2008 IC/CAD Contest

Problem: Linting Mechanism for SystemC

Source: CIC, Taiwan

November 30, 2007

I. Introduction and Problem Definition

In recent years, as the hardware engineer designing their circuits by hardware description languages such as Verilog or VHDL, linting tools provide great benefits for shortening the design process and improving design quality. The linting tool checks the coding style of a HDL program by default or customized coding rules. According to these rules, the tool should not only report syntax errors in the program, but also give warnings of probable semantic errors.
Since SystemC can be viewed as a hardware description language, the designers could also incur function failure within their SystemC simulation models because of the incautious coding style. Meanwhile, since SystemC is a class library of C++, some errors violating the coding rules of IEEE 1666 SystemC Language Reference Manual (SystemC LRM) are reported by the compiler as C++ syntax errors. Furthermore, some violations of LRM rules do not have any error report, since these misuses of SystemC macros and function calls are not errors in C++ syntax. For example, consider following SystemC program,
01 #include "systemc.h"

02

03 SC_MODULE (Trigger) {

04 SC_CTOR Trigger(sc_module_name n) {

05 T.write(1);

06 }

07 sc_signal<int> T;

08 };

09

10 SC_MODULE (TOP) {

11 Trigger* Tr;

12 TOP(sc_module_name n) {

13 Tr=new Trigger("Tr");

14 A.write(-20);

15 SC_METHOD(M)

16 sensitive << Tr->T;

17 dont_initialize();

18 }

19 // SC_HAS_PROCESS(TOP);

20 sc_signal<sc_int<32> > A;

21 sc_signal<sc_int<32> > B;

22

23 void M(void){

24 B=A;

25 wait(10);

26 }

27 };

28

29 int sc_main(int argc, char* argv[]) {

30 TOP Top("Top_Module");

31 sc_start();

32 cout << Top.A.read() << "\n" << Top.B.read() << "\n";

33 return 0;

34 }

There are two LRM rule violations. The first one is in the definition of module TOP from line 10 to line 19. If a process macro is invoked from the constructor body of a module (i.e. SC_METHOD, SC_THREAD, and SC_CTHREAD), either macro SC_CTOR or SC_HAS_PROCESS should be used in the declaration of the constructor (in LRM page 33 and page 34). The compiler reports following error messages,
hello_sc.cpp: In constructor ‘TOP::TOP(sc_core::sc_module_name)’:

hello_sc.cpp:15: error: ‘SC_CURRENT_USER_MODULE’ has not been declared

hello_sc.cpp:15: error: ISO C++ forbids taking the address of an unqualified or parenthesized non-static member function to form a pointer to member function. Say ‘&TOP::M’

hello_sc.cpp:15: error: invalid static_cast from type ‘int (TOP::*)()’ to type ‘void (sc_core::sc_process_host::*)()’

These error messages are C++ syntax errors after the conversion from SystemC macros to C++ codes, and they direct into the process declaration inside the constructor. However, the error is caused by the absence of SC_CTOR or SC_HAS_PROCESS from the scope of SystemC. These messages do not indicate actually where the problem is; on the contrary, they mislead the designer to put his focus on the trifling details within the default SystemC macro definitions.
The other rule violation is the calling of function wait at line 25. According to the description in LRM page 41, the wait function cannot be used in a method process. However, the wait call in line 25 does not result any error message during compilation.
This problem is based on the OSCI SystemC Class Library Ver. 2.2.0. We collect a set of SystemC coding rules from the LRM and arrange these rules into a check list, as the Appendix II shown. You should develop a linting mechanism to find out rule violations in test programs. The linting mechanism should be capable to
1. Locate a rule violation precisely.

2. Recognize that rule violation as the clause in our check list.

For example, after checking the program above, the mechanism should report messages of two violations as below,

*** Violation of sc_rule_ module_02***

hello_sc.cpp:12: The constructor ‘TOP::TOP(sc_module_name n)’ invokes at least one process, either SC_CTOR or SC_HAS_PROCESS is needed in the declaration
*** Violation of sc_rule_ module_09***

hello_sc.cpp:25: The wait function cannot be called in a method process
You should point out the location and rule number of the violation at first. The explanation can be written by your own words, even can include a suggestion to correct the error.
II Evaluation

The score will be given based on following issues.
1. Correctness. We will test your linting mechanism by programs with different complexity. You should do your best to consider all the possible cases for a rule violation.

