R & BioConductor Manual

1. BioConductor 

. Introduction 

BioConductor is an open source and open development software project to provide tools for the analysis of genome data (e.g. sequence, microarray, annotation and many other data types). This section of the manual provides a brief introduction into the usage and utilities of a subset of packages from the BioConductor project. The included packages are a 'personal selection' of the author of this manual that does not reflect the full utility specturm of the BioConductor project. The introduced packages were chosen, because the author uses them often for his own teaching and research. To obtain a broad overview of available BioConductor packages, it is strongly recommended to consult its official project site. Due to the rapid development of many packages, it is also important to be aware that this manual will often not be fully up-to-date. Because of this and many other reasons, it is absolutley critical to use the original documentation of each package (PDF manual or vignette) as primary source of documentation. Users are welcome to send suggestions for improving this manual directly to its author. 

A. Finding Help 

The instructions for installing BioConductor packages are available in the administrative section of this manual. Documentation for BioConductor packages can be found in the vignette of each package. A listing of the available packages is available on the BiocViews page. Annotation libraries can be found on the meta data page. The BioC Mail GMANE Archive can be searched find to answers to questions that have been discussed on the mailing list. Another valuable information resource is the BioConductor Book. The basic R help functions provide additional information about packages and their functions: 

library(affy) # Loads a particular package (here affy package).
library(help=affy) # Lists all functions/objects of a package (here affy package).
library() # Lists all libraries/packages that are available on a system.
openVignette() # Provides documentation on packages.
sessionInfo() # Prints version information about R and all loaded packages. The generated output should be provided when sending questions or bug reports to the R and BioC mailing lists.
?my_topic # Opens documentation on a function.
help.search("topic") # Searches help system for documentation.
search() # Shows loaded packages and attached data frame in current search path.
system.file(package="affy") # Shows location of an installed package.
library("tools"); vigSrc <- list.files(pattern="Rnw$", system.file("doc",package="GOstats"), full.names=TRUE); vigSrc; for (v in vigSrc) Stangle(v) # Extracts R code from a vignette and saves it to file(s) in your current working directory.

B. Affy Packages 

BioConductor provides extensive resources for the analysis of Affymetrix data. The most important ones are introduced here. 

Affy 

The Affy package provides basic methods for analyzing affymetrix oligonucleotide arrays. The following steps outline the usage of the Affy package and associated packages. 

B. Obtaining scaled expression values with 5 different methods (MAS5, RMA, GCRMA, Plier & dChip). A comparison of three of these methods including references is available in this slide show. 

Move your CEL files into your working directory and make sure that the corresponding CDF library for your chips is available on your system.
library(affy) # Loads the affy package.
mydata <- ReadAffy() # Reads all *.CEL (*.cel) files in your current working directory and stores them into the AffyBatch object 'mydata'.

or

mydata <- ReadAffy(widget=TRUE) # Opens file browser to select specific CEL files.
eset <- rma(mydata) # Creates normalized and background corrected expression values using the RMA method. The generated data are stored as ExpressionSet class in the 'eset' object. For large data sets use the more memory efficient justRMA() function.

or

eset <- mas5(mydata) # Uses expresso (MAS 5.0 method) module instead of RMA, which is much slower than RMA!

or

eset_gcrma <- gcrma(mydata) # Use this command to aquire gcrma data. The 'library(gcrma)' needs to be loaded first.

or

eset_plier <- justPlier(mydata) # Use this command to aquire plier data. The 'library(plier)' needs to be loaded first.

or

eset_PMA <- mas5calls(mydata) # Generates MAS 5.0 P/M/A calls. The command creates ExpressionSet with P/M/A calls in the 'exprs' slot and the wilcoxon p-values in the 'se.exprs' slot. To access them see below.

or

eset <- expresso(mydata, normalize.method="invariantset", bg.correct=FALSE, pmcorrect.method="pmonly", summary.method="liwong") # Generates expression calls similar to dChip (MBEI) method from Li and Wong.
library(affycoretools); affystart(plot=T, express="mas5") # Handy function to normalize all cel files in current working directory, perform qc plots and export normalized data to file. Works for mas5, rma and gcrma.

B. Exporting data from 'ExpressionSet' objects 

write.exprs(eset, file="mydata.txt") # Writes expression values to text file in working directory.
x <- data.frame(exprs(eset), exprs(eset_PMA), assayDataElement(eset_PMA, "se.exprs")); x <- x[,sort(names(x))]; write.table(x, file="mydata_PMA.xls", quote=F, col.names = NA, sep="\t") # Writes expression values, PMA values and wilcoxon p-values to text file in working directory. Remember: the old command for accessing the wilcoxon p-values in BioC versions <2.0 was 'se.exprs(eset_PMA))'.

B. Obtaining single probe-level data from 'affybatch' objects (see also documentation '?ReadAffy') 

mypm <- pm(mydata) # retrieves PM intensity values for single probes
mymm <- mm(mydata) # retrieves MM intensity values for single probes
myaffyids <- probeNames(mydata) # retrieves Affy IDs
result <- data.frame(myaffyids, mypm, mymm) # combines the above information in data frame

B. Working with 'ExpressionSet' objects (see Biobase Manual) 

eset; pData(eset) # Provides summary information of ExpressionSet object 'eset' and lists the analyzed file names.
exprs(eset)[1:2,1:4]; exprs(eset)[c("244901_at","244902_at"),1:4] # Retrieves specific rows and fields of ExpressionSet object. To learn more about this format class, consult ExpressionSet manual with command '?ExpressionSet'.
test <- as.data.frame(exprs(eset)); eset2 <-new("ExpressionSet", exprs = as.matrix(test), annotation="ath1121501"); eset2 # Example for creating an ExpressionSet object from a data frame. To create the object from an external file, use the read.delim() function first and then convert it accordingly.
data.frame(eset) # Prints content of 'eset' as data frame to STDOUT.
exprs(eset_PMA)[1:2,1:2]; assayDataElement(eset_PMA, "se.exprs")[1:2,1:2] # Prints from ExpressionSet of 'mas5calls(mydata)' the PMA values from its 'exprs' slot and the p-values from its 'se.exprs' slot.

B. Retrieving annotation data for Affy IDs (see Annotation Package Manual) 

library(ath1121501.db) # Opens library with annotation data.
library(help=ath1121501.db) # Shows availability and syntax for annotation data.
ath1121501() # Provides a summary about the available annotation data sets of an anntation library.
library(ath1121501cdf); ls(ath1121501cdf) # Retrieves all Affy IDs for a chip in vector format.
x <- c("245265_at", "260744_at", "259561_at", "254759_at", "267181_at") # Generates sample data set of Affy ID numbers.
mget(x, ath1121501ACCNUM, ifnotfound=NA) # Retrieves locus ID numbers for Affy IDs.
mget(x, ath1121501CHR); mget(x, ath1121501CHRLOC) # Retrieves chromosome numbers and locations of Affy IDs.
data.frame(AffyID=x, AGI=as.vector(unlist(mget(x, ath1121501ACCNUM, ifnotfound=NA))), Desc=as.vector(unlist(lapply(mget(x, ath1121501GENENAME, ifnotfound=NA), function(x) paste(x, collapse=", ")))), row.names=NULL) # Possibility to get it all into a data frame structure.
mget(x, ath1121501GO) # Retrieves GO information for Affy IDs.

B. Accessing probe sequence data (see Matchprobes Manual) 

library(ath1121501probe) # Opens library with probe sequence data.
print.data.frame(ath1121501probe[1:22,]) # Prints probe sequences and their positions for first two Affy IDs.
pm <- ath1121501probe$sequence # Assigns sequence component of list object 'ath1121501probe' to vector 'pm'.
mm <- complementSeq(ath1121501probe$sequence, start = 13, stop = 13) # The mismatch sequences are not stored in the probe packages, but can be created with the complementSeq function by flipping the middle base at position 13.
cat(pm[1], mm[1], sep = "\n") # The generic 'cat' function produces output in user-defined format. Here: pm aligned above mm.
reverseSeq(complementSeq(pm[1])) # Command to generate the reverse and complement of a sequence.

Visualization and quality controls 

Additional information on this topic can be found in the affyPLM QC Manual, the arrayQualityMetrics package and on the WEHI Affy Lab site. 

library(affyQCReport); QCReport(mydata, file="ExampleQC.pdf") # Generates a comprehensive QC report for the AffyBatch object 'mydata' in PDF format. See affyQCReport for details.
deg <- AffyRNAdeg(mydata); summaryAffyRNAdeg(deg); plotAffyRNAdeg(deg) # Performs RNA degradation analysis. It averages on each chip the probes relative to the 5'/3' position on the target genes. A summary list and a plot are returned.
image(mydata[ ,1]) # Reconstructs image with log intensities of first chip.
hist(mydata[ ,1:2]) # Plots histogram of PM intensities for 1st and 2nd array.
hist(log2(pm(mydata[,1])), breaks=100, col="blue") # Plos bar histogram of the PM ('pm') or MM ('mm') log intensities of 1st array.
boxplot(mydata,col="red") # Generates a box plot of un-normalized log intensity values.
boxplot(data.frame(exprs(eset)),col="blue", main="Normalized Data") # Generates a box plot of normalized log intensity values.
mva.pairs(pm(mydata)[,c(1,4)]) # Creates MA-plot for un-normalized data. A MA-plot is a plot of log-intensity ratios (M-values) versus log-intensity averages (A-values) between selected chips (here '[1,4]').
mva.pairs(exprs(eset)[,c(1,4)]) # Creates MA-plot for normalized data.

Simpleaffy 

The simpleaffy package automates many repetitive high-level analysis steps. 

B. Creating expression values from CEL files 

Move CEL files into working directory.
Create white-space delimited table file "covdesc.txt": first column no title then CEL file names; second column title "treatment", then treatment names.
library(simpleaffy) # Loads "affy" and "simpleaffy" packages.
raw.data <- read.affy("covdesc.txt") # Reads data in working directory that are specified in "covdesc.txt" file; for help on this function type "?read.affy".
x.rma <- call.exprs(raw.data, "rma") # Creates expression values using RMA method. The function 'call.exprs' returns always log2 expression values; for help on this function type "?call.exprs". One can also use here the "gcrma" method after loading it with the command 'library(gcrma)'.
x.mas <- call.exprs(raw.data, "mas5") # Computes expression values using MAS 5.0 method. 
write.exprs(x.rma, file="mydata.txt") # Writes expression values to file "mydata.txt".

B. Quality control steps 

The "qc" function provides several qc stats for chips. To use it, one follows the following steps:
x <- read.affy("covdesc.txt") # Reads data in working directory.
x.mas5 <- call.exprs(x,"mas5") # Calculates expression values with MAS 5.0 method which is required for the next step!
qc <- qc(x,x.mas5) # Calls "qc" function which generates object containing scale factors, GAPDH-Actin_3'/5' ratios, target intensity, % present, average, min, max, mean background int and more; for more details type "?qc".
x.mas5@description@preprocessing # Creates QC output like this.
getGapdh3(cleancdfname(cdfName(x))) # To find out which GAPDH/Actin probe sets are used on a given chip; for others use getGapdhM, getGapdh5, getBioB, getBioC...
plot(qc) # Creates summary plot of QC data. See description on page 5 of vignette "simpleaffy".

B. Filtering by expression values 

get.array.subset(x.rma, "treatment",c("CMP1","Ctrl")) # When R loaded *.CEL files it also reads experiment layout from covdesc.txt file (Ctrl and CMP1). The "get.array.subset" function makes it easy to select subsets of arrays.
results <- pairwise.comparison(x.rma, "treatment", c("1", "2"), raw.data) # computes mean intensities of replicates from two treatments (means), calculates log2-fold changes between means (fc), performs t-test (tt) and writes out PMA calls (calls). Type "?pairwise.comparison" for more help on this function.
write.table(data.frame(means(results), fc(results), tt(results), calls(results)), file="my_comp.txt", sep="\t") # Command to export all 'pairwise.comparison' data into one table.
sort(abs(fc(results)),decreasing=TRUE)[1:100] # Prints out 100 highest fold-changes (fc), for means of intensities (means), for ttest (tt), for PMA (calls).
significant <- pairwise.filter(results, min.exp=log2(10), min.exp.no=2, fc=log2(8), min.present.no=4, tt= 0.001, present.by.group=FALSE) # Function 'pairwise.filter' takes the output from 'pairwise.comparison' and filters for significant changes. Filter Arguments: 

B. min.exp: minimum expression cut off 

B. min.exp.no: occurence of 'min.exp' in at least this number of chips 

B. min.present.no: present calls on at least this number of chips 

B. present.by.group: If true, then present count is restricted to replicate groups and not all chips of an experiment! 

B. fc: A gene must show a log2 fold change greater than this to be called significant. A 2.5-fold change can be specified like this: 'fc=log2(2.5)' 

B. tt: A gene must be changing with a p-score less than this to be called significant 

Type "?pairwise.filter" for more info on the different arguments of this function.

write.table(data.frame(means(significant), fc(significant), tt(significant), calls(significant)), file="my_comp.txt", col.names = NA, sep="\t") # Exports all 'pairwise.filter' data into one table.

