Building ASP Pages

ASP provides a powerful and extensible framework for creating server-side scripts with any COM compliant scripting or programming language. This section is intended to teach the fundamentals of using a scripting language to create an .asp file. You will learn how to accomplish a wide range of basic programming tasks, from creating a loop to manipulating a database and processing transactions. Whether you are a beginning or experienced scripter, you can envision the topics in this section as development goals, that is, as demonstrations intended to encourage you by suggesting more sophisticated ways in which you can utilize ASP. This can lead to applications that perform better and are more maintainable.

Although these topics introduce some scripting and programming concepts, they are not intended to teach you a scripting language. Microsoft scripting languages (Microsoft VBScript and Microsoft JScript) provide their own documentation, and many additional scripting books are available from your local bookseller. So, if you are new to scripting, take advantage of the many books, classes, and Internet resources which can help you to master these languages.

This section includes:

· Creating an ASP Page: Describes an ASP file and explains how to add script commands to a page. 

· Working with Scripting Languages: Explains how to set the primary language and how to use VBScript and JScript in server scripts. 

· Using Variables and Constants: Provides an introduction to using variables in ASP scripts and explains how to access constant definitions. 

· Interacting with Client-Side Scripts: Shows how to write server-side scripts that create and interact with client-side scripts. 

· Writing Procedures: Describes how to define procedures (functions and subroutines) and call them from server-side scripts. 

· Working with Collections: Describes how to access items in a built-in object's collections, including access by iterating through a collection. 

· Processing User Input: Explains how to collect and process information gathered from an HTML form. 

· Using Components and Objects: Explains how to create an instance of an object provided by a COM component, how to use the ASP built-in objects, and how to use the methods and properties of any object. 

· Setting Object Scope: Demonstrates the scope, or extent, of an object and describes how to create session and application scoped objects. 

· Sending Content to the Browser: Describes how to control the ways in which pages are sent to a browser. 

· Including Files: Explains how to use the #include statement to insert the contents of a file into an .asp file. 

· Managing Sessions: Describes how to preserve information about a user. 

· Accessing a Data Source: Explains how to use ASP and Microsoft ActiveX Data Objects (ADO) to retrieve information from a database. 

· Understanding Transactions: Demonstrates how to run a script under a transaction context. Business and credit card applications often need to the ability to run scripts and components within transactions. 

· Debugging ASP Scripts: Describes how to use the Microsoft Script Debugger to find and eliminate errors in your scripts. 

· Built-in ASP Objects: Provides a quick overview of the ASP built-in objects, and links to more detailed information. 

· Active Server Pages Objects Quick Reference Card: Contains quick reference information about ASP built-in objects. 

This section does not include information on:

· Developing programmatically advanced collections of scripts called applications; see Developing Web Applications. 

· Designing Web applications; see Design Decisions. 

[image: image1.png]




Creating an ASP Page

An Active Server Pages (ASP) file is a text file with the extension .asp that contains any combination of the following:

· Text 

· HTML tags 

· Server-side scripts 

A quick way to create an .asp file is to rename your HTML files by replacing the existing .htm or .html file name extension with an .asp extension. If your file does not contain any ASP functionality, then the server dispenses with the ASP script processing and efficiently sends the file to the client. As a Web developer, this affords you tremendous flexibility because you can assign your files .asp extensions, even if you do not plan on adding ASP functionality until later.

To publish an .asp file on the Web, save the new file in a virtual directory on your Web site (be sure that the directory has Script or Execute permission enabled). Next, request the file with your browser by typing in the file's URL. (Remember, ASP pages must be served, so you cannot request an .asp file by typing in its physical path.) After the file loads in your browser, you will notice that the server has returned an HTML page. This may seem strange at first, but remember that the server parses and executes all ASP server-side scripts prior to sending the file. The user will always receive standard HTML.

You can use any text editor to create .asp files. As you progress, you may find it more productive to use an editor with enhanced support for ASP, such as Microsoft® Visual InterDev™. (For more information, visit the Microsoft Visual InterDev Web site at http://msdn.microsoft.com/vinterdev/.) 

Adding Server-Side Script Commands

A server-side script is a series of instructions used to sequentially issue commands to the Web server. (If you have developed Web sites previously, then you are probably familiar with client-side scripts, which run on the Web browser.) In .asp files, scripts are differentiated from text and HTML by delimiters. A delimiter is a character or sequence of characters that marks the beginning or end of a unit. In the case of HTML, these delimiters are the less than (<) and greater than (>) symbols, which enclose HTML tags.

ASP uses the delimiters <% and %> to enclose script commands. Within the delimiters, you can include any command that is valid for the scripting language you are using. The following example shows a simple HTML page that contains a script command:

<HTML>

  <BODY>

  This page was last refreshed on <%= Now() %>.

  </BODY>

</HTML>

The VBScript function Now() returns the current date and time. When the Web server processes this page, it replaces <%= Now() %> with the current date and time and returns the page to the browser with the following result:

This page was last refreshed on 01/29/99 2:20:00 PM.

Commands enclosed by delimiters are called primary script commands, which are processed using the primary scripting language. Any command that you use within script delimiters must be valid for the primary scripting language. By default, the primary scripting language is VBScript, but you can also set a different default language. See Working with Scripting Languages.

If you are already familiar with client-side scripting, you are aware that the HTML <SCRIPT> tag is used to enclose script commands and expressions. You can also use the <SCRIPT> tag for server-side scripting, whenever you need to define procedures in multiple languages within an .asp file. For more information, see Working with Scripting Languages.

Mixing HTML and Script Commands

You can include, within ASP delimiters, any statement, expression, procedure, or operator that is valid for your primary scripting language. A statement, in VBScript and other scripting languages, is a syntactically complete unit that expresses one kind of action, declaration, or definition. The conditional If...Then...Else statement that appears below is a common VBScript statement:

<% 

  Dim dtmHour

  dtmHour = Hour(Now())

  If dtmHour < 12 Then

    strGreeting = "Good Morning!"

  Else 


    strGreeting = "Hello!"

  End If   

%> 

<%= strGreeting %>

Depending on the hour, this script assigns either the value "Good Morning!" or the value "Hello!" to the string variable strGreeting. The <%= strGreeting %> statement sends the current value of the variable to the browser.

Thus, a user viewing this script before 12:00 noon (in the Web server’s time zone) would see this line of text:

Good Morning!

A user viewing the script at or after 12:00 noon would see this line of text:

Hello!

You can include HTML text between the sections of a statement. For example, the following script, which mixes HTML within an If...Then...Else statement, produces the same result as the script in the previous example:

<%

  Dim dtmHour

  dtmHour = Hour(Now())

  If dtmHour < 12 Then

%> 

  Good Morning!

<% Else %>

  Hello!

<% End If %>

If the condition is true—that is, if the time is before noon—then the Web server sends the HTML that follows the condition (“Good Morning”) to the browser; otherwise, it sends the HTML that follows Else (“Hello!”) to the browser. This way of mixing HTML and script commands is convenient for wrapping the If...Then...Else statement around several lines of HTML text. The previous example is more useful if you want to display a greeting in several places on your Web page. You can set the value of the variable once and then display it repeatedly.

Rather than interspersing HTML text with script commands, you can return HTML text to the browser from within a script command. To return text to the browser, use the ASP built-in object Response. The following example produces the same result as the previous scripts:

<% 

  Dim dtmHour

  dtmHour = Hour(Now())

  If dtmHour < 12 Then

    Response.Write "Good Morning!"

  Else 


    Response.Write "Hello!"

  End If   

%> 

Response.Write sends the text that follows it to the browser. Use Response.Write from within a statement when you want to dynamically construct the text returned to the browser. For example, you might want to build a string that contains the values of several variables. You will learn more about the Response object, and objects in general, in Using Components and Objects and Sending Content to the Browser. For now, simply note that you have several ways to insert script commands into an HTML page.

You can include procedures written in your default primary scripting language within ASP delimiters. Refer to Working with Scripting Languages for more information.

If you are working with JScript commands, you can insert the curly braces, which indicate a block of statements, directly into your ASP commands, even if they are interspersed with HTML tags and text. For example:

<% 

  if (screenresolution == "low")

  {

%>

This is the text version of a page.

<%

  }

  else

  {

%>

This is the multimedia version of a page.

<%

  } 

%>

--Or--

<% 

  if (screenresolution == "low")

  { 

    Response.Write("This is the text version of a page.")

  }

  else

  { 

    Response.Write("This is the multimedia version of a page.")

  } 

%>

Using ASP Directives

ASP provides directives that are not part of the scripting language you use: the output directive and the processing directive.

The ASP output directive <%= expression %> displays the value of an expression. This output directive is equivalent to using Response.Write to display information. For example, the output expression <%= city %> displays the word Baltimore (the current value of the variable) on the browser.

The ASP processing directive <%@ keyword %> gives ASP the information it needs to process an .asp file. For example, the following directive sets VBScript as the primary scripting language for the page:

<%@ LANGUAGE=VBScript %>

The processing directive must appear on the first line of an .asp file. To add more than one directive to a page, the directive must be within the same delimiter. Do not put the processing directive in a file included with the #include statement. (For more information, see Including Files.) You must use a space between the at sign (@) and the keyword. The processing directive has the following keywords:

· The LANGUAGE keyword sets the scripting language for the .asp file. See Working with Scripting Languages. 

· The ENABLESESSIONSTATE keyword specifies whether an .asp file uses session state. See Managing Sessions. 

· The CODEPAGE keyword sets the code page (the character encoding) for the .asp file. 

· The LCID keyword sets the locale identifier for the file. 

· The TRANSACTION keyword specifies that the .asp file will run under a transaction context. See Understanding Transactions. 

Important   You can include more than one keyword in a single directive. Keyword/value pairs must be separated by a space. Do not put spaces around the equal sign (=).

The following example sets both the scripting language and the code page:

<%@ LANGUAGE="JScript" CODEPAGE="932" %>

White Space in Scripts

If your primary scripting language is either VBScript or JScript, ASP removes white space from commands. For all other scripting languages, ASP preserves white space so that languages dependent upon position or indentation are correctly interpreted. White space includes spaces, tabs, returns, and line feeds.

For VBScript and JScript, you can use white space after the opening delimiter and before the closing delimiter to make commands easier to read. All of the following statements are valid:

<% Color = "Green" %>

<%Color="Green"%>

<%

Color = "Green"

%>

ASP removes white space between the closing delimiter of a statement and the opening delimiter of the following statement. However, it is good practice to use spaces to improve readability. If you need to preserve the white space between two statements, such as when you are displaying the values of variables in a sentence, use an HTML nonbreaking space character (&nbsp;). For example:

<%

  'Define two variables with string values.

  strFirstName = "Jeff"

  strLastName = "Smith"

%>

<P>This Web page is customized for "<%= strFirstName %>&nbsp;<%= strLastName %>." </P>

[image: image2.png]




Working with Scripting Languages

Programming languages such as Visual Basic, C++, and Java provide low-level access to computer resources and are used to create complex, large-scale programs. Scripting languages, however, are used to create programs of limited capability, called scripts, that execute Web site functions on a Web server or browser. Unlike more complex programming languages, scripting languages are interpreted, instruction statements are sequentially executed by an intermediate program called a command interpreter. While interpretation reduces execution efficiency, scripting languages are easy to learn and provide powerful functionality. Scripts can be embedded in HTML pages to format content or used to implement COM components encapsulating advanced business logic.

Active Server Pages makes it possible for Web developers to write scripts that execute on the server in variety of scripting languages. In fact, several scripting languages can be used within a single .asp file. In addition, because scripts are read and processed on the server-side, the browser that requests the .asp file does not need to support scripting.

You can use any scripting language for which the appropriate scripting engine is installed on your Web server. A scripting engine is a program that processes commands written in a particular language. Active Server Pages comes with two scripting engines: Microsoft Visual Basic Scripting Edition (VBScript) and Microsoft JScript. You can install and use engines for other scripting languages, such as REXX, PERL, and Python.

If you are already a Visual Basic programmer, you can immediately begin using VBScript, which is a subset of Visual Basic. If you are a Java, C, or C++ programmer, you may find that JScript syntax is familiar to you, even though JScript is not directly related to Java or C.

If you are familiar with another scripting language, such as REXX, Perl, or Python you can obtain and install the appropriate scripting engine so that you can use the language you already know. Active Server Pages is a COM scripting host; to use a language you must install a scripting engine that follows the COM Scripting standard and resides as a COM (Component Object Model) object on the Web server.

Setting the Primary Scripting Language 

The ASP primary scripting language is the language used to process commands inside the <% and %> delimiters. By default, the primary scripting language is VBScript. You can use any scripting language for which you have a script engine as the primary scripting language. You can set the primary scripting language on a page-by-page basis, or for all pages in an ASP application.

Setting the Language for an Application

To set the primary scripting language for all pages in an application, set the Default ASP Language property on the App Options tab in the Internet Information Services snap-in. For more information, see Configuring ASP Applications.

Setting the Language for a Page

To set the primary scripting language for a single page, add the <%@ LANGUAGE %> directive to the beginning of your .asp file. The syntax for this directive is:

<%@ LANGUAGE=ScriptingLanguage %>

where ScriptingLanguage is the primary scripting language that you want to set for that particular page. The setting for a page overrides the global setting for all pages in the application.

Follow the guidelines for using an ASP directive; for more information, see Creating an ASP Page.

Note   To use a language that does not support the Object.Method syntax as the primary scripting language, you must first create the LanguageEngines registry key. For more information, see About the Registry.

Using VBScript and JScript on the Server

When using VBScript on the server with ASP, two VBScript features are disabled. Because scripts written with Active Server Pages are executed on the server, the VBScript statements that present user-interface elements, InputBox and MsgBox, are not supported. In addition, do not use the VBScript functions CreateObject and GetObject in server-side scripts. Use Server.CreateObject instead so that ASP can track the object instance. Objects created by CreateObject or GetObject cannot access the ASP built-in objects and cannot participate in transactions. The exception to this rule is when you are using the IIS Admin Objects, and when you are using Java monikers. For more information, see Using IIS Admin Objects and Creating an Object from a Java Class.

For a list and description of all VBScript and JScript operators, functions, statements, objects, properties, and methods, refer to the VBScript Language Reference and JScript Language Reference. You can find this reference at the Microsoft Windows Script Technologies Web site, located at http://msdn.microsoft.com/scripting/.

Including Comments

Because the processing of all scripts in ASP is done on the server side, there is no need to include HTML comment tags to hide the scripts from browsers that do not support scripting, as is often done with client-side scripts. All ASP commands are processed before content is sent to the browser. You can use HTML comments to add remarks to an HTML page; comments are returned to the browser and are visible if the user views the source HTML.

VBScript Comments

Apostrophe-style comments are supported in VBScript. Unlike HTML comments, these are removed when the script is processed and are not sent to the browser.

<% 

  'This line and the following two are comments. 

  'The PrintTable function prints all 

  'the elements in an array. 

  PrintTable MyArray() 

%>

You cannot include a comment in an output expression. For example, the first line that follows will work, but the second line will not, because it begins with <%=.

<% i = i +1 'This statement increments i. (This script will work.) %> 

<%= name 'This statement prints the variable name. (This script will fail.) %>

JScript Comments

The // comment characters are supported in JScript. These characters should be used on each comment line.

<%

  var x

  x = new Date() 

  // This line sends the current date to the browser, 

  // translated to a string.

  Response.Write(x.toString()) 

%>

Case Sensitivity

VBScript is not case sensitive. For example, you can use either Request or request to refer to the ASP Request object. One consequence of case-insensitivity is that you cannot distinguish variable names by case. For example, you cannot create two separate variables named Color and color.

JScript is case sensitive. When you use JScript keywords in scripts, you must type the keyword exactly as shown in the reference page for that keyword. For example, using date instead of Date will cause an error. The case shown in this documentation for the ASP built-in objects will work in JScript commands.

[image: image3.png]




Using Variables and Constants

A variable is a named storage location in the computer's memory that contains data, such as a number or a text string. The data contained in a variable is called the variable's value. Variables give you a way to store, retrieve, and manipulate values using names that help you understand what the script does.

Declaring and Naming Variables

Follow the rules and guidelines of your scripting language for naming and declaring variables. Even if you are not required to declare a variable before using it, it is a good habit to develop because it helps prevent errors. Declaring a variable means telling the script engine that a variable with a particular name exists so that you can use references to the variable throughout a script.

