Anti-Credit-Card-Fraud System--An Implementation Based on Patent Application (P307590GB)
Bangdao Chen
Keble College

University of Oxford

[image: image1.emf]
Supervised by Prof. Bill Roscoe
Oxford University Computing Laboratory

A dissertation submitted for the degree of Master of Science

in Computer Science

September 2007

Abstract
Approximately £428m was lost last year due to fraud on Credit Cards in the UK. In order to solve the problem, based on patent application P307590GB [Roscoe, 2006 a], we introduce a new device named Security Device to separate credit card from the merchant’s machine and use it to send Credit Card information (encrypted) to the merchant’s machine, as the merchant cannot read encrypted information, he has to send it to the bank and then the bank will tell the merchant whether the information is valid or not. With SD, we can successfully separate the credit card from the hand of malicious merchant or staff and greatly improve the security of credit card transaction.
The internal mechanism is mainly based on the HCBK (Hash Commitment Before Knowledge) protocol originally introduced in [Roscoe, 2006 b], the implementation mainly consists of two programs, one is SD client, the other is Merchant server.

Keywords: Credit-Card-Fraud, SD, HCBK, SHCBK, SD-M-HCBK, SD client, Merchant server

 Acknowledgement
I would like to express my gratitude to my supervisor, Prof. Bill Roscoe, for guiding me through out the project. His kind suggestions and encouragement have helped me to overcome many difficulties that I have met when doing this project. Also I would like to thank Dr. Long Nguyen who has given me many advices when implementing the protocol. At the same time, I want to thank my friend Yuedong Song who has accompanied with me in the Lab during the past three months.

Contents

3Introduction

31.1 News

41.2 Ideas

41.3 Main Contributions

71.4 Structure of the Thesis

8Constructing System Model

82.1 Requirement Analysis

82.1.1
SD

82.1.2
Security

92.1.3
Transaction

92.1.4
Communication

102.2
Designing SD

112.3
Protecting the System

112.3.1 Finding the Right Protocol

152.3.2
Choosing Cryptographic Algorithms

162.4
The Blue-Print of the Credit Card Transaction

192.5
Designing Communication Mechanism of the System

202.5.1 Why TCP/IP

222.5.2 Why SSL v.3

23Problems and solutions

233.1
System Analysis

233.1.1
Protocol Security

243.1.2
Communication Problems

273.2
Solutions

34User Instructions

344.1
Usages

34Scenario 1:

34Scenario 2:

35Scenario 3:

354.2
How to Use SD

39Introduction to Implementation

395.1 Main Structure

39Multi-process

39Merchant Server

40SD Client

40SD (visualized)

415.2 The Balance between Cost and Security

44Bibliography

46Appendix A: Developers’ Handbook

64Appendix B: RSA example

 Chapter 1

 Introduction
1.1 News

Let us read a piece of news which was published in Feb 2007 [Mcewen, 2006]:

“MORE than 100 motorists have fallen victim to a card-cloning gang after visiting an Edinburgh petrol station.” “The gang managed to grab tens of thousands of pounds from the drivers' accounts after copying their card details at the BP garage in Barclay Place, Bruntsfield.”

How could this happen? A staff in that garage put a skimming device on the station’s credit card reading machine, so when the customer is making the payment, the information stored in the magnetic strip on the credit card is copied by the skimmer, and a small camera records the buttons pushed by the customer when they are making the input of PIN, then after the payment was made, the credit card was actually stolen even without taking the credit card away. We could call this technique Credit Card Cloning.

As reported by APACS (stands for the UK payment association) [APACS, 2006], approximately £428m was lost last year due to fraud on Credit Cards, and according to the following statistics:

 CARD FRAUD LOSSES 2006 (Source from APACS)

· Counterfeit cards: £100m - up 3%,

· Stolen or lost cards: £68m - down 23%,

· Cards not present: £213m - up 16%,

· Intercepted in mail: £15m - down 62%,

· ID theft: £32m - up 5%,

· Total: £428m - down 3%.

Although the total lost has decreased, we can see that it is largely due to the drop in “Stolen or lost cards” and “Intercepted in mail “fields, no signs show that Credit Card Cloning is decreasing, because it differs from normal card stealing. If there is one malicious merchant or shop staff who wants to steal the information of your credit card, you can hardly realize it and then prevent this from happening.

1.2 Ideas

If we could separate credit card from the merchant’s machine, use another trusted machine to “physically contact” the credit card and read the information, and then send the information (encrypted) to the merchant’s machine, as the merchant cannot read encrypted information, he has to send it to the bank and then the bank will tell the merchant whether the information is valid or not. With this trusted machine, we can successfully separate the credit card from the hand of malicious merchant or staff and greatly improve the security of credit card transaction.

Therefore now we can imagine that the trusted machine should have a card reader, an input device, and a screen to display information, also with modules of connection in order to communicate with merchant’s machine to fulfil the transaction. We call the trusted machine Security Device (SD) in the following chapters.
1.3 Main Contributions
The user will commit to a b-digit
 number which is formed by hashing the entire details of the session. If the number is correct, the user has a high degree of assurance that he is actually dealing with the merchant. Let’s discuss a concrete example to get a better understanding of this authentication mechanism.

[image: image2.png]2 Werchant shows
m—— 4-digit number on
B, screen

Metchat server

Tser 3 User reads the numiber on
the screen

4. User
inputs the

4 digit number
into D 1.5D and Merchant server

start o run protacol

The picture presented above shows how the authentication mechanism works. Firstly, SD starts to run protocol with Merchant server, and after a few messages, Merchant server displays a b-digit number where it can be seen by user (for example, on a screen). The user reads the number shown on the screen, and he inputs the number into SD, and SD then shows whether the number input by user is the same with the number generated by itself, if yes, Merchant is authenticated to the user and the transaction continues; if not, user aborts the transaction. This is just one scenario the system would work in, and more scenarios will be given in Chapter 4, and the protocol will be described later.
The action that the user reads numbers from a screen he can see directly can be rephrased as the user receives information through empirical channel. The empirical channel is just like two people talking to each other, on the telephone or face to face, this communication is public and can perhaps be delayed to a limited extent, but it can not be modified, replaced, or spoofed, each party in this communication believes that he/she is talking with the right person, and the information received through this channel is genuine. The empirical channel plays a key role in the whole protocol which will be explained in details in Chapter 2.
After the authentication process has been finished successfully, SD receives transaction information from Merchant server and shows that information on its screen, and then user inputs PIN into SD and waits for the transaction to be finished.

Let’s have a look at what we will get in the end first:

[image: image3.png]Initialize SD
Please wait.

Start SD-M-HCBK protocol
Please wait.

Please erter digest

We could see from the picture shown above that there is a small device with buttons and a screen. This is what we call SD, which looks very simple and easy to use.

And the user might see a digest displayed on a point of sale terminal or on a https site with which he is carrying out an online transaction.

1.4 Structure of the Thesis
This thesis is intended to give a concrete description about how the ideas presented in the first chapter evolve into a practical Anti-Credit-Card-Fraud system. In Chapter 2 we will discuss how to build up the system model, taking into consideration the needs and the main structure we are going to build. And in Chapter 3 we mainly focus on the problems we will face when putting this system into practical use and bringing out the solutions to tackle those problems. In the end, there will be a brief introduction about how to use the system as a customer in Chapter 4 and how I have implemented a prototype in Chapter 5. More details about how to implement or how to develop by using this system will be explained in Developers’ Handbook in the appendix A.

The protocols and concepts described in this thesis are closely based on the Patent Application [Roscoe, 2006 a]
Chapter 2

 Constructing System Model
2.1 Requirement Analysis

Based on the ideas brought out in Chapter 1, we need to:

· Design SD;

· Design the security mechanism of the system.

· Design transaction steps;

· Design communication mechanism of the system;

2.1.1 SD

SD acts as a key part in our system, and with this device, we can protect our credit cards from intruders. So what should a SD be like?

· SD should be stateless, which means it holds no information at all before or after the transaction. In this way, even if the user has lost SD or someone has stolen it from the user, the user does not need to worry about the information of his Credit Card being revealed to others;

· SD should be easy to use, the user does not need to have any introduction before using this device; also the user should feel free to carry this device along with him, thus the SD should be very small and light;

· SD should be easy to manufacture, the less it would cost, the greater the likelihood of it being adopted by customers.
2.1.2 Security

Based on the former assumptions, we only need to focus on the security requirement of SD, while Merchant or other intermediary components will have the corresponding security to SD’s.

