
Ex No :1.1
STUDY OF UNIX OPERATING SYSTEM
Date :

[image: image1.jpg]Other
“Application
System SW.

Hardware

Database
Packages

Internet
Tools

AIM
To introduce the concept of UNIX Operating System

OPERATING SYSTEM
An Operating System is a set of programs that

1. Functions as an virtual machine by presenting an interface that is easier to program than the underlying hardware

2. Acts as resource management through orderly and controlled allocation of the processors, memories, and I/O devices among the programs competing for it.

OS TYPES
1. Single User—The system will have its own hard disk, memory, CPU and other resources all dedicated to a single user. Eg. MS-DOS

2. Multi User—The users having access to a multi-user system will have just a terminal and a keyboard. The other resources such as hard disk, printers are centrally located. The user is expected to simply hook onto his account, perform the work, disconnect and leave quietly. Eg. UNIX

UNIX HISTORY

The spade work for UNIX began at AT&T Bell Laboratories in 1969 by Ken Thompson and Dennis Ritchie. The OS was initially known as UNICS (jokingly UNiplexed Information and Computing System). In 1970 UNICS finally became UNIX. In 1973, UNIX was rewritten in 1973 in C principally authored by Ritchie.

UNIX FEATURES

1. Multi-user system—Multi-user capability of UNIX allows several users to use the same computer to perform their tasks. Several terminals [Keyboards and Monitors] are connected to a single powerful computer [UNIX server] and each user can work with their terminals.

2. Multi-tasking system—Multitasking is the capability of the operating system to perform various task simultaneously, i.e. a user can run multiple tasks concurrently.

3. Programming Facility—UNIX is highly programmable, the UNIX shell has all the necessary ingredients like conditional and control structures, etc.

4. Security—UNIX allows sharing of data; every user must have a single login name and password. So, accessing another user’s data is impossible without his permission.

5. Portability—UNIX is portable because it is written in a high level language. So, UNIX can be run on different computers.

6. Communication—UNIX supports communication between different terminals of the same server as well as between terminals on different servers.

Apart from these features, UNIX has an extensive Tool kit, exhaustive system calls and Libraries and enhanced GUI (X Window).

ORGANIZATION OF UNIX

The UNIX system is functionally organized at three levels and are:

1. The kernel, which schedules tasks and manages storage;

2. The shell, which connects and interprets users' commands, calls programs from memory, and executes them; and

3. The tools and applications that offer additional functionality to the OS

[image: image2.jpg]root (/)

home stand

AN\ /A

date cat who rdsk henry unix bin kumar sharm

fﬂqm/\ A\

login.sgl progs safe

UNIX Structure

The kernel is the heart of the system, a collection of programs written in C that directly communicate with the hardware. There is only one kernel for any system. It's that part of UNIX system that is loaded into memory when the system is booted. It manages the system resources, allocates time between user and processes, decides process priorities, and performs all other tasks. The kernel, in traditional parlance, is often called the Operating system.

The shell, on the other hand, is the "sleeping beauty" of UNIX. It is actually the interface between the user and the kernel. The shell is the agency which takes care of the features of redirection and has a programming capability of its own.

The Tools and Applications consist of Application Software, Compilers, Database Package, Internet tools, UNIX commands, etc.

FILE SYSTEM

A file in UNIX is nothing but a storehouse of information and everything is treated as a file by UNIX. The files can be broadly classified as follows:

Ordinary files—Contains stream of data. All data, text, source programs, object and executable code, commands fall into this category.

Directory files—Contains no external data. It contains an entry, name of the file and its inode (identification number) for each file and subdirectory under that directory. Directory files are not created by the user but by the UNIX system itself.

Device files—Even physical devices are treated as files. These are special in the sense that any output directed to it will be reflected onto the respective device.

[image: image3.jpg]Command
Mode

UNIX File System

All files in UNIX are related to one another. The file system of UNIX resembles a tree that grows from top to bottom as shown in the figure. The file system begins with a directory called root (at the top). The root directory is denoted by a slash (\). Branching from root there are several directories such as bin, lib, etc, tmp, dev. Each of these directories contains several sub-directories and files.

RESULT
Thus the study of UNIX operating system has been completed successfully.
Ex No :1.2
BASIC UNIX COMMANDS

Date :

AIM

To study and execute Unix commands.

UNIX

UNIX is security conscious, and can be used only by those persons who have an account. Telnet (Telephone Network) is a Terminal emulator program for TCP/IP networks that enables users to log on to remote servers.

To logon, type telnet server_ipaddress in run window.

User has to authenticate himself by providing username and password. Once verified, a greeting and $ prompt appears. The shell is now ready to receive commands from the user. Options suffixed with a hyphen (–) and arguments are separated by space.

General Commands
	Command
	Function

	date
	Used to display the current system date and time.

	date +%D
	Displays date only

	date +%T
	Displays time only

	date +% Y
	Displays the year part of date

	date +% H
	Displays the hour part of time

	cal
	Calendar of the current month

	cal year
	Displays calendar for all months of the specified year

	cal month year
	Displays calendar for the specified month of the year

	who
	Login details of all users such as their IP, Terminal No, User name,

	who am i
	Used to display the login details of the user

	tty
	Used to display the terminal name

	uname
	Displays the Operating System

	uname –r
	Shows version number of the OS (kernel).

	uname –n
	Displays domain name of the server

	echo "txt"
	Displays the given text on the screen

	echo $HOME
	Displays the user's home directory

	bc
	Basic calculator. Press Ctrl+d to quit

	lp file
	Allows the user to spool a job along with others in a print queue.

	man cmdname
	Manual for the given command. Press q to exit

	history
	To display the commands used by the user since log on.

	exit
	Exit from a process. If shell is the only process then logs out

Directory Commands

	Command
	Function

	pwd
	Path of the present working directory

	mkdir dir
	A directory is created in the given name under the current directory

	mkdir dir1 dir2
	A number of sub-directories can be created under one stroke

	cd subdir
	Change Directory. If the subdir starts with / then path starts from
root (absolute) otherwise from current working directory.

	cd
	To switch to the home directory.

	cd /
	To switch to the root directory.

	cd ..
	To move back to the parent directory

	rmdir subdir
	Removes an empty sub-directory.

File commands
	Command
	Function

	cat > filename
	To create a file with some contents. To end typing press Ctrl+d.

	
	The > symbol means redirecting output to a file. (< for input)

	cat filename
	Displays the file contents.

	cat >> filename
	Used to append contents to a file

	cp src des
	Copy files to given location. If already exists, it will be overwritten

	cp –i src des
	Warns the user prior to overwriting the destination file

	cp –r src des
	Copies the entire directory, all its sub-directories and files.

	mv old new
	To rename an existing file or directory. –i option can also be used

	mv f1 f2 f3 dir
	To move a group of files to a directory.

	mv –v old new
	Display name of each file as it is moved.

	rm file
	Used to delete a file or group of files. –i option can also be used

	rm *
	To delete all the files in the directory.

	rm –r *
	Deletes all files and sub-directories

	rm –f *
	To forcibly remove even write-protected files

	ls
	Lists all files and subdirectories (blue colored) in sorted manner.

	ls name
	To check whether a file or directory exists.

	ls name*
	Short-hand notation to list out filenames of a specific pattern.

	ls –a
	Lists all files including hidden files (files beginning with .)

	ls –x dirname
	To have specific listing of a directory.

	ls –R
	Recursive listing of all files in the subdirectories

	ls –l
	Long listing showing file access rights (read/write/execute-rwx for

	
	user/group/others-ugo).

	cmp file1 file2
	Used to compare two files. Displays nothing if files are identical.

	wc file
	It produces a statistics of lines (l), words(w), and characters(c).

	chmod perm file
	Changes permission for the specified file. (r=4, w=2, x=1)

	
	chmod 740 file sets all rights for user, read only for groups

	
	and no rights for others

The commands can be combined using the pipeline (|) operator. For example, number of users logged in can be obtained as.

who | wc -l

Finally to terminate the unix session execute the command exit or logout.

	[ccet@localhost ccet]$ date
	
	
	
	
	
	
	
	
	
	
	

	Sat Apr 9 13:03:47 IST 2011
	
	
	
	
	
	
	
	
	
	
	
	

	[ccet@localhost ccet]$ date +%D
	
	
	
	
	
	
	
	
	
	

	04/09/11
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	[ccet@localhost ccet]$ date +%T
	
	
	
	
	
	
	
	
	
	

	13:05:33
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	[ccet@localhost ccet]$ date +%Y
	
	
	
	
	
	
	
	
	
	

	2011
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	[ccet@localhost ccet]$ date +%H
	
	
	
	
	
	
	
	
	
	

	13
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	[ccet@localhost ccet]$ cal

	
	
	
	
	
	
	
	
	
	
	

	
	
	April 2011
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Su Mo Tu We Th Fr Sa
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	1
	2
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3
	4
	5
	 6
	 7
	8
	9
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 10 11 12 13 14 15 16
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 17 18 19 20 21 22 23
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 24 25 26 27 28 29 30
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	[ccet@localhost ccet]$ cal 08 1998
	
	
	
	
	
	
	
	

	
	
	August 1998
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Su Mo Tu We Th Fr Sa
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2
	3
	4
	 5
	 6
	7
	8
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 9 10 11 12 13 14 15
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 16 17 18 19 20 21 22
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 23 24 25 26 27 28 29
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	30 31
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	[ccet@localhost ccet]$ cal 1800
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	1800
	
	
	
	
	
	
	
	
	
	

	
	
	January
	
	
	
	
	February
	
	
	
	
	March
	
	
	

	 Su Mo Tu We Th Fr Sa
	 Su Mo Tu We Th Fr Sa
	 Su Mo Tu We Th Fr Sa

	
	
	
	1
	2
	3
	 4
	
	
	
	
	
	
	1
	
	
	
	
	
	
	 1

	5
	6
	7
	8
	 9 10 11
	2
	3
	4
	5
	6
	7
	8
	2
	3
	4
	5
	6
	7
	 8

	 12 13 14 15 16 17 18
	 9 10 11 12 13 14 15
	 9 10 11 12 13 14 15

	 19 20 21 22 23 24 25
	 16 17 18 19 20 21 22
	 16 17 18 19 20 21 22

	 26 27 28 29 30 31
	
	 23 24 25 26 27 28
	
	 23 24 25 26 27 28 29

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 30 31
	
	
	
	
	

	
	
	
	…
	
	
	
	
	
	
	…
	
	
	
	
	
	
	…
	
	
	

	
	
	October
	
	
	
	
	November
	
	
	
	
	December
	
	

	 Su Mo Tu We Th Fr Sa
	 Su Mo Tu We Th Fr Sa
	 Su Mo Tu We Th Fr Sa

	
	
	
	 1
	2
	3
	4
	
	
	
	
	
	
	1
	
	1
	2
	3
	4
	5
	6

	 5 6 7 8
	 9 10 11
	 2 3 4 5 6 7 8
	7
	 8 9 10 11 12 13

	 12 13 14 15 16 17 18
	 9 10 11 12 13 14 15
	 14 15 16 17 18 19 20

	 19 20 21 22 23 24 25
	 16 17 18 19 20 21 22
	 21 22 23 24 25 26 27

	 26 27 28 29 30 31
	 23 24 25 26 27 28 29
	 28 29 30 31

	
	
	 30
	
	

