ISO/IEC 14496‑1:1999(E)

© ISO/IEC

© ISO/IEC

ISO/IEC 15938‑1:2001(E)

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND ASSOCIATED AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG01/N4001
March 2001, Singapore
Title:
Text of ISO/IEC FCD 15938-1 Information technology - Multimedia content description interface – Part 1 Systems

Source:
Systems Sub-group

Editor:
Claude Seyrat (Expway), Michael Wollborn (Bosch), Ali Tabatabai (Sony), Olivier Avaro (France Telecom R&D)
Status:
Draft

ISO/IEC JTC 1/SC 29/WG 11 N 4001
Date: 2001-03-16
ISO/IEC 15938-1:2001(E)

ISO/IEC JTC 1/SC 29/WG 11

Modified by the SC 29 Secretariat

Information technology – Multimedia Content Description Interface –
Part 1: Systems

Contents
0
Introduction
V
0.1
Overview
V
0.2
Overview of this part of ISO/IEC 15938
V
1
Scope
6
2
Normative References
6
3
Terms and Definitions
6
3.1
Access Units
6
3.2
Fast Access
6
3.3
Fragment update command
6
3.4
Fragment Update Unit
6
3.5
Navigation Mode
6
3.6
Navigation Path
6
3.7
Random Access
6
3.8
Root Element
7
3.9
Schema
7
3.10
Terminal
7
3.11
Top Level Element
7
4
Abbreviations and Symbols
7
4.1
Arithmetic operators
7
4.2
Logical operators
8
4.3
Relational operators
8
4.4
Assignment
8
4.5
Mnemonics
8
4.6
Conventions
9
4.6.1
Method of describing bitstream syntax
9
4.6.2
Definition of bytealigned() function
10
4.6.3
Reserved, forbidden and marker_bit
10
5
Systems architecture
10
5.1
Terminal architecture
10
5.2
Access Unit
12
5.3
Normative interfaces
12
5.3.1
Description the normative interfaces
12
5.3.2
Validation of the standard
13
6
Textual Format
14
6.1
Decoder Configuration
14
6.1.1
Syntax
14
6.1.2
Semantics
15
6.2
Access Unit
15
6.2.1
Syntax
15
6.2.2
Semantics
15
6.3
Fragment update unit
16
6.3.1
Navigation
16
6.3.2
Fragment update command
16
6.3.3
Fragment payload
16
7
Binary Format
17
7.1
Binary Decoder Configuration
17
7.1.1
Binary Decoder Configuration Syntax
17
7.1.2
Binary Decoder Configuration Semantics
17
7.2
Binary Access Unit
18
7.2.1
Binary Access Unit Syntax
19
7.2.2
Binary Access Unit Semantics
19
7.3
Binary Fragment Update Unit
19
7.3.1
Navigation
22
7.3.2
Fragment update command
28
8
BiM fragment payload
29
8.1
Character string comparison
29
8.2
General Binary format
29
8.2.1
Decoding Modes
29
8.3
Element decoding
30
8.3.1
Syntax
30
8.3.2
Semantic
30
8.3.3
Internal Element Decoding
31
8.3.4
ElementContent
32
8.4
Generating keys
34
8.4.1
Schema compilation and structure code
35
8.4.2
Specific case of attributes
41
8.4.3
Substitution
41
8.4.4
Type coding
42
8.4.5
Fast Access
43
8.4.6
Datatypes Coding
43
Annex C (informative) MPEG-7 meta data flow
45
Annex D (informative) Informative Educational Examples for the MPEG-7 BiM
48
1
Example for general structure
48
2
Example for decoding of sub-trees
49
2.1
General Example
49
2.2
Syntax tree generation
51
2.3
Syntax tree simplification
52
2.4
Attributes coding
53
2.5
Decoding automata
53
2.6
Realized automaton
55
2.7
Infinite unsigned integer coding
55
2.8
A forward compatible coding
55
Annex B (informative) Patent statements
57
Annex A (informative) Bibliography
58

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

The MPEG-7 standard also known as "Multimedia Content Description Interface" aims at providing standardized core technologies allowing description of audiovisual data content in multimedia environments. In order to achieve this broad goal, MPEG-7 will standardize:

· Descriptors (D): representations of Features, that define the syntax and the semantics of each feature representation,

· Description Schemes (DS), that specify the structure and semantics of the relationships between their components, which may be both Ds and DSs,

· A Description Definition Language (DDL), to allow the creation of new DSs and, possibly, Ds and allows the extension and modification of existing DSs,

· System tools, to support multiplexing of description, synchronization issues, transmission mechanisms, file format, etc.

The MPEG-7 standard consists of the following parts, under the general title Information Technology - Multimedia Content Description Interface:

· Part 1: Systems. Architecture of the standard, tools that are needed to prepare MPEG-7 Descriptions for efficient transport and storage, and to allow synchronization between content and descriptions. Also tools related to managing and protecting intellectual property. Representation of DSs and Ds and especially binary representation.

· Part 2: Description definition language (DDL). Language for defining new DSs and perhaps eventually also for new Ds.

· Part 3: Visual. Visual elements (Ds and DSs).

· Part 4: Audio. Audio elements (Ds and DSs).

· Part 5: Multimedia description schemes. Elements (Ds and DSs) that are generic, i.e. neither purely visual nor purely audio.

· Part 6: Reference software. Software implementation of relevant parts of the MPEG-7 Standard.

· Part 7: Conformance testing. Guidelines and procedures for testing conformance of MPEG-7 implementations.

This document represents the current Final Committee Draft of Part 1 of the MPEG-7 standard, the Systems Final Committee Draft.

Introduction

0.1 Overview

The MPEG-7 standard also known as "Multimedia Content Description Interface" aims at providing standardized core technologies allowing the description of audiovisual data content in multimedia environments [1]. This is a challenging task given the broad spectrum of requirements and targeted multimedia applications, and the broad number of audiovisual features of importance in such context. In order to achieve this broad goal, MPEG-7 will standardize:

· Descriptors (D): representations of Features, that define the syntax and the semantics of each feature representation;

· Description Schemes (DS), that specify the structure and semantics of the relationships between their components, which may be both Ds and DSs;

· A Description Definition Language (DDL), to allow the creation of new DSs and, possibly, Ds and allows the extension and modification of existing DSs;

· System tools, to support multiplexing of description, synchronization issues, transmission mechanisms, file format, etc.

This part of the specification describes the Systems layer, comprising the tools that are needed to prepare MPEG-7 Descriptions for efficient transport and storage, and to allow synchronization between content and descriptions. Also tools related to managing and protecting intellectual property.

0.2 Overview of this part of ISO/IEC 15938

This part of ISO/IEC 15938 specifies the following tools:

· a terminal architecture defined as a normative compression layer interfaced with a non-normative delivery layer,

· an MPEG-7 elementary stream format composed of textual or binary access units,

· a standardized interface for the textual format,

· a standardized interface for the binary format.

The structure of this document is the following:

· Clause 5 specifies the terminal architecture.

· Clause 6 specifies the textual format for MPEG-7 content.

· Clause 7 specifies the binary format for MPEG-7 content.

· Clause 8 specifies the binary fragment payload.

· Annex A contains an informative overview of the flow of metadata through the content creation and delivery lifecycle.

· Annex B contains informative examples for the binary format for MPEG-7 description (BiM).

· Annexes C and D contain Patent Statements and the Bibliography respectively.

Information technology (Multimedia content description interface (
Part 1: Systems
1 Scope

This part of ISO/IEC 15938 specifies system level functionalities for the communication of multimedia content descriptions. It provides an unambiguous specification which will enable MPEG-7 users and developers:

1. to develop MPEG-7 conformant decoders,

2. to prepare MPEG-7 Descriptions for efficient transport and storage.
2 Normative References

The following ITU-T Recommendations and International Standards contain provisions, which, through reference in this text, constitute provisions of ISO/IEC 15938. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on ISO/IEC 15938 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau maintains a list of currently valid ITU-T Recommendations.

3 Terms and Definitions

3.1 Access Units

A set of fragment update unit that are atomic in time i.e., the set of smallest description entities to which a time element can be attached.

3.2 Fast Access

The process of skipping undesired parts of the stream without entirely decoding them.

3.3 Fragment update command

A command that tells the decoder which transformation should be applied to the description.

3.4 Fragment Update Unit

Fragment Update Unit are main components of MPEG-7 access units. They provide the dynamic aspects of the MPEG-7 description.

3.5 Navigation Mode

A command that tells the decoder which instantiated part of the description it will receive.

3.6 Navigation Path

The absolute or relative address of the tree node for which the decoder will receive the description.

3.7 Random Access

The process of beginning to read and decode a coded representation at an arbitrary point within the description stream.

3.8 Root Element

The most global element of a description i.e. the element that contains the entire description.

3.9 Schema

The set of Schema Components which define a class of XML documents by expressing syntactic, structural and value constraints applicable to document instances.

3.10 Terminal

The entity that uses coded representation of the multimedia content description information.

3.11 Top Level Element

The children of the root element. Top level elements are chosen among a finite set of possible element defined in part 3, 4 and 5 of the standard.

4 Abbreviations and Symbols

BiM
Binary format for Mpeg-7

D
Descriptor

DDL
Description Definition Language

DS
Description Scheme

TBC
Tree Branch Codes

UCS
Universal Character Set

URI
Uniform Resource Identifier

URL
Uniform Resource Locator

UTF
UCS transformation formats

XML
Extensible Markup Language 1.0

XPath
XML Path Language

The mathematical operators used to describe this part of ISO/IEC 15938 are similar to those used in the C programming language. However, integer divisions with truncation and rounding are specifically defined. Numbering and counting loops generally begin from zero.

4.1 Arithmetic operators

+
Addition.

-
Subtraction (as a binary operator) or negation (as a unary operator).

++
Increment. i.e. x++ is equivalent to x = x + 1

- -
Decrement. i.e. x-- is equivalent to x = x - 1

[image: image1.wmf]´

*

ü

ý

þ

Multiplication.

^
Power.

/
Integer division with truncation of the result toward zero. For example, 7/4 and -7/-4 are truncated to 1 and -7/4 and 7/-4 are truncated to -1.

//
Integer division with rounding to the nearest integer. Half-integer values are rounded away from zero unless otherwise specified. For example 3//2 is rounded to 2, and -3//2 is rounded to -2.

///
Integer division with sign dependent rounding to the nearest integer. Half-integer values when positive are rounded away from zero, and when negative are rounded towards zero. For example 3///2 is rounded to 2, and -3///2 is rounded to -1.

////
Integer division with truncation towards the negative infinity.

÷
Used to denote division in mathematical equations where no truncation or rounding is intended.

%
Modulus operator. Defined only for positive numbers.

Sign()

[image: image2.wmf]Sign

(

x

)

=

1

x

>

=

0

-

1

x

<

0

ì

í

î

Abs()
[image: image3.wmf]Abs

(

x

)

=

x

x

>

=

0

-

x

x

<

0

ì

í

î

[image: image4.wmf]f

(

i

)

i

=

a

i

<

b

å

The summation of the f(i) with i taking integral values from a up to, but not including b.

4.2 Logical operators

||
Logical OR.

&&
Logical AND.

!
Logical NOT.

4.3 Relational operators

>
Greater than.

>=
Greater than or equal to.

(
Greater than or equal to.

<
Less than.

<=
Less than or equal to.

(
Less than or equal to.

==
Equal to.

!=
Not equal to.

max [, …,]
the maximum value in the argument list.

min [, … ,]
the minimum value in the argument list.

4.4 Assignment

=
Assignment operator.

4.5 Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bitstream.

bslbf
Bit string, left bit first, where “left” is the order in which bit strings are written in this part of ISO/IEC 14496. Bit strings are generally written as a string of 1s and 0s within single quote marks, e.g. ‘1000 0001’. Blanks within a bit string are for ease of reading and have no significance. For convenience large strings are occasionally written in hexadecimal, in this case conversion to a binary in the conventional manner will yield the value of the bit string. Thus the left most hexadecimal digit is first and in each hexadecimal digit the most significant of the four bits is first.

uimsbf
Unsigned integer, most significant bit first.

simsbf
Signed integer, in twos complement format, most significant (sign) bit first.

vlclbf
Variable length code, left bit first, where “left” refers to the order in which the VLC codes are written. The byte order of multibyte words is most significant byte first.

vuimsbf
Variable length code unsigned integer, most significant bit first. If the number of bits to represent the integer number exceeds 4 then the first n bits (Ext) which are 1 except of the n-th bit which is 0, indicates that the Position Code is encoded by n times 4 bits. This is shown as an informative example in Figure 1 - Informative example for the vuimsbf data type.

[image: image5.wmf]

1

0

1

Bit 0

Bit 3

Bit 2

Bit 1

Position Code represented by 12 bits

Ext bits

Bit 4

Bit 8

Bit 6

Bit 5

Bit 9

Bit 10

Bit 11

Bit 11

Figure 1 - Informative example for the vuimsbf data type

4.6 Conventions

4.6.1 Method of describing bitstream syntax

The bitstream retrieved by the decoder is described in Clause 7. Each data item in the bitstream is in bold type. It is described by its name, its length in bits, and a mnemonic for its type and order of transmission.

