Database

Highly Available Oracle, the Unknown Details
April C Sims, Southern Utah University
Abstract:
There are several components integrated into Oracle Database that make it highly available. These details are not widely known simply because Oracle doesn’t heavily promote or market those features. For example, all of the Flashback Technologies have all been grouped together under a common marketing mantra but actually operate utilizing different mechanisms as part of Oracle Database Server. This paper also provides an introduction to Transaction Consistency by tracking the SCN utilizing standard dump files. Reproducible examples will be provided for several of the features.
Highly Available Features, Specific to Editions/Versions

 Automatic Temp File Recreation on Startup

Since 10g if any of the temp files are missing they are automatically recreated on startup. Easy to recreate by cycling the database, especially if you can’t find the original creation information:

1. If temp files are accidentally deleted, renamed, become corrupted or otherwise not available.

2. No longer need to document the tempfile information, this is stored in the controlfile.

3. When cloning or copying a database to another server, tempfiles are not needed. This procedure is different than using the Recovery Manager (RMAN) duplicate/backup/recover commands. RMAN doesn’t backup temp files. Recovery Manager and Tempfiles [ID 305993.1] – this doc mentions that RMAN backs up tempfiles but that is incorrect since later versions of Oracle, temporary tablespaces are locally managed tempfiles not datafiles. When taking a backup of a database only the datafiles are included.
Recovery Manager (RMAN)
Upgrading/Down Grading a Database During an RMAN Restore/Recovery Session
RMAN can directly downgrade or upgrade a database. This is particularly useful during migration projects when you need to create a clone/copy of a database that is a different Oracle version.
Reasons to use this method:

· Migrating between one-off operating system levels.

· Changing database word sizes (32-vit to 64-bit and vice versa).
· No need to install multiple ORACLE_HOMES of the different versions, just the one you are migrating to. This is assumed you are working with a different server than the original.
· Can be used for one-off patches, patchsets or single version differences. For example: 10.2.x to 11.2.x, 10.2.0.1 to 10.2.0.4, 11.2.0.1.0 to 11.2.0.4.4. Just be aware of any post-patch steps that might have to be executed against a database. You will find these as part of the readme’s for each version involved. These post upgade tasks typically include catalog.sql, catproc.sql, catpatch.sql and utlrp.sql. Follow the steps used for a manual upgrade/downgrade – search in MOS for the Documents that start with the keywords Complete Checklist for Manual Upgrades.
· Great for a trial restore of a critical database – test your RMAN restores and recoverability.

· Useful for a situation where you need to downgrade to different than original version you upgraded from.

· Use it for cloning a database using a user-managed backup (commonly called cold or hot backups) – in this case you would need to use the RMAN catalog command for the datafile copies.
Transportable Tablespaces (TTS) is a different method than what is outlined in this section. TTS would be more appropriate for cross-platform migrations, fast database upgrades on existing hardware (with no change in the original datafile location).
This allows you to skip the step where you would first need to clone (like the RMAN duplicate command) to the same binary version as the original and then finish the database upgrade/downgrade.
See Oracle Database Backup and Recovery User's Guide 11g (Chapter 19, Performing RMAN Recovery: Advanced Scenarios)
Look for the section labeled, Restoring a Database on a New Host for more details that aren’t included in the following steps.
This type of restore/recovery in order to upgrade/downgrade scenario cannot be used in conjunction with the RMAN duplicate database command. Also be careful to use the NOCATALOG mode of RMAN recovery when you are attempting this on the same host as the original database, see MOS Note: 245262.1
Steps:
1. Install higher-versioned Oracle software. Create oratab entry – ORACLE_SID same as original. Use NID to change later if desired. Create necessary directories, can change datafile locations using set newname as part of the RMAN command.

2. Run Pre-Upgrade Tool.

3. Make backups available on the server you are restoring to.

4. Set environmental variables, run oraenv, start RMAN.

RMAN> CONNECT TARGET /

RMAN>SET DBID XXXXXXXXXX; --
RMAN>STARTUP NOMOUNT
5. Recover spfile or create a new pfile. If upgrading from 10.x the spfile won’t be included if the controlfile is configured for autobackup.
6. Restore the controlfile, then mount the database.
run {

SET CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '/backuplocation/%F';

restore controlfile from autobackup;

alter database mount;

}
7. Restore datafiles, recover the database. The following example restores to a certain point in time.