	[ccet@localhost ccet]$ who
	

	root
	:0
	Apr
	9 08:41
	

	ccet
	pts/0
	Apr
	9 13:00 (scl-64)
	

	cse1
	pts/3
	Apr
	9 13:18 (scl-41.smkfomra.com)

	ecea
	pts/4
	Apr
	9 13:18 (scl-29.smkfomra.com)

	[ccet@localhost ccet]$ who am i
	

	ccet
	pts/0
	Apr
	9 13:00 (scl-64)
	

	[ccet@localhost ccet]$ tty
	

	/dev/pts/0
	
	
	

	[ccet@localhost ccet]$ uname
	

	Linux
	
	
	
	

	[ccet@localhost ccet]$ uname -r
	

	2.4.20-8smp
	
	
	

	[ccet@localhost ccet]$ uname -n
	

	localhost.localdomain
	
	
	

	[ccet@localhost ccet]$ echo "How are you"

	How are you
	
	
	

[ccet@localhost ccet]$ echo $HOME

/home/ccet

[ccet@localhost ccet]$ echo $USER ccet

[ccet@localhost ccet]$ bc bc 1.06

Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc. 3+5 8 2%3 2

[ccet@localhost loops]$ pwd

/home/ccet/shellscripts/loops

[ccet@localhost ccet]$ mkdir filter
 [ccet@localhost ccet]$ ls

filter list.sh regexpr shellscripts

[ccet@localhost ccet]$ cd shellscripts/loops/

[ccet@localhost loops]$

[ccet@localhost loops]$ cd

[ccet@localhost ccet]$

[ccet@localhost loops]$ cd /

[ccet@localhost /]$

[ccet@localhost /]$ cd /home/ccet/shellscripts/loops/

[ccet@localhost loops]$ cd .. [

ccet@localhost shellscripts]$

	[ccet@localhost ccet]$ rmdir filter
	
	
	

	[ccet@localhost ccet]$ ls
	
	
	
	

	list.sh
	regexpr
	shellscripts
	
	
	
	

	[ccet@localhost ccet]$ cat > greet
	
	
	

	hi ece-a
	
	
	
	
	
	
	
	

	wishing u the best
	
	
	
	
	
	

	[ccet@localhost ccet]$ cat greet
	
	
	

	hi ece-a
	
	
	
	
	
	
	
	

	wishing u the best
	
	
	
	
	
	

	[ccet@localhost ccet]$ cat >> greet
	
	
	

	bye
	
	
	
	
	
	
	
	
	

	[ccet@localhost ccet]$ cat greet
	
	
	

	hi ece-a
	
	
	
	
	
	
	
	

	wishing u the best
	
	
	
	
	
	

	bye
	
	
	
	
	
	
	
	
	

	[ccet@localhost ccet]$ ls
	
	
	
	

	greet
	list.sh
	regexpr
	shellscripts
	
	
	

	[ccet@localhost ccet]$ ls -a
	
	
	
	

	.
	
	.bash_logout
	
	.canna
	.gtkrc
	regexpr
	.viminfo.tmp

	..
	
	.bash_profile
	.emacs
	.kde
	shellscripts
	.xemacs

	.bash_history
	.bashrc
	
	greet
	list.sh
	.viminfo
	

	[ccet@localhost ccet]$ ls -l
	
	
	
	

	total 16
	
	
	
	
	
	
	
	

	-rw-rw-r--
	1 ccet
	ccet
	32 Apr 11 14:52 greet

	-rw-rw-r--
	1 ccet
	ccet
	30 Apr
	4 13:58 list.sh

	drwxrwxr-x
	2 ccet
	ccet
	4096 Apr
	9 14:30 regexpr

	drwxrwxr-x
	7 ccet
	ccet
	4096 Apr
	4 14:57 shellscripts

[ccet@localhost ccet]$ cp greet ./regexpr/
[ccet@localhost ccet]$ ls

	greet
	list.sh
	regexpr
	shellscripts

	[ccet@localhost ccet]$ ls ./regexpr

	demo greet
	
	

	[ccet@localhost ccet]$ cp -i greet ./regexpr/

	cp: overwrite 'greet'? n
	

[ccet@localhost ccet]$ mv greet greet.txt

[ccet@localhost ccet]$ ls

greet.txt list.sh regexpr shellscripts

[ccet@localhost ccet]$ mv greet.txt ./regexpr/

[ccet@localhost ccet]$ ls

list.sh regexpr shellscripts

 [ccet@localhost ccet]$ ls ./regexpr/ demo greet.txt

[ccet@localhost ccet]$ ls

fact.sh list.sh prime.sh regexpr shellscripts

[ccet@localhost ccet]$ rm -i *.sh

rm: remove regular file `fact.sh'? y rm: remove regular file `list.sh'? n rm: remove regular file `prime.sh'? y

[ccet@localhost ccet]$ ls list.sh regexpr shellscripts

	[ccet@localhost ccet]$ wc list.sh
	
	
	

	4
	9
	30 list.sh
	
	
	

	[ccet@localhost ccet]$ wc -l list.sh
	
	

	4 list.sh
	
	
	
	
	

	[ccet@localhost ccet]$ cmp list.sh fact.sh
	
	

	list.sh fact.sh differ: byte 1, line 1
	
	
	

	[ccet@localhost ccet]$ ls -l list.sh
	
	

	-rw-rw-r--
	1
	ccet
	ccet
	30 Apr
	4
	13:58 list.sh

	[ccet@localhost ccet]$ chmod ug+x list.sh
	
	

	[ccet@localhost ccet]$ ls -l list.sh
	
	

	-rwxrwxr--
	1
	ccet
	ccet
	30 Apr
	4
	13:58 list.sh

	[ccet@localhost ccet]$ chmod 740 list.sh
	
	

	[ccet@localhost ccet]$ ls -l list.sh
	
	

	-rwxr-----
	1
	ccet
	ccet
	30 Apr
	4
	13:58 list.sh

RESULT

Thus the study and execution of UNIX commands has been completed successfully.

 Ex No :1.3
STUDY OF VI EDITOR

Date :

AIM
To introduce the concept of text editing vi editor and the options regarding the control of the editor.

vi Editor
A text editor is one of the most common and useful tools in all Operating Systems. Unix provides a versatile editor vi, a full-screen editor and owes its origin to Bill Joy. "vi" stands for visual editor. A vi session begins by invoking vi with or without a filename

$vi
$vi filename

The user is presented with a full empty screen, each line beginning with a ~. This is vi's way of indicating non-existent lines. Out of 25 lines on the terminal, 24 can be used to enter text. The last line is reserved for commands and also used by the system to display messages. vi functions in three modes namely:

1. Input mode—Where any key depressed is entered as text
2. Command mode—Where keys are used as commands to act on text (initial mode)
3. ex mode—ex mode commands that can be entered in the last line to act on text

vi modes
Input Mode

vi starts with command mode. To insert text any of the following commands should be used.

	Commands
	Function

	i
	Inserts text to the left of the cursor.

	I
	Inserts text at the beginning of line.

	a
	Appends text to right of cursor

	A
	Appends text at end of line

	o
	Opens line below

	O
	Opens line above

In Input mode the editor displays INSERT in the last line. Press Enter key to start a fresh line of text in Input mode and the ~ disappears. To quit input mode press Esc key.

COMMAND MODE

EDIT COMMANDS

	Command
	Function

	R
	Replaces more than a single character. The editor displays REPLACE in the last line. The existing text is overwritten as they are typed.

	s
	Deletes a single character to the left and switches to Input mode.

	x
	Deletes the character in the current cursor position

	?text

	Locates the text in the file. If not found, the message "Pattern not found" appears. Use n to repeat the forward search and N for backward search.

	U or
u
	Reverses the last change made to the buffer.

	dd
	Cuts the entire line

	dw
	Cuts the entire word

	d$
	Cuts a line from cursor position to the end of the line

	d0
	Cuts from the cursor position to the start of the line

	yy
	Copies (yanks) the entire line

	yw
	Copies the entire word

	p
	Pastes the text

NAVIGATION COMMANDS
	Command
	Function

	b
	Moves back to beginning of a word

	w
	Moves forward to beginning of word

	|
	Moves to start of the line

	$
	Moves to end of the line

	k
	Up one line

	j
	Down one line

	h
	Left one character

	l
	Right one character

	Ctrl+f
	Scrolls a page forward

	Ctrl+b
	Scrolls a page backward

	lG
	To move to the specific line

One of the most notable features of vi is the facility of prefixing a number to most commands. When prefixed, commands interpret the instruction to be repeated as many times. For example 3x deletes the next three character.

The ex Mode
The essential save and exit commands form the features of ex mode. Press : (colon) in command mode to switch to ex mode. The : is displayed in the last line. Type the command and press Enter key to execute the same.

	Command
	Function

	w
	Saves file, displays the number of lines & characters and returns to Input mode. If it is an unnamed file then vi puts a message.

	
	

	w file
	The file is saved under the given name

	L1,L2 w file
	Used to write specific line numbers to some file. The . (dot) represents current line, 0 for first line and $ could be used to represent last line.

	q
	Quits vi session and returns to $ prompt. vi has a safety mechanism that warns if changes made to file are not saved.

	
	

	q!
	Quits vi session without saving any changes made since the last save

	wq
	Save and exit

	sh
	Escape to shell

	%s/Sstr/Rstr/g
	This is yet another powerful feature known as substitution. It is similar to Find and Replace. % represents all lines, g makes it global. To make vi ask for confirmation before replacing use gc instead of g.

	r file
	To insert another file into the current file.

	new file
	Splits screen into multiple windows and opens the file.

	~
	
	

	~
	
	

	~
	
	

	~
	
	

	~
	
	

	~
	
	

	~
	
	

	~
	
	

	~
	
	

	“Sample.txt” [New File]
	
	

	

	
	vi Editor for new file
	

	This is vi improved – vim
	
	

	A rudimentary text
	
	

	~
	
	

	~
	
	

	~
	
	

	~
	
	

	~
	
	

	~
	vi editor
	

	~
	
	

	
	
	

	“Sample.txt” 2L, 30C written

	
	

	
	
	

	
	vi Editor with Contents
	

	
	
	

	
	
	

RESULT
Thus the study of text manipulation using vi editor has been completed successfully.
Ex No :1.4
SIMPLE FILTERS
Date :

AIM
To query a data file using filter commands in unix.

