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Preface

Welcome to the Streaming Bus Performance Application Note for the Hifn 8155 network security processor.  This document provides additional information on the Streaming Bus feature not contained in the 8155 Device Specification. 

About This Document

This document assumes you are already familiar with the 8155 technology and terminology. 

Audience

This document is intended for integrators and application developers responsible for and familiar with software and hardware architecture of a target system. 

Prerequisite

Before proceeding you should generally understand:

· Software and hardware of the target system

· General networking concepts

Document Organization

This document is organized as follows: 

· Chapter 1, Overview, gives a brief overview of the 8155 Streaming Bus.

· Chapter 2, Designing with the Streaming Bus, specifies the system issues when designing with the Streaming Interface.

· Chapter 3, Commands and Headers, describes some special cases of Command and Source Descriptors, and passing a transparent header through the 8155.

· Chapter 4, Streaming Bus Mode, shows how to use the streaming interface in the streaming bus mode.

· Chapter 5, PL3 Bus Mode, gives design considerations when using the streaming interface in PL3 mode.

Document Conventions 
The following conventions will be used throughout this document:

· Courier New typeface indicates code, functions prototypes, and variables. 

· Courier Bold typeface indicates items the user types. 

· Italic typeface indicates book titles, new terms or, words emphasized.

· Registers appear in Bold typeface.

· Register Bit and Field Names appear in Helvetica, Bold, and all caps.

· Signal Names appear in NewCenturySchlbk, Bold, Small Caps.

· Optional names are indicated between arrows <items>. 

· Path names (../directory name) and filenames (/filename) are written relative to the path and appear in Times New Roman italics.

· Keyboard keys appear in Helvetica, small caps.

Customer Support

For technical support about this product, please contact your local Hifn sales office, representative, or distributor.

Web Site

For general information about Hifn and Hifn products refer to: www.hifn.com.
1 Overview

1.1 Scope 

This application note contains information for the 8155 streaming bus interface that may be helpful when designing high performance network security applications.  Interface architectures and system level design considerations discussed within this document are intended for use as a general guide when designing with the 8155 security processor.

The reader is assumed to have a general knowledge of 8155 architecture.  Refer to the 8155 Device Specification, DE-0011 and the 8155 Programmer’s Reference Manual for more information about the 8155 processor.

For technical support for these products or for general information about the Hifn line of products, please contact your local Hifn sales office, representative, or distributor, or refer to: www.hifn.com.

1.2 Streaming Bus Description

The streaming bus is a synchronous FIFO based interface that contains two independent 32-bit buses, one for input and one for output.  The interface is designed so that a host network processor may interface to multiple security processors while sharing a common streaming bus interface.  From the host processors perspective, the 8155 streaming bus interface is a bus slave.
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Figure 1.  The Streaming Bus Interface

In the 8155 security processor, the streaming bus interface is separate from the PCI bus and both may be used at the same time.  If the streaming bus is enabled, only packets and associated descriptors flow over the streaming interface.  The PCI interface must still be used to manage and control the security processor.

In streaming bus designs the streaming bus will carry packet data in and out of the 8155 security processor while session setup and teardown will occur over the PCI interface.  The most important distinction between the streaming bus interface and the PCI or private CPU interface is that the streaming bus is a specialized mechanism for transferring packets and requests to the security processor.  The streaming bus does not directly support read or write access to processor registers, private memory, or the public-key cores.  Unlike the PCI interface, the streaming bus does not contain DMA units.

The following Figure 2 illustrates how data flows through the inbound and outbound ports of the 8155 streaming bus interface.  Incoming packets ingress through the inbound streaming port and consist of a command message followed by source descriptors and source data fragments.  The processed packets egress through the outbound port and consist of a result messages followed by destination data.  Notice that the command message contains a field NS which defines the number of source fragments in the packet.
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Figure 2.  Packet Flow in Streaming Bus Mode

When using the streaming interface, the inbound bus is designed to transfer command messages and un-processed packet data to the 8155 processor.  The outbound bus transfers the processed packet data and result messages back to the host processor.  The streaming interface offers higher performance than PCI since it eliminates the overhead of PCI and supports simultaneous data transmission and reception.  Figure 3 below depicts a typical 8155 streaming bus implementation.
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Figure 3.  8155 Application with Streaming Bus and PCI Interface

The following sections of this document will discuss architectural considerations that apply to 8155 systems that utilize the streaming interface.  These considerations include host interface methodology, the placement of the FIPS security boundary, optional use of the private processor, and options for Hifn’s HSP session management software.  This document also contains information about interface signaling, flow control, and session management.

1.3 8155 Differences

This section outlines the differences for streaming bus between the 8155 and previous Hifn streaming bus implementations.

For both streaming bus mode and PL3 mode, the differences are:

· The speed of the streaming bus has been increased from 80 MHz to 104 MHz.

· The sync_stat register can now be cleared by software. Note that a bit in the sync_stat register is cleared by writing a one to it.  Writing a zero has no effect.
· Both inbound and outbound interfaces can now be selectively reset by software for both streaming bus mode and PL3 bus mode, without resetting the entire 8155.

· Bit 9 of the sync_stat register has been changed to indicate the occurrence of a start of packet sequence in streaming or PL3 modes, rather than “waiting for an SOP” in PL3 mode only.  This bit has been renamed Start_of_Packet_Detected to better indicate its function.

· A parity error now causes an error indication to the DPU by setting bit 30 in the third command descriptor word (M3) for the failing packet.  Previous designs only set bit 2 in the sync_stat register.

In streaming bus mode, the differences are:

· The 8155 can now detect an error on invalid command descriptors (bit 31 cleared) that have a non-zero NS field.  This was known to exhibit hang problems on previous designs.

· The 8155 slam-stops the inbound FIFO when any error is detected by the interface.  These errors are inbound FIFO overrun, input parity error, or invalid command descriptor.  At this point, the inbound logic has potentially lost context and has no way to regain synchronization to the input data stream.  The inbound streaming interface can be independently reset to restart this interface.

