertical bit files of X. Let v=bm…bi…b0, where bi is ith binary bit value of v, and 
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, where

1) opi  is ( if bi=0, opi is ( otherwise;
2)  ( stands for OR, and ( for AND.

3) k is the rightmost bit position with value of “0”, i.e., bk=0, bj=1, 
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4) the operators are right binding. For example, the inequality tree 
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3.4. High Order Bit Metric (HOBit)
The HOBit metric [18] is a bitwise distance function. It measures distance based on the most significant consecutive matching bit positions starting from the left. Position of inequality is key idea of the metric. HOBit is motivated by the following observation. When comparing two numbers represented in binary form, the first (counting from left to right) position, on which two numbers are different, reveals more magnitude of difference than other positions. Assume Ai is an attribute in tabular data sets, R (A1, A2, ..., An) and its values are represented as binary numbers, x, i.e., x = x(m)x(m-1)---x(1)x(0).x(-1)---x(-n). Let X and Y are Ai of two tuples/samples, the HOBit similarity between X and Y is defined by 

m (X,Y) = max {i | xi⊕yi }, 

where xi and yi are the ith bits of X and Y respectively, and ⊕denotes the XOR (exclusive OR) operation. In another word, m is the left most position at which X and Y differ. Correspondingly, the HOBit dissimilarity is defined by

dm (X,Y) = 1- max {i | xi⊕yi }.

4. Our Algorithm


In this section, we first introduce our definition of outliers and related notations, and then propose a CF-based outlier detection algorithm. The method can efficiently detect outliers over large datasets. The performance of the algorithm is further enhanced by means of the bitwise vertical data structure, P-tree, and the optimized P-tree logical operations.
4.1. Definitions of Outliers
Outliers are points which are not consistent with other points in a dataset. In view of clusters, outliers are points which do not belong to any cluster. Outliers, the minority of the dataset, are located far away from clusters, the majority of the dataset. As a result, small clusters which are far away from other large clusters are considered as outliers. Based on the above observation, we propose a new definition of outlier and some related definitions. 

Definition 1 (Neighborhood)

The neighborhood of a data point p with the radius r is defined as a set Nbr (p, r) = {x( X | |p-x|( r}, where |p-x| is the distance between p and x. It is also called r-neighborhood. The points within this neighborhood are called the neighbors of p. The number of neighbors of p is denoted as N(Nbr (p, r)). 
The neighborhood ring of p with the radii r1 and r2 (r1<r2) is defined as a set NbrRing (p, r1, r2) = {x( X | r1<|p-x|( r2}.

Definition 2 (Consistency)

Given the r-neighbor set of a data point p with uniform data distribution inside, we define the average distance (Davg) between any two points in the neighbor set as 

Davg (Nbr (p, r)) = r / N( Nbr (p, r) )

If two neighbor sets have similar average distance Davgs, we consider they are consistent. The consistency factor (CF) between two neighbor sets is defined as 

CF (p1,p2, r1, r2) = (Davg (Nbr (p1, r1)) – Davg (Nbr (p2, r2)))/ (Davg (Nbr (p1, r1)) + Davg (Nbr (p2, r2)))

CF indicates to what degree two neighbor set are similar to each other. 

We define consistent region (CR) as a set CR (δ) = {p1, p2 ( X | CF (p1, p2, r1, r2) ( δ}. The size of CR (δ) is the number of points in the CR (δ), denoted as N (CR (δ)).  The average distance of CR (δ) Davg (CR (δ)) = (Davg (Nbr (p1, r1)) + Davg (Nbr (p2, r2))/2.