VBScript

VBScript does not require variable declarations, but it is good scripting practice to declare all variables before using them. To declare a variable in VBScript, use the Dim, Public, or Private statement. For example:

<% Dim UserName %>

You can use the VBScript Option Explicit statement in an .asp file to require variables to be explicitly declared with the Dim, Private, Public, and ReDim statements. The Option Explicit statement must appear after any ASP directives and before any HTML text or script commands. This statement only affects ASP commands that are written in VBScript; it has no effect on JScript commands.

<% Option Explicit %>

<HTML>

<%

  Dim strUserName

  Public lngAccountNumber

%>

.

.

.

For more information on these commands, see the VBScript Language Reference, which can be found at the Microsoft Windows Script Technologies Web site, located at http://msdn.microsoft.com/scripting/.

JScript

Although JScript does not usually require variable declarations, it is good scripting practice to declare all variables before using them. To declare a variable, use the var statement. For example:

<% var UserName %>

Typically, you will only need to declare a variable in JScript when you need to distinguish a variable inside a function from a global variable used outside the function. In this case, if you do not distinguish between the two variables, JScript will assume that that you referring exclusively to the global variable. For more information on the var statement, see the JScript Language Reference. You can find this reference at the Microsoft Windows Script Technologies Web site, located at http://msdn.microsoft.com/scripting/.

Variable Scope

The scope, or lifetime, of a variable determines which script commands can access a variable. A variable declared inside a procedure has local scope; the variable is created and destroyed every time the procedure is executed. It cannot be accessed by anything outside the procedure. A variable declared outside a procedure has global scope; its value is accessible and modifiable by any script command on an ASP page.

Note   Limiting variable scope to a procedure will enhance performance.

If you declare variables, a local variable and a global variable can have the same name. Modifying the value of one will not modify the value of the other. If you do not declare variables, however, you might inadvertently modify the value of a global variable. For example, the following script commands return the value 1 even though there are two variables named Y:

<%

  Option Explicit 

  Dim Y

  Y = 1

  SetLocalVariable

  Response.Write Y

Sub SetLocalVariable

    Dim Y

    Y = 2

End Sub

%>

The following script commands, on the other hand, return the value 2 because the variables are not explicitly declared. When the procedure call sets Y to 2, the scripting engine assumes the procedure intended to modify the global variable:

<% 

  Option Explicit

  Dim Y = 1

  SetLocalVariable

  Response.Write Y

Sub SetLocalVariable

    Y = 2

End Sub

%>

To avoid problems, develop the habit of explicitly declaring all variables. This is particularly important if you use the #include statement to include files into your .asp file. The included script is contained in a separate file but is treated as though it were part of the including file. It is easy to forget that you must use different names for variables used in the main script and in the included script unless you declare the variables.

Giving Variables Session or Application Scope 

Global variables are accessible only in a single .asp file. To make a variable accessible beyond a single page, give the variable either session or application scope. Session-scoped variables are available to all pages in one ASP application that are requested by one user. Application-scoped variables are available to all pages in one ASP application that are requested by any user. Session variables are a good way to store information for a single user, such as preferences or the user's name or identification. Application variables are a good way to store information for all users of a particular application, such as an application-specific greeting or general values needed by the application.

ASP provides two built-in objects into which you can store variables: the Session object and the Application object.

You can also create object instances with session or application scope. For more information, see Setting Object Scope.

Session Scope

To give a variable session scope, store it in the Session object by assigning a value to a named entry in the object. For example, the following commands store two new variables in the Session object:

<% 

  Session("FirstName") = "Jeff"

  Session("LastName") = "Smith" 

%>

To retrieve information from the Session object, access the named entry by using the output directive (<%=) or Response.Write. The following example uses the output directive to display the current value of Session("FirstName"):

Welcome <%= Session("FirstName") %>

You can store user preferences in the Session object, and then access those preferences to determine what page to return to the user. For example, you can allow a user to specify a text-only version of your content in the first page of the application and apply this choice on all subsequent pages that the user visits in this application.

<%

  strScreenResolution = Session("ScreenResolution")

  If strScreenResolution = "Low" Then

%> 

  This is the text version of the page.

<% Else %> 

  This is the multimedia version of the page.

<% End If %>

Note   If you refer to a session-scoped variable more than once in a script, consider assigning it to a local variable, as in the previous example, to improve performance.

Application Scope

To give a variable application scope, store it in the Application object by assigning a value to a named entry in the object. For example, the following command stores an application-specific greeting in the Application object:

<% Application("Greeting") = "Welcome to the Sales Department!" %>

To retrieve information from the Application object, use the ASP output directive (<%=) or Response.Write to access the named entry from any subsequent page in the application. The following example uses the output directive to display the value of Application("Greeting"):

<%= Application("Greeting") %>

Again, if your script repeatedly refers to an application-scoped variable, you should assign it to a local variable to improve performance.

Using Constants

A constant is a name that takes the place of a number or string. Some of the base components provided with ASP, such as ActiveX Data Objects (ADO), define constants that you can use in your scripts. A component can declare constants in a component type library, a file that contains information about objects and types supported by an COM component. Once you have declared a type library in your .asp file you can use the defined constants in any scripts in the same .asp file. Likewise, you can declare a type library in your Global.asa file to use the defined constants in any .asp file in an application.

To declare a type library, use the <METADATA> tag in your .asp file or Global.asa file. For example, to declare the ADO type library, use the following statements:

<!--METADATA NAME="Microsoft ActiveX Data Objects 2.5 Library" TYPE="TypeLib" UUID="{00000205-0000-0010-8000-00AA006D2EA4}"-->

Or, rather than referring to the type library's universal unique indentifier (UUID), you can also refer to the type library by file path:

<!-- METADATA TYPE="typelib" FILE="c:\program files\common files\system\ado\msado15.dll"-->

You can then use ADO constants in the .asp file where you declared the type library, or in an .asp file residing to an application containing a Global.asa file with the ADO type library declaration. In the following example, adOpenKeyset and adLockOptimistic are ADO constants:

<%

  'Create and Open Recordset Object.

  Set rstCustomerList = Server.CreateObject("ADODB.Recordset")

  rstCustomerList.ActiveConnection = cnnPubs

  rstCustomerList.CursorType = adOpenKeyset

  rstCustomerList.LockType = adLockOptimistic

%>

The following table lists commonly used type libraries and UUIDs:

	Type Library
	UUID

	Microsoft ActiveX Data Objects 2.5 Library
	{00000205-0000-0010-8000-00AA006D2EA4}

	Microsoft CDO 1.2 Library for Windows 2000 Server
	{0E064ADD-9D99-11D0-ABE5-00AA0064D470}

	MSWC Advertisement Rotator Object Library
	{090ACFA1-1580-11D1-8AC0-00C0F00910F9}

	MSWC IIS Log Object Library
	{B758F2F9-A3D6-11D1-8B9C-080009DCC2FA}


For reference information about the <METADATA> tag, see TypeLibrary Declarations.

In previous versions of ASP, some components provided constant definitions in files that had to be included in each ASP file that used those constants. The use of the #include directive to include constant definitions is still supported, but type libraries are generally easier to use and make your scripts more easily upgraded. Components might not provide constant definition files in future releases of ASP.

Note   Using the <METADATA> tag rather than the #include directive may improve the performance of your Web application.

You can define your own constants. In VBScript, use the Const statement. In JScript, you can the var statement to assign a constant value to variable. If you want to use your constants on more than one .asp file, put the definitions in a separate file and include them in each .asp file that uses the constants.

[image: image4.png]




Interacting with Client-Side Scripts

ASP's effectiveness can be extended by using it to generate or manipulate client-side scripts. For example, you can write server-side scripts that assemble client-side scripts based on server-specific variables, a user's browser type, or HTTP request parameters.

By interspersing server-side script statements within client-side scripts (enclosed by HTML <SCRIPT> tags), as shown in the following example template, you can dynamically initialize and alter client-side scripts at the request time:

<SCRIPT LANGUAGE="VBScript">


<!--

variable = <%=server defined value %>

.

.

.

client-side script
<% server-side script used to generate a client-side statement %> 

client-side script
.

.

.

-->

</SCRIPT>

Incorporating such functionality can produce some useful and interesting applications. For example, the following is a simple server-side script (written in VBScript) that manipulates a client-side script (written in JScript):

<%

  Dim dtmTime, strServerName, strServerSoftware, intGreeting

  dtmTime = Time()

  strServerName = Request.ServerVariables("SERVER_NAME") 

  strServerSoftware = Request.ServerVariables("SERVER_SOFTWARE") 

  'Generate a random number. 



  Randomize

  intGreeting = int(rnd * 3)

%>

  <SCRIPT LANGUAGE="JScript">

  <!--

  //Call function to display greeting

  showIntroMsg()

  function showIntroMsg()

  {  

    switch(<%= intGreeting %>)

    {

    case 0:

      msg =  "This is the <%= strServerName%> Web server running <%= strServerSoftware %>."

      break

    case 1:




      msg = "Welcome to the <%= strServerName%> Web server. The local time is <%= dtmTime %>."

      break

    case 2:

      msg = "This server is running <%= strServerSoftware %>."

      break

    } 

  document.write(msg)

  }

-->

</SCRIPT>

Scripts of this kind can be expanded, for example, to configure a client-side database or a DHTML personalization script. Innovative use of this technique can also reduce round-trips and server processing.

[image: image5.png]




Writing Procedures

A procedure is a group of script commands that performs a specific task and can return a value. You can define your own procedures and call them repeatedly in your scripts.

You can place procedure definitions in the same .asp file that calls the procedures, or you can put commonly used procedures in a shared .asp file and use the #include directive to include it in other .asp files that call the procedures. Alternatively, you could encapsulate the functionality in a COM component.

Defining Procedures

Procedure definitions can appear within <SCRIPT> and </SCRIPT> tags and must follow the rules for the declared scripting language. Use the <SCRIPT> element for procedures in languages other than the primary scripting language. However, use the scripting delimiters (<% and %>) for procedures in the primary scripting language.

When you use the HTML <SCRIPT> tag, you must use two attributes to ensure server-side processing of the script. The syntax for using the <SCRIPT> tag is:

<SCRIPT LANGUAGE=JScript RUNAT=SERVER>

  procedure definition
</SCRIPT>

The RUNAT=SERVER attribute tells the Web server to process the script on the server. If you do not set this attribute, the script is processed by the client browser. The LANGUAGE attribute determines the scripting language used for this script block. You can specify any language for which you have the scripting engine installed with the server. To specify VBScript, use the value VBScript. To specify JScript, use the value JScript. If you do not set the LANGUAGE attribute, the script block is interpreted in the primary scripting language.

The commands in the script block must form one or more complete procedures in the chosen scripting language. For example, the following commands define the JScript procedure MyFunction.

<HTML>

<SCRIPT LANGUAGE=JScript RUNAT=SERVER >

  function MyFunction()

  {

    Response.Write("You called MyFunction().")

  }

</SCRIPT>

Important   Do not include within server-side <SCRIPT> tags any script commands that are not part of complete procedures. Commands that are not part of a procedure may cause unpredictable results because these commands may be executed in an uncertain order. In addition, you cannot use the ASP output directive <%= %> within a procedure. Instead, use Response.Write to send content to the browser.

Calling Procedures

To call procedures, include the name of the procedure in a command. If you are calling JScript procedures from VBScript, you must use parentheses after the procedure name; if the procedure has no arguments, use empty parentheses. If you are calling either VBScript or JScript procedures from JScript, always use parentheses after the procedure name.

For VBScript, you can also use the Call keyword when calling a procedure. However, if the procedure that you are calling requires arguments, the argument list must be enclosed in parentheses. If you omit the Call keyword, you also must omit the parentheses around the argument list. If you use Call syntax to call any built-in or user-defined function, the function’s return value is discarded.

The following example illustrates creating and calling procedures by using two different scripting languages (VBScript and JScript).

<%@ LANGUAGE=VBScript %>

<HTML> 

  <BODY>

<% Echo %> 

  <BR>

<% printDate() %>

  </BODY>

</HTML>

<%

Sub Echo 

  Response.Write "<TABLE>" & _

    "<TR><TH>Name</TH><TH>Value</TH></TR>" 

  Set objQueryString = Request.QueryString 

  For Each strSelection In objQueryString

    Response.Write "<TR><TD>" & p & "</TD><TD>" & _ 

    FormValues(strSelection) & "</TD></TR>" 

  Next 

  Response.Write "</TABLE>" 

End Sub 

%>

<SCRIPT LANGUAGE=JScript RUNAT=SERVER> 

function printDate() 

{ 

  var x

  x = new Date() 

  Response.Write(x.toString()) 

} 

</SCRIPT>

Note   VBScript calls to JScript functions are not case sensitive.

Passing Arrays to Procedures

To pass an entire array to a procedure in VBScript, use the array name followed by empty parentheses; in JScript, use empty square brackets.

[image: image6.png]




Working with Collections

Most of the ASP built-in objects provide collections. Collections are data structures similar to arrays that store strings, numbers, objects and other values. Unlike arrays, collections expand and contract automatically as items are retrieved or stored. The position of an item will also move as the collection is modified. You can access an item in a collection by its unique string key, by its index (position) in the collection, or by iterating through all the items in the collection.

Accessing an Item by Name or Index

You can access a specific item in a collection by referencing its unique string key, or name. For example, the Contents collection holds any variables stored in the Session object. It can also hold any objects instantiated by calling Server.CreateObject. Suppose you have stored the following user information in the Session object:

<%

  Session.Contents("FirstName") = "Meng"

  Session.Contents("LastName") = "Phua"

  Session.Contents("Age") = 29

%>

You can access an item by using the string key you associated with the item when you stored it in the collection. For example, the following expression returns the string "Meng":

<%= Session.Contents("FirstName") %>

You could also access an item by using the index, or number, associated with an item. For example, the following expression retrieves the information stored in the second position of the Session object and returns "Phua":

<%= Session.Contents(2) %>

ASP collections are numbered starting with 1. The index associated with an item might change as items are added to or removed from the collection. You should not depend on an item’s index remaining the same. Indexed access is generally used to iterate through a collection, as described in the following topics, or to access an item in a read-only collection.

You can also use a shorthand notation to access items by name. ASP searches the collections associated with an object in a particular order. If an item with a particular name appears only once in an object's collections, you can eliminate the collection name (although doing so may affect performance):

<%= Session("FirstName") %>

Eliminating the collection name is generally safe when you are accessing items stored in the Application or Session object. For the Request object, however, it is safer to specify the collection name because the collections could easily contain items with duplicate names.

Iterating through a Collection

You can iterate through all the items in a collection to see what is stored in the collection or to modify the items. You must supply the collection name when you iterate through a collection. For example, you can use the VBScript For...Each statement to access the items you stored in the Session object:

<% 

  'Declare a counter variable.

  Dim strItem 

  'For each item in the collection, display its value.

  For Each strItem In Session.Contents 

    Response.Write Session.Contents(strItem) & "<BR>"

  Next

%>

You can also iterate through a collection by using the VBScript For...Next statement. For example, to list the three items stored in Session by the previous example, use the following statements:

<% 

  'Declare a counter variable.

  Dim intItem

  'Repeat the loop until the value of counter is equal to 3.

  For intItem = 1 To 3

    Response.Write Session.Contents(intItem) & "<BR>"

  Next

%>

Because you do not usually know how many items are stored in a collection, ASP supports the Count property for a collection, which returns the number of items in the collection. You use the Count property to specify the end value of the counter.

<% 

  'Declare a counter variable.

  Dim lngItem, lngCount

  lngCount = Session.Contents.Count

  'Repeat this loop until the counter equals the number of items

  'in the collection.

  For lngItem = 1 To lngCount

     Response.Write Session.Contents(lngItem) & "<BR>"

  Next

%>

In JScript, you use the for statement to loop through a collection. For greater efficiency when using the Count property with a JScript for statement, you should assign the value of Count to a local variable and use that variable to set the end value of the counter. That way, the script engine does not have to look up the value of Count each time through the loop. The following example demonstrates this technique:

<% 

  var intItem, intNumItems;

  intNumItems = Session.Contents.Count;

  for (intItem = 1; intItem <= intNumItems; intItem++)

  {

    Response.Write(Session.Contents(intItem) + "<BR>")

  }

%>

Microsoft JScript supports an Enumerator object that you can also use to iterate through an ASP collection. The atEnd method indicates whether there are any more items in the collection. The moveNext method moves to the next item in the collection.

