Motivation for this course

Why at all does one need to study compilers? What is its use? Why should one learn this course? Well these are some of the reasons why you should go for it. 
· Language processing is an important component of programming

· A large number of systems software and application programs require structured input 

· Operating Systems (command line processing)

· Databases (Query language processing)

· Software quality assurance and software testing 

· XML, html based systems, Awk, Sed, Emacs, vi ..

· Form processing, extracting information automatically from forms

· Compilers, assemblers and linkers 

· High level language to language translators 

· Natural language processing

· Where ever input has a structure one can think of language processing

· Why study compilers? Compilers use the whole spectrum of language processing technology 

What will we learn in the course? So here comes the big question finally. What is it that you are going to learn in this course? Any guess? 
· How high level languages are implemented to generate machine code. Complete structure of compilers and how various parts are composed together to get a compiler
· Course has theoretical and practical components. Both are needed in implementing programming languages. The focus will be on practical application of the theory.

· Emphasis will be on algorithms and data structures rather than proofs of correctness of algorithms. 
· Theory of lexical analysis, parsing, type checking, runtime system, code generation, optimization (without going too deep into the proofs etc.)

· Techniques for developing lexical analyzers, parsers, type checkers, run time systems, code generator, optimization. Use of tools and specifications for developing various parts of compilers 

What do we expect to achieve by the end of the course? 

· The primary objective is that at the end of the course the students must be quite comfortable with the concepts related to compilers and should be able to deploy their knowledge in various related fields. 

· Students should be confident that they can use language processing technology for various software developments 

· Students should be confident that they can design, develop, understand, modify/enhance, and maintain compilers for (even complex!) programming languages 

Required Background and self reading 

· Courses in data structures, computer organization, operating systems

· Proficiency in C/C++/Java programming languages

· Knowledge of at least one assembly language, assembler, linker & loader, symbolic debugger

· You are expected to read the complete book (except the chapter on code optimization) on Compiler Design by Aho, Sethi and Ullman. 

Bit of History 

How are programming languages implemented? 
Two major strategies: 

- Interpreters (old and much less studied)

- Compilers (very well understood with mathematical foundations) 

. Some environments provide both interpreter and compiler. Lisp, scheme etc. provide

- Interpreter for development 

- Compiler for deployment 
. Java
- Java compiler: Java to interpretable bytecode

- Java JIT: bytecode to executable image 

Some early machines and implementations 

· IBM developed 704 in 1954. All programming was done in assembly language. Cost of software development far exceeded cost of hardware. Low productivity.
· Speedcoding interpreter: programs ran about 10 times slower than hand written assembly code 
· John Backus (in 1954): Proposed a program that translated high level expressions into native machine code. Skeptism all around. Most people thought it was impossible 
· Fortran I project . (1954-1957): The first compiler was released 
Fortran I 

The first compiler had a huge impact on the programming languages and computer science. The whole new field of compiler design was started More than half the programmers were using Fortran by 1958. The development time was cut down to half Led to enormous amount of theoretical work (lexical analysis, parsing, optimization, structured programming, code generation, error recovery etc.).Modern compilers preserve the basic structure of the Fortran I compiler !!! 
References 

1. Compilers: Principles, Tools and Techniques by Aho, Sethi and Ullman soon to be replaced by "21 st Century Compilers" by Aho, Sethi, Ullman, and Lam

2. Crafting a Compiler in C by Fischer and LeBlanc soon to be replaced by "Crafting a Compiler" by Fischer

Introduction to Compilers 
What are Compilers? 

Compiler is a program which translates a program written in one language (the source language) to an equivalent program in other language (the target language). Usually the source language is a high level language like Java, C, FORTRAN etc. whereas the target language is machine code or "code" that a computer's processor understands. The source language is optimized for humans. It is more user-friendly, to some extent platform-independent. They are easier to read, write, and maintain and hence it is easy to avoid errors. Ultimately, programs written in a high-level language must be translated into machine language by a compiler. The target machine language is efficient for hardware but lacks readability. 

Compilers

. Translates from one representation of the program to another
. Typically from high level source code to low level machine code or object code
. Source code is normally optimized for human readability
- Expressive: matches our notion of languages (and application?!) 

- Redundant to help avoid programming errors

. Machine code is optimized for hardware 

- Redundancy is reduced

- Information about the intent is lost 
How to translate? 

The high level languages and machine languages differ in level of abstraction. At machine level we deal with memory locations, registers whereas these resources are never accessed in high level languages. But the level of abstraction differs from language to language and some languages are farther from machine code than others
. Goals of translation

- Good performance for the generated code

Good performance for generated code: The metric for the quality of the generated code is the ratio between the size of handwritten code and compiled machine code for same program. A better compiler is one which generates smaller code. For optimizing compilers this ratio will be lesser. 

