AN AUTOMATIC SPEAKER RECOGNITION SYSTEM 
ABSTRACT
Speaker recognition is the process of automatically recognizing who is speaking on the basis of individual information included in speech waves. This technique makes it possible to use the speaker’s voice to verify their identity and control access to services such as voice dialing, banking by telephone, telephone shopping, database access services, information services, voice mail, security control for confidential information areas, and remote access to computers.

The goal of this work is to build a simple, yet complete and representative automatic speaker recognition system using MATLAB software. The system developed here is tested on a small (but already non-trivial) speech database. There are 8 male speakers, labeled from S1 to S8. All speakers uttered the same single digit "zero" once in a training session and once in a testing session later on. The vocabulary of digit is used very often in testing speaker recognition because of its applicability to many security applications. For example, users have to speak a PIN (Personal Identification Number) in order to gain access to the laboratory door, or users have to speak their credit card number over the telephone line. By checking the voice characteristics of the input utterance using an automatic speaker recognition system similar to the one that has been developed now, the system is able to add an extra level of security.

INTRODUCTION
Speaker recognition can be classified into identification and verification. Speaker identification is the process of determining which registered speaker provides a given utterance. Speaker verification, on the other hand, is the process of accepting or rejecting the identity claim of a speaker. Figure1 shows the basic structures of speaker identification and verification systems. Speaker recognition methods can also be divided into text-independent and text-dependent methods. In a text-independent system, speaker models capture characteristics of somebody’s speech which show up irrespective of what one is saying. In a text-dependent system, on the other hand, the recognition of the speaker’s identity is based on his speaking one or more specific phrases, like passwords, card numbers, PIN codes, etc. When the task is to identify the person talking rather than what he is saying, the speech signal must be processed to extract measures of speaker variability instead of segmental features. There are two sources of variation among speakers: differences in vocal cords and vocal tract shape, and differences in speaking style.

At the highest level, all speaker recognition systems contain two main modules (refer to Figure 1): feature extraction and feature matching. Feature extraction is the process that extracts a small amount of data from the voice signal that can later be used to represent each speaker. Feature matching involves the actual procedure to identify the unknown speaker by comparing extracted features from his voice input with the ones from a set of known speakers. We will discuss each module in detail in later sections.

All speaker recognition systems have to serve two distinguish phases. The first one is referred to as the enrollment session or training phase while the second one is referred to as the operation session or testing phase. In the training phase, each registered speaker has to provide samples of their speech so that the system can build or train a reference model for that speaker. In case of speaker verification systems, in addition, a speaker-specific threshold is also computed from the training samples. During the testing (operational) phase (see Figure 1), the input speech is matched with stored reference model(s) and recognition decision is made.
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              Figure 1(a): Speakeridentification
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Figure 1(b): Speaker verification
Automatic speaker recognition works based on the premise that a person’s speech exhibits characteristics that are unique to the speaker. However this task has been challenged by the highly variant of input speech signals. The principle source of variance comes form the speakers themselves. Speech signals in training and testing sessions can be greatly different due to many facts such as people voice change with time, health conditions (e.g. the speaker has a cold), speaking rates, etc. There are also other factors, beyond speaker variability, that present a challenge to speaker recognition technology. Examples of these are acoustical noise and variations in recording environments (e.g.speaker uses different telephone handsets).

Speech Feature Extraction

The purpose of this module is to convert the speech waveform to some type of parametric representation (at a considerably lower information rate) for further analysis and processing. This is often referred as the signal-processing front end. The speech signal is a slowly timed varying signal (it is called quasi-stationary).  When examined over a sufficiently short period of time (between 5 and 100 msec), its characteristics are fairly stationary. However, over long periods of time (of the order of 1/5 seconds or more) the signal characteristic change to reflect the different speech sounds being spoken. Therefore, short-time spectral analysis is the most common way to characterize the speech signal.