<%

  Session.Contents("Name") = "Suki White"

  Session.Contents("Department") = "Hardware"



.



.



.

  //Create an Enumerator object.

  var mycollection = new Enumerator(Session.Contents);

  //Iterate through the collection and display each item.

  while (!mycollection.atEnd())

  {

    var x  = myCollection.item();

    Response.Write(Session.Contents(x) + "<BR>");

    myCollection.moveNext();

  }

%>

Iterating through a Collection with Subkeys

Scripts might embed several related values in a single cookie to reduce the number of cookies passed between the browser and the Web server. The Cookies collection of the Request and Response objects can thus hold multiple values in a single item. These subitems, or subkeys, can be accessed individually. Subkeys are supported only by the Request.Cookies and Response.Cookies collections. Request.Cookies supports only read operations; Response.Cookies supports only write operations.

The following creates a regular cookie and a cookie with a subkeys:

<%

  'Send a cookie to the browser.

  Response.Cookies("Fruit") = "Pineapple"

  'Send a cookie with subkeys to browser.

  Response.Cookies("Mammals")("Elephant") = "African"

  Response.Cookies("Mammals")("Dolphin") = "Bottlenosed"

%>

The cookie text in the HTTP response sent to the browser would appear as the following:

HTTP_COOKIE= Mammals=ELEPHANT=African&DOLPHIN=Bottlenosed; Fruit=Pineapple;

You can also enumerate all the cookies in the Request.Cookies collection and all the subkeys in a cookie. However, iterating through subkeys on a cookie that does not have subkeys will not produce an item. You can avoid this situation by first checking to see whether a cookie has subkeys by using the HasKeys attribute of the Cookies collection. This technique is demonstrated in the following example.

<% 

   'Declare counter variables.

   Dim Cookie, Subkey

   'Display the entire cookie collection.

   For Each Cookie In Request.Cookies

     Response.Write Cookie 

     If Request.Cookies(Cookie).HasKeys Then

       Response.Write "<BR>" 


       'Display the subkeys.

       For Each Subkey In Request.Cookies(Cookie)

         Response.Write " ->" & Subkey & " = " & Request.Cookies(Cookie)(Subkey) & "<BR>"

       Next

     Else

       Response.Write " = " & Request.Cookies(Cookie) & "<BR>"

     End If

   Next    

%>

This script would return the following results:

Mammals

->ELEPHANT = African

->DOLPHIN = Bottlenosed

Fruit = Pineapple

The Case of the Key Name

The Cookies, Request, Response, and ClientCertificate collections can reference the same, unique string key name. For example, the following statements reference the same key name, User, but return different values for each collection:

strUserID = Request.Cookies("User") 

strUserName = Request.QueryString("User")

The case of the key name is set by the first collection to assign a value to the key. Examine the following script:

<%

  'Retrieve a value from QueryString collection using the UserID key.

  strUser = Request.QueryString("UserID") 

  'Send a cookie to the browser, but reference the key, UserId, which has a different spelling.

  Response.Cookies("UserId")= "1111-2222"

  Response.Cookies("UserId").Expires="December 31, 2000"

%>

Although it may appear that key name UserId was assigned to the cookie, in actuality, the key name UserID (which is capitalized differently) was assigned to the cookie. The QueryString collection was first to define the case of this key. 

Because references to collection values are independent of the case of the key name, this behavior will not affect your scripts unless your application uses case sensitive processing of key names.

Iterating through a Collection of Objects

The Session and Application collections can hold either scalar variables or object instances. The Contents collection holds both scalar variables and object instances created by calling Server.CreateObject. The StaticObjects collection holds objects created by using the HTML <OBJECT> tag within the scope of the Session object. For more information about instantiating objects in this manner, see Setting Object Scope.

When you iterate through a collection that contains objects, you can either access the object's Session or Application state information or access the object's methods or properties. For example, suppose your application uses several objects to create a user account, and each object has an initialization method. You could iterate through the StaticObjects collection to retrieve object properties:

<%

  For Each Object in Session.StaticObjects

    Response.Write Object & ": " & Session.StaticObjects(Object)

  Next

%>

What’s Different About ASP Collections?

Although the ASP collections described in this topic are similar to the Visual Basic Collection object, there are some differences. The ASP collections support the Count property and the Item, Remove, and RemoveAll methods. They do not support the Add method.

[image: image7.png]




Processing User Input

Using the ASP Request object you can create simple, yet powerful scripts for collecting and processing data gathered with HTML forms. In this topic you will not only learn how to create basic form processing scripts, but also acquire useful techniques for validating form information, both on your Web server and at the user's browser.

About HTML Forms

HTML forms, the most common method for gathering Web-based information, consist of arrangements of special HTML tags that render user interface elements on a Web page. Text boxes, buttons, and check boxes are examples of elements that enable users to interact with a Web page and submit information to a Web server.

For example, the following HTML tags generate a form where a user can enter their first name, last name, and age, and includes a button for submitting information to a Web server. The form also contains an hidden input tag (not displayed by the Web browser) that you can use to pass additional information to a Web server.

<FORM METHOD="Post" ACTION="Profile.asp">

<INPUT TYPE="Text" NAME="FirstName"> 

<INPUT TYPE="Text" NAME="LastName">

<INPUT TYPE="Text" NAME="Age">

<INPUT TYPE="Hidden" NAME="UserStatus" VALUE="New">

<INPUT TYPE="Submit" VALUE="Enter">

</FORM>

Detailing the complete set of HTML form tags is outside the scope of this topic, however, there are numerous sources of information that you can use to learn about creating useful and engaging HTML forms. For example, use your Web browser's source viewing feature to examine how HTML forms are created on other Web sites. Also, visit Microsoft's MSDN Online Web site at http://msdn.microsoft.com/ to learn innovative ways of using HTML forms with other Internet technologies.

Processing Form Inputs with ASP

After creating an HTML form, you will need to process user input, which means sending the information to an .asp file for parsing and manipulation. Once again, examine the HTML code from the previous example. Notice that the <FORM> tag's ACTION attribute refers to a file called Profile.asp. When the user submits HTML information, the browser uses the POST method to send to the information to an .asp file on the server, in this case Profile.asp. The .asp file may contain scripts that process information and interact with other scripts, COM components, or resources, such as a database.

Using ASP, there are three basic ways to collect information from HTML forms:

· A static .htm file can contain a form that posts its values to an .asp file. 

· An .asp file can create a form that posts information to another .asp file. 

· An .asp file can create a form that posts information to itself, that is, to the .asp file that contains the form. 

The first two methods operate in the same way as forms that interact with other Web server programs, except that with ASP, the task of collecting and processing form information is greatly simplified. The third method is a particularly useful and will be demonstrated in the Validating Form Input section.

Getting Form Input

The ASP Request object provides two collections that facilitate the task of retrieving form information sent with as a URL request.

The QueryString Collection

The QueryString collection retrieves form values passed to your Web server as text following a question mark in the request URL. The form values can be appended to the request URL by using either the HTTP GET method or by manually adding the form values to the URL.

For example, if the previous form example used the GET method (METHOD="GET") and the user typed Clair, Hector, and 30, then the following URL request would be sent to the server:

http://Workshop1/Painting/Profile.asp?FirstName=Clair&LastName=Hector&Age=30&UserStatus=New

Profile.asp might contain the following form processing script:

Hello <%= Request.QueryString("FirstName") %> <%= Request.QueryString("LastName") %>. 

You are <%= Request.QueryString("Age") %> years old!

<%

  If Request.QueryString("UserStatus") = "New" Then 

    Response.Write "This is your first visit to this Web site!"

  End if


%>

In this case, the Web server would return the following text to the user's Web browser:

Hello Clair Hector. You are 30 years old! This is your first visit to this Web site!

The QueryString collection also has an optional parameter that you can use to access one of multiple values that appear in the URL request (using the GET method). You can also use the Count property to count the number of times that a specific type of value appears.

For example, a form containing a list box with multiple items can generate the following request:

http://OrganicFoods/list.asp?Food=Apples&Food=Olives&Food=Bread

You could use the following command to count multiple values:

Request.QueryString("Food").Count

To display the multiple values types, List.asp could contain the following script:

<%

  lngTotal = Request.QueryString("Food").Count

  For i = 1 To lngTotal

    Response.Write Request.QueryString("Food")(i) & "<BR>"

  Next

%>

The preceding script would display: 

Apples

Olives

Bread

You can also display the entire list of values as a comma-delimited string by using the following:

<% Response.Write Request.QueryString("Item") %>

This would display the following string:

Apples, Olives, Bread

Form Collection

When you use the HTTP GET method to pass long and complex form values to a Web server, you run the risk of losing information. Some Web servers tend to restrict the size of the URL query string, so that lengthy form values passed with the GET method might be truncated. If you need to send a large amount of information from a form to a Web server, you should use the HTTP POST method. The POST method, which sends form data in the HTTP request body, can send a an almost unlimited number of characters to a server. You can use the ASP Request object's Form collection to retrieve the values sent with the POST method.

The Form collection stores values in a manner similar to the QueryString collection. For example, if a user filled out a form by entering a long list of names, then you could retrieve the names with the following script:

<%

  lngTotal = Request.Form("Food").Count

  For i = 1 To lngTotal 

   Response.Write Request.Form("Food")(i) & "<BR>"

  Next

%>

Validating Form Input

A well-designed Web form often includes a client script that validates user input prior to sending information to the server. Validation scripts can check for such things as whether the user entered a valid number or whether a text box was left empty. Imagine that your Web site includes a form that enables users to compute the rate of return on an investment. You will probably want to verify whether a user has actually entered numerical or text information in the appropriate form fields, prior to sending potentially invalid information to your server.

In general, it's good practice to do as much form validation as possible on the client side. Beyond prompting users more quickly about input errors, client-side validation yields faster response times, reduces server loads, and frees bandwidth for other applications.

The following client-side script validates user–input (in this case, the script determines whether an account number entered by the user is actually a number) prior to sending information to the server:

<SCRIPT LANGUAGE="JScript">

function CheckNumber()

{




 if (isNumeric(document.UserForm.AcctNo.value))

   return true

 else

 {

   alert("Please enter a valid account number.")

   return false

 }



}

//Function for determining if form value is a number.

//Note:  The JScript isNaN method is a more elegant way to determine whether

//a value is not a number. However, some older browsers do not support this method.

function isNumeric(str)

{

  for (var i=0; i < str.length; i++)



{

    var ch = str.substring(i, i+1)

    if( ch < "0" || ch>"9" || str.length == null)





{

      return false

    }

  }

  return true

}


</SCRIPT>

<FORM METHOD="Get" ACTION="balance.asp" NAME="UserForm" ONSUBMIT="return CheckNumber()">


<INPUT TYPE="Text"   NAME="AcctNo">


<INPUT TYPE="Submit" VALUE="Submit">

</FORM>

If form validation requires database access, however, you should consider using server-side form validation. A particularly advantageous way of carrying out server-side validation is to create a form that posts information to itself. That is, the .asp file actually contains the HTML form that retrieves user input. (Remember, you can use ASP to interact with client-side scripts and HTML. For more information, see Interacting with client-side Scripts.) The input is returned to the same file, which then validates the information and alerts the user in case of an invalid input.

Using this method of processing and validating user input can greatly enhance the usability and responsiveness of your Web based forms. For example, by placing error information adjacent to the form field where invalid information was entered, you make it easier for the user to discover the source of the error. (Typically, Web-based forms forward requests to a separate Web page containing error information. Users who do not immediately understand this information may become frustrated.)

For example, the following script determines whether a user entered a valid account number by posting information to itself (Verify.asp) and calling a user defined function that queries a database:

<% 

  strAcct = Request.Form("Account")

  If Not AccountValid(strAcct) Then   

    ErrMsg = "<FONT COLOR=Red>Sorry, you may have entered an invalid account number.</FONT>"

  Else

    Process the user input
    .

    .

    .


    Server.Transfer("Complete.asp")

  End If

  Function AccountValid(strAcct)

    A database connectivity script or component method call goes here.
  End Function 

%>

<FORM METHOD="Post"  ACTION="Verify.asp">   

Account Number:  <INPUT TYPE="Text" NAME="Account"> <%= ErrMsg %> <BR> 

<INPUT TYPE="Submit">




</FORM>

In this example, the script is located in a file named Verify.asp, the same file that contains the HTML form; it posts information to itself by specifying Verify.asp in the ACTION attribute.

Important   If your are using JScript for server-side validation, be sure to place a pair of empty parentheses following the Request collection item (either QueryString or Form) when you are assigning the collection to a local variable. Without parenthesis, the collection returns an object, rather than a string. The following script illustrates the correct way to assign variables with JScript:

<%

   var Name = Request.Form("Name")();

   var Password = Request.Form("Password")();

  if(Name > "")

  {

     if(Name == Password)

      Response.Write("Your name and password are the same.")

  else

      Response.Write("Your name and password are different.");

  }

%>

VBScript exhibits the same behavior if the collection contains multiple values that are comma-separated or indexable. This means that for both VBScript and JScript, in addition to placing a pair of empty parentheses following the Request collection item, you will need to specify the index of the desired value. For example, the following line of JScript returns only the first of multiple values for a form element:

var Name = Request.Form("Name")(1);

[image: image8.png]




Using Components and Objects

COM components are the key to building powerful, real-world Web applications. Components provide functionality that you use in your scripts to perform specialized tasks, such as executing financial transactions or validating data. ASP also provides a set of base components that you can use to greatly enhance your scripts. 

About Components

A COM component is a reusable, programmatic building block that contains code for performing a task or set of tasks. Components can be combined with other components (even across networks) to create a Web application. COM components execute common tasks so that you do not have to create your own code to perform these tasks. For example, you can use a stock ticker component to display the latest stock quotes on a Web page. However, it would be difficult to create a script that provides the same functionality. Also, the script would not be as reusable as a component. 

If you are new to scripting, you can write scripts that use components without knowing anything about how the component works. ASP comes with base components that you can use immediately. For example, you can use the ActiveX Data Objects (ADO) components to add database connectivity to your Web pages. Additional components can also be obtained from third-party developers.

If you are a Web application developer, components are the best way to encapsulate your business logic into reusable, secure modules. For example, you could use a component to verify credit card numbers by calling the component from a script that processes sales orders. Because the verification is isolated from the order process, you can update the component when the credit card verification process changes, without changing your order process. Also, since COM components are reusable, you could reuse the component in other scripts and applications. Once you have installed a component on your Web server, you can call it from a ASP server-side script, an ISAPI extension, another component on the server, or a program written in another COM-compatible language.

You can create components in any programming language that supports the Component Object Model (COM), such as C, C++, Java, Visual Basic, or numerous scripting languages. (If you are familiar with COM programming, COM components are also known as Automation servers.) To run on the Web server, your COM components cannot have any graphical user interface elements, such as the Visual Basic MsgBox function; graphical interface elements would only be viewable on the server, and not the browser.

Creating an Instance of a Component’s Object

A component is executable code contained in a dynamic-link library (.dll) or in an executable (.exe) file. Components provide one or more objects, self contained units of code which perform specific functions within the component. Each object has methods (programmed procedures) and properties (behavioral attributes). To use an object provided by a component, you create an instance of the object and assign the new instance to a variable name. Use the ASP Server.CreateObject method or the HTML <OBJECT> tag to create the object instance. Use your scripting language’s variable assignment statement to give your object instance a name. When you create the object instance, you must provide its registered name (PROGID). For the base components provided with ASP, you can get the PROGID for the objects from the reference pages (see Installable Components for ASP).

For example, the Ad Rotator component randomly rotates through a series of graphical advertisements. The Ad Rotator component provides one object, called the Ad Rotator object, whose PROGID is "MSWC.AdRotator." To create an instance of the Ad Rotator object, use one of the following statements:

VBScript:
<% Set MyAds = Server.CreateObject("MSWC.AdRotator") %>

JScript:
<% var MyAds = Server.CreateObject("MSWC.AdRotator") %>

If you are already familiar with VBScript or JScript, note that you do not use the scripting language’s function for creating a new object instance (CreateObject in VBScript or New in JScript). You must use the ASP Server.CreateObject method; otherwise, ASP cannot track your use of the object in your scripts.

