A Vertical Outlier Detection Algorithm with Clusters as By-product
Dongmei Ren, Imad Rahal, William Perrizo

Computer Science Department

North Dakota State University

Fargo, ND 58105, USA

dongmei.ren@ndsu.nodak.edu
Abstract

Outlier detection can lead to discovering unexpected and interesting knowledge, which is critically important to some areas such as monitoring of criminal activities in electronic commerce, credit card fraud, and the like. In this paper, we propose an efficient outlier detection method with clusters as by-product, which works efficiently for large datasets. Our contributions are: a) We introduce a Local Connective Factor (LCF); b) Based on LCF, we propose an outlier detection method which can efficiently detect outliers and group data into clusters in a one-time process. Our method does not require the beforehand clustering process, which is the first step in other state-of-the-art clustering-based outlier detection methods; c) The performance of our method is further improved by means of a vertical data representation, P-trees
. We tested our method with real dataset. Our method shows around five-time speed improvements compared to the other contemporary clustering-based outlier-detection approaches.

1. Introduction

The problem of mining rare events, deviant objects, and exceptions is critically important in many domains, such as electronic commerce, network, surveillance, and health monitoring. Recently, outlier mining started drawing more attentions. The current outlier mining approaches can be classified into five categories: statistic-based [1], distance-based[2]

 REF _Ref65222210 \r \h
 * MERGEFORMAT [3]

 REF _Ref73425507 \r \h
 * MERGEFORMAT [4]

 REF _Ref73425509 \r \h
 * MERGEFORMAT [5], density-based [6]

 REF _Ref73385383 \r \h
 * MERGEFORMAT [7], clustering-based [7], and deviation-based [12]

 REF _Ref65221001 \r \h
 * MERGEFORMAT [13].
In this paper, we propose an efficient cluster-based outlier detection method using a vertical data model. Our method is based on a novel connectivity measurement, local connective factor (LCF). LCF indicates the degree at which a point locally connects with other points in a dataset. Unlike the current cluster-based outlier-detection approaches, our method detects outliers and groups data into clusters in a one-time process. Our method has two advantages. First, without clustering beforehand, we speed up the outlier-detection process significantly. Second, although our main purpose is to find outliers, the method can group data into clusters to some degree as well.
A vertical data representation, P-Tree, is used to speed up our method further. The calculation of LCF using P-Trees is very fast. P-trees are very efficient for neighborhood-search problems; they use mostly logical operations to accomplish the task. P-trees can also be used as self-indexes for certain subsets of the data. In this paper, P-trees are used as indexes for the unprocessed subset, clustered subset and outlier subset. Pruning is efficiently executed on these index P-trees.

Our method was tested over real datasets. Experiments show that up to five times speed improvement over the current state-of-the-art cluster-based outlier detection approaches.

This paper is organized as follows. Related work is reviewed in section 2; the P-Trees are reviewed in section 3; in section 4, we describe our vertical outlier detection method with clusters as by-product; performance analysis is discussed in section 5; finally we conclude the paper in section 6.
2. Related work
In this section, we will review the current cluster-based outlier detection approaches. A few clustering approaches, such as CLARANS, DBSCAN and BIRCH are developed with exceptions-handling capacities. However, their main objective is clustering. Outliers are the by-products of clustering. Most clustering methods are developed to optimize the clustering process, but not the outlier-detecting process [3]. Su et al. proposed the initial work for cluster-based outlier detection [8]. In the method, small clusters are identified as outliers. However, they failed to consider the distance between small clusters and their closest large cluster. As a matter of fact, this distance is of critical importance. When a small cluster is very close to another large cluster, although the small cluster contains few points, those points are more likely to be clustering boundary points than to be outliers. Therefore, they should not be considered as outliers. At least those points have lower deviation from the rest of the points in the dataset. Su’s et al. method failed to give the deviation degree for outlier points. He et al introduced two new definitions: cluster-based local outlier definition and the definition of outlier factor, CBLOF (Cluster-based Local Outlier Factor) [9]. Based on this definition, they proposed an outlier detection algorithm, CBLOF. The overall cost of their CBLOF is O (2N) by using the squeezer clustering method [10]. Although, in their method, outlier detection is tightly coupled with the clustering process, data are grouped into clusters first, and then outliers are mined; i.e. the clustering process takes precedence over the outlier-detection process. Additionally, their method can only deal with categorical data.