B. Plotting results 

plot(significant, type="scatter") # Plots significant changes from above as scatter plot. Alternative plotting types: type="ma" or type="volcano".
plot(results,significant, type="scatter") # Plots means of the two replicate groups as scatter plot and high-lights all genes that meet criteria of 'significant' filter. Meaning of colors: red - all present, orange - all present in one group or the other, yellow - all that remain.
plot(results,type="scatter") # Plots means of the two replicate groups as scatter plot.
png(file="figure1.png"); plot(significant,type="scatter"); dev.off() # Writes scatter plot to image file.

B. Exercise simpleaffy (Command Summary) 

B. Download the following CEL files from the 'Cold stress time course' experiment of the AtGenExpress site: COLD_CONTROL_12H_SHOOT_REP1.cel, COLD_CONTROL_12H_SHOOT_REP2.cel, COLD_12H_SHOOT_REP1.cel, COLD_12H_SHOOT_REP2.cel 

B. Generate expression data with RMA, GCRMA and MAS 5.0 

B. Filter each of the three data sets with the following parameters: 2-fold changes, present in all 4 chips and p-score less than 0.001. 

B. Write the results into separate files. 

B. Create scatter plots for the filtered data sets and save them to external image files. 

B. Compare the differences between the three methods. 

C. Analysis of Differentially Expressed Genes 

Various packages are available for analyzing pre-processed data from dual-color and Affymetrix arrays. 

LIMMA, limmaGUI & affylmGUI 

Limma is a software package for the analysis of gene expression microarray data, especially the use of linear models for analysing designed experiments and the assessment of differential expression. The package includes pre-processing capabilities for two-color spotted arrays. The differential expression methods apply to all array platforms and treat Affymetrix, single channel and two channel experiments in a unified way. The methods are described in Smyth 2004 and in the limma manual. An illustrated introduction for the GUI packages can be found at WEHI. 

C. Tcl/Tk Requirements

The limmaGUI and affylmGUI packages require Tcl/Tk. On Windows, simply install ActiveTcl.

C. Basic usage

library(limma) # Loads command-line limma package.
limmaUsersGuide() # Opens pdf manual for limma.
The cDNA and affy sample data sets of the manual can be downloaded from the limmaGUI and affylmGUI pages.
library(affylmGUI); affylmGUI() # Opens affylmGUI for affy data. For a quick start, follow the instructions for the Estrogen data set.

or

library(limmaGUI); limmaGUI() # Opens limmaGUI for cDNA array data. For a quick start, follow the instructions for the Swirl Zebrafish data set.

C. Data objects in limma
There are four main data objects created and used by limma: 

C. RGList: for cDNA data created by function 'read.maimages()' 

C. MAList: for cDNA data created by functions MA.RG() or 'normalizeWithinArrays()' 

C. MArrayLM: created by function 'lmFit()' 

C. TestResults: created by function 'decideTests()' 

More details on this can be found in paragraph 13 of the limma PDF manual ('limmaUsersGuide()'). 

C. Preprocessing of cDNA array data
C. Reading cDNA array data
To make the following commands work, save and extract the SWIRL cDNA microarray sample data into your R working directory. For a quick demonstration of the analysis of this data set, one can copy&paste or source the following command-line summary into the R terminal: my_swirl_commands.txt. 

Requirements 

C. Have all intensity data files in one directory. Supported formats are: ArrayVision, ImaGene, GenePix, QuantArray, SMD (QuantArray) or SPOT. If an intensity data file format is not supported then one can specify the corresponding column names during the data import into R (see below). Type '?read.maimages' for more information about supported formats. 

C. Targets file: Format of targets file. This file defines which RNA sample was hybridized to each channel of each array. 

C. Only for SPOT: separate gene list file 

C. Optional: spot type file for identifying special probes such as controls. 

Reading intensity data 

targets <- readTargets("Targets.txt") # Reads targets information from file 'Targets.txt' and assigns it to targets frame.
RG <- read.maimages(targets$FileName, source="spot", sep="\t", path="./") # Writes intensity data into 'RGList' list object. The argument 'targets$FileName' specifies the intensity files; 'source="spot"' specifies the image analysis program (e.g. spot); 'path="./"' provides the path to the directory where the intensity files are located and 'sep="\t"' specifies the field separator.
RG <- read.maimages(targets$FileName, annotation="My_spot_labels", columns=list(Rf="Rmean",Gf="Gmean",Rb="morphR",Gb="morphG")) # If an intensity data file format is not supported then one can specify the corresponding column names as shown here. The provided example is equivalent to the previous command with the exception of the additional argument: annotation="My_spot_labels". This argument allows the import of a spot ID or annotation column. This can be useful for analyzing arrays with unavailable printing layout or incomplete intensity data files. In those cases, all print-tip specific functions of the following steps will not work (e.g. use 'loess' normalizaten instead of 'printtiploess').
RG_combined <- cbind(RG1, RG2) # One can combine different 'RGList' objects (e.g. RG1, RG2) into one large object. The command 'RG[,1]' shows only the first array, while 'RG[1:100,]' gives the data of the first 100 genes. 

Spot quality weights 

RG <- read.maimages(targets$FileName, source="spot", wt.fun=wtarea(100)) # Assigns spot quality weights from 0 to 1 to each spot and writes information as 'weight' component into 'RGList' object. Provided example with 'wt.fun=wtarea(100)' gives full weight of 1 to spots with 100 pixels. Spots with zero pixels or twice the ideal size are given weight of 0. All spots with weight of 0 are considered as flagged and limma will ignore them in the subsequent analysis. The appropriate way of computing quality weights depends on the image analysis software. The command '?QualityWeight' provides more information on available weight functions.

Gene lists and print layout 

RG$genes <- readGAL() # The output of some image analysis programs contains intensity, gene name and print layout information all in one file. In the cases of the image analysis programs SPOT, GenePix, ArrayVision and others, this information is located in a separate file from where it needs to be written into the 'RGList' using the 'readGal' and 'getLayout' functions. The function 'readGal' reads this information by default from a *.gal file in the working directory. This file contains the columns: 'Block', 'Column', 'Row', 'ID' and 'Name' (optional). If such a file is not provided then one can create it in R using the printing layout information of a given array. Example of an array with 4 by 8 sub-grids (pins) each with 20 by 21 spots: x <- 1:32; c1 <- c(); for(i in x) c1 <- c(c1, rep(i, times=420)); x <- 1:21; c2 <- c(); for(i in x) c2 <- c(c2, rep(i, times=20)); c3 <- rep(1:21, times=20); test.gal <- data.frame(Block=c1, Row=rep(c2, times=32), Column=rep(c3, times=32), ID=rep("my_ID", times=13440), Name=rep("my_Description", times=13440)); test.gal[1:20,];
RG$printer <- getLayout(RG$genes) # Extracts print layout (number of pins or subgrids) after the gene list is available and adds this information as $printer component to RGList.

Spot type file 

Control spot information can be added to the RGList object with the spot type file (SpotTypes.txt). Regular expressions can be used here to associate this information with the RG$genes component of the RGList. The incorporation of the spot type information has the advantage that controls can be highlighted in plots or separated in certain analysis steps. The format of this file is specified in the limma pdf manual.
spottypes <- readSpotTypes("SpotTypes.txt") # Reads in the file SpotTypes.txt.
RG$genes$Status <- controlStatus(spottypes, RG) # Adds a 'Status' column to the RG$genes component in RGList.

C. Quality plots 

Recommended quality exploration steps are the imageplot() function of the raw log-ratios and an MA-plot (plotMA) of the raw data for each array. 

spottypes <- readSpotTypes("SpotTypes.txt") # Same as above.
RG$genes$Status <- controlStatus(spottypes, RG) # Same as above.
plotMA(RG, array=1) # Creates MA-plot which is a plot of the log-intensity ratios (M-values) versus the log-intensity averages of both channels (A-values). To display plots for all arrays next to each other, one can use the layout function 'par(mfrow=c(2,2))' and plot the different arrays in the same plotting device by changing the array numbers in the argument 'array=1'. 
imageplot(log2(RG$R[,1]), RG$printer, low="white", high="red") # Creates an image of color shades that represent the values of a statistic in the microarray printing format. This function can be used to explore spatial effects across the microarray. 
plotPrintTipLoess(RG) # Co-plots unnormalized RG data in form of MA-plots with the loess curves for each print-tip. 

C. Normalization 

Limma integrates several within- and between-array normalization methods. The commands '?normalizeWithinArrays' and '?normalizeBetweenArrays' provide information about the different methods. The method 'printtiploess' is the default. Use 'loess' instead if your arrays have no print-tip groups (e.g. Agilent) or have less than 150 spots per print-tip. 

MA <- normalizeWithinArrays(RG, method="printtiploess") # Background corrects and normalizes the expression log-ratios of the RGList and assigns the results to a MAList object. The default background correction method is bc.method="subtract". Use bc.method="none" to ignore the background in the analysis. If the quality weights should be ignored in this step, add to the command the 'weights=NULL' argument. For analyzing arrays with unavailable printing layout or incomplete intensity data files, one should use here a print-tip unspecific normalization method such as 'loess'.
plotPrintTipLoess(MA) # Coplots normalized MA data in form of MA-plots with loess curves for each print-tip. Compare results with unnormalized RG data from above.
boxplot(as.data.frame(MA$M)) # Creates box-and-whisker plot of MA values. This is a graphical summary of the MA distribution between the arrays. The two hinges in the middle represent the first and third quartile, the lines (whiskers) represent the largest and smallest observation in a distance of 1.5 times the box height and everything beyond that is printed as extreme values in form of dots. Inconsistent spreads of hinges and whiskers between arrays can indicate normalization issues. Between-array normalization may improve this situaltion (see limma MAnual). 
MA <- normalizeBetweenArrays(MA) # If box-and-whisker plot indicates different spreads of M-values, as in the above example, then one can use this secondary between-array normalization step.

C. Background correction 

The above 'normalizeWithinArrays' function performs by default a background correction by subtracting the background values from the expression intensities. 

RGb <- backgroundCorrect(RG, method="subtract"); MA <- normalizeWithinArrays(RGb) # These two commands perform the same operation as the above 'normalizeWithinArrays' command.
RG <- backgroundCorrect(RG, method="normexp", offset=50) # This more advanced background correction method 'normexp' adjusts the expression values adaptively for background values and results in strictly positive expression values. This method is particularly effective for obtaining more robust ratios for low expressed genes.

C. Linear models and differential expression of single and dual color data
Limma provides advanced statistical methods for linear modelling of microarray data and for identifying differentially expressed genes. The approach fits a linear model to the data and uses an empirical Bayes method for assessing differential expression. It is described in Smyth 2004. One or two experiment definition matrices need to be specified during the analysis: a design matrix defining the RNA samples and a contrast matrix (optional for simple experiments) defining the comparisons to be performed. How to set up these matrices is described in the limma manual and on this page from Natalie Thorne. Another useful manual is Advanced Linear Modeling and Time-Series Analysis.