FILTERS
Filters are the central commands of the UNIX tool kit. It acts on data file where lines are records, fields delimited by a character not used by the data (mostly |, default is white space). The output is a set of records and the input file is unaltered by these commands.
	20057801|Aarthi
	|ECE
	|CTS
	|36000

	20057702|Albert Jerry
	|CSE
	|Wipro
	|25000

	20057903|Arun
	|IT
	|Ramco
	|12000

	20057904|Diwakar
	|IT
	|TCS
	|10500

	20057705|Geetha
	|CSE
	|Infosys
	|23000

	20057806|Irudayaraj
	|ECE
	|Polaris
	|30000

	20057707|Jaya Prakash
	|CSE
	|Ramco
	|28000

	20058008|Mahesh
	|EEE
	|Microsoft
	|5000

	20057909|Manimaran
	|IT
	|Microsoft
	|9000

	20058010|Mohammed Mukthar EEE
	|Oracle
	|6000

	20057711|Prithivi Rajan
	|CSE
	|Ramco
	|25000

	20057712|Pushpak Chander
	|CSE
	|CTS
	|27500

	20057713|Ramesh
	|CSE
	|Wipro
	|24000

	20057817|Smitha
	|ECE
	|Ramco
	|30000

stud file
	Command
	Function

	head used to display the first few records (10 records by default)

	head stud
	Displays first 10 records by default

	head -5 stud
	Displays first 5 records

	head -1 stud | wc –c
	length of first record

	tail used to display the last few records (10 records by default)

	tail stud
	Displays last 10 records by default

	tail -5 stud | tee last5
	Last 5 records listed & stored in file last5 using tee

	cut used to extract specific fields. The d option specifies the delimiter and f for specifying the field list. The c option may be used if extraction is done character wise

	cut –d \| -f 1,3,4 stud
	Fields 1,3,4 listed

	cut –d \| -f 2-4 stud
	Fields 2,3,4 listed

	paste –d \| list1 list2
	merges two cut files list1 and list2

	sort reorders the file as per ASCII sequence. The t option is used to specify delimiter

	sort stud
	Sorted on 1st column by default

	sort –t \| +2 stud
	Sort as per 3rd column

	sort –c stud
	Check if file is sorted using c option

	sort –t \| +3 -4 +4 stud
	Sorting on secondary keys

	sort -t \| -nr +4 stud
	Sort on numeric field using n option, r for reverse

	uniq stud
	Display unique entries in a sorted file

	nl display file content with lines numbered. The s option is used to specify separator

	tr translates characters. Can be used to change text case. It works with standard input <

	tr '[a-z]' '[A-Z]' < stud
	Changes text to upper case

	[ccet@localhost filters]$ head stud
	

	20057801|Aarthi
	|ECE
	|CTS
	|36000

	20057702|Albert Jerry
	|CSE
	|Wipro
	|25000

	20057903|Arun
	|IT
	|Ramco
	|12000

	20057904|Diwakar
	|IT
	|TCS
	|10500

	20057705|Geetha
	|CSE
	|Infosys
	|23000

	20057806|Irudayaraj
	|ECE
	|Polaris
	|30000

	20057707|Jaya Prakash
	|CSE
	|Ramco
	|28000

	20058008|Mahesh
	|EEE
	|Microsoft
	|5000

	20057909|Manimaran
	|IT
	|Microsoft
	|9000

	20058010|Mohammed Mukthar |EEE
	|Oracle
	|6000

	[ccet@localhost filters]$ head -4 stud
	

	20057801|Aarthi
	|ECE
	|CTS
	|36000

	20057702|Albert Jerry
	|CSE
	|Wipro
	|25000

	20057903|Arun
	|IT
	|Ramco
	|12000

	20057904|Diwakar
	|IT
	|TCS
	|10500

	[ccet@localhost filters]$ head -1 stud | wc -c

	49
	
	
	

	[ccet@localhost filters]$ tail stud
	

	20058008|Mahesh
	|EEE
	|Microsoft
	|5000

	20057909|Manimaran
	|IT
	|Microsoft
	|9000

	20058010|Mohammed Mukthar |EEE
	|Oracle
	|6000

	20057711|Prithivi Rajan
	|CSE
	|Ramco
	|25000

	20057712|Pushpak Chander
	|CSE
	|CTS
	|27500

	20057713|Ramesh
	|CSE
	|Wipro
	|24000

	20057817|Smitha
	|ECE
	|Ramco
	|30000

	20057718|Sri Gurumoorthy
	|IT
	|Microsoft
	|11000

	20057719|Tamil Selvi
	|EEE
	|CTS
	|3500

	20057720|Thamotharan
	|IT
	|CTS
	|9000

	[ccet@localhost filters]$ tail -2 stud | tee last2

	20057719|Tamil Selvi
	|EEE
	|CTS
	|3500

	20057720|Thamotharan
	|IT
	|CTS
	|9000

	[ccet@localhost filters]$ cat last2
	

	20057719|Tamil Selvi
	|EEE
	|CTS
	|3500

	20057720|Thamotharan
	|IT
	|CTS
	|9000

	[ccet@localhost filters]$ cut -d \| -f 2,4-5 stud

	20057801|Aarthi
	|ECE
	
	

	20057702|Albert Jerry
	|CSE
	
	

	20057903|Arun
	|IT
	
	

	20057904|Diwakar
	|IT
	
	

	20057705|Geetha
	|CSE
	
	

	20057806|Irudayaraj
	|ECE
	
	

	
	
	
	

	20057707|Jaya Prakash
	|CSE
	
	

	20058008|Mahesh
	|EEE
	
	

20057909|Manimaran
|IT

20058010|Mohammed Mukthar |EEE

20057711|Prithivi Rajan
 |CSE

20057712|Pushpak Chander |CSE

20057713|Ramesh
|CSE

20057817|Smitha
|ECE

20057718|Sri Gurumoorthy |IT

20057719|Tamil Selvi
|EEE

20057720|Thamotharan
|IT

[ccet@localhost filters]$ cut -d \| -f 2,4 stud > nameorg

[ccet@localhost filters]$ cut -d \| - f 5 stud > sal

[ccet@localhost filters]$ paste -d \| nameorg sal

	Aarthi
	|CTS
	
	|36000
	

	Albert Jerry
	|Wipro
	
	|25000
	

	Arun
	|Ramco
	
	|12000
	

	Diwakar
	|TCS
	
	|10500
	

	Geetha
	|Infosys
	
	|23000
	

	Irudayaraj
	|Polaris
	
	|30000
	

	Jaya Prakash
	|Ramco
	
	|28000
	

	Mahesh
	|Microsoft
	|5000
	

	Manimaran
	|Microsoft
	|9000
	

	Mohammed Mukthar |Oracle
	
	|6000
	

	Prithivi Rajan
	|Ramco
	
	|25000
	

	Pushpak Chander
	|CTS
	
	|27500
	

	Ramesh
	|Wipro
	
	|24000
	

	Smitha
	|Ramco
	
	|30000
	

	Sri Gurumoorthy
	|Microsoft
	|11000
	

	Tamil Selvi
	|CTS
	
	|3500
	

	Thamotharan
	|CTS
	
	|9000
	

	[ccet@localhost filters]$ sort stud
	

	20057702|Albert Jerry
	|CSE
	|Wipro
	|2500

	20057705|Geetha
	
	|CSE
	|Infosys
	|2300

	20057707|Jaya Prakash
	|CSE
	|Ramco
	|2800

	20057711|Prithivi Rajan
	|CSE
	|Ramco
	|25000

	20057712|Pushpak Chander
	|CSE
	|CTS
	|27500

	20057713|Ramesh
	
	|CSE
	|Wipro
	|24000

	20057718|Sri Gurumoorthy
	|IT
	|Microsoft
	|11000

	20057719|Tamil Selvi
	|EEE
	|CTS
	|3500

	20057720|Thamotharan
	|IT
	|CTS
	|9000

	20057801|Aarthi
	
	|ECE
	|CTS
	|36000

	20057806|Irudayaraj
	|ECE
	|Polaris
	|30000

	20057817|Smitha
	
	|ECE
	|Ramco
	|30000

	20057903|Arun
	
	|IT
	|Ramco
	|12000

	20057904|Diwakar
	
	|IT
	|TCS
	|10500

	
	
	
	
	