Our method belongs to the cluster-based approaches. We utilize the LCF as a measurement. Based on LCF, our method can detect outliers and group data into clusters simultaneously.
3. Review of P-Trees
Traditionally, data are represented horizontally and processed tuple by tuple (i.e. row by row) in the database and data mining areas. The traditional horizontally oriented record structures are known to scale poorly with very large datasets. In our previous work, we proposed a vertical data structure, the P-Trees [15]. In this approach, we decompose attributes of relational tables into separate files by bit position and compress the vertical bit files using a data-mining-ready structure called the P-tree. Instead of processing horizontal data vertically, we process these vertical P-trees horizontally through fast logical operations. Since P-trees remarkably compress the data and the P-trees logical operations scale extremely well, this vertical data structure has a great potential to address the non-scalability with respect to size.

In this section, we briefly review some useful features, which will be used in this paper, of P-Trees, including its optimized logical operations.
3.1. Construction of P-Trees
Given a data set with d attributes, X = (A1, A2 … Ad), and the binary representation of the jth attribute Aj as bj.m, bj.m-1,..., bj.i, …, bj.1, bj.0, we decompose each attribute into bit files, one file for each bit position [14]. To build a P-tree, a bit file is recursively partitioned into halves and each half into sub-halves until the sub-half is contains entirely 1 bits or 0 bits.

The detailed construction of P-trees is illustrated by an example in Figure 1. For simplicity, assume each transaction has one attribute. We represent the attribute in binary, e.g., (7)10 = (111)2. We then vertically decompose the attribute into three separate bit files shown in b). The corresponding basic P-trees, P1, P2 and P3, are then constructed, the result of which are shown in c), d) and e), respectively.

As shown in c) of figure 1, the root value, also called the root count, of P1 tree is 3, which is the ‘1-bit’ count of the entire bit file. The second level of P1 contains ‘1-bit’ counts of the two halves, which are 0 and 3.
[image: image1.png]010

o1t
010
01
101
o
111
111
4) Transaction set T
A
Ky iy
[7
011 aP,
010
010 s
101 I
010 N
111 (%
111 &N

&) Thit-fibs O

Figure 1 Construction of P-Tree
3.2. P-Tree operations

Logical AND, OR and NOT operations are the most frequently used operations with P-trees. For efficient implementations, we use a variant of the P-tree, called the Pure-1 tree (P1-tree for short). A tree is pure-1 (denoted as P1) if all the values in the sub-tree are 1’s. Figure 2 shows the P1-trees corresponding to the P-trees in c), d), and e) of figure 1. Figure 3 shows the result of AND (a), OR (b) and NOT (c) operations of P-Trees.
[image: image2.png]EEN

Figure 2
P1-trees for the transaction set
3.3. Predicate P-Trees
There are many variants of predicate P-Trees, such as value P-Trees, tuple P-Trees, mask P-Trees, etc. We will describe inequality P-Trees in this section, which will be used to search for neighbors in section 4.3.
[image: image3.png]Ty [T [y
ST IATe
AT WA}
OPLAPL; BPIPL 9Pl

Figure 3 AND, OR and NOT operations
Inequality P-trees: An inequality P-tree represents data points within a data set X satisfying an inequality predicate, such as x>v and x<v. Without loss of generality, we will discuss two inequality P-trees:
[image: image4.wmf]v

x

P

³

 and
[image: image5.wmf]v

x

P

£

. The calculation of
[image: image6.wmf]v

x

P

³

 and
[image: image7.wmf]v

x

P

£

 is as follows:

Calculation of
[image: image8.wmf]v

x

P

³

: Let x be a data point within a data set X, x be an m-bit data, and Pm, Pm-1, …, P0 be P-trees for vertical bit files of X. Let v = bm…bi…b0, where bi is ith binary bit value of v, and
[image: image9.wmf]v

x

P

³

 be the predicate tree for the predicate
[image: image10.wmf]v

x

³

, then
[image: image11.wmf]v

x

P

³

 = Pm opm … Pi opi Pi-1 … op1 P0, i = 0, 1 … m, where:

1) opi is (if bi=1, opi is (otherwise;
2) (Stands for OR, and (stands for AND.
3) the operators are right binding;
4) right binding means operators are associated from right to left, e.g., P2 op2 P1 op1 P0 is equivalent to (P2 op2 (P1 op1 P0)). For example, the inequality tree Px ≥101 = (P2 ((P (P0)).