· The Inbound_DMA_error (bit 8) in the sync_stat register is now set whenever there is an inbound interface error in streaming mode that causes a slam stop.  This can be used to generate and interrupt to software.  The sync_bad_parity or sync_overrun bits indicate the reason for the slam stop.  If neither of these bits is set, then the slam stop was caused by an invalid command descriptor.

In PL3 bus mode, the differences are:

· When the host deasserts RENB, the RVAL and RDAT signals will now remain unchanged on the following rising edge of RFCLK.

· The EOP signal on the outbound PL3 interface is now always asserted for only one clock cycle.

THIS PAGE INTENTIONALLY LEFT BLANK.

2 Designing with the Streaming Bus

2.1 Relationship between the PCI and Streaming Interface

System performance and host interface architecture are the primary considerations when choosing between either the PCI or streaming interface.  Systems that employ PCI architectures may naturally lend themselves toward using the PCI interface.  On the other hand, systems that require performance beyond PCI may be better suited for using the streaming interface.

In PCI-only systems, commands and packets ingress and egress over the same bus.  In streaming interface systems, packets simultaneously flow through separate 32-bit wide inbound and outbound data paths at speeds in excess of 3.3 gigabits per second (6.6 gigabits/sec full duplex) maximum at 104 MHz.  Packets also flow on demand since the streaming interface is fully dedicated.  Unlike PCI, there is no bus arbitration on the streaming interface.

Overall system performance may dictate using the streaming interface vs. PCI for packet traffic.  Systems delivering greater than 1 Gbps full duplex performance may require the streaming interface to handle packet traffic and PCI interface for session management traffic.  Figure 4 illustrates this type of approach.
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Figure 4.  Typical 8155 PCI and Streaming Bus Communication

The streaming interface is well suited for packet flow since it eliminates the bus arbitration and latencies associated with the PCI interface.  The streaming interface will also achieve better bus utilization and a higher bus bandwidth than PCI.  The PCI interface works well for session communications that initiate session setup and teardown.  These functions are performed on a per session basis and generally do not require the type of bandwidth associated with packet processing.

2.2 Multi-chip Streaming Bus Applications

Two 8155 devices must use independent streaming bus interfaces to achieve combined processing rates without experiencing bus bandwidth limitations.  Figure 5 contains an example application which utilizes two 8155 processors by sharing a single streaming bus and PCI interface.
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Figure 5.  8155 System concept (PCI and streaming bus mode)

Notice in Figure 5 that the PCI interface is used for both the 8155 processors and the streaming bus interface is only used for the second 8155.  Any of the 8155 devices may use only the PCI interface without the streaming bus interface.  However, to achieve maximum packet processing performance, the 8155 will require use of both the streaming interface and the PCI interface.

2.3 Load Balancing with multiple 8155 devices

When multiple 8155 security processors are combined, various load balancing schemes may be used to help ensure a high degree of overall system utilization.  One of the simplest load balancing methods is to statically assign certain blocks of session numbers to each 8155 device.  Using this method, glue logic may be used to route incoming packets (based on session numbers) to the appropriate 8155 device.  This method alone may be sufficient for systems that have no requirement for the ordering of processed packets.

In some systems it may be necessary to export packets in the same order they are received.  In this situation the host may build and maintain an index table whereby inbound packets may be assigned an identifier that records which packet processor was assigned each particular command.  Head and tail pointers in the index table may be used to read result messages and retire packets in the same order they are received.  And, if the pass through field in the command message contains the index number, the result message, which will also contain that index number, may be used as an error checking mechanism to ensure synchronicity is maintained with the stream.

Load balancing should always be considered in multi-chip applications that use separate streaming bus connections to each 8155 device.  While it is possible to use a single streaming bus interface to connect a host processor to multiple 8155 devices, the security processors may be able to handle more traffic than the bandwidth provided by a single streaming bus interface.

Other more elaborate methods exist, but depend largely on the software and hardware capabilities of the end application.

2.4 The Security Boundary

The private CPU makes a security boundary possible and offloads exception processing and session setup and teardown overhead from the host. It also simplifies the host software by encapsulating most of the security software in the security subsystem.  Figure 6 highlights a FIPS 140-1 security boundary in a system that uses a single 8155 device with private processor present.


[image: image6.wmf]FIPS 140-1 Security Boundary

Host

Interface

Logic

Streaming

Bus

32

32

Host Network

Processor

Hifn 815

Security

Processor

Private Memory

Host Memory

Private

Processor

PCI

Bus


Figure 6.  8155 with FIPS 140-1 security boundary and private CPU

The private processor has direct access to private memory session context, including key material.  Assuming the private processor is present, this sensitive information is contained within the security boundary as shown.  If the private processor is not present, the host is required to perform all of the private processor tasks.  In this situation the security boundary expands to include the host CPU, host memory, and any interface logic that is used to connect to the private processor interface.  In applications without the private processor the host CPU and host memory will have access to session context and contain key materials.  Figure 7 shows how the security boundary is expanded in systems without a private processor.
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Figure 7.  Security boundary (without a private processor present)

Hifn recommends the use of a private CPU, since the advantages of HSP more than offset its modest cost. However, the private CPU can be omitted in applications that require low power consumption, reduced physical size, or will not require HSP.

2.5 HSP in Streaming Bus Mode

HSP (Hifn Security Platform) software is designed for applications where packets flow through the streaming bus interface.  The private processor is required in HSP applications and is responsible for performing session setup and tear down.  Session setup involves programming session context into private memory prior to the security processor ever receiving or processing packets associated with the new sessions.  HSP software, provided by Hifn, performs session setup and management.  The software runs on the private processor, alleviating a significant amount of session management processing from the host CPU.

2.6 Session Setup without the Private CPU

This section describes how session handling may be accomplished in streaming bus mode without a private processor.  Session setup must be performed by either the private processor or the host network processor via the PCI interface.  Session setup is never performed by the 8155.  The following session setup tasks must be performed before any packets for the session are sent across the streaming bus:

· An unused session number must be allocated to the session.

