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Abstract: - Distributed Denial of Service (DDoS) is a method used by malicious attackers to disrupt a service by flooding one or more servers with TPC-SYN packets. In this paper we present a distributed defence to DDoS attacks, based on a suitable integration of the three main ideas proposed in the literature: Pushback, Syn Cookies and SynCache. For distributed defence we mean that the counter measures to a DDoS attack are taken by the ISP domain edge routers rather than by the server(s) themselves. The advantages of our proposal stay in the fact that i) it selectively blocks faked TCP-SYN request, thus it does not penalize normal customers, ii) it does not require neither protocol nor server software modifications, and iii) it protects an entire ISP domain, thus being suited to multiple server scenarios, as in the case of server farms employing load balancing or even in the more general content distribution networks scenario.
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1   Introduction

Nowadays, electronic commerce and web presence are fundamental keys in revenue-making product marketing and selling. In a market scenario, the interruption of a service has a new meaning: while just few years ago the user could accept the “try again later” message, today an interruption means that someone is going to lose money from the service outage and the missing transactions.

Attacks whose goal is to deny a service are generally labeled under the name of Denial of Service (DoS) or Distributed Denial of Service (DDoS) attack. The purpose of these new classes of attacks is not to gain access to services, databases or credit card numbers, but simply to impede ordinary customers to access a service (e.g. an HTTP server). 

In this paper, we are specifically concerned with TCP flooding attacks. TCP flooding is a specific DoS attack that consists in flooding the server with faked TCP setup requests, namely, TCP-SYN packets. These faked requests rapidly consume all the server memory resources and dramatically reduce the probability that a response is provided for TCP-SYN requests generated by normal customers.

In the past, one of the main strategies to discourage the attacks was the use of legal means after the discovery of the source of the attack. However, the recent DoS history shows how easy is to fake an IP source address and make the attack seem as coming from a large number of sources (technique known as spoofing), or, even worst, distribute an attack on different unaware sources. The latest Windows security vulnerabilities (e.g. W32.Blaster.Worm) permit malicious users to install a Trojan horse, or a worm, able to act on the author’s behalf. This is scaring considering that, since most of the existing desktops run the same operating system, when vulnerabilities are discovered and self-replicating worms are propagated, the number of potential hosts that can be recruited for a DDoS attach can easily reach the order of millions. Documented distributed implementations of TCP-SYN flooding attacks are available in the literature  (see e.g. [CERT, DIT99a, DIT99b, DIT99c, BTH00]).

Since the introduction of the concept of distributing attacking sources has made unpractical the trace back of the real malicious hackers, content providers are forced to find ways to detect an incoming attack and devise defensive counter measures. Several effective mechanisms to detect a TCP-SYN attach and defend against it have been proposed. Some mechanisms require substantial protocol modifications (e.g. the usage of SCTP [R2960, R3286] instead of TCP), and thus their deployment appears difficult. Other mechanisms [PLK03], running at the ISP network edge, are devised to detect an attack and prevent access from attacking sources. However, it is very hard, and goal of current research [9], to devise defences capable of differentiate requests incoming from trusted customers from requests generated by the attack, and consequently exert selective blocking (e.g. rate limiting schemes penalize normal traffic [7]). Finally, several very interesting and appealing mechanisms require the defence to be installed in the server itself. We argue that this leads to three drawbacks:

1) the need for server modification and the impossibility to protect legacy servers;

2) the need to replicate the defence among all “equivalent” servers, situation typically encountered in currently deployed server farms which exploit load balancing mechanisms, as well as in Content Delivery Networks;

3) the fact that even if the server is protected, the ISP network still has to suffer from traffic overload generated by the DDoS attack.

