EECE 592

EECE 592

Robot Tank with Neural Networks and Reinforcement learning
An implementation of the Back Propagation (BP) and the Reinforcement Learning (RL) algorithms for the robot tank Nemesis in the Robocode environment
Ashish Uthama
December 14 2005
3Introduction

3Robocode

3Objective

4Approach

4Problem selection criterion

4Problem Identification

5Identified application of BP

5Identified application of RL

5Problem Classification

6Machine Learning Implementation

6Definitions of learning mechanisms

7Back Propagation Learning

7Introduction to the algorithm

8Problem description

8Data representation, preprocessing and postprocessing

12Structure

15Training

16Performance and Evaluation

19Reinforcement Learning (RL)

19Problem Description

19Data representation

20Policy

20Training

21Evaluation

22Deterministic Logic

22Radar sweep control

23Enemy data storage

23Target selection

23Repetitive bullet hit avoidance (bolt)

24Wall collision avoidance

24The Spray, Linear and the Point gun

25Software design and implementation

28Conclusion

28References

29Appendix I: Matlab code

30Appendix II: Java code

Introduction
Robocode
Robocode is a Java based robotics simulator. The robots are Java plug-in modules which model a war tank. The behavior of these robot tanks (bots) are programmed by the user as a Java class. Standard API’s and access functions are provided to enable the bot to communicate with the battle simulator. Java has a rich resource of built in methods and classes to enable the programmer to implement complex strategies with ease. Moreover, the extensive API documentation which comes along with the simulator offers an adequate explanation of the methods available to the programmer. The main intent of this simulator was to provide for an easy and fun to use platform to learn the Java programming language. Though the simple interface and the theme of the simulator helped to serve more as a trial ground for the implementation and testing of Machine learning algorithms.
The simulator runs as the main program with each of the robot in the battle serving as modules executed in different threads. The simulator polls each of the robots in turn and provides for event calls to communicate the state of the battle with the tanks.
Objective

The main objective of this work is to demonstrate an understanding of two learning algorithms in the context of a war tank in the Robocode environment. The Back Propagation algorithm and Reinforcement Learning are two fundamental approaches to program intelligence into machines. The basic structures of these two algorithms are definite and well defined. The main task in the implementation of any algorithm is to identify an appropriate problem domain and develop the framework to incorporate the learning approach seamlessly into it. The goal was to correctly identify an appropriate area, to effectively implement the algorithms and quantitatively prove the benefits of this approach.
This report gives a detailed explanation of solutions to two different problems faced by a robot tank using the mentioned learning algorithms. The learning methods were studied in detail to get a feel for the nature of the problems that they could be used to solve. Possible problem domains for the tank were studied and two areas of interest where the learning approach would make a difference were identified. The report presents the approach, identified solution, implementation and results.
Approach
Problem selection criterion
To help choose the most appropriate domain among the various possible applications of machine intelligence in the Robocode environment, some basic criterions were outlined for a problem to be acceptable:
· A closed form solution does not exist or is not easily arrived at
· The problem/variable space is changing. Flexibility of the solution is an absolute necessity
· Problem dimension is too large and deterministic approaches are not computationally feasible
· Training data should be available. (Or online training should be feasible)
Problem Identification

Various spheres in the robot tanks behavior were looked at and filtered using that above mentioned conditions. Most of these had alternate (and most often simple) approaches which yielded satisfactory results. Some of the issues that were looked at and rejected are summarized below:
· Wall collision avoidance. (Alternate simple and effective strategy outlined later)
· Enemy tank collision avoidance (If required). This behavior can also be implemented deterministically
· Movement patterns using RL. A Drunken walk movement was experimentally found to be better. Though it does make sense to use a learning approach since the enemy bots might have deterministic movements based on the tanks current position, which could then be used to decide on the best heading to move to and arrive at the least populated part of the map
· Target selection. RL could be used to pick out the best enemy to fight against to maximize the chance of winning. But since each instance of learning would need one complete round (provided the tank wins) it is not practical to expect the tank to learn quickly. A watered down approach would be to monitor effective hits against an enemy, though there is a lot of chance involved. It might just so happen that the enemy was using fixed targeting on another bot and was unawares of this attack.
Identified application of BP
The BP algorithm was used as a pattern identifier applied to the movement of an enemy robot. The output of this network was then used to make a best estimate guess for the firing angle. This satisfies all the conditions defined for an acceptable solution. A closed form expression for the future position of a robot cannot be arrived at except in the most trivial cases of simple bots like Walls. Most enemies will have a continuously changing movement pattern which would need the tracking system to adapt accordingly. Training data can be readily collected against opponents for offline learning. The data could be saved to a file and the weight updates could be done using Matlab or any other approach.
Identified application of RL
The RL algorithm was used to choose one of the three different virtual guns at the disposal of the tank to maximize the chances of hitting the enemy. Virtual guns are basically different functions to control the aiming and firing of the gun turret. The tank learnt to use the best gun against a given enemy to score the most hits. Again, a closed form solution for this is hard to define, an optimum gun can only be chosen after the accuracy of each is observed against any given enemy robot. The foremost advantage of RL is that it provides for the flexibility of changing the guns to keep up with an adapting enemy on the fly. Initial training can easily be done using data collected from sample battles.
Problem Classification

Two areas of classification for the various strategies are clear. One is the deterministic approach, where a fixed behavior is hard coded into the tank. This includes the movement for the tank, the scanning and data collection of the enemy, storage and retrieval of this data, avoiding collision with other robots and walls.
The other is the implementation of the learning methods. It was important to first get the deterministic strategies implemented since the performance of the learning algorithms needs to be checked in a stable tank. Any benchmarking or exploration of the learning methods would have to be done only after the plain logic implementation and the supporting infrastructural methods are in place. This was necessary to ensure that any changes in the deterministic part would not adversely affect the learning system.
The next two sections outline each of these problems separately. The learning mechanisms are presented first purely as a matter of interest. The deterministic strategies are presented later.
Machine Learning Implementation
Definitions of learning mechanisms

Each of the learning approaches requires some kind of training data and a period of time to adapt to it. There are two ways in which the parameters of the learning algorithms could be updated; it could be done sequentially after the presentation of each training data instance or it could be done just once for each set of training data after accumulating the errors for each instance.

Another classification is based on the flexibility of the parameters. In some applications, the parameters are first determined based on a set of training vectors using one of the methods mentioned in the previous paragraph. These are then hard coded into the algorithm for that application. This approach has the disadvantage that it does not allow for the system to be adaptable enough to change with the environment. But it does have the advantage of simplicity and stability. This is referred to as offline training. On the other hand, the parameters could be allowed to change based on feedback one gets from the environment progressively; this has the advantage that a properly designed system could adapt continuously to a changing environment. On the flip side, this might introduce numerical instabilities is poorly designed systems or in cases of drastic environmental changes. This approach also causes an overhead in processing times for the system to react. This approach is known as online training.
In both the implementations of learning in this tank a hybrid approach was adapted. The initial parameters were arrived at using the offline training approach, where data collected from battles were used to update the weights sequentially (weight update after presentation of each data set). These experimentally arrived at parameters were then used to initialize the algorithm in a real battle. The final battle ready tank had a much smaller learning constant to allow for the tank to adapt to specific enemy behavior.