Good compile time performance: A handwritten machine code is more efficient than a compiled code in terms of the performance it produces. In other words, the program handwritten in machine code will run faster than compiled code. If a compiler produces a code which is 20-30% slower than the handwritten code then it is considered to be acceptable. In addition to this, the compiler itself must run fast (compilation time must be proportional to program size). 

- Maintainable code 

- High level of abstraction

. Correctness is a very important issue.

Correctness: A compiler's most important goal is correctness - all valid programs must compile correctly. How do we check if a compiler is correct i.e. whether a compiler for a programming language generates correct machine code for programs in the language. The complexity of writing a correct compiler is a major limitation on the amount of optimization that can be done.

Can compilers be proven to be correct? Very tedious! 

However, the correctness has an implication on the development cost 

Many modern compilers share a common 'two stage' design. The "front end" translates the source language or the high level program into an intermediate representation. The second stage is the "back end", which works with the internal representation to produce code in the output language which is a low level code. The higher the abstraction a compiler can support, the better it is. 


The Big picture 

· Compiler is part of program development environment 

· The other typical components of this environment are editor, assembler, linker, loader, debugger, profiler etc. 

· The compiler (and all other tools) must support each other for easy program development 

All development systems are essentially a combination of many tools. For compiler, the other tools are debugger, assembler, linker, loader, profiler, editor etc. If these tools have support for each other than the program development becomes a lot easier. 
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This is how the various tools work in coordination to make programming easier and better. They all have a specific task to accomplish in the process, from writing a code to compiling it and running/debugging it. If debugged then do manual correction in the code if needed, after getting debugging results. It is the combined contribution of these tools that makes programming a lot easier and efficient. 

How to translate easily? 

In order to translate a high level code to a machine code one needs to go step by step, with each step doing a particular task and passing out its output for the next step in the form of another program representation. The steps can be parse tree generation, high level intermediate code generation, low level intermediate code generation, and then the machine language conversion. As the translation proceeds the representation becomes more and more machine specific, increasingly dealing with registers, memory locations etc. 

  

· Translate in steps. Each step handles a reasonably simple, logical, and well defined task 

· Design a series of program representations 

· Intermediate representations should be amenable to program manipulation of various kinds (type checking, optimization, code generation etc.) 

· Representations become more machines specific and less language specific as the translation proceeds 

The first few steps 

The first few steps of compilation like lexical, syntax and semantic analysis can be understood by drawing analogies to the human way of comprehending a natural language. The first step in understanding a natural language will be to recognize characters, i.e. the upper and lower case alphabets, punctuation marks, alphabets, digits, white spaces etc. Similarly the compiler has to recognize the characters used in a programming language. The next step will be to recognize the words which come from a dictionary. Similarly the programming languages have a dictionary as well as rules to construct words (numbers, identifiers etc). 

. The first step is recognizing/knowing alphabets of a language. For example
- English text consists of lower and upper case alphabets, digits, punctuations and white spaces

- Written programs consist of characters from the ASCII characters set (normally 9-13, 32-126)

. The next step to understand the sentence is recognizing words (lexical analysis)

- English language words can be found in dictionaries 

- Programming languages have a dictionary (keywords etc.) and rules for constructing words (identifiers, numbers etc.) 

Lexical Analysis 

· Recognizing words is not completely trivial. For example: 
ist his ase nte nce?
· Therefore, we must know what the word separators are
· The language must define rules for breaking a sentence into a sequence of words.
· Normally white spaces and punctuations are word separators in languages.
· In programming languages a character from a different class may also be treated as word separator.
· The lexical analyzer breaks a sentence into a sequence of words or tokens: - If a == b then a = 1 ; else a = 2 ; - Sequence of words (total 14 words) if a == b then a = 1 ; else a = 2 ; 
In simple words, lexical analysis is the process of identifying the words from an input string of characters, which may be handled more easily by a parser. These words must be separated by some predefined delimiter or there may be some rules imposed by the language for breaking the sentence into tokens or words which are then passed on to the next phase of syntax analysis. In programming languages, a character from a different class may also be considered as a word separator

The next step 

Once the words are understood, the next step is to understand the structure of the sentence. The process is known as syntax checking or parsing 
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Syntax analysis (also called as parsing) is a process of imposing a hierarchical (tree like) structure on the token stream. It is basically like generating sentences for the language using language specific grammatical rules as we have in our natural language 
Ex. sentence [image: image3.png]


subject + object + subject The example drawn above shows how a sentence in English (a natural language) can be broken down into a tree form depending on the construct of the sentence. 
Parsing 

Just like a natural language, a programming language also has a set of grammatical rules and hence can be broken down into a parse tree by the parser. It is on this parse tree that the further steps of semantic analysis are carried out. This is also used during generation of the intermediate language code. Yacc (yet another compiler compiler) is a program that generates parsers in the C programming language. 
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Understanding the meaning 

Once the sentence structure is understood we try to understand the meaning of the sentence (semantic analysis)

Example: Prateek said Nitin left his assignment at home

What does his refer to? Prateek or Nitin?
Even worse case 

Amit said Amit left his assignment at home 

How many Amits are there? Which one left the assignment? 