The action caused by a decoded data element in a bitstream depends on the value of that data element and on data elements previously decoded. The following constructs are used to express the conditions when data elements are present, and are in normal type:

while (condition) {
If the condition is true, then the group of data elements

data_element
occurs next in the data stream. This repeats until the

. . .
condition is not true.

}

do {

data_element
The data element always occurs at least once.

. . .

} while (condition)
The data element is repeated until the condition is not true.

if (condition) {
If the condition is true, then the first group of data

data_element
elements occurs next in the data stream.

. . .

} else {
If the condition is not true, then the second group of data

data_element
elements occurs next in the data stream.

. . .

}

for (i = m; i < n; i++) {
The group of data elements occurs (n-m) times. Conditional

data_element
constructs within the group of data elements may depend

. . .
on the value of the loop control variable i, which is set to

}
m for the first occurrence, incremented by one for

the second occurrence, and so forth.

/* comment  */
Explanatory comment that may be deleted entirely without

in any way altering the syntax.

This syntax uses the ‘C-code’ convention that a variable or expression evaluating to a non-zero value is equivalent to a condition that is true and a variable or expression evaluating to a zero value is equivalent to a condition that is false

data_element [n]
data_element [n] is the n+1th element of an array of data.

data_element [m][n]
data_element [m][n] is the m+1, n+1th element of a two-dimensional array of data.

data_element [l][m][n]
data_element [l][m][n] is the l+1, m+1, n+1th element of a three-dimensional array of data.

4.6.2 Definition of bytealigned() function

The function bytealigned() returns 1 if the current position is on a byte boundary, that is the next bit in the bitstream is the first bit in a byte. Otherwise it returns 0.

4.6.3 Reserved, forbidden and marker_bit

The terms “reserved” and “forbidden” are used in the description of some values of several fields in the coded bitstream.

The term “reserved” indicates that the value may be used in the future for ISO/IEC defined extensions.

The term “forbidden” indicates a value that shall never be used (usually in order to avoid emulation of start codes).

The term “marker_bit” indicates a one bit integer in which the value zero is forbidden (and it therefore shall have the value ‘1’). These marker bits are introduced at several points in the syntax to avoid start code emulation.

The term “zero_bit” indicates a one bit integer with the value zero.

5 Systems architecture

5.1 Terminal architecture

The information representation specified in the MPEG-7 standard provides the means to represent coded multimedia content description information. The entity that makes used of such coded representation of the multimedia content is generically referred to as "terminal". This terminal may correspond to a standalone application or be part of an application system.

The objective of this section is to provide the description of a terminal making use of MPEG-7 representations. The architecture of such terminal is depicted in Figure 2 and its overall operation is described in this section. The following sections further described the overall operation of the tools specified in this part of the MPEG-7 specification.

[image: image6.wmf]Transmission/

Storage Medium

IP

MP4

Delivery

Layer

Multiplex

MPEG

-

2

ATM

...

Multiplexed Streams

Demultiplex

Multiplex

Schema

streams

Description

streams

Compression

Layer

Elementary Streams

Multimedia

streams

Upstream

Data

Application

APIs

Defines

Describe

Reconstruction

Description

Decoder

Schema

Decoder

BiM or

Textual

Parsing

BiM or

Textual

Decoding

Figure 2 - MPEG-7 Architecture

At the bottom of Figure 2 is the transmission/storage medium. This refers to the lower layers of the delivery infrastructure (network layer and below, as well as storage). These layers deliver multiplexed streams to the Delivery layer. The transport of the MPEG-7 data can occur on a variety of delivery systems. This includes for example MPEG-2 Transport Streams, IP (Internet Protocol), or MPEG-4 (MP4) files or streams. The delivery layer encompasses mechanisms allowing synchronization, framing and multiplexing of MPEG-7 content. MPEG-7 content may be delivered independently or together with the content they describe. The delivery of MPEG-7 content on particular systems is outside the scope of this specification. Not all MPEG-7 streams have to be downstream (server to the client). The MPEG-7 architecture allows to convey data back from the terminal to the transmitter or server, such as queries or request.

The Delivery layer provides to the Compression layer MPEG-7 elementary streams. MPEG-7 elementary streams consist in consecutive individually accessible portion of data named Access Units. An access unit is the smallest data entity to which timing information can be attributed. MPEG-7 elementary streams contain information of different nature:

· Schema information: this information defines the structure of the MPEG-7 description;

· Descriptions information: this information is either the complete description of the multimedia content or fragments of the description.

The delivery layer of a complete application may also be capable of providing the multimedia content data if requested. Such delivery mechanisms is outside the scope of this specification. Existing delivery tools may be used for this purpose.

MPEG-7 data can be represented either in textual format, in binary format or a mixture of the two formats, depending on application usage. MPEG-7 defines a unique mapping between the binary format and the textual format. A bi-directional loss-less mapping between the textual representation and the binary representation is possible.

The syntax of the textual format fragment payload is defined in Part 2 (Description Definition Language) of the standard. The syntax of the binary format is defined in Part 1 (Systems) of the standard. Schema are defined in Parts 3, 4 and 5 (Visual, Audio and Multimedia Description Schemes) of the standard.

At the compression layer, the flow of Access Units (either textual or binary encoded) is parsed, and the content description is reconstructed. MPEG-7 does not mandate the reconstruction of a textual representation as an intermediate step of the decoding process. The MPEG-7 binary stream can be either parsed by the BiM parser, transformed in textual format and then transmitted in textual format to further reconstruction processing, or the binary stream can be parsed by the BiM parser and then transmitted in proprietary format to further processing.

MPEG-7 Access Units are further structured as commands encapsulating the schema or the description information. Commands provide the dynamic aspects of the MPEG-7 content. They allow a description to be delivered in a single chunk or to be fragmented in small pieces. They allow basic operations on the MPEG-7 content such as updating a descriptor, deleting part of the description or adding new DDL structure. The reconstruction stage of the compression layer updates the description information and associated schema information by consuming these commands. Further structure of the schema or description is out of the scope to this specification.

5.2 Access Unit
In general, a content description tree can be generated, at the receiver side, by incremental transmission of its sub-tree fragments. Clearly, there are more than one way to decompose a tree into its fragments. This is determined by the encoder and it is not the task of this standard to specify how this is done. Figure 3, illustrates an example of a description tree that is broken into two fragments.

The definition of Access Unit (AU) borrows from the generalization of this type of incremental tree build up in the following sense: First, an Access Unit is an MPEG-7 system data-type to which a timing information can be attached. Hence, no two Access Units shall carry the same timing information. This timing information can, for example, be used for synchronization purposes between the transmitter and the receiver and it is usually carried by the transport layer packets. An Access Unit is composed of one or more Fragment Update Units. A FragmentUpdateUnit consists of three parts: 1) A navigation part which points to the location in the description tree where the update command is to take place; 2) an update command part which specifies the type of update to be executed (e.g., add or delete a fragment); and 3) a fragment payload which provides the value for the fragment to be added or to be replaced by. Access Unitss are represented in both textual as well as binary form. In sections 6 and 7 detail descriptions of syntax and semantics for each representation will be given.

5.3 Normative interfaces

5.3.1 Description the normative interfaces

The objective of this section is to describe MPEG-7 normative interfaces. MPEG-7 has two normative interfaces as depicted in Figure 4 and further described in this section.

[image: image7.wmf]MPEG-7

Textual

Encoder

MPEG-7

Textual

Decoder

Access Unit

Textual

 Format

MPEG-7

Binary

Encoder

MPEG-7

Binary

Decoder

Access Unit

Binary

 Format

Content

Content

Description

Figure 4 - MPEG-7 Normative Interfaces

Content : These are the data to be represented according to the format described by this specification. Content refer either to essence or to content description.

MPEG-7 Binary/Textual Encoder : These processes transform the content into a format compliant to this specification. The definition of these processes is outside the scope of this specification. They may include complex processing of the content such as features extraction.

Textual Format interface : This interface describes the format of the textual access units. The MPEG-7 Textual Decoder consumes a flow of such Access Units and reconstruct the content description in a normative way.

Binary Format Interface : This interface describes the format of the binary access units. The MPEG-7 Binary Decoder consumes a flow of such Access Units and reconstruct the content description in a normative way.

MPEG-7 Binary/Textual Decoder : These processes transform data compliant to this specification into a content description. The format of the reconstructed content description is outside the scope of this specification.

5.3.2 Validation of the standard

The objective of this section is to describe how proof can be established that the binary representation and the textual representation provide dual representations of the content. The process is described in Figure 5 and further described in this section.

[image: image8.wmf]MPEG-7

Textual

Encoder

MPEG-7

Textual

Decoder

Access Unit

Textual

 Format

MPEG-7

Binary

Encoder

MPEG-7

Binary

Decoder

Access Unit

Binary

 Format

Content

Description

Content

Description

Content

Description

Generate Canonical

Representation

Canonical

Equivalence

Generate Canonical

Representation

Figure 5 - Validation process

In addition to the elements described in section 5.3.1, the validation process involves the definition of a canonical representation of a content description. In the canonical space, content description can be compared. The validation process works as follows:

1. A content description is encoded in a loss-less way in textual and in binary format, generating two different representation of the same entity.

2. The two encoded descriptions are decoded with their respective binary and textual decoders.

3. Two canonical descriptions are generated from the reconstructed content descriptions.

4. The two canonical descriptions shall be equivalent.

The definition of the canonical representation of an XML document is defined in Canonical XML [10].

6 Textual Format

6.1 Decoder Configuration

The textual decoder configuration specified in this section is used to configure parameters required for the decoding of the textual access units.

6.1.1 Syntax

<complexType name="DecoderConfig">

<element name=”DigitalSignature” type=”DigitalSignatureType”

minOccurs=”0” maxOccurs=”1”/>

<element name="SchemaReference" type="uriReference"

minOccurs="1" maxOccurs="unbounded"/>

<element name=”InitialAccessUnit” type="mpeg7:AccessUnitType"

minOccurs=”1” maxOccurs=”1”>

<attribute name=”SystemsProfileLevel” type=”unsignedByte”/>

</complexType>

<simpleType name=”DigitalSignatureType”>

<restriction base=”binary”>

<length value=”16”/>

<encoding value=”base64”/>

</restriction>

</simpleType>

6.1.2 Semantics

 DigitalSignature: is used for authentication purposes and it is an optional field, 128-bit long. The MPEG-7 Standard does not however specify how to design or use this digital signature, this is left up to the user, instead.

SchemaReference: a list of URIs to reference the schemas (using the namespaces construct). Not all terminals, however, may be capable of parsing new schemas; some may be restricted to recognizing particular URIs.

InitialAccessUnit: supplies the initial description that forms the basis of the ‘reset’ and the initial state.

SystemsProfileLevel: is used to indicate which Systems profile and level is being used. Table 1 in Clause 7.1 provides the code associated with each defined Systems profile and level.

6.2 Access Unit

6.2.1 Syntax

<element name="AccessUnit" type="mpeg7:AccessUnitType"/>

<complexType name="AccessUnitType">

<sequence>

<element name="FragmentUpdateUnit" type=”mpeg7:FragmentUpdateUnitType”

minOccurs=”1” maxOccurs=”unbounded”/>

<element name=“DigitalSignature” type=”mpeg7:DigitalSignatureType”

minOccurs=”0” maxOccurs=”1”/>

</sequence>

<attribute name=“Order” use=”default” value=”seq”>

<simpleType>

<restriction base=”string”>

<enumeration value=”seq”/>

<enumeration value=”par”/>

</restriction>

</simpleType>

</attribute>

</complexType>

6.2.2 Semantics

DigitalSignature: is used for authentication purposes and it is an optional field, 128-bit long. The MPEG-7 Standard does however not specify how to design or use this digital signature, but this is left up to the user.

FragmentUpdateUnit: An AU is composed of a sequence of FragmentUpdateUnits. A FragmentUpdateUnit is the container for navigation, update command and fragment payload elements. These elements are used for the selection and execution of fragment update operations.

Order: is used to signal as to whether the update order should be preserved between a sequence of fragment update commands. A value of “seq” implies that the order is to be preserved when executing the update commands. “par” value, on the other hand, implies that update commands can be executed in any order.

6.3 Fragment update unit

<complexType name=”FragmentUpdateUnitType”>

<element name=”Navigation” type=”mpeg7:XPathType”

minOccurs=”1”/>

<element name=”UpdateCommand”

 type=”mpeg7:UpdateCommandType” minOccurs=”1”/>

<element name=”FragmentPayload” type=”mpeg7:FragmentPayloadType”

minOccurs=”0” maxOccurs=”1”/>

</complexType>

6.3.1 Navigation

 Navigation is an XPath expression that is used to provide the context node.

6.3.2 Fragment update command

<simpleType name=”UpdateCommandType”>

<restriction base=”string”>

<enumeration value=”AddFragment”/>

<enumeration value=”DeleteFragment”/>

<enumeration value=”ReplaceFragment”/>

<enumeration value=”Reset”/>

</restriction>

</simpleType>

AddFragment: adds the fragment to the context node established by navigation using an XPath expression.

ReplaceFragment: change the fragment of the context node established by navigation using an XPath expression.