As we have presented, SD should be very simple, so the Cryptographic methods we are going to use should have a computation advantage, and at the same time, those methods should ensure that during the transaction, no one can break the barrier of protection we place on SD, and we do not need to consider what will happen before or after the transaction (Because SD is stateless).

Subject to overall security needs, we should keep computation power requirements to a minimum.

2.1.3 Transaction

The new transaction using SD should not be more complicated than the current transactions we would meet in the supermarkets or restaurants. The user should have the confidence that during the transaction, no one would have the chance of knowing any information about his Credit Card except for the bank.

2.1.4 Communication

The communication between SD and Merchant should be stable, efficient and fast. We need to make it capable of detecting message lost or message disorder, ensuring the desired message to be received and sent, and we have to be able to tackle any unexpected problems like:

· The Credit Card is loose or inserted improperly; the Credit Card is pulled out before the transaction is completed;

· The connection is lost during the transaction;

· The SD or Merchant is crashed during the transaction, for example, SD runs out of battery, etc.

Please note that we do not trust the connection between SD and Merchant, which means the connection may be corrupted.

2.2 Designing SD

Main parts of SD:

· Input: ten buttons ranging from ‘0’ to ‘9’, two buttons being used as ‘Enter’ and ‘Abort’.

· Display: single colour screen.

· Connection: USB, Wireless, Inferred etc.

· Memory: unnecessary to be very large, say 8M.

· Calculation module: able to carry out the cryptographic algorithms required by its role in the embedded protocol.

· Card reader.

· Frame and battery.
SD may looks like:

 [image: image4.png]usB

Display.

1 2 3
4 5 6
7 8 9
Enter/Yes 0 Abort
Insert Card Here

2.3 Protecting the System
2.3.1 Finding the Right Protocol

The bootstrapping protocols we use all belong to the family, the termed HCBK (Hash Commitment Before Knowledge) based the following protocol that was first introduced in [Roscoe, 2006 b]
HCBK Protocol
The main body of the protocol is as follows:
0. I
[image: image5.wmf]®

 EMBED Equation.3 [image: image6.wmf]A

N

"

 : I

1.
[image: image7.wmf]B

"

 EMBED Equation.3 [image: image8.wmf]®

 EMBED Equation.3 [image: image9.wmf]'

B

N

"

: {B, INFO_B}

2. I
[image: image10.wmf]®

 EMBED Equation.3 [image: image11.wmf]A

N

"

: lh(secret_I)

 2b.
[image: image12.wmf]A

"

[image: image13.wmf]®

 EMBED Equation.3 [image: image14.wmf]I

E

: this step is to ensure I will not send a Message 3 while any other

 agents in G is still waiting for Message 2.
3. I
[image: image15.wmf]®

 EMBED Equation.3 [image: image16.wmf]A

N

"

: secret_I
4a.
[image: image17.wmf]B

"

 displays: sh(secret_I, all message received), init(I, B)
4b.
[image: image18.wmf]B

"

 EMBED Equation.3 [image: image19.wmf]®

 EMBED Equation.3 [image: image20.wmf]'

B

E

"

 : Users compare

[image: image21.wmf]®

[image: image22.wmf]N

: via normal channel which implicitly means via insecure high bandwidth channel

[image: image23.wmf]®

[image: image24.wmf]E

: via empirical channel which implicitly means messages sent via this low bandwidth channel are the least to be hacked

 I: the initiator who starts the session of protocol

 A: a node that I want to set up the connection with

 B: a node which is either A or I

 lh: long hash function, the reason of using long hash is to prevent Birthday attack
 sh: short hash function, generating the digest for user comparison
 init(I, B): this function returns true if I = B, and return false if else
According to [Roscoe, 2006 b], the meaning of each message is as follows:

· Message 0: the initiator sends its identity to all A.

· Message 1: each node publishes its identity and attached information to the others.

· Message 2: I introduces a secret of itself and sends the long hash digest of this secret to other nodes.

· Message 2b: which insures all As have received message 2 by sending back a ACK through empirical channel to I.

· Message3: I publishes its secret to all As.

· Message4a: each node displays the digest of its received message.

· Message4b: users compare the digest through empirical channel.

Please note that sending message via normal channel means the receiver can not make sure that the message he has received is correct or not, therefore he needs further verification by generating hash digest himself and compares it with the received hash digest.

The HCBK protocol is very cheap in terms of computational effort. However, we do not consider that step 2b is desirable in our present scenario, since we want to avoid steps that complacency on the part of the customer might make unreliable. In [Long Nguyen and Roscoe, 2006], Long Nguyen and Bill Roscoe have brought out a modified HCBK protocol which can authenticate all the trustworthy parties to each other. This protocol is called Symmetric HCBK (SHCBK), which is depicted as below:

1.
[image: image25.wmf]A

"

 EMBED Equation.3 [image: image26.wmf]®

 EMBED Equation.3 [image: image27.wmf]'

A

N

"

: A,
[image: image28.wmf]A

INFO

'

, longhash(
[image: image29.wmf]A

hk

)
2.
[image: image30.wmf]A

"

 EMBED Equation.3 [image: image31.wmf]®

 EMBED Equation.3 [image: image32.wmf]'

A

N

"

:
[image: image33.wmf]A

hk

3. users compare digest (the XOR of all the
[image: image34.wmf]A

hk

’s for
[image: image35.wmf]G

A

Î

,{all
[image: image36.wmf]A

INFO

'

that
[image: image37.wmf]G

A

Î

})
In SHCBK, each node A brings out a random and fresh value
[image: image38.wmf]A

hk

 generated by itself and broadcasts
[image: image39.wmf]A

hk

 to all other nodes, and then each node can check the values of longhash (
[image: image40.wmf]A

hk

) received from message 1 by generating long hash values itself, and in message 3, each node compares the digest value through empirical channel, and the digest value is generated from all data received in the session.
SHCBK is more general than we need in one respect, namely it makes for an arbitrary number of parties, what we need are only 2 parties. Also while can establish the means (i.e. public keys) for nodes to achieve a shared secret, it does not actually create a shared secret. Since we will want a secret to use as symmetric session key, we modify the protocol as follows.
Modified HCBK protocol (we will call it SD-M-HCBK):

1. SD
[image: image41.wmf]®

[image: image42.wmf]N

M:
[image: image43.wmf]sd

ID

,
[image: image44.wmf]sd

INFO

, longhash(
[image: image45.wmf]Secret

,
[image: image46.wmf]sd

ID

)

2. M
[image: image47.wmf]®

[image: image48.wmf]N

SD:
[image: image49.wmf]m

ID

,
[image: image50.wmf]pkM

, longhash(
[image: image51.wmf]hkM

,
[image: image52.wmf]m

ID

)
3. SD
[image: image53.wmf]®

[image: image54.wmf]N

M: {
[image: image55.wmf]Secret

}_
[image: image56.wmf]pkM

4. M
[image: image57.wmf]®

[image: image58.wmf]N

 SD:
[image: image59.wmf]hkM

5a. M
[image: image60.wmf]®

[image: image61.wmf]E

User: digest (
[image: image62.wmf]hkM

Secret

Å

, (
[image: image63.wmf]sd

ID

,
[image: image64.wmf]m

ID

,
[image: image65.wmf]pkM

,
[image: image66.wmf]sd

INFO

))
5b. User compares digest number received from Merchant with the digest number generated by himself.

[image: image67.wmf]sd

ID

: Security device ID

[image: image68.wmf]m

ID

: Merchant ID

[image: image69.wmf]sd

INFO

: Any information SD wants to send to Merchant

[image: image70.wmf]Secret

: Symmetric key generated by SD, which is a random number
 pkM: public key of Merchant

[image: image71.wmf]hkM

: Random number generated by Merchant
· Message 1: Firstly SD generates a symmetric key, and then sends its ID, the information it wants to attach, and the long hash digest of symmetric key and its ID to Merchant.

· Message 2: Merchant firstly generates a random number and a public key, and then sends back its own ID, its public key and the long hash digest of the random number and its ID to SD.

· Message 3: SD sends symmetric key back to Merchant, because we are going to use this key in the future, we encrypted it with Merchant’s public key.

· Message 4: Merchant sends back its random number to SD.

· Message 5a: Merchant generates digest (kind of short hash function), and sends the result to SD.