Semantic analysis is the process of examining the statements and to make sure that they make sense. During the semantic analysis, the types, values, and other required information about statements are recorded, checked, and transformed appropriately to make sure the program makes sense. Ideally there should be no ambiguity in the grammar of the language. Each sentence should have just one meaning
Semantic Analysis 

Too hard to compilers. They do not have capabilities similar to human understanding. However, compilers do perform analysis to understand the meaning and catch inconsistencies, Programming languages define strict rules to avoid such ambiguities 

 

{ 
int Amit = 3;

{
 int Amit = 4; 

cout << Amit;

}

} 

Since it is too hard for a compiler to do semantic analysis, the programming languages define strict rules to avoid ambiguities and make the analysis easier. In the code written above, there is a clear demarcation between the two instances of Amit. This has been done by putting one outside the scope of other so that the compiler knows that these two Amit are different by the virtue of their different scopes. 

More on Semantic Analysis 

  

·  Compilers perform many other checks besides variable bindings 
·  Type checking Amit left her work at home 
·  There is a type mismatch between her and Amit. Presumably Amit is a male. And they are not the same person. 
From this we can draw an analogy with a programming statement. In the statement:

double y = "Hello World"; The semantic analysis would reveal that "Hello World" is a string, and y is of type double, which is a type mismatch and hence, is wrong. Compiler structure once again 
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Till now we have conceptualized the front end of the compiler with its 3 phases, viz. Lexical Analysis, Syntax Analysis and Semantic Analysis; and the work done in each of the three phases. Next, we look into the backend in the forthcoming slides. 

Front End Phases 
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Lexical analysis is based on the finite state automata and hence finds the lexicons from the input on the basis of corresponding regular expressions. If there is some input which it can't recognize then it generates error. In the above example, the delimiter is a blank space. See for yourself that the lexical analyzer recognizes identifiers, numbers, brackets etc. 

Syntax Analysis 

  

. Check syntax and construct abstract syntax tree 
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1. Error reporting and recovery
2. Model using context free grammars
3. Recognize using Push down automata/Table Driven Parsers 
Syntax Analysis is modeled on the basis of context free grammars. Programming languages can be written using context free grammars. Based on the rules of the grammar, a syntax tree can be made from a correct code of the language. A code written in a CFG is recognized using Push down Automata. If there is any error in the syntax of the code then an error is generated by the compiler. Some compilers also tell that what exactly is the error, if possible. 

Semantic Analysis 

 

	. Check semantics
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	. Error reporting
	

	. Disambiguate overloaded operators
	

	.Type coercion
	

	. Static checking 
	

	- Type checking 
	

	- Control flow checking 
	

	- Unique ness checking
	

	- Name checks 
	

	
	

	 
	


Semantic analysis should ensure that the code is unambiguous. Also it should do the type checking wherever needed. Ex. int y = "Hi"; should generate an error. Type coercion can be explained by the following example: - int y = 5.6 + 1; The actual value of y used will be 6 since it is an integer. The compiler knows that since y is an instance of an integer it cannot have the value of 6.6 so it down-casts its value to the greatest integer less than 6.6. This is called type coercion. 
Code Optimization 

. No strong counter part with English, but is similar to editing/précis writing

. Automatically modify programs so that they

- Run faster 

- Use less resource (memory, registers, space, fewer fetches etc.) 

. Some common optimizations

- Common sub-expression elimination

- Copy propagation

- Dead code elimination 

- Code motion

- Strength reduction

- Constant folding

. Example: x = 15 * 3 is transformed to x = 45 

There is no strong counterpart in English, his is similar to precise writing where one cuts down the redundant words. It basically cuts down the redundancy. We modify the compiled code to make it more efficient such that it can - Run faster - Use less resources, such as memory, register, space, fewer fetches etc. 