You can also use the HTML <OBJECT> tag to create an object instance. You must supply the RUNAT attribute with a value of Server, and you must provide the ID attribute set to the variable name you will use in your scripts. You can identify the object by using either its registered name (PROGID) or its registered number (CLSID).The following example uses the registered name (PROGID) to create an instance of the Ad Rotator object:

<OBJECT RUNAT=Server ID=MyAds PROGID="MSWC.AdRotator"></OBJECT>

The following example uses the registered number (CLSID) to create an instance of the Ad Rotator object:

<OBJECT RUNAT=SERVER ID=MyAds 

CLASSID="Clsid:1621F7C0-60AC-11CF-9427-444553540000"></OBJECT> 

Use Scripting to Create COM Components

ASP supports Windows Script Components, Microsoft's powerful scripting technology that you can use to create COM components. Specifically, you can encapsulate common scripts, such as those used for database access or content generation, into reusable components accessible from any .asp file or program. You can create Windows Script Components by writing scripts in a language such as VBScript or JScript without a special development tool. You can also incorporate Windows Script Components into programs written in COM compliant programming languages, such as Visual Basic, C++, or Java.

The following is an example of a Windows Script Components, written in VBScript, that defines methods for converting temperature measurements between Fahrenheit and Celsius:

<SCRIPTLET>

<Registration


Description="ConvertTemp"


ProgID="ConvertTemp.Scriptlet"


Version="1.00"

>

</Registration>

<implements id=Automation type=Automation>


<method name=Celsius>



<PARAMETER name=F/>


</method>


<method name=Fahrenheit>



<PARAMETER name=C/>


</method>

</implements>

<SCRIPT LANGUAGE=VBScript>

  Function Celsius(F)


  Celsius = 5/9 * (F - 32)

  End Function

  Function Fahrenheit(C)


  Fahrenheit = (9/5 * C) + 32

  End Function

</SCRIPT>

</SCRIPTLET>

Before implementing this Windows Script Component you must save this file with an .sct extension and then in Windows Explorer, right-click this file and select Register. To use this Windows Script Component in a Web page, you would use a server-side script such as the following:

<%

  Option Explicit

  Dim objConvert

  Dim sngFvalue, sngCvalue

  sngFvalue = 50

  sngCvalue = 21 

  Set objConvert = Server.CreateObject("ConvertTemp.Scriptlet")

%>

<%= sngFvalue %> degrees Fahrenheit is equivalent to <%= objConvert.Celsius(sngFvalue) %> degrees Celsius<BR>

<%= sngCvalue %> degrees Celsius is equivalent to <%= objConvert.Fahrenheit(sngCValue) %> degrees Fahrenheit<BR>

Using ASP Built-in Objects

ASP also provides built-in objects for performing useful tasks that simplify Web development. For example, you can use the Request object to easily access information associated with an HTTP request, such as user input coming from HTML forms or cookies. Unlike using the objects provided by a COM component, you do not need to create an instance of an ASP built-in object to use it in your scripts. These objects are automatically created for you when the ASP request starts processing. You access the methods and properties of a built-in object in the same way in which you access the methods and properties of a component’s objects, as described in this topic. For a complete description of the built-in objects, see Active Server Pages Objects Quick Reference Card.

Calling an Object Method

A method is an action you can perform on an object or with an object. The syntax for calling a method is:

Object.Method parameters
The parameters vary depending on the method.

For example, you can use the Write method of the Response built-in object to send information to the browser as shown in the following statement:

<% Response.Write "Hello World" %>

Note   Some scripting languages do not support the Object.Method syntax. If your language does not, you must add an entry to the registry in order to use that language as your primary scripting language. See Working with Scripting Languages for more information.

Setting an Object Property

A property is an attribute that describes the object. Properties define object characteristics, such as the type of the object, or describe the state of an object, such as enabled or disabled. The syntax is:

Object.Property
You can sometimes read and set the value of a property. In addition, for some objects, you can also add new properties.

For example, the Ad Rotator component has a property, Border, which specifies whether the ad has a border around it and determines the border thickness. The following expression specifies no border:

<% MyAds.Border = 0 %>

For some properties, you can display the current value by using the ASP output directive. For example, the following statement returns TRUE if the browser is still connected to the server:

<%= Response.IsClientConnected %>

Creating an Object from a Java Class

To use Server.CreateObject to create an instance of a Java class, you must use the JavaReg program to register the class as a COM component. You can then use Server.CreateObject method or an HTML <OBJECT> tag with the PROGID or CLSID.

Alternatively, you can use the mechanism provided by Java monikers to instantiate the Java class directly without using the JavaReg program. To instantiate a class with monikers, use the VBScript or JScript GetObject statement and provide the full name of the Java class in the form java:classname. The following VBScript example creates an instance of the Java Date class.

<% 

  Dim dtmDate

  Set dtmDate = GetObject("java:java.util.Date")

%>

The date is <%= dtmDate.toString() %>

Objects created by calling GetObject instead of Server.CreateObject can also access the ASP built-in objects and participate in a transaction. To use Java monikers, however, you must be using version 2.0, or later, of the Microsoft virtual machine.

[image: image9.png]




Setting Object Scope

The scope of an object determines which scripts can use that object. By default, when you create an object instance, the object has page scope. Any script command in the same ASP page can use a page-scope object; the object is released when the .asp file completes processing the request. The recommended scope for most objects is page scope. You can change the scope of an object, however, to make it accessible from scripts on other pages. This topic explains how to work with page scope objects and how to change the scope of objects. 

Using Page Scope Objects

An object that you create by using Server.CreateObject or the HTML <OBJECT> tag on an ASP page exists for the duration of that page. The object is accessible to any script commands on that page, and it is released when ASP has finished processing the page. Thus an object has the scope, or lifetime, of a page.

Creating Objects in Loops

In general, you should avoid creating objects inside a loop. If you must create objects in a loop, you should manually release the resources used by an object:

<%

  Dim objAd

  For i = 0 To 1000

    Set objAd = Server.CreateObject("MSWC.AdRotator")

    .

    .

    .



    objAd.GetAdvertisement

    .

    .

    .

    Set objAd = Nothing



  Next

%>

Giving an Object Session Scope

A session-scope object is created for each new session in an application and released when the session ends; thus, there is one object per active session. Session scope is used for objects that are called from multiple scripts but affect one user session. You should give objects session scope only when needed. If you do use session scope, you must know the threading model of the component that provides the object because the threading model affects the performance and security context of the object. For more information, see Advanced Information: Performance Issues in this topic.

To give an object session scope, store the object in the ASP Session built-in object. You can use either the HTML <OBJECT> tag in a Global.asa file or the Server.CreateObject method on an ASP page to create a session scope object instance.

In the Global.asa file, you can use the <OBJECT> tag, extended with RUNAT attribute (which must be set to SERVER) and the SCOPE attribute (which must be set to Session). The following example creates a session-scope instance of the Browser Type object of the Browser Capabilities component:

<OBJECT RUNAT=SERVER SCOPE=Session ID=MyBrowser PROGID="MSWC.BrowserType">

</OBJECT>

Once you have stored the object in the Session object, you can access the object from any page in the application. The following statement uses the object instance created by the <OBJECT> tag in the previous example:

<%= If MyBrowser.browser = "IE"  and  MyBrowser.majorver >= 4  Then . . .%>

On an ASP page, you can also use the Server.CreateObject method to store an object in the Session built-in object. The following example stores an instance of the Browser Type object in the Session object.

<% Set Session("MyBrowser") = Server.CreateObject("MSWC.BrowserType") %> 

To display browser information in a different .asp file, you first retrieve the instance of the BrowserType object stored in the Session object, and then call the Browser method to display the name of the browser:

<% Set MyBrowser = Session("MyBrowser") %> 

<%= MyBrowser.browser %>

ASP does not instantiate an object that you declare with the <OBJECT> tag until that object is referenced by a script command from an .asp file. The Server.CreateObject method instantiates the object immediately. Thus, the <OBJECT> tag offers better scalability than the Server.CreateObject method for session-scope objects.

Giving an Object Application Scope

An application-scope object is a single instance of an object that is created when the application starts. This object is shared by all client requests. Some utility objects, such as the objects of the Page Counter Component, might perform better in application scope, but generally you should use the alternatives proposed in the following section. In addition, the threading model affects the performance and security context of the object (see Advanced Information: Performance Issues in this topic).

To give an object application scope, store the object in the ASP Application built-in object. You can use either the <OBJECT> tag in a Global.asa file or the Server.CreateObject method in an .asp file to create an application scope object instance.

In the Global.asa file, you can use the <OBJECT> tag, extended with RUNAT attribute (which must be set to Server) and the SCOPE attribute (which must be set to Application). For example, the following is an example of using the <OBJECT> tag to create an application-scope instance of the Ad Rotator object: 

<OBJECT RUNAT=SERVER SCOPE=Application ID=MyAds PROGID="MSWC.AdRotator">

</OBJECT>

After storing the Ad Rotator object in Application state, you can access from any page in you application using a statement such as the following:

<%=MyAds.GetAdvertisement("CustomerAds.txt") %>

Alternatively, in an .asp file, you can use Server.CreateObject to store an object instance in the Application built-in object, such as in the following example:

<% Set Application("MyAds") = Server.CreateObject("MSWC.Adrotator")%> 

You can display the advertisement in your application's .asp files by retrieving the instance of the Ad Rotator object from Application state, as in the following example:

<%Set MyAds = Application("MyAds") %> <%=MyAds.GetAdvertisement("CustomerAds.txt") %> 

Alternatives to Session and Application Scope

In general, you should try to extensively use application or session state for items or objects that take a long time to initialize, such as dictionary objects or recordsets. However, if you find that objects in session or application state are consuming too many resources, such as memory or database connections, you should seek alternative ways to implement these objects. For example, the threading model of a component can affect the performance of objects you create from it, especially objects with session or application scope.

In many cases, a better solution than creating application or session scope objects is to use session or application scope variables that pass information to objects created at the page level. For example, you should not give an ADO Connection object session or application scope because the connection it creates remains open for a long time and because your script no longer takes advantage of connection pooling. You can, however, store an ODBC or OLE DB connection string in the Session or Application built-in object and access the string to set a property on the Connection object instance that you create on a page. In this way, you store frequently used information in session or application state but you create the object that uses the information only when needed. For more information about scoping variables, see Using Variables and Constants.

User-Defined JScript Objects

You can create your own JScript object by defining a constructor function that creates and initializes the properties and methods of the new object. The object instance is created when your script uses the new operator to invoke the constructor. User-defined JScript objects are supported in ASP server-side scripts and work well when they have page scope. However, you cannot give a user-defined object application scope. Also, giving a user-defined JScript object session scope may affect the functionality of the object. In particular, if an object has session scope, scripts on other pages can access the object's properties but cannot call its methods. Also, giving a user-defined JScript object session scope can affect Web application performance.

Advanced Information: Performance Issues

The threading model of a component may affect the performance of your Web site. Generally, objects that are marked Both are the recommended objects to use in .asp files if they will be stored in Session and Application state. Single-threaded, Apartment, and free-threaded objects are not recommended.

Because you may not always have control over the threading model of the objects you use, the following guidelines will help you get the best performance:

· Page scope objects Objects marked Both or Apartment will give you the best performance. 

· Application scope objects Objects marked Both, that also aggregate the FreeThreadedMarshaler, will give you the best performance. You can use either the <OBJECT> tag or the Server.CreateObject method to store objects marked Both in the Application object. You must use the HTML <OBJECT> tag with apartment-threaded objects. 

· Session scope objects Objects marked Both will give you the best performance. Using single-threaded or apartment-threaded objects will cause the Web server to lock the session down to one thread. Free-threaded objects do not lock down the session, but are slow. You can use either the <OBJECT> tag or the Server.CreateObject method to store objects in the Session object. 

[image: image10.png]




Sending Content to the Browser

As a script in an ASP page is processed, any text or graphics not enclosed within ASP delimiters or <SCRIPT> tags is simply returned to the browser. You can also explicitly send content to the browser by using the Response object.

Sending Content

To send content to the browser from within ASP delimiters or from a procedure, use the Write method of the Response object. For example, the following statement sends a different greeting to the user depending on whether the user has visited the page before:

<% 

  If blnFirstTime Then 

    Response.Write "<H3 ALIGN=CENTER>Welcome to the Overview Page.</H3>"

  Else

    Response.Write "<H3 ALIGN=CENTER>Welcome Back to the Overview Page.</H3>" 

  End If 

%>

Outside of a procedure, you do not have to use Response.Write to send content back to the user. Content that is not within scripting delimiters is sent directly to the browser, which formats and displays this content accordingly. For example, the following script produces the same output as the previous script:

<H3 ALIGN=CENTER> 

<% If blnFirstTime Then %> 

  Welcome to the Overview Page. 

<% Else %> 

  Welcome Back to the Overview Page. 

<% End If %> 

</H3>

Intersperse script commands and HTML when you just need to return output once or when it is more convenient to add statements to existing HTML text. Use Response.Write when you do not want to break up a statement with delimiters or when you want to build the string that is returned to the browser. For example, you could construct a string of text that builds a table row with values sent by an HTML form:

Response.Write "<TR><TD>" & Request.Form("FirstName") _

 & "</TD><TD>" & Request.Form("LastName") & "</TD></TR>"

Request.Form returns the values sent from an HTML form (see Processing User Input).

Note   The ampersand character (&) is the string-concatenation character for VBScript. The underscore (_) is the VBScript line-continuation character.

Setting the Content Type

When the Web server returns a file to a browser, it tells the browser what type of content is contained in the file. This enables the browser to determine whether it can display the file itself or whether it has to call another application. For example, if the Web server returns a Microsoft Excel worksheet, the browser must be able to start a copy of Microsoft Excel to display the page. The Web server recognizes file types by mapping the file name extension to a list of MIME (Multipurpose Internet Mail Extensions) types. For example, to start Microsoft Excel, the browser needs to recognize the application/vnd.ms-excel MIME type.

You can use the ContentType property of the Response object to set the HTTP content type string for the content you send to a user. For example, the following command sets the content type for channel definitions:

<% Response.ContentType = "application/x-cdf" %>

For more information about channels, see Creating Dynamic Channels in this topic.

Other common content types are text/plain (for content returned as text instead of interpreted HTML statements), image/gif (for GIF images), image/jpeg (for JPEG images), video/quicktime (for movies in the Apple QuickTime® format), and text/xml (for XML documents). In addition, a Web server or Web browser may support custom MIME types. To see the content types already defined by your Microsoft Web server, use the Internet Information Services snap-in, [image: image11.png]


to open the property sheets for your Web site, click the HTTP Headers tab, and then click the File Types tab. These file types may be used as a reference when you choose to manually set the content type with ASP.

Redirecting the Browser

Instead of sending content to a user, you can redirect the browser to another URL with the Redirect method. For example, if you want to make sure users have entered your application from a home page so that they receive a customer ID, you can check to see if they have a customer ID; if they do not, you can redirect them to the home page.

<%

  If Session("CustomerID") = "" Then

    Response.Redirect "Register.asp" 

  End If

%>

server-side scripts which are processed before any content is sent to the user are said to be buffered. ASP enables you to turn buffering on or off, and this configuration can greatly affect the behavior of the Redirect method. Specifically, if you have buffering turned off, then you must redirect the browser before your page's HTTP headers are returned to the browser.

Place the Response.Redirect statement at the top of the page, before any text or <HTML> tags, to ensure that nothing has been returned to the browser. If you use Response.Redirect after content or headers have been returned to the browser, you will see an error message. Also note that Response.Redirect does not need to be followed by Response.End.

If you want to use Response.Redirect from the middle of a page, use it along with the Response.Buffer property, as explained in the Buffering Content section in this topic.

Transferring Between .ASP Files

Using Response.Redirect to redirect a browser requires a round-trip, meaning that the server sends an HTTP response to the browser indicating the location of the new URL. The browser automatically leaves the server's request queue and sends a new HTTP request for this URL. The server then adds this request to the request queue along with other client's requests that arrived in the meantime. For a busy Web site, round-trips can waste bandwidth and reduce server performance—especially when the browser is redirected to a file located on the same sever.

You can use the Server.Transfer method to transfer from one .asp file to another file located on the same server instead of the Response.Redirect method. With Server.Transfer you can directly transfer requests for .asp files without ever leaving the server request queue, thus eliminating costly round-trips.