Back Propagation Learning

Introduction to the algorithm
The back propagation algorithm is a machine learning approach used to train a so called Neural Network to solve a problem. They are inherently more suitable for applications involving classification and prediction. The structure for a feed forward neural network is well defined and has a standard layout as shown below
[image: image7.png]

The input layer performs as a buffer for the inputs to the system. The hidden layer consists of neurons. In a completely connected network each of this neuron is connected to every input node with a separate weight. The hidden neurons are in turn connected with the output nodes through another set of weights. The neurons perform a weighted sum of the inputs connected to them and based on an Activation function deliver an output. The important parameter of this system is the number of nodes in each of these layers. Note that the architecture does allow for multiple numbers of hidden layers. The connecting weights are the parameters which can be changed as per a learning strategy to solve a given problem.
The learning process starts out with random values for the weights. As each input is fed into the network, an error signal value is computed based on the difference of the networks output and the desired (target) output. The back propagation algorithm then outlines a method to update the weights to minimize this error. The key contribution of this algorithm is that it allows for the error at the output to be propagated back to the layers before it, which is how the method got its name. Continuous learning with a set of input patterns converge the weights to a minimum (at times a local minimum) value of the error signal.
The learning equations are given below. A clearer picture would be obtained by looking at the code here.

Problem description
Recognizing a pattern amidst significant noise is a non trivial problem that is hard to solve using conventional methods. Historically and practically this is one of most apt area for the use of a neural network. Most of the observed robot tanks in the Robocode environment have deterministic movements. For example Walls has a fixed movement strategy of keeping to the walls and moving straight. An enemy tank that can readily recognize this pattern and predict the next move in the recognized pattern has a very high chance of scoring direct hits. Though most worthy tank opponents will try avoiding deterministic movements, it is inevitable that to either strafe (move in a zigzag fashion) around the enemy to dodge bullets or to get closer to achieve a better firing accuracy they will follow some deterministic approach. This is the premise on which Nemesis’s targeting system is based on.
Data representation, preprocessing and postprocessing
The major part of the design was in identifying the minimum set of input variables to the system to provide for an optimal balance between processing times and accuracy of the output. The most obvious data to predict enemy tanks movements would be the tanks heading and velocity. Indeed, the most simple of targeting system would be to just point at the scanned location and fire. A more sophisticated solution would be to estimate the time of travel for the bullet and fire at a linearly extrapolated position of the enemy tank. Both of these methods fail completely against robots like the Spinbot, despite the fact that this robot follows deterministic movement patterns.
For a neural network to learn the patterns of an enemy’s movement it first has to recognize similar movement pattern in different settings as being the same. For example consider two Spinbot tanks in a battle. Ideally the data representation mechanism for both these robots should return an identical sequence since both follow the same basic movement pattern. This is a primary necessity since this would enable the neural net to recognize the pattern irrespective of where the Spinbot is in the battle field.

Consider using the primary variables that the Robocode environment provides for, namely velocity, heading, distance and bearing. The velocity does not give much information since it is almost a constant through out the round. The bearing and distance should also not be considered since it depends on Nemesis’ position and has less importance in describing the Spinbot tanks movements.
[image: image1.emf]0 50 100 150 200 250 300

0

50

100

150

200

250

300

350

400

Spinbot Heading

Time (Robocode Ticks)

Heading

Figure 1 Plot of the heading of the Spinbot collected over a round

As the figures show, heading seems to be a good representation of the regularity of the Spinbot tanks motion pattern. This is further emphasized by the data collected against the Walls tank.
[image: image2.emf]0 50 100 150 200 250 300

0

50

100

150

200

250

300

350

'Walls' Heading

Time (Robocode Ticks)

Heading

Figure 2 Plot of the heading vs. time for the Walls tank
Though for the simple cases mentioned above, the heading seems to be a good enough measure of the pattern repetition, it cannot be generalized. Below is the figure collected for one of the best robots in the RoboLeague, ChumbaWumba.
[image: image3.emf]0 20 40 60 80 100 120 140 160 180 200

-100

-50

0

50

100

150

200

250

300

350

400

Time (Robocode Ticks)

Red=Heading

Blue=Velocity(*10)

Heading and Velocity plots for ChumbaWumba

Figure 3 Plot of Scaled Velocity (Blue) and Heading of ChumbaWumba
Most of the better robots follow a strafing motion along a direction perpendicular to the enemy tank. This involves moving backwards (as seen by the negative velocity in above figure), which implies that heading alone will not be a good measure of the future position.
Analyzing the solution from the point of view of a human helps in arriving at a more accurate data representation. A human would describe the movement of the Spinbot tank as circular, or in more simple terms ‘The tank keeps making left turns’. A similar description for the Walls tank would be ‘It keeps going straight ahead’, whereas for ChumbaWumba a simple explanation would be ‘It keeps moving forward and backward’. Now, to represent this information in a method that could be analyzed by a neural network, the following procedure is adopted.
1. Obtain the current bearing and heading of the enemy

2. Based on the previous scan’s data deduce one of the following basis vectors for the robots movement.

	Vector (x, y)
	Movement description

	0
	0
	No change in movement (SittingDuck)

	0
	1
	Forward motion (Walls)

	1
	1
	Right forward turn with respect to previous position (Spinbot)

	1
	0
	Right turn.

	1
	-1
	Extreme right backward turn

	0
	-1
	Backward movement (While strafing)

	-1
	-1
	Extreme left backward turn

	-1
	0
	Left turn

	-1
	1
	Left forward turn

Table 1 Description of vectors
For each scanned position, the previous position and heading serve as the basis for the coordinate system. This has the advantage that all movements are then obtained with respect to the enemy tank.
Each of the 8 vectors is coded with two symbols, with values ranging from {-1, 0, 1}. Using this approach to represent the movement pattern hugely simplifies the data that would have to be processed by the neural network while sacrificing very little prediction accuracy. For example, applying this to the Spinbot will always return the vector (1, 1) since the tank always keeps taking a left turn. In case of the Walls robot this system will always return (1, 0) since the tank mostly proceeds in a direction straight ahead (with respect to its previous bearing). In case of ChumbaWumba this representation shows more regularity which is a good feature to help the neural network recognize faster.
[image: image4.emf]0 20 40 60 80 100 120 140 160 180 200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Vector space representation of ChumbaWumbas movements

Movement vector

Time

Figure 4 (x, y) pair for the movement. X=> Red, y=> Blue
The above approach addresses the large data space issue by reducing the movement to one of the basic 8 movements for a given time interval. The encoding scheme used for the vectors was also intuitive, as summarized in the table. This has the advantage of simplifying the data the network needs to process. Physical significance is retained for each component as different magnitudes represent diametrically opposite directions.
The output of the neural network is just the relative movement vector normalized to the previous coordinates and heading of the enemy tank. To deduce the actual angle by which the gun turret needs to be moved involves straightforward geometry. Details to this are documented in the attached source code.
Structure
Since there are two components to be processed the first approach was to use to different neural network to predict each of them separately. The performance of this approach was extremely unstable and did not converge. Moreover, such an approach would not be exploiting the apparent correlation between the two components. The final implementation of the neural network had the following structure:

Number of Input nodes: 12

Number of Hidden nodes: 11

Number of Output nodes: 02

The input was provided sequentially similar to a shift register scheme. At each time instance, the entire input vector was shifted to the left by 2 units and the new (x, y) pair was fed to the left most two neurons. As per studied literature (Reference) a bias node is not required for bipolar activation functions hence none were used in this implementation
The most important note is that separate sets of weights were used to track each of the enemy robot tanks. This is logical since each tank would have a different movement pattern.
To decide on the number of the optimal input nodes required, the following observation was made about the neural network application. Since the network is expected to learn a pattern, each pattern will consist of a set of moves. For example, for the strafing action it would be “Tank moves forward, forward, left turn, backward, backward, right turn”. Since we are applying each of this action as a pair of (x, y) numbers over a time duration, it follows that this time duration has to be large enough to completely allow for the pattern to be expressed. The issues that crop up are:
· This number is dependent on the time length of the movement pattern of an enemy

· A smaller number of nodes would not allow the network to rightly predict complex maneuvers

· A higher number would cause over fitting. It may also make it more sensitive to noise (Especially if the enemy tank has a set of movement patterns)
· A higher number would also increase the time for online training which might eat into the reflex time of the tank

Based on figure 4 displaying ChumbaWumba’s movement pattern, an input node length of 13 was chosen.