Definition 3 (Distance from a point to a consistent region)

We define the distance from a point p to a consistent region CR (δ) as the shortest distance between p and any point in CR (δ). It is denoted as D (p, CR (δ)) = min |p-q|, where q ( CR (δ) ).
It is observed that, given a point p, if q ( Nbr (p, Davg(CR(δ)) and q ( CR(δ), then p ( CR(δ). This means that if any r-neighbor of p is located in a CR(δ), then p can also be included in CR(δ). We call this single point merging rules. Figure 4 shows this pictorially.
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Figure 4 p can be merged into CR
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Definition 4 CF based Outliers

Outliers (Ols) are a collection of small clusters, which are far from any large clusters. Given a consistent region CR(δ) with a size N(CR(δ)), we give a local outlier definition as 

Ols ((, () = {x(X | N(Nbr(x, (*Davg(CR(δ))) ≤ (*N(CR(δ)), D(x, CR(δ)) > (*Davg(CR(δ)) },

where ( is a distance factor, ( is a size factor. 

4.2. A CF-based Outlier Detection Method
Given a dataset X and a CF threshold δ, the outlier detection process consists of two sub-processes: “neighborhood merging” and “outlier detection”. The “neighborhood merging” efficiently prunes clusters of data which are not likely to be outliers; “outlier detection process” detects outliers over the pruned subset of data. The two sub-processes are called alternatively according to the local distribution of data. The method starts with “neighborhood merging”. It calls “outlier detection” the when necessary, which in turn calls “neighborhood merging” procedure by case. 

“Neighborhood Merging” process:  The “neighborhood merging” procedure includes two type of merging, which are neighborhood merging and single point merging. It starts with an arbitrary point p and a small neighborhood radius r, and calculates Davg ( Nbr (p, r) ). Increase the radius from r to 2r, and calculate CF (p,p, r, 2r)  
If CF (p,p, r, 2r) ( δ, the 2r-neighborhood becomes a consistent region, CR(δ). The expansion of neighborhood will be continued by increasing radius with 4r, 8r … The largest and latest neighborhood, 2kr- neighborhood, will be the new CR(δ) as long as CF (p,p, kr, 2kr) ( δ. If CF (p,p, kr, 2kr) >δ, consistency is broken and the expansion stops. Calculate v = Davg ( Nbr (p, kr) ).

For the points in the outside ring NbrRing (p, kr, 2kr), we choose a point q arbitrarily, search for v-neighbors of q. If any of v-neighbor of q belongs to CR(δ) above, q can be merged into it according to proposition 1. We call this process single-point merging. The single-point merging iterates over the set of points in outside ring.

All points in CR (δ) are pruned off to avoid further examination. The information of CR (δ), including the value v, is stored for further use. The value v is recorded in the Davg list.

For example, in figure 5, the expansion stops at 6r-neighborhood. The dark region is the consistent region, and all points in CR are pruned out. 


Figure 5 Pruning by Neighborhood Merging 

If any of v-neighbor of q doesn’t belong to CR(δ) above, the process “outlier detection” will be called to detect outliers. This is illustrated in figure 6. The “outlier detection process” is detailed below.

Figure 6 “Neighborhood Merging” process followed by “Outlier detection”

“Outlier Detection” process:  
“Outlier Detection Process” detects outliers over the pruned data set. Given two parameters, the distance factor ( and the size factor ( of outliers, first pick up a point q from the pruned outside ring. If any of v-neighbor of q doesn’t belong to CR(δ) above, calculate N ( Nbr (p, v)), where v is the Davg of CR(δ) above. If N ( Nbr (p,v)) ≤ (*N(CR(δ)), expand the neighborhood radius to (*v, and get the ((*v)-neighborhood of q. If none of ((*v)-neighbors of q belong to CR(δ), calculate N ( Nbr (p, (*v)). 

· If N ( Nbr (p, (*v)) > (*N(CR(δ)), Nbr (p, (*v) will form a new consistent region. At the same time, “neighborhood merging process” is called to speed up the process. 
· If N ( Nbr (p, (*v)) ≤ (*(CR(δ)), Nbr (p, (*v) will be marked as an outlier set. We calculate the outlierness, which is (*v *N(Nbr(q, (*v )), insert Nbr (p, (*v) into outlier set together with its outlierness. 
In summary, the points in large clusters are pruned by neighborhood merging. Neighborhood merging is very fast because it prunes data set by set, NOT point-by-point. Our method detects outliers over the pruned dataset, which only include outliers and boundary points of clusters. This subset of data as a whole is much smaller than the original dataset. 