C. cDNA common reference design (one sample test) 

The swirl experiment is a classical one sample test where a mutant is compared to a WT sample with four replicates that include 2 dye swaps. The following commands will work with the above objects obtained under steps 'VI 1-4'. 

design <- c(-1,1,-1,1) # Creates appropriate design matrix.
fit <- lmFit(MA, design) # Fits a linear model for each gene based on the given series of arrays. The returned list object 'fit' contains the average M-value ($coefficients) for each gene and their standard deviations ($sigma). The ordinary t-statistics can be computed with this command: ordinary.t <- fit$coef / fit$stdev.unscaled / fit$sigma. However, the empirical Bayes moderated t-statistics should be the preferred method for limma users (see below).
plotMA(fit); abline(0,0,col="blue") # Plots MA-plot with baseline.
fit <- eBayes(fit) # Computes empirical Bayes statistics for differential expression. This moderated t-statistics uses standard deviations that have been shrunk towards a pooled standard deviation value.
qqt(fit$t,df=fit$df.prior+fit$df.residual,pch=16,cex=0.2); abline(0,1) # Plots the quantiles of a data sample against the theoretical quantiles of a Student's t distribution.
options(digits=3) # Sets the number of digits to print in numeric output to 3 digits.
topTable(fit, adjust="fdr", sort.by="B", number=10) # Generates list of top 10 ('number=10') differentially expressed genes sorted by B-values ('sort.by=B'). The summary table contains the following information: logFC is the log2-fold change, AveExpr is the average expression value accross all arrays and channels, the moderated t-statistic (t) is the logFC to its standard error, the P.Value is the associated p-value, the adj.P.Value is the p-value adjusted for multiple testing and the B-value (B) is the empirical Bayes log-odds of differential expression (the-higher-the-better). Usually one wants to base gene selection on the adj.P.Value rather than the t- or B-values. More details on this can be found in the limma PDF manual (type 'limmaUsersGuide()') or on this FAQ page. If the swirl data set was normalized with the 'printtiploess' method and the between-array method, then the top downregulated gene is BMP2 which is the mutated gene of this sample. 
x <- topTable(fit, adjust="fdr", sort.by="P", number=100); x[x$adj.P.Val < 0.01,] # Filters out candidates that have P-values < 0.01. 
plotMA(fit); ord <- order(fit$lods, decreasing=TRUE); top30 <- ord[1:30]; text(fit$Amean[top30], fit$coef[top30], labels=fit$genes[top30, "Name"], cex=0.8, col="blue") # Plots MA-plot and highlights 30 top changes.

C. Affymetrix data analysis 

To enable the following analysis steps, users need to save and extract this archive of 6 cel files into their R working directory. These sample files are from the Cold Stress Time Course of the AtGenExpress site (ftp batch download). This affy_targets.txt file is required to select specific cel files during the analysis. For a quick demonstration of the analysis of this data set, one can copy&paste the following commands into the R terminal. 

library(limma) # Loads limma library.
targets <- readTargets("affy_targets.txt") # Reads targets information from file 'affy_targets.txt' and assigns it to targets frame.
library(affy); data <- ReadAffy(filenames=targets$FileName) # Reads CEL files (specified in 'targets') into AffyBatch object.
eset <- rma(data) # Normalizes data with 'rma' function and assigns them to ExpressionSet object (see above).
# exprs(eset) <- log2(exprs(eset)) # If eset contains absolute intensity values like MAS5 results, then they should be transformed to log2 (or loge) values for limma. RMA/GCRMA generate log2 values and MAS5 produces absolute values.
pData(eset) # Lists the analyzed file names.
write.exprs(eset, file="affy_all.txt") # Exports all affy expression values to tab delimited text file. The MAS 5.0 P/M/A calls can be retrieved with the simpleaffy package or with the affy package like this: 'eset <- mas5calls(data); write.exprs(eset, file="my_PMA.txt")'.
design <- model.matrix(~ -1+factor(c(1,1,2,2,3,3))) # Creates appropriate design matrix. Alternatively, such a design matrix can be created in any spreadsheet program and then imported into R.
colnames(design) <- c("group1", "group2", "group3") # Assigns column names.
fit <- lmFit(eset, design) # Fits a linear model for each gene based on the given series of arrays.
contrast.matrix <- makeContrasts(group2-group1, group3-group2, group3-group1, levels=design) # Creates appropriate contrast matrix to perform all pairwise comparisons. Alternatively, such a contrast matrix can be created in any spreadsheet program and then imported into R. For complex experiments one can also use this function to compute a contrast matrix with all possible pairwise comparisons. 
fit2 <- contrasts.fit(fit, contrast.matrix) # Computes estimated coefficients and standard errors for a given set of contrasts.
fit2 <- eBayes(fit2) # Computes moderated t-statistics and log-odds of differential expression by empirical Bayes shrinkage of the standard errors towards a common value.
topTable(fit2, coef=1, adjust="fdr", sort.by="B", number=10) # Generates list of top 10 ('number=10') differentially expressed genes sorted by B-values ('sort.by=B') for each of the three comparison groups ('coef=1') in this sample set. The summary table contains the following information: logFC is the log2-fold change, the AveExpr is the average expression value accross all arrays and channels, the moderated t-statistic (t) is the logFC to its standard error, the P.Value is the associated p-value, the adj.P.Value is the p-value adjusted for multiple testing and the B-value (B) is the log-odds that a gene is differentially expressed (the-higher-the-better). Usually one wants to base gene selection on the adjusted P-value rather than the t- or B-values. More details on this can be found in the limma PDF manual (type 'limmaUsersGuide()') or on this FAQ page.
write.table(topTable(fit2, coef=1, adjust="fdr", sort.by="B", number=50000), file="limma_complete.xls", row.names=F, sep="\t") # Exports complete limma statistics table for first comparison group ('coef=1') to tab delimited text file.
results <- decideTests(fit2, p.value=0.05); vennDiagram(results) # Creates venn diagram of all changed genes with p-value equal or less than 0.05.
x <- topTable(fit2, coef=1, adjust="fdr", sort.by="P", number=50000); y <- x[x$adj.P.Val < 0.05,]; y; print("Number of genes in this list:"); length(y$ID) # Filters out candidates that have P-values < 0.05 in each group ('coef=1') and provides the number of candidates for each list. These numbers should be identical with the sum of the values in each circle of the above venn diagram.
x <- topTable(fit2, coef=1, adjust="fdr", sort.by="P", number=50000); y <- x[x$adj.P.Val < 0.01 & (x$logFC > 1 | x$logFC < -1) & x$AveExpr > 10,]; y; print("Number of genes in this list:"); length(y$ID) # Same as above but with complex filter: P-value < 0.01 AND at least 2-fold change AND expression value A > 10.
results <- decideTests(fit2, p.value=0.000005); heatDiagram(results, fit2$coef, primary=1) # This function plots heat diagram gene expression profiles for genes which are significantly differentially expressed in the primary condition (this is not a cluster analysis heat map). Genes are sorted by differential expression under the primary condition. The argument 'primary=1' selects the first contrast column in the 'results' matrix as primary condition. The plotted genes can be extracted like this 'results[results[,1]==1,]'. More information on this function can be found in the limma manual.

For visualizing the analyzed affy data, use the same visualization and quality control steps as described in the affy package section. 

RankProd 

The RankProd package contains functions for the identification of differentially expressed genes using the rank product non-parametric method from Breitling et al., 2004. It generates a list of up- or down-regulated genes based on the estimated percentage of false positive predictions (pfp), which is also known as false discovery rate (FDR). The attraction of this method is its ability to analyze data sets from different origins (e.g. laboratories) or variable environments. 

Required data objects 

C. 'data' object of type matrix or data frame containing expression values in log2 scale. 

C. 'cl' vector of length ncol(data) with class lables of samples/treatments. 

C. 'origin' vector of length ncol(data) with origin labels of samples. The origin vector is only required for analyzing data from multiple origins! 

C. Differential expression analysis with Affymetrix data from single origin 

library(RankProd) # Loads the required library.
data(arab) # Loads sample data matrix or data frame 'arab' that contains log2 intensities of 500 genes (rows) for 10 samples (columns).
my_expr_matrix <- exprs(my_eset) # When the analysis is started from Affy Cel files, one can create the required expression matrix or data frame for input into RankProd from an ExpressionSet object with the 'exprs' function.
arab.sub <- arab[, which(arab.origin == 1)] # Generates sub-data set for single origin analysis.
cl <- arab.cl[which(arab.origin == 1)] # Generates 'cl' vector with classes (contrast groups) labeled with '0' and '1'.
RP.out <- RP(arab.sub, cl, num.perm = 100, logged = TRUE, na.rm = FALSE, plot = FALSE, gene.names = arab.gnames, rand = 123) # Performs rank product analysis for single-origin data. If the input data are not log transformed use 'logged=FALSE'. 
topGene(RP.out, cutoff = 0.05, logged = TRUE, logbase = 2, gene.names = arab.gnames) # The function 'topGene' outputs identified genes with user-specified filters: 'cutoff': pfp threshold; 'num.gene': number of top genes identified; 'gene.names': vector with Affy IDs in order of input data set. For log2 scaled data use the arguments 'logged=TRUE' and 'logbase=2'. The generated 'Table 1' lists the up-regulated genes and the 'Table 2' the down-regulated genes. The four columns in each table contain the following information: (1) 'gene index' = position in original data set, (2) 'RP/Rsum' = rank product, 'FC' = fold change of averaged expression levels, 'pfp' = estimated pfp or FDR.
plotRP(RP.out, cutoff = 0.05) # Plots pfp (FDR) versus number of identified up- and down-regulated genes. Genes within the specified cutoff range are plotted in red.

C. Differential expression analysis with Affymetrix data from multiple origins 

cl <- arab.cl # Assigns 'cl' vector with classes (contrast groups) labeled with '0' and '1'. Object 'arab.cl' is part of sample data set 'arab'.
origin <- arab.origin # Assigns 'origin' vector with origin labels of samples. Object 'arab.origin' is part of sample data set 'arab'.
RP.adv.out <- RPadvance(arab, cl, origin, num.perm = 100, logged = TRUE, gene.names = arab.gnames, rand = 123) # The function 'RPadvance' performs the rank product analysis for multiple-origin data that requires the above 'origin' vector.
topGene(RP.adv.out, cutoff = 0.05, logged = TRUE, logbase = 2, gene.names = arab.gnames) # Generates the 'topGene' list (see above).

C. Differential expression analysis with cDNA arrays 

See vignette RankProd
SAM 

SAM is part of the 'siggenes' package. 

library(siggenes) # Loads siggenes package.
?sam # Opens help page for SAM.
sam(data,cl....) # Basic syntax for running SAM.

R/maaova
MicroArray ANalysis Of VAriance (maanova) from Gary Churchill's group. 

Digital Gene Expression (DGE)
C. Empirical analysis of digital gene expression data in R (edgeR) 

D. Dual Color (cDNA) Array Packages 

BioConductor provides various packages for the analysis of dual-color cDNA arrays. 

Marray 

Exploratory analysis for two-color spotted microarray data. 

The following gives a very brief summary on how to use this package: 

library(marray) # Loads marray library.
... # Continue...

E. Chromosome maps 

Several BioConductor packages are available for displaying genomic information graphically. The following commands illustrate some of the chromosome plotting utilities from the geneplotter package. 

library(annotate); library(geneplotter); library(hgu95av2); newChrom <- buildChromLocation("hgu95av2"); newChrom; cPlot(newChrom) # This displays all genes on the chromosomes of an organisms. Genes encoded by the antisense strands are represented by lines below the chromosomes.
data(sample.ExpressionSet); myeset <- sample.ExpressionSet; cColor(featureNames(sample.ExpressionSet), "red", newChrom) # This highlights in the above plot a set of genes of interest in red color (e.g. expressed genes of an experiment).
cPlot(newChrom,c("1","2"), fg="yellow", scale="relative"); cColor(featureNames(myeset), "red", newChrom) # Plots just a specific set of chromosomes.

F. Gene Ontologies 

Several packages are available for Gene Ontology (GO) analysis. The following examples of the different packages use the GO annotations from Arabidopsis. 

