A Distance-based Outlier Detection Method Using P-Tree
Dongmei Ren, Kirk Scott, Baoying Wang, William Perrizo

North Dakota State University
Computer Science Department
Fargo, ND, 58105, USA
701-231-6403

dongmei.ren@ndsu.nodak.edu
Abstract
Outlier detection is used to clean up datasets, but also to discover useful anomalies, which is critical important in some areas such as computer intrusion attacks, terrorist threats. In this paper, we limit our focus on distance-based outlier detection over large datasets and propose a vertical distance-based outlier detection method using P-Trees. Our method works efficiently over large datasets in terms of speed and scalability to data size. We tested the proposed method against NHL data and show that our vertical method outperforms the contemporary distance-based approach in terms of speed and scalability to data size.
1 INTRODUCTION

The problem of mining rare event, deviant objects, and exceptions is critically important in many domains, such as electronic commerce, network, surveillance, and health monitoring. Therefore, outlier mining is drawing more and more attentions. Many studies that consider outlier identification as their primary objective are in statistics. Barnett and Lewis provide a comprehensive treatment, listing about 100 discordance tests for normal, exponential, Poisson, and binomial distributions [1]. For this category of approaches, prior knowledge of distribution of data is needed, there is no guarantee of finding outliers, either because there may be no standard distribution which can adequately model the observed distribution, or because no test developed for some specific distribution. The second category of outlier studies in statistics is depth-based. For this approach, each data object is represented as a point in a k-dimensional space, and is assigned a depth. Outliers are more likely to be data objects with smaller depths. There are many definitions of depth that have been proposed. In theory, depth-based approaches could work for large values of k, which is the number of dimensions; however, in practice, while there exist efficient algorithms for k equal to 2 or 3, depth-based approaches become inefficient for large datasets for k large than 4. This is because depth-based approaches rely on the computation of k dimensional convex hulls which has a lower bound complexity of Ω (n* k/2), where n is the number of samples [1].

In data mining, Knorr and Ng proposed a unified definition for outliers, defined as follows: An object O in a dataset T is a UO (p, D) outlier if at least fraction p of the objects in T lie at a distance greater than or equal to D from O[1]

 REF _Ref65222210 \r \h
[2]. They show that for many discordance tests in statistics, if an object O is an outlier according to a specific discordance test, then O is also a UO (p, D) outlier for some suitably defined p and D. They proposed a cell structure-based outlier detection algorithm, where the whole set of cells resembles a data cube. They showed that their method works well with low dimensionality. However, the method is not very efficient for very large data and high dimensional data. Another disadvantage is that it takes a global view of the dataset and fails to detect some kinds of outliers over datasets with different densities and arbitrary shapes.
In this paper, we focus on improving the efficiency of the distance-based approach in terms of speed and scalability to data size. We propose a neighborhood based outlier detection method using a novel vertical representation model, P-Trees
, instead of the traditional horizontal data structure (i.e. tuple-based data organization). The proposed method can detect outliers efficiently over large datasets and scales well with the increase of data size.

The paper is organized as follows. In section 2, we introduce our neighborhood based outlier definition. An overview of P-Tree technology is given in section 3. In section 4, we propose our P-Tree based outlier-detection algorithm. We test our method experimentally over real dataset in section 5. The paper is concluded in section 6.
2 DEFINITION OF DISTANCE-BASED (DB) OUTLIERS
2.1 Definitions

Definition of a DB outlier

In [1], Knorr and Ng’s defined distance based outlier as:

An object O in a dataset T is a DB (p, D) outlier if at least fraction p of the objects in T lies at a distance greater than or equal to threshold distance, D, from O. An equivalent description can be stated as:

An object O in a dataset T is a DB (p, D) outlier if at most fraction (1-p) of the objects in T lies less than threshold distances D from O.

We give a neighborhood based outlier definition formally in the following paragraph.

Definition 1 (Neighborhood)

The Neighborhood of a data point O with the radius r is defined as a set Nbr (O, r) = {t(T| |O-t|(r}, where, T is the dataset, t is a point in T, and |O-t| is the distance between O and t. It is also called the r-neighborhood of O and the points in this neighborhood are called the neighbors of O. The number of neighbors of O is denoted as N (Nbr (O, r)).
Definition 2 (Outliers)

Based on the neighborhood definition, a point O is considered as a DB (p, D) outlier if N (Nbr (O, D)) ≤ (1-p)*|T|, where |T| is the total size of the dataset T. We define outliers as a subset of the dataset T with N (Nbr(t, D)) ≤ (1-p)*|T|, where t denotes a point in the outlier set. The outlier set is denoted as Ols (T, p, D) = {t(T | N (Nbr(t,D)) ≤ (1-p)*|T|}.
3 REVIEW OF P-TREES
Most data mining algorithms assume that the data being mined have some sort of structure such as relational tables in databases or data cubes in data warehouses [7]. Traditionally, data are represented horizontally and processed tuple by tuple (i.e. row by row) in the database and data mining areas. The traditional horizontally oriented record structures are known to scale poorly to very large data sets.