Our method provides interaction for users. User can modify initial radius r, the threshold δ, the distance factor ( and the size factor ( of outliers for different datasets.

4.3. A Vertical Outlier Detection Method Using P-tree
As we aforementioned, our outlier detection approach consists of two procedures: “neighborhood merging” and “outlier detection”. Automatic alternating of these two procedures accomplishes very efficient outlier detections. In this section we show that both the “neighborhood merging” and “outlier detection” procedures can be further improved by using the P-trees data structure and its optimal logical operations. 

“Neighborhood Merging” using HOBit metric: “Neighborhood merging” is a neighborhood expanding procedure. HOBit metric can be used to speed up the expanding. Given a point p, we define the neighbors of p hierarchically based on the HOBit dissimilarity between p and its neighbors, denoted as ξ-neighbors. ξ-neighbors represents the neighbors with ξ bits of dissimilarity, where ξ = 0, 1 ... 7 if p is an 8-bit value. For example, 2-neighbors represent neighbors of p with 2-bit HOBit dissimilarity to p.

In “neighborhood merging” process, we first consider 0-neighbors, which mean the points have the exactly same value as p. Then we expand the neighborhood by increasing HOBit dissimilarity to 1-bit. Both 0-neighbors and 1-neighbors are found after expansion. The process iterates by increasing HOBit dissimilarity. We calculate the average distance, Davg(Nbr(p,ξ)), for each ξ-neighborhood, and calculate the CF(p, p,ξ1,ξ2) along neighborhoods, where ξ2 – ξ1 = 1. The expanding process stops until the CF (P,P,ξ1, ξ2) is large than the threshold δ. 

The basic calculations in the process above are computing Davg ( Nbr(p,ξ)) for each ξ- neighborhood, merging boundary points into CRs, and pruning CRs. The calculations are implemented using P-trees as follows. 

Given a set of P-trees, Pi,j, for the data set, where i = 1, 2 ..., n; j = 1, 2 ..., m; n is the number of attributes; m is the number of bits in each attribute, HOBit dissimilarity is calculated by means of P-tree AND, denoted as (. For any data point, p, let p = b11b12 … bnm, where bi,j is the ith bit value in the jth attribute column of p. The bit P-trees for p, PPi,j , are then defined by             
        
                  
      Pi,j  =   
PPi,j  if  bi.j  = 1




         P’i,j   ,  Otherwise

The attribute P-trees for P with ξ- HOBit dissimilarity are then defined by 

   Pvi, ξ  = Ppi,1 ( Ppi,2 ( …( Ppi,m-ξ
The ξ-neighborhood P-tree for p are then calculated by

PNp, ξ = Pv1, m-ξ( Pv2, m-ξ( Pv3, m-ξ(  …(  Pvn, m-ξ
where, PNp, ξ is a P-tree represents the ξ-neighborhood of p. “1” in PNp, ξ means the corresponding point is a ξ-neighbor of p while ‘0’ means it is not a ξ-neighbor. Davg( Nbr(p,ξ)) of the ξ-neighborhood is simply computed by 

Davg( Nbr(p,ξ)) = r/rootcount(PNp,r)
where r is decimal radius corresponding to ξ, rootcount is value of root node of the P-tree, PNp,r. The getRootCount operation of P-trees is efficient.