Calculation of
[image: image12.wmf]v

x

P

£

: Calculation of
[image: image13.wmf]v

x

P

£

is similar to calculation of
[image: image14.wmf]v

x

P

³

. Let x be a data point within a data set X, x be an m-bit data set, and P’m, P’m-1, … P’0 be the complement set for the vertical bit files of X. Let v=bm…bi…b0, where bi is ith binary bit value of v, and
[image: image15.wmf]v

x

P

£

 be the predicate tree for the predicate
[image: image16.wmf]v

x

£

, then
[image: image17.wmf]v

x

P

£

= P’mopm … P’i opi P’i-1 … opk+1P’k,
[image: image18.wmf]m

i

k

£

£

, where

1) opi is (if bi=0, opi is (otherwise;
2) (stands for OR, and (for AND.
3) k is the rightmost bit position with value of “0”, i.e., bk=0, bj=1,
[image: image19.wmf]"

j<k,

4) the operators are right binding. For example, the inequality tree
[image: image20.wmf]101

£

x

P

 = (P’2 (P’1).
3.4. High Order Bit Metric (HOBit)

The HOBit metric [18] is a bitwise distance function. It measures distances based on the most significant consecutive matching bit positions starting from the left. HOBit is motivated by the following observation. When comparing two numbers represented in binary form, the first (counting from left to right) position at which the two numbers differ reveals more magnitude of difference than other positions. Assume Ai is an attribute in a tabular data set, R (A1, A2, ..., An) and its values are represented as binary numbers, x, i.e., x = x(m)x(m-1)---x(1)x(0).x(-1)---x(-n). Let X and Y be the Ai values of two tuples/samples, the HOBit similarity between X and Y is defined by

m (X,Y) = max {i | xi⊕yi },

where xi and yi are the ith bits of X and Y respectively, and ⊕denotes the XOR (exclusive OR) operation. In another word, m is the left most position at which X and Y differ. Correspondingly, the HOBit dissimilarity is defined by

dm (X,Y) = 1- max {i | xi⊕yi }.

4. A Vertical outlier detection method with clusters as by-product using P-trees
In this section, we first introduce some definitions related to outlier detection and clustering. Then propose an outlier detection algorithm, which can detect outliers and cluster data in a one-time process. The method clusters data by fast neighborhood merging and detects outliers over a subset of the dataset which only includes boundary data and real outliers. The performance of our algorithm is further enhanced by means of P-trees, and its optimized logical operations.
4.1. Outlier and cluster definitions
We consider outliers are points which are not connected with the other objects in the dataset. From the view of cluster, outliers can be considered as points which are not connected with clusters. Based on the above intuition, we propose some definitions related to cluster-based outliers.

Definition 1 (Neighborhood)
Given a set of points X, the neighborhood of a data point P with the radius r is defined as a set Nbr (P, r) = {x(X | |P-x|(r}, where x is a point and |P-x| is the distance between P and x. It is also called the r-neighborhood of P. The points in this neighborhood are called the neighbors of P, direct neighbors of P or direct r-neighbors of P. The number of neighbors of P is defined as N (Nbr (P, r)).
Indirect neighbors of P are those points that are within the r-neighborhood of the direct neighbors of P but do not include direct neighbors of P. They are also called indirect r-neighbors of P.

The neighbor ring of P with the radius r1 and r2 (r1<r2) is defined as a set NbrRing (P, r1, r2) = {x(X | r1≤|P-x|(r2}.
Definition 2 (Density Factor)
Given a data point P and the neighborhood radius r, the density factor (DF) of P measures the local density around P, denoted as DF (P,r). It is defined as the number of neighbors of P divided by the radius r.

[image: image21.wmf].

/

))

,

(

(

)

,

(

r

r

P

Nbr

N

r

P

DF

=

 (1)
Neighborhood density factor of the point P, denoted by DFnbr (P, r), is the average density factor of the neighbors of P.

