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ABSTRACT
“One person’s noise is another person’s signal”. Outlier detection is used to clean up datasets, but also to discover useful anomalies, such as criminal activities in electronic commerce, computer intrusion attacks, terrorist threats, agricultural pest infestations, etc. Thus, outlier detection is critically important in our information-based society. This paper focuses on finding outliers in large datasets using distance-based methods.  First, to speedup outlier detections, we revise Knorr and Ng’s Distance-Based (DB) outlier definition; second, a vertical structure, instead of traditional horizontal structures, is adopted to facilitate efficient outlier detection further. We tested our methods against NHL data and show speed improvements of many orders of magnitudes compared to contemporary distance-based outlier detection approaches.
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1. INTRODUCTION

Many studies that consider outlier identification as their primary objective are in statistics. Barnett and Lewis provide a comprehensive treatment, listing about 100 discordance tests for normal, exponential, Poisson, and binomial distributions [16]. The choice of appropriate discordance tests depends on: (a) the distribution, (b) whether or not the distribution parameters, such as the mean and variance, are known, (c) the number of expected outliers, (d) and the types of expected outliers such as upper or lower outliers in an ordered sample [1]. Yet, despite all of these options and decisions, there is no guarantee of finding outliers, either because there may not be any test developed for a specific combination, or because no standard distribution can adequately model the observed distribution [1]. The second category of outlier studies in statistics is depth-based. Each data object is represented as a point in a k-dimensional space, and is assigned a depth. Outliers are more likely to be data objects with smaller depths. There are many definitions of depth that have been proposed. In theory, depth-based approaches could work for large values of k (number of dimensions); however, in practice, while there exist efficient algorithms for k = 2 or 3, depth-based approaches become inefficient for large datasets for k > 4. This is because depth-based approaches rely on the computation of k-d (k dimension) convex hulls which has a lower bound complexity of Ω (n k/2), where n is the number of samples [5].

In data mining, Knorr and Ng proposed a unified definition for outliers, defined as follows: An object O in a dataset T is a UO (p, D) outlier if at least fraction p of the objects in T lie at a distance greater than or equal to D from O [1,2]. They show that for many discordance tests in statistics, if an object O is an outlier according to a specific discordance test, then O is also a UO (p, D) outlier for some suitably defined p and D. They proposed a cell structure-based outlier detection algorithm, where the whole set of cells resembles a data cube. They showed that their method works well with low dimensionality. However, the method has two shortcomings. One is that it can not achieve good performance with high dimensional data. Another disadvantage is that it takes a global view of the dataset, which prevents it from detecting some kinds of outliers in datasets with more complex structures (data with different densities and arbitrary shapes). There are other definitions and methods for outliers, such as density-based and clustering-based methods. We focus on distance-based outlier detection in this paper.

We use a novel vertical representation of data, named P-Trees, instead of the traditional horizontal data structure (i.e. tuple-based data organization). Based on P-Trees, a vertical outlier detection method with local pruning is proposed, which detects outliers efficiently and scales well with large datasets.

The paper is organized as follows. Section 2 first introduces our restatement for Knorr and Ng’s distance-based outlier definition. Next, based on this restatement, a pruning method and a “by-neighbor” labeling method are proposed. Section 3 gives an overview of P-Tree technology
. Our outlier-detection algorithm with local pruning is described in section 4. We experimentally demonstrate our improvement in terms of efficiency and scalability in section 5. In section 6, we provide a theoretical complexity study for our work. Finally we conclude the paper with possible future research extensions.

2. DISTANCE-BASED (DB) OUTLIERS

2.1 Definitions 

Definition of a DB outlier

In [1], Knorr and Ng’s definition of a distance based outlier goes as follows:

An object O in a dataset T is a DB (p, D) outlier if at least fraction p of the objects in T lies at a distance greater than or equal to threshold distance, D, from O. An equivalent definition can be stated as follows.

An object O in a dataset T is a DB (p, D) outlier if at most fraction (1-p) of the objects in T lies less than threshold distances D from O.

Nearest Neighborhood

Define the nearest neighborhood of point O, denoted as C (O, D), as the neighborhood which contains all points with at most distance D from point O. Hereinafter, we use neighborhood instead of nearest neighborhood for conciseness. We refer to D as the radius of the neighborhood and we denote the points in the neighborhood with radius as the D-neighbors.