· Message 5b: User compares the digest number received from Merchant with the digest number generated by SD, if the two numbers are the same, then he is assured that SD and Merchant now successfully shares a symmetric key securely; or he may abort the protocol.

Empirical channel is assumed to be non-spoofable, this means the message sent via this channel must be genuine, both the content and the sender are correct. For example, the user can see the Merchant’s equipment directly (imagine we stand in the front of a till machine in Sainsbury’s, and there is a small screen on that machine displaying digest number which can be seen directly by the user), the user makes a phone call to the Merchant, or the user sees the digest number on his own computer which is transmitted through HTTPS from Merchant. (Discussion about this protocol will be continued in Chapter 3)

2.3.2 Choosing Cryptographic Algorithms

In Chapter 1, we have presented the HCBK and SD-M-HCBK protocols, and we know in Message 3, we need to use Public key of Merchant to encrypt the secret information generated by SD, and the symmetric key generated by SD will be used to encrypt the transaction information after the protocol has successfully been finished.

Public Key Algorithm
We can also call it asymmetric key algorithm because we need a key pair, one is the public key which we will distribute it to others, the other is a secret key which is kept in a safe place and known by someone who is authorized to decrypt the cipher text. In our case, the merchant generates the key pair and sends the public key to SD and uses the secret key to decrypt the message after Message 3 is received.

Although there have been many public key algorithms published , only a few of them are both practical and secure. There are three algorithms that satisfy the requirement of both encryption and digital signatures, which are ElGamal, Rabin and RSA as defined in [Schneier, 1996].

Among the three algorithms, RSA is by far the easiest to understand and implement [Gardener, 1977]. Considering the strength and popularity of RSA, it is adopted here as the public key algorithm. I give a small example to explain the RSA algorithm in Appendix B.

One key fact I want to mention here is that there are plenty of choices of cheap RSA chips which can be used on our SD or Merchant’s machine (details can be found in [Brickell, 1990] and [Koc, 1994]). And this fact would definitely increase our confidence when choosing RSA as the public key algorithm.

Symmetric Key Algorithm
AES stands for Advanced Encryption Standard. AES is well studied and is believed to provide a high level of security; what’s more, it is very fast among block ciphers. [Viega & Messier, 2003] Also we notice that AES is the US government standard used widely in practice. Therefore we decide to adopt AES as the symmetric key algorithm.

Particular algorithms chosen are to some extent arbitrary, the protocols do not depend on a particular choice.

2.4 The Blue-Print of the Credit Card Transaction

Generally we have three steps to accomplish:

a) Run SD-M-HCBK protocol to securely establish a shared symmetric key between SD and Merchant.

b) Merchant then sends SD details of the proposed transaction information, for example, the amount of money, the items that have been purchased, etc.

c) SD together with Credit Card sends the card information with PIN to Merchant to complete the transaction.

Details about the transaction are depicted as follows:

[image: image72.png]SD Merchant Bank
wersat
{he protocal Run SD-M-HCBE
protocol
e Request
confim, transaction info
oSN .
yﬁ it
]
-
m
%
Pass E-cheque to Bank.
1, verify
w Bt
Send transaction successfil info)
Toscton
finished —|

We notice that there is a new term called E-cheque, which is a new concept that is being introduced in our model. In order to finish the transaction, we need to send our PIN to the Bank for verification, but it is not safe to simply send a plain text PIN to Merchant, and we need to encrypt it first, using Public Key of the Bank, together with credit card information.

The main structure of E-cheque is as below:

 [image: image73.png]Ik

Amount of money,
Transaction ID,
Merchant ID;
Transaction naure;
An unusable description of Credit Card mumber
Transaction Timestamp;
(
Amount of money,
Transaction ID,
Merchant ID;
Transaction naure;
Credit Card mumber,
Transaction Timestamp;

PO,
Monce;

}_pkB

In E-cheque, Amount of money, Transaction ID, Merchant ID, Transaction nature, Transaction Timestamp is assumed to be public; complete Credit Card number and PIN is assumed to be secret. In E-cheque:

· Timestamp is a time code, because we have already encrypted our message, it is unnecessary for us to implement more sophisticated timestamping strategies, while simply supply a time code like “2007-8-11 12:35” is enough.

· An unusable description of Credit Card number may be a part of or a hash digest of the Credit Card number, but in both cases the description cannot be used to in any activity that relates to Credit Card fraud.
· Nonce is a random number generated by SD, the reason we include this random number here is to prevent exhaustive search attack on the value of the short PIN. For example, Merchant or other cryptanalyst gets E-cheque, and he knows the public key of Bank, so he can encrypt a set of information includes the public part of E-cheque and numbers he guesses (for example, he makes a guess about PIN), and then compares the result with E-cheque. By continuously repeating this process, he may find a set of information which produces the same result as E-cheque within a period of time.

· pkB is the public key of Bank. Presumably it is stored in Credit Card before hand.

· k is the symmetric key established by running SD-M-HCBK protocol.

We notice that the E-cheque has two levels, the first level is encrypted with symmetric key k, which means the information contained in the first level can be accessed by Merchant, but the second level is encrypted with the public key of Bank, so the information contained in this level can only be seen by Bank. Merchant will only get the last four digits of the Credit Card number, so with the help of E-cheque, we can successfully prevent Merchant from accessing Credit Card information.

We also notice that the top level of E-cheque is encrypted with k not pkM (public key of Merchant), which is because using symmetric key is much faster than using public key, so that the merchant can verify that the cheque appear to be appropriate.
2.5 Designing Communication Mechanism of the System

Based on the SD-M-HCBK protocol, between SD and Merchant, there should be two connections, one serves as a normal channel, which is fast but vulnerable to attacks; the other is the secure channel. The connection between Merchant and Bank should be secure enough to transmit credit card information.

We will always assume that a secure, mutually authenticated channel exists between the Merchant and Bank, perhaps through SSL.

In my prototype implementation I chose to implement the normal (insecure) channel between SD and Merchant via TCP/IP.

As a model of the HTTPS channel that will be used in online transactions, I implemented a SSL channel between the window representing the user’s PC and the process representing the merchant.

The relations between those three participants are as belows:

[image: image74.png]Bank

HTTPS

Merchant

TCPIP

SSLv.3

SD

2.5.1 Why TCP/IP
I have considered and experimented with it in several ways:

· Raw Socket. It means a socket which allows users to have access to the packet headers on sending and receiving packets.[wiki]

It is possible to use raw socket to build up the protocol, because the raw socket is only one layer above the actual network frame, you can have more freedom to design the packet used to transmit, and also add your own concept into the transmission mechanism (which means you have to add your own virtual network connection, and establish a standard of communication named in your own name), however, the aim of our model is not the way of communication, it is to make sure that the transaction made upon the network is safe and effective, therefore it is unnecessary to start from the very beginning.
· UDP. It stands for User Datagram Protocol, which allows the program to send short messages to one another. [wiki]

UDP is a connectionless protocol, which means every message it sends is independent upon the others sent, it is ideal for broadcasting, one to many or many to one communication, but due to the instability of the network, the message may be lost or misplaced during transmitting, so it does not guarantee reliability and ordering, as our aim is to make secure transactions, using UDP is not the right way, also, developing a mechanism upon UDP to ensure the reliability and ordering is unnecessary because TCP has already done that part of the job.

· TCP. It stands for Transmission Control Protocol, often referred to as TCP/IP, because TCP always work together with IP. [wiki]
 TCP provides:

· Check sum: represent the data in the TCP segment, which makes sure the integrity of the message that has arrived.
· Sequence number: number each byte in case they arrive out of order. Then the receiver can reorganize the message.
· Acknowledgment and retransmit mechanism: make sure that the message segments are delivered.

Based on the above merits of TCP, We finally choose TCP as the transmitting protocol to work on, as details about it can be found in other books, further explanations will not be presented here.

2.5.2 Why SSL v.3
Looking into the practical field of internet, we noticed that when we log onto the bank’s website and start transaction, the title of the URL has changed from http into https.

Https is to build a normal http interaction over a SSL connection, in our model, we do not need http service but the non-spoofable connection, so according to the practical performance and popularity of SSL, it is adopted here to build a secure connection between SD and Merchant.

Further details of SSL will be explained in the Developers’ Handbook.