Example of Optimizations 

  

	PI = 3.14159 
	3A+4M+1D+2E 

	Area = 4 * PI * R^2
	 

	Volume = (4/3) * PI * R^3 
	 

	-------------------------------- 
	 

	X = 3.14159 * R * R 
	3A+5M 

	Area = 4 * X 
	 

	Volume = 1.33 * X * R 
	 

	-------------------------------- 
	 

	Area = 4 * 3.14159 * R * R 2A+4M+1D 

Volume = ( Area / 3 ) * R 
	2A+4M+1D 

	-------------------------------- 
	 

	Area = 12.56636 * R * R 
	2A+3M+1D 

	Volume = ( Area /3 ) * R 
	 

	-------------------------------- 
	 

	X = R * R
	3A+4M 

	  
	 

	A : assignment 
	M : multiplication 

	D : division 
	E : exponent 

	 
	 

	 
	  


Example: see the following code,

int x = 2;

int y = 3;

int *array[5];

for (i=0; i<5;i++) 

*array[i] = x + y;

Because x and y are invariant and do not change inside of the loop, their addition doesn't need to be performed for each loop iteration. Almost any good compiler optimizes the code. An optimizer moves the addition of x and y outside the loop, thus creating a more efficient loop. Thus, the optimized code in this case could look like the following:

int x = 5;

int y = 7;

int z = x + y;

int *array[10];

for (i=0; i<5;i++)

*array[i] = z; 

Code Generation 

Usually a two step process
- Generate intermediate code from the semantic representation of the program 

- Generate machine code from the intermediate code

The advantage is that each phase is simple

1. Requires design of intermediate language

2. Most compilers perform translation between successive intermediate representations 

3. Intermediate languages are generally ordered in decreasing level of abstraction from highest (source) to lowest (machine) 

4. However, typically the one after the intermediate code generation is the most important 

  

The final phase of the compiler is generation of the relocatable target code. First of all, Intermediate code is generated from the semantic representation of the source program, and this intermediate code is used to generate machine code. 

Intermediate Code Generation 

1. Abstraction at the source level identifiers, operators, expressions, statements, conditionals, iteration, functions (user defined, system defined or libraries)

2. Abstraction at the target level memory locations, registers, stack, opcodes, addressing modes, system libraries, interface to the operating systems

3. Code generation is mapping from source level abstractions to target machine abstractions 

4. Map identifiers to locations (memory/storage allocation)

5. Explicate variable accesses (change identifier reference to relocatable/absolute address

6. Map source operators to opcodes or a sequence of opcodes

7. Convert conditionals and iterations to a test/jump or compare instructions 

8. Layout parameter passing protocols: locations for parameters, return values, layout of activations frame etc.

Interface calls to library, runtime system, operating systems.
By the very definition of an intermediate language it must be at a level of abstraction which is in the middle of the high level source language and the low level target (machine) language. Design of the intermediate language is important. The IL should satisfy 2 main properties:
. Easy to produce, and

. Easy to translate into target language. 

Thus it must not only relate to identifiers, expressions, functions & classes but also to opcodes, registers, etc. Then it must also map one abstraction to the other. These are some of the things to be taken care of in the intermediate code generation. 

Post translation Optimizations 

. Algebraic transformations and re-ordering
- Remove/simplify operations like
Multiplication by 1

Multiplication by 0 

Addition with 0 

- Reorder instructions based on
Commutative properties of operators

For example x + y is same as y + x (always?)

Instruction selection 

Addressing mode selection 
Opcode selection 
Peephole optimization 
 

Some of the different optimization methods are: 
1) Constant Folding - replacing y= 5+7 with y=12 or y=x*0 with y=0 

2) Dead Code Elimination - e.g., 

If (false)

a = 1;

else 

a = 2;

with a = 2; 

3) Peephole Optimization - a machine-dependent optimization that makes a pass through low-level assembly-like instruction sequences of the program( called a peephole), and replacing them with a faster (usually shorter) sequences by removing redundant register loads and stores if possible.

4) Flow of Control Optimizations 

5) Strength Reduction - replacing more expensive expressions with cheaper ones - like pow(x,2) with x*x

6) Common Sub expression elimination - like a = b*c, f= b*c*d with temp = b*c, a= temp, f= temp*d; 
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Intermediate code generation 
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Code Generation 
CMP Cx, 0 CMOVZ Dx,Cx 
 There is a clear intermediate code optimization - with 2 different sets of codes having 2 different parse trees. The optimized code does away with the redundancy in the original code and produces the same results.

Compiler structure 
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These are the various stages in the process of generation of the target code from the source code by the compiler. These stages can be broadly classified into

· the Front End ( Language specific ), and
· The Back End (Machine specific) parts of compilation. 
Information required about the program variables during compilation
· Class of variable: keyword, identifier etc.

· Type of variable: integer, float, array, function etc.

· Amount of storage required 

· Address in the memory

· Scope information

Location to store this information
· Attributes with the variable (has obvious problems)

· At a central repository and every phase refers to the repository whenever information is required

Normally the second approach is preferred
· Use a data structure called symbol table 

For the lexicons, additional information with its name may be needed. Information about whether it is a keyword/identifier, its data type, value, scope, etc might be needed to be known during the latter phases of compilation. However, all this information is not available in a straight away. This information has to be found and stored somewhere. We store it in a data structure called Symbol Table. Thus each phase of the compiler can access data from the symbol table & write data to it. The method of retrieval of data is that with each lexicon a symbol table entry is associated. A pointer to this symbol in the table can be used to retrieve more information about the lexicon 
Final Compiler structure 
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This diagram elaborates what's written in the previous slide. You can see that each stage can access the Symbol Table. All the relevant information about the variables, classes, functions etc. are stored in it. 