We use PCR as a P-tree representation of currently processed consistent region and PCR = PNp, ξ. When PNQ,Davg(Nbr(P, ξ)) ( PCR  > 0, boundary point q and its Davg(Nbr(p, ξ))-neighbors can be merged into the CR by 

PCR = PNq,Davg(Nbr (p, ξ)) ∪PCR
The whole CR can be pruned using P-trees AND operation by: 

PU = PU ( PCR’

where PU is a P-tree represents the unprocessed points of the dataset. It is initially set to all 1’s. PCR’ represents the complement set of the currently processed CR. The “neighborhood merging” procedure using HOBit metric is shown in figure 7.
Figure 7 “Neighborhood merging” using HOBit metric
“Outlier Detection” using Inequality P-trees: “Outlier Detection” detects outliers over the subset of points which are either the boundary points or outliers. We use inequality P-trees to search for t*Davg-neighborhood of points in that subset and the neighborhood is represented as a P-trees, denoted as PNq, t*Davg. The calculation of the neighborhood, the size of t*Davg - neighborhood, and the determination of overlapping between the neighborhood and current processed consistent region, are described as follows.
The t*Davg-neighborhood P-tree of a given point q, PNq, t*Davg is calculated by 

PNq, t*Davg = Px>q - t*Davg ( Px(q+ t*Davg.

The size of the t*Davg –neighborhood of point q is equal to the root count of PNq, t*Davg, denoted as N (Nbr(q, t*Davg)). 

Therefore, the outlierness can be computed accordingly by (*v *N(Nbr(q, (*v )). 

The determination of overlapping between the neighborhood and current processed consistent region is simply computed by P-tree’s AND operation as follows:

Pintersection = PNq, t*Davg ∩ PCR(Davg)

where, PCR(Davg) is the P-tree representation of the currently processed consistent region and Pintersection is the P-tree representation of the overlapping part of the two sets. The root count of Pintersection is large than zero means there is overlap. 


The vertical “Outlier Detection” algorithm is shown in figure 8. The whole process of vertical outlier detection is shown in figure 9.

Figure 8 Outlier Detection Procedure Using P-Trees
To summarize, P-trees further speed up our outlier detection approach. The speed improvement lies in: a) P-trees make the “neighborhood merging” process on fly using HOBit metric; b) P-trees are very efficient for neighborhood search by its logical operations; c) P-tree can be used as a self-index for unprocessed dataset, CR dataset and outlier set. Because of it, outlier detection is efficiently executed by logical operations of P-trees.


Figure 9 Vertical Outlier Detection Using P-trees
5. Experimental and Complexity Study 

In this section, we experimentally compare our method (CF) with current approaches: Su et al’s two-phase clustering based outlier detection algorithm, denoted as MST, and He’s CBLOF (cluster-based local outlier factor) method. MST is the first approach to cluster-based outlier detection. CBLOF is the fastest approach in the cluster-based area so far. We compare three methods in terms of run time and scalability to data size. We will show our approach is efficient and has high scalability. 

We ran the methods on a 1400-MHZ AMD machine with 1GB main memory and Debian Linux version 4.0. The datasets we used are the National Hockey League (NHL, 96) dataset and NBA dataset. Due to space limitation, we only show our result on NHL dataset in this paper. The result on NBA dataset also leads to our conclusion in terms of speed and scalability. The datasets are prepared in five groups with increasing sizes. Figure 10 show that our method has a six times speed improvement compared to CBLOF method. 

Figure 10 Run Time Comparison of three Methods 

As for scalability, our method is the most scalable among the three. When the data size is small, our method has the similar run time to those of MST and CBLOF.  However, when data size is large, e.g. 16384, our method starts to outperform these two methods (see figure 11). 

Figure 11 Scalability Comparison of three Methods
The performance difference among these three methods can also be analyzed by means of computational complexity. The worst case of our method is O (N), where N is the size of dataset. Generally speaking, complexity with pruning technique can be O (M), where M is the size of the remaining subset of the data after pruning. In most cases, the pruned dataset is much smaller than the original dataset, thus M<<N. Table 1 shows the complexity comparison of the three approaches. 
Table 1 Complexity Comparison

	Algorithm
	Complexity

	MST
	O(kNt), k is number of cluster, t is number of iteration

	CBLOF 
	O(2N)

	LCF
	O (M)


6. Conclusion and Future Work

“One person’s noise is another person’s signal.” Outlier detection can lead to discovering unexpected and interesting knowledge, which is critical important to some areas such as monitoring of criminal activities in electronic commerce, credit card fraud, etc.