Chapter 3

Problems and solutions
3.1 System Analysis
3.1.1 Protocol Security
This topic is discussed at length in [Roscoe, 2006 b] and [Nguyen & Roscoe, 2006]. Here we give a brief summary.
Let’s review the protocol first:

1. SD
[image: image75.wmf]®

[image: image76.wmf]N

M:
[image: image77.wmf]sd

ID

,
[image: image78.wmf]sd

INFO

, longhash(
[image: image79.wmf]Secret

,
[image: image80.wmf]sd

ID

)

2. M
[image: image81.wmf]®

[image: image82.wmf]N

SD:
[image: image83.wmf]m

ID

,
[image: image84.wmf]pkM

, longhash(
[image: image85.wmf]hkM

,
[image: image86.wmf]m

ID

)
3. SD
[image: image87.wmf]®

[image: image88.wmf]N

M: {
[image: image89.wmf]Secret

}_
[image: image90.wmf]pkM

4. M
[image: image91.wmf]®

[image: image92.wmf]N

 SD:
[image: image93.wmf]hkM

5a. M
[image: image94.wmf]®

[image: image95.wmf]E

User: digest (
[image: image96.wmf]hkM

Secret

Å

, (
[image: image97.wmf]sd

ID

,
[image: image98.wmf]m

ID

,
[image: image99.wmf]pkM

,
[image: image100.wmf]sd

INFO

))
5b. User compares digest number received from Merchant with the digest number generated by himself.
The high-bandwidth low-security communication medium “
[image: image101.wmf]®

[image: image102.wmf]N

” is vulnerable to the attacks described in the Dolve-Yao threat model
, plus combinatorial attacks like “birthday attack
” on cryptographic values; the empirical channel “
[image: image103.wmf]®

[image: image104.wmf]E

” is believed to be unspoofable, which means in message 5, the user believes the information he receives is really from Merchant not another party. So the digest received by SD can be used to authenticate the identity of Merchant, because any change in the previous four steps would result in a different digest number in step 5.
Also we notice that we have used long hash function in messages 1 and 2, then it is infeasible for someone who knows the long hash values to produce any useful approximations to {
[image: image105.wmf]Secret

}_
[image: image106.wmf]pkM

 (he may also need to know the public key of Merchant) and
[image: image107.wmf]hkM

, then it is infeasible to use the above-mentioned attacks to replace any values in messages 1 to 4 and so that
[image: image108.wmf]hkM

Secret

Å

is safe enough to be used to generate the final digest in the last two messages.

The way the protocol works guarantees that, to a very good approximation, no attack can work with probability
[image: image109.wmf]>

[image: image110.wmf]D

/

1

, where D is the number of digest value. (e.g. 10000 if 4 decimal digits) Furthermore, to be in a position to have this chance of success, the attacker must expose himself to discovery with probability
[image: image111.wmf]D

1

1

-

. The choice of the practical value D will be a trade-off between security and usability.
3.1.2 Communication Problems
Possible Lost of Connection on TCP

TCP/IP is not polled, because it does not provide immediate notice about the connection loss. There are some poll-select protocols that by continuously sending messages like “Do you have information to send me” monitor the connection, if the probe message does not get a reply (or several messages in a row do not get a reply), then the protocol knows that the connection may be dead, and informs the application about the problem. But we could point out the problem immediately from this method that it would consume extra bandwidth which could be used to send “workload” data.

TCP/IP does provide a so called keep-alive mechanism, but the default idle time is at least 2 hours (time that we set to wait for the reply), and the ACK (kind of the reply message) may not be delivered due to the instability of the network, so the probe message would be sent several times. For example, 4.4 Berkeley Software Distribution (BSD) sends nine probes spaced 75 seconds, so the total time used to detect a connection loss is 2 hours, 11 minutes and 15 seconds, that would be a considerable long time to wait, it is not feasible to use in a commercial system, in which the user can not wait such a long time and then see a “connection lost” error on the screen. So we have to implement a method to detect the connection loss by ourselves.

Network Outage
Considering the practical environment in which our system is going to work, it is possible for us to face situations like natural disaster, loss of a router, loss of a backbone link, and the attack from hacker; if there is no alternative path to the destination and also without explicit message informing that the destination host can not be reached, the applications will not know that there is an outage.

There are three ways for the application to “realize” the network outage:

· In the application program, there must be reading and writing actions which are carried on the network through socket, the following pseudo code can describe how those two actions detect the network outage:

 If there is read pending

 receive ETIME OUT
 error

 else if write fail

 receive SIGPIPE
 error or EPIPE
 error
· Traditional BSD stack will drop the connection when retransmitted 12 times.
· If there is a router which returns an Internet Control Message Protocol (ICMP) error message indicating that the host could not be reached, then the implementation would return ENETUNREACH
 or EHOSTUNREACH
 error message.
In practice usually using wireless as similar remote form of communication, and the detection and handling of network outage will depend on the nature of the one chosen.
Peer Crash

If a peer is terminated, the peer’s TCP will send a FIN to indicate that the sending action is over, no more data would be sent, but this does not mean that the peer has already been killed or it is not active any more. Picture shown below depicts the problem:

[image: image112.png]SD Client

MSGO

Terminate

/
%
%
T—

%

Merchant Server

AC]

Killed here

P,

From picture shown above we could see that if Merchant Server is killed at that spot, and SD at that time only knows that it is the end of receiving message because SD receives a FIN, and it sends back an ACK to inform Merchant that it has received MSG1 and begins to send MSG2, and then the socket returns a RST (reset) message, so the SD client terminates with an ECONNRESET
 error.

But if there is a user action, and the read will be pending, so the user will not know that the Merchant server has already been dead until he finished the input or received a “read timeout” error. As we can see in Picture below:

[image: image113.png]SD Client Merchant Server
MSGO

Killed here

P,

Waiting for user
input

To solve the above-mentioned communication problems, we must set up a mechanism to time each action on the network, if the action times out, then we must return error and abort the session. And the protocol we are using does not guarantee availability, but is secure against network vulnerability.
3.2 Solutions
If we could put a timer (the number of seconds that each timer has is different depending upon the requirement we placed over each action) on every action during the communication, then we could solve the above-mentioned problems in communication.

For example, if the connection between SD and Merchant has lost, and SD is waiting for the information from Merchant, because there is a timer on the receive action, within t seconds (the length of the timer), if we do not receive any information from Merchant, then SD knows the connection may be lost. Or if the Merchant server has crashed, and SD is waiting for the user to input digest number, because we have put a timer (the length of this timer is k seconds) on the user input action, so SD would not wait indefinitely for the user input and it may detect the crash of Merchant server (for example, SD receives RST after sending a message).

Before we continue our discussion, we need to look at the general structure of the system. The system mainly consists of SD client and Merchant server, the server accepts the client’s connection and then starts to process the request from client. As discussed previously, we are going to use TCP/IP to build up the communication between SD and Merchant, so we create a socket and set it to SOCK_STREAM mode which means we choose TCP, and specify the IP address, the client then uses the created socket to connect to the IP address, if connection is successful, it then sends the request and receives the desired messages from the server. Details are shown as follows:

[image: image114.png]SD client

socket()

comnect()

socket() retumn &
socket instance

connect() seturn &
socket connected
12 the Merchant

close()

clase sacket,
selease all
selated

The server is slightly different from client. It needs to bind a socket to an IP address, and then starts to listen over that socket, if there is an incoming connection, it decides whether to accept it or not, if yes, it starts to receive request and send the result. Details are shown as follows:

[image: image115.png]Merchant server

socket() retumn &
socket() |socket instance

L ind a socket to
aspicified.

bind() address with
port

set the server

it tolistento s

sten() ‘binded socket
acceptan

accept() o

seqest

ceceive nfo

P sendinfo

55 105D

recv() send()
N

communication with cfient

close(clent) | 2 iehed close Land

wait to acceptnew
connection request

N2

close(server)

10 more tequest from.
clientto process,
close the server
socket

We could see there are many system calls, but it is unnecessary to time all of those system calls. As discussed in 3.1.2, what we concern about are the I/O system calls like recv() and send(), other system calls either return an error or the error can be caught in the following system calls. Suppose we have an error in socket() system call in server, the error can be caught in the bind() system call.

Also we do not need to time all I/O system calls, one reason is because send() system call is always valid unless the system output buffer is full, even if there is an error happened in send() system call in server, the client connected to it will encounter a timeout in recv() system call and abort, and then the recv() system call in server will timeout because there is no message to receive.