The number of hidden nodes was arrived at using experimentation. Please refer later section for details. Since the problem was deemed to be simple, it was (rightly) expected that a single hidden layer would suffice to get an acceptably low level of error. Moreover, addition of a bias node into the hidden layer did not show any change in the performance as evaluated in the graphs later. Since the output of the network has to be a movement vector, it is fixed to two.
Training
A lot of thought went in deciding the training approach for this network. A few issues faced were:
· Offline training is not feasible in a real battle, we can not expect to have training data available beforehand
· Data points have to be closely spaced in time for online learning

· Convergence of online learning would be an issue during the initial rounds
The final approach was a hybrid of the two training methods. The initial weights for each of the enemy were initialized with the offline learnt weights of the Walls tank (Hence trained to fire at liner targets). A small learning constant was then used to update the weights with information collected online during a battle. These updated weights persisted between rounds enabling Nemesis to learn and adapt as the battle progressed. The key advantages of this approach were:
· The tank is effective even in the first round with the default weights rather than random weights which help it to start out with the baseline accuracy of a linear prediction gun

· The online learning paradigm helps the tank adapt and update its weights for each enemy specific to its movement pattern
The learning constant for the online and the offline training were different. A higher value was used during offline training since the convergence of the algorithm could be monitored and an optimal value arrived at (Final used value .8). Moreover, since the offline training was done using the Walls tank which displayed very deterministic movements this high value is justified. But the value for the online learning constant is highly dependent on the movement pattern of the enemy tank. Generalization on a value could not be done, since higher values at times made the algorithm unstable under certain movement patterns of the enemy. To be on the safer side, a very conservative value of .2 was chosen for the online training. To enable the online training to be effective, the deterministic logic of controlling the radar scan angle required a very high efficiency. The initial approach of using a continuous 360 degree scan failed to provide closely spaced data points to train the network. A key refinement in the scanning approach described later helped the learning be more effective.
Since the adapted approach required an update to the weights for the prediction network for each enemy separately, the training mechanism had to have a high degree of computational efficiency. Please refer to the code section in the Appendix (In the EnemyBot class) for the actual implementation.
Performance and Evaluation

To allow for the experimentation with the parameters of the algorithm, the design and implementation of the code was generic, save for some restrictions described:
· Number of input nodes has to be even (Since we are using a single neural network to predict a vector with two components).

· The number of output nodes is fixed to two

All experimentation was done in the Matlab environment with real data obtained from the Robocode simulator. Since in the adapted training mechanism the weight updates happen after presentation of each training set, the error in subsequent texts refer to the MSE (Mean squared error). As explained earlier, the number of input nodes was fixed to allow for a sufficient window for the neural net to have a look at an entire movement pattern. To keep the experimentation simple, this number was fixed at 12.
It was hypothesized that the number of hidden nodes would be dependent on the complexity of the movement pattern. The more regular the movement, the lesser the number of hidden nodes required. Whereas complex or random movement would imply that the number of hidden nodes is more or less have no effect on the error. To test this hypothesis the number of hidden layers were varied for two different tanks and the error measured. The findings are summarized below:
	Tank
	Number of Hidden nodes
	MSE (accuracy of .001)

	Crazy
	5
	.863

	Spinbot
	5
	.326

	Crazy
	10
	.741

	Spinbot
	10
	.271

	Crazy
	15
	.732

	Spinbot
	15
	.312

The above numbers were obtained for data collected over 10 rounds (1237 and 1846 data points for Spinbot and Crazy respectively). Training was performed offline using 100 epochs. Learning rate was fixed at .8. For this data set there was no appreciable trend in the number of training epochs and the hidden layer number. There was no obvious convergence in case of Crazy, but the error graph for Spinbot converged at about 70 epochs irrespective of the hidden layer number.
As expected, it was observed that the number of hidden neurons did not have a bearing on the MSE in case of the Crazy tank. Crazy tank uses a random approach in its movements. It was observed that in case of the more deterministic movement pattern exhibited by the Spinbot, increasing the number of hidden nodes had a positive effect in reducing the error until a threshold. It was deduced that increasing the node number would result in over fitting and the final number used was 11.
As explained earlier, a hybrid training approach was used. The initial offline training was based on data gathered for the Walls tank robot. Since the movement behavior of this tank always involved going straight ahead with respect to its previous heading (except when it reach a wall), the motion pattern vector representing this movement is (0, 1).
[image: image5.emf]0 50 100 150

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Red=Y component

Green=X component

Learning time course

Learning constant and learning time

Figure 5 Convergence of learning with various learning constants. (Initial values were chosen to be small non zero values)
The error does not become reduce to zero as can be observed from the above graph. This might be due to the reason that whenever the Walls tank approaches the walls, there is sudden change in the motion vector which is not repetitive within the input window of the neural network. This sudden change might be cause for the residual error. The best estimated tradeoff between training time and convergence was empirically set at 70. Note that the output values shown are before hard thresholding.
The weights so obtained were assumed to have trained the neural network gun to fire at any enemy right ahead of where it was scanned the last time. A smaller learning constant of .2 was used to updates these weights online.
A comparison was done by bypassing the gun selection logic (Using RL) and benchmarking the neural network gun against the Spinbot tank. The results are summarized below:
	Gun
	Average firing accuracy (Spinbot)

	Spray Gun
	.18

	Point Gun
	.23

	Linear Gun
	.26

	Neural Network Gun
	.32

All the guns used above used firepower of 1. Firing accuracy was measured as number of hits per bullet fired and measured over a battle of 100 rounds. The Spray gun fires three bullets (each of energy 1) along the sides of an isosceles triangle and down the median. (The apex being the tanks gun, the enemy robot is at the centre of the base. Base width was set at 20 pixels). The point gun fired a bullet of energy 1 at the previous scanned position of the enemy. The linear gun used linear extrapolation to fire at the future position of the enemy. A clear advantage is seen with using the neural network.
	Gun
	Average firing accuracy (Crazy)

	Spray Gun
	.22

	Point Gun
	.13

	Linear Gun
	.17

	Neural Network Gun
	.14

Observing the table for the performance against the Crazy tank, it is seen that the neural network does not yield the best results. This was expected since there is no set pattern that the network could identify to target this enemy. It was generally observed from existing robots in the RoboLeague that most worthy opponents have some deterministic movement with a small amount of randomness intentionally introduced. To provide Nemesis with another level of intelligence to discriminate between the two kinds of opponents, Reinforcement learning was used.
Reinforcement Learning (RL)
The Q learning algorithm was used to implement RL in Nemesis. The approach expects the agent (tank) to be in one of a number of predefined states. For each state, the algorithm then proceeds to find the best action to take. The ‘best’ action is defined as an action taken in state which is beneficial to the tank now or in the future. Learning consists of arriving at a set of numbers which give a higher value for the best action in each state.
Problem Description
The back propagation algorithm implementation for firing at the target was shown to be effective against enemy tanks with repeated identifiable patterns. However, its performance was worse than the spray gun for random movements. It was also noted that if the scanning did not occur at regular intervals, the neural net would at times lag. One method of addressing this would be to vary the firepower of the neural net gun to hit at the enemy faster. It was decided to use RL to equip Nemesis with the intelligence to use the best possible gun at its disposal against a given enemy. As before, different instances of learning were used against each enemy tank. Hence in a battle with Spinbot and Crazy, Nemesis would use the neural net gun more often against the Spinbot tank and the Spray gun more often against the Crazy tank.
Data representation
To define the states for the Q learning algorithm, the firing accuracy in a period of time was chosen. Since Nemesis was desired to be an attacking robot tank, it has a high firing rate (In fact it fires on every scan). The firing accuracy was defined temporally as number of successful hits in every 5 bullets fired. Summary of the states used is shown below:
	State number
	Bullet hit in every 5 fired at this enemy