DeleteFragment: deletes the fragment of the context node established by navigation using an XPath expression.
Reset: sets the context node to the node pointed by the navigation in the description tree generated by the base AU during Initialization Process.
6.3.3 Fragment payload

<complexType name=”FragmentPayloadType”>

<complexContent>

<element name="Payload" type=”mpeg7:Mpeg7RootType”>

<attribute name=”PartialInstantiation” type=”boolean”

use=”default” value=”false”/>

</complexContent>

</complexType>

PartialInstantiation: is an attribute used to signal that one or several elements of the fragment have an empty content.

7 Binary Format

7.1 Binary Decoder Configuration

The binary decoder configuration specified in this section is used to configure parameters required for the decoding of the binary access units.

7.1.1 Binary Decoder Configuration Syntax

DecoderConfiguration {
Number of bits
Mnemonic

 DigitalSignatureFlag
1
bslbf

 if(DigitalSignatureFlag == 1) {

 DigitalSignature
128
bslbf

 }

 SystemsProfile&LevelIndication
8
bslbf

 UnitSize
3
bslbf

 do {

Length
8
bslbf

SchemaURN[k++]
8*Length
bslbf

 NextSchemaURN
1
bslbf

 } while (NextSchemaURN == 1)

 NumberOfChangedNodes
5 - infinite
vuimsbf

 for (i=0; i<NumberOfChangedNodes; i++) {

 NavigationMode
3
bslbf

 NavigationPath()

DeriveFlag
1
bslbf

 NumberOfComplexChildren
5 - infinite
vuimsbf

 NumberOfSimpleChildren
5 - infinite
vuimsbf

 }

 InitialAccessUnit()

}

7.1.2 Binary Decoder Configuration Semantics

DigitalSignatureFlag: this is a 1 bit flag that if set to ‘1’ signals that a digital signature follows; if set to ‘0’ it signals that no digital signature is present.

DigitalSignature: this is a 128 bit field that can be used for representing a digital signature used for authentication purposes. It is an optional field and its presence is signaled by the DigitalSignatureFlag defined above. The MPEG-7 Standard does however not specify how to design or use this digital signature, but this is left up to the user.

SystemsProfileAndLevelIndication: this is an 8 bit code used to signal the profile and level identification of the MPEG-7 Systems Standard. The meaning of the code is specified in the following table.

SystemsProfileAndLevelIndication
Meaning

00000000
Reserved

00000001 – 11111111
To be determined

Table 1: Systems Profile and Level indication
UnitSize: this is a 3 bit code that specifies the amount of buffering, in terms of patterns in the binary fragment payload (see Clause 8), that is needed before the patterns are transmitted. The use of UnitSize will allow the selection of smaller buffer sizes for delay-sensitive applications. The following Table specifies the size of buffer in terms of elements.

UnitSize
Meaning

000
default

001
1

010
8

011
16

100
32

101
64

110
128

111
reserved

Table 2: UnitSize indication
A UnitSize=”000” implies the use of an infinite size buffer i.e., all the elements in a particular description are buffered, so that the number of times they occur could be prefixed before the transmission of the values itself. A UnitSize=”001” implies no buffering i.e., each element is transmitted followed by a continuation bit. The continuation code would be a 1-bit value, with ‘1’ signifying a continuance and ‘0’ signifying termination. For a more detailed specification please refer to Subclause 8.4.1.4.1.2.

Length: this is an 8 bit code that signals the necessary size in bytes to represent the SchemaURN[k] following this element in ASCII representation.

SchemaURN[]: this is a vector of bytes representing the ASCII representation of a URNs to reference the schemas (using the namespaces construct) that are needed for the decoder to decode the binary access units. The value ‘k’ which is used as index for the list of schema is initialized with ‘0’ and increased for each new SchemaURN received.

NextSchemaURN: this is a 1 bit flag that if set to ‘1’ signals that another SchemaURN follows, and if set to ‘0’ signals that no other SchemaURN will be received.

NumberOfChangedNodes: this is a bit code of arbitrary length with minimum 5 bits that signals the number of changed elements in an extended MPEG-7 DS that is derived from a native (i.e. standardized) MPEG-7 DS. This number is decoded as described in Clause 7.3.1.4.

NavigationMode: this is a 3 bit code that specifies the navigation mode used to address an element of the changed data type to which changes apply. The NavigationPath() for this addressing is decoded as specified in Subclause 7.3.1). The meaning of the 3 bit code for the navigation mode is defined in Table 4 in Subclause 7.3.1.1
DeriveFlag: this flag specifies if a new derived datatype is added in the inheritance tree (1) or an existing datatype is redefined (0).

NumberOfComplexChildren/NumberOfSimpleChildren: these are bit codes of arbitrary length with minimum 5 bits that signals the number of children of complex respectively simple type of the extended data type. This number is decoded as described in Clause 7.3.1.4.

InitialAccessUnit: supplies the initial description that forms the basis of the ‘reset’ and the initial state.

7.2 Binary Access Unit

A binary access unit is composed of one or more binary fragment update units that represent a fully or partially instantiated sub-tree of the description. These fragment update units are described in detail in Clause 7.3.

7.2.1 Binary Access Unit Syntax

AccessUnit {
Number of bits
Mnemonic

 DigitalSignatureFlag
1
bslbf

 if(DigitalSignatureFlag == 1) {

 DigitalSignature
128
bslbf

 }

 ParallelExecutionOrder
1
bslbf

 do {

 FragmentUpdateUnit()

 NextFragmentUpdateUnitFlag
1
bslbf

 } while (NextFragmentUpdateUnitFlag == 1)

}

7.2.2 Binary Access Unit Semantics

DigitalSignatureFlag: this is a 1 bit flag that if set to ‘1’ signals that a digital signature follows; if set to ‘0’ it signals that no digital signature is present.

DigitalSignature: this is a 128 bit field representing a digital signature used for authentication purposes. It is an optional field and its presence is signaled by the DigitalSignatureFlag defined above.

ParallelExecutionOrder: this is a 1 bit flag that if set to ‘1’ specifies that the execution order of update commands is in parallel i.e., order in executing update commands needs not be preserved. If set to ‘0`it specifies that the execution order of the update commands shall be the same as the transmission order.

NextFragmentUpdateUnitFlag: an Access Unit is composed of a sequence of fragment update units. NextFragmentUpdateUnitFlag is used to signal the continuation (NextFragmentUpdateUnitFlag==1), or termination (NextFragmentUpdateUnitFlag==0) of the sequence.
7.3 Binary Fragment Update Unit

In general, each MPEG-7 description starts with a so-called MPEG-7 root element, which can contain one or more MPEG-7 description schemes. Those MPEG-7 DSs that are children of a root element are in the following referred to as “top level elements”. Since all MPEG-7 descriptions are hierarchically defined, they can be interpreted as a description tree, as shown in Figure 6.

[image: image9.wmf]Top level node

(e.g. DS #1)

Root node

Top level node

(e.g. DS #2)

Figure 6 - Example for tree representation of MPEG-7 description

Since a tree representation of the description is used, the root element and the top-level element are also referred to as “root node” and “top-level node” in the remainder of this document. This tree representation will also be used in this section in order to describe how the binary access units are decoded.
A binary access unit consists of the concatenation of one or more binary fragment update units, also referred to as BiM Units in the remainder of this document. Each BiM Unit looks in principle like follows:

[image: image10.wmf]BiM Unit

Navigation

Path

Fragment Update

Command

Fragment

Payload

Navigation

Mode

Fragment Update

Header

Figure 7 - Principle structure of a BiM Unit

A BiM Unit is the functional equivalent of the function “FragmentUpdateUnit()” used in the syntax definition for the binary access unit. Each BiM Unit consists of 5 parts, which will be shortly described in this section and which are described in detail in the following sections. However, from now on no longer pure binary syntax tables and semantics definitions are used in order to define the BiM Units. Instead, the bit sequence that represents a BiM Unit is constructed by concatenation of the bit sequences for each of those elements. How to decode those parts and how to construct the respective bit sequences is specified in each of the respective sub-sections.

The first part of a BiM Unit is the fragment update header, which is defined below.
Fragment Update Header Syntax

FragementUpdateHeader {
Number of bits
Mnemonic

byte_alignement()

ExtendedFragment
1
bslbf

if (ExtendedFragment) {

SkipLengthFlag
1
bslbf

if (SkipLengthFlag) {

SkipLength
5 - infinite
vuimsbf

}

}

}

Fragment Update Header Semantics

ExtendedFragment: this is a one bit flag that signals if the BiM Unit contains data according to an extended MPEG-7 DS (ExtendedFragment == 1) or if it contains only data according to a native (i.e. standardised) MPEG-7 D or DS (ExtendedFragment == 0).

SkipLengthFlag: this is a one bit flag that indicates in case of a BiM Unit containing data according to an extended MPEG-7 DS whether the extension can be skipped by the length indication (SkipLengthFlag==1) or by using a RandomAccessMarker (SkipLengthFlag==0).

SkipLength: This field indicates the length in number of bits until the end of this BiM Unit.
After the fragment header follows the navigation mode. It is used to signal fragment (i.e. sub-tree) of the description scheme is updated with this BiM Unit. Three kinds of addressing sub-trees are possible:

· relative addressing with respect to the node the decoder is currently in

· absolute addressing with respect to the current top-level node of the DS in which the decoder is currently in

· absolute addressing with respect to the root node

The navigation modes are described in detail in Clause 7.3.1.

The next part of the BiM Unit is the navigation path, i.e. the absolute or relative address of the fragment that is updated by the BiM Unit. The address (also referred to as identifier or ID) of the top-level DSs consists of an 8 bit code that is specified in the following table.

ID_of_TopLevelElement
MPEG-7 top level DS type

0000 0000
Reserved

0000 0001
BasicDescription

0000 0010
ContentDescription

0000 0011
ContentTypeDescription

0000 0100
ImageDescription

0000 0101
VideoDescription

0000 0110
AudioDescription

0000 0111
AudioVisualDescription

0000 1000
MixedContentDescription

0000 1001
CollectionDescription

0000 1010
ContentAbstraction

0000 1011
WorldDescription

0000 1100
ModelDescription

0000 1101
ViewDescription

0000 1110
SummaryDescription

0000 1111
VariationsDescription

0001 0000
UserDescription

0001 0001 – 1111 1101
Reserved

1111 1110
This code signals that after this branch an extension of a pre-defined MPEG-7 D or DS follows, whose semantics and meaning are not specified in the present standard, but depend on the user or application of the extended DS.

1111 1111
Reserved

Table 3 - IDs of MPEG-7 top-level elements (DS types)

The addresses for subsequent sub-elements (children) of top-level DSs are calculated using local path codes (in the remainder of this document also referred to as “tree-branch-codes”) between nodes and their children. The calculation of these addresses is described in detail in section 7.3.1.

The third part of a BiM Unit is the fragment update command, which signals what kind of update shall be performed. Three possible update commands are provided, i.e. “add” a fragment, “replace” a fragment and “delete” a fragement. Finally, the command is executed: in case of “add” or “replace”, the payload of the fragment is contained in the fourth component of the BiM Unit; in case of “delete” the fourth component of the BiM Unit is empty. After the command has been executed (i.e. the fragment payload is decoded or the fragment is deleted), the decoder fragment update is finalized and the next BiM Unit can be decoded. The fragment update commands are described in detail in Clause 7.3.2. The decoding of the binary payload is described in detail in Clause 8.

7.3.1 Navigation

The navigation section of the BiM Update Fragment is itself divided into two parts: The navigation mode selection and the navigation path.

7.3.1.1 Navigation Mode

The code word for the navigation mode selection has a fixed bit length of 3 bits as shown in Table 4and is followed by the navigation path of variable length. The navigation path is composed of consecutive Tree Branch Codes (TBCs) where each TBC describes a fraction of the path at a node within the tree of the description. The nodes in this tree represent the elements of complex type in the description. Thus the navigation path is a sequence of local navigation paths which specify a tree branch at each node contained in the path through the tree (see Figure 8). The navigation mode specifies how the navigation path has to be interpreted by a BiM decoder:

Code
Navigation Path
Navigation Mode

000

Reserved

001
ID_of_TopLevelElement + <TBCs>
Navigate in absolute addressing mode from the ROOT node of the MPEG-7 description to the node specified by the ID of the top level node and by the subsequent TBCs.

010
RandomAccessMarker + ID_of_TopLevelElement + <TBCs>
Navigate in absolute addressing mode from the ROOT node of the MPEG-7 description to the node specified by the ID of the top level node and by the subsequent TBCs. Include random access marker at the beginning, navigation address is byte-aligned.

011
<TBCs>
Navigate in absolute addressing mode from the current top level node to the node specified by the TBCs

100
RandomAccessMarker + <TBCs>
Navigate in absolute addressing mode from the current top level node to the node specified by the TBCs. Include random access marker at the beginning, navigation address is byte-aligned.

101
<TBCs>
Navigate in relative addressing mode from the current node to the node specified by the TBCs

110

Exit from root: This navigation command terminates the session.

111

Reserved

Table 4 - Code Table of Navigation Mode

The codes for the ID_of_TopLevelElement are specified in Table 3. The code 110 terminates the transmission of the description.