For example, the following script demonstrates how you could use Server.Transfer to jump between the pages of an application depending on state information:

<%

  If Session("blnSaleCompleted") Then

    Server.Transfer("/Order/ThankYou.asp")

  Else

    Server.Transfer("/Order/MoreInfo.asp")

  End if

%>

Server.Transfer sends requests from one executing .asp file to another file. During a transfer, the originally requested .asp file immediately terminates execution without clearing the output buffer (for more information, see the Buffering Content section). Request information is then made available to the destination file when it begins execution. During execution, this file has access to the same set of intrinsic objects (Request, Response, Server, Session, and Application) as the originally requested file.

You can also use Server.Transfer to transfer between .asp files located in different applications. However, when you transfer to an .asp file located in another application, the file will behave as if it was part of the application that initiated the transfer (that is, the file has access only to variables scoped for the initiating application, not for the application where the file actually resides). For example, if you transfer from a file located in the Sales Application to a file located in the Personnel Application, then the Sales Application effectively borrows this file from the Personnel Application and runs it as if it were part of the Sales Application.

ASP also provides the Server.Execute command that you can use to transfer to a file, execute its content, and then return to the file that initiated the transfer. If you are familiar with VBScript, it will help you to think of Server.Execute as analogous to a procedure call, except that instead of executing a procedure, you are executing an entire .asp file. 

For example, the following script demonstrates how you could use Server.Execute to do dynamic inclusion of .asp files:

<%

  .

  .

  .

  If blnUseDHTML Then

    Server.Execute("DHTML.asp")

  Else

    Server.Execute("HTML.asp")

  End If

  .

  .

  .

%>

As long as the destination file belongs to an application on the same server, the originating application will transfer to this file, execute its contents, and then resume executing the file that initiated the transfer. Just as with Server.Transfer, an executed .asp file behaves as if it were part of the originating application. Server.Execute, however, will not work across servers. For more information, see Server.Execute.

Buffering Content

By default, the Web server processes all script commands on a page before any content is sent to the user. This process is known as buffering. You can use the Buffer property of the Response object to disable buffering, so that the Web server returns HTML and the results of scripts as it processes a page.

The advantage of buffering your .asp files is that you can abort sending a Web page if, for example, the script processing does not proceed correctly or if a user does not have appropriate security credentials. Instead, you can transfer the user to another page using Server.Transfer, or clear the buffer (using the the Clear method of the Response object) to send different content to the user. Depending on your application, you may want to use the Clear method before transferring. The following example uses both of these methods:

<HTML>

  <BODY>

  .

  .

  .

  <%

    If Request("CustomerStatus") = "" Then

      Response.Clear

      Server.Transfer("/CustomerInfo/Register.asp")

    Else

      Response.Write "Welcome back " & Request("FirstName") & "!"



    .



    .



    .

    End If

  %>

  </BODY>

</HTML>

You could also use Response.Buffer to prevent the Web server from returning the HTTP header before a script can modify the header. Certain properties and methods, such as Response.Expires and Response.Redirect, modify the HTTP header.

If the Buffer property in a script is set to TRUE without also calling the Flush method to immediately send buffered content to the browser, the server will maintain Keep-Alive requests made by the client. The benefit of writing scripts in this manner is that server performance is improved because the server does not have to create a new connection for each client request (assuming that the server, client, and any proxy servers all support Keep-Alive requests). However, a potential drawback to this approach is that buffering prevents the server's response from being sent to the user until the server has finished processing the entire script. For long or complicated scripts, users could experience long wait times before seeing the page.

Buffering is turned on by default for ASP applications. You can use the Internet Information Services snap-in, [image: image12.png]


to turn off buffering for an entire ASP application. For more information, see Configuring ASP Applications.

Allowing Proxy Servers to Cache Pages

Your application may be sending pages to a client through a proxy server. A proxy server acts on behalf of client browsers to request pages from Web sites. The proxy server caches HTML pages so that repeated requests for the same page can be returned quickly and efficiently to browsers. Having the proxy server process requests and cache pages reduces the load on the network and on the Web server.

Although caching works well for many HTML pages, it often does not work well for ASP pages that contain frequently updated information. For example, pages that report stock market prices or display inventory for a high-volume business must provide timely information. Information that is even one hour old might not be accurate enough. If your application returns personalized information, such as a custom home page, you want to ensure that no user sees another user's personal information.

By default, ASP instructs proxy servers not to cache the ASP page itself (although images, image maps, applets, and other items referenced from the page are cached). You can allow caching for certain pages by using the Response.CacheControl property to set the Cache-Control HTTP header field. The default value of Response.CacheControl is the string "Private", which prevents proxy servers from caching the page. To allow caching, set the Cache-Control header field to Public:

<% Response.CacheControl = "Public" %>

Because HTTP headers must be sent to the browser or proxy before any page content is sent, either put the Response.CacheControl property before any HTML tags or, if you have disabled buffering, use Response.Buffer to buffer the page.

The Cache-Control header field is part of the HTTP 1.1 specification. ASP pages are not cached on proxy servers that support only HTTP 1.0 because no Expires header field is sent.

Preventing Browsers from Caching Pages

Each browser version has its own rules for determining whether to cache pages. To prevent a browser from caching ASP pages, use Response.Expires to set the Expires header:

<% Response.Expires = 0 %>

A value of 0 forces cached pages to expire immediately. Because HTTP headers must be sent to the browser before any page content is sent, either put the Response.Expires property before any HTML tags or buffer the page.

Creating Dynamic Channels

A channel is a Web technology available with Microsoft Internet Explorer 4.0, or later, that you can use to automatically deliver new or updated Web content to users. The channel schedules the user's computer to periodically connect to a server and retrieve updated information. (This retrieval process is commonly referred to as client pull because information is "pulled" in, or gathered, from the server.) When new information is made available at a particular Web site, the content is downloaded to the browser cache for offline viewing. Clever use of channels for distributing Web based information (especially on intranets) can help to centralize information as well as reduce server traffic. For more information about channels, visit the Microsoft Internet Explorer Web site, at http://www.microsoft.com/windows/ie/.

Using ASP, you can write scripts that dynamically create channels by generating a channel definition file. An XML-based channel definition file (.cdf) describes the organization and update schedule of a channel's contents. Commands in the .cdf file use syntax similar to HTML tags, so they are easy to learn and to generate from a script. When you write a server-side script to create a channel definition file, give the file a .cdx extension. When ASP reads a file with a .cdx extension, it automatically sends the application/x-cdf content type, which tells the browser to interpret the bytes as channel definitions. If you do not use the .cdx extension, your script must manually set the content type to application/x-cdf by using Response.ContentType.

Here is an example of how you might use channels. The following HTML form asks the user to select channels. When submitted, the form calls a script in a .cdx file to create the channel definitions.

<P> Choose the channels you want. </P>

<FORM METHOD="POST" ACTION="Chan.cdx">

<P><INPUT TYPE=CHECKBOX NAME=Movies> Movies

<P><INPUT TYPE=CHECKBOX NAME=Sports> Sports

<P><INPUT TYPE="SUBMIT" VALUE="SUBMIT">

</FORM>

The script in Chan.cdx builds the channel definitions based on the form values submitted with the request.

<% If Request.Form("Movies") <> "" Then %>

  <CHANNEL>

    channel definition statements for the movie pages
  </CHANNEL>

<% End If %>

<% If Request.Form("Sports") <> "" Then %>

  <CHANNEL>

    channel definition statements for the sports pages
  </CHANNEL>

<% End If %>

Accessing Server Resources with WebDAV

Distributed Authoring and Versioning (WebDAV), a powerful extension of the HTTP 1.1 protocol, exposes Web file storage media—such as a local file system—over an HTTP connection. WebDAV holds great promise for making the Web into seamless, collaborative authoring environment. With the IIS 5.0 implementation of WebDAV, you can enable remote authors to create, delete, move, search, or apply attributes to files and directories on your Web server. For more information, see WebDav Publishing. 

[image: image13.png]




Including Files

Server-side include directives give you a way to insert the content of another file into a file before the Web server processes it. ASP implements only the #include directive of this mechanism. To insert a file into an .asp file, use the following syntax:

<!-- #include virtual | file ="filename" --> 

The virtual and file keywords indicate the type of path you are using to include the file, and filename is the path and file name of the file you want to include.

Included files do not require a special file name extension; however, it is considered good programming practice to give included files an .inc extension to distinguish them from other types of files.

Using the Virtual Keyword

Use the virtual keyword to indicate a path beginning with a virtual directory. For example, if a file named Footer.inc resides in a virtual directory named /Myapp, the following line would insert the contents of Footer.inc into the file containing the line:

<!-- #include virtual ="/myapp/footer.inc" -->

Using the File Keyword

Use the file keyword to indicate a relative path. A relative path begins with the directory that contains the including file. For example, if you have a file in the directory Myapp, and the file Header1.inc is in Myapp\Headers, the following line would insert Header1.inc in your file:

<!-- #include file ="headers\header1.inc" -->

Note that the path to the included file, Headers\header1.inc, is relative to the including file; if the script containing this #include statement is not in the directory /Myapp, the statement would not work.

You can also use the file keyword with the syntax (..\) to include a file from a parent, or higher-level, directory if the Enable Parent Paths option is selected in the Internet Information Services snap-in. [image: image14.png]


For instructions, see Configuring ASP Applications.

Location of Included Files

ASP detects changes to an included file regardless of its location and inserts the files content the next time a browser requests an .asp file which includes this file. However, in general, it is easier to secure include files if they reside within the same application or Web site. For better security, it is advisable to place include files in a separate directory within your application, such as \Includes, and apply only appropriate Execute (Web server) permissions. For more information, see Setting Web Server Permissions.

Important   By default, Web server Read permissions are applied to all files. However, to prevent users from viewing the contents of your include files, disable Read permissions for the Include directory. 

Including Files: Tips and Cautions

An included file can, in turn, include other files. An .asp file can also include the same file more than once, provided that the #include directives do not cause a loop. For example, if the file First.asp includes the file Second.inc, Second.inc must not in turn include First.asp. Nor can a file include itself. ASP detects such loop or nesting errors, generates an error message, and stops processing the requested .asp file.

ASP includes files before executing script commands. Therefore, you cannot use a script command to build the name of an included file. For example, the following script would not open the file Header1.inc because ASP attempts to execute the #include directive before it assigns a file name to the variable name.

<!--  This script will fail -->

<% name=(header1 & ".inc") %> 

<!-- #include file="<%= name %>" -->

Scripts commands and procedures must be entirely contained within the script delimiters <% and %>, the HTML tags <SCRIPT> and </SCRIPT>, or the HTML tags <OBJECT> and </OBJECT>. That is, you cannot open a script delimiter in an including .asp file, then close the delimiter in an included file; the script or script command must be a complete unit. For example, the following script would not work:

<!-- This script will fail -->

<%

  For i = 1 To n

    statements in main file
    <!--  #include file="header1.inc" -->

  Next

%>

The following script, however, would work:

<% 

  For i = 1 to n

    statements in main file
%> 

<!--  #include file="header1.inc"   -->

<% Next %>

Note   If the file that your ASP script includes contains a large number of functions and variables that are unused by the including script, the extra resources occupied by these unused structures can adversely affect performance, and ultimately decrease the scalability of your Web application. Therefore, it is generally advisable to break your include files into multiple smaller files, and include only those files required by your server-side script, rather than include one or two larger include files that may contain superfluous information.

Occasionally, it may be desirable to include a server-side file by using the HTML <SCRIPT></SCRIPT> tags. For example, the following script includes a file (by means of a relative path) that can be executed by the server:

<SCRIPT LANGUAGE="VBScript" RUNAT=SERVER SRC="Utils\datasrt.inc"></SCRIPT>

The following table shows the correct syntax for including files with the SRC attribute by means of either virtual or relative paths:

	Type of Path
	Syntax
	Example

	Relative
	SRC="Path\Filename"
	SRC="Utilities\Test.asp"

	Virtual
	SRC="/Path/Filename"
	SRC="/MyScripts/Digital.asp"

	Virtual
	SRC="\Path\Filename"
	SRC="\RegApps\Process.asp"


Note   You should not put any programmatic logic between the <SCRIPT> tags when including by this method; use another set of <SCRIPT> tags to add such logic.

[image: image15.png]




Managing Sessions

One of the challenges to developing a successful Web application is maintaining user information over the course of a visit, or session, as the user travels from page to page in an application. HTTP is a stateless protocol, meaning that your Web server treats each HTTP request for a page as an independent request; the server retains no knowledge of previous requests, even if they occurred only seconds prior to a current request. This inability to remember previous requests means that it is this difficult to write applications, such as an online catalog, where the application may need to track the catalog items a user has selected while jumping between the various pages of the catalog.

ASP provides a unique solution for the problem of managing session information. Using the ASP Session object and a special user ID generated by your server, you can create clever applications that identify each visiting user and collect information that your application can then use to track user preferences or selections.

Important   ASP assigns the user ID by means of an HTTP cookie, which is a small file stored on the user's browser. So, if you are creating an application for browsers that do not support cookies, or if your customers might set their browsers to refuse cookies, you should not use ASP's session management features.

Starting and Ending Sessions

A session can begin in four ways:

· A new user requests a URL that identifies an .asp file in an application, and the Global.asa file for that application includes a Session_OnStart procedure. 

· A user stores a value in the Session object. 

· A new session automatically starts whenever the server receives a request that does not contain a valid SessionID cookie. 

· A user requests an .asp file in an application, and the application’s Global.asa file uses the <OBJECT> tag to instantiate an object with session scope. See Using Components and Objects for more information about using the <OBJECT> tag to instantiate an object. 

A session automatically ends if a user has not requested or refreshed a page in an application for a specified period of time. This value is 20 minutes by default. You can change the default for an application by setting the Session Timeout property on the Application Options property sheet in the Internet Information Services snap-in. [image: image16.png]


Set this value according to the requirements of your Web application and the memory capacity of your server. For example, if you expect that users browsing your Web application will linger on each page for only a few minutes, then you may want to significantly reduce the session timeout value from the default. A long session timeout period can result in too many open sessions, which can strain your server's memory resources.

If, for a specific session, you want to set a timeout interval that is shorter than the default application timeout, you can also set the Timeout property of the Session object. For example, the following script sets a timeout interval of 5 minutes.

<%  Session.Timeout = 5  %>

You can also set the timeout interval to be greater than the default value, the value determined by the Session Timeout property.

Note   Timeout only applies to sessions that have state. During a stateless session the Session object does not contain content or static objects. This type of session automatically ends after the request is processed and is recreated on the next request from the same browser. 

Alternatively, to deliberately end a session you can use the Abandon method of the Session object. For example, you can provide a Quit button on a form with the ACTION parameter set to the URL of an .asp file that contains the following command.

<% Session.Abandon %>

Note   A user's requests that are queued up for execution prior to initiating Session.Abandon will execute within the context of the session being abandoned. After Session.Abandon has completed execution, new incoming requests will not be associated with the session.

About SessionID and Cookies

The first time a user requests an .asp file within a given application, ASP generates a SessionID. A number produced by a complex algorithm, the SessionID uniquely identifies each user's session. At the beginning of a new session, the server stores the Session ID in the user's Web browser as a cookie.

The SessionID cookie is similar to a locker key in that, as the user interacts with an application during a session, ASP can store information for the user in a "locker" on the server. The user's SessionID cookie, transmitted in the HTTP request header, enables access to this information in the way that a locker key enables access to a locker's contents. Each time that ASP receives a request for a page, it checks the HTTP request header for a SessionID cookie.

After storing the SessionID cookie in the user's browser, ASP reuses the same cookie to track the session, even if the user requests another .asp file, or requests an .asp file running in other application. Likewise, if the user deliberately abandons or lets the session timeout, and then proceeds to request another .asp file, ASP begins a new session using the same cookie. The only time a user receives a new SessionID cookie is when the server administrator restarts the server, thus clearing the SessionID settings stored in memory, or the user restarts the Web browser.

By reusing the SessionID cookie, ASP minimizes the number of cookies sent to the browser. Additionally, if you determine that your ASP application does not require session management, you can prevent ASP from tracking session and sending SessionID cookies to users.

ASP will not send the session cookies under the following conditions:

· If an application has session state disabled. 

· If an ASP page is defined as sessionless, that is, a page containing the 

<%@ EnableSessionState=False %>

tag. For more information, see Sessionless ASP Pages. 

You should also note that SessionID cookies are not intended to provide a permanent means for tracking users across multiple visits to a Web site. The SessionID information stored in the server computer's memory can be easily lost. If you want track users who visit your Web application over a longer periods, you must create a user identification by storing a special cookie in a user's Web browser and saving the cookie information to a database. For more information, see Using Cookies.