	20057909|Manimaran
	|IT
	|Microsoft
	|9000

	20058008|Mahesh
	
	|EEE
	|Microsoft
	|5000

	20058010|Mohammed Mukthar |EEE
	|Oracle
	|6000

	[ccet@localhost filters]$ sort -t \| +1 stud

	20057801|Aarthi
	|ECE
	|CTS
	|36000

	20057702|Albert Jerry
	|CSE
	|Wipro
	|25000

	20057903|Arun
	|IT
	|Ramco
	|12000

	20057904|Diwakar
	|IT
	|TCS
	|10500

	20057705|Geetha
	|CSE
	|Infosys
	|23000

	20057806|Irudayaraj
	|ECE
	|Polaris
	|30000

	20057707|Jaya Prakash
	|CSE
	|Ramco
	|28000

	20058008|Mahesh
	|EEE
	|Microsoft
	|5000

	20057909|Manimaran
	|IT
	|Microsoft
	|9000

	20058010|Mohammed Mukthar |EEE
	|Oracle
	|6000

	20057711|Prithivi Rajan
	|CSE
	|Ramco
	|25000

	20057712|Pushpak Chander
	|CSE
	|CTS
	|27500

	20057713|Ramesh
	|CSE
	|Wipro
	|24000

	20057817|Smitha
	|ECE
	|Ramco
	|30000

	20057718|Sri Gurumoorthy
	|IT
	|Microsoft
	|11000

	20057719|Tamil Selvi
	|EEE
	|CTS
	|3500

	20057720|Thamotharan
	|IT
	|CTS
	|9000

	[ccet@localhost filters]$ sort -t \| +3 -4 +2 stud

	20057712|Pushpak Chander
	|CSE
	|CTS
	|27500

	20057801|Aarthi
	|ECE
	|CTS
	|36000

	20057719|Tamil Selvi
	|EEE
	|CTS
	|3500

	20057720|Thamotharan
	|IT
	|CTS
	|9000

	20057705|Geetha
	|CSE
	|Infosys
	|23000

	20058008|Mahesh
	|EEE
	|Microsoft
	|5000

	20057718|Sri Gurumoorthy
	|IT
	|Microsoft
	|11000

	20057909|Manimaran
	|IT
	|Microsoft
	|9000

	20058010|Mohammed Mukthar |EEE
	|Oracle
	|6000

	20057806|Irudayaraj
	|ECE
	|Polaris
	|30000

	20057711|Prithivi Rajan
	|CSE
	|Ramco
	|25000

	20057707|Jaya Prakash
	|CSE
	|Ramco
	|28000

	20057817|Smitha
	|ECE
	|Ramco
	|30000

	20057903|Arun
	|IT
	|Ramco
	|12000

	20057904|Diwakar
	|IT
	|TCS
	|10500

	20057713|Ramesh
	|CSE
	|Wipro
	|24000

	20057702|Albert Jerry
	|CSE
	|Wipro
	|25000

	[ccet@localhost filters]$ sort -t \| -nr +4 stud

	20057801|Aarthi
	|ECE
	|CTS
	|36000

	20057817|Smitha
	|ECE
	|Ramco
	|30000

	20057806|Irudayaraj
	|ECE
	|Polaris
	|30000

	20057707|Jaya Prakash
	|CSE
	|Ramco
	|28000

	20057712|Pushpak Chander
	|CSE
	|CTS
	|27500

	20057711|Prithivi Rajan
	|CSE
	|Ramco
	|25000

	20057702|Albert Jerry
	|CSE
	|Wipro
	|25000

	20057713|Ramesh
	|CSE
	|Wipro
	|24000

	20057705|Geetha
	|CSE
	|Infosys
	|23000

	20057903|Arun
	|IT
	|Ramco
	|12000

	20057718|Sri Gurumoorthy
	|IT
	|Microsoft
	|11000

	20057904|Diwakar
	|IT
	|TCS
	|10500

	20057909|Manimaran
	|IT
	|Microsoft
	|9000

	20057720|Thamotharan
	|IT
	|CTS
	|9000

	20058010|Mohammed Mukthar |EEE
	|Oracle
	|6000

	20058008|Mahesh
	|EEE
	|Microsoft
	|5000

	20057719|Tamil Selvi
	|EEE
	|CTS
	|3500

	[ccet@localhost filters]$ tr '[a-z]' '[A-Z]' < stud

	20057801|Aarthi
	|ECE
	|CTS
	|36000

	20057702|Albert Jerry
	|CSE
	|WIPRO
	|25000

	20057903|Arun
	|IT
	|RAMCO
	|12000

	20057904|Diwakar
	|IT
	|TCS
	|10500

	20057705|Geetha
	|CSE
	|INFOSYS
	|23000

	20057806|Irudayaraj
	|ECE
	|POLARIS
	|30000

	20057707|Jaya Prakash
	|CSE
	|RAMCO
	|28000

	20058008|Mahesh
	|EEE
	|MICROSOFT
	|5000

	20057909|Manimaran
	|IT
	|MICROSOFT
	|9000

	20058010|Mohammed Mukthar |EEE
	|ORACLE
	|6000

	20057711|Prithivi Rajan
	|CSE
	|RAMCO
	|25000

	20057712| Chander Chander
	|CSE
	|CTS
	|27500

	20057713|Ramesh
	|CSE
	|WIPRO
	|24000

	20057817|Smitha
	|ECE
	|RAMCO
	|30000

	20057718|Srigurumorthy
	|IT
	|MICROSOFT
	|11000

	20057719|Tamil Selvi
	|EEE
	|CTS
	|3500

	20057720|Thamotharan
	|IT
	|CTS
	|9000

	[ccet@localhost filters]$ nl -s "|" stud
	

	1|20057801|Aarthi
	|ECE
	|CTS
	|36000

	2|20057702|Albert Jerry
	|CSE
	|Wipro
	|25000

	3|20057903|Arun
	|IT
	
	|Ramco
	|12000

	4|20057904|Diwakar
	|IT
	
	|TCS
	|10500

	5|20057705|Geetha
	|CSE
	|Infosys
	|23000

	6|20057806|Irudayaraj
	ECE
	|Polaris
	|30000

	7|20057707|Jaya Prakash
	|CSE
	|Ramco
	|28000

	8|20058008|Mahesh
	|EEE
	|Microsoft
	|5000

	9|20057909|Manimaran
	|IT
	
	|Microsoft
	|9000

	10|20058010|Mohammed Mukthar |EEE
	|Oracle
	|6000

	11|20057711|Prithivi Rajan
	|CSE
	|Ramco
	|25000

	12|20057712|Pushpak Chander
	|CSE
	|CTS
	|27500

	13|20057713|Ramesh
	|CSE
	|Wipro
	|24000

	14|20057817|Smitha
	|ECE
	|Ramco
	|30000

	15|20057718|Sri Gurumoorthy
	|IT
	
	|Microsoft
	|11000

	16|20057719|Tamil Selvi
	|EEE
	|CTS
	|3500

	17|20057720|Thamotharan
	|IT
	
	|CTS
	|9000

RESULT
Thus information retrieval using filters has been completed successfully.
Ex No :1.5
REGULAR EXPRESSION

Date :

AIM

To search for regular expression in a file using grep command in unix.

A frequent requirement is to look for a pattern or expression in a file. Unix handles this feature through grep and egrep. grep uses an regular expression to display lines that match and egrep enables searching for multiple patterns. Its usage is

grep options searchtext filename
	THIS LINE IS THE 1ST UPPER CASE LINE IN THIS FILE.

this line is the 1st lower case line in this file.

This Line Has All Its First Character Of The Word With Upper Case.

Two lines above this line

is empty. vim Word Navigation

You may want to do several navigation in relation to words, such as:

1.
e - go to the end of the current word.

2.
E - go to the end of the current WORD.

3.
b - go to the previous word.

4.
B - go to the previous WORD.

WORD - WORD consists of a sequence of non-blank characters

Word - word consists of a sequence of letters, digits and underscores.

telnet 172.16.4.256

demo file
	Command
	Function

	grep this demo
	Lists the lines that contains the string this

	grep 'end of' demo
	Quotes mandatory for text containing space

	grep this demo*
	Search this in multiple files

	grep –c to demo
	Number of occurrence of the word to in the file

	grep –n sequence demo
	Display line numbers along with matching lines

	grep –v word demo
	Displays lines that does not contain the text word

	grep –l vim *
	Displays files containing text vim

	grep –i WORD demo
	Search for text ignoring case differences

	grep '^[0-9]' demo
	Lines that start with a number

	grep '[0-9]$' demo
	Lines that end with a number

	ls -l | grep "^d"
	Display the subdirectory names

	grep –c "^$" demo
	Display count of blank lines in the file.

	grep "2....$" stud
	Display lines that ends in the range 20000–29999

	egrep "lower|UPPER" demo
	Display lines that match either lower or upper

	egrep "(previous|current)
	Display lines that match either previous word or

	word" demo
	current word

[ccet@localhost regexpr]$ grep this demo
this line is the 1st lower case line in this file. Two lines above this line is empty.

[ccet@localhost regexpr]$ grep 'end of' demo
1. e - go to the end of the current word.

2. E - go to the end of the current WORD.

[ccet@localhost regexpr]$ grep -c to demo
5

[ccet@localhost regexpr]$ grep -n sequence demo
15:WORD - WORD consists of a sequence of non-blank characters

16:Word - word consists of a sequence of letters, digits and underscores.

[ccet@localhost regexpr]$ grep -v word demo
THIS LINE IS THE 1ST UPPER CASE LINE IN THIS FILE.
this line is the 1st lower case line in this file.

This Line Has All Its First Character Of The Word With Upper Case.

Two lines above this line is
empty. vim Word Navigation

2. E - go to the end of the current
WORD. 4. B - go to the previous WORD.

WORD - WORD consists of a sequence of non-blank characters

telnet 172.16.4.256

[ccet@localhost regexpr]$ grep -l vim *
demo readme
[ccet@localhost regexpr]$ grep -i WORD demo
This Line Has All Its First Character Of The Word With Upper Case. vim Word Navigation

You may want to do several navigation in relation to words, such as:

1. e - go to the end of the current word.

2. E - go to the end of the current WORD.

3. b - go to the previous word.

4. B - go to the previous WORD.

WORD - WORD consists of a sequence of non-blank characters

Word - word consists of a sequence of letters, digits and underscores.

[ccet@localhost regexpr]$ grep '^[0-9]' demo
1. e - go to the end of the current word.

2. E - go to the end of the current WORD.

3. b - go to the previous word.

4. B - go to the previous WORD.

	[ccet@localhost regexpr]$ grep '[0-9]$' demo

	telnet 172.16.4.256
	
	
	

	[ccet@localhost ccet]$ ls -l | grep "^d"

	drwxrwxr-x
	2
	ccet
	ccet
	4096
	Apr
	9
	14:30 regexpr

	drwxrwxr-x
	7
	ccet
	ccet
	4096
	Apr
	4
	14:57 shellscripts

[ccet@localhost regexpr]$ grep -c "^$" demo
5

[ccet@localhost regexpr]$ egrep "lower|UPPER" demo
THIS LINE IS THE 1ST UPPER CASE LINE IN THIS FILE.

this line is the 1st lower case line in this file.

[ccet@localhost regexpr]$ egrep "(previous|current) word" demo
1. e - go to the end of the current

word. 3. b - go to the previous word.

RESULT
Thus searching text patterns in files using grep has been completed successfully.
Ex No :2.1
SIMPLE SHELL PROGRAMS

Date :

AIM

To write simple shell scripts using shell programming fundamentals.

SHELL

The activities of a shell are not restricted to command interpretation alone. The shell also has rudimentary programming features. When a group of commands has to be executed regularly, they are stored in a file (with extension .sh). All such files are called shell scripts or shell programs. Shell programs run in interpretive mode.

The original UNIX came with the Bourne shell (sh) and it is universal even today. Then came a plethora of shells offering new features. Two of them, C shell (csh) and Korn shell (ksh) has been well accepted by the UNIX fraternity. Linux offers Bash shell (bash) as a superior alternative to Bourne shell.

Preliminaries

1. Comments in shell script start with #. It can be placed anywhere in a line; the shell ignores contents to its right. Comments are recommended but not mandatory

2. Shell variables are loosely typed i.e. not declared. Their type depends on the value assigned. Variables when used in an expression or output must be prefixed by $.

3. The read statement is shell's internal tool for making scripts interactive.

4. Output is displayed using echo statement. Any text should be within quotes. Escape sequence should be used with –e option.

5. Commands are always enclosed with ` ` (back quotes).

6. 6.Expressions are computed using the expr command. Arithmetic operators are + -

/ %. Meta characters* ()should be escaped with a\.

7. Multiple statements can be written in a single line separated by ;

8. The shell scripts are executed using the sh command (sh filename).

	2.1.A—Swapping values of two variables
	

	Algorithm
	
	

	Step 1 :
	Start
	

	Step 2 :
	Read the values of a and b
	

	Step 3 :
	Interchange the values of a and b using another variable t as follows:

	
	t = a
	

	
	a = b
	

	
	b = t
	

	Step 4 :
	Print a and b
	

	Step 5 :
	Stop
	

	Program (swap.sh)
	

Swapping values

echo -n "Enter value for A : "

read a

echo -n "Enter value for B : "

read b

t=$a

a=$b

b=$t

echo "Values after Swapping"

echo "A Value is $a"

echo "B Value is $b"
Output
[ccet@localhost simple]$ sh swap.sh

 Enter value for A : 12

Enter value for B : 23

Values after Swapping

A Value is 23

B Value is 12

2.1.B—Farenheit to Centigrade Conversion

Algorithm

Step 1 :
Start

Step 2 :
Read fahrenheit value

Step 3 :
Convert fahrenheit to centigrade using the formulae:
(fahrenheit – 32) × 5/9

Step 4 :
Print centigrade

Step 5 :
Stop

Program (degconv.sh)

Degree conversion

echo -n "Enter Fahrenheit :

read f

c=`expr\($f - 32 \) * 5 / 9`

echo "Centigrade is : $c"

Output

[ccet@localhost simple]$ sh degconv.sh

Enter Fahrenheit : 213

Centigrade is : 100

2.1.C— Area & Circumference of Circle

Algorithm

Step 1 :
Start

Step 2 :
Define constant pi = 3.14

Step 3 :
Read the value of radius

Step 4 :
Calculate area using formulae: pi × radius2

Step 5 :
Calculate circumference using formulae: 2 × pi × radius

Step 6 :
Print area and circumference

Step 7 :
Stop

Program (circle.sh)

Circle metrics using readonly variable pi=`expr "scale=2; 22 / 7" | bc`

readonly pi # pi value cannot be altered

echo -n "Enter value for radius : "

read radius

area=`expr "scale=2; $pi * $radius * $radius" | bc`
circum=`expr "scale=2; 2 * $pi * $radius" | bc`

echo "Area : $area"

echo "Circumference : $circum"

Output

[ccet@localhost simple]$ sh circle.sh

Enter value for radius : 12

Area : 452.16

Circumference : 75.36

2.1.D— Simple Interest Calculation

Algorithm

Step 1 :
Start

Step 2 :
Read the values principal, rate and years

Step 3 :
Compute simple interest using the formulae:
(principal × rate × years) / 100

Step 4 :
Print simple interest

Step 5 :
Stop

Program (simpint.sh)

Interest computation using bc

echo -n "Enter Principal amount : "

read p

echo -n"Enter number of years : "

read n

echo -n "Enter rate of interest : "

read r

si=`expr "scale=2; $p * $n *$r / 100" | bc`

echo "Simple Interest : $si"

Output

[ccet@localhost simple]$ sh simpint.sh

Enter Principal amount : 1285

Enter number of years : 3

Enter rate of interest : 5

Simple Interest : 192.75

RESULT
Thus using programming basics, simple shell scripts were executed.

Ex No :2.2
CONDITIONAL CONSTRUCTS
Date :

AIM
To write shell scripts using decision-making constructs.