Nearest Neighborhood based Outlier definition

Using nearest neighborhood, the definition can be described as 

An object O in a dataset T is a DB (p, D) outlier if its nearest neighborhood contains at most fraction (1-p) of total number of objects in dataset T. 
2.2 Properties

Property 1
The max distance of two points in the neighborhood C (O, D) is d, where d is the diameter of the neighborhood (i.e. d is equal to twice the radius, D). Property 1 can be proved easily by the following:
Assume that O1, O2 are any two points in neighborhood C (O, D), the distance between two points O1 and O2 is: 

Dist (O1, O2) < 2 D = d. Note that d is the max distance between any two points in the neighborhood C (O, D) Therefore, property 1 holds.

Before we propose property 2, two notations are defined. We use N(C) to denote number of points in the neighborhood C, and use N to indicate total number of points in dataset T. Property 2 is introduced next.

Property 2

If the number of points in the neighborhood C (O, D/2), N (C (O, D/2)), is greater than or equal to (1-p) fraction of the total number, N* (1-p), then all the points in this neighborhood are not outliers.

Proof:

Assume that point Q is an arbitrary point in C (O, D/2). Q’s neighborhood C (Q, D) completely contains C (O, D/2). Since N(C (Q, D)) ≥ N (C (O, D/2)) ≥N*(1-p), we can conclude that Q is not an outlier according to our distance-based outlier definition. 

Property 2 can be used as a pruning rule. We can prune out all points in the neighborhood C (O, D/2). The pruning makes the detection process more efficient as we shall demonstrate in our experiments. The pruning is shown pictorially in Figure1, where the neighborhood C (O, D/2) can be pruned out.

[image: image24.bmp]
Figure 1 Pruning Neighborhood C(O, D/2)

Property 3

If the number of points in the neighborhood C (O, 2D), N (C (O, 2D)), is less than (1-p) fraction of the total number, N*(1-p), N (C (O, 2D)) < N* (1-p), then all the points in the neighborhood C(O, D) are outliers.

Proof: 

For any point Q in the neighborhood C (O, D), C (Q, D) 
[image: image1.wmf]Í

 C (O, 2D) holds, which means that its neighborhood C (Q, D) is subset of C (O, 2D). From set theory, we have N (C (Q, D)) <= N (C (O, 2D)) < N * (1-p); according to the aforementioned outlier definition, all the points in C (O, D) are outliers.

Using property 3, we can label the whole neighborhood as outliers. Therefore, property 3 provides a powerful means for labeling outliers by neighborhood (instead of point by point), which will speed up the outlier detection process. Figure 2 shows the “by-neighbor” process pictorially. All the points in the neighborhood C (O, D) can be declared as outliers, and do not need to undergo testing later. 

Figure 2. Label Outliers by Neighbors




3. REVIEW OF P-TREEs

Most data mining algorithms assume that the data being mined have some sort of structure such as relational tables in databases or data cubes in data warehouses [8]. Traditionally, data are represented horizontally and processed tuple by tuple (i.e. row by row) in the database and data mining areas. The traditional horizontally oriented record structures are known to scale poorly to very large data sets. 

In previous work, we proposed a novel vertical data structure, the P-Tree. In the P-Tree approach, we decompose attributes of relational tables into separate files by bit position and compress the vertical bit files using a data-mining-ready structure called the P-tree. Instead of processing horizontal data vertically, we process these vertical P-trees horizontally through fast logical operations. Since P-trees markedly compress the data and the P-tree logical operations scale extremely well, this common vertical data structure approach has the potential to address the curse of non-scalability with respect to size. A number of papers about P-Tree based data mining algorithms have been published, in which it was explored and proved that P-trees facilitate efficient data mining on large datasets significantly [17].  

In this section, we briefly review some useful features (which will be used in this paper) of P-Tree, including its optimized logical operations. 

3.1 Construction of P-Tree

Given a data set with d attributes, X = (A1, A2 … Ad), and the binary representation of the jth attribute Aj as bj.m, bj.m-1,..., bj.i, …, bj.1, bj.0, we decompose each attribute into bit files, one file for each bit position [10]. To build a P-tree, a bit file is recursively partitioned into halves and each half into sub-halves until the sub-half is pure entirely 1-bits or entirely 0-bits.

The detailed construction of P-trees is illustrated by an example in Figure 3. For simplicity, assume each transaction has one attribute. We represent the attribute as binary values, e.g., (7)10 = (111)2. Then vertically decompose them into three separate bit files shown in b). The corresponding basic P-trees, P1, P2 and P3, are constructed, which are shown in c), d) and e).

As shown in e) of Figure 3, the root value (also called the root count) of P1 tree is 3, which is the ‘1-bit’ count of the entire bit file. The second level of P1 contains ‘1-bit’ counts of the two halves, which are 0 and 3.