	0
	0

	1
	1- 2

	2
	>3

This information was easily obtained by using a counter (per enemy) to track the number of bullets fired. The onBulletHit event was used to record the success rate. Once 5 bullets were fired at an enemy, the state was computed and the value updates were carried out.
Policy
A policy is defined a mapping from the state to the possible actions. The definition of state was given in the previous table. The list of possible actions is given below:
	Action Index
	Action description

	0
	Fire neural net gun with firepower .5

	1
	Fire neural net gun with firepower 1

	2
	Fire neural net gun with firepower 2

	3
	Fire neural net gun with firepower 3

	4
	Fire spray gun with firepower 1

	5
	Fire spray gun with firepower 2

Training

The same hybrid approach as explained in the implementation of BP was adapted for RL. The probability of hitting the enemy with any gun was dependent on the accuracy that the neural network would gain which was in turn dependent on the nature of motion of the enemy. It would be unrealistic to predict the values for the Q states in this application before hand. Moreover, it becomes trickier since the neural network uses online training, and chances are that its accuracy will improve with the rounds.
An initial distribution was used which weighed more in favor of the neural network gun, thus giving it a chance to improve its accuracy before the RL discards it during the initial learning phase (for the gun).
	State\Action Index
	0
	1
	2
	3
	4
	5

	0
	.7
	.5
	.5
	.5
	.5
	.5

	1
	.5
	.5
	.5
	1.5
	.5
	.5

	2
	.5
	.5
	.5
	1.5
	.5
	.5

The online training was performed for each tank once 5 bullets were fired at it. The current state was computed based on the success rate of these five fired and the state-action table was updated for the previous state. Using this updated table, the next action was selected from the policy using the set value for the exploratory vs. greedy moves.
The online learning was carried out using:

Q(st,at) = Q(st,at) + gamma*[reward+max Q(st+1,at+1)-Q(st,at)];
Where

Q(st,at) represents the state in the previous update and the corresponding action taken at the time instance

gamma is the learning constant (fixed at .5)

reward was computed using (number of hits-1)*2, which provided for negative reward(punishment) too

max Q(st+1,at+1) denotes the best possible state action value in the current time instance
The greedy factor (ξ) was fixed at .8
Evaluation

As presented in the evaluation section of the BP algorithm, it was observed that the firing system had a poor efficiency with the neural network gun against Crazy. An accuracy of only .14 was obtained while the Spray gun out performed with .22. Using RL to enable the tank to switch the guns resulted in an increase in the firing accuracy as show below:
	Without RL
	With RL(ξ=.8)
	With RL(ξ=1)

	.14
	.26
	.16

Data was collected against the Crazy tank over 100 rounds. The ‘Without RL’ approach used only the neural network gun, whereas to implement RL all the six combinations of guns (explained earlier) were used. The final Q table looked as below:
	State\Action Index
	0
	1
	2
	3
	4
	5

	0
	-.3
	-.5
	0
	-.5
	16.3
	2.5

	1
	0
	.25
	.15
	.25
	

19
	5.5

	2
	.45
	.15
	-.2
	-.5
	11
	1.5

Referring to the action table description (4 and 5 are the Spray guns) it is apparent that the tank learnt to reward the use of the Spray gun against the random movements of the Crazy tank.
The value of the greedy factor plays a crucial role in letting the tank learn to switch guns to the Spray gun from the neural net gun. Since we have initialized the table with a bias towards the neural net gun, if we had programmed a purely greedy approach, Nemesis would have never used the Spray gun against its enemy and thus there would have been no improvement in its performance against the Crazy tank. No observable trend was noticed with changing this value to other than those mentioned in the table.
Deterministic Logic

Radar sweep control

[image: image6.jpg]w0
LY s 86.0

' kO =
Chumbawomba 0.3 4 .‘li'o

Duslitiicrs 122

arshmation 12.7

e
3
)
N

Ares0.19

Figure 6 Radar scan strategy
The Radar scan policy of the tank is tuned to the needs of the Neural Network to get as much data about all the other tanks in the battle as regularly as possible. This is achieved by moving the radar in clockwise and anti-clockwise directions across the minimum spanning angle which covers all the other tanks currently in the battle. To compensate for any fast moving robot which might move out of the tanks field of view (Like DuelistMicro in the figure), the scanner does an additional complete 360 degree sweep of the field once every 15 scans. After each sweep, the span angle is updated to cover all the enemy robots. This approach has the advantage that different scenarios like Melee and One-on-One are handled with the same code. When a single enemy remains, the same approach ensures that the tank scans only that robot and does not waste time looking at the rest of the battle field.
Enemy data storage

Since the implementation of the neural networks in Nemesis is specific for each enemy robot, an efficient way to store and retrieve data would be to create an array of data containers. Each container holds the data of a single enemy. The enemy is identified by its name and assigned a unique index into this array which does not change for the entire battle. Hence information gained about each enemy lasts across rounds. The firing mechanism appropriately loads up the data and weights for the selected target and fires the appropriate gun.
Target selection

Nemesis continuously scans and keeps the enemy database up to date for all enemies. The tank picks up the closest enemy in terms of Euclidean distance as the most appropriate target to fire at. It also keeps track of the Weighted Mean Square error of the neural net based gun and will pick an enemy bot farther away if its error falls below a set threshold. What this implies is that though that enemy might not be close by, but the tank has a higher chance of scoring a hit since the neural network appears to be doing a better job at predicting its position. Lastly, it also gives priority to any enemy tank with a low energy, since a hit would mean additional points for the kill.
Repetitive bullet hit avoidance (bolt)
When the tank is under continuous attack by an enemy robot, a bolt strategy is triggered. On being hit consecutively by an enemy bot within a small interval of time, the tank straightens out and makes a run for it in a direction perpendicular to the course of the last bullet hit. This call is a blocking call since the tanks primary concern at this point is to avoid enemy fire. This sudden change in movement strategy also has the additional effect of throwing off any Neural Net tracking the tanks motion using its heading or movement pattern.
Wall collision avoidance
Use of the AdvancedRobot class in implementing a tank in Robocode has a disadvantage that it penalizes the tank for every wall collision with a drop in its energy; this drop is dependent on the tanks velocity at the time of collision. Wall collision avoidance becomes extremely important towards the end of a round when the tank is low on health and survival is the prime concern.
Using the Robocode API’s the tank can obtain its position in the battle field as a coordinate pair. Moreover, the environment also provides for the battle field size. This information can then be used to incorporate simple but effective wall collision avoidance strategies. Nemesis uses non-blocking calls for most of its actions, which means that its run method is executed on almost every tick. The tank monitors its current location in the battle field constantly and swerves away from the walls when it gets closer than a distance of 100 pixels to any wall. Since Nemesis has a repetitive bullet hit avoidance maneuver which is blocking, there are times when the tank may actually hit the wall. The onHitWall event is used to reflect off the walls at an angle which requires the tank to turn with the a minimum turning radius
The Spray, Linear and the Point gun

To compare the trained neural network against alternate firing schemes, three virtual guns were implemented. The Spray gun fires three bullets (each of energy 1) along the sides of an isosceles triangle and down the median. (The apex being the tanks gun, the enemy robot is at the centre of the base. Base width was set at 20 pixels). The Linear gun fired at the linearly extrapolated position of the enemy tank with energy equal to the one fired using the neural network. The Point gun just fired at the last scanned position of the enemy.