RUN

{

set until time = "to_date('02/05/11:16:00:00','MM/DD/YY:HH24:MI:SS')";

restore the database and switch the datafile names, this example will restore the # datafiles to their original location.
RESTORE DATABASE;

SWITCH DATAFILE ALL;

RECOVER DATABASE;

}

8. Open the database using the special command. This step can also be accomplished at the RMAN command-line.
 SYS@ORCL> or rman> alter database open resetlogs upgrade;
9. Finish the upgrade by following the standard manual upgrade method….there may be more post steps than what is listed. The shortened example outlined just highlights the differences between using RMAN and a traditional manual upgrade.
SYS@ORCL> @$ORACLE_HOME/rdbms/admin/catupgrd.sql --or—

@$ORACLE_HOME/rdbms/admin/catdwgrd.sql
Restoring Never Backed up Datafile

Recovery in this situation can come from the combination of online redo and available archived logs.
Note: This is assumed to be done in a test environment as it may leave your database in an unusable state.

Remove any online backups, you can temporarily move the backup directories to a location unknown to RMAN. There is an existing database account with logon, create table privileges to do the test with. This database is in archivelog mode.
SYS@ORCL>show parameter create_file

SYS@ORCL>db_create_file_dest
string
/u01/oradata

SYS@ORCL> create tablespace tbs_from_online;

SYS@ORCL> alter user testcaseuser quota unlimited on tbs_from_online;

SYS@ORCL> alter user testcaseuser default tablespace tbs_from_online;

TESTCASEUSER@ORCL> create table table_from_online as select * from user_tables;

SYS@ORCL> alter system switch logfile;
New tablespace was taken offline and status was verified. The database has to be in archivelog mode to be able to accomplish this task successfully.
SYS@ORCL> alter tablespace tbs_from_online offline immediate;

SYS@ORCL> select tablespace_name,status from dba_tablespaces;
SYS@ORCL> select name, status from v$data_file;

/u01/oradata/ORCL/data_file/01_tbs_1_5nz5261s_.dbf
RECOVER
I remove the datafile from the operating system location. Remember there is no backup of this new tablespace at this point in time. Started an RMAN restore session.

rman> restore tablespace tbs_from_online;

At this point at the OS level the datafile still doesn’t exist. It is during the recover command where Oracle searches for redo and/or archive logs. During this particular restore session no archive logs were applied (by viewing the output from the RMAN session and alert_$ORACLE_SID.log) so it actually restored the missing data file from online redo.

rman> recover tablespace tbs_from_online;

SYS@ORCL> alter tablespace tbs_from_online online;

SYS@ORCL>select tablespace_name, status from dba_tablespaces;

Oracle’s Recommended Incrementally Merged Backup/Restore Strategy

Oracle’s recommended strategy of an Incrementally Updated Backup to Flash Recovery Area (FRA) would allow you to switch the database to the actual copy stored in the FRA. This removes the need (hint: save time) to restore or recover any datafiles as you are actually switching to the backup set plus the step of media recovery – applying archivelogs.

The difference between a normal incremental and the merge method is the recover command that comes before the backup and the for recover of keywords in the backup command, this command example also checks for logical corruption while compressing:

RMAN> run{

backup as compressed backupset

check logical incremental level 1

for recover of copy with

tag MY_DAILY_COPY database

filesperset 1;

recover copy of database with

tag MY_DAILY_COPY;

}
RMAN>
backup check logical validate

datafilecopy all

filesperset 1;

Checks for inconsistent data, index, or other type of blocks.

Reports the total and empty blocks examined

Reports the SCN of each datafile copy.

Fastest Way to Restore Entire Database using Incremental Merge Backup Strategy
 Create a pfile with control_file =’/FRA_location_copy of controlfile’
Mount DB

Switch Database to Copy

Recover

Open

Datawarehouse RMAN Backup over Several Days Method

Only run the backup command for the next 8 hours, run command again takes up where it left off.

RMAN> BACKUP DATABASE NOT BACKED UP SINCE ‘SYSDATE-3’ DURATION 08:00 PARTIAL MINIMIZE TIME;
Recommendation using RMAN, FRA & Data Guard for SLA’s and Disaster Recovery

One-time image copy backup to Fast Recovery Area (FRA)

Daily differential incremental backup to FRA

Image copy rolled forward daily until “sysdate – 4”

FRA sized for one image copy backup + 4 incrementals + 4 days of archived logs

Daily backup of FRA to tape and/or Cloud (retained for 1 month)

Daily vaulting of tape backups to offsite location (retained for 1 year)

Real-time, synchronized physical standby database in Maximum Performance mode for disaster recovery

Utilize RMAN Recovery Advisor + Data Guard for real-time detection, analysis, recovery of failures
ASM great as FRA destination due to Raw device performance, management capabilities, large pools, multiple FRA
Unused Block Compression Of Datafile Backups to Backup Sets

A 10gR2+ feature found in the Enterprise Edition of Oracle Database.
When backing up datafiles into backup sets, RMAN does not back up the contents of data blocks that have never been allocated. (In previous releases, this behavior was referred to as NULL compression.)