In this paper, we present a distributed defence strategy to DDoS attacks, which suitably combines three major ideas independently proposed in the literature: Pushback [IBE01, MBFI02, PLK02], Syn Cookies  [1] and SynCache  [8]. However, our proposal is characterized by a number of innovative features. First, in our proposed solution, when a DDoS attack is detected, defence against it is pushed back to the ISP network edge, and performed by the ISP edge routers, to protect the whole ISP domain. However, unlike pushback, we don’t need to upgrade all routers along the path or all the routers within the ISP domain (indeed, the adoption of new core routers or the total upgrade of entire domains is both a technically challenging issue, as well as an economically unpractical solution), but only the access and the edge routers. Second, we propose a new mechanism to protect trusted TCP connections, by splitting them into two parts (from source to edge router and from edge router to server) and merging the two parts via dynamic mapping of the relative TCP sequence numbers. Our solution does not require neither server nor protocol modifications, and it is transparent to the trusted end customer.

The rest of the paper is organized as follows. Section 2 introduces the key concepts of Pushback, Syn Cookies and Syn Cache. Section 3 describes our proposed distributed defense. Section 4 discusses implementation details, and presents the lessons learned in our trial implementation. Finally, conclusions are drawn in Section 5.

2 Distributed Denial of Service defences

In this section we shortly describe the three basic concepts (Pushback, Syn Cookies, and Syn Cache) on top of which our solution is built.

2.1
Pushback

The fundamental idea of Pushback [IBE01, MBFI02, PLK02] is to identify and discard those packets responsible for congestion without interfering with the “good” packets, using a sort of “communication and cooperation” between routers. The key idea of pushback is to treat a DDoS defence similar to a congestion control problem. Once an attack is detected at a given router, typically the router closest to the server under attack, a special message is sent to the upstream routers to limit (or specially filter) traffic destined to the attacked router. This is iteratively performed by the upstream routers, but only in the upstream directions from which the attack is detected. This idea allows to selectively limit only the traffic incoming from specific (attacking) network links. This scheme suffers of the fundamental drawback that all the network routers require to implement pushback. In addition, this scheme loses part of its effectiveness in the case of highly distributed attacks, such as that generated by maliciously coordinated unaware sources (e.g. that driven by a replicated virus or worm).

Our exploitation of Pushback techniques is quite different from what described above, since, in our case, the DDoS defence is pushed back of just one single step, i.e. from the server router up to the domain edge routers.

2.2
Syn Cache

Syn Cache [8] is a defence mechanism by which the server tries to limit the impact of the flooding by changing its strategy for allocating the resources. With Syn Cache the normal connection queue that builds up awaiting the return ACK of the three-way-handshake is replaced by a hash table providing two types of protection: a limit on the total number of inputs in the table and a limit on the number of inputs in a given “hash bucket”, each of which is handled like an FIFO queue. In this way the maximum number of SYN per seconds sent to each protected server is limited thus making it possible for the SYN packets sent by different senders to be distributed  fairly when the limit is exceeded. In other words, the number of connection half-requests that the server can memorize compared to the normal connection queue is increased. Therefore, it is not a final solution to the problem of SYN flood attacks, if it is used alone, as it would only delay the server’s breakdown, but it can be useful if used as a first stage of a multi-level defence mechanism.

2.3
Syn Cookies

During the three-way-handshake, when a SYN is received, the receiver (usually the server) must reply sending a SYN-ACK packet with a given value in the sequence number field and then wait for the return ACK packet. The value of the SYN-ACK Initial Sequence Number (ISN) is usually a random number difficult to guess. The system used by Syn Cookies [1] consists in creating a non-random ISN containing the information (or part of the information) that would be saved in the connection queue if there were enough space available. In practice, once the queue is full, the information that should be memorized is sent in the SYN-ACK. If the handshake is completed correctly by the client who sends the final ACK (the handshake’s third step) by applying the same function used to generate the SYN-ACK ISN, it is possible determine whether it is a return ACK or a fake one. The information can then be extracted from the packet received without being affected by the problem. 