The Movement strategy

Nemesis uses a sinusoidal movement trajectory. This is found to be empirically more successful against RoboLeague battle tanks. To prevent any possible enemy from tracking this movement, random straight runs and 360 degree spins were incorporated into the Driver class.
Software design and implementation
A modular programming approach using the OOP (Object Oriented Programming) concept was used to design and program the robot. This streamlined the development approach and made the code easier to handle. Valuable time was saved by this approach since the methods were easy to localize and debug, enabling more focus on the core of the project, the learning.
The entire development of the robot was done using the Eclipse IDE which offers advanced features like automatic compilation and member function completion. The use of this IDE greatly enhanced the productivity of each development session.

Figure 1: Class structure
The Nemesis class
Robocode picks the name of the robot class for the display name in the simulator. The robot tank was called Nemesis after the goddess of divine retribution and vengeance (Greek Mythology). This is the main class of the project containing the run method used by the Robocode environment to process the actions of the tank.
Class Summary:

· Implements the run method

· Sequentially does the scanning, targeting and movement using appropriate object methods

· Passes various event triggers to appropriate internal modules

The Driver class

The object of this class is responsible for all movement related activates of the tank. A single instance of this class is created in the Nemesis class.
Class Summary:

· Commands the normal Drunken walk movement of the robot
· Implements and triggers the wall avoidance strategy

· Implements and triggers the bolt strategy when receiving intense enemy fire
The Scanner class

The object of this class is declared as a static member of the Nemesis class so that its values are retained between the rounds of a battle.
Class Summary:

· Contains an array of EnemyBot objects to store information

· Controls the radar and performs the minimum span scan to cover all the enemy tanks
· Handles the onScannedRobot and the onRobotDeath event to update the internal data structure with the scanned information about the enemy
The Gunner class
The object of this class handles the targeting and firing of the enemy tanks.

Class Summary:

· Optimum target selection

· Gun selection for chosen target using RL

· Implements 4 different virtual guns
· The BP controlled gun

· The spray gun

· The linear prediction gun (For benchmarking)

· The point gun (For benchmarking)

The EnemyBot class

The container class for all information about an enemy. The Scanner class uses an array of this object to record and store all pertinent information. Each enemy encountered has a separate entry in the array, hence there are distinct instances of the BP and RL process for each enemy robot
Class Summary:

· Contains storage space for all relevant data including weights for the BP algorithm, the states and value matrices for the RL approach, the scanned coordinates, velocity etc
· Implements the BP algorithm

· Implements the RL algorithm
Conclusion

This report presented the design and performance of the robot tank Nemesis with emphasis on the implementation of the learning approaches taught in the course. Problem analysis and the data transformation required to successfully integrate a learning approach into the tanks behavior was studied. The back propagation algorithm to train a neural network was used to identify movement patterns in an enemy tank; the advantage of such an approach was clearly shown with the increase in the firing accuracy against deterministic movement tank robots. To counter the disadvantage of this approach when dealing with randomly moving enemies, the reinforcement learning approach was used. It was also shown that using RL improved the performance of the targeting system as a whole. Through this project, a basic understanding of the Java programming language as well as software design and development was gained.
References

Robocode:

http://people.csail.mit.edu/jacobe/papers/robocode.pdf
http://robocode.sourceforge.net/
http://robocoderepository.com/ [Source of ChumbaWumba]
Back propagation:
http://www.abo.fi/~rfuller/nfs10.pdf
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
http://www2.psy.uq.edu.au/~brainwav/Manual/BackProp.html
http://www.shef.ac.uk/psychology/gurney/notes/l4/subsection3_2_1.html#eqndeltas
http://www.speech.sri.com/people/anand/771/html/node37.html
Reinforcement learning:
http://www.cse.unsw.edu.au/~cs9417ml/RL1/introduction.html
http://www.indiana.edu/~q320/Notes/rl2.html
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a.pdf
http://www.cs.ualberta.ca/%7Esutton/book/ebook/node65.html
http://www.cs.ualberta.ca/~sutton/papers/Sutton-99-MITECS.pdf
Book:
Pattern Recognition Using Neural Networks – Carl G. Looney (Oxford University Press)
Appendix I: Matlab code
Below is the Matlab code frame used to study the back propagation algorithm. The use of matrix multiplication made the code trivial. Data was obtained from Robocode via file IO and copy pasted into the Matlab environment. (Matlab allows for file IO but coding this was deemed unnecessary)
function nnets

rho=.1;nIP=2;nHL=1;

nOP=2;n=100;epoch_num=4;

%the weights

wIP=rand(nIP,nHL);

wOP=rand(nHL,nOP);

%container for inputs

cIP=ones(1,nIP);

%the target

t=ones(n,nOP);
for epch_i = 1: epoch_num

 for indx =1: n
 %Output of hidden layer

 ui=cIP*wIP;

 ui=(2./(1+exp(-ui)))-1;
 %final output

 oi=ui*wOP;

 oi=(2./(1+exp(-oi)))-1;

 %delta calculation
 di_o =(oi).*(1-oi).*(t(n,:)-oi);

 di_u=di_o*wOP';

 %weight updation
 wOP=wOP+ (rho*di_o'*ui)';

 wIP=wIP+ (rho*di_u'*cIP)';

 %Difference
 error(indx,:)=t(n,:)-oi;

 plot(error(:,1));

 hold on;

 plot(error(:,2),'r');

 pause;

 end
end

Appendix II: Java code

The Nemesis class
package nemesis;

import robocode.*;

//to set the color

import java.awt.Color;

public class nemises extends AdvancedRobot {

public Driver driver;

public Gunner gunner;

public static Scanner scanner;

public nemises(){

//Allocate mem for the static variables

Scanner.initstatic(this);

// The three people in the tank

driver = new Driver(this);

scanner= new Scanner(this);

gunner= new Gunner(this);

}

public void run() {

driver.init();

// sets the colours of the robot

setColors(Color.black, Color.black, Color.black);

// Keep the gun still when we turn the tank

setAdjustGunForRobotTurn(true);

// Keep radar still when we turn the gun

setAdjustRadarForGunTurn(true);

while (true) {

scanner.procscan();

gunner.shoot();

driver.drive();

//out.println("One round done in :" +getTime()+"\n\n\n");

execute();

}

}

public void onHitByBullet(HitByBulletEvent e) {

driver.hitbybullet(e);

}

public void onScannedRobot(ScannedRobotEvent e) {

scanner.botscanned(e);

}

public void onHitWall(HitWallEvent e)

{

driver.hitwall(e);

}

public void onRobotDeath(RobotDeathEvent e){

scanner.robotdeath(e);

}

public void onDeath(DeathEvent e){

scanner.closefiles();

}

public void onBulletHit(BulletHitEvent e){

gunner.scored(e);

}

}

The Gunner class

package nemesis;

import robocode.*;

import java.awt.geom.*;

public class Gunner{

nemises tank;

int spray_fire=0;

//the index to the current target

int target;

Gunner(nemises the_tank){

this.tank=the_tank;

return;

}

public void shoot(){

if(spray_fire!=0){

//the spray gun hasnt quite done with its job..

fire_spray_gun(target,.5);

return;

}

target=get_Target();

//Will actually run the algo only if 5 bullets have been already fired at this target

Scanner.enemies[target].applyRL();

//Decide on which action to take in this state

switch(Scanner.enemies[target].getAction(Scanner.enemies[target].currentQ)){

//switch(9){//toskip RL and use a single gun

//take the action

case 0:

fire_nn_gun(target,.5);

//tank.out.println("NN gun at .5");

break;

case 1:

fire_nn_gun(target,1);

//tank.out.println("NN gun at 1");

break;

case 2:

fire_nn_gun(target,2);

//tank.out.println("NN gun at 2");

break;

case 3:

fire_nn_gun(target,3);