Advantages of the model 

. Also known as Analysis-Synthesis model of compilation

- Front end phases are known as analysis phases

- Back end phases are known as synthesis phases

. Each phase has a well defined work 

. Each phase handles a logical activity in the process of compilation 

The Analysis-Synthesis model:
The front end phases are Lexical, Syntax and Semantic analyses. These form the "analysis phase" as you can well see these all do some kind of analysis. The Back End phases are called the "synthesis phase" as they synthesize the intermediate and the target language and hence the program from the representation created by the Front End phases. The advantages are that not only can lots of code be reused, but also since the compiler is well structured - it is easy to maintain & debug. 
Advantages of the model

· Compiler is retargetable

· Source and machine independent code optimization is possible.

· Optimization phase can be inserted after the front and back end phases have been developed and deployed

· Also known as Analysis-Synthesis model of compilation

Also since each phase handles a logically different phase of working of a compiler parts of the code can be reused to make new compilers. E.g., in a C compiler for Intel & Athlon the front ends will be similar. For a same language, lexical, syntax and semantic analyses are similar, code can be reused. Also in adding optimization, improving the performance of one phase should not affect the same of the other phase; this is possible to achieve in this model. 

Issues in Compiler Design 

. Compilation appears to be very simple, but there are many pitfalls

. How are erroneous programs handled?

. Design of programming languages has a big impact on the complexity of the compiler

. M*N vs. M+N problem

- Compilers are required for all the languages and all the machines

- For M languages and N machines we need to develop M*N compilers

- However, there is lot of repetition of work because of similar activities in the front ends and back ends 

- Can we design only M front ends and N back ends, and some how link them to get all M*N compilers? 

The compiler should fit in the integrated development environment. This opens many challenges in design e.g., appropriate information should be passed on to the debugger in case of erroneous programs. Also the compiler should find the erroneous line in the program and also make error recovery possible. Some features of programming languages make compiler design difficult, e.g., Algol68 is a very neat language with most good features. But it could never get implemented because of the complexities in its compiler design. 
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We design the front end independent of machines and the back end independent of the source language. For this, we will require a Universal Intermediate Language (UIL) that acts as an interface between front end and back end. The front end will convert code written in the particular source language to the code in UIL, and the back end will convert the code in UIL to the equivalent code in the particular machine language. So, we need to design only M front ends and N back ends. To design a compiler for language L that produces output for machine C, we take the front end for L and the back end for C. In this way, we require only M + N compilers for M source languages and N machine architectures. For large M and N, this is a significant reduction in the effort. 
Universal Intermediate Language 

. Universal Computer/Compiler Oriented Language (UNCOL) A vast demand for different compilers, as potentially one would require separate compilers for each combination of source language and target architecture. To counteract the anticipated combinatorial explosion, the idea of a linguistic switchbox materialized in 1958. UNCOL (UNiversal COmputer Language) is an intermediate language, which was proposed in 1958 to reduce the developmental effort of compiling many different languages to different architectures 

Had there been no intermediate language then we would have needed a separate compiler for every combination of a source language and the target machine. This would have caused a combinatorial explosion as the number of languages or types of machines would have grown with time. Hence UNCOL was proposed to counteract this combinatorial explosion by acting as an intermediate language to reduce the effort of compiler development for different languages for different platforms. 
Universal Intermediate Language 

- The first intermediate language UNCOL (UNiversal Computer Oriented Language) was proposed in 1961 for use in compilers to reduce the development effort of compiling many different languages to many different architectures

- the IR semantics should ideally be independent of both the source and target language. Accordingly, already in the 1950s many researchers tried to define a single universal IR language, traditionally referred to as UNCOL (UNiversal Computer Oriented Language) 

First suggested in 1958, its first version was proposed in 1961. The semantics of this language would be quite independent of the target language, and hence apt to be used as an Intermediate Language 
Universal Intermediate Language
· It is next to impossible to design a single intermediate language to accommodate all programming languages

· Mythical universal intermediate language sought since mid 1950s (Ullman)

· However, common IRs for similar languages, and similar machines have been designed, and are used for compiler development 

Due to vast differences between programming languages and machine architectures, design of such a language is not possible. But, we group programming languages with similar characteristics together and design an intermediate language for them. Similarly an intermediate language is designed for similar machines. The number of compilers though doesn't decrease to M + N, but is significantly reduced by use of such group languages. 