2. Time efficiency.

3. By different implementation techniques, it could be possible to find out all the rule violations in more than one passes. In other words, some violations were reported at once, and the programmer manually solved those interactively. This procedure is repeated until no more rule violations. We will consider this as an auxiliary issue to the time efficiency – fewer passes will be better.

References

[1] IEEE Standard SystemC Language Reference Manual, IEEE Computer Society, 2006.

[2] User Guide and Tutorial for nLint ver. 2007.01, NOVAS/SpringSoft, 2007.

Appendix I. Sample Files
The sample files include two directories, “fir” and “fir_rtl”, adopted from the OSCI examples, and eleven individual C++ files. Using the “sc_rule.h” file, different kind of codes violating the SystemC rules in the LRM can be enabled. We list the correspondence between the selected rules and the sample files in Table I.
	No
	SC_RULE
	Sample files

	01
	MODULE_01
	fir/

	02
	MODULE _02

	fir_rtl/

	03
	MODULE _03

	fir_rtl/

	04
	MODULE _04

	fir_rtl/

	05
	MODULE _05
	fir/

	06
	MODULE _06
	fir/

	07
	MODULE _07
	fir/

	08
	MODULE _08
	fir/
	fir_rtl/

	09
	MODULE _09
	fir/
	fir_rtl/

	10
	EVENT_01

	event.cpp

	11
	TIME_01

	time.cpp

	12
	TIME_02
	fir/

	13
	TIME_03

	time_01.cpp

	14
	PORT_01
	fir/

	port.cpp

	15
	PORT _02
	fir/

	port.cpp

	16
	EXPORT_01

	export.c

	17
	EXPORT _02

	export.c

	18
	EXPORT _03

	export.c

	19
	EXPORT _04

	export.c

	20
	PRIM_CHANNEL _01

	prim_channel.cpp

	21
	PRIM_CHANNEL _02

	prim_channel.cpp

	22
	SIGNAL_01

	signal.cpp

	23
	CLOCK_01
	fir/

	clock.cpp

	24
	CLOCK_02
	fir/

	clock.cpp

	25
	FIFO_01

	fifo.cpp

	26
	FIFO _02

	fifo.cpp

	27
	FIFO _03
	fir/

	fifo.cpp

	28
	SEMAPHORE_01

	semaphore.cpp

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	TOTAL
	12
	5
	18

Appendix II. SystemC Rules Check List
	Rule Number
	sc_rule_module_01

	Rule Description
	Every class derived from class sc_module shall have one and only one parameter of class sc_module_name. [LRM-p.31]

	Violation Example
	int sc_main(int argc, char* argv[]) {
 Sample Sample_instance; //No parameter
}

	
	int sc_main(int argc, char* argv[]) {
 Sample Sample_instance(); //No parameter
}

	
	int sc_main(int argc, char* argv[]) {
 Sample Sample_instance(“S1”, “S2”); //Two parameter
}

	Rule Number
	sc_rule_ module_02

	Rule Description
	If a process macro is invoked from the constructor body of a module but macro SC_CTOR is not used within the module class definition, macro SC_HAS_PROCESS shall be invoked within the class definition or the constructor body of the module. [LRM-p.33]

	Violation Example
	SC_MODULE (M) {
 M (sc_module_name n) {
 SC_METHOD(P)
 sensitive << T;
 }
 // NO SC_HAS_PROCESS
};

	Rule Number
	sc_rule_ module_03

	Rule Description
	A member function associated with an unspawned process instance shall have a return type of void, and shall have no arguments. [LRM-p.34]

	Violation Example
	SC_MODULE (M) {
 SC_CTOR(M) {
 SC_METHOD(P)
 sensitive << T;
 }
 int P (int i) {
 …

 }
};

	Rule Number
	sc_rule_ module_04

	Rule Description
	It shall be an error to associate function reset_signal_is with a process instance that is not a clocked thread process. [LRM-p.36]