A wide range of possibilities exist for parametrically representing the speech signal for the speaker recognition task. Mel-Frequency Cepstrum Coefficients (MFCC), is perhaps the best known and most popular, and these will be used in this project. MFCC’s are based on the known variation of the human ear’s critical bandwidths with frequency, filters spaced linearly at low frequencies and logarithmically at high frequencies have been used to capture the phonetically important characteristics of speech. This is expressed in the mel-frequency scale, which is a linear frequency spacing below 1000 Hz and a logarithmic spacing above 1000 Hz. The process of computing MFCCs is described in more detail next.
Mel-frequency cepstrum coefficients processor
A block diagram of the structure of an MFCC processor is given in Figure 2. The speech input is typically recorded at a sampling rate above 10000 Hz. This sampling frequency was chosen to minimize the effects of aliasing in the analog-to-digital conversion. These sampled signals can capture all frequencies up to 5 kHz, which cover most energy of sounds that are generated by humans. As been discussed previously, the main purpose of the MFCC processor is to mimic the behavior of the human ears. In addition, rather than the speech waveforms themselves, MFFC’s are shown to be less susceptible to mentioned variations. 
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Figure 2. Block diagram of the MFCC processor

1.Frame Blocking

In this step the continuous speech signal is blocked into frames of N samples, with adjacent frames being separated by M (M < N). The first frame consists of the first N samples. The second frame begins M samples after the first frame,and overlaps it by N-M samples. Similarly, the third frame begins 2M samples after the first frame (or M samples after the second frame) and overlaps it by N - 2M samples. This process continues until all the speech is accounted for within one or more frames.

2.Windowing

The next step in the processing is to window each individual frame so as to minimize the signal discontinuities at the beginning and end of each frame. The concept here is to minimize the spectral distortion by using the window to taper the signal to zero at the beginning and end of each frame. If we define the window as w(n),0 n N-1, where N is the number of samples in each frame, then the result of windowing is the signal ,
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Typically the Hamming window is used, which has the form,
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3. Fast Fourier Transform (FFT)

The next processing step is the Fast Fourier Transform, which converts each frame of N samples from the time domain into the frequency domain. The FFT is a

fast algorithm to implement the Discrete Fourier Transform (DFT) which is defined on the set of N samples {xn}, as follow:
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In general Xn’s are complex numbers. The resulting sequence {Xn} is interpreted as follow: the zero frequency corresponds to n = 0, positive frequencies  0 < f < Fs / 2, correspond to values 1nN /2-1, while negative frequencies -Fs / 2 < f < 0  correspond to N /2+1nN-1. Here, Fs denotes the sampling frequency. The result obtained after this step is often referred to as signal’s spectrum or periodogram.

4. Mel-frequency Wrapping
As mentioned above, psychophysical studies have shown that human perception of the frequency contents of sounds for speech signals does not follow a linear scale. Thus for each tone with an actual frequency, f, measured in Hz, a subjective pitch is measured on a scale called the ‘mel’ scale. The mel-frequency scale is a linear frequency spacing below 1000 Hz and a logarithmic spacing above 1000 Hz. As a reference point, the pitch of a 1 kHz tone, 40 dB above the perceptual hearing threshold, is defined as 1000 mels. Therefore we can use the following approximate formula to compute the mels for a given frequency f in Hz:
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One approach to simulating the subjective spectrum is to use a filter bank, one filter for each desired mel-frequency component. That filter bank has a triangular bandpass frequency response, and the spacing as well as the bandwidth is determined by a constant mel-frequency interval. The modified spectrum of S( ) thus consists of the output power of these filters when S( ) is the input. Note that this filter bank is applied in the frequency domain, therefore it simply amounts to taking those triangle-shape windows.
5. Cepstrum

In this final step, log mel spectrum is converted back to time. The result is called the mel frequency cepstrum coefficients (MFCC). The cepstral representation of the speech spectrum provides a good representation of the local spectral properties of the signal for the given frame analysis.

 Because the mel spectrum coefficients (and so their logarithm) are real numbers, it can be converted into the time domain using the Discrete Cosine Transform (DCT). Therefore if we denote those mel power spectrum coefficients that are the result of the last step are Sk, k=1,2,3,…..K, we can calculate the MFCC’s  as,
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Note that we exclude the first component, c0 from the DCT since it represents the mean value of the input signal which carried little speaker specific information.