· The session context must be initialized to appropriate values.  Session context resides in private SDRAM memory and consists of small session context or optimized large session and compression context(s).

· The DPU program(s) that are going to process the packets in the session must be loaded into private memory.  This task is typically done only once at the beginning of several similar sessions.

In streaming bus mode, without a private processor, these tasks must be handled by the host processor and take place over the PCI interface.

2.6.1 Using the Trap Queues for Session Management

The Trap_out_q and Trap_in_q registers are designed for moving core descriptor indexes to and from the private processor and 8155 DPU core.  These queues enable the private processor to transfer and receive security/compression tasks to and from the 8155 DPU core.

There can be hidden difficulties when using these queues in streaming bus applications where the host is required to perform all of the regular private processor duties.  For example, assume that the host traps an operation to the DPU core.  The DPU then completes the required processing and initiates a trap back to the private CPU (host processor in this example).  If the host doesn’t respond immediately, or mishandles the return trap, all processing for the associated session may be stalled.  As a result, Hifn strongly recommends that our customers either do not try to manipulate the trap queues or use Hifn reference software for these functions.  Such software is subject to Hifn availability.  Contact your Hifn representative for more information.

2.7 Terminating Unused Pins

Some applications may not use both the streaming bus and PCI interface.  In this scenario any unused bus input pins should be left unconnected.  Internal pulldown resistors in the 8155 device will properly terminate these input pins.  Likewise, unused output and I/O pins may be left unconnected.  For example, in streaming bus mode, the SYNC_IN_SOP and SYNC_IN_EOP used for PL3 may be left unconnected.

2.8 Streaming Interface Interrupts

The 8155’s streaming (or PL3) bus may generate an interrupt using the SYNC_INTERRUPT# signal.  The sync_stat register and its associated sync_int_mask register are used to control the conditions that cause this interrupt to be asserted.  If this function is desired, the interrupt signal may be routed to the host processor directly.

3 Commands and Headers

3.1 Command Descriptors without data

A command descriptor may contain zero associated source descriptors (NS=0).  In this situation the command has no data and may immediately be followed by a new command descriptor.

Invalid commands are also accepted by the 8155 (V=0), but only if the NS field is zero.  When an invalid command occurs, the 8155 continues to search for the next command descriptor in the following four dwords.  If an invalid command is found with an NS field not equal to zero, an Inbound_DMA_Error is indicated in the sync_stat register.  If not masked, this will cause a SYNC_INTERRUPT# to be generated.

3.2 Nonzero Source Descriptors

On inbound FIFO writes it is important to realize that the number of bytes in a source descriptor cannot be zero.  Software write routines that are designed to handle blocks of source fragments should not be written in such a way that zero sized source descriptors are used to fill up remaining words to finish out a block transfer, or fill a boundary.

3.3 Command Pass Through

Some applications require in band communications between subsystems.  In streaming bus mode, an 8155 DPU program can be written to allow a header to pass through the security processor unprocessed.  (Such software is subject to Hifn availability.  Contact your Hifn representative for more details.) The following diagram illustrates a customer header that is surrounded by command and packet data.
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Figure 8.  Example Header Use

4 Streaming Bus Mode

This section describes the use of the 8155 streaming bus interface when it is configured in Streaming Bus mode.  We assume that the device is out of reset and a session is set up in the SDRAM for the desired compression or encryption operation. Also, we assume the required DPU program is loaded in SDRAM at function code offset 0.

4.1 Overview

Refer to the 8155 Device Specification, DE-0011, for streaming bus operation and timing requirements.  Streaming bus writes can be contiguous or non-contiguous.  For example, when the host processor is writing words that make up a command descriptor, it is not necessary to deassert the SYNC_WRITE signal before writing additional data words.  It is, however, acceptable to pause in the middle of a data transfer by deasserting the SYNC_WRITE signal.  The write process may resume on any future clock cycle by reasserting the SYNC_WRITE signal.

Figure 9 illustrates a typical write cycle for a command message.  In this example, one of the SYNC_IN_LEVEL signals indicates that the inbound FIFO has reached some predefined threshold after the first word is written.  The host subsequently deasserts the SYNC_WRITE signal and waits for the inbound level indicator to transition back to zero to signify that there is room in the inbound FIFO for writing additional words.  In the given example, it is assumed that a sufficient amount of data has already been written to the inbound FIFO so that the threshold for the SYNC_IN_LEVEL signal is exceeded by the first word of the write transaction (as shown).  The next section describes the FIFO level signals in greater detail.
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Figure 9.  Example Streaming Bus WRITE with 3-cycle pause

The same conditions apply to reading data from the streaming bus.  The SYNC_READ signal may be deasserted at any time during the sequence when words are being read.  The read process will resume once the SYNC_READ signal is reasserted at a later time.  Figure 10 illustrates a typical streaming bus read transaction where two outbound FIFO level signals are used to gate single and multi-cycle read sequences.
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Figure 10.  Example Streaming Bus READ with pause

Notice that the SYNC_READ signal is asserted for one cycle and then deasserted for 5 subsequent cycles.  Both SYNC_OUT_LEVELs indicate that the outbound FIFO has data words available.  This example shows that the host system may suspend the reading of data words from the streaming bus for any reason, even though data is ready to be transferred.

4.2 FIFO level signals

The host may use the programmable FIFO signals to determine when there is room for data in the inbound FIFO, or data in the outbound FIFO.  The 8155 provides three signals for inbound FIFO level detection and three signals for outbound FIFO level detection.  These signals may be used to gate inbound and outbound read and write bursts for maximum throughput.  A typical implementation may program one level signal to indicate a FIFO full condition that would gate off all host transfers to prevent FIFO overrun.  A second FIFO level indicator may be programmed to signal that the FIFO is at some intermediate fullness that may correspond to the maximum burst transfer size of the host.  Then the third FIFO fullness signal could be programmed to signal a FIFO empty condition that may interrupt the host and trigger a burst read or write so that the 8155 processor achieves near 100% utilization. 