Absolute and relative navigation paths are aimed at locating an instance node within the tree structure. While an absolute path expresses the way to go from the MPEG-7 description root of the instance structure or the Top Level Node of the current node to the target element, a relative path is intended to specify the path starting from current position respectively node (see Figure 8).

[image: image11.wmf]: current node prior to a navigation command

Root Node

Top Level Node

Root Node

Top Level Node

Root Node

Top Level Node

Figure 8.a – Absolute path with respect to the Root Node
 Figure 8.b - Absolute path with respect to the Top Level Node
 Figure 8.c – relative path with respect to the current node

7.3.1.2 Navigation Path

The <TBCs> which are parameter of the navigation command and follow the navigation mode selection code word in the bitstream are generated from the Schema on which the instantiated description is based on. The schema definition specifies the possible children of each node in the description which have to be addressed by different TBCs. Children of a node of the description tree can be elements of complex and simple type and attributes. In the schema definition the possible types of children are specified and additionally their maximum number of occurrences. Accordingly, to address tree branches within an instantiated element of complex type in the description, the TBC contains a relative address identifying a child element and additionally the position if the respective child element can be instantiated more than once. A navigation path is an ordered list of consecutive Tree Branch Codes (TBCs).

The Tree Branch Code tables are specific for each named element of complex type in the description scheme. So for navigation the type of the instantiated element determines also the code table which is used. Thus all elements of the same named complex type have the same code tables. Each child element and each attribute of the named complex type is assigned a code word called SchemaBranchCode (SBC) that refers to it. If a named complex type contains one or several potentially nested elements of anonymous complex type definition then additionally a SBC code word is assigned to each of the child elements and attributes in these anonymous complex types. The normative algorithm for generating the Tree-Branch-Codes (TBC) from the description scheme is described in the following.

There are two different TBC tables for each named complex type in the description scheme: The table of type A of the named complex type contains only references to the child elements of complex type and additionally one code word to signal the termination of the path (Path Termination Code). The table of type B additionally contains also the references to the attributes and elements of simple type but does not contain the path termination code. For navigation within the description tree both table types also contain one code to refer to the parent node. Furthermore, in each TBC table one code is reserved for extensions as defined in section 7.3.1.

A TBC is composed of three parts: the SchemaBranch which corresponds to the different child element definitions specified in the schema, the Type Code which is only present if a type cast is possible for this child element i.e. the type of the element is the base type of further derived types and the Position which is only present if multiple occurences of this element are present.

Tables 1a and 1b show examples of code table type A and type B, respectively.

Element or ComplexType name (Table Type A)

TBC
Tree Branch

SchemaBranch

Code
Inheritance

Index
Position

000
--
--
Reference to parent

001
--
[Pos.Code]
Extension

010
[Type Code]
[Pos.Code]
Reference to first named child of complex type

011
[Type Code]
[Pos.Code]
Reference to named child of complex type

100
[Type Code]
[Pos.Code]
Reference to named child of complex type

101
[Type Code]
[Pos.Code]
Reference to named child of complex type

110
<empty>
<empty>
< empty >

111
--
--
 Path Termination Code

Table 5 – Example of a Tree Branch Code Table (Table Type A)

Element or ComplexType name (Table Type B)

TBC
Tree Branch

SchemaBranch

Code
Inheritance

Index
Position Code

0000
--
--
Reference to parent

0001
--
[Pos.Code]
Extension Code

0010
[Type Code]
[Pos.Code]
Reference to first child

0011
[Type Code]
[Pos.Code]
Reference to second child

0100
[Type Code]
[Pos.Code]
Reference to third child

....
...
...
....

1010
[Type Code]
[Pos.Code]
Reference to eighth child

1011
<empty>
<empty>
<empty>

....
...
...
....

1111
<empty>
<empty>
<empty>

Table 6 - Example of a Tree Branch Code Table (Table Type B)
The navigation path is built by concatenating TBCs. For all but the last TBC the codes from table type A are used while for the last TBC the codes from table type B are used. The path termination code (all bits 1) is used to signal that the immediately following TBC is the last TBC of the navigation path for which table type B is used. After having received this final TBC (from table type B) the decoder is assumed to be in the following state: The current node is the node specified by the navigation path except the final TBC, i.e. the path termination code indicates the current node. The decoder is in command mode for receiving further content update commands. The operand for these update commands is the node addressed by the final TBC (from table type B).

In order to support efficient searching and filtering the BiM bitstream is ordered in a way that first all Schema Branch Codes followed by the Type Code are sent and only then all Position Codes of the navigation path are sent as shown in Figure 10.

SBC 1 (Type A)
Type Code 1
SBC 2 (Type A)
Type Code 2
....
SBC n-1 (Type A)
Type Code n-1
SBC (Path Termination Code – Type A)
SBC n (Type B)
Type Code n
Pos Code 1
Pos Code 2
...
Pos Code n-1
Pos Code n

Figure 9: Structure of a navigation path

The first part of the navigation path contains the Schema Branch Codes and Type Codes which identify the element type when the type was changed by a type cast using the xsi:type attribute. This is signaled by a leading flag in the type code. This flag is not used in the case of an abstract type definition. The corresponding Position Code identifies the position of the element in the case that multiple occurrences are possible. As every node has a reference to its parent, it is also possible to move upwards in the description tree hierarchy when using a relative path. If the current node is the root node and the following SBC is the all-zero code (i.e. navigate to parent node) then the current node is defined to stay the root node. Likewise if the current node after having received the path termination code is the root node and the following SBC is the all-zero code (i.e. navigate to parent node) then the operand is defined to be the root node. When the decoder is initialized then the current node is the root node.

The assignment of the TBC is performed according to the following rules:

1. The number of different children is known from the description scheme and defines the length of the Schema Branch bitfield in the TBC according to the following rule: (ld(#of child elements + # of attributes + 3)(, where ld is the logarithm to basis two and (x(determines the smallest integer y for which y(x is true.

2. The all-zero Schema Branch code is always assigned to the reference to the parent node.

3. The SchemaBranch codes referring to the children are assigned sequentially in the order these are defined in the schema definition of this named element or type in the respective part of ISO/IEC 15938. In the case of a "choice" or "all" group the contained elements are ordered lexicographically. If datatypes are derived then codes for the children of the base datatype are assigned first.

4. In table type A the all-one Schema Branch Code is always used for the path terminating code.

5. The SBC number one is always assigned to the extension code for private extensions as described in Clause 7.3.1.4.

6. The Type Code is generated from the set of all non-abstract derived types which are derived from this named element of complex type. The named element of complex type is not counted. The Type Codes are assigned hierarchical with respect to the inheritance tree of complex types. The complex types which are siblings within the the inheritance tree are encoded in a lexicographical order.

7. The Position Code is calculated and represented according to the rule specified in subclause 7.3.1.3.

8. Elements which are grouped in a substitution group have additionally to code the address within that substitution group as an attribute after the TBC (this is not shown in the example figure above). This additional code is called SubstGrpSelect. Each element within an substitution group is assigned a SubstGrpSelect. The SubstGrpSelect codes referring to the elements are assigned sequentially starting from zero in the order these are defined in the canonical schema definition (after lexicographical ordering).

7.3.1.3 Position Coding

The position codes are distinguished in global and local codes. Local codes are used if an element only contains groups with maxoccurs <=1. Otherwise global position codes are used. In the case local position codes are used only elements with a maxOccurs greater one are encoded in a TBC including the position code whereas in the global case all elements contained in a complex type are encoded by TBCs including the position code.

The localPosition of a child element with maxOccurs greater one is encoded in the following way: The bit representation of the localPosition is the minimal number of bits needed to represent the number of maxOccurs in the schema definition. If the number of bits exceeds 4 then the vuimsbf encoding is applied.

The globalPosition of an element in a node n is defined by its range in the set of all the children of n:

The coding of globalPosition is optimized using the maxOccurs field of the different components of the content model.

A content model is a combination of SEQ, CHOICE, ALL and atomic elements. A Content Object is defined as an object of the content model (i.e. SEQ, CHOICE, ALL or an atomic elements) and is called CO. mCO specifies the maximal number of occurrences defined for a CO (defined by 'maxOccurs').

The maximal number M of elements of a CO is defined by the following rules :

· Sequence

defined as SEQ(CO1, …, COn).

if (((i / mcoi = 'unbounded') or (mSEQ = 'unbounded'))

M = 'unbounded'

else

M = mseq * ((mcoi)
· Choice

defined as CHOICE(CO1, …, COn).
if (((i / mcoi = 'unbounded') or (mCHOICE = 'unbounded'))

M = 'unbounded'

else

M = mCHOICE * max (mCOi)

· All

defined as ALL(CO1, …, COn).
if (mALL= 'unbounded')

M = 'unbounded'

else

M = mALL * max (mCOi)
· Atomic element
defined as COi
M = mCOi
Combining these rules, the maximum number M of elements of every content Model is computed. Accordingly

if M <= 65536 :

globalPosition is coded with (log2(M)(bits

if M > 65536 or M = 'unbounded':

globalPosition is coded using unsigned infinite integer coding (vuimsbf, see Clause 4.5)

7.3.1.4 Extension and forward/backward compatibility of navigation paths

The BiM specification supports a low complexity method for application specific, private (i.e. not officially registered) extensions of standard MPEG-7 Description Schemes using the Extension TBC which is present in each TBC table as shown in Table 5 respectively Table 6. The data following an extension code is in general not known. The decoder shall skip the unknown data using rule 4 as described below.

In addition, the BiM specification supports a mechanism for forward- / backward-compatibility with respect to possible future amendments of the MPEG-7 Standard, and for authorized extensions of standard MPEG-7 Description Schemes by registered bodies. This mechanism is described in this clause in the following

In order to support backward compatibility the following rules apply when defining and coding new DSs:

Rule 1: For a given named element of complex type with the code assignment according to the Table 5 and Table 6 new elements are inserted after existing elements. In the case of the table type A new elements are always inserted before the path termination code which therefore always to has the all-one code. This means that previously not used code words for the Schema Branch Codes are assigned to the new elements. The assignment procedure follows the rules described in clause 7.2.2. New elements must be optional to ensure forward compatibility (Note : this is a requirement of the textual representation). If there are not enough unused Schema Branch Codes available for the new elements then rule 2 applies.

Rule 2: If the extension of a given named element of complex type requires a longer code word for the Schema Branch Codes (i.e. the addition of the new elements increases the number of elements beyond the number that can be addressed with the original Schema Branch Code word length) then in a first step all unused code words are assigned to the first new elements. In the case of the table type A also the code word previously assigned to the Path Termination Code is assigned to a new element. In a second step the Schema Branch Code words are extended by adding one or several 0 bits as MSBs such that after extension all children can be represented. As an exception in the case of table type A, the Path Termination code word is extended by leading 1 bits such that at the end of this extension procedure the “all 1” code word is again assigned to the Path Termination Code. In the third step the remaining new elements are assigned to the newly created code words. Again, the assignment procedure follows the rules described in section 7.2.2. An example of an extended TBC table is shown below. The example named element of complex type in its original version has two child elements and it shall be extended by 4 additional child elements resulting in the following code assignment:

Extended TSN of an Element or ComplexType (Table type A)

TBC
Tree Branch

Schema Branch
Inheritance

Index
Position Code

000
--
--
Reference to father

001
--
[Pos. Code]
< Extension Code >

010
[Type Code]
[Pos. Code]
<Standard Element 1>

011
[Type Code]
[Pos. Code]
<Standard Path Termination Code> / <Extended Element 2>

100
[Type Code]
[Pos. Code]
<Extended Element 3>

101
...
[Pos. Code]
<Extended Element 4>

110
[Type Code]
[Pos. Code]
<Extended Element 4>

111
<empty>
--
 <Extended Path Termination Code>

Table 7: Example for an extended TBC table type A

The extension for the table type B is performed in the same way.

It can be seen that the original code words are preserved but only extended by a 0 bit at the MSB position. Consequently a decoder which is aware of the new DSs can still decode the instantiation of the old DSs by using the old code word lengths derived from the original DS. Note that the version number itself is sufficient for backward compatibility since the decoder can deduct from this information the code word lengths for each named element of complex type in the referenced (previous) version.
In order to support forward compatibility the following additional rules apply:
Rule 3: To enable an “old” decoder to decode “new” descriptions it is necessary to signal which named elements of conplex type have been extended and which are the new code word lengths in each changed TBC table. This information is transmitted in Decoder_Config() as specified in Clause 7.1. It is also signaled if the new datatype is a redefined one or derived one. In the latter case it was inserted at the correct position in the inheritance tree due to the order it is transmitted. Accordingly the extended Type Code of the new derived datatype is also known to the receiver.

Using the above extension a decoder – even an “old” decoder – can decode extended code words. An “old” decoder cannot decode the content associated with the new elements because it does not know the elements´ data types. Therefore rule 4 applies :

Rule 4: Information on how to skip the unknown content is inserted in the bitstream. Two modes for this are supported:

Mode 1: For each unknown element the length of the sub-tree is transmitted ahead. The length information is coded as specified in Clause 7.3.
Mode 2: A resynchronisation marker is used in the BiMFragment immediately following the unknown element / subtree.

The mode is signaled by the SkipLengthFlag in the BiMFragmentHeader.