Summary
By applying the procedure described above, for each speech frame of around 30msec with overlap, a set of mel-frequency cepstrum coefficients is computed. These are result of a cosine transform of the logarithm of the short-term power spectrum expressed on a mel-frequency scale. This set of coefficients is called an acoustic vector. Therefore each input utterance is transformed into a sequence of acoustic vectors. In the next section we will see how those acoustic vectors can be used to represent and recognize the voice characteristic of the speaker.
FEATURE MATCHING
The problem of speaker recognition belongs to a much broader topic in scientific and engineering so called pattern recognition. The goal of pattern recognition is to classify objects of interest into one of a number of categories or classes. The objects of interest are generically called patterns and in our case are sequences of acoustic vectors that are extracted from an input speech using the techniques described in the previous section. The classes here refer to individual speakers. Since the classification procedure in our case is applied on extracted features, it can be also referred to as feature matching. Furthermore, if there exists some set of patterns that the individual classes of which are already known, then one has a problem in supervised pattern recognition.

 This is exactly our case since during the training session, we label each input speech with the ID of the speaker (S1 to S8). These patterns comprise the training set and are used to derive a classification algorithm. The remaining patterns are then used to test the classification algorithm; these patterns are collectively referred to as the test set. 

There are many  feature matching techniques used in speaker recognition .In this  project the Vector Quantization (VQ) approach is used, due to ease of implementation and high accuracy. VQ is a process of mapping vectors from a large vector space to a finite number of regions in that space. Each region is called a cluster and can be represented by its center called a codeword. The collection of all codewords is called a codebook.

Figure 3 shows a conceptual diagram to illustrate this recognition process. In the figure, only two speakers and two dimensions of the acoustic space are shown. The circles refer to the acoustic vectors from the speaker1 while the triangles are from the speaker2. In the training phase, a speaker-specific VQ codebook is generated for each known speaker by clustering his training acoustic vectors. The result codewords (centroids) are shown in Figure 3 by black circles and black triangles for speaker 1 and 2, respectively. 

The distance from a vector to the closest codeword of a codebook is called a VQ-distortion. In the recognition phase, an input utterance of an unknown voice is “vector-quantized” using each trained codebook and the total VQ distortion is computed. The speaker corresponding to the VQ codebook with smallest total distortion is identified.
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Figure 3: Conceptual diagram illustrating vector quantization codebook formation.

One speaker can be discriminated from another based of the location of centroids.
Clustering the Training Vectors

After the enrolment session, the acoustic vectors extracted from input speech of a

speaker provide a set of training vectors. As described above, the next important step is to build a speaker-specific VQ codebook for this speaker using those training vectors. There is a well-know algorithm, namely LBG algorithm [Linde, Buzo and Gray], for clustering a set of L training vectors into a set of M codebook vectors. 

The algorithm is formally implemented by the following recursive procedure:

1. Design a 1-vector codebook; this is the centroid of the entire set of training vectors (hence, no iteration is required here).

2. Double the size of the codebook by splitting each current codebook yn according

to the rule
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where n varies from 1 to the current size of the codebook, and is a splitting parameter (we choose =0.01).

3. Nearest-Neighbor Search: for each training vector, find the codeword in the current codebook that is closest (in terms of similarity measurement), and assign that vector to the corresponding cell (associated with the closest codeword).

4. Centroid Update: update the codeword in each cell using the centroid of the training vectors assigned to that cell.

5. Iteration 1: repeat steps 3 and 4 until the average distance falls below a preset threshold

6. Iteration 2: repeat steps 2, 3 and 4 until a codebook size of M is designed.

Intuitively, the LBG algorithm designs an M-vector codebook in stages. It starts first by designing a 1-vector codebook, then uses a splitting technique on the codewords to  initialize the search for a 2-vector codebook, and continues the splitting process until the desired M-vector codebook is obtained.

Figure 4 shows, in a flow diagram, the detailed steps of the LBG algorithm. “Cluster vectors” is the nearest-neighbor search procedure which assigns each training vector to a cluster associated with the closest codeword. “Find centroids” is the centroid update procedure. “Compute D (distortion)” sums the distances of all training vectors in the nearest-neighbor search so as to determine whether the procedure has converged.