The inbound and outbound FIFOs are identical in width and depth.  Each is 64-bits wide and 32 entries deep, thus holding 32 quad-words (or equivalently 64 dwords) each.  The inbound and outbound FIFO level signals are governed by the following equations.

Sync Inbound:

in_level[0] == (freeness <= in_level0_config_value)

in_level[1] == (freeness <= in_level1_config_value)

in_level[2] == (freeness <= in_level2_config_value)

Sync Outbound:

out_level[0] == (fullness <= level0_config_value)

out_level[1] == (fullness <= level1_config_value)

out_level[2] == (fullness <= level2_config_value)

These equations give a concise description of the behavior of the level signals.  Keep in mind that LEVELx_CONFIG_VALUE’s are programmed in terms of qwords (which are 64-bits).  One qword is equivalent to two dwords.  Since the inbound and outbound data paths are 32-bits wide, the example timing illustrations given in this document describe the FIFO level signals in terms of 32-bit dwords.

It is important to recognize that there is a delay between a level change in either FIFO and the update to the associated level signal.  Assuming the output enable is active, on every clock in which the read signal is active, data is read from the outbound FIFO and is driven onto the output pins two cycles later. The outbound FIFO levels are driven three cycles after the SYNC_READ is asserted. Similar conditions apply to the inbound level signals during write cycles.  See the 8155 Device Specification for the timing diagram of Sync reads and writes.

Software routines that service the inbound and outbound FIFOs should be written so that command, source and destination data, and result messages are written and read in their entirety.  Since destination data length is independent of the command or source data length, outbound read routines should not be written solely for fixed length multi-word block reads.

Managing the outbound level indicator signals and associated read cycles may be somewhat more complicated than those of the inbound side.  This is because it is generally easier to write large blocks to the inbound FIFO at one time without having to manage individual 32-bit word write sequences.  In fact the host may make burst writes to the inbound FIFO until it is gated off by the SYNC_IN_LEVEL signal(s).

The outbound FIFO works the same way except that the host must take into consideration that there are delays between asserting the read signal and reading updated values from the outbound FIFO and the update to the outbound FIFO level signal(s).  For optimum outbound efficiency, it may be helpful to program one of the outbound FIFO level indicators to indicate four dwords (level=2) and another to not empty (level=0).  The host may read blocks of four when four or more words are indicated.  Otherwise, the host may poll the not empty signal to finish up reading the result message.  This will prevent a single destination word from remaining in the outbound FIFO without being read by the host.  Figure 11 illustrates how the outbound FIFO level signals may be used to gate a block read and subsequent individual read cycles.
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Figure 11.  Example use of Outbound FIFO level signals

Notice at cycle 2, the SYNC_OUT_LEVEL[1] signal transitions is high to tell the host that there are 3 or less dwords remaining in the outbound FIFO.  Since there is a one-cycle delay between the internal FIFO level change and an update to the FIFO level signal, this condition must have occurred on the last read cycle.  In response, the host must immediately deassert the read signal (in cycle 2) to prevent a read underflow condition.  The last two dwords are read in cycles 3 and 4 due to the 2-cycle delay between deasserting the read signal and the final word being read.  In this particular situation the SYNC_OUT_LEVEL[1] signal gated off the host read process just in time to read all of the data from the Outbound FIFO.  In cycle 6 the SYNC_OUT_LEVEL[0] signal tells the host that there is now at least one dword waiting in the outbound FIFO.  It is read in cycle 9.  Also notice that it takes 3 cycles for the SYNC_OUT_LEVEL[0] signal to update from the time the read signal was asserted by the host.

The inbound FIFO level signaling is simpler to manage.  Unlike the outbound level signals, which must be polled to empty out the last dword, the host may simply write blocks to the inbound FIFO without regard to filling every space.  Figure 12 illustrates how the inbound FIFO level signals may be used to gate off a burst write to the 8155 device.

Note that for inbound FIFO levels, the value set represents the amount of empty space in the FIFO.  Thus, a setting of 2 qwords (4 dwords) means that there is room for at least 4 dwords in the FIFO buffer when that FIFO level is asserted (low).
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Figure 12.  Example use of an Inbound FIFO level signal.

4.2.1 Overflow and Underflow

Data is lost when the host attempts to write a data word to a full inbound FIFO.  Bit 7 in the sync_stat register is set when this occurs.  If enabled in the sync_int_mask register, this status bit will generate an interrupt on the SYNC_INTERRUPT# pin to signal the overflow error.

If a host attempts to read data from an empty outbound FIFO, invalid stale data will be returned.  When this occurs, bit 16 is set in the sync_stat register.  If enabled, an interrupt is asserted on the SYNC_INTERRUPT# pin to signal the underflow error.

In both situations, the internal pointing mechanism of the FIFO has become corrupted and must be reset by writing to the appropriate reset bit in the inbound and outbound control registers.  For the inbound FIFO, this is bit 16 located in the cmd_ring_ctl register.  For the outbound FIFO this is bit 16 located in the rslt_ring_ctl register.  Software must both set the reset bit and subsequently clear it (i.e., it is not self-clearing).

4.3 Initialization

Initialization of the Sync Interface requires writing to cmd_ring_ctl and rslt_ring_ctl registers.  The following sections give FIFO read and write rule example designs. 

4.3.1 Ingress Bus

To initialize the inbound streaming bus, the cmd_ring_ctl register must be configured by software.  In this example, the cmd_ring_ctl register is written with 

32’h7C08_0018

Referring to the device specification, we see that this value means:

· The endian configuration for packet data is set to 32-bit big endian.

· The inbound FIFO is enabled.

· Inbound parity is odd.

· Inbound bus mode is 32 bits.

· In_FIFO_Level_0 = 31, meaning SYNC_IN_LEVEL[0] is 0 when the inbound FIFO is empty. It is not used for flow control in this example.