RMAN also skips other datafile blocks that do not currently contain data, if all of the following conditions apply:

· COMPATIBLE initialization parameter is set to 10.2

· No guaranteed restore points defined for the database

· Datafile is locally managed

· Datafile being backed is part of a full backup or a level 0 incremental backup

· Backup set is to disk.

· Backup Undo Optimization – only active undo data backed up (11g R1+)

Skipping unused data blocks where possible enables RMAN to back up datafiles using less space, and can make I/O more efficient.

Which Blocks Will RMAN Check For Corruption Or Include In A Backupset? [ID 561010.1]

Step-Ordered Approach - Backwards Compatibility

As a DBA, it is important to realize that the binary upgrade and the database upgrade are two different events, most often executed at different times. A binary upgrade is the ORACLE_HOME software that is installed, upgraded, and maintained using Oracle-provided tools. A database upgrade is basically updating the data dictionary from one version to another. The following method is different than Oracle’s recommendation of accomplishing all of the steps during a single outage window.
Breaking up a large task into smaller chunks gives you multiple safe fall back positions for each shorter outage window. If something in one of the smaller steps doesn't work, back it out, reengineer, and redeploy.
In a general sense, Oracle is backwards compatible for making that transition from an earlier version to a later one. The following components can be upgraded to 11g Release 2 while still being compatible with earlier versions of Oracle Database:

· Oracle Net Services: LISTENER.ORA, SQLNET.ORA

· Clients (SQL*Net, JDBC, ODBC)

· RMAN Binary, Catalog, and Database

· Grid Control Repository Database

· Grid Control Management Agents

· ASM (Automatic Storage Management) and CRS (Clusterware)
· PL/SQL Toolkit

· Transportable Tablespaces (TTS)
Recommended Order of Migration (customizable):

1. Listener

2. RMAN version as part of a Catalog Repository

3. RMAN Catalog Repository Database

4. Grid Control Database

5. Grid Control Agents

6. Clients—SQL*Plus, Instant client, ODBC, JDBC, among others

7. ASM and/or CRS

8. Database

9. Optimizer
The utilities that will have specific compatibility issues between Oracle versions include both export/import and data pump. See the following support documents for the latest up-to-date information:

Compatibility Matrix for Export And Import Between Different Oracle Versions [Doc ID: 132904.1]

Export/import data pump parameter version—Compatibility of Data Pump Between Different Oracle Versions [Doc ID: 553337.1]
Compatibility and New Features when Transporting Tablespaces with Export and Import [ID 291024.1]
Transportable Tablespaces

It is always possible to transport a tablespace from a database running an older release of Oracle (starting with Oracle8i) to a database running a newer release of Oracle (for example, Oracle9i or Oracle10g).
Important Notes, Technical Limitations:

· Compatible Initialization Parameters

· Compatible, Convertible NLS and Characterset Settings

· Block Size (Versions less than 10g will require same block size)
Client compatibility (SQL*Net, JDBC, ODBC)

In a general sense, client compatibility is supported on a minimum release (usually what is known as the terminal or last release for older products). In other words, a higher-level client can work with a lower-level database. The clients in this list that have an asterisk (*) will have few issues when used in this mixed environment.
· ODBC *

· SQL*Plus, Instant Client, SQL Developer *

· JDBC, JDK—Application specific

· Precompilers—Application specific

· Export/import or data pump—MOS article, very strict guidelines

· Database links*

· 32/bit to 64/bit **—SQL*Plus, C, Cobol, database link

· PL/SQL features compatibility—New release features will be associated with the lowest version client
· Features availability—New release features will be associated with the lowest version client

· BEQUEATH connections are not supported between different releases—Unix-specific Oracle protocol that connect without a listener.
Client / Server / Interoperability Support Between Different Oracle Versions [ID 207303.1] http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_02
 JDBC, JDK and Oracle Database Certification [Note 401934. 1]
Check out my blog post for a specific example using this method: Migrating to 11gR2 – A Case Study on the Step-Ordered Approach
http://aprilcsims.wordpress.com/migrating-to-11gr2/
Oracle Transaction Tracing with Dump Block
A block is the smallest unit of logical storage that the Relational Database Management System (RDBMS) can manipulate. Block size is determined by the database parameter DB_BLOCK_SIZE. The logical storage of data blocks, extents, segments, and table spaces (from smallest to largest) map to the data files, which are stored in operating system blocks.