 Shell supports decision-making using if statement. The if statement like its counterpart in programming languages has the following formats. The first construct executes the statements when the condition is true. The second construct adds an optional else to the first one that has different set of statements to be executed depending on whether the condition is true or false. The last one is an elif ladder, in which conditions are tested in sequence, but only one set of statements is executed.

	if [condition]
	
	if [condition]
	
	if [condition
]
	

	then
	
	then
	
	then
	
	
	

	statements
	
	statements
	
	statements
	
	

	fi
	
	else
	
	elif [
	condition
]

	
	
	statements
	
	then
	
	
	

	
	
	fi
	
	statements
	
	

	
	
	
	
	.. .
	
	
	

	
	
	
	
	else
	
	
	

	
	
	
	
	statements
	
	

	
	
	
	
	fi
	
	
	

 The set of relational and logical operators used in conditional expression is given below. The numeric comparison in the shell is confined to integer values only.

	Operator
	Description

	-eq
	Equal to

	-ne
	Not equal to

	-gt
	Greater than

	-ge
	Greater than or equal to

	-lt
	Less than

	-le
	Less than or equal to

	-a
	Logical AND

	-o
	Logical OR

	!
	Logical NOT

2.2.A— Odd or even

Algorithm

Step 1 :
Start

Step 2 :
Read number

Step 3 :
If number divisible by 2 then

Print "Number is Even"

Step 3.1 :
else

Print "Number is Odd"

Step 4 :
Stop

Program (oddeven.sh)

Odd or even using if-else

echo -n "Enter a non-zero number :

read num

rem=`expr$num% 2`
if [$rem -eq 0] then

 echo "$num is Even"

else

 echo "$num is Odd"

fi

Output

[ccet@localhost decision]$ sh oddeven.sh

Enter a non-zero number : 12

12 is Even
2.2.B—Biggest of 3 numbers

Algorithm

Step 1 :
Start

Step 2 :
Read values of a, b and c

Step 3 :
If a > b and a > c then

Print "A is the biggest"

Step 3.1 :
else if b>c then

Print "B is the biggest "

Step 3.2 :
else

Print "C is the biggest"

Step 4 :
Stop

Program (big3.sh)

Biggest using logical expression

echo -n "Give value for A B and C: "

read a b c

if [$a -gt $b -a $a -gt $c] then

echo "A is the Biggest number"

elif [$b -gt $c]

then

echo "B is the Biggest number" else

echo "C is the Biggest number"

fi

Output

[ccet@localhost decision]$ sh big3.sh

Give value for A B and C: 4 3 5
C is the Biggest number

2.2.C—Leap year

Algorithm

Step 1 :
Start

Step 2 :
Read the value of year

Step 3 :
If year divisible by 400 then

Print "Leap year"

Step 3.1 :
else if year divisible by 4 and not divisible by 100 then

Print "Leap year"

Step 3.2 :
else

Print "Not a leap year"

Step 4 :
Stop

Program (leap.sh)

Leap year

echo -n "Enter a year : " read year

rem1=`expr $year % 4`
rem2=`expr $year % 100`
rem3=`expr $year % 400`
if [$rem3 -eq 0] then

echo "$year is a Leap Year"

elif [$rem2 -ne 0 -a $rem1 -eq 0] then

echo "$year is a Leap Year"
else

echo "$year is Not a leap year"

fi

Output

[ccet@localhost decision]$ sh leap.sh

Enter a year : 1900

1900 is Not a leap year

2.2.D—Grade Determination

Algorithm

Step 1 :
Start

Step 2 :
Read mark

Step 3 :
If mark> 90 then

Print "S grade"

Step 3.1 :
else if mark> 80 then

Print "A grade"

Step 3.2 :
else if mark> 70 then

Print "B grade"

Step 3.3 :
else if mark> 60 then

Print "C grade"

Step 3.4 :
else if mark> 55 then

Print "D grade"

Step 3.5 :
else if mark 50 then

Print "E grade"

Step 3.6 :
else

Print "U grade"

Step 4 :
Stop

Program (grade.sh)

echo -n "Enter the mark : "

read mark

if [$mark -gt 90] then

echo "S Grade"

elif [$mark -gt 80] then

echo "A Grade"

elif [$mark -gt 70] then

echo "B Grade"

elif [$mark -gt 60] then

echo "C Grade"

elif [$mark -gt 55] then

echo "D Grade"

elif [$mark -ge 50] then

echo "E Grade"

else

echo "U Grade"

fi

Output

[ccet@localhost decision]$ sh grade.sh
Enter the mark : 65

C Grade

2.2.E—String comparison

Algorithm

Step 1 :
Start

Step 2 :
Read strings str1 and str2

Step 3 :
If str1 = str2 then

Print "Strings are the same"

Step 3.1 :
else

Print "Strings are distinct"

Step 4 :
Stop

Program (strcomp.sh)

echo -n "Enter the first string :"

read s1

echo -n "Enter the second string :"

read s2

if [$s1 == $s2] then

echo "Strings are the same"

else

echo "Strings are distinct"

fi

Output

[ccet@localhost decision]$ sh strcomp.sh

Enter the first string : ece-a

Enter the second string : ECE-A

Strings are distinct

2.2.F—Employee Pay Calculation

Algorithm

Step 1 :
Start

Step 2 :
Read basic

Step 3 :
If basic> 30000 then

hrais 5% of basic

dais 5% of basic

taxis 10% of basic

Step 3.1 :
else if basic> 20000 then

hrais 4% of basic

dais 3% of basic

taxis 8% of basic

Step 3.2 :
else

hrais 3% of basic

dais 2% of basic

taxis 5% of basic

Step 4 :
Stop

Program (emppay.sh)

echo -n "Enter employee basic pay : "

read basic

if [$basic -gt 30000] then

hra=`expr 5 * $basic / 100`

da=`expr 5 * $basic / 100`

tax=`expr 10 * $basic / 100`

elif [$basic -gt 20000] then

hra=`expr 4 * $basic / 100`

da=`expr 3 * $basic / 100`

tax=`expr 8 * $basic / 100`

else

hra=`expr 3 * $basic / 100`

da=`expr 2 * $basic / 100`

tax=`expr 5 * $basic / 100`

fi

gross=`expr $basic + $da + $hra`

netpay=`expr $gross - $tax`

echo "Gross Pay : $gross"

echo "Net Pay : $netpay"

Output

[ccet@localhost decision]$ sh emppay.sh

Enter employee basic pay : 12000

Gross Pay: 12600

Net Pay : 12000

RESULT
Thus using if statement scripts with conditional expressions were executed.

Ex No :2.3
MULTI-WAY BRANCHING

Date :

AIM

To write shell scripts using case construct to match patterns.

The case statement is used to compare a variables value against a set of constants (integer, character, string, range). If it matches a constant, then the set of statements followed after) is executed till a ;; is encountered. The optional default block is indicated by *. Multiple constants can be specified in a single pattern separated by |.

case variable in

constant1)

statements ;;

constant2)

statements;;

. . .

constantN)

statements ;;

*)

statements

esac

2.3.A—Vowel or Consonant

Algorithm

Step 1 :
Start

Step 2 :
Read char

Step 3 :
If char is either 'a', 'e', 'i', 'o' or 'u'
then

Print "It's a vowel"

Step 3.1 :
else

Print "It's a consonant"

Step 4 :
Stop

Program (vowel.sh)

Vowel with multiple values in a pattern

echo -n "Key in a lower case character : "

read choice

case $choice in

a|e|i|o|u)

echo "It's a Vowel";;

*)

echo "It's a Consonant"

esac

Output

[ccet@localhostmultway]$ sh vowel.c

Key in a lower case character : e

It's a Vowel

2.3.B—Simple Calculator

Algorithm

Step 1 :
Start

Step 2 :
Read operands a and b

Step 3 :
Display operation menu

Step 4 :
Read option

Step 5 :
If option = 1 then

Calculate c = a + b

Step 5.1 :
else if option = 2 then

Calculate c = a – b

Step 5.2 :
else if option = 3 then

Calculate c = a * b

Step 5.3 :
else if option = 4 then

Calculate c = a / b

Step 5.4 :
else if option = 5 then

Calculate c = a % b

Step 5.5 :
else

Print "Invalid option"

Step 6 :
Print c

Step 7 :
Stop

Program (calc.sh)
Arithmetic operations--multiple statements in a block

echo -n "Enter the two numbers : "

read a b

echo " 1. Addition"
echo " 2. Subtraction"

echo " 3. Multiplication"
echo " 4. Division"

echo " 5. Modulo Division"
echo -n "Enter the option : "
read option

case $option in

1) c=`expr $a + $b`
echo "$a + $b = $c";;

2) c=`expr $a - $b`
echo "$a - $b = $c";;

3) c=`expr $a * $b`
echo "$a * $b = $c";;

4) c=`expr $a / $b`
echo "$a / $b = $c";;

5) c=`expr $a % $b`
echo "$a % $b=$c";;

*) echo "Invalid Option"

esac

Output

[ccet@localhostmultway]$ sh calc.sh

Enter the two numbers : 2 4

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Modulo Division

Enter the option : 1

2 + 4 = 6
2.3.C—Rental Options

Algorithm

Step 1 :
Start

Step 2 :
Read vehicle

Step 3 :
If vehicle = "car" then

Print "Rental is Rs. 20/km"

Step 3.1 :
else if vehicle = "van" then

Print "Rental is Rs. 10/km"

Step 3.2 :
else if vehicle = "jeep" then

Print "Rental is Rs. 5/km"

Step 3.3 :
else if vehicle = "bicycle" then

Print "Rental is Rs. 0.2/km"

Step 3.4 :
else

Print "Vehicle not available"

Step 4 :
Stop

Program (rental.sh)

String matching

echo "Two/Four wheeler rental"

echo -n "Enter the required vehicle : "

read vehicle

case $vehicle in

"car") echo "For $vehicle Rs.20 per km";;

"van") echo "For $vehicle Rs.10 per km";;

"jeep") echo "For $vehicle Rs.5 per km";;

"bicycle") echo "For $vehicle 20 paisa per km";;

*) echo "Sorry, I cannot get a $vehicle for you";;

esac

Output

[ccet@localhostmultway]$ sh rental.sh

Two/Four wheeler rental

Enter the required vehicle : bicycle

For bicycle 20 paisa per km

2.3.D—Vote Eligibility (vote.sh)
Algorithm

Step 1 :
Start

Step 2 :
Read age

Step 3 :
If age 17

Print "Not eligible to vote"

Step 3.1 :
else

Print "Eligible to vote"

Step 4 :
Stop

Program

Vote-- range matching

echo -n "Enter your age : "

read age

case $age in

[0-9]|1[0-7]) echo "You are not eligible to vote";;

*) echo "Eligible to vote"

esac

Output

[ccet@localhostmultway]$ sh vote.sh

Enter your age : 12

You are not eligible to vote

RESULT
Thus using case statement, shell scripts were executed.

Ex No :2.4
LOOPING

Date :

AIM

To write shell scripts using looping statements.

Shell supports a set of loops such as for, while and until to execute a set of statements repeatedly. The body of the loop is contained between do and done statement.