//tank.out.println("NN gun at 3");

break;

case 4:

spray_fire=3;

fire_spray_gun(target,1);

//tank.out.println("S gun at 1x3");

break;

case 5:

spray_fire=3;

fire_spray_gun(target,.5);

//tank.out.println("S gun at .5x3");

}

//update the count of how many times we have fired at this bot

Scanner.enemies[target].firedat++;

//for comparision

//fire_linear_gun(target,3);

//fire_point_gun(target,3);

}

//Use the weights in the EnemyBot class object for the target to

//predict and general heading of the enemy, compute the probably

//position at impact, turn gun ..and fire

public void fire_nn_gun(int target,double firepower){

double[] pred_dxy=Scanner.enemies[target].fwdprop();

double dx=pred_dxy[0];

double dy=pred_dxy[1];

//rotate coordinates back to normal

dx=(dx*Math.cos(Math.toRadians(-Scanner.enemies[target].heading)) + dy*Math.sin(Math.toRadians(-Scanner.enemies[target].heading)));

dy=(-dx*Math.sin(Math.toRadians(-Scanner.enemies[target].heading))+ dy*Math.cos(Math.toRadians(-Scanner.enemies[target].heading)));

//account for the velocity and the time diff b/w scan and fire

dx*=Scanner.enemies[target].velocity*(tank.getTime()-Scanner.enemies[target].update_t+1);

//take the component along x axis to get x displacement

dx*=Math.sin(Math.toRadians(Scanner.enemies[target].heading));

dy*=Scanner.enemies[target].velocity*(tank.getTime()-Scanner.enemies[target].update_t+1);

//component along y axis

dy*=Math.cos(Math.toRadians(Scanner.enemies[target].heading));

turnGunto(absoluteBearing(tank.getX(),tank.getY(),Scanner.enemies[target].x+dx,Scanner.enemies[target].y+dy));

if((tank.getGunTurnRemaining()<1) && (tank.getGunHeat()==0)){

if(Scanner.enemies[target].alive && tank.getEnergy()>5)tank.fire(firepower);

}

}

//Spray the previous location and around it with low power bullets

public void fire_spray_gun(int target, double firepower){

if(tank.getGunHeat()==0&&spray_fire==3){

turnGunto(absoluteBearing(tank.getX(),tank.getY(),Scanner.enemies[target].x,Scanner.enemies[target].y));

if(Scanner.enemies[target].alive && tank.getEnergy()>5){

tank.fire(firepower);

spray_fire--;

}

}

if(tank.getGunHeat()==0&&spray_fire==2){

turnGunto(absoluteBearing(tank.getX(),tank.getY(),Scanner.enemies[target].x+60,Scanner.enemies[target].y));

if(Scanner.enemies[target].alive && tank.getEnergy()>5){

tank.fire(firepower);

spray_fire--;

}

}

if(tank.getGunHeat()==0&&spray_fire==1){

turnGunto(absoluteBearing(tank.getX(),tank.getY(),Scanner.enemies[target].x,Scanner.enemies[target].y+60));

if(Scanner.enemies[target].alive && tank.getEnergy()>5){

tank.fire(firepower);

spray_fire--;

}

}

}

//Use linear prediction based on previous location, heading and velocity

public void fire_linear_gun(int target,double firepower){

double bulletspeed = 20 - firepower * 3;

double timetohit = Scanner.enemies[target].distance/ bulletspeed;

double d_moved=Scanner.enemies[target].velocity*timetohit;

double new_x=Scanner.enemies[target].x+d_moved*Math.sin(Math.toRadians(Scanner.enemies[target].heading));

double new_y=Scanner.enemies[target].y+d_moved*Math.cos(Math.toRadians(Scanner.enemies[target].heading));

turnGunto(absoluteBearing(tank.getX(),tank.getY(),new_x,new_y));

if(tank.getGunHeat()==0){

if(Scanner.enemies[target].alive && tank.getEnergy()>5)tank.fire(firepower);

}

}

//point an fire to prev location

public void fire_point_gun(int target, double firepower){

turnGunto(absoluteBearing(tank.getX(),tank.getY(),Scanner.enemies[target].x,Scanner.enemies[target].y));

if(tank.getGunHeat()==0){

if(Scanner.enemies[target].alive && tank.getEnergy()>5)tank.fire(firepower);

}

}

//Compute the absolute bearing b/w two coordinate points

double absoluteBearing(double x1, double y1, double x2, double y2) {

double xo = x2-x1;
double yo = y2-y1;

double hyp = Point2D.distance(x1, y1, x2, y2);

double arcSin = Math.toDegrees(Math.asin(xo/hyp));

double bearing = 0;

if (xo > 0 && yo > 0) { // both pos: lower-Left

bearing = arcSin;

} else if (xo < 0 && yo > 0) { // x neg, y pos: lower-right

bearing = 360 + arcSin; // arcsin is negative here, actually 360 - ang

} else if (xo > 0 && yo < 0) { // x pos, y neg: upper-left

bearing = 180 - arcSin;

} else if (xo < 0 && yo < 0) { // both neg: upper-right

bearing = 180 - arcSin; // arcsin is negative here, actually 180 + ang

}

return bearing;

}

//Turn the gun to the desired bearning

public void turnGunto(double absbearing){

double angle=tank.getGunHeading()-absbearing;

while (angle > 180) angle -= 360;

while (angle < -180) angle += 360;

tank.turnGunLeft(angle);

}

//Find the best target

public int get_Target(){

//get the best robot from the scanners vector of enemies

int indx;

double min_d=1000000;

int mind_target_indx=0;

double energy=100;

int mine_target_indx=0;

for(indx=0;indx<Scanner.E_NUM;indx++){

if((min_d>Scanner.enemies[indx].distance)&&Scanner.enemies[indx].alive){

mind_target_indx=indx;

min_d=Scanner.enemies[indx].distance;

}

if((energy>Scanner.enemies[indx].energy)&&Scanner.enemies[indx].alive){

energy=Scanner.enemies[indx].energy;

mine_target_indx=indx;

}

}

if(energy<20){

return mine_target_indx;

}else{

return mind_target_indx;

}

}

//Each time we hit, update the information for that bot with it

public void scored(BulletHitEvent e){

int indx;

for(indx=0;indx<Scanner.E_NUM;indx++){

if(Scanner.enemies[indx].name.equals(e.getName()))break;

}

Scanner.enemies[indx].gothit++;

}

}
The Driver Class

package nemesis;

import robocode.*;

public class Driver{

nemises tank;

//to keep track of how often we were hit

double hitrecently;

//battle field dimensions

double W,H;

//to control our drunken walk..

static int turn_direction = 0;

static int turn_times = 0;

//flag to indicate wall collision avoidance in progress

boolean avoidingwalls=false;

//the constructor called only once

Driver(nemises the_tank){

//from now on, we'll use our variable 'tank'

this.tank=the_tank;

}

//initialise the variables, could not be done in constructor since the 'run'

//method has to be called..which can happen only after construction of object

public void init(){

W=tank.getBattleFieldWidth();

H=tank.getBattleFieldHeight();

}

//Main function to move the bot. Checks for proximity of walls first and then

//goes into a drunken walk across the battle field.

public void drive(){

if(nearwalls()){

//tank.out.println("Wall avoidance kicked in...");

}else{

if(tank.getDistanceRemaining()<50){

if((Math.random()*15)<1){

//run straight occasionally for a longer distance

tank.setAhead(300);

}else{

tank.setAhead(220);

}

}

//the drunkeness...

if(tank.getTurnRemaining()==0){

//turn around once a while to throw off any NN using

//our heading to target us or predict our motion the

//time spent in turning in place will also act as a 'stop'

if((Math.random()*20)<1){

tank.setTurnLeft(180);

tank.out.println("Spinning..");

}else{

if ((turn_direction % 2)==0) {

tank.setTurnRight(50);

} else {

tank.setTurnLeft(50);

}

++turn_direction;

}

}

}

}//end of drive

//On hitting the wall ..'reflect' offit..

public void hitwall(HitWallEvent w){

//this event should ideally not happen...