F. Basic GO usage with GOstats 

library(GOstats); library(ath1121501.db) # Loads the required libraries.
goann <- as.list(GOTERM) # Retrieves full set of GO annotations.
zz <- eapply(GOTERM, function(x) x@Ontology); table(unlist(zz)) # Calculates the number of annotations for each ontology category.
?GOTERM # To find out, how to access the different GO components.
GOTERM$"GO:0003700"; GOMFPARENTS$"GO:0003700"; GOMFCHILDREN$"GO:0003700" # Shows how to print out the GO annotations for one entry and how to retrieve its direct parents and children.
GOMFANCESTOR$"GO:0003700"; GOMFOFFSPRING$"GO:0003700" # Prints out complete lineages of parents and children for a GO ID.
goterms <- unlist(eapply(GOTERM, function(x) x@Term)); goterms[grep("molecular_function", goterms)] # Retrieves all GO terms and prints out only those matching a search string given in the grep function. The same can be done for the definition field with 'x@Definition'. A set of GO IDs can be provided as well: goterms[GOMFANCESTOR$"GO:0005507"]
go_df <- data.frame(GOID=unlist(eapply(GOTERM, function(x) x@GOID)), Term=unlist(eapply(GOTERM, function(x) x@Term)), Ont=unlist(eapply(GOTERM, function(x) x@Ontology))) # Generates data frame of the commonly used GO components: GOID, GO Term and Ontology Type.
affyGO <- eapply(ath1121501GO, getOntology, "MF"); table(sapply(affyGO, length)) # Retrieves MF GO terms for all probe IDs of a chosen Affy chip and calculates how many probes have multiple GO terms associated. Use "BP" and "CC" arguments to retrieve BP/CC GO terms.
affyGOdf <- data.frame(unlist(affyGO)); affyGOdf <- data.frame(AffyID=row.names(affyGOdf), GOID=affyGOdf[,1]); affyGOdf <- merge(affyGOdf, go_df, by.x="GOID", by.y="GOID", all.x=T) # Converts above MF list object into a data frame. The AffyID occurence counts are appended to AffyIDs. The last step merges the two data frames: 'affyGOdf' and 'go_df'.
unique(lookUp("GO:0004713", "ath1121501", "GO2ALLPROBES")) # Retrieves all Affy IDs that are associated with a GO node.
z <- affyGO[c("254759_at", "260744_at")]; as.list(GOTERM)[z[[1]]] # Retrieves GO IDs for set of Affy IDs and then the corresponding GO term for first Affy ID.
a <- data.frame(unlist(z)); a <- data.frame(ID=row.names(a), a); b <- data.frame(goterms[as.vector(unlist(z))]); b <- data.frame(ID=row.names(b), b); merge(b,a, by.x = "ID", by.y="unlist.z.") # Merges Affy ID, GO ID and GO annotation information.
affyEv <- eapply(ath1121501GO, getEvidence); table(unlist(affyEv, use.names = FALSE)) # Provides evidence code information for each gene and summarizes the result.
test1 <- eapply(ath1121501GO, dropECode, c("IEA", "NR")); table(unlist(sapply(test1, getEvidence), use.names = FALSE)) # This example shows how one can remove certain evidence codes (e.g. IEA, IEP) from the analysis.
library(ath1121501.db); affySample <- c("266592_at", "266703_at", "266199_at", "246949_at", "267370_at", "267115_s_at", "266489_at", "259845_at", "266295_at", "262632_at"); geneSample <- as.vector(unlist(mget(affySample, ath1121501ACCNUM, ifnotfound=NA))); library(ath1121501cdf); affyUniverse <- ls(ath1121501cdf); geneUniverse <- as.vector(unlist(mget(affyUniverse, ath1121501ACCNUM, ifnotfound=NA))); params <- new("GOHyperGParams", geneIds = geneSample, universeGeneIds = geneUniverse, annotation="ath1121501", ontology = "MF", pvalueCutoff = 0.5, conditional = FALSE, testDirection = "over"); hgOver <- hyperGTest(params); summary(hgOver); htmlReport(hgOver, file = "MyhyperGresult.html") # Example of how to test a sample set of probe set keys for overrepresentation of GO terms using a hypergeometric distribution test with the function hyperGTest(). For more information read GOstatsHyperG manual.

F. GOHyperGAll function: To test a sample population of genes for over-representation of GO terms, the function 'GOHyperGAll' computes for all GO nodes a hypergeometric distribution test and returns the corresponding raw and Bonferroni corrected p-values (notes about implementation). A subsequent filter function performs a GO Slim analysis using default or custom GO Slim categories. The method has been published in Plant Physiol (2008) 147, 41-57). GOHyperGAll provides similar utilities as the hyperGTest function in the GOstats package from BioConductor. The main difference is that GOHyperGAll simplifies the usage of custom chip-to-gene and gene-to-GO mappings.
To demo the utility of the GOHyperGAll function, run it as shown below. The initial sample data generation step takes some time (~10 min), since it needs to generate the required data objects for all three ontologies. This needs to be done only once for every custom gene-to-GO annotation.
(1.1) Import all required functions with the following source() command 

source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/GOHyperGAll.txt")
(2.1) Using gene-to-GO mappings from geneontology.org 

readGOorg(myfile = "gene_association.tair", colno = c(5,3,9), org = "Arabidopsis"); gene2GOlist(rootUK=T) # Download the required annotation table from geneontology.org and unzip it. Then point the 'readGOorg()' function to this file name. The two functions generate 4 data frames with the assigned gene-to-GO mappings and 3 lists containing the gene-to-GO-OFFSPRING associations. When the processes are completed, 6 files will be saved in your working directory! They can be reloaded in future R sessions with the 'load' command below. If the argument 'rootUK' is set to TRUE, then the root nodes are treated as terminal nodes to account for the new assignment of unknown genes to the root nodes.

(2.2) Using gene-to-GO mappings from BioC - Note: users should execute either step (2.1) or (2.2), but not both! 

sampleDFgene2GO(lib="ath1121501"); gene2GOlist(rootUK=T) # Similar as above, but the gene-to-GO mappings are obtained from BioC. The generated 4 sample data frame and 3 list objects can be reloaded in future R sessions with the 'load' command below.

(2.3) Obtain AffyID-to-GeneID mappings when working with AffyIDs 

AffyID2GeneID(map = "ftp://ftp.arabidopsis.org/home/tair/Microarrays/Affymetrix/affy_ATH1_array_elements-2008-5-29.txt") # When working with AffyIDs, this function creates a AffyID-to-GeneID mapping data frame using by default the TAIR mappings for the Arabidopsis ATH1 chip. To use the function for the mappings of other chips, one needs to create the corresponding decoding data frame 'affy2locusDF'.

(3.1) Reloading required data objects from local files 

loadData(); load(file="MF_node_affy_list"); load(file="BP_node_affy_list"); load(file="CC_node_affy_list") # This step makes future sessions much faster, since it allows to skip the previous data generation steps (2.1-2.3). A sample data set is available here: ArabSampleGOHyperGAll.zip.

(3.2) Obtain a sample set of GeneIDs 

test_sample <- unique(as.vector(GO_MF_DF[1:40,2])) # When working with GeneIDs.
test_sample <- AffyID2GeneID(affyIDs=affy_sample, probe2gene=1) # When working with AffyIDs, one can use the function 'AffyID2GeneID' to obtain for a set of AffyIDs their corresponding GeneIDs from the data frame 'affy2locusDF' (see above). For probe sets that match several loci, only the first locus ID will be used if the argument 'probe2gene' is set to 1. To demo the function, one can use the following sample AffyIDs: affy_sample <- c("266592_at", "266703_at", "266199_at", "246949_at", "267370_at", "267115_s_at", "266489_at", "259845_at", "266295_at", "262632_at").

(4.1) Perform phyper test, goSlim subsetting and plotting of results 

GOHyperGAll_result <- GOHyperGAll(gocat="MF", sample=test_sample, Nannot=2); GOHyperGAll_result[1:10,-8] # The function 'GOHyperGAll()' performs the phyper test against all nodes in the GO network. It returns raw and adjusted p-values. The Bonferroni correction is used as p-values adjustment method according to Boyle et al, 2004 (online). The argument 'Nannot' defines the minimum number of direct annotations per GO node from the sample set to determine the number of tested hypotheses for the p-value adjustment. The argument 'gocat' can be assigned the values "MF", "BP" and "CC". Omitting the '-8' delimiter will provide the sample keys matching at every GO node.
subset <- GOHyperGAll_Subset(GOHyperGAll_result, sample=test_sample, type="goSlim"); subset[,-8] # The function 'GOHyperGAll_Subset()' subsets the GOHyperGAll results by assigned GO nodes or custom goSlim categories. The argument 'type' can be assigned the values "goSlim" or "assigned". The optional argument 'myslimv' can be used to provide a custom goSlim vector. Omitting the '-8' delimiter will show the sample keys matching at every GO node.
pie(subset[subset$SampleMatch>0 ,3], labels=as.vector(subset[subset$SampleMatch>0 ,1]), main=unique(as.vector(subset[subset$SampleMatch>0, 7]))) # Plots pie chart of subsetted results.

(4.2) Reduce GO Term Redundancy in 'GOHyperGAll_results' 

simplifyDF <- GOHyperGAll_Simplify(GOHyperGAll_result, gocat="MF", cutoff=0.001, correct=T) # The result data frame 'GOHyperGAll_result' often contains several connected GO terms with significant scores which can complicate the interpretation of large sample sets. To reduce the redundancy, the function 'GOHyperGAll_Simplify' subsets the data frame 'GOHyperGAll_result' by a user specified p-value cutoff and removes from it all GO nodes with overlapping children sets (OFFSPRING), while the best scoring nodes remain in the data frame.
data.frame(GOHyperGAll_result[GOHyperGAll_result[,1] %in% simplifyDF[,1], -8], GO_OL_Match=simplifyDF[,2]) # This command returns the redundancy reduced data set. The column 'GO_OL_Match' provides the number of accessions that match the connected nodes.

(4.3) Batch Analysis of Many Gene Clusters 

BatchResult <- GOCluster_Report(CL_DF=CL_DF, method="all", id_type="gene", CLSZ=10, cutoff=0.001, gocats=c("MF", "BP", "CC"), recordSpecGO=c("GO:0003674", "GO:0008150", "GO:0005575")) # The function 'GOCluster_Report' performs the three GO analyses in batch mode: 'GOHyperGAll', 'GOHyperGAll_Subset' or 'GOHyperGAll_Simplify'. It processes many groups of genes (e.g. gene expression clusters) and returns the results conveniently organized in a single data frame. The gene sets need to be provided in a data frame of the format specified at the end of the GOHyperGAll script. CLSZ: minimum cluster size to consider; method: "all", "slim" or "simplify"; gocat: "MF", "BP" or "CC"; cutoff: adjusted p-value cutoff; recordSpecGO: argument to include one specific GOID in each of the 3 ontologies, e.g: recordSpecGO=c("GO:0003674", "GO:0008150", "GO:0005575").

F. goSlim script: Script to perform goSlim counts on vector of GO IDs. 

F. Gene Set Enrichment Analysis (GSEA) The following function converts the objects, generated by the above GOHyperGAll script, into the gene set format (*.gmt) for the GSEA tool from the Broad Institute. This way the custom GO files of the GOHyperGAll method can be used as gene sets for the Java or R releases of the GSEA program.
(A) Import the required file format conversion function with the following source() command 

source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/GOHyperGAll.txt") # Imports the GOhyper2GSEA() function.
GOhyper2GSEA(myfile=c("MF_node_affy_list", "BP_node_affy_list", "CC_node_affy_list"), type="all") # Converts XX_node_affy_list or GO_XX_DF files into GO_XX_ALL.gmt and GO_XX_TERM.gmt files, respecitively. Use the argument "all" for XX_node_affy_list files and "terminal" for GO_XX_DF files. The former contain all GO assignments, whereas the latter contain only the direct GO assignments.

(B) Import the generated gene set files (*.gmt) along with the gene expression intensity data (*.txt) or pre-ranked gene lists (*.rnk) into the Java or R GSEA program, and follow the instructions on the GSEA User Guide. A detailed description of the data formats is provided on the Data Formats page. 

F. Getting started with goTools 

my_list <- list(L1=c("245265_at", "260744_at", "259561_at", "254759_at", "267181_at"), L2=c("256497_at", "250942_at", "265611_at", "247488_at", "255148_at")) # Creates a working list with two components each consisting of Arabidopsis Affy IDs.
library("goTools", verbose = FALSE) # Loads the required library.
ontoCompare(my_list, probeType = "ath1121501", goType="MF") # Provides compositional differences of the molecular function GOs between the Affy ID vectors contained in my_list.
ontoCompare(my_list, probeType = "ath1121501", goType="MF", plot=TRUE) # Plots the above MF GO compositions in bar diagram.
par(mar = c(5, 8, 5, 8)); res2 <- ontoCompare(my_list["L1"], probeType = "ath1121501", method="TIDS", goType="MF", plot=FALSE); ontoPlot(res2, cex = 0.7) # Plots pie chart for "L1" gene list component in my_list.