In our previous work, we proposed a novel vertical data structure, the P-Tree. In the P-Tree approach, we decompose attributes of relational tables into separate files by bit position and compress the vertical bit files using a data-mining-ready structure called the P-tree. Instead of processing horizontal data vertically, we process these vertical P-trees horizontally through fast logical operations. Since P-trees markedly compress the data and the logical operations of the P-Trees scale extremely well, this vertical data structure approach has the potential of improving the performance of data mining algorithm in terms of speed and scalability with respect to data size.

In this section, we briefly review some useful features, which will be used in this paper, of the P-Tree, including its optimized logical operations.

3.1 Construction of P-Tree

Given a data set with d attributes, X = (A1, A2 … Ad), and the binary representation of the jth attribute Aj as bj.m, bj.m-1,..., bj.i, …, bj.1, bj.0, we decompose each attribute into bit files, one file for each bit position [10]. To build a P-tree, a bit file is recursively partitioned into halves and each half into sub-halves until the sub-half is pure entirely 1-bits or entirely 0-bits.

The detailed construction of P-trees is illustrated by an example in Figure 1. For simplicity, assume each transaction has one attribute. We represent the attribute in binary, e.g., (7)10 = (111)2. We then vertically decompose the attribute into three separate bit files as shown in b). The corresponding basic P-trees, P1, P2 and P3, are constructed, which are shown in c), d) and e).
As shown in c) of Figure 1, the root value, also called the root count, of P1 tree is 3, which is the count of 1s in the entire bit file. The second level of P1 contains the counts 1s in the two halves separately, which are 0 and 3.

3.2 P-Tree Operations

AND, OR and NOT logic operations are the most frequently used P-tree operations. For efficient implementation, we use a variation of P-trees, called Pure-1 trees (P1-trees). A tree is pure-1, denoted as P1, if all the values in the sub-tree are 1’s. Figure 2 shows the P1-Trees corresponding to the P-trees in c), d), and e) of Figure 1. Figure 3 shows the result of AND a), OR b) and NOT c) operations of the P-Tree.
3.3 Predicate P-Tree

There are many variants of predicate P-Tree, such as value P-Trees, tuple P-Trees, mask P-Trees, etc. We will describe inequality P-Trees in this section, which will be used to search for neighbors in section 4.

[image: image6.png]
Figure 1 Construction of P-Tree
[image: image7.png]
Figure 2
P1-trees for the transaction set (in figure 1)

[image: image8.emf]Scalability Comparison

-200

0

200

400

600

800

1000

1200

1400

1600

1800

256102440961638465536

data size

run time

NL

POD

Figure 3
AND, OR and NOT Operations

Calculation of Pt≥v: Let t be a data point within a data set T, t be an m-bit data, and Pm, Pm-1, …, P0 be P-trees for vertical bit files of T. Let v = bm…bi…b0, where bi is ith binary bit value of v, and Pt≥v be the predicate tree for the predicate t≥v, then Pt≥v = Pm opm … Pi opi Pi-1 … op1 P0, i = 0, 1 … m, where:
1) opi is AND if bi=1, opi is OR otherwise;

2) the operators are right binding;

3) right binding means operators are associated from right to left, e.g., P2 op2 P1 op1 P0 is equivalent to (P2 op2 (P1 op1 P0)). For example, the inequality tree Pt ≥101 = (P2 AND (P OR P0)).

Calculation of Pt≤v: Calculation of Pt≤v is similar to calculation of Pt≤v. Let t be a data point within a data set T, t be an m-bit data set, and P’m, P’m-1, … P’0 be the complement P-trees for the vertical bit files of T. Let v=bm…bi…b0, where bi is ith binary bit value of v, and Pt≤v be the predicate tree for the predicate t≤v, then Pt≤v = P’mopm … P’i opi P’i-1 … opk+1P’k,
[image: image1.wmf]m

i

k

£

£

, where
1) opi is AND if bi=0, opi is OR otherwise;

2) k is the rightmost bit position with value of “0”, i.e., bk=0, bj=1,
[image: image2.wmf]"

j<k,
3) the operators are right binding. For example, the inequality tree
[image: image3.wmf]101

£

x

P

 = (P’2 OR P’1).