An undo block will store the undo transaction that is the actual SQL command needed to reverse the original SQL transaction statement. This undo is needed for read consistency for all read-only queries until you commit or rollback that transaction. Read consistency within a changed block (transaction) is maintained for any of the following commands: insert, update, delete, merge, select for update, or lock table. Any of the previous changes are tracked until the command is issued to either commit or rollback a particular transaction. This consistency keeps the data view to each user the same, whether they are just doing queries or actually changing any other data.

A point in time or what is called the System Change Number (SCN) identifies each transaction, and transaction flags show the state of the transaction. The only end user that can see any changed data will be the one making the changes, no matter the application used until they commit that change.
SQL>SELECT CURRENT_SCN FROM V$DATABASE;

The SCN advances for every change to the database as a sequential counter, which identifies a certain point in time. The SCN tracks more than just single transactions by end users. These transactions will be in Data Definition Language (DDL) or Data Manipulation Language (DML). DDL statements are associated with creating objects (create table) or what is also called metadata. DML are the other commands mentioned earlier (insert, update, delete, among others) that manipulate the data in some way. The RDBMS advances the SCN if another person logs in, reconnects, or alters their session as well as when Oracle background processes(which constantly check the state of activity inside of the database) take place.

It is undo that gives everyone a point-in-time consistent view of the data, which is called Read Consistency. There are controls created from business rules within the application called triggers and integrity constraints that validate the data entered by the user. Database locks control access to data during changes for exclusive access by the end user changing it.
Dirty is an internal designation where the block is identified as having changed data that has not been written to disk. The RDBMS needs to track this information for transactional integrity and consistency. The underlying dynamic performance view v$bh indicates when a particular block is dirty, as seen by the following query:

SYS@ORCL11>select file#, block# from v$bh where dirty='Y';

When a transaction is committed by the end user:

· The transaction SCN is updated in the data block and the undo segment header marks that statement as committed in the header section of the undo block.

· The logwriter process (LGWR) will flush the log buffer to the appropriate online redo log file.

· SCN is changed on the data block if it is still in the buffer cache (fast commit).

Delayed block cleanout can happen when all of the changed blocks don't have the updated SCN indicating the commit has occurred.

Delayed block cleanout was implemented to save time by reducing the number of disk reads to update the SCN until the RDBMS needs to access data from that same block again. If the changed block has already been written to the physical disk and the Oracle background process encounters this same block (for any other query, DML, or DDL), it will also record the committed change at the same time. It does this by checking the transaction entry by SCN in the undo header, which indicates the changes that have been committed. That transaction entry is located in the transaction table, which keeps track of all active transactions for that undo segment.

Each transaction is uniquely identified by the assignment of a transaction ID (XID), which is found in the v$transaction view. This XID is written in the undo header block along with the Undo Byte Address (Uba), which consists of the file and

block numbers UBAFIL data file and UBABLK data block, and columns found in the v$transaction view, respectively.

Useful tip to add a particular string to a tracefile for quick identification.

SYS@NEWDB>ALTER SESSION SET TRACEFILE_IDENTIFIER = SYSDUMP_SESSION;

Each time you use the dump block command, it will create a trace file in order to track a transaction across the database structures. This trace contains the following information that we are interested in:

· Contents of the block for a certain file number and block number

· List of the actual rows

· SCN of a particular block

· Transaction ID for a data block and the corresponding undo block

· Any locks being held for that transaction

· Flags indicating the state of the transaction

· Read Consistency, Fast Commit, and Delayed Block Cleanout behavior

The following SQL identifies current transactions (uncommitted so they only exist in UNDO):

SQL > SELECT UBAFIL AS UNDOFILENUMBER,UBABLK AS UNDOBLOCKNUMBER,STATUS,NOUNDO,XID AS TRANSACTIONID,START_SCN FROM V$TRANSACTION;
This example SQL identifies the correct File Number and Block Number by ROWID for a table:

SQL>select DBMS_ROWID.ROWID_OBJECT(rowid) "OBJECT",

DBMS_ROWID.ROWID_RELATIVE_FNO(rowid) "FILE",

DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid) "BLOCK",

DBMS_ROWID.ROWID_ROW_NUMBER(rowid) "ROW"

from schema.tablename;

The dump block command can be used in several different ways to extract information. See the following for a few examples:

sys@NEWDB> alter system dump datafile '/u01/oradata/NEWDB/track01_NEWDB.dbf' block 135; -- one block at a time

sys@NEWDB> alter system dump datafile 8 block 135; -- one block at a time

sys@NEWDB> alter system dump datafile 8 block min 135 block max 142; --this dumps multiple blocks
sys@NEWDB>SELECT col1, dump(col1, 16) col_dump FROM my_table; --table dump
sys@NEWDB> ALTER SYSTEM DUMP FLASHBACK THREAD <thread_number> --single instance 1
sys@NEWDB> ALTER SYSTEM DUMP FLASHBACK LOGFILE <log_file_number>--starts with 1
sys@NEWDB>ALTER SYSTEM DUMP LOGFILE 'pathname';
Legend for Trace Files
The following legend is not complete, for more research google the keywords Oracle Internals.