What we need to do is to time the recv() system call and user actions on both sides, and there are usually four methods to implement the timing mechanism:
· “Blocking”, the process has to wait until it get the data.

· “Time out”, the process waits until timeout, if the process doesn’t get the data until timeout, we may call recv() again to get the data, because the system kernel would hold the data when data arrives.

· “Polling”, the process will call recv() again and again until it gets the data.

· “Asynchronous I/O”, the system will use signal to tell the process that the data has arrived.

The four methods are depicted as follows:

[image: image116.png]uny,

Blocking Time out Poling Asychronous IO
recv() recu() recv()? Fail recu()
(Processing)
=] retryrec()7 Fail
i3 (Processing)
i z
Jretry recu()7 Fail JaS
Time out @rocessing) &
retry rec()7 Fail
(Processing)
w ¥
2 8 lretry recv()7 Fail
a é (Processing)
T N R RPN Signal notifcation
etryrecy(Suscess || I I
(Processing) Grovessig)
recv()
g
o 3
2 B
& s
g 3
Complete Complete Complete Complete

Linux provides us with a powerful tool named select, with it we could deal with several channels at the same time; using select system call is much more efficient than polling manually [Walton, 2001]. When using select system call, the system monitors the channels, blocking recv() system call until there is one channel which has changed its state, which means there is data to receive.

Different from recv() system call, user actions do not involve any state change in channels. So instead of using select, we use alarm system call to timeout user actions.

Details about using select and alarm system call will be given in the Developers’ Handbook.
Chapter 4

User Instructions

4.1 Usages

Scenario 1:
Imagine a customer is going to buy a radio on the internet, but he does not trust the computer he is using because someone may put some malicious viruses on it and can record the transaction action including the input of account number and PIN on the keyboard; he only trust the genuineness of the information received from the Merchant through HTTPS which is shown on the computer screen.

Now he has SD in hand, and he completely believes that SD will not fool him, so he inserts the Credit Card into it, and connects SD with the computer by USB or wireless connections. The following steps show what happen next:

· SD starts a protocol, using the computer as an intermediary node to communicate with Merchant server;

· The last step of the protocol is that the user reads a four-digit number shown on the computer screen, which is received from Merchant through HTTPS connection;

· User inputs the four-digit number into SD, if the SD shows the information of successful matching, user continues the transaction and inputs PIN after he has received transaction information from Merchant;

· User waits until Merchant says transaction has been successfully completed.

Scenario 2:

Imagine we are in a restaurant, after we have finished eating the delicious food, we ask the waitress to bring us the bill and pay the money by our Credit Card. But this time we do not hand our Credit Card to the waitress because we do not trust her; we simply bring out SD and insert Credit Card into it, after running the protocol, we read a four-digit number on a big screen somewhere in the restaurant, and then input the number and see whether it matches with the number generated by SD or not, if yes, after checking the transaction information shown on SD, we input the PIN and wait for the transaction to complete.
Scenario 3:
Imagine we are in a room with wireless connection service and want to make a money transfer to someone’s account; we bring out our SD and insert Credit Card, after a while when SD pops out the instruction of inputting digest number, we make a phone call to the bank and the staff in the bank tells us the digest number, and then we type the number into SD, after SD has verified the digest number successfully, we check the amount of money we want to transfer and then input PIN into SD, after a while, SD tells us the transaction has been successfully finished.

4.2 How to Use SD
1. Run the program. We can see the following picture:

[image: image117.png]Initialize SD
Please wait.

Start SD-M-HCBK protocol
Please wait.

Please erter digest

2. Read the digest number shown on the computer:

[image: image118.png]instonPIBM-8492F5494D5 “/chd/lproject/f inalprogran
_eliont
onnoct do sucoessFul
enp 1o 327784879176157922578
[Longhaoh sa ic 6 FF7 e CHrRECE R
L mnctric ey od is £797299675432481
Longhach synmotric key is : ADiffier a7iffouim u UanplliAr74piEsiioter
L
1
56 detaile:
M5G numbor do: 1
M5 is fron: Morchant
M5G is received by: SD
M5G plain date io: NULL
M5G encrypted data is: NULL
onnon modulus is 256
fread message through SSL.
annccted with AESZ56-SHA encrypt ion
Sorver cortificates:
Sundect: /C-UK/ST-0xFord/L-0xFord /0-0xFord University/oU-Computing Lah/GN-llinsto)
omai1Address -bangdao - chon@keble -ox-ac -uk
[couer: /C-UK/ST-OxFord/L-Oxford/0-0xFord University/OU-Computing Lah/GN-llinston
enailAddress -bangdao -chen@keble -ox-ac -k
Digost recoived: 1158

Notice the last line on the screen shows the digest number received is 1150, so we input 1150 into SD and push “Enter” button:

[image: image119.png]Please wait.
Please erter digest:1150
Input digest correct!
Show transaction info!
36Pounds, AUGOT
Please erter PIN:

3. SD shows “Input digest correct!” so we input PIN and push “Enter” button, the default PIN is 2007:

[image: image120.png]Show transaction info!
36Pounds, AUGOT
Please erter PIN:****
generating E-cheque
Input PIN correct!
Transaction complete!

Later, SD shows that “Transaction completed!” which means we have successfully finished the transaction.

4. If we input the wrong digest or PIN, the transaction will be aborted, failure information will be shown on SD; if we input the wrong digest number or PIN, and we want to correct it, simply push “Abort” button and we can input the number again.
Chapter 5

Introduction to Implementation
In this chapter, I will give some general information about what I have implemented, more details about the implementation and how to develop by using this system are explained in “Developers’ Handbook” in the appendix.

5.1 Main Structure

The system is developed on Linux using gcc v.3.44-3 (C compiler); Linux environment is provided by using Cygwin v.1.5.24. The programming language I used is C.

Multi-process
There is a parent process continuously listening on the channel specified by the user, for example, port 1000; when there is a client connection incoming, the parent process accepts the connection and forks a child process to deal with the request of the incoming client connection. Parent process then add the child-process number by one, if the child processes have reached the maximum, the later incoming client should wait until there is an available space.

Parent process monitors all the child processes, if there is a child process which has been terminated successfully, the parent process catches this signal and reduces the child-process number by one.

Merchant Server
The server actually deals with two channels, one is the normal channel, and the other is a channel on SSL.

Because the normal channel and the channel on SSL are not on the same layer, so we have to use two different mechanisms to time the actions on those two channels. Details will be explained in the handbook in the appendix.

The server should generate the RSA key pair, and send the public key and common modulus to the client. And the received message in the protocol will be verified by generating hash digest with the same hash function as the client’s.

SD Client

Firstly it connects with the server, if successful, sends the first message to start the protocol; Also we need to time the recv() system call in client, and we need two mechanisms to time the actions carried on the normal channel and the channel on SSL.

SD client is interacting with SD (visualized one), it sends only the necessary information to SD while keeping most of the details behind. The user interacts with the SD, and SD sends back the information input by user to SD client.

SD (visualized)
I found it difficult to develop a user interface on Linux, so I developed several tools by myself to form a layer on pixels, which can be used to develop more flexible user interface in the future.

SD mainly takes care of user inputs, it has several simple functions like buttons and a display screen, and sends back user inputs to SD client to complete the transaction, it is stateless, so all the numbers needed are generated directly.

The following picture depicts the relationship between those parts mentioned above:

 [image: image121.png](e

userinput
sD
SD Client
Tcrp
N Eih

SD Client

Parent Process

I

SD

userinput

Fork

Fork

Merchant
Server

Merchant
Server

5.2 The Balance between Cost and Security

Do We Need Clock Synchronization?

Normally, as a commercial transaction, we need to do clock synchronization on both SD and Merchant, but the current clock synchronization algorithms are very complicated and would definitely add extra work load to both SD and Merchant [Barsotti, Nieto & Tiu, 1990], and as we know, reducing work load of SD is one of the main targets of the whole project, then we have to think carefully whether implementing clock synchronization is necessary or not?

Let’s start our discussion from SD:

· SD is stateless, so at first it does not hold any time information, but it needs time to generate E-cheque, as the E-cheque has to be verified by Bank, if the time is not correct, Bank will not issue a money transfer to Merchant’s account. At this point, we can see that if the time is not right, then Merchant will suffer from it while customers will not be affected; now we can move further to Merchant.