Storing and Removing Data from the Session object

The Session object provides a dynamic, associative array into which you can store information. You can store scalar variables and object variables into the Session object.

To store a variable in the Session object, assign a value to a named entry in the Session object. For example, the following command stores two new variables in the Session object:

<% 

  Session("FirstName") = "Jeff"

  Session("LastName") = "Smith" 

%>

To retrieve information from the Session object, access the named entry. For example, to display the current value of Session("FirstName"):

Welcome <%= Session("FirstName") %>

You can store user preferences in the Session object, and then access that preference to determine what page to return to the user. For example, you can allow a user to specify a text-only version of your content in the first page of the application and apply this choice on all subsequent pages that the user visits in this application.

<% If Session("ScreenResolution") = "Low" Then %> 

  This is the text version of the page.

<% Else %> 

  This is the multimedia version of the page.

<% End If %>

You can also store an object instance in the Session object, although doing so can affect server performance. For more information, see Setting Object Scope.

At times, it may be desirable to delete items stored in the Session object. For example, it is not uncommon for users visiting an online retail store to change their minds, abandon a list of purchase items, and decide on a completely different set of selections. In such a case it may be expedient to update the Session object by deleting inappropriate values.

The Session object's Contents collection contains all of the variables that have been stored (that is, those stored without using the HTML <OBJECT> tag) for a session. By using the Contents collection's Remove method, you can selectively remove a reference to a variable that was added for the session state. The following script illustrates how to use the Remove method to purge an item, in this case user discount information, from the Session object:

<%

  If Session.Contents("Purchamnt") <= 75 then 

    Session.Contents.Remove("Discount")

  End If 

%>

If desirable, you can also use the Contents collection's RemoveAll method to completely remove all variables stored for the session:

Session.Content.RemoveAll()

Using the Remove method you can choose to delete items by name or by index. The following script demonstrates how to cycle through values stored in the Session object and conditionally remove values by index: 

<%

  For Each intQuote in Session.Contents

    If Session.Contents(intQuote) < 200 Then

      Session.Contents.Remove(intQuote)  

    End If

  Next

%>

Managing Sessions Across Multiple Servers

ASP session information is stored on the Web server. A browser must request pages from the same Web server for scripts to access session information. On cluster of Web servers (where many Web servers share the responsibility for responding to user requests) user requests will not always be routed to the same server. Instead, special software distributes all requests for the site URL to whichever server is free, a process called load balancing. Load balancing makes it difficult to maintain session information on a cluster of Web servers.

To use ASP session management on a load-balanced site, you must ensure that all requests within a user session are directed to the same Web server. One way to do this is to write a Session_OnStart procedure that uses the Response object to redirect the browser to the specific Web server on which the user's session is running. If all links in your application pages are relative, future requests for a page will be routed to the same server.

For example, a user might access an application by requesting the general URL for a site: http://www.microsoft.com. The load balancer routes the request to a specific server, for example, server3.microsoft.com. ASP creates a new user session on that server. In the Session_OnStart procedure, the browser is redirected to the specified server:

<% Response.Redirect("http://server3.microsoft.com/webapps/firstpage.asp") %>

The browser will request the specified page, and all subsequent requests will be routed to the same server as long as specific server names are not referenced in the original URLs.

Using Cookies

A cookie is a token that the Web server embeds in a user's Web browser to identify the user. The next time the same browser requests a page, it sends the cookie it received from the Web server. Cookies allow a set of information to be associated with a user. ASP scripts can both get and set the values of cookies by using the Cookies collection of the Response and Request objects.

Setting Cookies

To set the value of a cookie, use Response.Cookies. If the cookie does not already exist, Response.Cookies creates a new one. For example, to send a cookie named ("VisitorID") with an associated value ("49") to the browser, use the following command, which must appear on your Web page before the <HTML> tag:

<% Response.Cookies("VisitorID") = 49 %>

If you want a cookie to be used only during the current user session, then sending the cookie to the browser is all you need to do. However, if you want to identify a user even after the user has stopped and restarted the browser, you must force the browser to store the cookie in a file on the client computer's hard disk. To save the cookie, use the Expires attribute for Response.Cookies and set the date to some date in the future:

<%

  Response.Cookies("VisitorID") = 49 

  Response.Cookies("VisitorID").Expires = "December 31, 2001" 

%>

A cookie can have multiple values; such a cookie is called an indexed cookie. An indexed cookie value is assigned a key; you can set a particular cookie key value. For example:

<% Response.Cookies("VisitorID")("49") = "Travel" %>

If an existing cookie has key values but Response.Cookies does not specify a key name, then the existing key values are deleted. Similarly, if an existing cookie does not have key values but Response.Cookies specifies key names and values, the existing value of the cookie is deleted and new key-value pairs are created.

Getting Cookies

To get the value of a cookie, use the Request.Cookies collection. For example, if the user HTTP request sets VisitorID=49, then the following statement retrieves the value 49:

<%= Request.Cookies("VisitorID") %>

Similarly, to retrieve a key value from an indexed cookie, use the key name. For example, if a user's browser sends the following information in the HTTP request header:

Cookie: VisitorID=49=Travel

The following statement would then return the value Travel:

<%= Request.Cookies("VisitorID")("49") %>

Setting Cookie Paths

Each cookie stored by ASP on the user's Web browser contains path information. When the browser requests a file stored in the same location as the path specified in the cookie, the browser automatically forwards the cookie to the server. By default, cookie paths correspond to the name of the application containing the .asp file that originally generated the cookie. For example, if an .asp file, residing in an application called UserApplication, generates a cookie, then each time a user's Web browser retrieves any file residing in that application, the browser will forward the cookie, in addition to any other cookies containing the path /UserApplication.

To specify a path for a cookie other than the default application path, you can use the ASP Response.Cookies collection's Path attribute. For example, the following script assigns the path SalesApp/Customer/Profiles/ to a cookie called Purchases:

<%

  Response.Cookies("Purchases") = "12" 

  Response.Cookies("Purchases").Expires = "January 1, 2001" 

  Response.Cookies("Purchases").Path = "/SalesApp/Customer/Profiles/"

%>

Whenever the Web browser containing the Purchases cookie requests a file residing in the path /SalesApp/Customer/Profiles/ or in any of it subdirectories, the browser forwards the cookie to the server.

Many Web browsers, including Microsoft Internet Explorer version 4.0, or later, and Netscape browsers, preserve the case of the cookie path. This means that if the case of the path of a requested file differs from the case of the stored cookie path, the browser will not send the cookie to the server. For example, to ASP, the virtual directories /TRAVEL and /travel are the same ASP application, but to a browser that preserves the case of a URL, /TRAVEL and /travel are two different applications. Make sure all URLs to .asp files have the same case to ensure that the user's browser forwards stored cookies.

You can use the following statement to set the cookie path so that the user's Web browser will forward a cookie whenever the browser requests a file from your server, regardless of application or path:

Response.Cookies("Purchases").Path = "/" 

Note, however, that forwarding cookies to the server, without distinguishing between applications, raises a potential security concern if the cookies contain sensitive information that should not be accessible outside of a specific application.

Preserving State without Cookies

Not all browsers support cookies. Even with browsers that do support cookies, some users prefer to turn off cookie support. If your application needs to be responsive to browsers that don't support cookies, you cannot use ASP session management.

In this case, you must write your own mechanism to pass information from page to page in your application. There are two general ways to do this:

· Add parameters to a URL's query string. For example: 

http://MyServer/MyApp/start.asp?name=Jeff

Some browsers, however, will discard any explicit parameters passed in a query string if a form is submitted with the GET method.

· Add hidden values to a form. For example, the following HTML form contains a hidden control, which does not appear on the actual form and remains invisible in the user's Web browser. The form passes a user identification value, in addition to the information supplied by the user, by using the HTTP POST method. 

· <FORM METHOD="POST" ACTION="/scripts/inform.asp">

· <INPUT TYPE="text" NAME="city" VALUE="">

· <INPUT TYPE="text" NAME="country" VALUE ="">

· <INPUT TYPE="hidden" NAME="userid" VALUE= <%= UserIDNum(i) %>

<INPUT TYPE="submit"  VALUE="Enter">

This method requires all link destinations that pass user information to be coded as HTML forms.

If you are not using ASP session management, you should turn off session support for your application. When sessions are enabled, ASP sends a SessionID cookie to each browser that requests a page. To turn off session support, clear the Enable Session State check box on the Application Options property sheet in the Internet Information Services snap-in. [image: image17.png]



Sessionless ASP Pages

With ASP, you can also create sessionless pages which can be used to put off the creation of sessions tracking until needed.

Sessionless pages do not carry out the following:

· Execute Session_OnStart procedures. 

· Send session ID cookies. 

· Create Session objects. 

· Access built-in Session objects or session scope objects created with the <OBJECT> tag. 

· Serialize execution with other session requests. 

To configure an .asp file as sessionless, use the following:

<%@ EnableSessionState=False %>

You should place this script as the first line in your .asp file, before any other scripts. The default, when this tag is omitted, enables session tracking.

Sessionless ASP pages can often improve the responsiveness of your server by eliminating potentially time consuming session activity. For example, consider the case of an ASP page containing two HTML frames: frames 1 and 2, both within one frameset. Frame 1 contains an .asp file that executes a complex script, while frame 2 contains a simpler .asp file. Because ASP executes session requests in sequential order, or serially, you will not be able to see the contents of frame 2 until the script in frame 1 has executed. However, if you make the .asp file for frame 1 sessionless, then ASP requests will no longer be serialized and the browser will render the contents of frame 2 before the contents of frame 1 have finished executing.

Unfortunately, the way in which multiple requests for different frames are processed ultimately depends on the configuration of the user's Web browser. Certain Web browsers may serialize requests despite the sessionless configuration of your .asp files.

[image: image18.png]




Accessing a Data Source

ActiveX Data Objects (ADO) are an easy-to-use yet extensible technology for adding database access to your Web pages. You can use ADO to write compact and scalable scripts for connecting to OLE DB compliant data sources, such as databases, spreadsheets, sequential data files, or e-mail directories. OLE DB is a system-level programming interface that provides standard set of COM interfaces for exposing database management system functionality. With ADO's object model you can easily access these interfaces (using scripting languages, such as VBScript or JScript) to add database functionality to your Web applications. In addition, you can also use ADO to access Open Database Connectivity (ODBC) compliant databases.

If you are a scripter with a modest understanding of database connectivity, you will find ADO's command syntax uncomplicated and easy-to-use. If you are an experienced developer you will appreciate the scalable, high-performance access ADO provides to a variety of data sources.

For more information about ADO, visit the Microsoft Universal Data Access (UDA) Web site at http://www.microsoft.com/data/.

Creating a Connection String

The first step in creating a Web data application is to provide a way for ADO to locate and identify your data source. This is accomplished by means of a connection string, a series of semicolon delimited arguments that define parameters such as the data source provider and the location of the data source. ADO uses the connection string to identify the OLE DB provider and to direct the provider to the data source. The provider is a component that represents the data source and exposes information to your application in the form of rowsets.

The following table lists OLE DB connection strings for several common data sources:

	Data Source
	OLE DB Connection String

	Microsoft® Access
	Provider=Microsoft.Jet.OLEDB.4.0;Data Source=physical path to .mdb file

	Microsoft SQL Server
	Provider=SQLOLEDB.1;Data Source=path to database on server

	Oracle
	Provider=MSDAORA.1;Data Source=path to database on server

	Microsoft Indexing Service
	Provider=MSIDXS.1;Data Source=path to file


To provide for backward compatibility, the OLE DB Provider for ODBC supports ODBC connection string syntax. The following table lists commonly used ODBC connection strings: 

	Data Source Driver
	ODBC Connection String

	Microsoft Access
	Driver={Microsoft Access Driver (*.mdb)};DBQ=physical path to .mdb file

	SQL Server
	DRIVER={SQL Server};SERVER=path to server

	Oracle
	DRIVER={Microsoft ODBC for Oracle};SERVER=path to server

	Microsoft Excel
	Driver={Microsoft Excel Driver (*.xls)};DBQ=physical path to .xls file; DriverID=278

	Microsoft Excel 97
	Driver={Microsoft Excel Driver (*.xls)};DBQ=physical path to .xls file;DriverID=790

	Paradox
	Driver={Microsoft Paradox Driver (*.db)};DBQ=physical path to .db file;DriverID=26

	Text
	Driver={Microsoft Text Driver (*.txt;*.csv)};DefaultDir=physical path to .txt file

	Microsoft Visual FoxPro® (with a database container) 
	Driver={Microsoft Visual FoxPro Driver};SourceType=DBC;SourceDb=physical path to .dbc file

	Microsoft Visual FoxPro (without a database container) 
	Driver={Microsoft Visual FoxPro Driver};SourceType=DBF;SourceDb=physical path to .dbf file


Note   Connection strings that use a UNC path to refer to a data source located on a remote computer can pose a potential security issue. To prevent unauthorized access of your data source, create a Windows account for computers requiring access to the data and then apply appropriate NTFS permissions to the data source. For more information, see Securing Your Files with NTFS.

Advanced Issues to Consider When Designing Web Data Applications

For performance and reliability reasons, it is strongly recommended that you use a client-server database engine for the deployment of data driven Web applications that require high-demand access from more than approximately 10 concurrent users. Although ADO works with any OLE DB compliant data source, it has been extensively tested and is designed to work with client server databases such as Microsoft SQL Server or Oracle.

ASP supports shared file databases (Microsoft Access or Microsoft FoxPro) as valid data sources. Although some examples in the ASP documentation use a shared file database, it is recommended that these types of database engines be used only for development purposes or limited deployment scenarios. Shared file databases may not be as well suited as client-server databases for very high-demand, production-quality Web applications.

If you are developing an ASP database application intended to connect to a remote SQL Server database you should also be aware of the following issues:

· Choosing Connection Scheme for SQL Server You can choose between the TCP/IP Sockets and Named Pipes methods for accessing a remote SQL Server database. With Named Pipes, database clients must be authenticated by Windows before establishing a connection, raising the possibility that a remote computer running named pipes might deny access to a user who has the appropriate SQL Server access credentials, but does not have a Windows user account on that computer. Alternatively, connections using TCP/IP Sockets connect directly to the database server, without connecting through an intermediary computer—as is the case with Named Pipes. And because connections made with TCP/IP Sockets connect directly to the database server, users can gain access through SQL Server authentication, rather than Windows authentication. 

· ODBC 80004005 Error If the connection scheme for accessing SQL Server is not set correctly, users viewing your database application may receive an ODBC 80004005 error message. To correct this situation, try using a local named pipe connection instead of a network named pipe connection if SQL Server is running on the same computer as IIS. Windows 2000 security rules will not be enforced because the pipe is a local connection rather than a network connection, which can be impersonated by the anonymous user account. Also, in the SQL Server connection string (either in the Global.asa file or in a page-level script), change the parameter SERVER=server name to SERVER=(local). The keyword (local) is a special parameter recognized by the SQL Server ODBC driver. If this solution does not work, then try to use a non-authenticated protocol between IIS and SQL Server, such as TCP/IP sockets. This protocol will work when SQL Server is running locally or on remote computer. 

Note   To improve performance when connecting to a remote databases, use TCP/IP Sockets.

· SQL Server Security If you use SQL Server's Integrated or Mixed security features, and the SQL Server database resides on a remote server, you will not be able to use integrated Windows authentication. Specifically, you cannot forward integrated Windows authentication credentials to the remote computer. This means that you may have to use Basic authentication, which relies on the user to provide user name and password information. 

For more information about these issues, visit the Microsoft Product Support Services Web site at http://www.microsoft.com/support/.

Connecting to a Data Source

ADO provides the Connection object for establishing and managing connections between your applications and OLE DB compliant data sources or ODBC compliant databases. The Connection object features properties and methods you can use to open and close database connections, and to issue queries for updating information.

To establish a database connection, you first create an instance of the Connection object. For example, the following script instantiates the Connection object and proceeds to open a connection:

<%

  'Create a connection object.

  Set cnn = Server.CreateObject("ADODB.Connection")

  'Open a connection using the OLE DB connection string.

  cnn.Open  "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\MarketData\ProjectedSales.mdb"

%>

Note   The connection string does not contain spaces before or after the equal sign (=).

In this case, the Connection object's Open method refers to the connection string.