· In_FIFO_Level_1 = 2 meaning SYNC_IN_LEVEL[1] is 0 when the inbound FIFO has >= 4 dwords of free space in it. It is used in the following write rule.

· In_FIFO_Level_2 = 0 means SYNC_IN_LEVEL[2] is 0 when the inbound FIFO is full. It is not used for flow control in this example.

If any SYNC_IN_LEVEL signal is not used, it can optionally be disabled if that is desired.  Setting the In_FIFO_Level_x value to 32 or higher disables the associated SYNC_IN_LEVEL signal from toggling and forces it to a one.

The write rule is:

If SYNC_IN_LEVEL[1] = 0 then write a 32-bit word,

Else do not write.

This rule ensures that the inbound FIFO will not overflow.

4.3.2 Egress Bus

To initialize the outbound streaming bus, the rslt_ring_ctl register must be configured by software.  For this example, the rslt_ring_ctl register is written with

32’h0008_7C18

Referring to the device specification we see that this value means:

· The result data endian configuration is set to 32-bit big endian.

· The Outbound FIFO is enabled.

· Outbound parity is odd

· Outbound bus mode is 32 bits.

· Out_FIFO_Level_0 = 0 meaning SYNC_OUT_LEVEL[1] is 0 when the outbound FIFO is not empty.  SYNC_OUT_LEVEL[1] will be 1 when the outbound FIFO is empty. This signal is polled to prevent read underflow when the host is reading out the last dwords from the FIFO.

· Out_FIFO_Level_1 = 2 meaning SYNC_OUT_LEVEL[0] is 0 when the Outbound FIFO contains 4 or more 32-bit dwords in it.

· Out_FIFO_Level_2 = 31 meaning SYNC_OUT_LEVEL[2] is 0 when the Outbound FIFO is full. It is not used in this example.

If any SYNC_OUT_LEVEL signal is not used, it can optionally be disabled if that is desired.  Setting the Out_FIFO_Level_x value to 32 or higher disables the associated SYNC_OUT_LEVEL signal from toggling and forces it to a one.

The read rule is:

If SYNC_OUT_LEVEL[1] = 0 then read and do not wait.

Else if SYNC_OUT_LEVEL[0] = 0 then read and wait 2 clocks.

Else do not read.

This rule ensures that we can perform continuous reads while there are in excess of 4 dwords from the 8155 without the danger of reading from an empty FIFO.  When there is only one dword in the Outbound FIFO, we only allow the host to read a single dword, wait for 2 cycles, and poll the level signals again.  Again, this prevents the host from reading from an empty FIFO.

4.4 Writing the Command and Source Fragments

An operation begins by the host writing a command message over the Sync bus to the Inbound FIFO. Let the command message be given by

128’h0002_0000_0000_0002_0000_0000_80CB_0000

Referring to the device specification, we see that for this command, the number of source descriptors, NS, is 2, the overflow bit is zero, the Session Number is 2, the Command Parameter is 0, the Valid Bit is 1, the Function Code is 0, and the pass through value is 8’hCB.  Figure 13 shows the Streaming Bus signals during this command write.
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Figure 13.  Host writes command

The host then writes the first source descriptors followed by its data, and then the second source descriptor followed by its data. Let the first source descriptor be given by

64’h0000_0000_1000_0003

Referring to the device spec we see that, for this source descriptor, the byte alignment is 0 and the fragment size is 3 bytes. Figure 14 shows the Streaming Bus signals during the write of the source descriptor and the 3 bytes of data given by

24’h1234_56
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Figure 14.  Host writes first source descriptor and 3 bytes of data

Let the second source descriptor be given by

64’h0000_0003_3000_0005

Referring to the device spec we see that, for this source descriptor, the 32-bit byte alignment is 3, the source data endian is 32-bit little and the fragment size is 5 bytes. Figure 15 gives the timing diagram for the write of the second source descriptor and data given by:

40’habcd_ef01_23,

which in 32-bit little endian format is:

40’h80F7_B3D5_C4.
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Figure 15.  Host writes second source descriptor and 5 bytes of data

4.5 Reading the Result Message and Destination Data

In parallel to the inbound streaming bus, the host may read result and destination data from the Outbound FIFO as it becomes available. Figure 16 gives the timing diagram for reading the result message: 

128’h0000_0014_0000_0002_0000_0000_00CB_0000

Referring to the device spec this result message has Total Destination Count = 20, Session Number = 2, Result Parameter = 0, a pass through value of 8’hCB, A = 0, C = 0, Result Flags = 0 and Result Code = 0.
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Figure 16.  Host reads result message

The result message is followed by destination data.  The data read is:

160’h0123_4567_89ab_cdef_0123_4567_89ab_cdef_0123_4567

Figure 17 illustrates how the level signals are used to determine how many dwords are waiting to be read from the Outbound FIFO.  In the first cycle the level signals indicate that there are at least 4 dwords waiting to be read.  These 4 words are read in cycles 1 – 4.  Then, at cycle 5, the SYNC_OUT_LEVEL[0] indicates there is more data remaining that was subsequently dumped in the FIFO by the 8155.  To prevent a read underflow situation, the host reads a single dword and waits 2 cycles before polling the level signals again to determine if the FIFO is empty.  This illustrates how the level signals may be used to empty out the FIFO and safeguard against reading while it is empty.
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Figure 17.  Host reads data

4.6 Streaming Mode Endianness

In streaming bus mode, the command and source descriptors must always be written as 64-bit big endian.  The endianness of the source data fragment, however, is determined from the Endian field in the cmd_ring_ctl register.  However, the BusMode field restricts the settings used in the Endian field as follows.

If the BusMode field of the cmd_ring_ctl register is 1, the bus format is 64-bit, byte alignment is three bits to specify the number of valid bytes in the first two dwords, and an even number of dwords must be written to the inbound FIFO.  The Endian field must only be set to 64-bit big endian (0) or 64-bit little endian (3).