· Merchant is responsible for the time of the transaction, if time is not right, he will not get the money. The easiest way is that the Merchant pass a time code to SD and SD will keep a record of this information and use it in the E-cheque.

· One problem may be: the time code passed to SD is not accurate, by the time SD has generated the E-cheque, the time code has already been out of date, unless the SD has an internal clock which can start to time when it has received time code from Merchant. But this would still be a problem, the time code may be out of date when it has just arrived SD, we still need to implement a complicate time synchronization algorithm to adjust the clock of SD.

· We may just jump out of the swamp of time, and simply consider taking the time of the successful run of SD-M-HCBK protocol as the transaction time. Merchant can easily fool SD and customer, but he can not fool Bank. If the time is too late, for example, when the E-cheque arrives Bank, the timestamp is already one hour late, it is not possible in real-time transaction, as the delivery time on the internet is usually several seconds, the Bank will discard this E-cheque and response an error; if the time is too early, which means the timestamp in the E-cheque indicates the E-cheque is from the future. The Bank will not express its surprise and still response an error.

Based on the discussions above, in our system, Merchant sends a time code after a successful run of SD-M-HCBK protocol, and SD will use that time code to generate E-cheque.

Choosing RSA Public Key and Private Key
The public key is very important, because SD needs to use it to encrypt plaintext messages. As recommended from [CCITT, 1987] and [Balenson, 1993], we found there are three commonly used public encryption keys, which are 3, 17, 65337, the reason is simple, for example, 65537 =
[image: image122.wmf]16

2

 +1, which means when translating 65537 into binary numbers, there are only two non-zero bits, so we only need to multiply 17 times to exponentiate). Here, in order to decrease the hardware requirement of SD, we choose 3 as the public encryption key.

Also the private key which is held by the Merchant can be speeded up if the Merchant uses Chinese remainder theorem and keeps a record of the values like
[image: image123.wmf]p

,
[image: image124.wmf]q

,
[image: image125.wmf]d

 mod (
[image: image126.wmf]p

 -1),
[image: image127.wmf]d

 mod (
[image: image128.wmf]q

 -1), and
[image: image129.wmf]1

-

q

 mod
[image: image130.wmf]p

 [Rabin, 1979].
Bibliography
[Mcewen, 2007] A. Mcewen Garage cloning racket hits 100 drivers, http://edinburghnews.scotsman.com/index.cfm?id=214922007, accessed date: 25/07/2007

[Roscoe, 2006 a] A.W. Roscoe, P307590GB, Improvements in Communication Security, 2006

[Roscoe, 2006 b] A.W. Roscoe, Human-centred computer security, 2006
[2] L.H. Nguyen and A.W. Roscoe
[Schneier, 2006], B. Schneier, Applied Cryptography, John Wiley & Sons, 1996

[Brickell, 1990] E.F.Brickell, “Survey of Hardware Implementations of RSA”, Advances in Cryptology – CRYPTO’89 Proceedings, SpringerVerlag, 1990, pp.368-370
[Nguyen, Roscoe, 2006] L.H. Nguyen and A.W. Roscoe, Efficient group authentication protocols based on human interaction, Oxford University Computing Laboratory, 2006
[Gardener, 1977] M.Gardener, “A New Kind of Cipher That Would Take Millions of Years to Break”, Scientific American, v.237,n.8,Aug 1977, pp.120-124
[Koc, 1994] C.K.Koc, “High-Speed RSA Implementation”, Version 2.0, RSA Laboratories, NOV 1994
[Viega & Messier, 2003] J. Viega & M. Messier, Secure Programming Cookbook—for C and C++, O’REILLY, July 2003
[wiki] http://en.wikipedia.org/wiki/Transmission_Control_Protocol accessed date: 08/06/2007
[Barsotti, Nieto & Tiu, 1990] D. Barsotti, L. P. Nieto and A. Tiu, Verification of Clock Synchronization Algorithms: Experiments on a combination of deductive tools,

LORIA, France, 1990
[CCITT, 1987] CCITT, Draft Recommendation X.509, “The Directory-Authentication Framework”, Consultation Committee, International Telecommunications Union, Geneva, 1987;
[Balenson, 1993] D.Balenson , “Privacy Enhancement for Internet Electronic Mail: Part 3: Algorithms, Modes, and Identifiers”, RFC 1423, Feb 1993
[Walton, 2001] S. Walton, Linux socket programming, SAMS, 2001

[Rabin, 1979] M.O. Rabin, “Digital Signatures and Public-Key Functions ad Intractable as Factorization”, MIT Laboratory for Computer Science, Technical Report, MIT/LCS/TR212, Jan 1979
[APACS, 2006] http://www.apacs.org.uk/resources_publications/card_fraud_facts_and_figures.html, accessed date: 09/07/2007
[MSDN, accessed date 03/06/2007] http://msdn2.microsoft.com/en-gb/default.aspx. accessed date: date 03/06/2007
[Snader, 2000] J. C.Snader, Effective TCP/IP Programming—44Tips to improve your network programs, ADDISON-WELSLEY, 2000
[Quinn & Shute] B. Quinn & D. Shute, Windows Socket Network Programming, ADDISON-WELSLEY, 1996

[Young, 2006] E. A. Young, SSLeay document, 2006

[OpenSSL documents] http://www.openssl.org/docs/

Appendix A

The source code is about 2000 lines.
Developers’ Handbook
46System Configuration

46Tools we need

46Installing Cygwin

47Installing OpenSSL

47Installing GrWin

47Things need to be aware

48Introduction to Socket Programming

48Main Functions Used

49Error Detection

50Introduction to Security Programming

51Main Cryptographic Functions Used

53Main SSL Functions Used

54Introduction to Multi-Process Programming

57Introduction to Graphic Programming

58Main frame of the system

System Configuration
Tools we need

· gcc v.3.44-3, a C compiler

· Cygwin v.1.5.24, an easy to use Linux-like system

· OpenSSL 0.9.8e, a powerful toolkit for security programming

· GrWin 0999be for Cygwin, a simple graphics library written in C

Installing Cygwin

· Download Cygwin from http://www.cygwin.com/
· Run setup.exe

· Set install path to C:/cygwin

· Choose gcc under develop tools profile

· Start install

Installing OpenSSL

· Download OpenSSL from http://www.openssl.org/ and unzip it

· Open Cygwin console window, switch to the path where OpenSSL is unzipped

· Type “./config” into console window and run

· Type “make” and run

· Type “make test”and run

· Type “make install” and run

· In order to use OpenSSL in Cygwin, we still need to do the following step, please be aware!

· In C:/cygwin/etc/man.config file, add MANPATH /usr/local/ssl/man
· In C:/cygwin/etc/ profile file, add Path /usr/local/ssl/bin
· When compiling your .c file, please remember to link lib, command is like: gcc yourprogram.c –lssl –lcrypto –o yourdestinationFile
Installing GrWin

· Download lGrWn0999be-cygwin.exe from http://spdg1.sci.shizuoka.ac.jp/grwinlib/english/download.html
· Run it

· Please remember when compile your .c file, do the following command: gcc –W –Wall yourprogram.c –W1, --subsystem,console –lGrWin –mwindows –o yourdestinationFile

Things need to be aware of
OpenSSL is very strong and popular and is written in C, so feel free to use it to build up your security program, but the problem is that there are very few documents about how to use this lib, so be prepared to read the source code in case you do not understand or know how to use the function.

GrWin is a graphics lib written in C, but this lib is so simple that in most cases, we have to construct tools by ourselves.

Introduction to Socket Programming

Details can be found in [Snader, 2000], [Walton, 2001] and [Quinn & Shute, 1996]. In this handbook, I only give a brief introduction about how to program with sockets.

Main Functions Used[Walton, 2001] [MSDN, accessed date 03/06/2007]
· SOCKET socket (int domain, int type, int protocol)

 AF_INET internet domain AF_LOCAL local domain used for interprocess communication (IPC)

Type means the type of socket we are going to make, here I use SOCK_STREAM which provide a reliable connection oriented byte stream.

Protocol usually set as 0. Unless we are using some raw socket, then there will be choices among several protocols.

Note: in Linux, type SOCKET is actually int.