F. goCluster demo 

library("goCluster", verbose = FALSE) # Loads the goCluster package.
testdata <- eset[c(1:400),c(1:4)] # Selects 400 genes from previously generated ExpressionSet object (e.g. simpleaffy) with four chips.
test <- new("goCluster") # Creates goCluster object.
testConfigured <- config(test) # The config-method starts the configuration process and stores the results in object 'testConfigured'. The required configuration information needs to be provided in the interactive mode (use 'ath1121501'). 
setup(testConfigured)[["algo"]]; print(testConfigured) # Retrieves the generated configuration information.
testExecuted <- execute(testConfigured) # Analyzes the configured object.
print(testExecuted) # Prints the above analysis object to give a result summary.
display(testExecuted, selection = 3) # Displays result in form of heat map.
testExecuted2 <- testExecuted; testExecuted2@visu <- new("clusterVisualHeatmap"); testExecuted2@visu <- execute(testExecuted2@visu, testExecuted2); display(testExecuted2, selection = "GO:0009535") # Displays result for chosen GO identifier.

G. KEGG Pathway Analysis 

G. KEGG Pathway Script: Script to map Arabidopsis locus IDs to KEGG pathways. It can be easily adjusted to any organism. 

H. Motif Identification in Promoter Regions 

H. COSMO Package from Oliver Bembom and Mark van der Laan: allows to discover motifs (highly conserved regions) in groups of related DNA sequences 

I. Phylogenetic Analysis 

I. ape from Paradis et al at CRAN: complete framework for phylogenetic analysis (accompanying book). 

J. ChemmineR: Searching and Clustering Drug-like Compounds in R 

J. ChemmineR is an R package for mining drug-like compound and screening data sets. 

K. Protein Structure Analysis 

K. Bio3D in R: utilities for the analysis of protein structure and sequence data. 

L. BioConductor Exercises 

The following exercises demonstrate several very useful BioConductor tools for single-color and dual-color array analysis. 

Slide Show: Technology Overview 

Install R, BioC and required libraries 

Download a sample set of Affymetrix cel files 

L. Right-click this link and save its content to your computer: Workshop.zip. These sample CEL files are from the GEO data set: GSE5621 

L. After unpacking this file archive one should see six *.cel files. 

Generate RMA expression data, MAS5 P/M/A calls and export results to Excel 

library(affy); mydata <- ReadAffy() # Reads cel files in current working directory into affybatch object 'mydata'.
library(ath1121501probe); print.data.frame(ath1121501probe[1:22,]) # Prints probe sequences and their positions for first two Affy IDs.
eset_rma <- rma(mydata) # Generates RMA expression values and stores them as ExpressionSet.
exprs(eset_rma)[1:4,] # Prints first 4 rows in data frame structure.
# exprs(eset_rma) <- 2^(exprs(eset_rma)) # If needed unlog RMA expression values.
mydf <- 2^exprs(eset_rma); myList <- tapply(colnames(mydf), c(1,1,2,2,3,3), list); names(myList) <- sapply(myList, paste, collapse="_"); mymean <- sapply(myList, function(x) mean(as.data.frame(t(mydf[,x])))) # Generic approach for calculating mean values for any sample combination.
eset_pma <- mas5calls(mydata) # Generates MAS 5.0 P/M/A calls.
my_frame <- data.frame(exprs(eset_rma), exprs(eset_pma), assayDataElement(eset_pma, "se.exprs")) # Combine RMA intensities, P/M/A calls plus their wilcoxon p-values in one data frame.
my_frame <- my_frame[, sort(names(my_frame))] # Sorts columns by cel file name.
write.table(my_frame, file="my_file.xls", sep="\t", col.names = NA) # Exports data to text file that can be imported into Excel.

Add annotation information 

library("ath1121501.db") # Loads required annotation package.
sample <- row.names(my_frame) # Creates vector of all Affy IDs for this chip.
AGI <- as.vector(unlist(mget(sample, ath1121501ACCNUM, ifnotfound=NA))) # Retrieves locus IDs.
Desc <- as.vector(unlist(lapply(mget(sample, ath1121501GENENAME, ifnotfound=NA), function(x) paste(x, collapse=", ")))) # Retrieves gene descriptions.
Annot <- data.frame(sample, AGI, Desc, row.names=NULL) # Generates data frame with above annotation data.
all <- merge(Annot, my_frame, by.x="sample", by.y=0, all=T) # Merges everything with above expression date.
write.table(all, file="my_annot_file.xls", sep="\t", col.names = NA) # Exports data to text file that can be imported into Excel.

Visualization and quality control 

d <- cor(exprs(eset_rma), method="pearson"); plot(hclust(dist(1-d))) # Generates a correlation matrix for all-against-all chip comparisons.
library(affyQCReport); QCReport(mydata, file="ExampleQC.pdf") # Generates a comprehensive QC report for the AffyBatch object 'mydata' in PDF format. See affyQCReport for details.
eset <- eset_rma # To work with following commands.

L. Continue with commands in section "Visualization and quality controls". 

Simple Affy (command summary) 

L. Save this covdesc.txt to your R working directory. 

L. Generate expression data with RMA and MAS5. 

L. Filter each of the three data sets with the following parameters: 2-fold changes, present in all 4 chips and p-score less than 0.001. 

L. Write the results into separate files. 

L. Create scatter plots for the filtered data sets and save them to external image files. 

L. Identify the overlap of the significant changes between the RMA and MAS5 data. 

L. Perform simpleaffy QC checks: scaling factor, percent present calls, etc. 

Identify differtially expressed genes (DEGs) with the limma package 

L. Follow the instructions in the Limma Section for Affy Data. 

L. cDNA microarray users can save and extract the SWIRL cDNA microarray sample data. For a quick demonstration of the analysis of this data set, one can copy&paste or source the following command-line summary into the R terminal: my_swirl_commands.txt. 

Test gene sets for overrepresented GO terms using the GOHyperGAll script 

L. Download and unzip the annotation objects for Arabidopsis into your working directory. 

L. Then continue with the following commands: 

source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/GOHyperGAll.txt") # Imports the GOHyperGAll functions.
loadData(); load(file="MF_node_affy_list"); load(file="BP_node_affy_list"); load(file="CC_node_affy_list") # Loads the downloaded annotation objects for Arabidopsis.
GOHyperGAll_result <- GOHyperGAll(gocat="MF", sample=unique(as.vector(GO_MF_DF[1:40,2])), Nannot=2); GOHyperGAll_result[1:10,-8] # Performs the enrichment test for provided set of gene identifiers.
CL_DF <- data.frame(geneID=GO_MF_DF[1:400,2], ClusterID=sort(rep(1:4,100)), ClusterSize=rep(100,400)) # Create sample data set for batch processing.
BatchResult <- GOCluster_Report(CL_DF=CL_DF, method="all", id_type="gene", CLSZ=10, cutoff=0.001, gocats=c("MF", "BP", "CC"), recordSpecGO=c("GO:0003674", "GO:0008150", "GO:0005575")); BatchResult[1:4,-10] # Performs all three GO analyses for many sample set at once. When the method argument is set to "slim" then the goSlim method is used.
write.table(BatchResult, file="GO_Batch.xls", sep="\t", col.names = NA) # Exports batch result to Excel file.

Clustering of differentially expressed genes 

my_fct <- function(x) hclust(x, method="single") # Creates function to perform hierarchical clustering (single linkage).
heatmap(as.matrix(exprs(eset)[1:40,]), col = cm.colors(256), hclustfun=my_fct) # Plots heatmap with dendrograms.

L. Replace in last step 'exprs(eset)[1:40,]' by matrix of differentially expressed genes from limma analysis. 

Convert the above commands into an R script and execute it with the source() function 

source("myscript.R") # Executes all of the above commands and generates the corresponding output files in the current working directory.

A. Clustering and Data Mining in R 

. Introduction (Slide Show) 

R contains many functions and libraries for clustering of large data sets. A very useful overview of clustering utilities in R is available on the Cluster Task Page and for machine learning algorithms on the Machine Learning Task Page. 

A. Data Preprocessing 

Generate a sample data set 

y <- matrix(rnorm(50), 10, 5, dimnames=list(paste("g", 1:10, sep=""), paste("t", 1:5, sep=""))) # Creates a sample data matrix.

Data centering and scaling 

scale(t(y)); sd(scale(t(y))) # The function scale() centers and/or scales the data matrix column-wise. The default setting returns columns that have a mean close to zero and a standard deviation of one. Centering and scaling are common data transformation steps for many clustering techniques.

Obtain a distance matrix 

dist(y, method = "euclidean") # Computes and returns a distance matrix for the rows in the data matrix 'y' using the specified distance measure, here 'euclidean'.
c <- cor(t(y), method="spearman"); d <- as.dist(1-c); d # To obtain correlation-based distances, one has to compute first a correlation matrix with the cor() function. Since this step iterates across matrix columns, a transpose 't()' step is required to obtain row distances. In a second step the distance matrix object of class "dist" can be obtained with the as.dist() function.

B. Hierarchical Clustering (HC) 

The basic hierarchical clustering functions in R are hclust() from the stats package, and agnes() and diana() from the cluster package. Hclust() and agnes() perform agglomerative hierarchical clustering, while diana() performs divisive hierarchical clustering. The pvclust package can be used for assessing the uncertainty in hierarchical cluster analyses. It provides approximately unbiased p-values as well as bootstrap p-values. As an introduction into R's standard hierarchical clustering utilities one should read the help pages on the following functions: 'hclust', 'dendrogram', 'as.dendrogram', 'cutree' and 'heatmap'. An example for sub-clustering (subsetting) heatmaps based on selected tree nodes is given in the last part of this section (see zoom into heatmaps). 

Clustering with hclust 

y <- matrix(rnorm(50), 10, 5, dimnames=list(paste("g", 1:10, sep=""), paste("t", 1:5, sep=""))) # Creates a sample data set.
c <- cor(t(y), method="spearman"); d <- as.dist(1-c); hr <- hclust(d, method = "complete", members=NULL) # This is a short example of clustering the rows of the generated sample matrix 'y' with hclust. Seven different clustering methods can be selected with the 'method' argument: ward, single, complete, average, mcquitty, median and centroid. The object returned by hclust is a list of class hclust which describes the tree generated by the clustering process with the following components: merge, height, order, labels, method, call and dist.method. 
par(mfrow = c(2, 2)); plot(hr, hang = 0.1); plot(hr, hang = -1) # The generated tree can be plotted with the plot() function. When the hang argument is set to '-1' then all leaves end on one line and their labels hang down from 0. More details on the plotting behavior is provided in the hclust help document (?hclust). 
plot(as.dendrogram(hr), edgePar=list(col=3, lwd=4), horiz=T) # To plot trees horizontally, the hclust tree has to be transformed into a dendrogram object. 
unclass(hr) # Prints the full content of the hclust object.
str(as.dendrogram(hr)) # Prints dendrogram structure as text.
hr$labels[hr$order] # Prints the row labels in the order they appear in the tree.
par(mfrow=c(2,1)); hrd1 <- as.dendrogram(hr); plot(hrd1); hrd2 <- reorder(hrd1, sample(1:10)); plot(hrd2); labels(hrd1); labels(hrd2) # Example to reorder a dendrogram and print out its labels.
library(ctc); hc2Newick(hr) # The 'hc2Newick' function of the BioC ctc library can convert a hclust object into the Newick tree file format for export into external programs.