7.3.2 Fragment update command

Also the content manipulation section of the BiM Unit is composed of two parts: the fragment update command and the BiM fragment payload. This section specifies syntax and semantics of the fragment update commands used in BiM. The BiM fragment payload is specified in the next section.

After terminating the navigation path, a fragment update command is expected.

The code tables for the fragment update commands defined in BiM are shown Table 8 below.

Code table for fragment update commands

Code Word
Command Name
Specification

000

Reserved

001
AddFragment
Add the content for the current node including its subtree only if the current node is empty with respect to the transmitted subtree

010
ReplaceFragment
Replance the content for the current node including its subtree even if existing content is going to be overwritten

011
DeleteFragment
Delete the current node including its subtree

100 – 110

Reserved

111
ESCAPE
Reserved for future extension

Table 8 - Code Table of Content Update Commands

Commands are applied to the node which are specified as operand by the navigation path.

[image: image12.wmf]: current node after navigation

Root Node

Top Level Node

Top Level Node

Root Node

Top Level Node

1.)

2.)

Execution of content manipulation command

Root Node

3.)

: current node after content manipulation

Figure 10 - The positions of the current node for different states within a BiM fragment.

The command code table contains the following codes:

AddFragment: adds the fragment at the specified position in the tree. The command is followed by the fragment payload(see Clause 8).

UpdateFragment: updates the subtree including the current position in the tree. The command is followed by the fragment payload (see Clause 8).

DeleteFragment: deletes the subtree including the current position in the tree.

8 BiM fragment payload

The decoding of a BiM fragment payload is defined in this section. This payload offers a backward and forward compatible encoding of descriptions. In order to achieve this backward and forward compatibility the description is coded into schema-consistent parts, a schema identifier is present before each schema consistent part. These identifiers are generated on the basis of URN defined by the last decoder configuration (see Clause 7.1). A length field is coded before each element which needs a forward compatible coding. This length field is used by the decoder to skip unknown part of the description. During the decoding process, the decoder keeps track of a SchemaMode flag. This schema mode is used to improve coding efficiency. The decoder can “freeze” the schema needed to decode, in this case the overload induced by forward compatible coding is removed.

8.1 Character string comparison

Many phases of the fragment encoding rely on a string comparison method. This method is based on the Unicode value of each character in the strings. The following defines the notion of lexicographic ordering:

If two strings are different, then either they have different characters at some index that is a valid index for both strings, or their lengths are different, or both.

If they have different characters at one or more index positions, let k be the smallest such index; then the string whose character at position k has the smaller value, as determined by using the < operator, lexicographically precedes the other string.

If there is no index position at which they differ, then the shorter string lexicographically precedes the longer string.

8.2 General Binary format

The general binary format of fragment payload is composed of a DecodingModes header immediately followed by the coding of the root element of the BiM fragment.

[image: image13.wmf]Root Element coding

allows_

skipping

allows_

partial_instantiation

allows_

sub-typing

DecodingModes

c.f Element coding

BiMFragmentPayload(){
Number of bits

DecodingModes()

ElementDecoding()

}

8.2.1 Decoding Modes
8.2.1.1 Syntax

DecodingModes(){
Number of bits

allows_skipping
2

allows_partial_instantiation
1

allows_subtyping
1

}

8.2.1.2 Semantic

A BiM fragment payload starts with a 4-bit header which specifies encoding modes.

allows_skipping : Specifies the mandatory nature of element lengths coding (c.f. 8.4.5).

· 00 - no length are coded,

· 01 - optional length coded,

· 10 - mandatory length.

allows_partial_instantiation : Specifies if the fragment contains partially instantiated elements (c.f. 0).

· 0 - no partial instantiation in the fragment,

· 1 - partial instantiation allowed.

allows_subtyping : Specifies if the fragment contains derived types (c.f. 8.4.4).

· 0 - no polymorphism in the sub-tree

· 1 - polymorphism is allowed

8.3 Element decoding

BiM fragment handles type derivation and element substitution. The general format of an element coding is the following:

[image: image14.wmf]SchemaMode

 Internal Element coding

8.3.1 Syntax

ElementDecoding(){
Number of bits

if (nbOfDeclaredSchema >1 and !SchemaFrozen) {

SchemaMode()

}

if (nbOfDeclaredSchema <= 1 || SchemaFrozen || SchemaMode =“no change“) {

Mono-SchemaElementContentDecoding ()

} else {

Multiple-SchemaElementContentDecoding ()

}

}

8.3.2 Semantic

nbOfDeclaredSchema is equals to the number of schema declared in the Decoder Configuration (see Subclause 7.1).

SchemaFrozen is a mode of the decoder. At the beginning of the BiM Fragment payload decoding the SchemaFrozen is set to false.

SchemaMode: At the beginning of each element, a schema mode information is coded. This schema mode defines whether the element is coded according to different schemas or not. If the schema is frozen for the sub-tree or if only one schema is needed for the decoding (when there is only one schema code in the schema dictionary of the decoder configuration) the schema mode is not coded.

Key
Schema Mode

0
no change

10
change the schema

111
freeze the schema

110
change and freeze the schema

No change, the decoding of the element is performed using the same schema that the one used for the decoding of its direct parent element content,

Change the schema, the decoding is done using multiple schemas as described in 8.3.3.2, this mode occurs

either in case of sub-typing i.e. when the value of the attribute ‘xsi:type’ identifies a types defined in another schema than the one of the direct parent element content,

or in case of substitution by an element defined in an other schema than the one of the direct parent element content.

Freeze the schema, the element and its descendants are coded using the same schema that the one used for the decoding of its direct parent element content. Therefore, the “schema mode” flag will not be present for the coding of the contained elements. The mode SchemaFrozen is set to true for the contained elements i.e. for the whole sub-tree.

Change and freeze the schema, this mode combines the change the schema and freeze the schema modes. Therefore, the element will be coded in several ElementContents. In each ElementContent, elements will be coded with only one schema: the schema specified by the schema identifier of this ElementContent.

8.3.3 Internal Element Decoding

The Internal element decoding is separated in two cases. The first case describes the decoding of elements according to a unique schema. The second case describes the decoding of elements in case of extensions i.e. according to multiple schema. The case 1 is a sub-case of the case 2.

8.3.3.1 Mono-Schema element content decoding : case 1 (one schema)

This decoding is used when the schema is frozen or when the overall fragment payload is coded according to one schema i.e. when there is only one schema declared in the decoder configuration. In this case, the general pattern for the Mono-Schema element content decoding is the following :

[image: image15.wmf]Length

TypeCode

attributes

content

SubstitutionCode

Mono-Schema element content decoding

8.3.3.1.1 Syntax

Mono-SchemaElementContentDecoding (){

Length()

SubstitutionCode()

TypeCode()

AttributesDecode()

ContentDecode()

}

8.3.3.1.2 Semantic

Length describes the coding length in bits of the data. This feature allows a fast access of elements in the stream as described in 8.4.5, but also it allows to skip unknown ElementContents in case of a forward compatible decoding.

SubstitutionCode indicates if a substitution occurs and which is the substitute element. It is described in 8.4.3

TypeCode encodes type information as described in 8.4.4,

AttributesCode which encodes the attributes of the element as described in 8.4.1,

ContentCode which encodes the content of the element which can be either a simpleType or a complexType.

8.3.3.2 Multiple-Schema Element Content Decoding : case 2 (Several schemas)

In this case, the element is coded in several schema-consistent parts called ElementContents. These element contents code different parts of the content of the same element defined in different schemas. This coding allows a decoder to skip element parts encoded using an unknown schema.

[image: image16.wmf]ElementContent1

according to S1

SubstitutionInfo

Length

ElementContent2

according to S2

ElementContent3

according to S3

...

Substitution

Flag

SchemaIdentifier

OfSubstitution

(SIS)

Multiple-Schema Element Content Decoding

8.3.3.2.1 Syntax

Multiple-SchemaElementContentDecoding (){
Number of bits

Length()

SubstitutionFlag
1

if (substitutionFlag) {

SchemaIdentifierOfSubstitution
(log2(NumberOfSchemaIdentifiers+1)(

}

do {

ElementContent(SchemaIdentifierOfSubstitution)

} while (endOfElementCode()== 0)

}

8.3.3.2.2 Semantic

Length describes the coding length in bits of the data. This feature allows a fast access of elements in the stream as described in 8.4.5, but also it allows to skip unknown ElementContents in case of a forward compatible decoding.

SubstitutionFlag: this flag is set to 1 when the element is substituted.
SchemaIdentifierOfSubstitution: This identifier refers to the schema where the substitute is defined.
ElementContent is defined in the following Subclause 8.3.4.
EndOfElementCode: The endOfElementCode is set to true if the content of the element is totally decoded i.e. the schema identifier of the last decoded element content is equal to EndOfMultipleElementContents.
8.3.4 ElementContent

An ElementContent defines the decoding of one schema-consistent part of the element content.

[image: image17.wmf]type (T)

Schema

Identifier (SI)

Substitution

Details

attributes

content

...

Substitute

Element

SubTypeDefined

Flag

8.3.4.1 Syntax

ElementContent(SchemaIdentifierOfSubstitution){
Number of bits

SchemaIdentifier
(log2(NumberOfSchemaIdentifiers+1) (

if (SchemaIdentifier == SchemaIdentifierOfSubstitution) {

SubstituteElement
(log2(Number possible substitute elements defined in the schema identified by SchemaIdentifier)(

SubTypeDefinedFlag
1

}

if ((SchemaIdentifier != SchemaIdentifierOfSubstitution

&& SchemaIdentifier != EndOfMultipleElementContents)

||

SubTypeDefinedFlag == 1) {

TypeCode()

If (not_restriction || firstElement) {

AttributesCode()

ContentCode()

}

}

}

8.3.4.2 Semantics

During the first ElementContent decoding, a firstElementContent mode is set to 1. In other ElementContents, firstElementContent is set to 0.

SchemaIdentifier: The schema identifier defines which schema is needed to decode this element content. It is one of the schema identifier value deduced from the schema dictionary carried by the last decoder configuration. The length of this field is equal to (log2(number of schema identifiers+1)(. The keys are assigned in the order of their definition in the decoder configuration. The last key (all one), noted “EndOfMultipleElementContents”, is used to mark the end of the element decoding.

SubstituteElement: The substitute element type must be a subtype of the substituted element type. Therefore, although the element name is unknown it is possible to partially decode its content model. The substitute element is defined in a schema noted SchemaIdentifierOfSubstitution. This field defines which element substitutes the expected element. It is generated as it is done in Mono-Schema element content decoding : case 1 (one schema) by using the alphabetically ordered set of possible substitute elements defined in the schema identified by SchemaIdentifier.

SubTypeDefinedFlag: indicates if a type information directly follows the SubstituteElement:

· 1: if a schema consistent sub-type part is coded in this element content,

· 0: if no a schema consistent sub-type part is coded in this element content.

TypeCode

This field is the identifier of the type used to code the element content. This field is defined in the schema associated to the “SchemaIdentifier” key. The key of the type is computed exclusively from the schema pointed by "SchemaIdentifier" according to the rules defined in Subclause 8.4.4.

Not_restriction

This flag is set to true if the current type is derived by extension from the previous type (the type used for the decoding of the previous element content). If many types separate the two types in the type hierarchy, it is set to true if one of this derivation is a derivation by extension. In other cases, this flag is set to false.

If this flag is equal to false, the element content is empty. It simply means that the previous and current types are only derived by restrictions. It then only provides type name.

AttributesCode

The AttributesCode of the first ElementContent (firstElementContent = 1) encodes the set of all the attributes of the type used for the encoding. The AttributesCode is decoded by the automaton generated by the rules defined in Subclause 8.4.2 for this type.

Following ElementContents encodes only the attributes added by the current type, to the previous type i.e. the type used in the previous element content. If many types separate the two types, the attribute code encodes all the attributes added by these types. This AttributesCode is decoded by an automata generated by the rules defined in 8.4.2 applied only on these “added” attributes.

ContentCode

The ContentCode of the first ElementContent (firstElementContent = 1) encodes the content of the type used for the encoding. The ContentCode is decoded by the automaton generated by the rules defined in 8.4 for this type.

As it is done for the AttributesCode, following ElementContents encode only the extended parts of the type. This ContentCode is decoded by a sequence automata (see 8.4) generated from the set of extensions which separates the current types and the type used in the previous ElementContent i.e. the extensions defined by these types are appended (in the order of the type hierarchy as it is defined in XML Schema) to form a sequence automata of the extensions.

8.4 Generating keys

In this section, C-like decoding tables are not used to describe the MPEG-7 binary format. Indeed, the described method is generic and therefore generates such tables given a DDL schema.

The process consists of generating keys for the decoding of content models. It relies on a prior schema analysis phase. This schema “compilation” generates finite state automata. These automata represent the binary format. Notice that automata are considered here as a formalization tools, and that implementation can diverge.

[image: image18.wmf]Binary

syntax

Schema

Compilation

Finite State

Automata

DDL Schema

Description

 sub-tree

BIM

Figure 11 - The decoding process

More precisely, the process generates a finite state automaton for every "complexType" of the schema. These finite state automata express complexType coding rules.