· Int connect (SOCKET s, const struct sockaddr *a, int a_length)

s is what we get from socket() function

a is of struct sockaddr which we use to specify connection details like IP and port

a_length is the length of a

· int recv (SOCKET s, void *buffer, size_t length, int flags)

s is the socket we get from socket() function

buffer are what we use to store the incoming data

flags we usually set as 0

· int bind(SOCKET s, const struct sockaddr *a, int a_length)

s is the socket we get from socket() function, here means the listening socket

a here provide the port and interface on which the server are listening.

As the server may want to listen to and accept connections on any interface, then the address should be INADDR_ANY, if not, it can set the address to a specific IP address. In our program, the merchant may want to listen to any incoming clients’ SD, so the address are set to be INADDR_ANY.

a_length is the length of a

· int listen(SOCKET s, int queue_num)

s is the socket that the server want to listen

queue_num is the maximum number of connections that can be allowed to queue to wait for the server to accept.

· SOCKET accept(SOCKET s, struct sockaddr *a, int a_length)

s here means the listening socket

a stores details of the incoming connection from client, for example, the client’s IP address, the port number.

a_length is the length of a.

‘accept’ function returns a socket which we can use to send and receive messages from the client.

Error Detection

There are several very important system calls we need to have an eye on, if one of them fails, the program should report error immediately and terminate the session.

Those crucial system calls are as below:

· bind() : because we need to “book” a specific port number before we start to work on it, if we can not make it, we must know the error as soon as possible. The common error is like “Error: Address already in use”, or the socket that we are going to bind is not correct.

· connect(): if the SD client can not connect successfully to the Merchant server, it can not continue the process, common errors are like “ host not found” or “ host unreachable”.

· accept(): the server should firstly accept an incoming connection before having a conversation over it, the return value (a new socket on which we send and receive message) of this call should be greater than 0. The common error is EINTER, which means the call interrupted by some signals.

· recv() and send(): If we can not send or receive our messages successfully we must know the result from the I/O calls. The common errors are like “connection closed” or the call has been interrupted by some signals.

As we can see from the above discussions, there are still many calls missing, for example, socket (), listen (), close (), the reason we do not need to take care of those calls is because either the problem happened in those calls can be caught by the calls after it or the problem is very trivial or unlikely to happen after the success of the calls before it.

Introduction to Security Programming [Viega & Messier, 2003] [Young, 2006] [OpenSSL documents]
In the book Secure Programming Cookbook—for C and C++ written by John Viega & Matt Messier, the authors strongly suggested that we should use existing security lib rather than implementing cryptographic methods by ourselves. Here I give a brief introduction about how to use OpenSSL to build up a secure program, more details please refer to [Viega & Messier, 2003], [Eric A. Young, 2006].

OpenSSL is very powerful, almost includes all the existing cryptographic methods, and is developed by a team of professionals who are currently using OpenSSL to construct security projects, and what’s more, this lib is programmed in C language. The only problem may be there is very little documentation about this lib, and in some cases, we need to explore more into the source code of the desired cryptographic methods, so be prepared.

Main Cryptographic Functions Used
· RSA *RSA_generate_key(int bits, unsigned long exp, void (*cb)(int, int, void), void *cb_arg)

bits: size of the key to be generated. Must be multiple of 16, 2048 is the common value.

exp: fixed exponent to be used with the key pair. 3,17,65537

cb: call back function. Allows for monitoring the progress of generating a prime. It passed directly to the function’s internal call to the BN_generate_prime().

cb_arg: application-specific argument that is passed directly to the callback function

· int RSA_public_encrypt(int l, unsigned char *pt, unsigned char *ct, RSA *r, int p)

l: length of the plaintext to be encrypted

pt: buffer that contains the plaintext data

ct: buffer into which the resulting ciphertext data will be placed. The size of the buffer must be equal to the size in bytes of the public modulus. This value can be obtained by passing the RSA object to RSA_size().

r: RSA object containing the public key that we used to encrypt the plaintext data,

p: type of padding to use. RSA_PKC1_PADDING, RSA_PKCS1_OAEP_PADDING

· int RSA_private_decrypt(int l, unsigned char *ct, unsigned char *pt, RSA *r, int p)

l: length of the bytes of the ciphertext to be decrypted, which must be equal to the size in bytes of the public modulus. This value can be obtained by passing the RSA object to RSA_size().

ct: buffer containing the ciphertext to be decrypted

r: RSA object containing the private key to be used to decrypt the ciphertext

p: type of padding that was used when encrypting.

· AES_set_encrypt_key(const unsigned char *symmetrickey, int len, AES_KEY *ekey);

symmetrickey: a random number generated by SD;

len: length of the AES encryption key, in this project, we set len = 128;

ekey: pointer to a AES encryption key instance;

· AES_set_decrypt_key(const unsigned char *symmetrickey, int len, AES_KEY *dkey);

symmetrickey: a random number generated by SD;

len: length of the AES decryption key, in this project, we set len = 128;

 dkey: pointer to a AES decryption key instance;

· AES_encrypt(const unsigned char *pt, unsigned char *ct, AES_KEY *ekey);

pt: pointer to the plaintext which needs to be encrypted;

ct: pointer to the buffer where the cipher text is stored;

ekey: pointer to the AES encryption key instance

· AES_decrypt(const unsigned char *ct, unsigned char *pt, AES_KEY *dkey);

 ct: pointer to the cipher text which needs to be decrypted;

pt: pointer to the buffer where the plaintext is stored;

 dkey: pointer to the AES decryption key instance

· SHA512(const unsigned char * in, int len,char *longhash_m);

in: input char string to be hashed

len: input char string length

longhash_m: buffer where hash digest stored

Main SSL Functions Used

· void SSL_library_init(void);

initialize SSL library methods

· SSL_CTX_use_certificate_file(SSL_CTX* ctx, char* CertFile, SSL_FILETYPE_PEM)

ctx: pointer to a SSL context instance;

CertFile: path to the cert file location;

SSL_FILETYPE_PEM: the PEM file type, we just put SSL_FILETYPE_PEM in this place.

· SSL_CTX_use_PrivateKey_file(SSL_CTX* ctx, char* KeyFile, SSL_FILETYPE_PEM)

Similar to SSL_CTX_use_certificate_file function, except for we need to locate the file containing private key by specifying KeyFile.

· SSL *SSL_new(SSL_CTX *ctx)

This function creates a new SSL structure for a connection
ctx: pointer to SSL context instance;

this function returns a pointer to a new SSL structure for a connection

· int SSL_set_fd(SSL *ssl, int fd);

 ssl: a pointer to a SSL structure instance

 fd: a file descriptor

 this function connects ssl with fd

· int SSL_accept(SSL *ssl);

accept a connection on SSL
· int SSL_connect(SSL *ssl);

connect to a server on SSL
· int SSL_read(SSL *ssl, void *buf, int num);

this function reads num bytes from ssl into the buffer buf
· int SSL_write(SSL *ssl, const void *buf, int num);

 this function writes num bytes to a ssl connection.
Introduction to Multi-Process Programming

In the practical field, we need to enhance our performance to be able to serve many client requests at the same time, and the best choice is to make the Merchant server multi-process.

The key for doing this is to use “fork” system call. How fork system call functions is very interesting. The picture below provides a glimpse of how the mechanism works:

 [image: image131.png]{ this is child) { this is child)
if (pid > 0) if (pid > 0)
{ this is parent } { this is parent }

We can see that both parent and child are identical, because after fork system call, the system will produce two identical copies of the address space, one is parent process and the other is child process. Each process starts to run after the fork system call, so the variables before this call will have the same values, which means both the parent and the child holds an identical set of variables, in our case, we would have the same sockets that have been created.

Small Topic: why not multi-thread

The reason that we choose to create processes instead of threads is very simple, as the processes have independent address spaces, any modification in each process will not affect the others, also there is no race condition when running processes, because there is no shared resources. We can shake off a lot of responsibilities when using fork system call to create new processes.

The difference between parent and child is the value of pid (short for process id), in the parent process, the pid holds the return value from fork system call, which is an unique number which is used to identify a specific child process created by the fork system call, in our program, the field inside the if (pid > 0) denotes that we are in the parent field; in the child process, fork system call return zero, so if (pid = = 0) indicates that we are in the child field.

The tasks for each process are clear, which are depicted as below:

 [image: image132.png]main()

creat socket;
bind socket to spicific address;
listen that socket;

accept connection request;

int pid = fork();
i(f(pid 0)

process client request;

if(pid > 0)
count child;
collect info from child;
control the number of child;

The parent process takes care of the created child processes, it should count the number of child processes, and once the child process is terminated, the parent should know it and update the number of child processes. For example, if we only allow a maximum of 10 child processes, which means the maximum number of processing client request at the same is 10, so we first need to put a cap on the number of child processes, and the parent process should take back the available spaces when a child process has finished its job and terminated, thus allowing new client to be processed.