· Xid—Transaction ID

· Uba—Undo Byte Address

· Flag—Transaction flag

· C--- Committed,

· ---- Uncommitted

· --U- Fast commit, delayed block cleanout has not happened

· Lck—Number of Rows locked

· Scn—System Change Number

Flashback Technologies, What mechanism is responsible?
· See all rows at a given time

· See all changes to a row

· See all changes made by a transaction
Oracle markets everything with a step backwards in time as flashback but in actuality the following list identifies the corresponding technology:

Flashback Drop - Recycle Bin (free space in tablespace)
Flashback Database - Flashback Logs and RMAN

Flashback Transaction Query - Flashback Logs and Available Undo
Flashback Queries (Version and Transaction) – Available Undo Segments

Flashback Table - Rowid Changes and Available Undo Segments
Flashback Transaction Backout - Log Miner, Redo and Flashback Logs
Important information when using Flashback logs - Flashback is automatically turned off due to OS-errors [ID 1270306.1]
Impact on system can vary from ~2% to ~30% (insert-intensive LOBS) with enabled Flashback (if configured/sized correctly). Check for wait event-"FLASHBACK BUF FREE BY RVWR"
Flashback Database Best Practices & Performance [ID 565535.1]
Oracle’s Recommendations:

UNDO tablespace is sized for 3 hour retention
Flashback Database target retention time is set to 2 hours

Provision Flashback log space in Flash Recovery Area, base this on an average 2 hour workload

Statistics History Automatically Available
Restoring statistics history

There is a way to restore the statistics when performance degrades from the historical record of the statistics saved by default since Oracle Database Version 10g.

SYS@ORCL>select DBMS_STATS.GET_STATS_HISTORY_RETENTION from dual; --default of 31 days for 11g

SYS@ORCL>select DBMS_STATS.GET_STATS_HISTORY_AVAILABILITY from dual; --the oldest statistics that can be restored

SYS@ORCL> select TABLE_NAME, STATS_UPDATE_TIME from dba_tab_stats_history; --indicates when statistics were gathered for each table.

There are several different ways to restore a particular set of statistics:

execute DBMS_STATS.RESTORE_TABLE_STATS (‘owner','table',date);

execute DBMS_STATS.RESTORE_DATABASE_STATS(date);

execute DBMS_STATS.RESTORE_DICTIONARY_STATS(date);

execute DBMS_STATS.RESTORE_FIXED_OBJECTS_STATS(date);

execute DBMS_STATS.RESTORE_SCHEMA_STATS(‘owner',date);

execute DBMS_STATS.RESTORE_SYSTEM_STATS(date);

Here is an example showing how to restore the entire database statistics to a

certain timestamp:

execute dbms_stats.restore_database_stats(as_of_timestamp => to_timestamp_tz(‘2010-03-19 11:05:00 -6:00', ‘YYYY-MM-DD HH24:MI:SS TZH:TZM'));
Oracle Connection Manager (OCM) , GC Harvester Functionality and RDA utility
If you don’t want to use OCM due to security concerns there are several options that allow you to utilize the tool functionality without uploading anything sensitive.

Using OCM, Disconnected mode and Masking

There is sensitive information being collected from the OCM tool. If you are employed by an organization that doesn't allow you to reveal such information or allow direct access by the servers to the Internet, there are steps to improve the security of this upload process. This section is highly recommended to be reviewed before enabling OCM. You must know what types of information are there and how that information is used before enabling uploading capabilities to a support website.

To disable the collection of IP and MAC addresses, you add the following entries to the $ORACLE_HOME/ccr/config/collector.properties file.

To disable the collection of network addresses, add the following entry:

ccr.metric.host.ecm_hw_nic.inet_address=false

To disable the collection of the MAC address, add the following entry:

ccr.metric.host.ecm_hw_nic.mac_address=false

The OCM collector collects the schema usernames for databases configured for configuration collections. The collection of this information is filtered or masked when ccr.metric.oracle_database.db_users.username is assigned the value of 'mask' in the $ORACLE_HOME/ccr/config/collector.properties file. The default behavior of the collector is to not mask this data.

MOS customers may request deletion of their configuration information by logging a Service Request (SR) indicating the specific configuration information and scope of the deletion request.