The algorithm used to generate the Server’s ISN must have some special characteristics, specifically, the ISN must be difficult to guess, as well as increasing ISN must be generated (conditions set by the TCP specifications [12]). One-way hash functions are usually used. For example, [1] proposes the following ISN generation rule: i) The first 5 bits out of the 32 of the initial sequence number belong to a counter whose value increases every 64 seconds; ii) the next 3 bits generate an MSS chosen by the server as a reply to the client MSS; iii) the remaining 24 bits are a secret function chosen by the server with the client and server IP addresses, the source and destination port number and the counter. An improved mechanism, to keep memory of additional TCP information (e.g. options) is proposed in [16].

3   Proposed Distributed DDoS Defence

The key idea of our proposed defence is that the content provider (in what follows, for convenience of presentation, we will assume just a single server – generalization to multiple servers and content distribution network is straightforward) cooperate with the infrastructure provider to provide the DDoS defence. The network devices involved are represented in figure 1. The access (or edge) router closer to the server is called Master while the other edge routers (ingress point of the domain) are referred to as Slaves. While the master encapsulates most part of the intelligence of the proposed solution the slaves simply apply the actions to defend the domain against the attack, i.e. they can take no decision. The agreement between the content provider and the network infrastructure operator simply consist in determining the set of IP addresses (or just a single IP address in the case of single server) that will be defended from the attack.

The role of the master is to detect the existence of an attack. To this purpose, the master runs a metric-based algorithm to understand if an attack is in progress or not. In addition, once an attack has been detected, the Master is responsible of i) informing the Slaves that the defence actions must be taken, and ii) provide a last defensive barrier, either in the transition time (i.e. before the defence actions are applied by the Slaves) and in the worst case that part of the attack is not filtered by the slaves.
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Fig. 1 Distributed DDoS Defense. Master and Slaves.
Slaves enter into play only when an attack is in progress, i.e. when explicitly triggered by a pushback-like message sent by the Master. In normal network conditions, Slaves provide normal edge router functionalities. During an attack, Slaves intercept all TCP-SYN packets addressed to the server IP address, and run a SYN-Cookies-like defence mechanism, aimed at differentiating TCP-SYN packets generated by an attack from that generated by ordinary users. For such users, the Slave is then in charge of completing the TCP handshake. 

The slave operation, i.e. how to design such a distributed SYN-Cookies defence mechanism, is the key idea which characterizes our proposal, and it is illustrated in the following subsection. 
3.1
Slave Operation

As soon as a Slave receives a signal from the Master, it starts defending the targets (specified by a list of server IP addresses) using a SYN-Cookies like algorithm, where the slave acts on the Server’s behalf upon reception of a TCP SYN. The purpose of the algorithm is to filter all the fake connection and let only the good ones reach the server. 

The detailed operation of the Slave is illustrated in figure 2, and detailed by the following steps:
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Fig. 2 Slave operation.
1. Upon reception of a TCP-SYN packet, the Slave replies with a TCP SYN-ACK packet, whose ISN (the value x, in figure 2), is encoded with a specific encoding algorithm such as that proposed in [1]. In doing this, as in traditional SYN-Cookies mechanisms, no memory is consumed at the Slave, i.e. no track will be kept inside the router.To construct the TCP SYN-ACK packet, the Server MSS must be known at the slave (we assume it is contextually notified in association to the server IP address. 

2. If, ultimately, a TCP ACK packet is received, the connection is considered certified and coming from a real host. Hence, the Slave applies again the SYN-Cookie algorithm to extract the information needed to reconstruct the initial TCP-SYN packet, and transmits it down to the server.

3. The Server replies with a normal TCP SYN-ACK. A key property of our proposed algorithm is that the ISN generated by the server (the value z, in figure 2) remains arbitrary, i.e. subject to the ordinary server TCP rules.

4. The Slave intercepts the SYN-ACK packet, and replies with a TCP ACK. Moreover, from the SYN-ACK packet, the Slave determines the value z set by the server as ISN, and activates a translator filter which is in charge of remapping the sequence and acknowledge numbers used outside the protected domain with the ones used inside the domains. Specifically, For the packets travelling from Client to Server, the translation rule consists of adding the ISN offset (with reference to figure 2, the module-32 difference z-x) to the 32 bit acknowledgement field in the TCP header. Conversely, for the packets travelling from Server to Client (for example, the packet or acknowledgement labelled as PACK/ACK in figure 2), the ISN offset is subtracted to the 32 bit sequence number field.