4 THE PROPOSED METHOD
In this section, we propose a neighborhood based outlier detection method using P-Trees. In this approach, inequality P-Trees and the optimal logical operations of P-Trees facilitate efficient neighborhood search significantly, which lead to the speed efficacy of our method.
Based on neighborhood based outlier definition and P-Tree technology, we propose our outlier detection method. The algorithm is described as follows.
Step 1: The dataset T are partitioned vertically and stored into a set of P-Trees.

Step 2: Select one point O arbitrarily from the dataset T;

Step 3: Search for the D-neighborhood of O and calculate the number of neighbors, N (Nbr(O,D);

 In this step, we calculate neighborhood using inequality P-Trees. The neighbors are represented using a P-Tree, called neighborhood P-Tree of point O. This neighborhood P-Tree is the union set of the inequality P-Tree Pt ≥ (Oi-D) and the inequality P-Tree Pt ≤ (Oi+D) along all dimensions, where Oi is the ith attribute value of point O. This neighborhood P-Tree is denoted as PAND|Oi-D,Oi+D|. Formally, PAND|Oi-D,Oi+D| is computed by

PAND|Oi-D,Oi+D| =
[image: image4.wmf]1

0

-

=

n

i

AND

(Pt ≥ (Oi-D) OR Pt ≤ (Oi+D)), where n is the number of dimension. Note that in the neighborhood P-Tree, ‘1’ means the point is a neighbor of the point O, while ‘0’ means the point is not a neighbor.
The N (Nbr(O,D) is calculated efficiently by extracting values from the root node of the neighbor P-Tree [10].
Step 3: The process is conducted iteratively until all points in the dataset T are examined.
The formal algorithm is shown in figure 4.
Figure 4 Pseudo Code of the Proposed Algorithm
In our approach, the calculation of the inequality P-Trees and the calculation of neighborhood P-Tree are executed through optimized logical operations of P-Tree, which makes the neighborhood search very fast. This is where the efficacy of our method comes from. By searching neighbors using inequality P-Trees, the proposed approach improves the outlier-detection process dramatically in terms of speed.
5 EXPERIMENTAL DEMONSTRATION

In this section, we design experiments to compare our methods with Knorr and Ng’s nested loop approach (noted as NL in figure 5 and 6) [2]. We implemented our P-Tree based outlier detection method, which is called POD for concise. Our purpose is to show our approach’s efficiency and scalability.

We tested the methods over a 1400-MHZ AMD machine with 1GB main memory, running Debian Linux version 4.0. We tested the algorithms over the National Hockey League (NHL) 1996 dataset. To show how our algorithm scales when data size increases, the dataset is divided into five groups with increasing size (where larger data groups contain repeating records). It can be seen from Figure 5 [image: image9.png]that our method shows an around four times speed improvement compared to Knorr and Ng’s Nested Loop method.

[image: image5.emf]0

500

1000

1500

2000

Run Time

Data Size

Speed Comparison

NL

0.060.820.03336.51657.9

POD

0.121.157.3265.4788.2

256102440961638465536

Figure 5 Speed Comparison of NL and POD
As for scalability issue, the POD outperforms the NL as well. And our method scales well with increasing dataset sizes. Figure 6 shows this pictorially.
Figure 6 Scalability of NL and POD
6 CONCLUSION AND FUTURE WORK
Outlier detection is becoming very important to many areas such as monitoring of criminal activities in electronic commerce, credit card fraud, etc. In this paper, we propose a distance-based outlier detection algorithm using vertical data representation, P-Trees. By using P-Trees, the outlier detection process can be speed up significantly. The speed comes from: 1) In the P-Tree based approach, the neighborhood search is calculated by ADNing and ORing set of inequality P-Trees. The optimized logical operation OR and AND make the neighbor search is very fast. 2) The computation of the number of neighbors is efficient because it is done by extracting the value of the root node of the neighborhood P-Tree. We test our method experimentally over real dataset and shows three to four times speed improvement compared to Knorr and Ng’s nested loop approach.
Encouraged by the results in this paper, we will explore the use of vertical data representation, P-Trees, in density-based outlier detection as our next work.
7 REFERENCES