[image: image22.wmf]å

=

=

))

,

(

(

1

)),

,

(

(

/

)

(

)

,

(

,

r

P

Nbr

N

i

r

P

Nbr

N

q

DF

r

P

nbr

DF

r

i

 (2)

where qi is the neighbors of P, i = 1, 2, …, N(Nbr(P,r)).
The cluster density factor of point P, denoted as DFcluster (P,R), is defined as the total number of points N in the cluster, which are located most closely to the point P, denoted by N(cluster(P,R)), divided by the radius R of the cluster.

[image: image23.wmf].

/

))

,

(

(

)

,

(

R

R

P

cluster

N

R

P

cluster

DF

=

Definition 3 Local Connective Factor (LCF)
The LCF of the point P, denoted as LCF (P, r), is the ratio of DFnbr(P,r) over DFcluster(P,R).

[image: image24.wmf]R)

(P

DF

r

P

DF

LCF(p,r)

cluster

Nbr

,

/

)

,

(

=

 (3)

LCF indicates to what degree, point P is connected with the cluster which locates closest to P. We take LCF as a connectivity measurement.
Definition 4 Outlier Factor

Outlier Factor indicates the degree to which a point can be an outlier in view of the whole dataset. In this paper, we define it as the number of points in a neighborhood times the density factor of that neighborhood, denoted as Olfactor,
Olfactor = N(Nbr(P,r))*DFnbr(P,r), where r is the radius of neighborhood of P.

Definition 5 (outliers)
Based on Olfactor, we define outliers as a subset of dataset X with Olfactor < t, where t is an Olfactor threshold defined by case. The outlier set is denoted as Ols(X, t) = {x(X | Olfactor (x) < t}.
Definition 6 (clusters)
Based on DF, we define clusters, denoted as Clus, as a subset of the dataset X satisfying the condition that, given two arbitrary points in the cluster, the density difference of those two points should be less than a threshold. The cluster is denoted as Clus = {P1, P2 (X | DF (P1, R) – DF (P2, R)| < c}, where c is a threshold defined by case.
4.2. Outlier detection algorithm with clusters as by-product
Given a dataset X and a DF difference threshold c, the process includes two sub-processes: “neighborhood merging” and “LCF-based outlier detection”. The “neighborhood merging” efficiently groups data into clusters; “LCF-based outlier detection” mines outliers over subsets of the dataset, including boundary points and real outliers. The method starts with “neighborhood merging”. It will call the “LCF-based outlier detection” when necessary. In turn, the “LCF-based outlier detection” also calls the “neighborhood merging” procedure. In the later case, a new cluster is started.

The “Neighborhood Merging” process: The “neighborhood merging” procedure starts with an arbitrary point P and a small neighborhood radius r, and calculates the DF of the point. Then we increase the radius from r to 2r, calculate DF first and observe the difference between DF of the r-neighborhood and DF of the 2r-neighborhood. If this difference is small (e.g. less than a threshold c), the point P, all r-neighbors and 2r-neighbors of P should be grouped into a same cluster. The expansion of the neighborhood will be continued by increasing the radius from 2r to 4r, to 8r and so on. The neighbors will be merged into the cluster as long as the difference is low. When the DF difference of two continuous neighborhoods, such as the 2r-neighborhood and the 4r-neighborhood, is large (e.g. larger than c), the expansion stops. Point P and its neighbors, except neighbors in the outside ring, are merged into the cluster. In figure 4, the expansion stops at the 6r-neighborhood and all points in the 4r-neighborhood are grouped together. The process will call the “LCF-based outlier detection” next and that process will mine outliers over the set of points in the ring NbrRing (P, 4r, 6r). This is illustrated by figure 5.