Disconnected mode is carried out with something called Oracle Support Hub, which is installed at your site. This hub is configured as a local secure site for direct uploads from your nodes, which the hub can then upload to MOS through the Internet. This protects each of your nodes from any type of direct Internet access.
Grid Control (GC) Harvester Utility/Job
The data from the Harvester job stored in xml format making it easy to view locally. Utilize the functionality to gather information on all your systems in GC vs. installing a OCM agent on every $ORACLE_HOME/host.
This new job is not accessible from within EMGC but runs in the background automatically once the Oracle Configuration Manager (OCM) collector(s) are configured in the OMS_HOME(s) in connected mode.

In my opinion the best way to utilize the GC Harvester Job is to configure it in connected mode and at the same time use the masking features of OCM (the same files are installed in the ccr directory in your OMS home).
Overview of Harvester in Grid Control DBMS job [ID 1126022.1]

Some of the most underused features of RDA include:

1. RDA report files are viewable by using a browser on the following file:

<rda_directory>output_directory>/report_group>__start.htm

2. Security filtering is available to remove sensitive information such as IP addresses, domain names, and user names. This information is not really needed for most Service Requests.

3. Oracle Configuration Manager and RDA can be installed together at the same time.

4. There is a Testing Option (-T) available for certain modules. See the Remote Diagnostic Agent (RDA) 4—Content Modules Man Page [ID 330760.1] document for specifics.

5. RDA profiles are provided, which may or may not fit your needs. It basically keeps you from having to answer the long list of yes/no questions. A more viable option would be to customize an RDA profile for future use, which can be transferred from one server to another.

6. User Defined Collection is available and it will collect custom files that you can add.

7. An RAC Cluster Guide is available for collecting multi-instance RDAs.

8. Don't forget to occasionally check for the newest release, as MOS constantly improves this utility.

Transportable Tablespaces

There are several different Oracle-provided utilities or packages that a DBA can use with transportable tablespace(s). What TTS brings to an Oracle database is a method of compartmentalizing the physical database objects (tables and index segments) into a moveable entity. Export/import, data pump, DBMS_FILE_TRANSFER, and RMAN can all move a TTS by changing all of the datafile headers associated with the logical entity known as a tablespace.
Segments that are in the system tablespace and any objects owned by SYS will not be transported. This includes all of the users, privileges, PL/SQL stored procedures, Java classes, callouts, views, synonyms, dimensions, DBA directories, and sequences as part of the data dictionary, plus any objects you have created that are owned by SYS. This also means that anything SYS-owned should not reside in the application data tablespaces to be transported.

Several different migration scenarios that can utilize TTS include:

· Restoring an unrecoverable database (dictionary corruption or can’t be recreated with exp/imp)
· Upgrading a database (if datafiles stay in original location)
· Migrating to a different operating system

· Migrating or consolidating ASM datafiles
The tablespace name in the target database cannot have the same name as a tablespace in the source database. Since the 10g release of Oracle, you can use the rename tablespace procedure to solve this problem, which can be performed either on the target or the source database.

 SYS@ORCL>ALTER TABLESPACE USERS RENAME TO USERSQUERY;

 However, there are a few limitations to the tablespace rename procedure that need to be understood:

· OMF created datafile names have to include their tablespace name; even if renamed they will retain the original tablespace name.

· Put read-only tablespaces into read-write mode temporarily after the rename or TTS procedure so that the datafile headers are updated to reflect the changes.

· Remember that there is a database parameter UNDO_TABLESPACE that will have to be changed if that tablespace name is changed. After altering the parameter and if you are using a static parameter file, it will have to be updated manually for the next database restart.

· Any recovery process with the old tablespace name won't cause issues: old recovery—old tablespace name; newer recovery—new tablespace name.

· You cannot rename the SYSTEM, SYSAUX, or any offline tablespaces.

What an elegant solution to upgrading for larger databases—keeping the datafiles in the same location and running an imp or impdp command to change the appropriate metadata for the datafiles, as part of the TTS procedure. This would reduce the amount of downtime because the application datafiles are not moved.

If the upgraded database is on a different server (or platform), then the datafilesneed to be copied over after they are made part of a transport set. If the actual datafiles exist on a storage device that is accessible from either the source or target server as a local device, then that would decrease the amount of downtime incurred when copying datafiles as part of the TTS procedure.