If the BusMode field of the cmd_ring_ctl register is 0, the bus format is 32-bit, byte alignment is two bits to specify the number of valid bytes in the first dword, and any number of dwords can be written to the inbound FIFO.  The Endian field must only be set to 32-bit big endian (1) or 32-bit little endian (2).

The FragmentSize field of the source descriptor defines the number of bytes in the source fragment. Writing to the source fragment requires N 32-bit writes, where N is calculated as follows:

if BusMode is 1

  if(FragmentSize mod 8 == 0), then N = 2 * (FragmentSize / 8)

  else N = 2 * (FragmentSize /8) + 2

  endif

else

  if (FragmentSize mod 4 == 0), then N = (FragmentSize / 4)

  else N = (FragmentSize / 4) + 1

  endif

endif

4.7 Streaming Mode Errors

In streaming bus mode, the following errors are detected:

· Parity Error on any descriptor or data

· Inbound FIFO overflow

· Invalid Command Descriptor with an NS field not equal to zero.

Any of these errors represent a serious failure in the reception of commands and data.  At this point, the inbound sync logic has lost context and no longer understands the input stream.  Therefore, it immediately halts any further processing of data and deasserts all the SYNC_IN_LEVELs (sets them high).  An Inbound_DMA_Error is indicated in the sync_stat register and, if not masked, will cause a SYNC_INTERRUPT# to be generated.  If the error occurs because of a parity error, then the sync_bad_parity bit is also set.  Likewise, if the error occurs because of an inbound FIFO overflow, then the sync_overrun bit is also set.  If neither the sync_bad_parity bit nor the sync_overrun bit is set along with the Inbound_DMA_Error, then the error was caused by an invalid command descriptor.

Notice that when these errors occur, the streaming interface immediately freezes, even if it is in the middle of a packet.  To restart the interface, software must perform a reset of the inbound FIFO by setting and subsequently clearing the Rst_in bit located in the cmd_ring_ctl register. In addition, software must clear any bits set in the sync_stat register.  A bit in the sync_stat register is cleared by writing a one to it.  Writing a zero has no effect.
5 PL3 Bus Mode

This section describes the use of the 8155 streaming bus interface when it is configured in PL3 mode.  This mode may be enabled by connecting the 8155’s TEST[2:0] pins high and connecting SYNC_ENABLE# low.  In PL3 mode, the streaming interface becomes PL3-like, which enables the 8155 to interface to another POS-PHY L3 device.

5.1 PL3 Signal Assignments

Table 1 shows the mapping the POS-PHY L3 signals to the 8155 I/O pins.  In POS-PHY terms, this interconnection method designates the network processor as the link layer device in the POS-PHY spec.  The network processor is thus the bus master.  Likewise, the Hifn security processor serves as the bus slave in this implementation.

	POS-PHY L3
	PL3 Description
	8155 Pin Name
	PL3 Comment

	TFCLK
	TX FIFO write clock
	SYNC_IN_CLK
	

	TERR
	TX error indicator
	None
	Signal not required

	TENB
	TX write enable
	SYNC_WRITE
	Active Low

	TDAT[31:0]
	TX packet data bus
	SYNC_IN_DATA[31:0]
	

	TPRTY
	TX bus parity
	SYNC_IN_PARITY
	

	TMOD[1:0]
	TX word modulo
	None
	Signal not required

	TSX
	TX start of transfer
	None
	Signal not required

	TSOP
	TX start of packet
	SYNC_IN_SOP
	

	TEOP
	TX end of packet
	SYNC_IN_EOP
	

	TADR[1:0]
	TX PHY address bus
	None
	Signal not required

	DTPA[0]
	Direct TX packet available
	SYNC_IN_LEVEL0
	

	STPA
	Selected-PHY TX packet available
	None
	Signal not required (tie low)

	PTPA
	Polled-PHY TX packet available
	None
	Signal not required (tie low)

	none
	Signal not required
	SYNC_IN_LEVEL1
	

	none
	Signal not required
	SYNC_IN_LEVEL2
	

	
	
	
	

	RFCLK
	RX FIFO write clock
	SYNC_OUT_CLK
	

	RVAL
	RX data valid
	SYNC_OUT_LEVEL0
	

	RENB
	RX read enable
	SYNC_READ
	Active Low

	RDAT[31:0]
	RX packet data bus
	SYNC_OUT_DATA[31:0]
	

	RPRTY
	RX bus parity
	SYNC_OUT_PARITY
	

	RMOD[1:0]
	RX word modulo (tie low)
	None
	Signal not required (tie low)

	RSOP
	RX start of packet
	SYNC_OUT_SOP
	

	REOP
	RX end of packet
	SYNC_OUT_EOP
	

	RERR
	RX error indicator
	None, tied low
	

	RSX
	RX start of transfer
	None, tied low
	

	None
	Signal not required
	SYNC_OUT_LEVEL[2:1]
	n/c, these are unused

	None
	Signal not required
	SYNC_ENABLE#
	Tie Low

	None
	Signal not required
	SYNC_INTERRUPT#
	n/c or side channel interrupt

	None
	Signal not required
	SYNC_OE#
	User input, must be low to

enable sync / PL3 interface.


Table 1.  POS-PHY L3 Mode Signal Assignment

5.2 Unsupported POS-PHY L3 Features

The following features of a POS-PHY L3 interface are not supported:

· RMOD/TMOD byte enables.  Instead, the length of a data transfer is specified in the source descriptor.

· 8-bit bus size.  All transfers must be padded out to 32 bits.

· RERR/TERR Abort signals.  Partial packets cannot be aborted without creating an SOP/EOP framing error.

· In-band addressing for multiple devices is not supported.  On the inbound bus, any in-band addressing that occurs between EOP and SOP is ignored.

POS-PHY L3 defines both an 8-bit and 32-bit data bus structure.  When interconnecting a POS-PHY L3 interface to the 8155 it is assumed that the POS-PHY L3 bus is operating in its 32-bit mode.  In 8-bit mode, POS-PHY L3 employs an addressing scheme supporting connection to multiple lower data rate devices on the physical interface side of the bus.  This in-band addressing mode is not supported by the 8155 due to data rate limitations.  Notice that the POS-PHY L3 addressing signals (primarily TADR[ ], TSX, and RSX) for multiple physical ports are not connected in Table 1.