Executing SQL Queries with the Connection Object

With the Execute method of the Connection object you can issue commands to the data sources, such as Structured Query Language (SQL) queries. (SQL, an industry standard language for communicating with databases, defines commands for retrieving and updating information.) The Execute method can accept parameters that specify the command (or query), the number of data records affected, and the type of command being used. 

The following script uses the Execute method to issue a query in the form of a SQL INSERT command, which inserts data into a specific database table. In this case, the script block inserts the name Jose Lugo into a database table named Customers.

<%

  'Define the OLE DB connection string.

  strConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\Employees.mdb"

  'Instantiate the Connection object and open a database connection.

  Set cnn = Server.CreateObject("ADODB.Connection")

  cnn.Open strConnectionString

  'Define SQL SELECT statement. 

  strSQL = "INSERT INTO Customers (FirstName, LastName) VALUES ('Jose','Lugo')"   

  'Use the Execute method to issue a SQL query to database. 

  cnn.Execute strSQL,,adCmdText + adExecuteNoRecords

%>

Note that two parameters are specified in the statement used to execute the query: adCmdText and adExecuteNoRecords. The optional adCmdText parameter specifies the type of command, indicating that the provider should evaluate the query statement (in this case, a SQL query) as a textual definition of a command. The adExecuteNoRecords parameter instructs ADO to not create a set of data records if there are no results returned to the application. This parameter works only with command types defined as a text definition, such as SQL queries, or stored database procedures. Although the adCmdText and adExecuteNoRecords parameters are optional, you should specify theses parameters when using the Execute method to improve the performance of your data application.

Important   ADO parameters, such as adCmdText, need to be defined before you can use them in a script. A convenient way to define parameters is to use a component type library, which is a file containing definitions for all ADO parameters. To implement a component type library, it must first be declared. Add the following the <METADATA> tag to your .asp file or Global.asa file to declare the ADO type library: 

<!--METADATA NAME="Microsoft ActiveX Data Objects 2.5 Library" TYPE="TypeLib" UUID="{00000205-0000-0010-8000-00AA006D2EA4}"-->

For details about implementing component type libraries, see the Using Constants section of the Using Variables and Constants topic.

In addition to the SQL INSERT command, you can use the SQL UPDATE and DELETE commands to change and remove database information.

With the SQL UPDATE command you can change the values of items in a database table. The following script uses the UPDATE command to change the Customers table's FirstName fields to Jeff for every LastName field containing the last name Smith.

<%

  Set cnn = Server.CreateObject("ADODB.Connection")

  cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\Employees.mdb"

  cnn.Execute "UPDATE Customers SET FirstName = 'Jeff' WHERE LastName = 'Smith' ",,adCmdText + adExecuteNoRecords

%>

To remove specific records from a database table, use the SQL DELETE command. The following script removes all rows from the Customers table where the last name is Smith:

<%

  Set cnn = Server.CreateObject("ADODB.Connection")

  cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\Employees.mdb"

  cnn.Execute "DELETE FROM Customers WHERE LastName = 'Smith'",,adCmdText + adExecuteNoRecords

%>

Note   You must be careful when using the SQL DELETE command. A DELETE command without an accompanying WHERE clause will delete all rows from a table. Be sure to include a SQL WHERE clause, which specifies the exact rows to be deleted.

Using the Recordset Object for Manipulating Results

For retrieving data, examining results, and making changes to your database, ADO provides the Recordset object. As its name implies, the Recordset object has features that you can use, depending on your query constraints, for retrieving and displaying a set of database rows, or records. The Recordset object maintains the position of each record returned by a query, thus enabling you to step through results one item at a time.

Retrieving a Record Set

Successful Web data applications employ both the Connection object, to establish a link, and the Recordset object, to manipulate returned data. By combining the specialized functions of both objects you can develop database applications to carry out almost any data handling task. For example, the following server-side script uses the Recordset object to execute a SQL SELECT command. The SELECT command retrieves a specific set of information based on query constraints. The query also contains a SQL WHERE clause, used to narrow down a query to a specific criterion. In this example, the WHERE clause limits the query to all records containing the last name Smith from the Customers database table.

<%

  'Establish a connection with data source.  

  strConnectionString  = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\Employees.mdb"  

  Set cnn = Server.CreateObject("ADODB.Connection")

  cnn.Open strConnectionString

  'Instantiate a Recordset object.

  Set rstCustomers = Server.CreateObject("ADODB.Recordset")

  'Open a recordset using the Open method

  'and use the connection established by the Connection object.

  strSQL = "SELECT FirstName, LastName FROM Customers WHERE LastName = 'Smith' "

  rstCustomers.Open  strSQL, cnn


  'Cycle through record set and display the results

  'and increment record position with MoveNext method.

   Set objFirstName = rstCustomers("FirstName") 

   Set objLastName = rstCustomers("LastName")  

   Do Until rstCustomers.EOF   

     Response.Write objFirstName & " " & objLastName & "<BR>"

     rstCustomers.MoveNext

   Loop

%>

Note that in the previous example, the Connection object established the database connection, and the Recordset object used the same connection to retrieve results from the database. This method is advantageous when you need to precisely configure the way in which the link with the database is established. For example, if you needed to specify the time delay before a connection attempt aborts, you would need to use the Connection object to set this property. However, if you just wanted to establish a connection using ADO's default connection properties, you could use Recordset object's Open method to establish a link:

<%

  strConnectionString  = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\Employees.mdb"

  strSQL = "SELECT FirstName, LastName FROM Customers WHERE LastName = 'Smith' "

  Set rstCustomers = Server.CreateObject("ADODB.Recordset")

  'Open a connection using the Open method

  'and use the connection established by the Connection object.

  rstCustomers.Open  strSQL, strConnectionString


  'Cycle through the record set, display the results,

  'and increment record position with MoveNext method.

   Set objFirstName = rstCustomers("FirstName") 

   Set objLastName = rstCustomers("LastName") 

   Do Until rstCustomers.EOF

      Response.Write objFirstName & " " & objLastName & "<BR>"

      rstCustomers.MoveNext

   Loop

%>

When you establish a connection using the Recordset object's Open method to establish a connection, you are implicitly using the Connection object to secure the link. For more information, see Microsoft ActiveX Data Objects (ADO) documentation available from the Microsoft Universal Data Access Web site at http://www.microsoft.com/data/.

Note   To significantly improve the performance of your ASP database applications, consider caching the recordset in Application state. For more information, see Caching Data. 

It is often useful to count the number of records returned in a recordset. The Open method of the Recordset object enables you to specify an optional cursor parameter that determines how the underlying provider retrieves and navigates the recordset. By adding the adOpenKeyset cursor parameter to the statement used to execute the query, you enable the client application to fully navigate the recordset. As a result, the application can use the RecordCount property to accurately count the number of records in the recordset. See the following example:

<%


Set rs = Server.CreateObject("ADODB.Recordset")


rs.Open "SELECT * FROM NewOrders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source='C:\CustomerOrders\Orders.mdb'", adOpenKeyset, adLockOptimistic, adCmdText 


'Use the RecordCount property of the Recordset object to get count.


If rs.RecordCount >= 5 then


  Response.Write "We've received the following " & rs.RecordCount & " new orders<BR>"



  Do Until rs.EOF


  
Response.Write rs("CustomerFirstName") & " " & rs("CustomerLastName") & "<BR>"



Response.Write rs("AccountNumber") & "<BR>"



Response.Write rs("Quantity") & "<BR>"

 



Response.Write rs("DeliveryDate") & "<BR><BR>"


      
rs.MoveNext


  Loop

  
Else
    
 


  Response.Write "There are less than " & rs.RecordCount & " new orders."




End If

   rs.Close

%>

Improving Queries with the Command Object

With the ADO Command object you can execute queries in the same way as queries executed with the Connection and Recordset object, except that with the Command object you can prepare, or compile, your query on the database source and then repeatedly reissue the query with a different set of values. The benefit of compiling queries in this manner is that you can vastly reduce the time required to reissue modifications to an existing query. In addition, you can leave your SQL queries partially undefined, with the option of altering portions of your queries just prior to execution.

The Command object's Parameters collection saves you the trouble of reconstructing your query each time you want to reissue your query. For example, if you need to regularly update supply and cost information in your Web-based inventory system, you can predefine your query in the following way:

<%  

    'Open a connection using Connection object. Notice that the Command object

    'does not have an Open method for establishing a connection.

    strConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\Inventory.mdb" 

    Set cnn = Server.CreateObject("ADODB.Connection")

    cnn.Open strConnectionString

    'Instantiate Command object; use ActiveConnection property to attach 

    'connection to Command object.

    Set cmn= Server.CreateObject("ADODB.Command")

    Set cmn.ActiveConnection = cnn

    'Define SQL query.

    cmn.CommandText = "INSERT INTO Inventory (Material, Quantity) VALUES (?, ?)" 

    'Save a prepared (or pre-compiled) version of the query specified in CommandText

    'property before a Command object's first execution. 

    cmn.Prepared = True

    'Define query parameter configuration information.

    cmn.Parameters.Append cmn.CreateParameter("material_type",adVarChar, ,255 )

    cmn.Parameters.Append cmn.CreateParameter("quantity",adVarChar, ,255 )

    'Define and execute first insert.

    cmn("material_type") = "light bulbs" 

    cmn("quantity") = "40" 

    cmn.Execute ,,adCmdText + adExecuteNoRecords

    'Define and execute second insert.

    cmn("material_type") = "fuses" 

    cmn("quantity") = "600" 

    cmn.Execute ,,adCmdText + adExecuteNoRecords

    .

    .

    .

  %>

Important   ADO parameters, such as adCmdText, are simply variables, this means that before using an ADO parameter in a data access script you need to define its value. Since ADO uses a large number of parameters, it is easier to define parameters by means of a component type library, a file containing definitions for every ADO parameter and constant. For details about implementing ADO's type library, see the Using Constants section of the Using Variables and Constants topic.

In the previous example, you will note that the script repeatedly constructs and reissues a SQL query with different values, without having to redefine and resend the query to the database source. Compiling your queries with the Command object also offers you the advantage of avoiding problems that can arise from concatenating strings and variables to form SQL queries. In particular, by using the Command object's Parameter collection, you can avoid problems related to defining certain types of string, date, and time variables. For example, SQL query values containing apostrophes (') can cause a query to fail:

  strSQL = "INSERT INTO Customers (FirstName, LastName) VALUES ('Robert','O'Hara')" 

Note that the last name O'Hara contains an apostrophe, which conflicts with the apostrophes used to denote data in the SQL VALUES keyword. By binding the query value as a Command object parameter, you avoid this type of problem.

Combining HTML Forms and Database Access

Web pages containing HTML forms can enable users to remotely query a database and retrieve specific information. With ADO you can create surprisingly simple scripts that collect user form information, create a custom database query, and return information to the user. Using the ASP Request object, you can retrieve information entered into an HTML form and incorporate this information into your SQL statements. For example, the following script block inserts information supplied by an HTML form into a table. The script collects the user information with the Request object 's Form collection.

<%

  'Open a connection using Connection object. The Command object

  'does not have an Open method for establishing a connection.

   strConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\CompanyCatalog\Seeds.mdb" 

 
Set cnn = Server.CreateObject("ADODB.Connection")

 
cnn.Open strConnectionString

  'Instantiate Command object

  'and  use ActiveConnection property to attach

  'connection to Command object.

  Set cmn= Server.CreateObject("ADODB.Command")

  Set cmn.ActiveConnection = cnn

  'Define SQL query.

  cmn.CommandText = "INSERT INTO MySeedsTable (Type) VALUES (?)" 

  'Define query parameter configuration information.

  cmn.Parameters.Append cmn.CreateParameter("type",adVarChar, ,255)

  'Assign input value and execute update.

  cmn("type") = Request.Form("SeedType") 

  cmn.Execute ,,adCmdText + adExecuteNoRecords

%>

For more information about forms and using the ASP Request object, see Processing User Input.

Managing Database Connections

One of the main challenges of designing a sophisticated Web database application, such as an online order entry application that services thousands of customers, is properly managing database connections. Opening and maintaining database connections, even when no information is being transmitted, can severely strain a database server's resources and result in connectivity problems. Well designed Web database applications recycle database connections and compensate for delays due to network traffic.

Timing Out a Connection

A database server experiencing a sudden increase in activity can become backlogged, greatly increasing the time required to establish a database connection. As a result, excessive connection delays can reduce the performance of your database application.

With the Connection object's ConnectionTimeout you can limit the amount of time that your application waits before abandoning a connection attempt and issuing an error message. For example, the following script sets the ConnectionTimeout property to wait twenty seconds before cancelling the connection attempt:

Set cnn = Server.CreateObject("ADODB.Connection")

cnn.ConnectionTimeout = 20

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\Inventory.mdb"

The default for the ConnectionTimeout property is 30 seconds.

Note   Before incorporating the ConnectionTimeout property into your database applications, make sure that your connection provider and data source support this property.

Pooling Connections

Connection pooling enables your Web application to use a connection from a pool, or reservoir of free connections that do not need to be reestablished. After a connection has been created and placed in a pool, your application reuses that connection without having to perform the connection process. This can result in significant performance gains, especially if your application connects over a network or repeatedly connects and disconnects. In addition, a pooled connection can be used repeatedly by multiple applications.

OLE DB Session Pooling

OLE DB has a pooling feature, called session pooling, optimized for improving connectivity performance in large Web database applications. Session pooling preserves connection security and other properties. A pooled connection is only reused if matching requests are made from both sides of the connection. By default, the OLE DB providers for Microsoft SQL server and Oracle support session pooling. This means that you do not have to configure your application, server, or database to use session pooling. However, if your provider does not support session pooling by default, you need to create a registry setting to enable session pooling. For more information about session pooling, see the OLE DB 2.0 Software Development Kit (SDK) documentation.

ODBC Connection Pooling

If you want your ODBC driver to participate in connection pooling you must configure your specific database driver and then set the driver's CPTimeout property in the Windows registry. The CPTimeout property determines the length of time that a connection remains in the connection pool. If the connection remains in the pool longer than the duration set by CPTimeout, the connection is closed and removed from the pool. The default value for CPTimeout is 60 seconds.

You can selectively set the CPTimeout property to enable connection pooling for a specific ODBC database driver by creating a registry key with the following settings:

\HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\driver-name\CPTimeout = timeout 

 (REG_SZ, units are in seconds)

For example, the following key sets the connection pool timeout to 180 seconds (3 minutes) for the SQL Server driver.

\HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\SQL Server\CPTimeout = 180

Note   By default, your Web server activates connection pooling for SQL Server by setting CPTimeout to 60 seconds.

Using Connections Across Multiple Pages

Although you can reuse a connection across multiple pages by storing the connection in ASP's Application object, doing so may unnecessarily keep open a connection open, defeating the advantages of using connection pooling. If you have many users that need to connect to the same ASP database application, a better approach is to reuse a database connection string across several Web pages by placing the string in ASP's Application object. For example, you can specify a connection string in the Global.asa file's Application_OnStart event procedure, as in the following script:

Application("ConnectionString") = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\Inventory.mdb"

Then in each ASP file that accesses the database, you can write

<OBJECT RUNAT=SERVER ID=cnn PROGID="ADODB.Connection"></OBJECT>

to create an instance of the connection object for the page, and use the script

cnn.Open Application("ConnectionString")

to open the connection. At the end of the page, you close the connection with

cnn.Close

In the case of an individual user who needs to reuse a connection across multiple Web pages, you may find it more advantageous to use the Session object rather than the Application object for storing the connection string.

Closing Connections

To make the best use of connection pooling, explicitly close database connections as soon as possible. By default, a connection terminates after your script finishes execution. However, by explicitly closing a connection in your script after it is no longer needed, you reduce demand on the database server and make the connection available to other users.

You can use Connection object's Close method to explicitly terminate a connection between the Connection object and the database. The following script opens and closes a connection:

<%

  strConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\Inventory.mdb"

  Set cnn = Server.CreateObject("ADODB.Connection")

  cnn.Open strConnectionString

  cnn.Close

%>

[image: image19.png]




Understanding Transactions

Business applications frequently need to be able to run scripts and components within transactions. A transaction is a server operation that succeeds or fails as a whole, even if the operation involves many steps (for example, ordering, checking inventory, and billing). You can create server-side scripts that run within a transaction so that if any portion of the script fails, the entire transaction is aborted.