Sharing Read-only Tablespaces between Different Databases with TTS

There is a scenario to share a single tablespace between two databases, but both databases would be using the

tablespace in read-only mode. A reasonable use for this tactic would be to offload read-only queries to another database for tuning and performance reasons. The single-most limiting factor is that the tablespaces would have

to be read-only in both databases. There are some other limitations (same blocksize) and requirements for accomplishing this task.
Think of this sharing tablespaces as a poor-man's version of the logical standby database or Active Data Guard, which are both methods of offloading read-only queries to standby databases. This shared database environment would be a little more difficult to handle technically and with very little documentation, but may be worth some investigation to see if it works for you. Reasons to use this offbeat method may include both the ability to utilize the often-underused CPU power of a single server while at the same time minimizing Oracle licensing costs required for running Oracle Databases on multiple servers.
How to Share Tablespace Between Different Databases on Same Machine [ID 90926.1]
tartup Gets ORA-600 [3619] with a Transported Read Only Tablespace [ID 419085.1]
Cross-platform migrations with a transportable database

The TTS uses RMAN for converting datafiles when migrating across different endian platforms by the convert datafile command. This section deals with converting the entire database from one platform to another (cross-platform migrations). There are two major types of cross-platform migrations using what is called Transportable Database with RMAN—source host conversion and target host conversion.

For the transportable database (RMAN CONVERT DATABASE command), the documentation will tell you to convert all datafiles. Actually this type of migration is only required for datafiles that contain undo data. This includes all SYSTEM tablespace datafiles, any datafiles that contain ROLLBACK segments, and of course all data files that are part of any UNDO tablespaces. Eliminating the application data from this conversion process would reduce the amount of downtime considerably.

Starting with 10gR2, skipping the conversion process on application data is only possible with the target platform conversion, not the source type. Target platform conversion happens on the server you are migrating to, not the one you are migrating from. This would be using the RMAN CONVERT DATABASE ON TARGET PLATFORM command.

Usually during a target platform conversion, datafiles are copied to a temporary staging directory. Then a convert script is run, which places the datafiles in their final location. In this modified procedure, only the data files that contain undo data are copied to the staging area. The application data files that are not run through the conversion process will need to be copied (by SCP or FTP) or made accessible on the target server by NFS or SAN storage devices.
Master Note for Transportable Tablespaces (TTS) -- Common Questions and Issues [ID 1166564.1]
Bug 7251049 - Corruption in bitmap index introduced when using transportable tablespaces [ID 7251049.8]
Creating a transportable tablespace set from RMAN backupsets [ID 455593.1]
How to move or transport table partition using Transportable Table Space (TTS)? [ID 731559.1]
How to Avoid Long Refresh Time Required to Initialize Materialized View Data? [ID 734596.1]
Transportable tablespace on standby [ID 788176.1]
Data Guard + Flashback
This section is about the Oracle RDBMS Enterprise Edition functionality that allows you to full utilize your DataGuard standbys for testing purposes.

Flashback and guaranteed restore points

Flashback technology allows you to roll back or undo queries, changed data in tables, dropped tables, or even the entire database. A Flashback database can be used to revert logical corruption, patch, or a hot fix, but it rolls back all transactions that can be disruptive in a production instance, depending on when and how the original transactions were created. The key to using Flashback is sizing the Flash Recovery Area large enough (similar to archived redo log generation rate) but not too large as space pressure drives the automatic cleanup mechanisms.

This reversion of all the transactions is the same behavior as when you would perform a complete restore of the entire database from a backup. It is easier and less disruptive to use Flashback on a physical standby rolling it back to a time before the issue occurred. Use SQL*Plus, export, or data pump to move the missing or changed data back into production. The production instance is still up and running during all of this time, with minimal disruption to the few affected users. A restore point is a point in time that allows you to rollback to a clearly marked point (SCN).

Start the process by canceling Redo Apply on the physical standby and taking a guaranteed restore point:

STANDBY> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

STANDBY> CREATE RESTORE POINT HOTFIX1 GUARANTEE Flashback DATABASE;

The above command sends all current data from the production instance and then stops the Redo Apply process temporarily to the physical standby where testing will occur. All redo shipping to other archive destinations from the primary in the same configuration is not affected by this interruption. Oracle Support recommends turning off the Data Guard when using SQL commands to make changes to the configuration, otherwise it will enable the archive destination automatically.

PRIMARY> ALTER SYSTEM ARCHIVE LOG CURRENT;

PRIMARY> ALTER SYSTEM SET DG_BROKER_START=FALSE;

PRIMARY> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER;

There is an option of changing the database state instead of deferring the archive destination and turning off the broker, but this can only be done with dgmgrl. See later in this section for the list of databases states available for the different types of standbys.
oracle@primaryservername:/u01/app/oracle[PRMY]

DGMGRL>connect sys/password;

DGMGRL> EDIT DATABASE 'PRMY' SET STATE='TRANSPORT-OFF';
Create Guaranteed Restore Point WITHOUT Enabling Flashback
SQL> CREATE RESTORE POINT <rpname> GUARANTEE FLASHBACK DATABASE;