The POS-PHY L3 specification supports variable packet lengths by signaling (with RMOD[1:0]) how many bytes are valid in the last word of the received packet.  Since PL3 bus packets always end on an even 32-bit fixed boundary, the RMOD[1:0] signals, that indicate how many bytes are valid in the last word of the received packet, are not needed.  On the outbound PL3 bus at the bus master device, these PL3 signals should be tied low.

5.3 PL3 Operation

The primary difference between the streaming bus mode, as described in the previous sections, and the POS-PHY L3 mode has to do with the addition of the SOP and EOP signals and the alignment of the read/write signals with data, and parity.  There are also some other signaling differences between POS-PHY and the Hifn streaming bus.  Some POS-PHY signals are practically the same and merely named differently than those in the streaming bus.  Other signals exist in one interface and not in the other.  In POS-PHY L3 mode the streaming bus signals may be interfaced to a host processor with POS-PHY compatible signals as shown in Table 1.  Please refer to the actual POS-PHY L3 spec (PMC-198495) for more information.  Any discrepancies between this application note and the PL3 specification are to be resolved in favor of the PMC specification.

Regardless of which mode is used, the streaming bus and PL3 interfaces carry the exact same command, packet, and result traffic types as shown in Figure 2.  Data structures remain the same in PL3 mode as compared to streaming bus mode.

There are many similarities between the signaling used by the streaming bus and those used by POS-PHY L3.  The most obvious similarities are that both interfaces contain independent unidirectional 32-bit wide synchronous data paths with flow control and parity detection.  POS-PHY was primarily designed for point-to-point packet-based communication between link layer devices and physical layer devices.  However, it is also suitable for communication between a network processor and security processor.

In PL3 mode the 8155 is equipped with a pair of synchronization signals on both the in-bound and out-bound data bus. These signals help the 8155 detect in-bound transmission errors, respond to them, and resynchronize to the start of the next packet.  The signals are called Start-of-Packet (SOP) and End-of-Packet (EOP). Both are active-high, and they apply to the particular data word they accompany on the data bus. Figure 18 illustrates how SOP and EOP signals are applied to an inbound packet. 
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Figure 18.  Example use of SOP and EOP signaling with PL3

The 8155 outbound PL3 port also contains SOP and EOP signals which serve the same purpose for the outbound packets.  These signals help the host system detect transmission errors from the 8155.  The SOP is asserted for one cycle when the host reads the first word of the result message.  Likewise, the EOP signal is asserted for one cycle during transmission of the last word of the destination data.  Figure 19 contains an illustration of outbound SOP and EOP operation on the 8155 using PL3 mode.
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Figure 19.  Example use SOP and EOP signaling with PL3

The SOP and EOP signals add an extra layer of error detection to the data streaming process.  On the inbound bus, all data is ignored after the end of packet or before the start of packet signals have been asserted.  Once the start of packet signal has been asserted, the end of packet signal must only be asserted during the final word of the source data packet.  If a command message indicates that there is zero source data (NS=0), the end of packet signal may be asserted during the last word of the command message.

Any violation of the SOP and EOP sequence will result in an error.  If, for example, during the middle of a pre-existing packet transfer, a start of packet signal is received before an expected end of packet, an error is generated (see section 5.6).

The following rules apply to Input Sync bus when using SOP and EOP:

1. A SOP must accompany the first word of a Command Message.

2. All input data between the end of one packet (EOP) and the start of the next (SOP) is ignored.

3. If the last word of a packet is not accompanied by EOP, bit 30 is set in the M3 command message.  All remaining data is flushed until SOP is found.

4. If EOP is found before it is expected, the error flag is set in the command message.  When EOP is found, the packet is truncated at that point, and the state machine flushes all remaining data until another SOP is found.

5. If an unexpected SOP is found before an EOP, bit 30 is set in the M3 command message. The packet is truncated at the previous word and a new Command is started at that SOP.

6. If a parity error is detected on any word from SOP to EOP, bit 30 is set in the M3 command message.

In all cases, the PL3 bus signals an error and then recovers and starts again at the next SOP.

Functionally, descriptor and packet communication must be ordered the same in PL3 bus mode as in streaming bus mode.  In PL3 mode, writing a command message to the security processor has the same format as it would in streaming bus mode.  The command message must contain the number of source descriptors (NS), the session number, a command parameter, a valid bit, and function code.  Timing is very straightforward in PL3 mode (see Figure 20 and Figure 21 for generic examples).  Figure 20 illustrates the POS-PHY signals during a command write.  Figure 21 illustrates the beginning of a read sequence.

There are timing differences in POS-PHY mode which align the data, data parity, and read / write signals.  POS-PHY mode also utilizes Start Of Packet (SOP) and End Of Packet (EOP) signaling to help maintain synchronization and recover from transfer error conditions.  The example diagrams in this section indicate how the 8155 POS-PHY mode timing is structured.

The following diagrams illustrate signal timing in POS-PHY L3.  Notice start of packet, data, and parity are aligned in Figure 20 and Figure 21.
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Figure 20.  PL3 bus write
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Figure 21.  PL3 bus read
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Figure 22  PL3 host writes command message
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Figure 23.  PL3 host writes first source descriptor and 8 bytes of data
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Figure 24.  PL3 host writes second source descriptor and 9 bytes of data
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Figure 25.  PL3 Host reads result message
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Figure 26.  PL3 host reads data

Any violation of the sequence described above will result in an error.  If, for example, during the middle of a pre-existing packet transfer, a start of packet signal is received before an expected end of packet, an error is generated.