In this paper, we propose a vertical outlier detection method based on a novel consistent factor CF. The method can fast detect outliers over large datasets. The efficiency comes from both efficient pruning and the vertical data representation, P-trees. The P-trees speeds up neighborhood search, the calculation of CF, and the pruning process. Also, the process is adaptive to the distribution of datasets. A small radius is used for dense data to guarantee the accuracy, and a large radius is used for sparse data to gain speed. 

Our method was tested over NHL and NBA datasets. Experiments show that our method has a six time speed improvement on the current state-of-art clustering-based outlier detection approaches.

We will explore how to merge consistent regions into clusters in our extended work.
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Algorithm: “Neighborhood Merging” using HOBit metric

Input: bij: point p (binary form), PCR

// PCR represent the currently processing Consistent Region

Output: pruned dataset PU

// CF threshold δ

// Pij is P-tree represented dataset T

// PNi, i-neighborhood of a point

// n is number of attributes, 

// m is number of bits in each attribute

// Ptij’ is complement set of Ptij

FOR j = 0 TO m-1

	IF bi,j = 1 Pti,j ( Pi,j

	ELSE Pti,j ( P’i,j   

ENDFOR 

FOR i = 1 TO n

	Pvi,1 ( Pti,1

	FOR j = 1 TO m-1

		Pvi,j (Pvi,j-1 (Pti,j

	ENDFOR

	i ( n – 1

	j ( m

ENDFOR

DO

PN ( Pt1

	FOR r = 2 TO n

		IF r ( i  PN ( PN ( Pti,j

		ELSE PN ( PN ( Pti,j-1

			i ( i – 1

			IF i = 0 j ( j -1

ENDFOR

WHILE |PNi| - |PNi-1|) <δ



PCR = PNi-1 



FOR each point in PNi|- PN’i-1

	IF PNQ,Davg(Nbr(P, ξ)) ( PCR  > 0

		PCR  =  PCR ∪ Q

	ENDIF

ENDFOR



PU ( PU (  PCR’;	// pruning



FOR each point in PCR’ ∩PNi

	OutlierDetection(q,Davg, PCR);

ENDFOR











Algorithm: “OutlierDetection” using P-trees 

Input: point q, Davg,, PCR 

// PCR is the P-tree representation of current processing CR

// Davg is the average distance of the current CR

Output: outlier set

// size factor (

// distance factor (

// PN(q): neighbors of q

// PCRnew is a p-tree representing a new CR

// Pols  is outlier set represented by P-tree



r ( Davg

PN(q, Davg) = PX≤q+r ∩ PX>q-r  

IF | PN(q, r)| < (*|PCR|

	r ( (*Davg

	PN(q, r) = PX≤q+r ∩ PX>q-r 

	// insert into outlier sets

	IF|PN(q, r)| < (*|PCR| 

		Pols ( Pols ∪PN(q, r)

		// prune the processed data 

   		PU ( PU ∩ PN’(q, r ); 

		Break;

	ENDIF 

ENDIF



// start a new cluster, call “merging process”

PCRnew ( PCRnew ( q ( PN(q, r);

PCR ( PCRnew;

          NeighborhoodMerging(q, PCR);







Algorithm: Vertical Outlier Detection using P-Trees

Input: Dataset T, radius r, CF threshold δ.

Output: An outlier set Ols.

// PU — unprocessed points represented by P-Trees; 

// |PU| — number of points in PU

// Pols — outliers; 

//Build up P-Trees for Dataset T

PU ( createP-Trees(T);

i ( 1;

PCR (φ;

Davg ( Davginit;

WHILE |PU| > 0 DO 

p ( PU.first;    //pick an arbitrary point x

// Neighborhood merging

OutlierDetection(p, Davg, PCR);

i ( i+1

ENDWHILE



CR



q





�Patents are pending on the P-tree technology. This work is partially supported by GSA Grant ACT#: K96130308.



�Patents are pending on the P-tree technology. This work is partially supported by GSA Grant ACT#: K96130308.
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