[image: image11.png]Find
centroid

Find
centroids

. 2
mpute D
(distortion)

No, Yes





Figure 4. Flow diagram of the LBG algorithm
IMPLEMENTATION  

All the steps outlined in the previous sections are implemented in the MATLAB tool provided by "The Mathworks Inc" and the system developed here is tested on a small  speech database. There are 8 male speakers, labeled from S1 to S8. All speakers uttered the same single digit "zero" once in a training session and once in a testing session later on. The figures 5 to 15 shows results of all the steps in the  speaker recognition task. First MFCC's for one speaker are computed .This is illustrated in figures 5 to 11 .Firstly ,in the Figure 5 input speech signal of one of the speaker is plotted against time. It should be obvious that the raw data in the time domain has a very high amount of data and it is difficult for analyzing the voice characteristic. So the motivation for the step of speech feature extraction should be clear now!
Now the speech signal (a vector) is cutted into frames with overlap. The output of this is a matrix where each column is a frame of N samples from original speech signal which is displayed in Figure 6. Now the signal is windowed by means of hamming window. The result is again a similar matrix except that each frame(column) has been windowed as shown in Figure 7. The FFT is applied to the signal and the signal is transformed into the frequency domain and the output is displayed in Figure 8. Applying these steps: Windowing and FFT is referred as Windowed Fourier Transform (WFT) or Short-Time Fourier Transform (STFT). The result is often called as the spectrum or periodogram. The last step in speech processing is converting the spectrum into mel frequency cepstrum coefficients which can be accomplished by generating a mel frequency filter bank having characteristics as shown in Figure 9 and multiplying this in frequency domain with FFT obtained in the last step yielding mel spectrum which is shown in Figure 10. Finally mel frequency cepstrum coefficients (MFCC) are generated by taking  discrete cosine transform of the logarithm of the mel-spectrum obtained in the last step and MFCC's are shown in Figure 11.  

Similar procedure is followed for all the remaining speakers and MFCC's for all the speakers are computed. To inspect the acoustic space (MFCC vectors) any two dimensions (say the 5th and the 6th) are picked and the data points are plotted in a 2D plane and it is shown in the Figure 12. Now the LBG algorithm is applied to the set of MFCC's coefficients obtained in the previous stage and the intermediate stages are shown in Figures 13, 14, 15.
Finally the system is trained for all the speakers and each speaker specific codebook is generated. After this training step, the system would have knowledge of the voice characteristic of each (known) speaker. In the recognition phase, an input utterance of an unknown voice is “vector-quantized” using each trained codebook and the total VQ distortion is computed. The speaker corresponding to the VQ codebook with smallest total distortion is identified.
RESULTS
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Figure 5: An Input Speech Signal
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Figure 6: After Frame Blocking
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Figure 7: After Windowing 
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Figure 8: After short-time fourier transform
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Figure 9: A Mel Spaced Filter Bank
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Figure 10: After mel frequency wrapping 
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Figure 11: Mel Frequency Cepstrum Coeffecients
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Figure 12: Training Vectors as points in a 2D-space 
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Figure 13: The centroid of the entire set. 
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Figure 14: The centroid is splitted into 2 using LBG algorithm. 
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Figure 15: Finally an 16-vector codebook is generated using LBG algorithm.
CONCLUSIONS & DISCUSSIONS

As the codebook size is increased the recognition performance has been improved but as it is still increased further the performance has not improved as expected i.e., the rate of the increase of performance has been decreased as code book size is increased.


The most distinctive feature of the proposed speaker-based VQ model is its multiple representation or partitioning of a speaker's spectral space. The VQ speaker model, while allowing some amount of overlap between different speaker's codebooks, is quite capable of discriminating impostors from a true speaker because of this distinctive feature. 

The mel frequency cepstra possess a significant advantage over the linear frequency cepstra. Specifically, MFCC allow better suppression of insignificant spectral variation in the higher frequency bands. Another obvious advantage is that mel-frequency cepstrum coefficients form a particular compact representation. 


It is useful to examine the lack of commercial success for Automatic Speaker Recognition compared to that for speech recognition. Both speech and speaker recognition analyze speech signals to extract spectral parameters such as cepstral coefficients. Furthermore, both often employ similar template matching methods, the same distance measures, and similar decision procedures. Speech and speaker recognition, however, have different objectives: selecting which of M words was spoken vs. which of N speakers spoke. Speech analysis techniques have primarily been developed for phonemic analysis, e.g., to preserve phonemic content during speech coding or to aid phoneme identification in speech recognition. Our understanding of how listeners exploit spectral cues to identify human sounds exceeds our knowledge of how we distinguish speakers. For text-dependent Automatic Speaker Recognition, using template-matching methods borrowed directly from speech recognition yields good results in limited tests, but performance decreases under adverse conditions that might be found in practical applications. For example, telephone distortions, uncooperative speakers, and speaker variability over time often lead to accuracy levels unacceptable for many applications.
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