//tank.out.println("OMG ..I hit the wall...");

//if it does..reflect off it..

tank.setTurnLeft(2*w.getBearing());

tank.setAhead(100);

avoidingwalls=true;

}

//if we get hit by a bullet twice in a short span ..make a headlong

//rush out of the fire area

public void hitbybullet(HitByBulletEvent e){

//if we are hit twice within a short time

double absangle=e.getBearing();

if(absangle<0)absangle+=360;

if((tank.getTime()-hitrecently)<500){

//run like hell...hope to throw off the targetting

//randomly turn to left or right

if(Math.random()>.5){

tank.setAhead(150);

}else{

tank.setBack(150);

}

}

hitrecently=tank.getTime();

return;

}

//check for proximity with the walls ...turn the other way if we are close

public boolean nearwalls(){

double x=tank.getX();

double y=tank.getY();

if(avoidingwalls==true){

if(tank.getDistanceRemaining()==0){

avoidingwalls=false;

return false;

}else{

return true;

}

}

if(x<100){

turnto(60);

tank.setAhead(50);

avoidingwalls=true;

return true;

}

if(x>W-100){

turnto(-60);

tank.setAhead(50);

avoidingwalls=true;

return true;

}

if(y<100){

turnto(20);

tank.setAhead(50);

avoidingwalls=true;

return true;

}

if(y>H-100){

turnto(150);

tank.setAhead(50);

avoidingwalls=true;

return true;

}

avoidingwalls=false;

return false;

}

//turn to given heading thru left or right for min turn

public void turnto(double heading){

double angle=(tank.getHeading()-heading)%360;

if(0<=angle && angle<180)tank.setTurnLeft(angle);

if(180<=angle && angle<=360)tank.setTurnRight(angle);

}

}

The Scanner Class

package nemesis;

import robocode.*;

public class Driver{

nemises tank;

//to keep track of how often we were hit

double hitrecently;

//battle field dimensions

double W,H;

//to control our drunken walk..

static int turn_direction = 0;

static int turn_times = 0;

//flag to indicate wall collision avoidance in progress

boolean avoidingwalls=false;

//the constructor called only once

Driver(nemises the_tank){

//from now on, we'll use our variable 'tank'

this.tank=the_tank;

}

//initialise the variables, could not be done in constructor since the 'run'

//method has to be called..which can happen only after construction of object

public void init(){

W=tank.getBattleFieldWidth();

H=tank.getBattleFieldHeight();

}

//Main function to move the bot. Checks for proximity of walls first and then

//goes into a drunken walk across the battle field.

public void drive(){

if(nearwalls()){

//tank.out.println("Wall avoidance kicked in...");

}else{

if(tank.getDistanceRemaining()<50){

if((Math.random()*15)<1){

//run straight occasionally for a longer distance

tank.setAhead(300);

}else{

tank.setAhead(220);

}

}

//the drunkeness...

if(tank.getTurnRemaining()==0){

//turn around once a while to throw off any NN using

//our heading to target us or predict our motion the

//time spent in turning in place will also act as a 'stop'

if((Math.random()*20)<1){

tank.setTurnLeft(180);

tank.out.println("Spinning..");

}else{

if ((turn_direction % 2)==0) {

tank.setTurnRight(50);

} else {

tank.setTurnLeft(50);

}

++turn_direction;

}

}

}

}//end of drive

//On hitting the wall ..'reflect' offit..

public void hitwall(HitWallEvent w){

//this event should ideally not happen...

//tank.out.println("OMG ..I hit the wall...");

//if it does..reflect off it..

tank.setTurnLeft(2*w.getBearing());

tank.setAhead(100);

avoidingwalls=true;

}

//if we get hit by a bullet twice in a short span ..make a headlong

//rush out of the fire area

public void hitbybullet(HitByBulletEvent e){

//if we are hit twice within a short time

double absangle=e.getBearing();

if(absangle<0)absangle+=360;

if((tank.getTime()-hitrecently)<500){

//run like hell...hope to throw off the targetting

//randomly turn to left or right

if(Math.random()>.5){

tank.setAhead(150);

}else{

tank.setBack(150);

}

}

hitrecently=tank.getTime();

return;

}

//check for proximity with the walls ...turn the other way if we are close

public boolean nearwalls(){

double x=tank.getX();

double y=tank.getY();

if(avoidingwalls==true){

if(tank.getDistanceRemaining()==0){

avoidingwalls=false;

return false;

}else{

return true;

}

}

if(x<100){

turnto(60);

tank.setAhead(50);

avoidingwalls=true;

return true;

}

if(x>W-100){

turnto(-60);

tank.setAhead(50);

avoidingwalls=true;

return true;

}

if(y<100){

turnto(20);

tank.setAhead(50);

avoidingwalls=true;

return true;

}

if(y>H-100){

turnto(150);

tank.setAhead(50);

avoidingwalls=true;

return true;

}

avoidingwalls=false;

return false;

}

//turn to given heading thru left or right for min turn

public void turnto(double heading){

double angle=(tank.getHeading()-heading)%360;

if(0<=angle && angle<180)tank.setTurnLeft(angle);

if(180<=angle && angle<=360)tank.setTurnRight(angle);

}

}

The EnemyBot class

package nemesis;

import robocode.*;

import java.io.*;

public class EnemyBot{

public nemises tank;

public boolean alive;

public double x,y;

public double energy;

public double velocity;

public double heading,p_heading,absBearing;

public double update_t;

public double distance;

//name of the enemy

public String name;

//one file per enemy to save data, opened once in a battle

public PrintStream movesfile;

//For the NN (Back propagation)

//Learning constant

public static final double rho=.3;

//number of inputs (MUST BE 2n)

public static final int nIP=12;

//number of neurons in hidden layer

public static final int nHL=11;

//number of neurons in output *FIXED*

public static final int nOP=2;

//the container for the inputs, fresh inputs are shifted in from the right

public double[] cIP;

//the weights for the inputs

public double[][] wIP;

//the output of the hidden layer

public double[] ui;

//the delta of the hidden layer

public double[] delta;

//the weights for the outputs

public double[][] wOP;

public double WMSE;

//Q table for the RL algo

//number of states

public static final int nS=3;

//number of actions

public static final int nA=6;

//greedy vs exploration

public static double epsilon=.8;

//learning constant

public static double gamma=.5;

public double[][] Q={//-> type of gun/firepower (each column)

{.7, .5, .5, .5, .5, .5 },

{.5, .5, .5, 1.5, .5, .5},

{.5, .5, .5, 1.5, .5, .5}

//^Each row is a state: [0, (1-2), >=3] hit per 5 bullets fired

};

//Number of times we hit the enemy

public int gothit=0;

//Number of times we fired at it

public int firedat=0;

//Current state of the RL algo

public int currentQ=0;

public int previousQ=0;

//the action we took in the last state

public int action;

//gets called during the static variable initialization of Scanner class

public void reset(nemises the_tank){

name="NA";

x=y=0;

energy=100;

velocity=8;

absBearing=0;

distance=1000000000;

alive=true;

tank=the_tank;

cIP= new double [nIP];
ui= new double [nHL];

delta=new double [nHL];

wIP= new double [nIP][nHL];wOP= new double [nHL][nOP];

//Initialize the weights and the data containers

for(int i_nL=0;i_nL<nHL;++i_nL){

ui[i_nL]=0; delta[i_nL]=0;

for(int indx=0;indx<nIP;++indx){

cIP[indx]=0; wIP[indx][i_nL]=.5;