Figure 4 Clustering by neighborhood merging

Figure 5 The “neighborhood merging” process followed by “outlier detection”
The “LCF-based Outlier detection” process: It can be observed that the points in the NbrRing (P, 4r, 6r) in the example are of three categories: points on the boundary of the cluster, points inside another cluster, and outliers.
The “LCF-based outlier detection” process merges the boundary points into the cluster, finds outlier points, and starts a new cluster if necessary. The points with high connectivity to the current cluster are merged to the cluster, while the points with low connectivity can be either outliers or on the boundary of a new cluster. Depending on the LCF value of a point Q, three situations could emerge (below, α is a small value and β is a large value. Choice of α and β has a trade-off between accuracy and speed)
(a) LCF = 1 ± α. Point Q and its neighbors can be merged into the current cluster.
(b) LCF ≥ β. The point Q is likely to be in a new cluster with higher density.
(c) LCF ≤ 1/β. Point Q and it neighbors can either be in a cluster with low density or be outliers.
In case (c) above, we need to be able to decide whether those points are outliers or in a new cluster. Outlier factor is used as a measurement. For the simplest case, if we let DFnbr(P,r) = 1, then, Olfactor = N(Nbr(P,r)). In other words, if the number of points in the neighborhood is small, then they are considered as outliers; otherwise, they belong to a new cluster.

This process expands neighborhoods on a fine scale. We take a point Q arbitrarily from the NbrRing, search for its r-neighbors (i.e. direct neighbors), and further search for neighbors of each point in the r-neighborhood (i.e. indirect neighbors). The search process will continue until either the total number of neighbors is larger than or equal to a threshold value t, or no neighbors can be found. The fine scale neighborhood expansion is shown in figure 6. For the former case, since the neighborhood size is larger than or equal to a threshold value t, a new cluster is started. Q and its neighbors are grouped into the new cluster. For the latter case, the Olsfactor is less than t, so Q and its neighbors are considered as a set of outliers. In case a new cluster is started, the outlier detection process will call the “neighborhood merging” process.

Figure 6 The neighborhood expansion on a fine scale
As we can see, “LCF-based outlier detection” detects outliers over a subset of the whole dataset, which only includes boundary points and outliers. This subset of data as a whole is much smaller than the original dataset. Herein lies the efficiency of our outlier detection process. Also, in our method, the points deep in a cluster are grouped into a cluster by fast neighborhood merging. The process deals with the data in a set-by-set basis rather than a point-by-point basis. Therefore, the clustering is also efficient.

Our method operates in an interactive mode where users can modify the initial radius r, the tuning parameters α and β, and the thresholds t and c for different datasets.
4.3. Vertical outlier detection algorithm using P-Tree
In this section we show that both the “neighborhood merging” and “LCF-based outlier detection” procedures can be further improved by using the P-trees data structure and its optimal logical operations.

“Neighborhood Merging” using the HOBit metric: HOBit metric can be used to speed up the neighborhood expansion. Given a point P, we define the neighbors of P hierarchically based on the HOBit dissimilarity between P and its neighbors, denoted as ξ-neighbors. ξ- neighbor represents the neighbors with ξ bits of dissimilarity, where ξ = 0, 1 ... 7 and P is an 8-bit value. For example, “2-neighbors” represents the neighbors of P with 2-bit HOBit dissimilarity.

In this process, we first consider the 0-neighbors, which are the points having exactly the same value as P. Then we expand the neighborhood by increasing the HOBit dissimilarity to 1-bit. Both 0-neighbors and 1-neighbors are found after expansion. The process iterates by increasing the HOBit dissimilarity. We calculate DF (P,ξ) for each ξ-neighborhood, and observe the changes of DF (P,ξ) along the neighborhoods. The expansion process stops when a significant change is observed. Then the whole neighborhood is pruned using P-trees ANDing.

The basic computations in the process above include computing the DF (P, ξ) for each ξ- neighborhood and merging the neighborhoods. The calculations are implemented using P-trees as follows.

Given a set of P-trees, Pi,j, for the data set, where i = 1, 2 ..., n; j = 1, 2 ..., m; n is the number of attributes; m is the number of bits in each attribute, the HOBit dissimilarity is calculated by means of the P-tree AND operation, denoted as (. For any data point, P, let P = b11b12 … bnm, where bi,j is the ith bit value in the jth attribute column of P. The bit P-trees for P, PPi,j , are then defined by

 PPi,j , if bi.j = 1

 Pi,j =

 P’i,j , Otherwise

The attribute P-trees for P with ξ- HOBit dissimilarity are defined by

 Pvi, ξ = Ppi,1 (Ppi,2 (…(Ppi,m-ξ
The ξ-neighborhood P-tree for P are calculated by

PNp, ξ = Pv1, m-ξ(Pv2, m-ξ(Pv3, m-ξ(…(Pvn, m-ξ
where, PNp, ξ is a P-tree representing the ξ-neighborhood of P. “1” in PNp, ξ means the corresponding point is a ξ-neighbor of P while ‘0’ means it is not. The DF (P,r) of the ξ-neighborhood is simply the root count of PNp,r divided by r.