Tree subsetting (see also Dynamic Tree Cut package) 

mycl <- cutree(hr, h=max(hr$height)/2); mycl[hr$labels[hr$order]] # Cuts tree into discrete cluster groups (bins) at specified height in tree that is specified by 'h' argument. Alternatively, one can cut based on a desired number of clusters that can be specified with the 'k' argument.
rect.hclust(hr, k=5, border="red") # Cuts dendrogram at specified level and draws rectangles around the resulting clusters.
subcl <- names(mycl[mycl==3]); subd <- as.dist(as.matrix(d)[subcl,subcl]); subhr <- hclust(subd, method = "complete"); par(mfrow = c(1, 2)); plot(hr); plot(subhr) # This example shows how one can subset a tree by cutting it at a given branch point provided by the cutree() function. The identified row IDs are then used to subset the distancs matrix and re-cluster it with hclust.
lapply(as.dendrogram(hr), unlist); lapply(as.dendrogram(hr)[[1]], unlist) # Returns the indices of the cluster members of the two main branches. The second step returns the members of the next two descendent clusters of the first main branch.
example(hclust) # The last step in this example shows how the 'members' argument can be used to reconstruct a hierarchical tree above the cut points using the cluster centers. More details on this can be found in the hclust help document.
source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/selectNodes.R"); Uniclusters <- nodes2Cluster(myhclust=hr, rootdist=2); clusterQCselect <- clusterQC(clusterlist=Uniclusters, simMatrix=as.matrix(c), method="min", cutoff=0.7, output="df"); clusterQCselect # The function 'nodes2Cluster' cuts the tree at all height levels as defined in 'hr$height' and the second function 'clusterQC' selects clusters based on a given minimum cutoff in an all-against-all comparison within each cluster. The 'method' argument allows to calculate the cutoff value with one of the following functions: "min", "qu1", "median", "mean", "qu3" and "max". The end result can be returned as list (output="list") or as data frame (output="df"). The argument 'rootdist' defines the starting distance from the root of the tree to avoid testing of very large clusters. 

Tree coloring and zooming into branches 

source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/dendroCol.R") # Import tree coloring function..
dend_colored <- dendrapply(as.dendrogram(hr), dendroCol, keys=subcl, xPar="edgePar", bgr="red", fgr="blue", lwd=2, pch=20) # In this example the dendrogram for the above 'hr' object is colored with the imported 'dendroCol()' function based on the identifiers provided in its 'keys' argument. If 'xPar' is set to 'nodePar' then the labels are colored instead of the leaves.
par(mfrow = c(1, 3)); plot(dend_colored, horiz=T); plot(dend_colored, horiz=T, type="tr"); plot(dend_colored, horiz=T, edgePar=list(lwd=2), xlim=c(3,0), ylim=c(1,3)) # Plots the colored tree in different formats. The last command shows how one can zoom into the tree with the 'xlim and ylim' arguments, which is possible since R 2.8.
z <- as.dendrogram(hr); attr(z[[2]][[2]],"edgePar") <- list(col="blue", lwd=4, pch=NA); plot(z, horiz=T) # This example shows how one can manually color tree elements.

Plot heatmaps with the heatmap() function 

y <- matrix(rnorm(50), 10, 5, dimnames=list(paste("g", 1:10, sep=""), paste("t", 1:5, sep=""))) # Creates a sample data set.
source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/my.colorFct.R") # Imports color function to obtain heat maps in red and green. Use this color function in heatmap color argument like this: 'col=my.colorFct()'.
hr <- hclust(as.dist(1-cor(t(y), method="pearson")), method="complete") # Clusters rows by Pearson correlation as distance method.
hc <- hclust(as.dist(1-cor(y, method="spearman")), method="complete") # Clusters columns by Spearman correlation as distance method.
heatmap(y, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=my.colorFct(), scale="row") # The previous two hclust objects are used to obtain a heatmap where the rows are clusterd by Pearson and the columns by Spearman correlation distances. The 'scale' argument allows to scale the input matrix by rows or columns. The default is by rows and "none" turns the scaling off. 
mycl <- cutree(hr, h=max(hr$height)/1.5); mycol <- sample(rainbow(256)); mycol <- mycol[as.vector(mycl)]; heatmap(y, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", ColSideColors=heat.colors(length(hc$labels)), RowSideColors=mycol) # The arguments 'ColSideColors' and 'RowSideColors' allow to annotate a heatmap with a color bar. In this example the row colors correspond to cluster bins that were obtained by the cutree() function.
dend_colored <- dendrapply(as.dendrogram(hr), dendroCol, keys=c("g1", "g2"), xPar="edgePar", bgr="black", fgr="red", pch=20); heatmap(y, Rowv=dend_colored, Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", ColSideColors=heat.colors(length(hc$labels)), RowSideColors=mycol) # In addition, one can color the tree leaves or labels by providing a colored dendrogram object, here 'dend_colored' from above.
heatmap(y, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", labRow = "", labCol="") # The arguments 'labRow' and 'labCol' allow to provide custom labels or to omit the printing of the labels as shown here.
heatmap(y, Rowv=as.dendrogram(hr), Colv=NA, col=my.colorFct()) # If 'Rowv' or 'Cowv' is set to 'NA' then the row and/or the column clustering is turned off.
ysort <- y[hr$labels[hr$order], hc$labels[hc$order]]; heatmap(ysort, Rowv=NA, Colv=NA, col=my.colorFct()) # This example shows how the rows and columns of a heatmap can be sorted by the hclust trees without printing them.
x11(height=4, width=4); heatmap(matrix(rep(seq(min(as.vector(y)), max(as.vector(y)), length.out=10),2), 2, byrow=T, dimnames=list(1:2, round(seq(min(as.vector(y)), max(as.vector(y)), length.out=10),1))), col=my.colorFct(), Colv=NA, Rowv=NA, labRow="", main="Color Legend") # Prints color legend in a separate window.

Plot heatmaps with the image() or heatmap.2() functions 

image(scale(t(ysort)), col=my.colorFct()) # A very similar plot as before can be obtained by the image() function which plots the values of a given matrix as a grid of colored rectangles.
x11(height=12); par(mfrow=c(1,2)); plot(as.dendrogram(hr), horiz=T, yaxt="n", edgePar=list(col="grey", lwd=4)); image(scale(t(ysort)), col=my.colorFct(), xaxt="n", yaxt="n") # To create very large heatmaps that are still readable, one can plot the dendrogram and the heatmap of the image() function next to it.
library("gplots") # Loads the gplots library that contains the heatmap.2() function.
heatmap.2(y, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=redgreen(75), scale="row", ColSideColors=heat.colors(length(hc$labels)), RowSideColors=mycol, trace="none", key=T, cellnote=round(t(scale(t(y))),1)) # The heatmap.2() function contains many additional plotting features that are not available in the basic heatmap() function. For instance, the 'key' argument allows to add a color key within the same plot. Numeric values can be added to each cell with the 'cellnote' argument. In addition, heatmap.2() scales to very large formats for viewing complex heatmaps.
library(RColorBrewer); mypalette <- rev(brewer.pal(9,"Blues")[-1]) # Select an alternative color scheme that is more appropriate for representing continous values (e.g. chip intensities).
heatmap.2(y, Rowv=as.dendrogram(hr), dendrogram="row", Colv=F, col=mypalette, scale="row", trace="none", key=T, cellnote=round(t(scale(t(y))),1)) # Example to illustrate how to turn off the row or column reordering in heatmap.2. The settings "dendrogram="row", Colv=F" turn off the column reordering and no column tree is shown. To turn off the re-ordering of both dimensions, use the following settings: "dendrogram="none", Rowv=F, Colv=F". 

Zooming into heatmaps by sub-clustering selected tree nodes 

y <- matrix(rnorm(500), 100, 5, dimnames=list(paste("g", 1:100, sep=""), paste("t", 1:5, sep=""))) # Creates a sample data set.
hr <- hclust(as.dist(1-cor(t(y), method="pearson")), method="complete"); hc <- hclust(as.dist(1-cor(y, method="spearman")), method="complete") # Generates row and column dendrograms.
mycl <- cutree(hr, h=max(hr$height)/1.5); mycolhc <- rainbow(length(unique(mycl)), start=0.1, end=0.9); mycolhc <- mycolhc[as.vector(mycl)] # Cuts the tree and creates color vector for clusters.
library(gplots); myheatcol <- redgreen(75) # Assign your favorite heatmap color scheme. Some useful examples: colorpanel(40, "darkred", "orange", "yellow"); heat.colors(75); cm.colors(75); rainbow(75); redgreen(75); library(RColorBrewer); rev(brewer.pal(9,"Blues")[-1]). Type demo.col(20) to see more color schemes.
heatmap.2(y, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=myheatcol, scale="row", density.info="none", trace="none", RowSideColors=mycolhc) # Creates heatmap for entire data set where the obtained clusters are indicated in the color bar.
x11(height=6, width=2); names(mycolhc) <- names(mycl); barplot(rep(10, max(mycl)), col=unique(mycolhc[hr$labels[hr$order]]), horiz=T, names=unique(mycl[hr$order])) # Prints color key for cluster assignments. The numbers next to the color boxes correspond to the cluster numbers in 'mycl'.
clid <- c(1,2); ysub <- y[names(mycl[mycl%in%clid]),]; hrsub <- hclust(as.dist(1-cor(t(ysub), method="pearson")), method="complete") # Select sub-cluster number (here: clid=c(1,2)) and generate corresponding dendrogram.
x11(); heatmap.2(ysub, Rowv=as.dendrogram(hrsub), Colv=as.dendrogram(hc), col=myheatcol, scale="row", density.info="none", trace="none", RowSideColors=mycolhc[mycl%in%clid]) # Create heatmap for chosen sub-cluster.
data.frame(Labels=rev(hrsub$labels[hrsub$order])) # Print out row labels in same order as shown in the heatmap.

C. Bootstrap Analysis in Hierarchical Clustering 

The pvclust package allows to assess the uncertainty in hierarchical cluster analysis by calculating for each cluster p-values via multiscale bootstrap resampling. The method provides two types of p-values. The approximately unbiased p-value (AU) is computed by multiscale bootstrap resampling. It is a less biased p-value than than the second one, bootstrap probability (BP), which is computed by normal bootstrap resampling. 

library(pvclust) # Loads the required pvclust package.
y <- matrix(rnorm(500), 50, 10, dimnames=list(paste("g", 1:50, sep=""), paste("t", 1:10, sep=""))) # Creates a sample data set.
pv <- pvclust(scale(t(y)), method.dist="correlation", method.hclust="complete", nboot=10) # This step performs the hierarchical cluster analysis with multiscale bootstrap with 10 repetitions, complete linkage for cluster joining and a correlation-based dissimilarity matrix. Usually, one should set 'nboot' to at least 1000 bootstrap repetitions.
plot(pv, hang=-1) # Plots a dendrogram where the red numbers represent the AU p-values and the green ones the BP values.
pvrect(pv, alpha=0.95) # This command highlights with red rectangles all clusters in the dendrogram that have an AU value above 95%.
clsig <- unlist(pvpick(pv, alpha=0.95, pv="au", type="geq", max.only=TRUE)$clusters) # The function 'pvpick' allows to pick significant clusters.
source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/dendroCol.R") # Import tree coloring function. The details on this function are provided in the hclust section of this manual.
dend_colored <- dendrapply(as.dendrogram(pv$hclust), dendroCol, keys=clsig, xPar="edgePar", bgr="black", fgr="red", pch=20) # Creates dendrogram object where the significant clusters are labeled in red.
plot(dend_colored, horiz=T) # Plots a dendrogram where the significant clusters are highlighted in red.

D. QT Clustering 

QT (quality threshold) clustering is a partitioning method that forms clusters based on a maximum cluster diameter. It iteratively identifies the largest cluster below the threshold and removes its items from the data set until all items are assigned. The method was developed by Heyer et al. (1999) for the clustering of gene expression data. 

library(flexclust) # Loads flexclust library.
x <- matrix(10*runif(1000), ncol=2) # Creates a sample data set.
cl1 <- qtclust(x, radius=3) # Uses 3 as the maximum distance of the points to the cluster centers.
cl2 <- qtclust(x, radius=1) # Uses 1 as the maximum distance of the points to the cluster centers.
par(mfrow=c(2,1)); plot(x, col=predict(cl1), xlab="", ylab=""); plot(x, col=predict(cl2), xlab="", ylab="") # Plots the two cluster results.
data.frame(name_index=1:nrow(x), cl=attributes(cl1)$cluster) # Provides the row-to-cluster assignment information.