5. We remark that, in several applications, and most of the TCP implementations, a TCP packet with payload is immediately sent right after the TCP ACK (typically one single packet due to the TCP slow start rules). Unfortunately, it is most likely that this packet arrives at the slave before the connection is established on the internal domain, and the translation filter is activated. Hence, the packet must either be stored in a buffer, and delivered (after translation) once the translation filter is set, or it must be dropped, transferring to the Client the duty of regenerating the packet after RTO expiration
.

4  Trial Implementation and Discussion

We have implemented the Distributed DDoS defence proposed in this paper taking advantage from the availability of an active router platform, specifically the experimental ANL (Active Network Layer) Linux API developed within the frame of an European project
. The purpose of the ANL API is to provide support for active routing operations, which include i) packet filtering mechanisms, i.e. the ability to filter the IP packets accordingly to rules (each time a packet gets into the forwarding chain, it is matched with the filter rules and if a rule is matched an action is taken accordingly); ii) packet extraction mechanisms from the router forwarding plane to a software active environment within the router, where any for of packet processing (eventually network-loadable via active packets) can be performed, and iii) packet re-injection mechanisms in the forwarding plane after its processing. 

A minimal testbed has been set-up (figure 3), consisting of an HTTP server, a client requiring a web page, a master router, a slave router and a DoS attack generator. Such a minimal, and obviously reductive, network architecture scenario has been chosen as our goal was to demonstrate the correct functional operation of our proposed mechanism, and was not, at this stage, to demonstrate scalability. In fact, the current ANL implementation is not designed to be performance effective. Moreover, for rapid prototyping, the translation module, devised to modify sequence and acknowledgement numbers of packets belonging to a certified connection, has been implemented in the ANL active environment, thus requiring a per-packet filter, extraction, processing and re-injection, clearly a non scalable operation.

Fig. 3 Trial test-bed
However, regarding the indeed critical issue of scalability, we argue that a performance effective implementation of the mechanism proposed in this paper would result scalable. In fact, we remark that:

- Similar to a traditional SYN-Cookies mechanism, no state (i.e. no special memory requirements) is kept for attacking TCP-SYNs. Thus, the scalability considerations devised for SYN-Cookies mechanisms apply also to our case.

- A translation filter is set only upon TCP connection certification (i.e. arrival of a TCP ACK to close the three-way handshake). These packets represent only a small fraction of the total ones incoming to the router, and the processing overhead required seems tolerable. Also, the buffering requirements are limited to (normally) the first packet of each TCP connection (and, eventually, the packet dropping solution is available). 

- The implementation of the translation filter appears to be an issue very close to that encountered in currently deployed (and performance effective) Network Address Translators (NAT), the difference being the fact that the translation is performed on the sequence number and acknowledge number of the TCP header, rather than on the IP address and Port number of the IP and TCP/UDP header performed in NATs.

4.1
Master Operation implemented in the test-bed
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We recall that the Master router has two goals. First, it is in charge of detecting an attack, and send a triggering message to the Slaves. Second, it must protect the Server(s) during the initial part of an attach, i.e. while the distributed defence has not yet been set-up. In addition, as a supplementary requirement, the master should be able to continue in protecting the Server even if the distributed defence has been set-up, e.g. to protect from an attack internally generated into the domain, or to cope with malfunctioning Slaves.

A natural approach is the implementation, on the master, of a simple mechanism devised to measure the TCP-SYN load. When such a load becomes large, the Master enters into an alert state and starts running a local defence. This defence is devised to protect the Server, and in the mean time  more carefully detect whether an attack is in progress, and in this case to trigger the remote Slaves.