The decoding of a binary stream is done by the propagation of a token through these automata. Its propagation is guided by the binary stream. When the token faces different possible paths, it reads the bit stream to find the right way to go. This bits are consumed and can’t be used for other purpose. When the token enters certain states called type states, it triggers other type decoders.

8.4.1 Schema compilation and structure code

This part presents the process which will generate these automata. The process is composed of 4 phases.

Phase 1 – Schema realization

This phase flattens types inheritances. It realizes group references, element references, possible substitutions, possible sub-typing, imports and includes.

Phase 2 – Syntax trees generation

This phase produces a syntax tree for every complex type. These trees are transformed in order to ease binary encoding and improve compression ratio.

Phase 3 – Syntax Trees Normalization

This phase normalizes the syntax trees in order to produce a signature for every tree node. These signatures are used in phase 4 to unambiguously generate header keys.

Phase 4 – Finite State Automata generation

This final phase produces the finite state automata used by the coding/encoding process. While this process generates finite states automata, similar procedure can be applied to generates for instance c-like decoding tables.

[image: image19.wmf]2

DDL Schema

1

Finite State

Automata

4

Syntax

Trees

Normalized

Syntax Trees

3

Schema Compilation

Realized

schema

Figure 12 - The schema compilation

8.4.1.1 Phase 1 - Schema realization

During this phase, the schema is analyzed in order to produce a realized schema. A realized schema is a compiled version of the schema where inclusion of other schema files, element references, attributes references, attribute group references, group references, complex type inheritances, simple type inheritances, substitution groups, and namespaces support are realized.

A realized schema is generated by :

1. The realization of namespaces

· For each element, attribute, type, group, the qualified name is used as defined in XML Namespace.

2. The generation of realized complexTypes is done by

· Appending super type definition in the case of an extension. The content models of the type hierarchy are appended as defined by the DDL,

· Redefining type definition in a case of a restriction. The content model of a sub-type replaces the type of its super type,

· Replacing element references by their referenced definition.

3. The generation of realized simpleTypes is done by

· Merging its facets and the facets of its supertypes. In case of two identical facets the most constrained one is kept.

8.4.1.2 Phase 2 - Syntax tree generation

A syntax tree is then generated for every realized complex types.

Syntax trees are composed of item nodes, group nodes and occurrence nodes. Item nodes associate an element name to its type. Group nodes define composition group (sequence, choice or all). Occurrence nodes define occurrence information.

Syntax tree transformations

Syntax trees are then reduced to improve the compactness of the resulting binary format. These transformations simplify the complex type definition in a non destructive way. In the following figures, occurrence nodes are represented by “[minOccurs, maxOccurs]”, composition groups by the keywords “SEQ”, “CHOICE” or “ALL” and item nodes by the name of the element they describe possibly followed by its type between brackets.

a) Group simplification rule

This rule applies on every group that contains only one item (element or other group) whose minOccurs is equal to 0 or 1.

[image: image20.wmf]SEQ, CHOICE or ALL

X

[

n

s

,m

s

]

[

n

x

,m

x

]

X

[

n

x

.n

s

,

m

x

.m

s

]

with

n

x

= 0 or 1

b) Empty choice simplification

This rule applies on a choice when it contains at least one item (group or element) whose minOccurs equals 0. The minOccurs of the item is replaced by 1 and the minOccurs of the choice by 0.

[image: image21.wmf]CHOICE

[

n

C

,m

C

]

X1

[n

x1

,m

x1

]

Xi

[

0

,m

xi

]

Xn

[

n

xn

,m

xn

]

CHOICE

[

0

,m

C

]

X1

[n

x1

,m

x1

]

Xi

[

1

,m

xi

]

Xn

[

n

xn

,m

xn

]

c) Choice Simplification rule

This rule applies when a choice contains an other choice whose occurrence is strictly equals to 1.

[image: image22.wmf]CHOICE

[1,1]

CHOICE

X1

[n

x1

,m

x1

]

Xi

[

n

xi

,m

xi

]

Xn

[

n

xn

,m

xn

]

…

…

CHOICE

X1

[n

x1

,m

x1

]

Xi

[

n

xi

,m

xi

]

Xn

[

n

xn

,m

xn

]

…

…

8.4.1.3 Phase 3 - Syntax tree normalization

Syntax tree normalization gives a unique name to every group node in the syntax tree. It allows to order the nodes and finally give a key to them. This key will be needed during the automata construction phase.

A signature is generated for every element or group of elements (seq, choice, etc..). Every node signature is generated by the concatenation of its child nodes signatures. In case of a “choice” or a “all”, the children signatures are alphabetically sorted and then appended. In case of a “sequence”, the child signatures are appended in the order of their definition in the schema. Item node signatures are equal to their qualified element name.

8.4.1.4 Phase 4 - Finite state automata generation

A complexType automaton is recursively defined by the following rules :

1. Every node of the syntax tree produces an automaton,

2. A complex Type automaton is the automaton produced by its root node,

3. Every node automaton is generated by the merging of its child automata. The nature of the merging is dependent of the nature of the node.

At the end of the process, automata are “realized” in order to produce their transitions coding key.

8.4.1.4.1 Phase 4.a - Automata construction

8.4.1.4.1.1 Item Node automata

Definitions :

· Element transitions: Element transitions are crossed when an element is present in the description,

· Type states: Type states trigger specific type decoders when activated. The triggered decoder can be a specific datatype decoder in the case of a simpleType and a generic or a specific one in the case of a complexType,

Automata generation :

An item node automaton is composed of two states and a transition between them. The transition is an “element transition”. The target state is a “type state”.

8.4.1.4.1.2 Occurrence Node automata

Definitions :

· Loop start transitions: When crossed, they decode a number of occurrence (N) from the stream,

· Loop transitions: A loop transition is crossed N times (where N is the number decoded by the last loop start transition),

· Loop end transitions: The transition is crossed when the desired number of occurrence is obtained,

· Key transitions : Key transitions are used to read a key from the stream. This key will raise decoding ambiguity. During the automata construction, a signature is associated to its key transition. Its signature comes from the signatures generated during the syntax tree normalization phase,

· Shunt transitions : Shunt transitions are a special kind of key transitions. Their coding value is always equal to 0.

Automata generation :

An occurrence node automaton is generated by adding transitions and states to its child automaton. The shape of the resulting automaton depends on the minOccurs and maxOccurs values :

· case a: if minOccurs = 1, maxOccurs = 1

· no change to the child automaton

· case b: if minOccurs = 0, maxOccurs = 1

· two states are added to the automaton : a new start state and a new final state.

· a “Shunt” transition is added between the new start state and the new final state,

· a “Key” transition is added between the new start state and the old one, its signature is equal to the signature of the child node of this occurrence node.

· a simple transition is added between the old final state and the new one.

· case c: if maxOccurs > 1

· two states are added to the automaton : a new start state and a new final state.

· a “Key/Loop start” transition is added between the new start state and the old one, the key signature is equal to the signature of the child node of this occurrence node

· a “Loop end” transition is added between the old final state and the new one,

· a “Loop” transition is added between the old final state and the old start state.

· case c-2: if minOccurs = 0
· a “Shunt” transition is added between the start state and the final state,

Occurrence coding length

The occurrence coding length is coded with respect to the value of the field UnitSize defined in the last received Decoder Configuration. Occurrence automata add loops to the final automaton. Each loop is used to decode n similar consecutive patterns. There are two possible cases for this:

The UnitSize of the Decoder Configuration is set to “default” according to Table 2,

In this case, the “Loop start” transition reads an integer from the stream which represents the number of times the patterns will be present in the bitstream. The integer coding length (in bits) is computed with the following formula :

· if maxOccurs-minOccurs <= 65535 :

· (NumberOfOccurrences-minOccurs) is coded with ((log2(maxOccurs-minOccurs+1)(bits

· if maxOccurs-minOccurs > 65535 or maxOccurs = unbounded :

· (NumberOfOccurrences-minOccurs) is coded using unsigned infinite integer (vuimsbf) coding as defined in Subclause 4.5.

else

In this case, an extra-bit called continuation code is utilized to signal the loop continuation. This bit directly precedes a set of “UnitSize” repeated patterns. When equals to ‘1’, this continuation code signals that the patterns will be repeated “UnitSize” more times. If a unit is only partially filled then the continuation code is equal to ‘0’ and is followed by a bit-field (length = ceil(log2K)) which signals the number of similar patterns which are going to follow this block. The value of “K” is defined:

K = min[n, (max_occurs-min_occurs) – num (n]

num = Number of continuation bits with the value 1

Non-normative examples:

The following two figures illustrate the concept: The first one illustrates the case where every pattern is preceded by a continuation code

c
p1
c
p2
c
p3
c
p4

The second one illustrates the case where a group of consecutive patterns (Unit = n-elements; the value of n is defined by the value of the field UnitSize in the decoder configuration) is followed by a continuation code.

c
p1
p2
p3
p4
c
p5
p6
p7
p8

 Unit 1

 Unit 2

In case of 8 elements:

1
e1
e2
e3
e4
0
00
e5
e6
e7
e8

If the max_Occurs of a particular element is 230, and the unit size is 32. If the instant document contains all the 230 elements, then we have 7 units of completely filled blocks, which surmounts to 224 elements. A partial block follows this, but we don’t need a bit-field of 5 bits in length to code this partial block because only 6 elements are left. Therefore we code the number by using only 3 bits instead of the usual 5 bits.

8.4.1.4.1.3 Sequence automata

A sequence automaton is constructed by a merging of its child automata. The order of this merging is done according to the semantic of the XML Schema sequence i.e. the order of definitions in the schema.

8.4.1.4.1.4 Choice automata

A choice automaton is built by the parallel merging of its child automata:

Two new states are created : a new start state and a new final state,

Key transitions are added between the new start state and every start states of its child automata. The key signatures are equal to the signature of their corresponding child node,

Simple transitions are added between every final state of its children and its new final state,

8.4.1.4.1.5 All automata

The All automaton is slightly different from other automata because it can only combine item node automata (because of XML Schema restrictions). The All automaton is recursively constructed. It forms a tree of choices. Every level of this tree is used to choose an other element among those that are still possible.

8.4.1.4.2 Phase 4.b – Key realization

This final phase transforms the key transitions signatures into coding values. The coding value of a key transition is equal to its position in the ordered list of key signatures starting from the same state. If there exist a shunt transition, this shunt transition is always the first transition in this list. Their coding length (in bits) is equals to (log2(number of key transitions)(.
8.4.2 Specific case of attributes

In order to improve the coding, attributes are reordered during the encoding phase. This operation is conformant with the XML canonical form [5]58. Apart this specificity, attributes encoding is similar to element encoding.

Attributes are encoded as a set of consecutive patterns. These patterns are composed of two components:

· the attribute key, which defines the presence or the absence of an optional attribute,

· the attribute value.

[image: image23.wmf]first attribute

integer

string

...

last attribute

key

value

key

value

Figure 13 - Attributes coding format

The key for each attribute is either 0 or 1 for optional attributes. It is not coded for mandatory attributes.

Attribute coding rules :

· During the schema compilation, all the attributes are collected from the super types of the complex type.

· During the syntax tree normalization:

· all the attribute nodes defined as FIXED in the schema are suppressed,

· the attribute nodes are lexicographically sorted,

· During the automaton generation phase, the produced automaton is a sequence automaton.

8.4.3 Substitution

If an element can be substituted by other elements (they are in the same substitution group), the SubsitutionElementKey () is the index of the sorted set of all possible substitute elements of this element. Abstract element are not included in this set.

8.4.3.1 Syntax

SubstitutionCode(){
Number of bits

if (substitution_is_possible) {

SubstitutionFlag
1

if (SubstitutionFlag ==1)

SubstitutionElementKey
(log2(number of possible substitutes)(

}

}

}

8.4.3.2 Semantic

Substitution_is_possible: this flag is true when the element can be substituted i.e. there are elements in the same substitution groups as it is defined in XML Schema [5]

 PAGEREF _Ref509153758 \h
58.
SubstitutionFlag: this flag defines if the element is substituted by an other element.

SubstitutionElementKey: the key of the element in the ordered set of possible elements coded with (log2(number of possible substitutes)(bits
8.4.4 Type coding

The MPEG-7 Description Definition Language allows an element or an attribute to have different possible types:

· in case of element polymorphism (xsi:type),

· in case of the union simpleType.

Moreover, in specific cases elements cannot be coded at all :

· in case of a partial instantiation,

· in case of a nullable element.

The type coding takes these cases into account.

8.4.4.1 Syntax

TypeCode(){
Number of bits

SubtypingFlag
1

if (SubtypingFlag==1){

TypeInfo()

}

}

8.4.4.2 Semantic

SubtypingFlag: defines if the element has been sub-typed.
TypeInfo: the key of the entry in the ordered set of possible subtypes coded with (log2(size(set))(bits. The set of possible sub-types is computed in the following way:

· For simple types:

Possible union types: The set is constructed with every simple type sorted using their order of definition in the schema.

· For complex types:

Possible sub-types: The set of possible sub-types is alphabetically sorted.

Partial instantiation: In case of partial instantiation, a specific “uncoded type” is placed at the first entry of the set of possible types.

Nullable: To specify that a type is null, a specific type “nullable” is placed at the first entry of the set of possible types (if the uncoded type is not present) or at the second place (in other cases).