· The for loop doesn't test a condition, but uses a list instead.

for variable in list
do

statements

...

done

· The while loop executes the statements as long as the condition remains true.

while [condition] do

statements

…
done

· The until loop complements the while construct in the sense that the statements are executed as long as the condition remains false.

until [condition] do

statements

…

done

2.4.A—Multiplication Table

Algorithm

Step 1 :
Start

Step 2 :
Read the value of n

Step 3 :
Initialize 1 to i

Step 4 :
Print n, i, n×i

Step 5 :
Increment i by 1

Step 6 :
Repeat steps 4 and 5 until i
10

Step 7 :
Stop

Program (multable.sh)

Multiplication table using for loop clear

echo -n "Which multiplication table? : "
read n

for x in 1 2 3 4 5 6 7 8 9 10

do

p=`expr $x * $n`

echo -n "$n X $x = $p" sleep 1

done

Output

[ccet@localhost loops]$ sh multable.sh
Which multiplication table? : 6

6 X 1 = 6

6 X 2 = 12

6 X 3 = 18

6 X 4 = 24

6 X 5 = 30

6 X 6 = 36

6 X 7 = 42

6 X 8 = 48

6 X 9 = 54

6 X 10= 60

2.4.B—Armstrong Number

Algorithm

Step 1 :
Start

Step 2 :
Read number

Step 3 :
Initialize 0 to sum and number to num

Step 4 :
Extract lastdigit by computing number modulo 10

Step 5 :
Cube the lastdigit and add it to sum

Step 6 :
Divide number by 10

Step 7:
Repeat steps 4–6 until number> 0

Step 8 :
If sum = number then

Print “Armstrong number”

Step 8.1 :
else

Print “Not an Armstrong number”

Step 9 :
Stop

Program (armstrong.sh)

Armstrong number using while loop
echo -n "Enter a number : "

read n a=$n s=0

while [$n -gt 0] do

r=`expr $n % 10`

s=`expr $s + \($r * $r * $r \)`
n=`expr $n / 10`

done

if [$a -eq $s] then

echo "Armstrong Number" else

echo -n "Not an Armstrong number"

fi

Output

[ccet@localhost loops]$ sh armstrong.sh
Enter a number : 370

Armstrong Number

2.4.C—Number Reverse

Algorithm

Step 1 :
Start

Step 2 :
Read number

Step 3 :
Initialize 0 to reverse

Step 4 :
Extract lastdigit by computing number modulo 10

Step 5 :
Compute reverse = reverse10 + lastdigit

Step 6 :
Divide number by 10

Step 7:
Repeat steps 4–6 until number> 0

Step 8 :
Print reverse

Step 9 :
Stop

Program (reverse.sh)

To reverse a number using while loop
echo -n "Enter a number : "

read n rd=0

while [$n -gt 0] do

rem=`expr $n % 10`
rd=`expr $rd * 10 + $rem`
n=`expr $n / 10`

done

echo "Reversed number is $rd"

Output

[ccet@localhost loops]$ sh reverse.sh
Enter a number : 234

Reversed number is 432

2.4.D—Fibonacci Series

Algorithm

Step 1 :
Start

Step 2 :
Read number of terms as n

Step 3 :
Initialize 0 to f1, 1 to f2 and 2 to i

Step 4 :
Print initial fibonacci terms
f1, f2

Step 5 :
Generate next term using the formula f3 = f1 + f2

Step 6 :
Print f3

Step 7 :
Increment i by 1

Step 8 :
Assign f2 to f1

Step 9 :
Assign f3 to f2

Step 10 :
Repeat steps 5–9 until i<n

Step 11 :
Stop

Program (fibo.sh)

Fibonacci series using while loop
echo -n "Enter number of terms : "

read n

echo "Fibonacci Series" f1=0

f2=1

echo -n "$f1 "
echo -n " $f2 "
i=2

while [$i -lt $n] do

f3=`expr $f1 + $f2`
echo -n " $f3 "
f1=$f2

f2=$f3

i=`expr $i + 1`
done

Output

[ccet@localhost loops]$ sh fibo.sh
Enter number of terms : 8

Fibonacci Series

0 1 1 2 3 5 8 13

2.4.E—Prime Number

Algorithm

Step 1 :
Start

Step 2 :
Read the value of n

Step 3 :
Initialize i to 2

Step 4 :
If n is divisible by i then

Print “Not Prime” and Stop

Step 5 :
Increment i by 1

Step 6 :
Repeat steps 4 and 5 until i>n/2

Step 7 :
Print "Prime"

Step 8 :
Stop

Program (prime.sh)

Prime number using exit

echo -n "Enter the number : "
read n

i=2

m=`expr $n / 2`
until [$i -gt $m] do

q=`expr $n % $i`
if [$q -eq 0] then

echo "Not a Prime number"

exit

fi

i=`expr $i + 1`
done

echo "Prime number"

Output

[ccet@localhost loops]$ sh prime.sh
Enter the number : 17

Prime number

2.4.F—Factorial Value

Algorithm

Step 1 :
Start

Step 2 :
Read number

Step 3 :
Initialize 1 to fact and number to i

Step 4 :
fact = fact * i

Step 5 :
Decrement i by 1

Step 6:
Repeat steps 4–6 until i> 0

Step 7 :
Print fact

Step 8 :
Stop

Program (fact.sh)

Factorial value using until

echo -n "Enter a positive number : "
read n

f=1

until [$n -lt 1] do

f=`expr $f * $n`
n=`expr $n - 1`

done

echo "Factorial value : $f"

Output

[ccet@localhost loops]$ sh fact.sh
Enter a positive number : 10
Factorial value : 3628800

2.4.G—Sum of 1..N natural numbers

Algorithm

Step 1 :
Start

Step 2 :
Read n

Step 3 :
Initialize 0 to sum and 1 to i

Step 4 :
Add i to sum

Step 5 :
Increment i by 1

Step 6:
Repeat steps 4–6 until i>n

Step 7 :
Print sum

Step 8 :
Stop

Program (sum1ton.sh)

Sum of 1+2+3+ ... +N numbers

echo -n "Enter N value : "
read n

sum=0
i=1

until [$i -gt $n] do

sum=`expr $sum + $i`
i=`expr $i + 1`

done

echo "The sum of n numbers is $sum"

Output

[ccet@localhost loops]$ sh sum1ton.sh
Enter N value : 26

The sum of n numbers is 351

2.4.H—Data Statistics

Algorithm

Step 1 :
Start

Step 2 :
Initialize 0 to pc, sum, i

Step 3 :
Read a number

Step 4 :
If number = 9999 then goto step 10

Step 5 :
Increment i by 1

Step 6 :
If number 0 then goto step 3

Step 7 :
Increment pc by 1

Step 8 :
Add number to sum

Step 9 :
Goto step 3

Step 10 : Compute avg = sum / pc

Step 11 : Print i, pc, avg,

Step 12 : Stop

Program (datastat.sh)

Aggregate of positive nos using break and continue clear

pc=0
s=0
i=0

until false

do

echo -n "Enter a number (9999 to quit) : "

read n

if [$n -eq 9999] then

break
fi

i=`expr $i + 1`
if [$n -le 0] then

continue
fi

pc=`expr $pc + 1`
s=`expr $s + $n`

done

avg=`expr "scale=2; $s / $pc" | bc`
echo "Total No. of entries : $i"
echo "No. of positive datas : $pc" e
cho "Positive aggregate : $avg"

Output

[ccet@localhost loops]$ sh datastat.sh
Enter a number (9999 to quit) : 32
Enter a number (9999 to quit) : 78
Enter a number (9999 to quit) : 0

Enter a number (9999 to quit) : 11
Enter a number (9999 to quit) : 47
Enter a number (9999 to quit) : -9
Enter a number (9999 to quit) : 12
Enter a number (9999 to quit) : 7
Enter a number (9999 to quit) : 9999
Total No. of entries : 8

No. of positive datas : 6
Positive aggregate : 31.16

RESULT
Thus using loops, iterative scripts were executed

Ex No :3.1

POINTER PROGRAMMING
Date :

AIM
To learn the concept of pointers in C programs.

Data for a variable is stored at some memory location.
 Address and Data are two sides an variable. For instance x = 10 is represented as

	Variable
	Data
	Address
	

	
	
	
	

	x
	10
	3221216948
	

The address of a variable can be obtained using & operator known as reference operator. The variable's value can be obtained using the dereference operator *.

Pointer Variable
A Pointer variable or a pointer is a special variable that holds the address of another variable. Pointer variable are distinguished from other variables by having an asterik (*) prefixed in the declaration statement.

int x, *iptr;

A pointer variable is a derived data type based on either standard, derived or user-defined data type. A pointer variable can be made to point any variable of its base type by assigning the variable's address to the pointer. For instance, an integer pointer can point to an integer variable only. A pointer variable is allocated 2 bytes irrespective of the data type it points.

ptr = &x;
/* Assigning address X to pointer */

Value of the variable pointed to can be accessed by applying the dereference operator

printf("Value of the variable pointed to %d",*ptr);

A pointer of type void is referred to as generic pointer i.e. it can point to any data type. Since pointer variables hold address, integers could be added or subtracted to yield another address. A pointer that holds the address of another pointer variable is known as pointer-to-pointer.

3.1.A—Reference and Dereference operator
Program (refderef.c)
/* Data and address */
#include <stdio.h> main()

{

int x; x=10;

printf("Value of x is %d",x);
printf("\nAddress of x is %u",&x);
printf("\nValue of x is %d\n",*(&x));

}

Output
[ccet@localhost pointer]$ gcc refderef.c
[ccet@localhost pointer]$./a.out
Value of x is 10

Address of x is 3221216948 Value of x is 10

3.1.B—Pointer variables
Program (ptrvar.c)
/* Pointer variables */

	# include<stdio.h>
	
	

	main()
	
	
	

	{
	int x, y, *iptr;
	
	

	
	
	
	

	
	float *fptr;

x = 125;

iptr = &x ;

y = 23;
	
	
	

	/*
	fptr = &y; is erroneous */
	

printf("X value is %d and stored at %u\n", x, &x);

printf("Y value is %d and stored at %u\n", y, &y);

printf("\nInt pointer holds the address %u\n", iptr);

printf("Aceesing value thru pointer : %d\n", *iptr);

iptr = &y;
/* iptr points to y */

printf("\nInt pointer now holds the address %u\n", iptr);

printf("Accessing value thru pointer : %d\n", *iptr);

printf("\nSize of int pointer: %d bytes", sizeof(iptr));

printf("\nSize of float pointer: %d bytes", sizeof(fptr));

printf("\n\nAddress of main function is %u\n", main);

}

Output
[ccet@localhost pointer]$ gcc ptrvar.c

[ccet@localhost pointer]$./a.out
X value is 125 and stored at 3221216452

Y value is 23 and stored at 3221216448

Int pointer holds the address 3221216452

Aceesing value thro pointer : 125

Int pointer now holds the address 3221216448

Accessing value thro pointer : 23

Size of int pointer: 4 bytes

Size of float pointer: 4 bytes

Address of main function is 134513448

3.1.C—Pointer–to–Pointer
Program (ptrtoptr.c)
/* Pointer variables */

include<stdio.h> main()

{

int x=12, *p1, **p2;

float z=8.5;

void *ptr; /* Generic pointer */

ptr = &x ; /* ptr points to x (int) */

ptr = &z; /* ptr points to y (float) */

p1 = &x;

p2 = &p1; /* Pointer to pointer */

printf("X value is %d and stored at %u\n", x, &x);

printf("\nPointer holds the address %u\n", p1);

printf("Aceesing value thru pointer : %d\n", *p1);

printf("Pointer is stored at location : %u\n",&p1);

printf("\nPointer-to-pointer holds the address %u\n", p2);

printf("Accessing value thru ptr-to-ptr : %d\n", **p2);

printf("\nSize of ptr-to-ptr: %d bytes\n", sizeof(ptr));