3.2 P-Tree Operations

AND, OR and NOT logic operations are the most frequently used P-tree operations. For efficient implementation, we use a variation of P-trees, called Pure-1 trees (P1-trees). A tree is pure-1 (denoted as p1) if all the values in the sub-tree are 1’s. Figure 4 shows the P1-trees corresponding to the P-trees in c), d), and e) of Figure 3. Figure 5 shows the result of AND (a), OR (b) and NOT (c) operations of P-Tree.
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Figure 3 Construction of P-Tree
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Figure 4
P1-trees for the transaction set ( in figure 3)

[image: image4.png]Ty [T [y
ST IATe
AT WA}
OPLAPL;  BPIPL 9Pl





Figure 5
AND, OR and NOT Operations

3.3 Predicated P-Tree

There are many variants of predicated P-Tree, such as value P-Trees, tuple P-Trees, mask P-Trees, etc. We will describe inequality P-Trees in this section, which will be used to search for neighbors in section 4.2.

Inequality P-trees

An inequality P-tree represents data points within a data set X satisfying an inequality predicate, such as x>v and x<v. Without loss of generality, we will discuss two inequality P-trees: 
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Calculation of
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: Let x be a data point within a data set X, x be an m-bit data, and Pm, Pm-1, …, P0 be P-trees for vertical bit files of X. Let v = bm…bi…b0, where bi is ith binary bit value of v, and 
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 be the predicate tree for the predicate 
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 = Pm opm … Pi opi Pi-1 … op1 P0, i = 0, 1 … m, where: 

1) opi is AND if bi=1, opi is OR otherwise;

2) the operators are right binding; 

3) right binding means operators are associated from right to left, e.g., P2 op2 P1 op1 P0 is equivalent to (P2 op2 (P1 op1 P0)). For example, the inequality tree Px ≥101 = (P2 AND (P OR P0)).

Calculation of
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. Let x be a data point within a data set X, x be an m-bit data set, and P’m, P’m-1, … P’0 be the complement P-trees for the vertical bit files of X. Let v=bm…bi…b0, where bi is ith binary bit value of v, and 
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 be the predicate tree for the predicate
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, where

1) opi  is AND if bi=0, opi is OR otherwise;

2) k is the rightmost bit position with value of “0”, i.e., bk=0, bj=1, 
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j<k, 

3) the operators are right binding. For example, the inequality tree 
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4. A VERTICAL OUTLIER DETECTON METHOD WITH LOCAL PRUNING

In section 4.1, we propose a “by-neighbor” outlier detection method with local pruning based on property 2 and property 3 mentioned in section 2. In section 4.2, the method is implemented using the P-Tree data representation. Inequality P-Trees and P-Trees’ optimized logical operations facilitate efficient neighborhood search significantly, which further speeds up the outlier detection process. 

4.1  “By-Neighbor” Outlier Detection with Local Pruning

In the “by-neighbor” outlier detection algorithm, first select one point P in the dataset arbitrarily; next search for its D-neighborhood (neighborhood with D radius) and calculate the number of neighbors. In case the number of neighbors is equal to or greater than (1-p)*N, reduce the radius to D/2 and shrink P’s neighborhood. We calculate the number of points in the D/2-neighborhood (denote the number of points in the D/2-neighborhood as shrinking neighbors). If the shrinking neighbors of P are greater than (1-p)*N, all the shrinking neighbors need not undergo testing later because they are not outliers according to property 2. In figure 6, the shrinking neighbors are points in the gray circle. All the points in the gray circle are not outliers. Another situation that might occur is the number of D-neighbors is less than (1-p)*N. In this case, we expand the neighborhood with radius 2D and compute the number of points in that neighborhood. Those points are denoted as P’s expanding neighbors. In Figure 6, points in the plain circle outside the dotted one are P’s expanding neighborhood. By calculating the number of expanding neighbors, we can decide whether or not to label all points in the D-neighborhood as outliers. If the number of P’s expanding neighbors is less than (1-p)*N, then all the D-neighbors, which are points in the dotted circle (in figure 6), can be claimed as outliers. Those points are inserted into the outlier set and need not be tested later; otherwise, only point P is an outlier. The process is conducted iteratively until all points in the dataset are examined.









Figure 6  “By- neighbors” Outlier detection with local pruning

4.2 Vertical Approach Using P-Trees

Using P-Trees, the above outlier detection process can be speeded up further. We call P-Tree based approach the vertical “by-neighbor” outlier detection method. 