How do we know compilers generate correct code? 

· Prove that the compiler is correct. 

· However, program proving techniques do not exist at a level where large and complex 
· programs like compilers can be proven to be correct

· In practice do a systematic testing to increase confidence level 

· Regression testing

· Maintain a suite of test programs

· Expected behavior of each program is documented

· All the test programs are compiled using the compiler and deviations are reported to the compiler writer

·  Design of test suite 

· Test programs should exercise every statement of the compiler at least once 

· Usually requires great ingenuity to design such a test suite

· Exhaustive test suites have been constructed for some languages 

Formal methods have been designed for automated testing of correctness of programs. But testing of very large programs like compilers, operating systems etc. Is not possible by this method. These methods mainly rely on writing state of a program before and after the execution of a statement. The state consists of the values of the variables of a program at that step. In large programs like compilers, the number of variables is too large and so, defining the state is very difficult. So, formal testing of compilers has not yet been put to practice. The solution is to go for systematic testing i.e., we will not prove that the compiler will work correctly in all situations but instead, we will test the compiler on different programs. Correct results increase the confidence that the compiler is correct. 

Test suites generally contain 5000-10000 programs of various kinds and sizes. Such test suites are heavily priced as they are very intelligently designed to test every aspect of the compiler. 

How to reduce development and testing effort?

. DO NOT WRITE COMPILERS
. GENERATE compilers
. A compiler generator should be able to "generate" compiler from the source language and target machine specifications 
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The compiler generator needs to be written only once. To generate any compiler for language L and generating code for machine M, we will need to give the compiler generator the specifications of L and M. This would greatly reduce effort of compiler writing as the compiler generator needs to be written only once and all compilers could be produced automatically. 
Specifications and Compiler Generator 

. How to write specifications of the source language and the target machine?

- Language is broken into sub components like lexemes, structure, semantics etc. 

- Each component can be specified separately.

For example, an identifier may be specified as

. A string of characters that has at least one alphabet 

. starts with an alphabet followed by alphanumeric 

. letter (letter | digit)*

- Similarly syntax and semantics can be described 

. Can target machine be described using specifications? 

There are ways to break down the source code into different components like lexemes, structure, semantics etc. Each component can be specified separately. The above example shows the way of recognizing identifiers for lexical analysis. Similarly there are rules for semantic as well as syntax analysis. Can we have some specifications to describe the target machine? 
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Tools for each stage of compiler design have been designed that take in the specifications of the stage and output the compiler fragment of that stage. For example, lex is a popular tool for lexical analysis, yacc is a popular tool for syntactic analysis. Similarly, tools have been designed for each of these stages that take in specifications required for that phase e.g., the code generator tool takes in machine specifications and outputs the final compiler code. This design of having separate tools for each stage of compiler development has many advantages that have been described on the next slide. 
How to Retarget Compilers? 

· Changing specifications of a phase can lead to a new compiler

· If machine specifications are changed then compiler can generate code for a different machine without changing any other phase 

· If front end specifications are changed then we can get compiler for a new language 

· Tool based compiler development cuts down development/maintenance time by almost 30-40%

· Tool development/testing is one time effort

· Compiler performance can be improved by improving a tool and/or specification for a particular phase 

In tool based compilers, change in one phase of the compiler doesn't affect other phases. Its phases are independent of each other and hence the cost of maintenance is cut down drastically. Just make a tool for once and then use it as many times as you want. With tools each time you need a compiler you won't have to write it, you can just "generate" it. 
Bootstrapping 

· Compiler is a complex program and should not be written in assembly language

· How to write compiler for a language in the same language (first time!)?

· First time this experiment was done for Lisp 

· Initially, Lisp was used as a notation for writing functions.

· Functions were then hand translated into assembly language and executed

· McCarthy wrote a function eval[e,a] in Lisp that took a Lisp expression e as an argument 

· The function was later hand translated and it became an interpreter for Lisp 

Writing a compiler in assembly language directly can be a very tedious task. It is generally written in some high level language. What if the compiler is written in its intended source language itself? This was done for the first time for Lisp. Initially, Lisp was used as a notation for writing functions. Functions were then hand translated into assembly language and executed. McCarthy wrote a function eval [ e , a ] in Lisp that took a Lisp expression e as an argument. Then it analyzed the expression and translated it into the assembly code. The function was later hand translated and it became an interpreter for Lisp. 

Bootstrapping: A compiler can be characterized by three languages: the source language (S), the target language (T), and the implementation language (I). The three language S, I, and T can be quite different. Such a compiler is called cross-compiler 
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Compilers are of two kinds: native and cross.
Native compilers are written in the same language as the target language. For example, SMM is a compiler for the language S that is in a language that runs on machine M and generates output code that runs on machine M. 