The neighbors are merged into the cluster by:

PC = PC ∪ PNp,ξ
where (stands for OR, PC is a P-tree representing the currently processed cluster, and PNp,ξ is the inequality P-tree representing the ξ-neighborhood of P.
The neighbors merged into the cluster are pruned to avoid further processing by:

PU = PU ∩PN’p,ξ
where PU is a P-tree representing the unprocessed points of the dataset. It is initially set to all 1’s. PN’p,ξ represents the complement set of the ξ-neighborhood of P. The formal “neighborhood merging” procedure using the HOBit metric is shown in figure 7.

“LCF-based Outlier Detection” using Inequality P-trees: We use the inequality P-trees to search for neighborhoods on a much finer scale, upon which the LCF is calculated. The calculation of direct and indirect neighborhoods, LCF and the merging of boundary points are described as follows.
The direct neighborhood P-tree of a given point P within r, denoted as PDNp,r is the P-tree representation of its direct neighbors. PDNp,r is calculated by
PDNp,r = Px>p-r (Px(p+r.

Figure 7 “Neighborhood merging” using HOBit

The root count of PDNp,r is equal to the number of direct r-neighbors of the point P, denoted as N(Nbr(p,r)). Therefore, the DF (P,r) and the LCF (P,r) are calculated according to equations 2 and 3 respectively.

The calculation of the indirect r-neighborhood P-tree of P, denoted as PINp,r, is accomplished in two steps: first, we compute the union of all neighborhoods of the direct neighbors of P, and then intersect the result with the complement of the direct neighborhood of P. The two steps can be combined together using P-tree operations:

[image: image25.wmf]I

U

r

p

PDN

r

p

Nbr

N

i

r

qi

PDN

r

p

PIN

,

'

))

,

(

(

1

,

,

=

=

In the vertical approach, the merging, grouping, and insertion can be done efficiently by the OR operation of P-trees. For example, given a point p and its neighbors Nbr(p), the vertical approach either merges by means of PCcurrent = PCcurrent(P (Nbr(p), where PCcurrent is the P-tree representation of the current cluster; groups by PCnew = PCnew(P(Nbr(p), where PCnew is a new cluster; or insert those points into the outlier set, Ols, by Ols = Ols (P(Nbr(p).
Also, the set of processed data is pruned by ANDing the complement set of the direct neighbor P-tree PDNp,r, and the indirect neighbor P-tree PINp,r, i.e. PU = PU (PDN’P,r (PIN’P,r. The vertical “LCF-based Outlier Detection” algorithm is shown in figure 8. The whole algorithm is shown in figure 9.

Figure 8 LCF-based outlier detection procedure

[image: image26]
Figure 9 Outlier detection with clusters as by-product

To summarize, P-trees structures improve the proposed one-time outlier-detection process. The speed improvement lies in: a) P-trees make the “neighborhood merging” process on-the-fly using the HOBit metric; b) P-trees are very efficient for neighborhood searches through its logical operations; c) P-trees can be used as self-indexes for unprocessed subsets, clustered subsets and outlier sets.
5. Experimental analysis
In this section, we experimentally compare our method (LCF) with current approaches: Su’s et al. two-phase clustering based outlier detection algorithm, denoted as MST, and He’s CBLOF (cluster-based local outlier factor) method. MST is the first approach to perform cluster-based outlier detection. CBLOF is the fastest approach in this category so far. We compare the three methods in terms of run time and scalability to data size. We will show that our approach is efficient and has high scalability.
We ran the methods on a 1400-MHZ AMD machine with 1GB main memory and Debian Linux version 4.0. The datasets we used are the National Hockey League (NHL, 94) dataset. The dataset were prepared in five groups with increasing sizes. Figure 10 shows that our method shows speed improvements up to five-times compared to the CBLOF method.