E. K-Means & PAM 

K-means, PAM (partitioning around medoids) and clara are related partition clustering algorithms that cluster data points into a predefined number of K clusters. They do this by associating each data point to its nearest centroids and then recomputing the cluster centroids. In the next step the data points are associated with the nearest adjusted centroid. This procedure continues until the cluster assignments are stable. K-means uses the average of all the points in a cluster for centering, while PAM uses the most centrally located point. Commonly used R functions for K-means clustering are: kmeans() of the stats package, kcca() of the flexclust package and trimkmeans() of the trimcluster package. PAM clustering is available in the pam() function from the cluster package. The clara() function of the same package is a PAM wrapper for clustering very large data sets. 

K-means 

km <- kmeans(t(scale(t(y))), 3); km$cluster # K-means clustering is a partitioning method where the number of clusters is pre-defined. The basic R implementation requires as input the data matrix and uses Euclidean distance. In contrast to pam(), the implementation does not allow to provide a distance matrix. In the given example the row-wise centered data matrix is provided.
mycol <- sample(rainbow(256)); mycol <- mycol[as.vector(km$cluster)]; heatmap(y, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", ColSideColors=heat.colors(length(hc$labels)), RowSideColors=mycol) # This example shows how the obtained K-means clusters can be compared with the hierarchical clustering results by highlighting them in the heatmap color bar.

PAM (partitioning around medoids) 

library(cluster) # Loads the required cluster library.
y <- matrix(rnorm(50), 10, 5, dimnames=list(paste("g", 1:10, sep=""), paste("t", 1:5, sep=""))) # Creates a sample data set.
pamy <- pam(y, 4); pamy$clustering # Clusters data into 4 clusters using default Euclidean as distance method.
mydist <- as.dist(1-cor(t(y), method="pearson")) # Generates distance matrix using Pearson correlation as distance method.
pamy <- pam(mydist, 4); pamy$clustering # Same a above, but uses provided distance matrix.
pam(mydist, 4, cluster.only=TRUE) # Same as before, but with faster computation.
plot(pamy) # Generates cluster plot.

Clara (clustering large applications: PAM method for large data sets) 

clarax <- clara(y, 4); clarax$clustering # Clusters above data into 4 clusters using default Euclidean as distance method.

F. Fuzzy Clustering 

In contrast to strict/hard clustering approaches, fuzzy clustering allows multiple cluster memberships of the clustered items. This is commonly achieved by partitioning the membership assignments among clusters by positive weights that sum up for each item to one. Several R libraries contain implementations of fuzzy clustering algorithms. The library e1071 contains the cmeans (fuzzy C-means) and cshell (fuzzy C-shell) clustering functions. And the cluster library provides the fanny function, which is a fuzzy implementation of the above described k-medoids method. 

Fuzzy clustering with the cluster library 

library(cluster) # Loads the cluster library.
y <- matrix(rnorm(50), 10, 5, dimnames=list(paste("g", 1:10, sep=""), paste("t", 1:5, sep=""))) # Creates a sample data set.
fannyy <- fanny(y, k=4, metric = "euclidean", memb.exp = 1.5); round(fannyy$membership, 2); fannyy$clustering # Computes membership coefficients (weights) for 4 clusters and stores them in the 'membership' component of the resulting fanny.object. The corresponding hard clustering result is provided in the 'clustering' slot, which is formed by assigning each point to the cluster with the highest coefficient. If the distance method is set to metric="SqEuclidean", then the function performs fuzzy C-means clustering. The membership exponent can be controled with the argument 'memb.exp' (default is 2). Values close to 1 give 'crispier' clustering, whereas larger values increase the fuzzyness of the results. If a clustering results in complete fuzzyness, then the functions returns a warining.
mydist <- as.dist(1-cor(t(y), method="pearson")) # Generates distance matrix using Pearson correlation as distance method.
fannyy <- fanny(mydist, k=4, memb.exp = 1.5); round(fannyy$membership, 2); fannyy$clustering # Example for a using a correlation-based distance matrix.
fannyyMA <- round(fannyy$membership, 2) > 0.10; apply(fannyyMA, 1, which) # Returns multiple cluster memberships for coefficient above a certain value (here >0.1).

Fuzzy clustering with the e1071 library 

library(e1071) # Loads the e1071 library.
y <- matrix(rnorm(50), 10, 5, dimnames=list(paste("g", 1:10, sep=""), paste("t", 1:5, sep=""))) # Creates a sample data set.
cmeansy <- cmeans(y, 4, method="cmeans", m=1.5); round(cmeansy$membership, 2); cmeansy$cluster # Uses the c-means clustering method to compute membership coefficients (weights) for 4 clusters and stores them in the 'membership' component of the resulting object. The result of this example should be identical to the above clustering with the fanny function when its metric argument is set to "SqEuclidean". The cmeans function does not accept a distance matrix as input, but the fanny function does.
cmeansyMA <- round(cmeansy$membership, 2) > 0.10; apply(cmeansyMA, 1, which) # Returns multiple cluster memberships for coefficient above a certain value (here >0.1). 
cshelly <- cshell(y, 4, method="cshell", m=1.5); round(cshelly$membership, 2); cshelly$cluster # Uses the c-shell clustering method to compute membership coefficients (weights) for 4 clusters and stores them in the 'membership' component of the resulting object.

G. Self-Organizing Map (SOM) 

Self-organizing map (SOM), also known as Kohonen network, is a popular artificial neural network algorithm in the unsupervised learning area. The approach iteratively assigns all items in a data matrix to a specified number of representatives and then updates each representative by the mean of its assigned data points. Widely used R packages for SOM clustering and visualization are: class (part of R), SOM and kohonen. The SOM package, that is introduced here, provides similar utilities as the GeneCluster software from the Broad Institute. 

library(som) # Loads the required SOM library.
y <- matrix(rnorm(50), 10, 5, dimnames=list(paste("g", 1:10, sep=""), paste("t", 1:5, sep=""))) # Creates a sample data set.
y <- t(scale(t(y))) # Normalizes the data so that each row has a mean close to zero and a standard deviation of one.
y.som <- som(y, xdim = 5, ydim = 6, topol = "hexa", neigh = "gaussian") # Performs SOM clustering.
plot(y.som) # Plots SOM clustering result.
y.som$visual # Provides the assignment of rows items to the SOM clusters. Remember that the coordinate counting starts here at zero!

H. Principal Component Analysis (PCA) 

Principal components analysis (PCA) is a data reduction technique that allows to simplify multidimensional data sets to 2 or 3 dimensions for plotting purposes and visual variance analysis. The following commands introduce the basic usage of the prcomp() function. A very related function is princomp(). The BioConductor library pcaMethods provides many additional PCA functions. For viewing PCA plots in 3D, one can use the scatterplot3d library or the made4 library. 

z1 <- rnorm(10000, mean=1, sd=1); z2 <- rnorm(10000, mean=3, sd=3); z3 <- rnorm(10000, mean=5, sd=5); z4 <- rnorm(10000, mean=7, sd=7); z5 <- rnorm(10000, mean=9, sd=9); mydata <- matrix(c(z1, z2, z3, z4, z5), 2500, 20, byrow=T, dimnames=list(paste("R", 1:2500, sep=""), paste("C", 1:20, sep=""))) # Generates sample matrix of five discrete clusters that have very different mean and standard deviation values.
pca <- prcomp(mydata, scale=T) # Performs principal component analysis after scaling the data. It returns a list with class "prcomp" that contains five components: (1) the standard deviations (sdev) of the principal components, (2) the matrix of eigenvectors (rotation), (3) the principal component data (x), (4) the centering (center) and (5) scaling (scale) used.
summary(pca) # Prints variance summary for all principal components.
x11(height=6, width=12, pointsize=12); par(mfrow=c(1,2)) # Set plotting parameters.
mycolors <- c("red", "green", "blue", "magenta", "black") # Define plotting colors.
plot(pca$x, pch=20, col=mycolors[sort(rep(1:5, 500))]) # Plots scatter plot for the first two principal components that are stored in pca$x[,1:2].
plot(pca$x, type="n"); text(pca$x, rownames(pca$x), cex=0.8, col=mycolors[sort(rep(1:5, 500))]) # Same as above, but prints labels.
library(geneplotter); smoothScatter(pca$x) # Same as above, but generates a smooth scatter plot that shows the density of the data points.
pairs(pca$x[,1:4], pch=20, col=mycolors[sort(rep(1:5, 500))]) # Plots scatter plots for all combinations between the first four principal components.
biplot(pca) # Plots a scatter plot for the first two principal components plus the corresponding eigen vectors that are stored in pca$rotation.
library(scatterplot3d) # Loads library scatterplot3d.
scatterplot3d(pca$x[,1:3], pch=20, color=mycolors[sort(rep(1:5, 500))]) # Same as above, but plots the first three principal components in 3D scatter plot.

I. Multidimensional Scaling (MDS) 

Multidimensional scaling (MDS) algorithms start with a matrix of item-item distances and then assign coordinates for each item in a low-dimensional space to represent the distances graphically. Cmdscale() is the base function for MDS in R. Additional MDS functions are sammon() and isoMDS() of the MASS library. 

loc <- cmdscale(eurodist) # Performs MDS analysis on the geographic distances between European cities.
plot(loc[,1], -loc[,2], type="n", xlab="", ylab="", main="cmdscale(eurodist)"); text(loc[,1], -loc[,2], rownames(loc), cex=0.8) # Plots the MDS results in 2D plot. The minus is required in this example to flip the plotting orientation.

J. Bicluster Analysis 

Biclustering (also co-clustering or two-mode clustering) is an unsupervised clustering technique which allows simultaneous clustering of the rows and columns of a matrix. The goal of biclustering is to find subgroups of rows and columns which are as similar as possible to each other and as different as possible to the remaining data points. The biclust package, that is introduced here, contains a collection of bicluster algorithms, data preprocessing and visualization methods (Detailed User Manual). An algorithm that allows the integration of different data types is implemented in the cMonkey R program (BMC Bioinformatics 2006, 7, 280). A comparison of several bicluster algorithms for clustering gene expression data has been published by Prelic et al (2006). Since most biclustering algorithms expect the input data matrix to be properly preprocessed, it is especially important to carefully read the manual pages for the different functions. 

Plaid model biclustering 

library(biclust) # Loads the biclust library.
data(BicatYeast) # Loads sample data from Barkow et al. (Bioinformatics, 22, 1282-1283).
res1 <- biclust(BicatYeast, method=BCPlaid()) # Performs plaid model biclustering as described in Turner et al, 2003. This algorithm models data matrices to a sum of layers, the model is fitted to data through minimization of error.
summary(res1); show(res1) # The summary() functions returns the sizes of all clusters found and the show() function provides an overview of the method applied.
names(attributes(res1)) # Converts res1 object of class Biclust into a list and returns the names of its components (slots). The results for the row clustering are stored in the "RowxNumber" slot and the results for the column clustering are stored in the "NumberxCol" slot. 
BicatYeast[res1@RowxNumber[,2], res1@NumberxCol[2,]] # Extracts values for bicluster number 2 from original data set.
myrows <- attributes(res1)$RowxNumber; mycols <- attributes(res1)$NumberxCol; myclusters <- lapply(1:length(myrows[1,]), function(x) list(rownames(BicatYeast[myrows[,x], ]), colnames(BicatYeast[, mycols[x,]]))); names(myclusters) <- paste("CL", 1:length(myclusters), sep="_"); myclusters[2] # Organizes all identified row and column clusters in a list object, here 'myclusters'.
writeBiclusterResults("results.txt", res1, "My Result", dimnames(BicatYeast)[1][[1]], dimnames(BicatYeast)[2][[1]]) # Writes bicluster results to a file.
bubbleplot(BicatYeast, res1, showLabels=T) # Draws a bubble plot where each bicluster is represented as a circle (bubble). Up to three biclustering result sets can be compared in one plot (here one). The sets are then labled with different colors. The color brightness representes the bicluster homogeneity (darker, less homogeneous). The bubble sizes represent the size of the biclusters, as (number of rows)x(number of columns). The bubble location is a 2D-projection of row and column profiles.
parallelCoordinates(x=BicatYeast, bicResult=res1, number=4) # Plots the profiles for the 4th cluster. The cluster number is specified under the number argument.
drawHeatmap(BicatYeast, res1, number=4) # Draws a heatmap for the BicatYeast data matrix with the rows and colums of the selected 4th bicluster at the top-left of plot.