Cross compilers are written in different language as the target language. For example, SNM is a compiler for the language S that is in a language that runs on machine N and generates output code that runs on machine M. 

Bootstrapping . 
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The compiler of LSN is written in language S. This compiler code is compiled once on SMM to generate the compiler's code in a language that runs on machine M. So, in effect, we get a compiler that converts code in language L to code that runs on machine N and the compiler itself is in language M. In other words, we get LMN. 

Bootstrapping a Compiler
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Using the technique described in the last slide, we try to use a compiler for a language L written in L. For this we require a compiler of L that runs on machine M and outputs code for machine M. First we write LLN i.e. we have a compiler written in L that converts code written in L to code that can run on machine N. We then compile this compiler program written in L on the available compiler LMM. So, we get a compiler program that can run on machine M and convert code written in L to code that can run on machine N i.e. we get LMN. Now, we again compile the original written compiler LLN on this new compiler LMN we got in last step. This compilation will convert the compiler code written in L to code that can run on machine N. So, we finally have a compiler code that can run on machine N and converts code in language L to code that will run on machine N. i.e. we get LNN. 
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Bootstrapping is obtaining a compiler for a language L by writing the compiler code in the same language L. We have discussed the steps involved in the last three slides. This slide shows the complete diagrammatical representation of the process. 
Compilers of the 21st Century 

. Overall structure of almost all the compilers is similar to the structure we have discussed
. The proportions of the effort have changed since the early days of compilation
. Earlier front end phases were the most complex and expensive parts.
. Today back end phases and optimization dominate all other phases. Front end phases are typically a small fraction of the total time 
Front end design has been almost mechanized now. Excellent tools have been designed that take in the syntactic structure and other specifications of the language and generate the front end automatically 

Lexical Analysis 
 

Lexical Analysis 
. Recognize tokens and ignore white spaces, comments 
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Generates token stream 
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· Error reporting

· Model using regular expressions 

· Recognize using Finite State Automata 

The first phase of the compiler is lexical analysis. The lexical analyzer breaks a sentence into a sequence of words or tokens and ignores white spaces and comments. It generates a stream of tokens from the input. This is modeled through regular expressions and the structure is recognized through finite state automata. If the token is not valid i.e., does not fall into any of the identifiable groups, then the lexical analyzer reports an error. Lexical analysis thus involves recognizing the tokens in the source program and reporting errors, if any. We will study more about all these processes in the subsequent slides 
Lexical Analysis 

· Sentences consist of string of tokens (a syntactic category) for example, number, identifier, keyword, string

· Sequences of characters in a token is a lexeme for example, 100.01, counter, const, "How are you?" 

· Rule of description is a pattern for example, letter(letter/digit)*

· Discard whatever does not contribute to parsing like white spaces ( blanks, tabs, newlines ) and comments

· construct constants: convert numbers to token num and pass number as its attribute, for example, integer 31 becomes <num, 31>

· recognize keyword and identifiers for example counter = counter + increment becomes id = id + id /*check if id is a keyword*/ 

We often use the terms "token", "pattern" and "lexeme" while studying lexical analysis. Let’s see what each term stands for.

Token: A token is a syntactic category. Sentences consist of a string of tokens. For example number, identifier, keyword, string etc are tokens.

Lexeme: Sequence of characters in a token is a lexeme. For example 100.01, counter, const, "How are you?" etc are lexemes.

Pattern: Rule of description is a pattern. For example letter (letter | digit)* is a pattern to symbolize a set of strings which consist of a letter followed by a letter or digit. In general, there is a set of strings in the input for which the same token is produced as output. This set of strings is described by a rule called a pattern associated with the token. This pattern is said to match each string in the set. A lexeme is a sequence of characters in the source program that is matched by the pattern for a token. The patterns are specified using regular expressions. For example, in the Pascal statement

Const pi = 3.1416; 

The substring pi is a lexeme for the token "identifier". We discard whatever does not contribute to parsing like white spaces (blanks, tabs, new lines) and comments. When more than one pattern matches a lexeme, the lexical analyzer must provide additional information about the particular lexeme that matched to the subsequent phases of the compiler. For example, the pattern num matches both 1 and 0 but it is essential for the code generator to know what string was actually matched. The lexical analyzer collects information about tokens into their associated attributes. For example integer 31 becomes <num, 31>. So, the constants are constructed by converting numbers to token 'num' and passing the number as its attribute. Similarly, we recognize keywords and identifiers. For example count = count + inc becomes id = id + id.