First, the dataset to be mined is represented as P-Trees; secondly, one point P in the dataset is selected arbitrarily; then, the D-neighbors are searched using fast calculation of inequality P-Trees, and the D-neighbors are represented with an inequality P-Tree (called a neighbor P-Tree). In the neighbor P-Tree, ‘1’ means the point is a neighbor of the point P, while 0 means P is not a neighbor; fourth, the number of points in D-neighbors is calculated efficiently by extracting values from the root node of the neighbor P-Tree [10]; finally, do the pruning or “by-neighbor” outlier determination. The pruning process can be executed efficiently by ANDing the P-Tree representing the unprocessed dataset and the D-Neighbor P-Tree (corresponding points can be determined as outliers without further examination) or the D/2-neighbor P-Tree (corresponding points can be pruned out). By searching neighbors using inequality P-Trees and pruning using the P-Tree AND operation, the vertical approach improves outlier detection dramatically in terms of speed. The algorithm is shown in figure 7.

5. EXPERIMENTAL DEMONSTRATION

In this section, we design an experiment to compare our methods with Knorr and Ng’s nested loop approach (noted as NL in figure 8 and 9)[2]. We implemented a P-Tree-based outlier detection method without pruning, named PODM, and P-Tree based outlier detection method using pruning, PODMP, as discussed in detail in section 4. Our purpose is to show our approach’s efficiency and scalability. 


Figure 7 Pseudo code of the algorithm

We tested the methods over a 1400-MHZ AMD machine with 1GB main memory, running Debian Linux version 4.0. We tested the algorithms over the National Hockey League (NHL) 1999 dataset. To show how our algorithm scales when data size increases, the dataset is divided into five groups with increasing size (where larger data groups contain repeating records). Figure 8 demonstrates that our methods show improvements of many orders of magnitude compared to Knorr and Ng’s Nested Loop method. Also, it is shown that by using pruning and “by-neighbor” labeling, the PODMP makes further improvements with regard to speed. 

As for scalability issue, the PODMP is the best among the three. It scales well with increasing dataset sizes. Figure 9 shows this pictorially.
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Figure 8 Comparison of NL, PODM, and PODMP
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Figure 9 Comparison of Scalability of NL, PODM, and PODMP

6. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze and compare our vertical outlier detection method with current methods with respect to computational complexity. For our method, the worst case is O (k N), where k is complexity for the P-Tree operations (changes with the number of P-Trees), and N is the total number of points in the dataset. The best case is O (k) when we prune all the points in the dataset after processing the first point. With pruning, complexity can be described as O (k M), where M <= N. Table 1 shows the comparison with current methods

Table 1 Complexity Comparison

	Algorithm
	Complexity

	Nested-loop
	O(N*N)

	Tree Indexed
	O(N*logN)

	Cell Based
	linear in N, exponential in d (dimension ) 

	Our approach
	O (k N), where k can be much small than logN


7. CONCLUSION AND FUTURE WORK

Outlier detection is becoming very important to many areas such as monitoring of criminal activities in electronic commerce, credit card fraud, etc. In this paper, we propose a vertical data representation model for outlier detection, and develop some pruning rules for efficient distance-based outlier detection. Experiments demonstrate that our method shows improvements of many orders of magnitude compared to other distance-based outlier detection approaches such as Knorr and Ng’s nested loop. An order of complexity analysis clearly shows the reason for these observed performance improvements.
In future work, we would like explore the use of P-Trees in density-based outlier detection. The encouraging results shown in this paper demonstrate a great potential for improvement in density-based outlier detection too.
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Algorithm: “Vertical Distance-based Outlier Detection with Local Pruning”


Input: D: Distance threshold, f: outlier fraction, T: dataset


Output: Ols: outlier set





// N: total number of points in dataset T


//PT: P-tree represented dataset


//PU: P-tree represented unprocessed dataset


//PN: P-tree represented neighborhood


//PO: P-tree represented outlier set


//PNO: P-tree represented non candidate outlier set





// Build up P-Trees set for T;


PT( T;


PU( PT;





WHILE ( ! PU. size() )


{


PN (  findNeigborhood (P, D);


m ( PN.rootCount ();   // retrieve value of the root node





IF m > (1- f) * N


// not outlier


PN ( findNeigborhood (P, D/2);


m ( PN.rootCount ();


IF m > (1-f) * N


PNO ( PNO  ( PN;  // ( means OR operation of P-trees


PU ( PU ∩ PNO;  // pruining


ENDIF


ENDIF





IF m <=   (1- f) * N


	PO ( PO U P;


	PN ( findNeighborhood (P,2D);	


	m ( PN.rootCount ();


	IF m < (1-f) * N,


PO ( PO ( PN;


	ENDIF


ENDIF


}


ENDWHILE
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� Patents are pending on the P-tree technology.
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