As for scalability, our method is the most scalable among the three. When the data size is small, our method has a similar run-time to MST and CBLOF. However, when the data size is large, our method outperforms the other two methods (see figure 10).

[image: image27.emf]0

500

1000

1500

2000

2500

3000

data size

Comparison of run time

MST

5.89 10.9 98.03 652.92 2501.43

CBLOF

0.13 1.1 15.33 87.34 385.39

LCF

0.55 2.12 7.98 28.63 71.91

256 1024 4096 16384 65536

Figure 10 Run-time comparisons of MST, CBLOF and LCF
6. Conclusion
In this paper, we proposed a vertical outlier-detection method with clusters as by-product, based on a novel local connectivity factor, LCF. Our method can efficiently detect outliers and cluster datasets in a one-time process
A vertical data representation through P-Trees is used to speed-up the neighborhood search, the calculation of LCF, and the pruning process. Our method was tested over real datasets. Experiments have shown up to five times speed improvements over the current state-of-art cluster-based outlier-detection approaches.

7. References
[1] V.BARNETT, T.LEWIS, “Outliers in Statistic Data”, John Wiley’s Publisher

[2] Knorr, Edwin M. and Raymond T. Ng. A Unified Notion of Outliers: Properties and Computation. 3rd International Conference on Knowledge Discovery and Data Mining Proceedings, 1997, pp. 219-222.

[3] Knorr, Edwin M. and Raymond T. Ng. Algorithms for Mining Distance-Based Outliers in Large Datasets. Very Large Data Bases Conference Proceedings, 1998, pp. 24-27.

[4] Knorr, Edwin M. and Raymond T. Ng. Finding Intentional Knowledge of Distance-Based Outliers. Very Large Data Bases Conference Proceedings, 1999, pp. 211-222.

[5] Sridhar Ramaswamy, Rajeev Rastogi, Kyuseok Shim, “Efficient algorithms for mining outliers from large datasets”, International Conference on Management of Data and Symposium on Principles of Database Systems, Proceedings of the 2000 ACM SIGMOD international conference on Management of data Year of Publication: 2000, ISSN:0163-5808

[6] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jörg Sander, “LOF: Identifying Density-based Local Outliers”, Proc. ACM SIGMOD 2000 Int. Conf. On Management of Data, Dalles, TX, 2000

[7] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B. Gibbons, Christos Faloutsos, LOCI: Fast Outlier Detection Using the Local Correlation Integral, 19th International Conference on Data Engineering, March 05 - 08, 2003, Bangalore, India

[8] Jiang, M.F., S.S. Tseng, and C.M. Su, Two-phase clustering process for outliers detection, Pattern Recognition Letters, Vol 22, No. 6-7, pp. 691-700.

[9] A.He, X. Xu, S.Deng, Discovering Cluster Based Local Outliers, Pattern Recognition Letters, Volume24, Issue 9-10, June 2003, pp.1641-1650

[10] He, Z., X., Deng, S., 2002. Squeezer: An efficient algorithm for clustering categorical data. Journal of Computer Science and Technology.

[11] A.K.Jain, M.N.Murty, and P.J.Flynn. Data clustering: A review. ACM Comp. Surveys, 31(3):264-323, 1999

[12] Arning, Andreas, Rakesh Agrawal, and Prabhakar Raghavan. A Linear Method for Deviation Detection in Large Databases. 2nd International Conference on Knowledge Discovery and Data Mining Proceedings, 1996, pp. 164-169.

[13] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-Driven Exploration of OLAP Data Cubes. EDBT'98.

[14] Q. Ding, M. Khan, A. Roy, and W. Perrizo, The P-tree algebra. Proceedings of the ACM SAC, Symposium on Applied Computing, 2002.

[15] W. Perrizo, “Peano Count Tree Technology,” Technical Report NDSU-CSOR-TR-01-1, 2001.