ASP transaction processing is based on Component Services transactioning environment, a transaction processing system for developing, deploying, and managing high performance, scalable, and robust enterprise, Internet, and intranet server applications. This transactioning environment defines an application programming model for developing distributed, component-based applications. It also provides a run-time environment for deploying and managing these applications.

The functionality required to create transactional scripts is built into your Web server. If you install Component Services, you can also package components so they run within transactions.

About Transactions

A transaction is an operation that succeeds or fails as a whole. Transaction processing is used to update databases reliably. When you are making many related changes to a database or updating several databases at once, you want to ensure that all of the changes are correctly executed. If any of the changes fail, you want to restore the original state of the database tables.

Without Component Services, you would have to write your scripts and components to manually track the requested changes and restore data if any changes failed. With Component Services, you simply declare your scripts and components to require transactions and let Component Services handle the transaction coordination. Transaction processing applies only to database access; Component Services cannot roll back changes to the file system or changes to other, nontransactional resources. The database your application accesses must be supported by Component Services. Currently Component Services supports SQL Server and any database that supports the XA protocol from the X/Open consortium. Component Services will continue to expand its support for other databases in the future.

Using the Server.Transfer and Server.Execute methods a transaction can span multiple ASP pages. If a script contains the @TRANSACTION directive, with the value specified as Required, and the script is called by either the Server.Transfer or Server.Execute method, then the script will continue the transaction of the calling .asp file if the calling .asp file was transacted. If the calling .asp file was not transacted, the called .asp file will then automatically create a new transaction.

For example, the following script initiates a transaction:

<%@ TRANSACTION=Required %>

<%

  .

  .

  .


  'End transaction.

  Server.Transfer("/BookSales/EndTrans.asp")



%>

However, following script calls another script that also initializes a transaction:

<%@ TRANSACTION=Required%>

<%

  'Instantiate a custom component to close transactions.

  Set objSale = Server.CreateObject("SalesTransacted.Complete")

  .

  .

  .

%>

However, the interaction between the two scripts would constitute only a single transaction. For more information about writing scripts with Server.Transfer and Server.Execute, see Sending Content to the Browser.

Declaring a Transactional Script

When you declare a page to be transactional, any script commands and objects used on the page are run under the same transaction context. Component Services handles the details of creating the transaction and determining whether the transaction succeeds (commits) or fails (aborts). To declare a page transactional, add the @TRANSACTION directive to the top of the page:

<%@ TRANSACTION = value %>

For more information on the value argument, see the @TRANSACTION directive reference.

The @TRANSACTION directive must be the very first line on the page, otherwise an error is generated. You must add the directive to each page that should be run under a transaction. The current transaction ends when the script finishes processing.

Most applications only require transaction context for certain operations. For example, an airline site might use transactional scripts for ticket purchasing and seat assignments. All other scripts could be safely run without a transaction context. Because transactions should be used only for pages that need transaction processing, you cannot declare an application's Global.asa file as transactional.

If a transaction is aborted, Component Services rolls back any changes made to resources that support transactions. Currently, only database servers fully support transactions because this data is the most critical to enterprise applications. Component Services does not roll back changes to files on a hard disk, ASP session and application variables, or collections. You can, however, write scripts that restore variables and collections by writing transaction events, as described later in this topic. Your script can also explicitly commit or abort a transaction if an operation such as writing data to a file fails.

Committing or Aborting a Script

Because Component Services tracks transaction processing, it determines whether a transaction has completed successfully or failed. A script can explicitly declare that it is aborting a transaction by calling ObjectContext.SetAbort. For example, your script might abort a transaction if it receives an error from a component, if a business rule is violated (for example, if the account balance falls below 0), or if a nontransactional operation (such as reading from or writing to a file) fails. The transaction is also aborted if the page times out before the transaction is completed.

Writing Transaction Events

A script itself cannot determine whether a transaction has succeeded or failed. However, you can write events that are called when the transaction commits or aborts. For example, suppose you have a script that credits a bank account, and you want to return different pages to the user depending on the status of the transaction. You can use the OnTransactionCommit and OnTransactionAbort events to write different responses to the user.

<%@ TRANSACTION=Required %>

<%

  'Buffer output so that different pages can be displayed.

  Response.Buffer = True

%>

<HTML>

  <BODY>

  <H1>Welcome to the online banking service</H1>

  <%

    Set BankAction = Server.CreateObject("MyExample.BankComponent")

    BankAction.Deposit(Request("AcctNum"))

  %>

  <P>Thank you.  Your transaction is being processed.</P>

  </BODY>

</HTML>

<%

  'Display this page if the transaction succeeds.

  Sub OnTransactionCommit()

%>

  <HTML>

    <BODY>

    Thank you.  Your account has been credited.

    </BODY>

  </HTML>

<%

  Response.Flush()

  End Sub

%>

<%

  'Display this page if the transaction fails.

  Sub OnTransactionAbort()

    Response.Clear()

%>



  <HTML>

    <BODY>

    We are unable to complete your transaction.

    </BODY>

  </HTML>

<%

    Response.Flush()

  End Sub

%>

Registering a Component in Component Services Manager

To participate in a transaction, a component must be registered in a COM+ application and must be configured to require a transaction. For example, if your script processes orders by calling a component that updates an inventory database and a component that updates a payment database, you would want both components to run under a transaction context. Component Services ensures that if either component fails, the entire order is rolled back and neither database is updated. Some components do not require transactions; for example, the Ad Rotator component has no need of transactions.

You use Component Services Manager to register and configure a transactional component. Components must be registered in an COM+ application. Do not put your components in the IIS in-process COM+ application; instead, create your own COM+ application. Generally, you should put all your components in one Library application. Components in Library applications can be used by multiple ASP applications and are run in the ASP application process.

You can also register transactional components in a Server application, a COM+ application that always runs in a separate process on the server. You use Server applications for your transactional components if you want to use role-based security or if you want your components to be accessible from applications on remote computers.

You must have Component Services installed to use Component Services Manager.

Object Scope

Generally, you should not store objects created from an COM component in the ASP Application or Session objects. COM objects are deactivated when the transaction is completed. Because the Session and Application objects are intended for object instances that can be used across multiple ASP pages, you should not use them to hold objects that will be released at the end of a transaction.

An ASP script is the root, or start, of a declared transaction. Any COM object used on a transactional ASP page is considered part of the transaction. When the transaction is completed, COM objects used on the page are deactivated, including objects stored in the Session or Application object. Subsequent attempts to call the session-scope or application-scope object from another transactional page will fail.

Queuing Transactions

Updates to a database on a remote server could delay or abort the completion of a transaction due to network delays or failures. Because all portions of a transaction must be committed, your application might be held up waiting for the commit or abort message from the remote server or might abort a transaction because the database update could not be sent.

For updates that must be completed simultaneously, it is appropriate to abort or even delay the completion of the transaction until all participants in the transaction can commit. For example, an airline ticket-ordering application should complete both the debit to a customer's bank account and the credit to the airline's bank account simultaneously. If an update is integral to a transaction but could occur later than the other updates, you might prefer not to keep the customer waiting for the completion of the update. For example, a transaction to order an airline ticket might also send a special meal request to a food services vendor or update the customer's mileage. These activities must be completed, but could be completed later.

You can use Message Queuing to bundle an update or set of updates into a transactional message that is delivered to a remote server. Message Queuing guarantees that updates will be delivered to the remote server, even if the network is currently unavailable. Your application receives a commit message and can continue with the transaction.

[image: image20.png]




Debugging ASP Scripts

Regardless of your level of experience, you will encounter programmatic errors, or bugs, that will prevent your server-side scripts from working correctly. For this reason, debugging, the process of finding and correcting scripting errors, is crucial for developing successful and robust ASP applications, especially as the complexity of your application grows.

The Microsoft Script Debugger Tool

The Microsoft® Script Debugger is a powerful debugging tool that can help you quickly locate bugs and interactively test your server-side scripts. With Script Debugger, which also works with Windows Internet Explorer version 3.0 or later, you can:

· Run your server-side scripts one line at a time. 

· Open a command window to monitor the value of variables, properties, or array elements, during the execution of your server-side scripts. 

· Set pauses to suspend execution of your server-side scripts (using either the debugger or a script command) at a particular line of script. 

· Trace procedures while running your server-side script. 

Note   You can use the debugger to view scripts and locate bugs, but not to directly edit your scripts. To fix bugs, you must edit your script with an editing program, save your changes, and run the script again.

Enabling Debugging

Before you can begin debugging your server-side scripts, you must first configure your Web server to support ASP debugging. For instructions and information, see Enabling ASP Debugging.

After enabling Web server debugging, you can use either of the following methods to debug your scripts:

· Manually open Script Debugger to debug your ASP server-side scripts. 

· Use Internet Explorer to request an .asp file. If the file contains a bug or an intentional statement to halt execution, Script Debugger will automatically start, display your script, and indicate the source of the error. 

Scripting Errors

While debugging your server-side scripts you might encounter several types of errors. Some of these errors can cause your scripts to execute incorrectly, halt the execution of your program, or return incorrect results.

Syntax Errors

A syntax error is a commonly encountered error that results from incorrect scripting syntax. For example, a misspelled command or an incorrect number of arguments passed to a function generates an error. Syntax errors can prevent your script from running.

Run-Time Errors

Run-time errors occur after your script commences execution and result from scripting instructions that attempt to perform impossible actions. For example, the following script contains a function that divides a variable by zero (an illegal mathematical operation) and generates a run-time error:

<SCRIPT LANGUAGE=VBScript RUNAT=SERVER>

  Result = Findanswer(15)

  Document.Write ("The answer is " &Result)

  Function Findanswer(x) 

  'This statement generates a run-time error.

   Findanswer = x/0      

  End Function

</SCRIPT>

Bugs that result in run-time errors must be corrected for your script to execute without interruption.

Logical Errors

A logical error can be the most difficult bug to detect. With logical errors, which are caused by typing mistakes or flaws in programmatic logic, your script runs successfully, but yields incorrect results. For example, a server-side script intended to sort a list of values may return an inaccurate ordering if the script contains a > (greater than) sign for comparing values, when it should have used a < (less than) sign.

Error Debugging Techniques

You can use several different debugging techniques to locate the source of bugs and to test your applications.

Just-In-Time (JIT) Debugging

When a run-time error interrupts execution of your server-side script, the Microsoft Script Debugger automatically starts, displays the .asp file with a statement pointer pointing to the line that caused the error, and generates an error message. With this type of debugging, called Just-In-Time (JIT) debugging, your computer suspends further execution of the program. You must correct the errors with an editing program and save your changes before you can resume running the script.

Breakpoint Debugging

When an error occurs and you cannot easily locate the source of the error, it is sometimes useful to preset a breakpoint. A breakpoint suspends execution at a specific line in your script. You can set one or many different breakpoints before a suspect line of script and then use the debugger to inspect the values of variables or properties set in the script. After you correct the error, you can clear your breakpoints so that your script can run uninterrupted.

To set a breakpoint, open your script with Script Debugger, select a line of script where you want to interrupt execution, and from the Debug menu choose Toggle Breakpoint. Then use your Web browser to request the script again. After executing the lines of script up to the breakpoint, your computer starts the Script Debugger, which displays the script with a statement pointer pointing to the line where you set the breakpoint.

The Break at Next Statement

In certain cases, you may want to enable the Script Debugger Break at Next Statement if the next statement that runs is not in the .asp file that you are working with. For example, if you set Break at Next Statement in an .asp file residing in an application called Sales, the debugger will start when you run a script in any file in the Sales application, or in any application for which debugging has been enabled. For this reason, when you set Break at Next Statement, you need to be aware that whatever script statement runs next will start the debugger.

VBScript Stop Statement Debugging

You can also add breakpoints to your server-side scripts written in VBScript by inserting a Stop statement at a location before a questionable section of server-side script. For example, the following server-side script contains a Stop statement that suspends execution before the script calls a custom function:

<%


  intDay = Day(Now())

  lngAccount = Request.Form("AccountNumber")

  dtmExpires = Request.Form("ExpirationDate")

  strCustomerID  =  "RETAIL" & intDay & lngAccount & dtmExpires

  'Set breakpoint here.

  Stop

  'Call registration component.





  RegisterUser(strCustomerID)

%>

When you request this script, the debugger starts and automatically displays the .asp file with the statement pointer indicating the location of the Stop statement. At this point you could choose to inspect the values assigned to variables before passing those variables to the component.

Important   Remember to remove Stop statements from production .asp files.

JScript Debugger Statement Debugging

To add breakpoints to your server-side scripts written in JScript, insert a debugger statement before a suspect line of script. For example, the following script includes a debugger statement that interrupts execution and automatically starts Script Debugger each time the script loops through a new value.

<%@ LANGUAGE=JScript %>

<%

  for (var count = 1; count <= 10; count++)

  {        

    var eventest = count%2

    //Set breakpoint so that user can step through execution of script.

    debugger





    

    if (eventest == 0)

          Response.Write("Even value is " + count + "<br>")

   }

%>

Remember to remove debugger statements from production .asp files.

Note   Do not confuse the debugger statement with the JScript break statement. The break statement exits a currently running loop during execution and does not activate the Microsoft Script Debugger, nor pause execution.

Tips for Debugging Scripts

Aside from Script Debugger, a good set of debugging tips can greatly reduce the amount of time you spend investigating the source of scripting errors. Although most bugs result from obvious sources, misspelled commands or missing variables, certain types of logical and execution errors can be hard to find.

For more information about Microsoft Script Debugger, see the Microsoft Scripting Technologies site at http://msdn.microsoft.com/scripting/.

[image: image21.png]




Built-in ASP Objects

Active Server Pages provides built-in objects that make it easier for you to gather information sent with a browser request, to respond to the browser, and to store information about a particular user, such as user-selected preferences. This topic briefly describes each object.

Application Object

You use the Application object to share information among all users of a given application.

Request Object

You use the Request object to gain access to any information that is passed with an HTTP request. This includes parameters passed from an HTML form using either the POST method or the GET method, cookies, and client certificates. The Request object also gives you access to binary data sent to the server, such as file uploads.

Response Object

You use the Response object to control the information you send to a user. This includes sending information directly to the browser, redirecting the browser to another URL, or setting cookie values.

Server Object

The Server object provides access to methods and properties on the server. The most frequently used method is the one that creates an instance of an COM component (Server.CreateObject). Other methods apply URL or HTML encoding to strings, map virtual paths to physical paths, and set the timeout period for a script.

Session Object

You use the Session object to store information needed for a particular user session. Variables stored in the Session object are not discarded when the user jumps between pages in the application; instead, these variables persist for the entire time the user is accessing pages in your application. You can also use Session methods to explicitly end a session and set the timeout period for an idle session.

ObjectContext Object

You use the ObjectContext object to either commit or abort a transaction initiated by an ASP script.

ASPError Object

You can use the ASPError object to trap ASP error and return more informative descriptions to users.

[image: image22.png]




	Application Object
Collections: 

StaticObjects 

Contents 

Contents Collection Methods: 

Remove 

RemoveAll 

Methods: 

Lock 

Unlock 

Events: 

Application_OnEnd 

Application_OnStart 


ObjectContext Object
Methods: 

SetAbort 

SetComplete 

Events: 

OnTransactionAbort 

OnTransactionCommit 


Request Object 
Collections: 

ClientCertificate 

Cookies 

Form 

QueryString 

ServerVariables 

Properties: 

TotalBytes 

Methods: 

BinaryRead 


ASPError Object 
Properties: 

ASPCode 

Number 

Source 

Category 

File 

Line 

Column 

Description 

ASPDescription 
	
Response Object 

Collections: 

Cookies 

Properties: 

Buffer 

CacheControl 

Charset 

ContentType 

Expires 

ExpiresAbsolute 

IsClientConnected 

PICS 

Status 

Methods: 

AddHeader 

AppendToLog 

BinaryWrite 

Clear 

End 

Flush 

Redirect 

Write 


Server Object
Properties: 

ScriptTimeout 

Methods: 

CreateObject 

Execute 

GetLastError 

HTMLEncode 

MapPath 

Transfer 

URLEncode 


Session Object 

Collections: 

StaticObjects 

Contents 

Contents Collection Methods: 

Remove 

RemoveAll 

Properties: 

CodePage 

LCID 

SessionID 

Timeout 

Methods: 

Abandon 

Events: 

Session_OnEnd 

Session_OnStart 


[image: image23.png]




PAGE  
17