In case of complete instantiation mode (allows_partial_instantiation = 0) and allowed polymorphism (allows_subtyping = 1), the type info is not coded if the type of the element is not an union or if there is no sub-type defined for the type of the element.

8.4.5 Fast Access

Length information allows a fast skipping of undesired elements. It encodes the number of bits that should be skipped in order to reach the sibling element.

[image: image24.wmf]Fast

skipping

e

1

e

2

Fast

skipping

Fast

skipping

...

...

Figure 14 - Fast access feature

8.4.5.1 Syntax

Length(){
Number of bits
mnemonic

if (allows_skipping == 01) {

LengthFlag
1

if (lengthFlag == 1) {

Length

vuimsbf

}

}

else if (allows_skipping == 10) {

Length

vuimsbf

}

}

8.4.5.2 Semantic

LengthFlag: This flag specifies if the element length is coded when skipping is optional (allows_skipping = 01).

Length: This field encodes the element length in bits using vuimsbf coding.
8.4.6 Datatypes Coding

BiM encodes data with dedicated encoders. This section describes the datatypes coding format.

8.4.6.1 DDL Primitive datatype

· string: is encoded in UTF-8 [11],

· boolean: one bit, 0 = true, 1 = false,

· float: encoded as a IEEE 754 floating-point "single precision" [12],

· double: encoded as a IEEE 754 floating-point "double precision" [12],

· decimal: is encoded in UTF-8,

· timeDuration: is encoded in UTF-8,

· recurringDuration: is encoded in UTF-8,

· uriReference: is encoded in UTF-8,

· ID: is encoded in UTF-8,

· IDREF: is encoded in UTF-8.

8.4.6.2 Optimized datatype encoding

8.4.6.2.1 Integers

Constrained integers are coded using a dedicated datatype encoder. This encoder uses minExclusive, maxExclusive, minInclusive and maxInclusive facets to deduce the minimum coding length of the integer :

if the integer is constrained both for its minimum and maximum value :

compute the following values

min = minInclusive or minExclusive+1

max = maxInclusive or maxExclusive-1

and test them

if max-min <= 65535

(value – min) is coded with (log2(max-min+1)(bits

if max-min > 65535

(value – min) is coded using variable length integer coding (see Mnemonics vuimsbf in Subclause 4.5)

else the integer is coded by :

one bit to indicate the sign (0 : positive, 1 : negative)

abs(value) is coded using variable length integer coding (see Mnemonics vuimsbf in Subclause 4.5)

8.4.6.2.2 Enumeration

Every enumerated datatype generates a sorted dictionary of the enumeration values. The coded value is the key of the value in this dictionary. The coded value length (in bits) is equal to (log2(size(dictionary))(.
8.4.6.3 Lists

Each item of a list is encoded using its datatype encoder. The length of the list is placed at the beginning and is coded with the following rules:

 if maxLength-minLength <= 65535 :

(length-minLength) is coded with (log2(maxLength-minLength+1)(bits

if maxLength-minLength > 65535 or maxLength not constrained:

(length-minLength) is coded using variable length integer coding (see Mnemonics vuimsbf in Subclause 4.5)

Annex C
(informative)

MPEG-7 meta data flow

Figure 15 - MPEG-7 Metadata shows the flow of Metadata and Essence through the Content creation and delivery lifecycle. The stages in the life cycle are as follows:

[image: image25.wmf]Elaboration

Analysis

Synthesis

Composition

Packaging

Delivery

Interaction

Commission

Consumption

Library

Flow of

Metadata

Flow of Essence

Capture

Production

Post-production

Delivery

Consumption

Interfaces:

Metadata Server to Server

Metadata & Essence Stream

Metadata Client/Server

some

metadata

discarded

some

metadata

discarded

Figure 15 - MPEG-7 Metadata Flow

8.4.6.4 Commission

The Commissioning of the Content by the producer begins the Content creation cycle. At this stage the Content is wholly built up of Metadata representing original input, or consumer requirements derived from analysis of interaction (see below).

The output from Commissioning is Metadata describing the concept of the new Content.

8.4.6.5 Elaboration

Elaboration of the Content Concept is performed during pre-production. This stage may include script-writing, storyboarding, and research into archives. During Elaboration, the Content Concept is augmented with Metadata described the Content at a high level of abstraction, perhaps dealing with scenes and shots, continuity, location, cast, script and so on.

Elaboration is an iterative process.

The output from Elaboration is a greatly expanded description of the intended Content, in a number of DSes [TBD].

8.4.6.6 Capture

Capture of the raw Content is performed next. Capture includes shooting, graphic origination, archive research and acquisition. During Capture, the raw Essence is first brought into the Content database. Metadata is retrieved from Archive or is captured at the time of shoot or recording or is a manual input at this stage.

Note that Content may exist prior to either Commission or Elaboration.

Output from Capture consists of a Content database including unedited Essence and a further expanded repertoire of Metadata describing the unedited Essence, in a number of “Logging DS”es [TBD].

8.4.6.7 Analysis

Analysis of the raw Essence is performed next. Analysis includes the processes of feature extraction, motion analysis, and content analysis. Analysis may involve further reference to archived information.

Output from Analysis is a further expanded set of Metadata described in a number of different DSes [TBD] (c.f. various MDS outputs).

8.4.6.8 Synthesis

Synthesis is an iterative process in which extracted descriptions are merged with each other and with Content Plot Ds to synthesize useful descriptions of the raw Essence. These synthesized descriptions will be used in Composition (or Editing) and will be archived for future re-use.

Synthesis is an iterative process.

The total amount of Metadata associated with the Content may not increase substantially from the Synthesis phase.

Output of Synthesis is a new set of Metadata describing the raw Essence, in a number of “Multimedia DS”es [TBD]

8.4.6.9 Composition

Composition is the first phase of editing or cutting down the raw Essence to form the intended Content. This phase includes “Off-Line Editing” and many other creation and composition steps, which often include incorporation of additional archive material. It is an iterative process.

Composition uses the metadata derived from all earlier phases.

The output of Composition is a reduced collection of Essence in the Content Database plus a new set of Metadata which forms the Pull Lists and Edit Decision Lists plus additional description of composition steps.

8.4.6.10 Packaging

Packaging is the phase of building the final version of the Content to be distributed.

Packaging includes the creation of new Metadata describing the finished Content.

8.4.6.11 Delivery

The Delivery phase includes the transfer of Content from the production form to the delivery vehicle – content server, web server, packaged media, or broadcast.

At this stage additonal forms of description Metadata are needed, to describe content availability, access restrictions, etc.

8.4.6.12 Consumption

Consumption is the phase of viewing or receiving the Content.

Additional Metadata in this phase includes schedules, transient location information, decryption description etc.

8.4.6.13 Interaction

Interaction is the phase in which the cosumer interacts with the Content, perhaps following hyperlinks, exploring the coordinate space, placing additional information requests, purchase decisions etc.

8.4.6.14 Library

Library functions are used throughout the Content Creation process. It includes both deep Archive also known as long term storage and retrieval (with an emphasis on cataloguing Metadata) and Library access (where the emphasis is on search and retrieval).

Annex D
(informative)

Informative Educational Examples for the MPEG-7 BiM

9 Example for general structure

One of the main advantages of the BiM structure is to offer a high level of flexibility through the use of navigation commands with absolute and relative paths while using an optimized encoding of sub-trees. The instance tree is thus first divided into sub-trees with a flexible granularity. The encoder has the freedom to define points in the instance structure that will be located globally (or relatively for sake of compactness) in order to allow fast access to this given nodes and possible re-synchronisation. This allows the BiM stream to be scalable in the sense that the sub-trees can be transmitted or stored in any order, easing the access to the most important information in a given application context. 3 use case scenarios are described below as different examples to illustrate the need for different levels of fast access granularity.

· Maximum compression:

[image: image26.wmf]
· Maximum flexibility:

[image: image27.wmf]

…

· Application-specific choices:

[image: image28.wmf]
10 Example for decoding of sub-trees

10.1 General Example

Given the following schema,

<element name=”e1”>

<complexType>

<sequence>

<element ref=”my:e2” maxOccurs=”unbounded”/>

<element name=”e3” type=”string” minOccurs=”0”/>

</sequence>

</complexType>

</element>

<element name=” e2” type=”unsigned8”/>

and the following description :

<e1>

<e2>14</e2>

<e2>12</e2>

<e3>bon</e3>

</e1>

BiM generates the following binary format where Keyxx represents the Key of description item xx, NbOxx is its number of occurrences, and Vxx their values :

[image: image29.wmf]Body of e1

<e1>

Key

e1

NbO

e1

V

e1

Key

sequence

NbO

sequence

V

sequence

Key

e2

NbO

e2

<e2>

 …

V

e2

(

unsigned8)

<e2>…

V

e2

(

unsigned8)

Key

e3

NbO

e3

<e3>…

V

e3

(string)

Header of e1

The DDL schema defined in example 1 produces the automaton of e1, which models the possible encodings of any valid instance of e1.

[image: image30.wmf]
Figure 16 - A complexType automaton
A decoding scenario

In the example, the token starts at the “root” state. It has two possible paths, left or right. The token reads one bits to decide which path to take (only one bit is necessary to encode two possibilities), the given value will send it to the left state. When the token enters the left state, it triggers the automata of e1. The token then starts on state 0. It crosses the sequence transition (no bits). It crosses the e2 transition (no bits), decodes the occurrence number of e2 (infinite integer coding c.f. later). On state 2, it triggers the decoding of e2 (usigned8 = 8 bits) then moves to state 3. In state 3, it moves back to state 1 (no bits) because of the number of occurrence decoded during transition e2 crossing, etc..

The final result

The resulting binary format is (levels of gray express nesting, crossed boxes express an information which is not coded) :

[image: image31.wmf]Key

e1

0

only one element defined globally

NbO

e1

only one root element in the schema

Key

sequence

the content element is always a sequence

NbO

sequence

min Occurs = maxOccurs = 1

Key

e2

it must be e2

NbO

e2

00010

2 coded with an infinite integer coding

V

e2

00001110

14 coded as unsigned8

V

e2

00010111

23 coded as unsigned 8

Key

e3

0

the choice beetween nomore elements and e3

NbO

e3

only one expected

V

e3

bon

bon in UTF8 (size = 5 bits integer)

V

sequence

The resulting binary encoding of the example is :

0 00010 00001110 00010111 0 00011size %b8 %o8 %n8

=> 50 bits
10.2 Syntax tree generation

In the syntax tree figures, occurrence nodes are represented by “[minOccurs, maxOccurs]”, composition groups by the keywords “SEQ”, “CHOICE” or “ALL” and item nodes by the name of the element it describes possibly followed by its type between brackets.

The schema

<complexType name="CoordinateMapping">

<sequence maxOccurs="unbounded">

<element name="pixel" type="mds:IntegerVectorType"/>

<choice>

<element name="coordPoint"
type="mds:FloatVectorType"/>

<element name="srcpixel"
type="mds:IntegerVectorType"/>

</choice>

</sequence>

<element name="mappingFunct" type="mappingFunct"
minOccurs="0"

maxOccurs="unbounded"/>

</complexType>

The syntax tree

[image: image32.wmf]Item Node

Group Node

Occurrence Node

Figure 17 - The syntax tree of coordinate mapping

The syntax tree node signatures

The signature of the choice is

choicecoordPointsrcpixel,

(concatenation of alphabetically ordered signatures)
The signature of the lower sequence is
seqpixelchoicecoorPointsrcpixel

(concatenation of signatures in their order of definition)

The signature of the upper sequence is
seqseqpixelchoicecoorPointsrcpixelmappingFunct

(concatenation of signatures in their order of definition)

10.3 Syntax tree simplification

The following anonymous complex type :

[image: image33.wmf]
Figure 18 - A complex syntax tree

Becomes after simplification :

[image: image34.wmf]
Figure 19 - A reduced syntax tree

10.4 Attributes coding

The following complexType :

<element name=”A” type=”attributeExample”/>

<complexType name="attributeExample">

<attribute name="a2" type="unsigned3"/>

<attribute name="a1" type="string" use="required"/>

<attribute name="a3" type="string" use="required"/>

<attribute name="a5" type="string" use="required"/>

<attribute name="a4" type="string" use="fixed" value="word"/>

</complexType>

will generate the following automata:

[image: image35.wmf]
Figure 20 - Attributes automata
Therefore, the following element:

<A a1="v1" a2="2" a3="v3" a5="v5"/>

 is coded:

[image: image36.wmf]Key

a1

not coded

V

a1

00010 %v %1

v1 as UTF8

Key

a2

1

a2 is defined as optionnal

V

a2

010

2 as unsigned3

Key

a3

not coded

V

a3

00010 %v %3

v3 as UTF8

Key

a5

not coded

V

a5

00010 %v %5

v5 coded as UTF8

10.5 Decoding automata

In the following figures, “start states” are represented by boxes and “final states” by double circles.