· Still creates flashback logs, so other initialization parameters related to FRA must be configured.
· Saves flashback log space for workloads where the same blocks are repeatedly updated, nightly batch loads
· This process generates both UNDO and REDO resulting in more area used
· Drop guaranteed restore point immediately reclaims all space vs. more steps to disable Flashback Database.
Possible testing/recovery scenarios for Flashback and Data Guard

The following is a list of different reasons to use a physical standby, other than just to failover when the primary database is not available:

· Preventing or fixing physical corruption

· Fixing logical corruption

· Reversing an application vendor upgrade

· Batch job reversal

· Untested hot fix

· Untested Oracle patch

· Stress testing

· Testing Oracle upgrades

· Testing ASM, OMF, SAME, or OFA changes

· Testing hardware updates or changes

· Testing OS upgrades, patches, or changes

· Testing Network or SQL*Net parameter changes

· Real Application Testing **additional license
· SQL performance analyzing

Physical corruption on a primary database can't be transmitted to the standby if the data files exist on a separate file system and the members in a configuration don't participate in hardware-level mirroring. With db_block_checking and db_block_checksum enabled on the primary and db_block_checksum on the physical standby, it can detect any physical corruption before applying redo.

There is always a warning when enabling db_block_checking and/or db_block_checksum, as it may overload an already CPU-intensive environment. Be careful to monitor before putting these settings into a production environment. If the physical corruption is extensive enough to prevent the primary database from being open, then failing over to the physical standby would be the best option.
Lost-write detection using a physical standby database

Lost-write database corruption happens when the I/O subsystem has acknowledged the completion of a block write but in actuality the write did not make it to disk. This type of corruption is detected by Data Guard comparing SCNs of blocks in the redo stream on the primary to the SCNs of blocks on the physical standby.

If the block SCN on primary is lower than standby—ORA-752—the lost-write happens on the primary. If the SCN on the primary is higher than the standby—ORA-600 [3020], then it is a lost-write on the standby. If the lost-write is on the standby it is unusable and the standby database will have to be removed and recreated.

Detection of a lost-write on the primary halts the managed recovery process on the standby and recovers to the consistent SCN. At that point it is recommended to failover because the physical standby is currently the most consistent as compared to the primary database. Any further transactions that happened on the primary after the SCN are assumed to be lost or in other words unrecoverable. Refer to the documentation for Steps to Failover to a Physical Standby After Lost-Writes Are Detected on the Primary.

This capability is controlled by the database parameter DB_LOST_WRITE_PROTECT and has different settings with FULL, NONE, or TYPICAL. The default is NONE.

Database states

Oracle Database 10g+ gives us different DATA GUARD states that are tied to a database's role in a Data Guard configuration that control the log transport services. This is basically a switch that governs whether data is being transferred from one database to another and/or being applied depending on the database role of primary,

physical, or logical.

States of log services are as follows:

Primary

· TRANSPORT-ON Primary TRANSPORT-ON + Physical TRANSPORT-ON=Active Data Guard
· TRANSPORT-OFF

Physical standby (REDO APPLY)

· APPLY-ON

· APPLY-OFF

Snapshot standby (REDO APPLY)

· APPLY-OFF

Logical standby (SQL APPLY)

· APPLY-ON

· APPLY-OFF

There is no APPLY-ON available for snapshot because it would no longer be a snapshot of the data at a point in time. This ability to turn off the transport and/or the application of redo logs gives you the flexibility in using the standbys for multiple tasks temporarily and then changing the state back on.

Can transportable tablespaces be created from a read-only standby database? [ID 403991.1] Basically NO.
Interesting research on data pump export flashback_time and flashback_scn at

http://yong321.freeshell.org/oranotes/DataPump.txt
Unix strings command

It is handy use the strings command to peek inside certain Oracle files. Be sure and understand what you are trying to accomplish before attempting this on any production system as you may corrupt the file itself. This illustrates the inherent vulnerability to any Oracle File stored on an operating system, so the first way to protect these objects is by the correct file permissions.

· Strip off the binary components to create a pfile from an spfile. In 11g+ the resulting stripped text of a spfile will need to be edited to paste together long strings.
· Pull out ascii-based data from an export file, datapump, data file, backups, redo or archive log.

· Peeking inside the snapshot controlfile ($ORACLE_HOME/dbs/snapcf_ORACLE_SID.f) using strings gives quite a bit of information about the associated backup:

$ORACLE_SID, TAG20100113T170027—time stamp of backup, List of datafiles, tablespaces, configure commands run, archivelogs, Datafile backup location, Controlfile backup name and location.
Ongoing Research, Feedback and additional Information

Oracle High Availability Blog http://aprilcsims.wordpress.com/

1

Session 366