[16] M. Khan, Q. Ding and W. Perrizo, “k-Nearest Neighbor Classification on Spatial Data Streams Using P-Trees” , Proc. Of PAKDD 2002, Spriger-Verlag LNAI 2776, 2002

[17] Wang, B., Pan, F., Cui, Y., and Perrizo, W., Efficient Quantitative Frequent Pattern Mining Using Predicate Trees, CAINE 2003

[18] Pan, F., Wang, B., Zhang, Y., Ren, D., Hu, X. and Perrizo, W., Efficient Density Clustering for Spatial Data, PKDD 2003

[19] Jiawei Han, Micheline Kambr, “Data mining concepts and techniques”, Morgan kaufman Publishers

A Cluster is produced

P

r

2r

6r

4r

P

Neighbor Merging

Algorithm: “LCF-based Outlier Detection” using P-trees

Input: point x, radius r, LCF threshold t

Output: pruned dataset PU

//PDN(x): direct neighbors of x

//PIN(x): indirect neighbors of x

// df is density factor

// lcf is relative density factor

PDN(x) = PX≤x+r ∩ PX>x-r

df (0

FOR each point p in PDN(x)

// PN is a temporary P-tree

PN = PX<p+r ∩ PX<p-r;

df (df + |PN|;

ENDFOR

dfavg(df / |PDN(x)|;

lcf (dfavg / dfcluster;

//

switch (lcf)

case 1+α:

//merg into the cluster

PU (PU ∩PDN’(x)∩PIN’(x);

case ≥β:

 // start a new cluster, call “merging process”

 PC (PC (x;

 NeighborhoodMerging(x,δ,PC);

case ≤1/β:

// add small set into outlier set, start a new cluster for large set

 IF |PDN(x) ∪PIN(x)| < t

	Ols (Ols (PDN(x) ∪PIN(x); //(denotes OR

 ENDIF

 IF |PDN(x) ∪PIN(x)| > t

 	PC (PC (PDN(x) ∪PIN(x)

	NeighborhoodMerging(x,δ,PC);

 ENDIF

// prune the processed data

 PU (PU ∩ PDN’(x)∩ PIN’(x);

Algorithm: “Neighborhood Merging” using HOBit metric

Input: bij: point p (binary form), DF threshold δ

Output: pruned dataset PU

// Pij is P-tree represented dataset T

// PNi, i-neighborhood of a point

// n is number of attributes,

// m is number of bits in each attribute

// Ptij’ is the complement set of Ptij

FOR j = 0 TO m-1

	IF bi,j = 1 Pti,j (Pi,j

	ELSE Pti,j (P’i,j

ENDFOR

FOR i = 1 TO n

	Pvi,1 (Pti,1

	FOR j = 1 TO m-1

		Pvi,j (Pvi,j-1 (Pti,j

	ENDFOR

	i (n – 1

	j (m

ENDFOR

DO

PN (Pt1

	FOR r = 2 TO n

		IF r (i PN (PN (Pti,j

		ELSE PN (PN (Pti,j-1

			i (i – 1

			IF i = 0 j (j -1

ENDFOR

WHILE |PNi| - |PNi-1|) <δ

PU (PU (PN’i-1;	// pruning

IF DF(P,i-1) > DF(P,i)

	FOR each point q in PN’i-1(PNi

	 OutlierDetection(q,r,t);

	ENDFOR

ENDIF

Indirect Neighborhood

Q

Direct Neighborhood

Outlier Detection

Algorithm: LCF-based Outlier Detection using P-Trees

Input: Dataset T, radius r, LCF threshold t.

Output: An outlier set Ols.

// PU — unprocessed points represented by P-Trees;

// |PU| — number of points in PU

// PO --- outliers;

//Build up P-Trees for Dataset T

PU (createP-Trees(T);

i (1;

WHILE |PU| > 0 DO

x (PU.first; //pick an arbitrary point x

// Neighborhood merging

NeighborhoodMerging(x, r, t);

i (i+1

ENDWHILE

�Patents are pending on the P-tree technology. This work is partially supported by GSA Grant ACT#: K96130308.

_1146921317.unknown

_1146921478.unknown

_1146993574.unknown

_1156268743.unknown

_1160211947.unknown

_1147454806.unknown

_1149896873.unknown

_1147371766.unknown

_1146921545.unknown

_1146921374.unknown

_1146921403.unknown

_1146921365.unknown

_1146920907.unknown

_1146921074.unknown

_1146920890.unknown

_1146920828.unknown

_1146920885.unknown