	Violation Example
	SC_MODULE (M) {
 SC_CTOR(M) {
 SC_THREAD(P)
 reset_signal_is(reset, true);
 }
};

	Rule Number
	sc_rule module_05

	Rule Description
	A clocked thread process cannot have static sensitivity other than to the clock itself. Using data member sensitive to create static sensitivity for a clocked thread process shall have no effect. [LRM-p.38]

	Violation Example
	SC_MODULE (M) {
 SC_CTOR(M) {
 SC_CTHREAD(CT, clock.pos())
 sensitive << T;
 }
};

	Rule Number
	sc_rule_ module_06

	Rule Description
	The dont_initialize shall have no effect if called for a clocked thread process. [LRM-p.38]

	Violation Example
	SC_MODULE (M) {
 SC_CTOR(M) {
 SC_CTHREAD(CT, clock.pos())
 dont_initislize();
 }
};

	Rule Number
	sc_rule_ module_07

	Rule Description
	It shall be an error to call function next_trigger from a thread or clocked thread process. [LRM-p.40]

	Violation Example
	SC_MODULE (M) {
 SC_CTOR (M) {
 SC_THREAD (P)
 sensitive << T1;
 }
 void P () {
 next_trigger(T2);
 }
};

	Rule Number
	sc_rule_ module_08

	Rule Description
	If function next_trigger is called more than once during a single execution of a particular method process instance, the effects of earlier calls shall be cancelled. [LRM-p.40]

	Violation Example
	SC_MODULE (M) {
 SC_CTOR(M) {
 SC_METHOD(P)
 sensitive << T1;
 }
 void P () {
 next_trigger(T2);
 …

 next_trigger(T3);
 }
};

	Rule Number
	sc_rule_ module_09

	Rule Description
	It shall be an error to call function wait from a method process. [LRM-p.41]

	Violation Example
	SC_MODULE (M) {
 SC_CTOR(M) {
 SC_METHOD(P)
 …

 }
 void P () {
 wait(50);
 }
};

	Rule Number
	sc_rule_event_01

	Rule Description
	To notify an event during elaboration. [LRM-p.66]

	Violation Example
	SC_MODULE(M) {

 sc_event E;
 …
 SC_CTOR(M) {

 ….

 E.notify();

 }

};

	Rule Number
	sc_ rule_time_01

	Rule Description
	sc_set_time_resolution shall only be called during elaboration. [LRM-p.69]

	Violation Example
	int sc_main(int argc, char* argv[]) {

 Top Top("Top_Module");

 sc_start();

 sc_set_time_resolution(100, SC_PS)
 return 0;

}

	Rule Number
	sc_ rule_time_ 02 [514]

	Rule Description
	sc_set_time_resolution shall not be called more than once. [LRM-p.69]

	Violation Example
	int sc_main(int argc, char* argv[]) {

 …
 sc_set_time_resulation(100, SC_PS)

 …
 sc_set_time_resulation(10, SC_PS)

 …

}

	Rule Number
	sc_rule_time_03 [514]

	Rule Description
	The value double of sc_set_time_resolution(double, sc_time_unit) be positive and shell be a power of 10. [LRM-p.69]

	Violation Example
	int sc_main(int argc, char* argv[]) {

 Top Top("Top_Module");

 sc_set_time_resulation(125.33, SC_PS)
 sc_start();

 return 0;

}

	Rule Number
	sc_ rule_port_01 [100]

	Rule Description
	To instantiate a port other than within a module. [LRM-p.73]

	Violation Example
	int sc_main(int argc, char* argv[]) {

 …
 sc_in<int> Iamport;

 …
}

	Rule Number
	sc_ rule_port_02 [110]

	Rule Description
	To instantiate a port during simulation. [LRM-p.73]

	Violation Example
	void T::P() {

 …
 sc_in<int> Iamrunningport;

 …
}

	Rule Number
	sc_ rule_export_01

	Rule Description
	To instantiate an export other than within a module. [LRM-p.81]

	Violation Example
	int sc_main(int argc, char* arg[]) {

 …
 sc_export<sc_signal_in_if<sc_uint<8>>> Export_A;