}

Output

[ccet@localhost pointer]$ gcc ptrtoptr.c

[ccet@localhost pointer]$./a.out
X value is 12 and stored at 3221220804

Pointer holds the address 3221220804

Aceesing value thru pointer : 12

Pointer is stored at location : 3221220800

Pointer-to-pointer holds the address 3221220800

Accessing value thru ptr-to-ptr : 12

Size of ptr-to-ptr: 4 bytes

3.1.D—Addition using pointers
Program (ptradd.c)
/* Addition operations using pointers */

#include<stdio.h>

main()

{

int a,b,c;
int *pa,*pb; pa=&a; pb=&b;

printf("Enter values for A and B : ");

scanf("%d%d",&a,&b);

c = *pa + *pb;

printf("Sum = %d\n",c);

}

Output
[ccet@localhost pointer]$ gcc ptradd.c

[ccet@localhost pointer]$./a.out

Enter values for A and B : 4 6

Sum = 10

3.1.E—Basic Calculator
Program (ptrcalc.c)
/* Arithmetic operations using pointers */
#include<stdio.h>

main()

{

int a,b,c; int *pa,*pb;
char op;
pa=&a;
pb=&b;

printf("Basic Calculator");
printf("\n + Addition");
printf("\n - Subtraction");

printf("\n * Multiplication");

printf("\n / Quotient");

printf("\n % Remainder");

printf("\n x Quit");

printf("\nEnter operator : ");

scanf("%c",&op);

printf("Enter two integers : ");

scanf("%d%d",&a,&b);

switch (op)

{

case '+':

c = *pa + *pb;

break;

case '-':

c = *pa - *pb;

break;

case '*':

c = *pa * *pb;

break;

case '/':

c = *pa / *pb;

break;

case '%':

c = *pa % *pb;

break;

default:

exit(0);

}

printf(" %d %c %d = %d\n",a,op,b,c);

}

Output
[ccet@localhost pointer]$ gcc ptrcalc.c

[ccet@localhost pointer]$./a.out

Basic Calculator

+ Addition

- Subtraction

* Multiplication

· Quotient

· Remainder x Quit

Enter operator : +

Enter two integers : 12 23

12 + 23 = 35

RESULT
Thus C programs using pointers were executed.

Ex No :3.2

FUNCTIONS USING POINTERS
Date :

AIM

To study the advantages of using pointers in C programming.

Pointers & Function

Arguments passed to functions are pass by value i.e., a copy of value of the actual arguments are passed. Therefore changes made to formal arguments are not reflected to actual arguments. However, to have the actual arguments modified during process by another function, then addresses of the arguments are passed, instead of values through pointers. This is known as pass by reference. Thus pointers facilitate multiple values to be returned by a function. Another use of pointers in function is that an address could be returned, known as return by reference.

Pointers & Arrays

Pointers can be used for efficient traversal of a given array. An array name by itself is a pointer to the first element in the array. The address of first element of array X can be expressed as either &X[0] or X. The i+1th element is termed as &X[i] or X+i. The value of i is referred to as offset. Thus a pointer can be assigned an array variable and array elements can be accessed by altering the offset. Similarly for two-dimensional array, Xi+1,j+1 element could be accessed as * (* (X + i) + j).

Pointers & Strings

A string variable alternatively can be declared as a character pointer type since string is represented as an array of characters. The advantage is that length of the string need not be known in advance. Strings could be processed using character pointer.

Pointers & Structures

A pointer variable can be assigned a structure as any other type. The members of a structure are accessed using the indirect selection operator (->). Self-referential structure is a structure where one of its members is a pointer to the structure itself. Such structures are used to implement data structures such as list and trees.

3.2.A—Pass by value & reference
Program (passbyref.c)
/* Pass by value and reference */

#include <stdio.h>

main()

{

int a, b;

void swapval(int, int);

void swapref(int *, int *);

printf("Enter the values of A and B : ");

scanf("%d%d",&a,&b);

swapval(a,b); /* Call by value */

printf("\nValues after Pass by Value\n");

printf("Value of A is %d\n",a);

printf("Value of B is %d\n",b);

swapref(&a, &b); /* Call by reference */

printf("\nValues after Pass by Reference\n");

printf("Value of A is %d\n",a);

printf("Value of B is %d\n",b);

}

void swapref(int *x, int *y) /* Pass by reference */

{

int t;

t = *x;

*x = *y;

*y = t;

}

void swapval(int a, int b) /* Pass by value */

{

int t;

t = a;

a = b;

b = t;

}

Output
[ccet@localhost pointer]$ gcc passbyref.c

[ccet@localhost pointer]$./a.out
Enter the values of A and B : 12 23

Values after Pass by Value

Value of A is 12

Value of B is 23

Values after Pass by Reference

Value of A is 23

Value of B is 12

3.2.B—Return by reference
Program (retbyref.c)
/*Return by reference*/

#include <stdio.h>

int* big(int* x, int* y)

{

if (*x > *y)

 return x;

else

return y;

}

main()

{

int a, b;

int *p;

printf("Enter two values : ");

scanf("%d%d",&a,&b);

p = big(&a, &b);

printf("Biggest is %d\n",*p);

}

Output
[ccet@localhost pointer]$ gcc retbyref.c

[ccet@localhost pointer]$./a.out
Enter two values : 3 7

Biggest is 7

3.2.C—Sum of one-dimensional array

Program (array1d.c)

/* Pointers and one-dimensional arrays */

#include <stdio.h>

main()

{

int i, n, sum=0;

int x[25],*p;

printf("Enter number of elements : ”);

scanf("%d",&n);

printf("Enter Array elements : ”);

for(i=0; i<n; i++)

scanf("%d",&x[i]);

p=x;

for(i=0;i<n;i++)

{

 sum=x[i]+sum;

 printf(“\nx[%d]=%d stored at %u”,i,x[i],p++);

}

printf(“\n Sum=%d”,sum);

}

Output
[ccet@localhost pointer]$ gcc array1d.c [ccet@localhost pointer]$./a.out Enter number of elements : 5

Enter Array elements : 12 23 34 45 56

x[0] = 12 stored at 3221218368

x[1] = 23 stored at 3221218372

x[2] = 34 stored at 3221218376

x[3] = 45 stored at 3221218380

x[4] = 56 stored at 3221218384

Sum = 170

3.2.D—Displaying a two-dimensional array

Program (2darray.c)

/* Pointers and 2-dimensional array */

#include <stdio.h>

main()

{

int a[3][3]={{1,2,3}, {4,5,6}, {7,8,9}};

int i,j;

for(i=0; i<3; i++)

{

 for(j=0; j<3; j++)

 {

 printf("%4d", *(*(a+i)+j));

 }

printf("\n");

}

}

Output
[ccet@localhost pointer]$ gcc 2darray.c

[ccet@localhost pointer]$./a.out

1
2
3

4
5
6

7
8
9

3.2.E—String copy using pointers
Program (strcopy.c)
/* Copy from one string to another using pointers */

#include <stdio.h>

main()

{

void stringcopy(char*, char*);

char src[80];

char des[80];

printf("Enter a string :");

gets(src);

stringcopy(des, src);

printf("%s\n", des);

}

void stringcopy(char *d, char *s)

{

while(*s)

{

*d = *s;

s++;

d++;

}

*d = '\0';

}

Output
[ccet@localhost pointer]$ gcc strcopy.c

[ccet@localhost pointer]$./a.out

Enter a string :

Self-conquest is the greatest victory

Self-conquest is the greatest victory

3.2.F—Student Detail
Program (studdetail.c)
#include<stdio.h>

struct student

{

long rollno;

char name[10];

float mark;

};

main()

{

struct student *ptr;

struct student s1;

printf("\nEnter student’s rollno, name, mark : "); scanf("%ld%s%f",&s1.rollno,s1.name,&s1.mark);

ptr=&s1;

printf("\n\tSTUDENT DETAIL");

printf("\nRollno\tName\t\tMark\n");

 printf("%ld\t%s\t%.2f\n",ptr->rollno,ptr->name,ptr->mark);

}

Output
[ccet@localhost pointer]$ gcc studdetail.c
[ccet@localhost pointer]$./a.out
Enter studentÆs rollno, name, mark : 1032957 Adhithan 10

STUDENT DETAILS

Rollno

Name

Mark

1032957
Adhithan
10.00
3.2.G—Employee Payroll

Program (payroll.c)

/* Payroll Generation */

#include <stdio.h>

struct employee

{

 int empid;

 char ename[15];

 int basic;

 float hra;

 float da;

 float it;

 float gross;

 float netpay;

};

main()

{

struct employee emp[50], *ptr;

int i, j, n;

printf("Enter No. of Employees : ”);

scanf("%d", &n);

for(i=0; i<n ;i++)

{

printf("\nEnter Employee Details\n");

printf("Enter Employee Id:");

scanf("%d", &emp[i].empid);

printf("Enter Employee Name:”);

scanf("%s", emp[i].ename);

printf("Enter Basic Salary : ");

scanf("%d", &emp[i].basic);

}

ptr=emp;

for(i=0; i<n; i++)

{

ptr->hra = 0.02 * ptr->basic;

ptr->da = 0.01 * ptr->basic;

ptr->it = 0.05 * ptr->basic;

ptr->gross = ptr->basic+ptr->hra+ptr->da;

ptr->netpay = ptr->gross - ptr->it;

ptr++;

}

ptr=emp;

printf("\n\n\n\t\t\t\tXYZ & Co. Payroll\n\n");

for(i=0;i<80;i++)

printf("*");

printf("\nEmpId\tName\t\tBasic\t HRA\t DA\t IT\tGross\t\tNet Pay\n\n");

for(i=0;i<80;i++)

printf("*");

for(i=0; i<n; i++)

{

printf("\n%d\t%-15s\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f", ptr->empid,ptr->ename,ptr->basic,

 ptr->hra,ptr->da,ptr->it,ptr->gross,ptr->netpay);

ptr++;

}

printf("\n");

for(i=0;i<80;i++)

printf("*");

}
Output

[ccet@localhost pointer]$ gcc studdetail.c

[ccet@localhost pointer]$./a.out
Enter No. of Employees : 2

Enter Employee Details

Enter Employee Id
:
436

Enter Employee Name :
Gopal

Enter Basic Salary
:
10000

Enter Employee Details

Enter Employee Id
:
463

Enter Employee Name :
Rajesh

Enter Basic Salary
:
22000

XYZ & Co. Payroll

**

EmpId Name
Basic

HRA

DA

IT

Gross

Net Pay

**

436
Gopal

10000

200.00

100.00

500.00

10300.00

9800.00

463
Rajesh

22000

440.00

220.00

1100.00
22660.00

21560.00

**

RESULT
Thus C programs using pointers were executed and its efficacy realized.

Ex No :3.3

DYNAMIC MEMORY ALLOCATION

Date :

AIM

To achieve efficient memory utilization using dynamic memory allocation.

Memory allocated using arrays is insufficient or abundant, thereby inefficient. To overcome this, memory could be allocated at run-time instead at compile time. The process of allocating memory at run time is known as dynamic memory allocation. C inherently does not have this facility but supports with memory management functions malloc, calloc and realloc, which can be used to allocate and free memory using free during the program execution.