[image: image37.wmf]pixel{

IntVect}

[image: image38.wmf]

Figure 21 - An item automaton

[image: image39.wmf]CHOICE

Poly

{

Poly}

[1,1]

Box

{Box}

[1,1]

[image: image40.wmf]

Figure 22 - A choice automaton

[image: image41.wmf]AdministrativeUnit

{

AdministrativeUnit }

[0,1]

[image: image42.wmf]

Figure 23 - An occurrence automaton

[image: image43.wmf]mappingFunct

{

mappingFunct}

[0,n]

[image: image44.wmf]

Figure 24 - An other occurrence automaton

[image: image45.wmf]SEQ

Units

{

SpatialUnits}

[1,1]

Interpolation

{

TempInterpType}

[1,1]

[image: image46.wmf]

Figure 25 - A sequence automaton

[image: image47.wmf]SEQ

Creation

{

CreationType}

[0,1]

RelatedMaterial

{

RelatedMaterialType}

[0,n]

[image: image48.wmf]

Figure 26 - An other sequence automaton

10.6 Realized automaton

In this example, the keys are coded on a single bit. The value of the “box key” is equal to 0, the value of the “Poly key” is equal to 1.

[image: image49.wmf]
Figure 27 - Automaton with key realized
10.7 Infinite unsigned integer coding

The integer “570” is coded :

0000 0010 0011 1010(570) => 110 0010 0011 1010

10.8 A forward compatible coding

In this example, a type T2, defined in a schema S2, is an extension of a type T1, defined in a schema S1. According to XML schema rules, the effective content model of T1 is composed of two parts, the first part comes from S1 while the second parts comes from S2.

[image: image50.wmf]T1

T2

Extension

S1

S2

import

Defined in S1:

<complexType name="T1">

<element name="x" type="integer”/>

</complexType>

Defined in S2:

<complexType name="T2">

<extension base="T1">

<element name="y" type="integer”/>

</extension>

</complexType>

Actually, the “effective” content model of T2 is:

<complexType name="T2">

<element name="x" type="integer”/>

<element name="y" type="integer”/>

</complexType>

The forward compatible encoding of an Element of type T2 is:

[image: image51.wmf]10

20

S1 part

S2 part

length

x

y

T1

T2

which corresponds to the following example:

<anElement>

<s1:x>10</s1:x>

<s2:y>20</s2:y>

</anElement>

Therefore a S1-decoder will be able to decode the S1 part and skip the S2 part. While an S2 decoder will be able to decode both parts.

Annex B
(informative)

Patent statements

The user's attention is called to the possibility that, for some of the processes specified in this part of ISO/IEC 15938, conformance with this specification may require use of an invention covered by patent rights.

By publication of this part of ISO/IEC 15938, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. Information regarding such patents can be obtained from the following organisations.

The table summarises the formal patent statements received and indicates the parts of the standard to which the statement applies. The list includes all organisations that have submitted informal patent statements. However, if no "X" is present, no formal patent statement has yet been received from that organisation.

Annex A
(informative)

Bibliography

[1] MPEG Requirements Group, ”MPEG-7: Context, Objectives and Technical Roadmap”, Doc. ISO/MPEG N2861, MPEG Vancouver Meeting, July 1999

[2] MPEG Requirements Group, ”MPEG-7 Overview Document V.3.0”, Doc. ISO/MPEG W3444, MPEG Geneva Meeting, June 2000

[3] MPEG Requirements Group, ”MPEG-7 Requirements Document V.11”, Doc. ISO/MPEG W3446, MPEG Geneva Meeting, June 2000

[4] XML Schema Part 0: Primer, W3C Candidate Recommendation, 24 October 2000 , http://www.w3.org/TR/xmlschema-0/
[5] XML Schema Part 1: Structures, W3C Candidate Recommendation, 24 October 2000, http://www.w3.org/TR/xmlschema-1/
[6] XML Schema Part 2: Datatypes, W3C Candidate Recommendation, 24 October 2000, http://www.w3.org/TR/xmlschema-2/

[7] Extensible Markup Language (XML) 1.0 (Second Edition), W3C recommendation, 6 October 2000, http://www.w3.org/TR/REC-xml/
[8] Namespaces in XML, W3C Recommendation, 14 January 1999, http://www.w3.org/T R/REC-xml-names/

[9] XML Path Language (Xpath) Version 1.0, W3C Recommendation, 16 November 1999, http://www.w3.org/TR/xpath.html
[10] Canonical XML - Version 1.0, W3C Candidate Recommendation, 26 October 2000, http://www.w3.org/TR/xml-c14n
[11] UTF-8, a transformation format of ISO 10646, IETF RFC 2279. F. Yergeau. January 1998, http://www.ietf.org/rfc/rfc2279.txt.

[12] IEEE Standard for Binary Floating-Point Arithmetic, Std 754-1985 Reaffirmed1990, http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html

+

=

Figure � SEQ Figure * ARABIC �3� - Decomposition of a content description tree into two fragments

2
2

_1034113051.doc

Root node

Top level node�(e.g. DS #1)

Top level node�(e.g. DS #2)

_1045618183.ppt

Transmission/Storage Medium

IP

MP4

Delivery

Layer

Multiplex

MPEG-2

ATM

...

Multiplexed Streams

Demultiplex

Multiplex

Compression

Layer

Elementary Streams

Application

APIs

Reconstruction

Description

Decoder

Schema

Decoder

BiM or Textual

Parsing

BiM or Textual

Decoding

Schema

streams

Description

streams

Multimedia

streams

Upstream

Data

Defines

Describe

_1045625037.doc

Navigation

Mode

Fragment �Payload

Fragment Update Command

Navigation Path

BiM Unit

Fragment Update�Header

_1045998916.doc

…

_1046017750.doc

Root Node

Root Node

Top Level Node

Top Level Node

Top Level Node

Root Node

: current node after navigation

1.)

2.)

3.)

Execution of content manipulation command

: current node after content manipulation

_1045998661.vsd
S1 part�

S2 part�

length�

10�

20�

x�

y�

T1�

T2�

_1045619925.vsd
allows_�skipping�

allows_�partial_instantiation�

allows_�sub-typing�

Root Element coding�

DecodingModes�

�

c.f Element coding�

_1045622261.vsd
 Internal Element coding�

SchemaMode�

_1045622643.vsd
�

Substitution�Flag�

SchemaIdentifier�OfSubstitution (SIS)�

ElementContent1
according to S1�

	Multiple-Schema Element Content Decoding �

SubstitutionInfo�

Length�

ElementContent2
according to S2�

ElementContent3
according to S3�

...�

_1045621464.vsd
Mono-Schema element content decoding �

Length�

TypeCode�

attributes�

content�

SubstitutionCode�

_1045618351.doc

Ext bits

0

1

Bit 8

Bit 11

Bit 11

Bit 9

Bit 10

Position Code represented by 12 bits

Bit 5

Bit 6

1

Bit 1

Bit 0

Bit 3

Bit 2

Bit 4

_1035614741.vsd
3�

Finite State Automata�

Schema Compilation�

Syntax Trees�

4�

Normalized Syntax Trees�

Realized schema�

2�

DDL Schema�

1�

_1044887419.vsd
�

Substitute�Element�

SubTypeDefinedFlag�

type (T)�

Schema�Identifier (SI)�

Substitution�Details�

attributes�

content�

...�

_1044789750.vsd
T1�

T2�

Extension�

S1�

S2�

import�

_1035560383.doc

SEQ, CHOICE or ALL

[nx,mx]

X

with nx= 0 or 1

[ns,ms]

[nx.ns , mx.ms]

X

_1035560870.vsd
key�

value�

first attribute�

key�

value�

last attribute �

...�

integer�

string�

_1035561680.doc

_1034698465.doc

Root Node

Root Node

Top Level Node

Top Level Node

Top Level Node

Root Node

: current node prior to a navigation command

_1035464987.doc

_1033293354.doc
[image: image1.wmf]

_1034058283.vsd
Binary syntax�

Schema�Compilation�

Finite State Automata�

Description
 sub-tree�

DDL Schema�

BIM�

_1034072165.ppt

MPEG-7

Textual

Encoder

MPEG-7

Textual

Decoder

Access Unit

Textual Format

MPEG-7

Binary

Encoder

MPEG-7

Binary

Decoder

Access Unit

Binary Format

Content

Content

Description

_1034074579.ppt

MPEG-7

Textual

Encoder

MPEG-7

Textual

Decoder

Access Unit

Textual Format

MPEG-7

Binary

Encoder

MPEG-7

Binary

Decoder

Access Unit

Binary Format

Content

Description

Content

Description

Content

Description

Generate Canonical

Representation

Canonical

Equivalence

Generate Canonical

Representation

_1034066350.vsd
�

...�

Fast
skipping�

e1�

e2�

Fast
skipping�

...�

Fast
skipping�

_1033302576.doc
[image: image1.png][0.1]

l

CHOICE

e

[1.%] .1 .1 .1 [1.*%] [1.*%] .1 .1

[image: image2.png]) / / | N\ N N \

q_comp{q_comp} quantizer_start_value{integer} num_subspaces{integer} boundary {integer} ColorQuantization{ AC23} bin_number {integer} colour_value{integer}

PR

[L1] [1.1] [1.1]

[image: image3.png]/ ' N

q_comp{q_comp} quantizer_start_value{integer} bin_number{integer}

_1033305068.doc
[image: image1.wmf]

Item Node

Group Node

Occurrence Node

_1033302486.doc
[image: image1.png]K
ey [Poly]

ql

Poly

{Poly}

[image: image2.png]Box

[image: image3.png]

_1033302523.doc
[image: image1.png]pixel

_1033302538.doc
[image: image1.png]Shunt

Loop start,
Key [mappingFunct]

Loop end

ql4 mappingFunct
— PP e et

[image: image2.png]Loop qls
{mappingFunct}

[image: image3.png]

_1033294976.doc
[image: image1.png]Shunt Shunt

Loop start,
Key [RelatedMaterial]

Key [Creation
vl ! Loop end

Creation RelatedMaterial

ql7
{CreationType}

q3
{RelatedMaterial Type }

[image: image2.png]

_1033295171.doc
[image: image1.png]

[image: image2.png]patldividts g U Aciipaitcl p 1y pey

_1033294429.doc
[image: image1.png]9

Key [AdministrativeUnit]

AdministrativeUnit

_1033145077.doc

CHOICE

[nx1,mx1]

X1

[nC,mC]

[nxn,mxn]

[0,mxi]

Xi

[nxn,mxn]

Xn

Xn

[1,mxi]

Xi

[nx1,mx1]

X1

[0,mC]

CHOICE

_1033243965.xls
Feuil1

		Keye1								0				only one element defined globally

		NbOe1												only one root element in the schema

				Keysequence										the content element is always a sequence

				NbOsequence										min Occurs = maxOccurs = 1

				Vsequence		Keye2								it must be e2

						NbOe2				00010				2 coded with an infinite integer coding

						Ve2				00001110				14 coded as unsigned8

						Ve2				00010111				23 coded as unsigned 8

						Keye3				0				the choice beetween nomore elements and e3

						NbOe3								only one expected

						Ve3				bon				bon in UTF8 (size = 5 bits integer)

_1033282989.doc

AdministrativeUnit�{ AdministrativeUnit }

[0,1]

_1033284743.doc

[0,n]

RelatedMaterial�{RelatedMaterialType}

[0,1]

Creation�{CreationType}

SEQ

_1033284878.doc

[1,1]

Box�{Box}

[1,1]

Poly�{Poly}

CHOICE

_1033284303.doc

[1,1]

Interpolation�{TempInterpType}

[1,1]

Units�{SpatialUnits}

SEQ

_1033282580.doc

pixel{IntVect}

_1033282907.doc

mappingFunct�{mappingFunct}

[0,n]

_1033203310.doc

Body of e1

<e1>�

Keye1�

�

�

�

�

NbOe1�

�

�

�

�

Ve1�

Keysequence�

�

�

�

�

NbOsequence�

�

�

�

�

Vsequence�

Keye2�

�

�

�

�

NbOe2�

�

<e2> …�

�

�

Ve2 (unsigned8)�

�

<e2>…�

�

�

Ve2 (unsigned8)�

�

�

�

�

Keye3�

�

�

�

�

NbOe3�

�

<e3>…�

�

�

Ve3 (string)�

�

Header of e1

_1025635938.doc

Elaboration

Analysis

Flow of Metadata

Synthesis

Composition

Packaging

Delivery

Interaction

Commission

Consumption

Library

Capture

Flow of Essence

Production

Post-production

Delivery

Consumption

Metadata & Essence Stream

Metadata Server to Server

Interfaces:

Metadata Client/Server

some metadata�discarded

some metadata�discarded

_1033145067.doc

CHOICE

[nx1,mx1]

X1

CHOICE

[1,1]

…

…

[nxi,mxi]

Xi

[nxn,mxn]

Xn

…

…

[nxn,mxn]

Xn

[nxi,mxi]

Xi

[nx1,mx1]

X1

CHOICE

_1033138667.xls
Feuil1

		Keya1								not coded

		Va1				00010 %v %1				v1 as UTF8

		Keya2				1				a2 is defined as optionnal

		Va2				010				2 as unsigned3

		Keya3								not coded

		Va3				00010 %v %3				v3 as UTF8

		Keya5								not coded

		Va5				00010 %v %5				v5 coded as UTF8

_970578492.doc
�

Sign

(

x

)

=

1

x

>

=

0

-

1

x

<

0

ì

í

î