 …
 sc_start(10, SC_NS);

}

	Rule Number
	sc_ rule_export_02

	Rule Description
	To instantiate an export during simulation. [LRM-p.81]

	Violation Example
	int sc_main(int argc, char* arg[]) {

 …
 sc_start(10, SC_NS);
 …
 sc_export<sc_signal_in_if<sc_uint<8> > > Export_B;

}

	Rule Number
	sc_ rule_export_03

	Rule Description
	To have an export remaining unbound at the end of elaboration. [LRM-p.81]

	Violation Example
	SC_MODULE(M) {
 ….

 sc_export<sc_signal_in_if<sc_uint<8>>> my_unbound_export;
};

	Rule Number
	sc_ rule_export_04

	Rule Description
	To bind an export to more than one channel. [LRM-p.81]

	Violation Example
	SC_MODULE(M) {
 ….

 SC_CTOR(M) : A1("A1"), A2("A2") {

 my_export (A1);

 my_export (A2);

 …
 }

 …
 sc_signal<sc_uint<8> > A1;
 sc_signal<sc_uint<8> > A2;
 sc_export<sc_signal_in_if<sc_uint<8> > > my_export;
};

	Rule Number
	sc_ rule_prim_channel_01

	Rule Description
	Objects of class sc_prim_channel can only be constructed during elaboration. [LRM-p.89]

	Violation Example
	int sc_main(int, char*[]) {

 …
 sc_start(10, SC_NS);

 …
 channel b("b");
}

	Rule Number
	sc_ rule_prim_channel_02

	Rule Description
	A primitive channel shall implement one or more interfaces. [LRM-p.89]

	Sample
	class channel :

 public sc_channel {
 …
 // NO MORE INTERFACES

 …
};

	Rule Number
	sc_ rule_signal_01

	Rule Description
	Write a given signal instance from more than one process instance. [LRM-p.108]

	Violation Example
	SC_MODULE (M) {

 …
 sc_out< sc_int<5> > Out_T;

 sc_out< sc_int<5> > Out_T2;

 …
};

int sc_main(int, char*[]) {

 …
 sc_signal< sc_int<5> > Signal_T;

 M M1("M1");

 M1(Signal_T, Signal_T);

 …
}

	Rule Number
	sc_rule_clock_01 [101]

	Rule Description
	The period shall be greater than zero. [LRM-p.120]

	Violation Example
	 sc_clock c1("c1", 0, SC_NS, 0.1, 2, SC_NS);

	Rule Number
	sc_rule_clock_02 [102, 103]

	Rule Description
	The duty cycle shall lie between the limits 0.0 and 1.0, exclusive. [LRM-p.120]

	Violation Example
	 sc_clock c2("c2", 8, SC_NS, 1, 2, SC_NS, false);

	Rule Number
	sc_ rule_fifo_01 [104]

	Rule Description
	More than one port of type sc_fifo_in_if is bound to a given fifo. [LRM-p.152]

	Violation Example
	int sc_main(int, char*[]) {
 …
 sc_fifo<int> fifo(10);

 reader r("reader"); r.in(fifo);

 reader r1("reader1"); r1.in(fifo);
 …
}

	Rule Number
	sc_ rule_fifo_02 [105]

	Rule Description
	More than one port of type sc_fifo_out_if is bound to a given fifo. [LRM-p.152]

	Violation Example
	int sc_main(int, char*[]) {
 …
 sc_fifo<int> fifo(10);
 writer w("writer"); w.out(fifo);

 writer w1("writer1"); w1.out(fifo);
 …
}

	Rule Number
	sc_ rule_fifo_03 [106]

	Rule Description
	The number of slots in the fifo shall be greater than zero. [LRM-p.151]

	Violation Example
	 sc_fifo<int> fifo(0);

	Rule Number
	sc_ rule_semaphore_01 [119]

	Rule Description
	The semaphore value shall be a nonnegative integer. [LRM-p.164]

	Violation Example
	SC_MODULE (M) {

 …
 SC_CTOR(M)

 : semaphore(-1) {

 …
 }

 …
};

PAGE
3