More concrete structure of the program is as below:

[image: image133.png]void check_child(int signal)
[s o detent
it fos tnita

wait(0);
ChildCount:
) T anitg terminated atton

new CILA 1a be created fo
Drocess new elient request

int client = accept();

while(ChildCount >= NAX_CHILD)
sleep for a while;

i(f(client >0

if child processes

Int pid, Ttenine mew i
if((pid = fork())==0) it

process client request;
e(lse if (pid > 0)

ChildCount+t;
3
else
, report fork call error;

We notice there is a void check_child function, which is in fact only a signal handler and need to be passed to a struct sigaction instance, and then use sigaction() call to detect a specific signal.
Introduction to Graphic Programming

We use GrWin graphic lib to build up our visualized SD, this lib is programmed in C language. This lib provides some basic functions, and I will give a brief introduction to the main functions that we will use.

I use a piece of code in my project to explain:

/*-----------main frame: 220*365 -----------------*/

1
GWopen(W1);

2
GWindow(0.0f,0.0f,800.f,600.0f);// the frame

3
GWsetbrs(2, 1, 2);

4
GWrect(10, 10, 230, 375);
5
GWport(10.0f,10.0f,230.0f,375.0f);

6
GWindow(0.0f,0.0f,220.0f,365.0f);

7
GWsavevp(v0);

In the program shown above, line 1 means we open a window instance, the ID is W1;

Line 2 means we specify the world coordinator of this window, which means X is 600, Y is 600. Line 3 means we set the attributes of the brush. Line 4 means we draw a rectangular. Line 5 means we specify the view port of the main frame of SD, this function is a little confusing. To set a view port means we select a specific area in the current view port (which is window W1 now), which will be used to set another world coordinator, we can see in line 6, we set the world coordinator as X is 220, Y is 365; so now we have 2 view port and each view port holds specific world coordinator of its own. We store the view port in line 7, so in the future if we want to draw something in this view port, we simply call GWselvp(v0) to select view port v0.

Main frame of the system

1. antifraud.h

Includes all the head file that TCP/IP and cryptographic methods need, includes all the struct type used in the whole program.

2. SDclient.h

Includes antifraud.h and other global variables that will be used in SDclient.c.

3. Merchant.h

Includes antifraud.h and other global variables that will be used in Merchant.c.

4. Parent.c

Creates and initializes sockets, and accepts new connection requests. Once a connection is accepted, the socket number of that connection is passed to the newly created child server process which will deal with the service request of the client connection.

Main Functions in Parent.c

· int CreateListener()
, create socket, initiate an address, bind the address with socket, and listen .

· SSL_CTX* InitCTX(void), return a pointer to an initialized ssl context instance.

· void GetCertificate(SSL_CTX* ctx, char* CertFile, char* KeyFile), this function use certfile and keyfile from specified location, and verify the private key file.

· void check_child(int sig), this function catches the signal passed from the child process which has been terminated successfully, and then reduce the child count by one.

· void create_childs(void), in this function, we fork new child processes.

5. Merchant.c

This is the server program, responsible for receiving messages from client and sending results to client. It processes one client request at a time.

Main Functions in Merchant.c

· void initMsg(msg_t msg), this function initialize the msg_t struct instance;

· SSL_CTX* InitCTX(void), return a pointer to an initialized ssl context instance;

· void GetCertificate(SSL_CTX* ctx, char* CertFile, char* KeyFile), this function use certfile and keyfile from specified location, and verify the private key file.

· void DisplayCerts (SSL* ssl), show certificates;

· void Decrypt(char *, char *, int), do AES decryption, but need to firstly divide the incoming data into proper size segments.

6. SDclient.c

This is the SD client program, responsible for initializing SD, reading information from Credit Card (I give an interface instead), generating necessary random numbers that will be used in the transaction, and to do RSA public key encryption and AES encryption and decryption. In this code file, there are actually two modules, one is for SD client, the other is for visualized SD.

Main functions in SDclient.c

· int getCardInfo(int type), interface given for getting information from Credit Card;

· void initSD(SD_t sd), initialize SD_t struct instance;

· void normalConnect(), do normal connection, which creates a new socket, connect it to the desired address.

· int SSLConnection(), do SSL connection, actually, this is no different from normalConnection(), except for the port number, the connection need to be further processed in order to work on SSL.

· SSL_CTX* InitCTX(void), return a pointer to an initialized ssl context instance;

· void DisplayCerts(SSL* ssl), show certificates;

· void initMsg(msg_t msg), this function initialize the msg_t struct instance;

· void Encrypt(char *in, char *out, int len), do AES encryption, but need to firstly divide the incoming data into proper size segments.

· void Decrypt(char *in, char *out, int len), do AES decryption, but need to firstly divide the incoming data into proper size segments.

· void display(), graphic SD function, use to display information on the SD screen, this is a sliding window, which can display a maximum 6 messages at a time, and it slides down when new messages coming in.

· void getuserclick(char *), this function gets the user input for digest number on SD;

· void getuserclick_encrypt(char *), this function gets user input for PIN on SD.

Appendix B

RSA example

(1)
Find two primes p, q and calculate n:

n = p*q = 3037 * 1423
(2)
Find an integer “e” that is relatively prime to the integer (p-1)*(q-1):
(p-1)*(q-1) = 3036*1422
And we choose 725 as our public key e.

(3)
Compute the unique integer d (1<= d<= (p-1)*(q-1)) which satisfies:

e*d = 1(mod(p-1)*(q-1))
 In this case, d = 3,703,853.
(4)
Encrypt Message M with public key e, suppose our message M is 43, then:
C=
[image: image134.wmf]e

M

mod n;

 In this case, C=2,449,620.
(5)
Decrypt C with the secret key d:

D =
[image: image135.wmf]d

C

mod n
 In this case, D=43, we can see D is equal to M.

� For example, b=4

� G means a group of nodes including all As

� In this model, the attacker can do anything like overhearing and intercepting, and he is only limited by the cryptographic methods that have been used.

� If a cryptographic function � EMBED Equation.3 ���produces N different outputs, then to achieve a 50% probability of collision, one may need to input � EMBED Equation.3 ���different arguments.

� This error simply means time out

� This signal is raised when a program writes to a socket or fifo that has no readers. The default action of this signal is to cause the program to terminate.

� Means Broken Pipe, which happens when a process tried to read or write to a pipe where the other end of the pipe no longer exists.

� You will get this error if you try to connect a socket to a host, and a router between you and that host believes the host is unreachable.

� This error means there is no published way to get from this machine to the machine you are trying to connect to at the moment.

� This error means connection reset by peer, which happens when the connection you are trying to access has been reset by the peer (remote) machine. This usually means that the program on the other end has crashed, or closed the socket unexpectedly.

� Normally, we do not allow writing port or IP into the code, but for the convenience of testing, I simply did so, but be aware when putting into practical use.

PAGE

[image: image136.wmf])

(

x

f

[image: image137.wmf]N

2

.

1

_1250477071.unknown

_1250540176.unknown

_1250540234.unknown

_1250543802.unknown

_1250544634.unknown

_1250543782.unknown

_1250540215.unknown

_1250540202.unknown

_1250540190.unknown

_1250479922.unknown

_1250480001.unknown

_1250477400.unknown

_1250377549.unknown

_1250476907.unknown

_1250476985.unknown

_1250477029.unknown

_1250476899.unknown

_1238804935.unknown

_1250377536.unknown

_1250185518.unknown

_1250185965.unknown

_1250186015.unknown

_1250186022.unknown

_1250187548.unknown

_1250185984.unknown

_1249345979.unknown

_1249346082.unknown

_1249346110.unknown

_1249346128.unknown

_1249346134.unknown

_1249346123.unknown

_1249346093.unknown

_1249346054.unknown

_1249346068.unknown

_1249346038.unknown

_1249149425.unknown

_1249345954.unknown

_1249148728.unknown

_1249149385.unknown

_1249148655.unknown

_1238804899.unknown

_1238804925.unknown

_1238804918.unknown

_1236909522.unknown

_1238804827.unknown

_1236909512.unknown