XMotifs biclustering 

y <- discretize(BicatYeast, nof=10) # Converts input matrix with continuous data into matrix with discrete values of 10 levels (nof).
res2 <- biclust(y, method=BCXmotifs(), alpha=0.05, number=50) # Performs XMotifs biclustering based on the framework by Murali and Kasif (2003). It searches for rows with constant values over a set of columns which results in a submatrix where all rows in a descretized matrix have the same value profile. Usually the algorihm needs a discrete matrix to perform well.
bubbleplot(BicatYeast, res1, res2, showLabels=F) # Compares the two bicluster results in form of a bubble plot. 
jaccardind(res1, res2) # Calculates the similarity for two clustering results using an adaptation of the Jaccard index (values from 0-1). An overview of related methods is available on this cluster validity algorithm page. 

Bimax biclustering 

y <- BicatYeast; y[y >= 1 | y <= -1] <- 1; y[y != 1] <- 0 # Transforms input data matrix into binary values. Here the log2 ratios with at least a two-fold change are set to 1 and the rest is set to 0.
res3 <- biclust(y, method=BCBimax(), minr=15, minc=10, number=100) # Performs Bimax biclustering based on an algorithm described by Prelic et al (2006). This method searches in a binary matrix for sub-matrices containing only ones.

Spectral biclustering 

res4 <- biclust(BicatYeast, method=BCSpectral(), numberOfEigenvalues=2) # Performs spectral biclustering as described in Kluger et al, 2003. Spectral biclustering supposes that normalized microarray data matrices have a checkerboard structure that can be discovered by the use of svd decomposition in eigenvectors, applied to genes.

CC biclustering 

res5 <- biclust(y, method=BCCC(), delta=1.5, alpha=1, number=50) # Performs CC biclustering based on the framework by Cheng and Church (2000). Searches for submatrices with a score lower than a specific treshold in a standardized data matrix.

K. Support Vector Machines (SVM) 

Support vector machines (SVMs) are supervised machine learning classification methods. SVM implementations are available in the R packages kernlab and e1071. The e1071 package contains an interface to the C++ libsvm implementation from Chih-Chung Chang and Chih-Jen Lin. In addition to SVMs, the e1071 package includes a comprehensive set of machine learning utilities, such as functions for latent class analysis, bootstrapping, short time Fourier transform, fuzzy clustering, shortest path computation, bagged clustering, naive Bayes classifier, etc. The kernlab package contains additional functions for spectral clustering, kernel PCA, etc. 

An excellent introduction into the usage of SVMs in R is available in David Meyer's SVM article.

L. Clustering Exercises 

Slide Show 

Install required libraries 

The following exercises demonstrate several useful clustering and data mining utilities in R. 

Import a sample data set 

L. Download from GEO the Arabidopsis IAA treatment series "GSE1110" in TXT format. The direct link to the download is: 

L. ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SeriesMatrix/GSE1110/ 

L. Uncompress the downloaded file. 

L. Import the data set into R 

temp <- readLines("GSE1110_series_matrix.txt"); cat(temp[-grep("^!|^\"$", temp)], file="GSE1110clean.txt", sep="\n"); mydata <- read.delim("GSE1110clean.txt", header=T, sep="\t") # These import commands include a cleanup step to get rid of annotation lines and corrupted return signs.
rownames(mydata) <- mydata[,1]; mydata <- as.matrix(mydata[,-1]) # Assigns row indices and converts the data into a matrix object.

Filtering 

mydata <- mydata[apply(mydata>100, 1, sum)/length(mydata[1,])>0.5 & apply(log2(mydata), 1, IQR)>1.5,] # Filters out all rows with high intensities (50% > 100) and high variability (IQR>1.5).

Hierarchical clustering 

source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/my.colorFct.R") # Import an alternative color scheme for the heatmap function.
mydatascale <- t(scale(t(mydata))) # Centers and scales data. 
hr <- hclust(as.dist(1-cor(t(mydatascale), method="pearson")), method="complete") # Cluster rows by Pearson correlation. 
hc <- hclust(as.dist(1-cor(mydatascale, method="spearman")), method="complete") # Clusters columns by Spearman correlation.
heatmap(mydata, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=my.colorFct(), scale="row") # Plot the data table as heatmap and the cluster results as dendrograms.
mycl <- cutree(hr, h=max(hr$height)/1.5); mycolhc <- sample(rainbow(256)); mycolhc <- mycolhc[as.vector(mycl)]; heatmap(mydata, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", RowSideColors=mycolhc) # Cut the tree at specific height and color the corresponding clusters in the heatmap color bar.

Obtain significant clusters by pvclust bootstrap analysis 

library(pvclust) # Loads the required pvclust package.
pv <- pvclust(scale(t(mydata)), method.dist="correlation", method.hclust="complete", nboot=10) # Perform the hierarchical cluster analysis. Due to time resrictions, we are using here only 10 bootstrap repetitions. Usually, one should use at least 1000 repetitions.
plot(pv, hang=-1); pvrect(pv, alpha=0.95) # Plots result as a dendrogram where the significant clusters are highlighted with red rectangles.
clsig <- unlist(pvpick(pv, alpha=0.95, pv="au", type="geq", max.only=TRUE)$clusters) # Retrieve members of significant clusters.
source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/dendroCol.R") # Import tree coloring function.
dend_colored <- dendrapply(as.dendrogram(pv$hclust), dendroCol, keys=clsig, xPar="edgePar", bgr="black", fgr="red", pch=20) # Create dendrogram object where the significant clusters are labeled in red.
heatmap(mydata, Rowv=dend_colored, Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", RowSideColors=mycolhc) # Plot the heatmap from above, but with the significant clusters in red and the cluster bins from the tree cutting step in the color bar.
x11(height=12); heatmap.2(mydata, Rowv=dend_colored, Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", trace="none", RowSideColors=mycolhc) # Plot heatmap with heatmap.2() function which scales better for many entries.
mydatasort <- mydata[pv$hclust$labels[pv$hclust$order], hc$labels[hc$order]] # Sort rows in data table by 'dend_colored' and its colums by 'hc'.
x11(height=16, width=12); par(mfrow=c(1,2)); plot(dend_colored, horiz=T, yaxt="n"); image(scale(t(mydatasort)), col=my.colorFct(), xaxt="n",yaxt="n") # Plot heatmap with bootstrap tree in larger format using instead of heatmap the image function.
pdf("pvclust.pdf", height=21, width=6); plot(dend_colored, horiz=T, yaxt="n"); dev.off(); pdf("heatmap.pdf", height=20, width=6); image(scale(t(mydatasort)), col=my.colorFct(), xaxt="n",yaxt="n"); dev.off() # Save graphical results to two PDF files: 'pvclust.pdf' and'heatmap.pdf'.

Compare PAM (K-means) with hierarchical clustering 

library(cluster) # Loads required library.
mydist <- t(scale(t(mydata))) # Center and scale data.
mydist <- as.dist(1-cor(t(mydist), method="pearson")) # Generates distance matrix using Pearson correlation as distance method.
pamy <- pam(mydist, max(mycl)) # Clusters distance matrix into as many clusters as obtained by tree cutting step (6).
mycolkm <- sample(rainbow(256)); mycolkm <- mycolkm[as.vector(pamy$clustering)]; heatmap(mydata, Rowv=dend_colored, Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", RowSideColors=mycolkm) # Compare PAM clustering results with hierarchical clustering by labeling it in heatmap color bar.
pdf("pam.pdf", height=20, width=20); heatmap(mydata, Rowv=dend_colored, Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", RowSideColors=mycolkm); dev.off() # Save graphical results to PDF file: 'pvclust.pdf'.

Compare SOM with hierarchical clustering 

library(som) # Loads required library.
y <- t(scale(t(mydata))) # Center and scale data.
y.som <- som(y, xdim = 2, ydim = 3, topol = "hexa", neigh = "gaussian") # Performs SOM clustering.
plot(y.som) # Plots results.
pdf("som.pdf"); plot(y.som); dev.off() # Save plot to PDF: 'som.pdf'.
somclid <- as.numeric(paste(y.som$visual[,1], y.som$visual[,2], sep=""))+1 # Returns SOM cluster assignment in order of input data.
mycolsom <- sample(rainbow(256)); mycolsom <- mycolsom[somclid]; heatmap(mydata, Rowv=dend_colored, Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", RowSideColors=mycolsom) # Compare SAM clustering results with hierarchical clustering by labeling it in heatmap color bar.
pdf("somhc.pdf", height=20, width=20); heatmap(mydata, Rowv=dend_colored, Colv=as.dendrogram(hc), col=my.colorFct(), scale="row", RowSideColors=mycolsom); dev.off() # Save graphical results to PDF file: 'somhc.pdf'.

Compare PCA with SOM 

pca <- prcomp(mydata, scale=T) # Performs principal component analysis after scaling the data.
summary(pca) # Prints variance summary for all principal components.
library(scatterplot3d) # Loads 3D library.
scatterplot3d(pca$x[,1:3], pch=20, color=mycolsom) # Plots PCA result in 3D. The SOM clusters are highlighted in their color.
pdf("pcasom.pdf"); scatterplot3d(pca$x[,1:3], pch=20, color=mycolsom); dev.off() # Saves PCA plot in PDF format: 'pcasom.pdf'.

Compare MDS with HC, SOM and K-means 

loc <- cmdscale(mydist, k = 3) # Performs MDS analysis and returns results for three dimensions.
x11(height=8, width=8, pointsize=12); par(mfrow=c(2,2)) # Sets plotting parameters.
plot(loc[,1:2], pch=20, col=mycolsom, main="MDS vs SOM 2D") # Plots MDS-SOM comparison in 2D. The SOM clusters are highlighted in their color.
scatterplot3d(loc, pch=20, color=mycolsom, main="MDS vs SOM 3D") # Plots MDS-SOM comparison in 3D.
scatterplot3d(loc, pch=20, color=mycolhc, main="MDS vs HC 3D") # Plots MDS-HC comparison.
scatterplot3d(loc, pch=20, color=mycolkm, main="MDS vs KM 3D") # Plots MDS-KM comparison.

Fuzzy clustering 

library(cluster) # Loads cluster library.
fannyy <- fanny(mydist, k= max(mycl), memb.exp = 1.5); round(fannyy$membership, 2); fannyy$clustering # Performs fuzzy clustering with as many coefficients as clusters were obtained by tree cutting step in HC. The hard clustering results are provided in the 'clustering' slot. 
fannyyMA <- round(fannyy$membership, 2) > 0.3; apply(fannyyMA, 1, which) # Returns multiple cluster memberships for coefficient above a certain value (here >0.3).

Biclustering 

Follow the examples given in the Bicluster Analysis section. 

A. Administration 

. Installation of R 

Download and install R for your operating system from CRAN. 

A. Installation of BioConductor Packages 

The latest instructions for installing BioConductor packages are available on the BioC Installation page. Only the essential steps are given here. To install BioConductor packages, execute from the R console the following commands: 

source("http://bioconductor.org/biocLite.R") # Sources the biocLite.R installation script.
biocLite() # Installs the biocLite.R default set of BioConductor packages.
biocLite(c("pkg1", "pkg2")) # Command to install additional packages from BioC.
update.packages(repos=biocinstallRepos(), ask=FALSE) # Bioconductor packages, especially those in the development branch, are updated fairly regularly. To update all of your installed packages, run this command after sourcing "biocLite.R".

B. Installation of CRAN Packages (Task View) 

To install CRAN packages, execute from the R console the following command: 

install.packages(c("pkg1", "pkg2")) # The selected package name(s) need to be provided within the quotation marks.


Alternatively, a package can be downloaded and then intalled in compressed form like this: 

install.packages("pkg.zip", repos=NULL)

On UNIX-based systems one can also execute the following shell command (not from R): 

$ R CMD INSTALL pkg_0.1.tar.gz # This installs packages by default into a system-wide directory. To install packages into a user account directory (not system-wide), one can specify a custom directory with the argument '-l my_lib_dir'. A locally installed library can be called in R like this: 'library(my_lib, lib.loc= "/home/user/my_lib_dir/")'. To manage libraries by default in a custom directory, one can generate a '.Reviron' file containing the line: R_LIBS=/your_home_dir/Rlib