The memory space located between program and local variable is available known as heap for dynamic allocation during the execution of the program. The size of heap keeps changing when program is executed due to creation and death of variables. Therefore it is possible to encounter memory overflow during dynamic allocation process. In such situations, the memory allocation functions will return a null pointer.

malloc

The malloc function reserves a block of memory of specified size and returns a pointer of type void containing the first byte of the allocated region. Thus it could be casted to any type of pointer. The allocated space contains garbage data.

ptr = (cast-type*) malloc(bytesize);

calloc

The calloc is another memory allocation function that is normally used to request multiple blocks of storage each of the same size and then sets all bytes to zero.

ptr =(cast-type*) calloc(blockcount, blocksize);

free

Compile time storage of a variable is allocated and released by the system in accordance with its storage class. With the dynamic runtime allocation, it is our responsibility to release the space when it is not required, using the free function. The release of storage space becomes important when the storage is limited.

free(ptr);

realloc

The memory allocated by using calloc or malloc might be insufficient or excess sometimes. In both the situations the memory size already allocated could be changed with the help of function realloc. This process is called reallocation of memory.

ptr = realloc(ptr, newsize);

3.3.A—Mark aggregate

Program (dynalloc.c)

/* Dynamic Memory Allocation using malloc() */

#include <stdlib.h>

#include <malloc.h>

#include <stdio.h>

main()

{

int n, i, *a;

float avg, sum=0;

printf("Enter the No. of students : ");

scanf("%d", &n);

a = (int*) malloc(n * sizeof(int));

if (a == NULL)

{

 printf("\n memory allocations not possible");

 exit(-1);

}

printf("Enter %d marks : ", n);

for(i=0; i<n; i++)

{

 scanf("%d",&a[i]);

}

for(i=0; i<n; i++)

sum += a[i];

avg = sum / n;

printf("Average mark : %.2f\n",avg);

free(a);

}
Output
[ccet@localhost pointer]$ gcc dynalloc.c

[ccet@localhost pointer]$./a.out
Enter the No. of students : 6

Enter 6 marks : 56 67 78 89 90 98

Average mark : 79.67

3.3.B—String Reallocation
Program (strrealloc.c)
/* Dynamic Reallocation for strings */

#include <stdio.h>

#include<stdlib.h>

#include <string.h>

main()

{

char buf[80], *message;

puts("Enter text and press return");

gets(buf); /* Get a string from the user */
/* Allocate the initial block and copy the string to it. */

 message = (char*)malloc(strlen(buf)+1);

strcpy(message, buf);

printf("Content stored is : ");

puts(message); /* Display the message. */

printf("Initial allocation : %d bytes\n", strlen(message));

puts("Enter text and press return");

gets(buf); /* Get another string from the user. */
/* Increase allocation, then concatenate e string to it */

message = (char *) realloc(message,(strlen(message) + 1);

strcpy(message, buf);

printf("Modified content is : ");

puts(message); /* Display the new message. */

printf("Reallocated memory : %d bytes\n", strlen(message));

free(message);

}

Output

[ccet@localhost pointer]$ gcc strrealloc.c

/tmp/ccgTfE9Z.o(.text+0x29): In function `main':

: the `gets' function is dangerous and should not be used.

[ccet@localhost pointer]$./a.out
Enter text and press return
Hi!

Content stored is : Hi!

Initial allocation : 4 bytes

Enter text and press return

How r u?

Modified content is : How r u?

Reallocated memory : 8 bytes
3.3.C—Allocation for two dimensional array
Program (2dcalloc.c)
/* Dynamic allocation for 2D array */ #include <stdio.h>

#include <malloc.h>

main()

{

int i, j, row, col, **ptr;

printf("Enter row and column dimension : ");

scanf("%d%d",&row,&col);

/* 2d array is an array of pointers */

ptr = (int *) calloc(row, sizeof(int));

for(i=0; i<row; i++)

ptr[i] = (int *) calloc(col, sizeof(int));

/* Display default value 0 assigned due to calloc */

for (i=0; i<row; i++)

{

for (j=0; j<col; j++)

printf("%4d",ptr[i][j]);

printf("\n");

}

free(ptr);

}
Output
[ccet@localhost pointer]$ gcc 2dcalloc.c

2dcalloc.c: In function `main':

2dcalloc.c:12: warning: assignment from incompatible pointer type

[ccet@localhost pointer]$./a.out

Enter row and column dimension : 3 4

0
0
0
0

0
0
0
0

0
0
0
0
RESULT
Thus memory requirements were allocated dynamically and released later.

Ex No :3.4

FILE HANDLING
Date :

AIM

To perform disk I/O using file handling

Many application require information stored on auxillary storage device. Such information is stored permanently as a data file that allows to access and alter the information whenever necessary.

Opening a File

Prior to performing any activity of a file, the file should be opened. By opening a file, link between the program and the operating system is established. This link exists by means of a structure named FILE, in header file stdio.h. Therefore, it is mandatory for programs pertaining to file should include <stdio.h>.

When a request is made for a file to be opened, the operating system returns a pointer to the structure FILE. The pointer is declared as

FILE *fileptr;

A file is opened using the standard function fopen(). The file to be opened is searched in the disk. If a file could not be opened, a NULL is returned.

fileptr = fopen("filename", "mode");

The file mode specifies the purpose of opening a file. Some of them are

	Mode
	Description

	r
	Open an existing file for reading only

	w
	Open a new file for writing only. If the file exists, its contents are destroyed

	a
	Open an existing file for appending. If the file doesn't exist, a new file is created

The I/O operation is done using any of the following functions.

getc & putc

The getc function is used to read a character from the file opened in read mode and assigns it to a character variable. The getc will return an EOF marker when the end-of-file is reached. Thereafter reading is not possible. The putc function writes the character contained in the variable onto a file opened in write mode. The file pointer moves by one character position for every character I/O operation.

charvar = getc(fileptr); putc(charvar, fileptr);

getw & putw

The getw and putw are integer oriented functions and are identical in nature to getc and putc.

fgets & fputs

Rather than single characters, to deal with strings fgets and fputs are used in a similar manner.

fscanf & fprintf

These functions handle mixed data. Care should be taken that the same format specifications is used for both read and write operation.

fwrite & fread

Applications might perform I/O as blocks of data, where each block is a fixed number of contiguous bytes. A block is generally represented as a structure. The library functions fread and fwrite are intended to be used in situations of this type and requires arguments namely address, size and number of the data block. fread reads a block of data and assigns to a structure variable. fwrite writes contents of a structure variable onto the file.

fread(&structvar, sizeof(structvar), 1, fileptr);

fwrite(&structvar, sizeof(structvar), 1, fileptr);

Random Access

In random access any specified part of the file is pointed without the mundane reading through the file upto that point. This is achieved with the help of functions fseek, ftell and rewind available in the I/O library.

	Function
	Description

	ftell
	Returns the number of bytes read or written

	rewind
	Resets the file pointer to start of the file

	fseek
	Moves the file pointer to the desired byte

	
	fseek(fileptr, offset, position);

	
	position can take values 0, 1 or 2 indicating begining, current position, and end of the file respectively

	
	

fclose

A file should be closed when all operation on it have been completed. This ensures all information associated with the file is flushed out of the buffers and all links to the file broken. A file must be closed if the same should be opened in a different mode.

fclose(fileptr);
3.4.A—Write to a file character-by-character
Program (chario.c)
/* File I/O using getc and putc functions */

#include <stdio.h>

#include <stdlib.h>

main()

{

FILE *fp;

char c;

fp=fopen("CharFile.txt", "w");

if (fp == NULL)

{

printf("File not Accessible");

exit(-1);

}

/* File Write */

printf("Input Text--Ctrl + D to Terminate\n");

/* Get data (char by char) from user and write onto file*/

while((c=getchar()) != EOF)

putc(c, fp);

fclose(fp);

}

Output

[ccet@localhost files]$ gcc chario.c

[ccet@localhost files]$./a.out

Input Text--Ctrl + D to Terminate

Welcome to File handling

A file should be opened before an I/O. I/O should not conflict with the mode After I/O files should be closed

[ccet@localhost files]$ cat CharFile.txt

Welcome to File handling

A file should be opened before an I/O. I/O should not conflict with the mode After I/O files should be closed

3.4.B—File Statistics

Program (filestat.c)

/* Statistics of file-word, lines, character */

#include <stdio.h>

main()

{

FILE *fp;

char c;

static int lc, wc, cc;

/* File Read and process */

fp=fopen("CharFile.txt", "r");

while((c=getc(fp)) != EOF)

/* Process char-by-char */

{

switch(c)
/* Count lines, words and character */

{

 case '\n' :

++lc;

++wc;

break;

 case ' ' :

++wc;

break;

 default :

++cc;

}

}

printf("No. of lines : %d", lc);

printf("\nNo. of words : %d", wc);

printf("\nNo. of characters (spaces excl.) : %d\n", cc);

fclose(fp);

}

Output

[ccet@localhost files]$ gcc filestat.c

[ccet@localhost files]$./a.out
No. of lines : 4

No. of words : 25

No. of characters (spaces excl.) : 109
3.4.C—Employee Record

Program (emprec.c)

/* Binary I/O using fwrite and random fread */

#include <stdio.h>

#include <string.h>

struct employee

{

 int code;

 char name[20];

 char desig[20];

 float basic;

};

main()

{

struct employee casual, temp;

FILE *fp;

int id, eno,n,pos, lb;

id = 1000;

fp = fopen("Employee.txt", "w");

printf("\tEnter employee details\n");

while (1)

{

casual.code=id++;

printf("Employee Id : %d", casual.code);

printf("\nEnter Name (xxx to quit) : ");

scanf("%s", casual.name);

if (strcmp(casual.name,"xxx") == 0)

 break;

printf("Enter Designation : ");

scanf("%s", casual.desig);

printf("Enter Basic Salary: ");

scanf("%f", &casual.basic);

fwrite (&casual, sizeof(casual), 1, fp);

}

n = ftell(fp);

printf("\nFile size : %d bytes\n",n);

fclose(fp);

/* Record seek */

fp = fopen("Employee.txt", "r");

printf("\nEnter Employee id : ");

scanf("%d",&eno);

pos = (eno-1000)*sizeof(casual);
if (pos < n)

{

fseek(fp,pos,0);

fread (&temp, sizeof(temp), 1, fp);

printf("Employee Name:%s\n", temp.name);

printf("Employee Designation:%s\n", temp.desig);

printf("Employee Basic:%.2f\n", temp.basic);

}

else

 printf("\nIncorrect Employee Id");

fclose(fp);

}

Output

Enter employee details

Employee Id : 1000

Enter Name (xxx to quit) : Prabakhar

Enter Designation : Analyst

Enter Basic Salary: 34000

Employee Id : 1001

Enter Name (xxx to quit) : Raghu

Enter Designation : Administrator

Enter Basic Salary: 28000

Employee Id : 1002

Enter Name (xxx to quit) : Gokul

Enter Designation : Programmer

Enter Basic Salary: 25000

Employee Id : 1003

Enter Name (xxx to quit) : Ramesh

Enter Designation : Faculty

Enter Basic Salary: 23000

Employee Id : 1004

Enter Name (xxx to quit) : Suresh

Enter Designation : Attender

Enter Basic Salary: 5000

Employee Id : 1005

Enter Name (xxx to quit) : xxx

File size : 240 bytes

Enter Employee id : 1003

Employee Name
: Ramesh

Employee Designation:
Faculty

Employee Basic
:
23000.00

RESULT
Thus sequential and random disk I/O is executed using file handling functions.

COMPUTER PRACTICE LABORATORY-II