5.4 FIFO level signals

The SYNC_IN_LEVEL[0] and SYNC_OUT_LEVEL[0] signals are used for flow control between the 8155 and POS-PHY L3 bus master.  When in PL3 bus mode, these signals are named DTPA[0] and RVAL respectively.  The other remaining sync level signals (1 and 2) are not used and are driven high by the 8155.  The following equations explain the operation of these signals.

· DTPA[0] = (inbound FIFO space > In_FIFO_Level_0).  It is recommended that the In_FIFO_Level_0 field (bits 32:26) be set to 2 in the cmd_ring_ctl register.

· RVAL = (outbound FIFO > 0).  RVAL is set when the outbound FIFO contains at least one word, and the host enables reading of the PL3 bus.

5.5 Initialization

Initialization of the PL3 Interface requires writing to the cmd_ring_ctl and rslt_ring_ctl registers.  The following sections give the recommended settings for these registers.

5.5.1 Ingress Bus

The following setting of the cmd_ring_ctl register is recommended for PL3 bus mode.

32’h0800_0008

Referring to the device specification, we see that this value means:

· The endian configuration for packet data is set to 32-bit big endian.  This is required for POS-PHY L3 compatibility.

· The inbound FIFO is enabled.

· Inbound parity is odd.  This is required for POS-PHY L3 compatibility.

· Inbound bus mode is 32 bits.  This is required for POS-PHY L3 compatibility.

· In_FIFO_Level_0 = 2, meaning DTPA[0] is 1 when the inbound FIFO has at least 2 qwords (4 dwords) of free space in the inbound FIFO buffer.  It is recommended that the In_FIFO_Level_0 field (bits 32:26) be set to 2.  Do not set this value to less than 2.  Values greater than 2 will work, but offer no advantage.

· In_FIFO_Level_1 is not used in PL3 bus mode.

· In_FIFO_Level_2 is not used in PL3 bus mode.

5.5.2 Egress Bus

The following setting of the rslt_ring_ctl register is recommended for PL3 bus mode.

32’h0000_0008

Referring to the device specification, we see that this value means:

· The endian configuration for packet data is set to 32-bit big endian.  This is required for POS-PHY L3 compatibility.

· The outbound FIFO is enabled.

· Outbound parity is odd.  This is required for POS-PHY L3 compatibility.

· Outbound bus mode is 32 bits.  This is required for POS-PHY L3 compatibility.

· Out_FIFO_Level_0 is not used in PL3 bus mode.

· Out_FIFO_Level_1 is not used in PL3 bus mode.

· Out_FIFO_Level_2 is not used in PL3 bus mode.

5.6 PL3 Mode Errors

This section outlines the errors that can occur when using the streaming interface in PL3 bus mode.  In general, since the PL3 bus is self-synchronizing, any errors that occur are only associated with the current packet and indicated to the DPU by setting bit 30 in the command descriptor.
The general rule is that for every Start Of Packet (SOP) indication on the PL3 bus, a result message will be delivered back to the customer's application.  The following classification breaks the error situations down.  All of the following error situations will be pass the packet into the DPU with bit 30 of the Command Message set with the exception of an empty command descriptor.  The general intent is that the DPU will then create a result message with the bad data (if any) and send it out the outbound PL3 bus.  In PL3 mode, there is an undocumented debug feature that disables the setting of M3, bit 30 for any of these failures.  This is done by setting bit 0 (marked reserved in the data sheet) in the cmd_ring_ctl register (PL3 mode only).  The DPU will now process the error packet in a normal fashion.

· Invalid Command.  This is a packet with a command descriptor in which the valid bit (M3, bit 31) is cleared.  There are two situations:

· An Invalid command descriptor only.

· An Invalid command descriptor with data following.

NOTE: in PCI mode, an Invalid command descriptor is dumped, since this occurs when the PCI DMA is polling a command descriptor.  However, polling is not present on the streaming bus and therefore invalid command descriptors will be passed to the DPU with M3 bit 30 set.

· Badly Formed Command.  These occur for the following situations:

· Command message word M0 with either an EOP or followed by an SOP on the next transfer.

· Command message word M1 with either an EOP or followed by an SOP on the next transfer.

· Command message word M2 with either an EOP or followed by an SOP on the next transfer.

· Command message word M3 with either an EOP or followed by an SOP on the next transfer.

When these occur, zeroes will be substituted for any missing command message words, and then M3 bit 30 will be set.

· Empty Command.  These occur when the ns field of the command is zero AND the EOP occurs on the M3.  This is not an error but included here for completeness.  These packets will be sent to the DPU with M3 bit 30 cleared.

· Bad Number of Segments.  This occurs for the NS field in the command message does not agree with the following data:

· Number of fragments (NS) equal to zero without an EOP on M3.

· When the specified number of fragments has been completely received and the last data word does not have an EOP.

· Bad Source Descriptor.  This occurs for the following situations:

· Fragment length of zero bytes.

· Source descriptor word S1 with either an EOP or followed by an SOP on the next transfer.

· Source descriptor word S2 with either an EOP or followed by an SOP on the next transfer.

· Bad Data Length.  This occurs when an EOP or an SOP is encountered before all the data for a fragment is received.

· Parity Error.  This occurs when a parity error is detected on any inbound dword.  The packet will be truncated at the point of error and the remaining data discarded.

· Overflow Error.  This occurs for the following situations:

· The inbound FIFO overflows.  This should not happen if the PL3 signaling is correct.

· The total packet data exceeds 65K bytes.  At that point, the packet is truncated and the remaining data discarded.

In general, the storing of the failing packet is terminated at the point of error.  However, due to quantification in the logic, up to 8 bytes preceding the error may not be stored.  The length field in the command message will specify only the amount of data that was actually stored in the 8155 memory. 

An occurrence of the above errors are captured by setting the Inbound_DMA_error bit in the  sync_stat register.  In addition, the Parity_Error bit and the Overflow_Error bit are set for parity errors and inbound FIFO overflows respectively.

Note that the bits in the sync_stat register are "sticky" and must be cleared by software.  A bit in the sync_stat register is cleared by writing a one to it.  Writing a zero has no effect.
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