For simplicity, in our implementation, a Syn-Cache like algorithm always runs inside the master router, acting on the server’s behalf. Its purpose is twofold: first it permits to understand when the target is under attack, and, second, it isolates the server caching the TCP/IP packets into a hash table. As in the case of the Slave, also the Master is implemented via the ANL API introduced at the beginning of this section.

Fig. 4 SYN-cache module at the Master router.
As shown in figure 4, and following the guidelines [8], the SYN-cache module is implemented via a hash table which stores incoming TCP SYN requests. In addition to [8], we use the current size of the hash table as an indicator to determine whether the server is under attack. In our implementation, we have simply set a threshold on the hash table size. When the hash table size overflows the threshold
, a message (actually, in our implementation based on ANL active routers, an active packet) is sent to the Slave.

In addition, we remark that, unlike traditional DDoS defences integrated with the Server, also in this case our mechanism runs remotely, namely at the Server access router. This implies that a translation mechanism exactly analogous to the one described for the Slave operation needs to be implemented at the Master. We recall that the defence installed on the Master remains active even after the Slave defences have been activated. Thus, TCP connections would in principle experience a double translation mechanism (one at the Slave, one at the Master) and the consequent overhead. To avoid this problem, in our implementation, when the Slaves are active, certified TCP connections (i.e. whose TCP-SYN inside the protected domain is originated by the Slave ) are differentiated from external TCP-SYN packets (e.g. entering from an edge router whose defence has not yet been activated). Certified TCP-SYN packets thus by-pass the SYN-cache mechanism run at the Master.
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For prototyping purposes, differentiation has been performed reserving a value in the Type Of Service (TOS) field of the IP header, and marking certified TCP-SYN packets with such a TOS value. How this solution can be deployable and compatible with the usage of the TOS field in its meaning of DSCP, within a Differentiated Services [13] IP domain, is an open question.
4.2
Additional comments
It may be argued why we have adopted a SYN-cache defence mechanism is adopted at the Master, while a SYN-cookies is used at the slave. The difference is that the Master is always on, thus SYN-cache is preferable as it can save supplementary information stored in the TCP options (refer to [8] for additional discussion)., which a SYN-cookies cannot code. Conversely, SYN-cookies does not suffer of any hash-table limits and thus it is suited to better resist to a DoS attack. Lack of support of TCP options is thus only a temporary loss.

Another issue not discussed before is related to how to restore the normal network operation and de-activate slaves after an attack. Measurements taken at the slave regarding the percentage of certified TCP-SYN packets versus the total number of incoming ones is the natural metric to understand whether an attack is finished. It is not obvious whether a solution based on independent de-activation of Slaves is  always preferable to a solution requiring some form of coordination (in the Slave de-activation process) by the Master router of the server(s) under attack.

5   Conclusions

In this paper we have presented a new distributed defence architecture devised to protect an entire network domain. Our proposed solution is based on the cooperation between a master routers, close to the Server to be protected, and slave routers which are placed at the domain edge.

The key contribution of the paper is the illustration of how a traditional SYN-Cookies (or SYN-Cache) defence, typically requiring the Server upgrade, can be placed in a remote router.

Our defence mechanism has been implemented in a simple test-bed. The active network software platform used in our implementation has allowed us to rapidly prototype the proposed mechanism and therefore prove its correct functional behaviour. Current research work consists in improving the implementation effectiveness in order to achieve a highly performing and scalable approach to test in real domains.
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� Clearly, the buffering solution is more effective in terms of performance for the incoming TCP connection, though it requires supplementary implementation complexity at the Slave. In our implementation, for simplicity, we have dropped the incoming packet.


� The ITEA POLLENS Project, terminated in July 2003, to which the authors’ institutions have participated.


� We remark that a threshold set on a simple counter of TCP-SYNs would have been sufficent to detect an incoming attack, but, of course, would not have provided any defensive mechanism. In our prototype, for simplicity of implementation, we have considered a Master always up and running, though this leads to the additional overhead of supporting
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