}

for(int i_nOP=0;i_nOP<nOP;++i_nOP){

wOP[i_nL][i_nOP]=Math.random();

}

}

}

//First time we find a robot, we assign it a name and open a file to store the data

public void init(String name){

this.name=name;

try{

movesfile = new PrintStream(new RobocodeFileOutputStream(tank.getDataFile(name + ".moves")));

}catch(IOException e){

tank.out.println("OOPS: file opening error for" + name);

}

}

//function which updates the info for this enemy. Uses BP every time this

//bot is scanned to update the weights to predict the next position

public void update(ScannedRobotEvent e,nemises the_tank,boolean writetofile){

double dx,dy;

int tx,ty;

update_t=tank.getTime();

//we have scanned this ..so it has to be on the battlefield

alive=true;

absBearing = (the_tank.getHeading() + e.getBearing());

//absolute bearing is angle to enemy wrt north from where we are currently

if (absBearing < 0) absBearing += 360;

absBearing%=360;

//hold on to the previous coordinates

dy=y;dx=x;

//compute the present coordinate

distance=e.getDistance();

y= Math.cos(Math.toRadians(absBearing))*distance + the_tank.getY();

x= Math.sin(Math.toRadians(absBearing))*distance + the_tank.getX();

//change of origin (translation) to location of enemy bot in last update

dy=y-dy;dx=x-dx;

//change of origin (rotation) to the heading of the enemy bot in last update

dx=(dx*Math.cos(Math.toRadians(90-heading)) + dy*Math.sin(Math.toRadians(90-heading)));

dy=(-dx*Math.sin(Math.toRadians(90-heading))+ dy*Math.cos(Math.toRadians(90-heading)));

//squash to 3 states, -1,0,+1. The 8 combinations give the direction of motion wrt

//to its previous location and heading

if(dx>.2){tx=+1;}else if(dx<-.2){tx=-1;}else{tx=0;};

if(dy>.2){ty=+1;}else if(dy<-.2){ty=-1;}else{ty=0;};

//Update the NN with this output observation

bplearn(tx,ty);

//shift in the 2 inputs

for(int i_IP=2;i_IP<nIP;i_IP+=2){

cIP[i_IP-2]=cIP[i_IP];

cIP[i_IP-1]=cIP[i_IP+1];

}

cIP[nIP-2]=tx;

cIP[nIP-1]=ty;

//compute the MSE save some data

double[] pred=new double[nOP];

pred=fwdprop();

WMSE=0.8*WMSE+(tx-pred[0]*(tx-pred[0])+(ty-pred[1])*(ty-pred[1]));

if(writetofile){

//movesfile.println((int)tx+ " " +(int)ty+" " + pred[0]+" " +pred[1]+" " +tank.getTime());

//movesfile.println((int)velocity +" "+(int)heading);

//movesfile.println((int)tx+ " " +(int)ty);

movesfile.println(WMSE);

}

//save current heading for next time

p_heading=heading;

heading=e.getHeading();

//update the rest;

velocity=e.getVelocity();

energy=e.getEnergy();

}

//The BP learning algo

public void bplearn(int x,int y){

double[] output =new double[nOP];

double[] delta_op =new double[nOP];

//Get the NN's estimate for current data also note that this

//means ui's would already be computed and in place

output=fwdprop();

//Compute the delta at the output

delta_op[0]=(x-output[0])*output[0]*(1-output[0]);

delta_op[1]=(y-output[1])*output[1]*(1-output[1]);

//update the weights b/w hidden layer and outputs: wOP

for(int i_HL=0;i_HL<nHL;i_HL++){

//at the same time, compute the deltas for the hidden layer

double sum_w_delta=0;

for(int i_OP=0;i_OP<nOP;i_OP++){

//for use in delta computation

sum_w_delta+=wOP[i_HL][i_OP]*delta_op[i_OP];

//weight update

wOP[i_HL][i_OP]=wOP[i_HL][i_OP]+ rho*delta_op[i_OP]*ui[i_HL];

}

//the delta at this hidden node

delta[i_HL]=ui[i_HL]*(1-ui[i_HL])*sum_w_delta;

}

//update the weigts b/w inputs and the hidden layer: wIP

for(int i_IP=0;i_IP<nIP;i_IP++){

for(int i_HL=0;i_HL<nHL;i_HL++){

wIP[i_IP][i_HL]=wIP[i_IP][i_HL]+rho*delta[i_HL]*cIP[i_IP];

}

}

}//end of bplearn

//The forward prop step in the NN, gets called during weight update

//and also during firing by the Gunner class

public double[] fwdprop(){

double[] output=new double[nOP];

//find the activation at the output of hidden layer

for(int i_HL=0;i_HL<nHL;i_HL++){

ui[i_HL]=0;

for(int i_IP=0;i_IP<nIP;i_IP++){

ui[i_HL]+=wIP[i_IP][i_HL]*cIP[i_IP];

}

ui[i_HL]=2/(1+Math.exp(-ui[i_HL]))-1;

}

//find the output

for(int i_OP=0;i_OP<nOP;i_OP++){

output[i_OP]=0;

for(int i_HL=0;i_HL<nHL;i_HL++){

output[i_OP]+=wOP[i_HL][i_OP]*ui[i_HL];

}

output[i_OP]=2/(1+Math.exp(-output[i_OP]))-1;

}

return output;

}

//Pick an action based on the state asked for, called by the Gunner class

//to decide on which gun to use for this enemy

public int getAction(int state){

if(Math.random()<=epsilon){

//choose the best action (greedy)

double max_value_action=0;

for(int indx=0;indx<nA;++indx){

if(max_value_action<Q[state][indx]){

max_value_action=Q[state][indx];

action=indx;

}

}

}else{

//choose an exploratory action

return (int)Math.floor(Math.random()*nS);

}

return action;

}

//Apply the observation from the evnironment into the RL system..

public void applyRL(){

if(firedat>=5){

//process this only if we have fired 5 times at the enemy

//reward is based on the number of hits we scored with these 5 shots

double reward=(gothit-1)*2;

double max_val_action=0;

//decide on current state based on our scoring rate

if(gothit<1)currentQ=0;

if(1<=gothit && gothit<=2)currentQ=1;

if(3<gothit)currentQ=2;

//Find the best value at this state

for(int indx=0;indx<nA;++indx){

if(max_val_action<Q[currentQ][indx]){

max_val_action=Q[currentQ][indx];

}

}

//RL learnring

Q[previousQ][action]+=gamma*(reward+max_val_action-Q[previousQ][action]);

previousQ=currentQ;

firedat=0;gothit=0;

tank.out.println(reward);

for(int inds=0;inds<nS;++inds)

tank.out.println(Q[inds][0]+" "+Q[inds][1]+" "+Q[inds][2]+" "+Q[inds][3]+" "+Q[inds][4]+" "+Q[inds][5]);

tank.out.println("--------");

}

}

}

Nemesis

Scanner

Driver

Gunner

Array of EnemyBots

The 8 basis vectors have the coordinate origin at the last position and have their directions normalized with respect to the tanks heading at that instance

Previous position

Current position

Actual trajectory

Reduced trajectory represented by a vector. (1, 1) in this case

The Neural Network

(x[1],y[1] (x[2],y[2]).. (x[k],y[k])

x[k+1] y[k+1]

Learning constant .8

Learning constant .2

Weighted connection

Bipolar Neuron

Input layer Hidden layer Output layer

Input Pad

ui=f(Si)

Si=sum (wij ui)

f(x)=2/(1+exp(-x)) -1

deltao=(Ci –ui)f’(Si)

deltah=f’(Si) sum(wh deltao)

PAGE
Ashish Uthama Dec 2005 1