[1] V.BARNETT, T.LEWIS, “Outliers in Statistic Data”, John Wiley’s Publisher
[2] Knorr, Edwin M. and Raymond T. Ng. A Unified Notion of Outliers: Properties and Computation. 3rd International Conference on Knowledge Discovery and Data Mining Proceedings, 1997, pp. 219-222.
[3] Knorr, Edwin M. and Raymond T. Ng. Algorithms for Mining Distance-Based Outliers in Large Datasets. Very Large Data Bases Conference Proceedings, 1998, pp. 24-27.
[4] Sridhar Ramaswamy, Rajeev Rastogi, Kyuseok Shim, “Efficient algorithms for mining outliers from large datasets”, International Conference on Management of Data and Symposium on Principles of Database Systems, Proceedings of the 2000 ACM SIGMOD international conference on Management of data Year of Publication: 2000, ISSN:0163-5808
[5] Markus M.Breunig, Hans-Peter kriegel, Raymond T.Ng, Jorg Sander, “OPTICS-OF: Identifying Local Outliers”, Proc. of PKDD '99, Prague. Czech Republic, Lecture Notes in Computer Science (LNAI 1704), Springer Verlag, 1999, pp. 262-270.
[6] Arning, Andreas, Rakesh Agrawal, and Prabhakar Raghavan. A Linear Method for Deviation Detection in Large Databases. 2nd International Conference on Knowledge Discovery and Data Mining Proceedings, 1996, pp. 164-169.
[7] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-Driven Exploration of OLAP Data Cubes. EDBT'98.
[8] Jiawei han, Micheline kambr, “Data mining concepts and techniques”, Morgan kaufman Publishers
[9] Shashi Shekhar, Chang-Tien Lu & Pusheng Zhang, “Detecting graph-based spatial outliers”, Journal of Inteelegent data analysis 6 (20022) 451-468, IOS press.
[10] Q. Ding, M. Khan, A. Roy, and W. Perrizo, The P-tree algebra. Proceedings of the ACM SAC, Symposium on Applied Computing, 2002.
[11] M. Khan, Q. Ding and W. Perrizo, K-nearest Neighbor Classification on Spatial Data Stream Using P-trees, Proceedings of PAKDD 2002, Springer-Verlag, Lecture Notes in Artificial Intelligence 2336, May 2002, pp. 517-528.
[12] Pan, F., Wang, B., Ren, D., Hu, X. and Perrizo, W., Proximal Support Vector Machine for Spatial Data Using Peano Trees, CAINE 2003
[13] Imad Rahal, William Perrizo, An optimized Approach for KNN Text Categorization using P-tees. Proceedings of the ACM SAC, Symposium on Applied Computing (Nicosia, Cyprus),March 2004.

[14] Fei Pan, Imad Rahal, Yue Cui, William Perrzio, Efficient Ranking of Keyword Queries Using P-Trees”, 19th International Conference on Computers and Their Applications, pp. 278-281, 2004.
[15] Maum Serazi, Amal Perera, Qiang Ding, Vasiliy Malakhov, Imad Rahal, Fen Pan, Dongmei Ren, Weihua Wu, and William Perrizo. "DataMIME™". ACM SIGMOD, Paris, France, June 2004.

Algorithm: “P-Tree based Outlier Detection Method”

Input: D, f, T

//D: Distance threshold

// f: outlier fraction

// T: dataset

Output: Pols

// N: total number of points in dataset T

//PU: P-tree represented unprocessed dataset

//PN: P-tree represented neighborhood

//Pols: P-tree represented outlier set

// Build up P-Trees set for T;

PU(T;

WHILE (! PU. size())

{

FOR i=0 t0 n // n is the number of dimension

	PN (PN & (Pt ≥ (Oi-D) || Pt ≤ (Oi+D));

 // Pt ≥ (Oi-D), Pt ≤ (Oi+D)) are inequality P-Trees

// & is the AND of P-Tree

// || is the OR operation of P-Tree

ENDFOR

m (PN.rootCount ();

// rootCount retrieve the value of the root node

IF m <= (1- f) * N

	Pols (Pols || Po;

	// Po is the index P-Tree of point O

ENDIF

IF m > (1-f) * N,

PU (PU & Po’;

// Po’ is the complement set of Po

ENDIF

}

ENDWHILE

� Patents are pending on the P-tree technology. This work was partially supported by GSA Grant ACT#: K96130308.

PAGE

_1146921545.unknown

_1146993574.unknown

_1157403081.unknown

_1146921478.unknown