Interface to other phases 
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. Push back is required due to lookahead for example > = and >

. It is implemented through a buffer 

- Keep input in a buffer

- Move pointers over the input 

The lexical analyzer reads characters from the input and passes tokens to the syntax analyzer whenever it asks for one. For many source languages, there are occasions when the lexical analyzer needs to look ahead several characters beyond the current lexeme for a pattern before a match can be announced. For example, > and >= cannot be distinguished merely on the basis of the first character >. Hence there is a need to maintain a buffer of the input for look ahead and push back. We keep the input in a buffer and move pointers over the input. Sometimes, we may also need to push back extra characters due to this lookahead character. 
Approaches to implementation 

. Use assembly language Most efficient but most difficult to implement 
. Use high level languages like C Efficient but difficult to implement
. Use tools like lex, flex Easy to implement but not as efficient as the first two cases 
Lexical analyzers can be implemented using many approaches/techniques:
Assembly language: We have to take input and read it character by character. So we need to have control over low level I/O. Assembly language is the best option for that because it is the most efficient. This implementation produces very efficient lexical analyzers. However, it is most difficult to implement, debug and maintain.
High level language like C: Here we will have a reasonable control over I/O because of high-level constructs. This approach is efficient but still difficult to implement.
Tools like Lexical Generators and Parsers: This approach is very easy to implement, only specifications of the lexical analyzer or parser need to be written. The lex tool produces the corresponding C code. But this approach is not very efficient which can sometimes be an issue. We can also use a hybrid approach wherein we use high level languages or efficient tools to produce the basic code and if there are some hot-spots (some functions are a bottleneck) then they can be replaced by fast and efficient assembly language routines.     
Construct a lexical analyzer 
· Allow white spaces, numbers and arithmetic operators in an expression 

· Return tokens and attributes to the syntax analyzer 

· A global variable tokenval is set to the value of the number

· Design requires that

· A finite set of tokens be defined 

· Describe strings belonging to each token 

We now try to construct a lexical analyzer for a language in which white spaces, numbers and arithmetic operators in an expression are allowed. From the input stream, the lexical analyzer recognizes the tokens and their corresponding attributes and returns them to the syntax analyzer. To achieve this, the function returns the corresponding token for the lexeme and sets a global variable, say tokenval , to the value of that token. Thus, we must define a finite set of tokens and specify the strings belonging to each token. We must also keep a count of the line number for the purposes of reporting errors and debugging. We will have a look at a typical code snippet which implements a lexical analyzer in the subsequent slide. 

#include <stdio.h>

#include <ctype.h>

int lineno = 1;

int tokenval = NONE;

int lex() 
{ 

             int t;

             while (1) 
    {

             t = getchar ();

             if (t = = ' ' || t = = '\t'); 

             else if (t = = '\n')lineno = lineno + 1; 

             else if (isdigit (t) ) 
         { 

           tokenval = t - '0' ;

           t = getchar (); 

           while (isdigit(t)) 
          {

            tokenval = tokenval * 10 + t - '0' ;

            t = getchar(); 

          } 

          ungetc(t,stdin);

       return num; 

      }

   else { tokenval = NONE;return t; } 

  } 

} 

A crude implementation of lex() analyzer to eliminate white space and collect numbers is shown. Every time the body of the while statement is executed, a character is read into t. If the character is a blank (written ' ') or a tab (written '\t'), then no token is returned to the parser; we merely go around the while loop again. If a character is a new line (written '\n'), then a global variable "lineno" is incremented, thereby keeping track of line numbers in the input, but again no token is returned. Supplying a line number with the error messages helps pin point errors. The code for reading a sequence of digits is on lines 11-19. The predicate isdigit(t) from the include file <ctype.h> is used on lines 11 and 14 to determine if an incoming character t is a digit. If it is, then its integer value is given by the expression t-'0' in both ASCII and EBCDIC. With other character sets, the conversion may need to be done differently.
Problems 

. Scans text character by character

. Look ahead character determines what kind of token to read and when the current token ends

. First character cannot determine what kind of token we are going to read 

The problem with lexical analyzer is that the input is scanned character by character. Now, its not possible to determine by only looking at the first character what kind of token we are going to read since it might be common in multiple tokens. We saw one such an example of > and >= previously. So one needs to use a lookahead character depending on which one can determine what kind of token to read or when does a particular token end. It may not be punctuation or a blank but just another kind of token which acts as the word boundary. The lexical analyzer that we just saw used a function ungetc() to push lookahead characters back into the input stream. Because a large amount of time can be consumed moving characters, there is actually a lot of overhead in processing an input character. To reduce the amount of such overhead involved, many specialized buffering schemes have been developed and used. [image: image25.png]
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Symbol Table 

. Stores information for subsequent phases 
. Interface to the symbol table 

- Insert(s,t): save lexeme s and token t and return pointer 

- Lookup(s): return index of entry for lexeme s or 0 if s is not found

Implementation of symbol table
. Fixed amount of space to store lexemes. Not advisable as it waste space.

. Store lexemes in a separate array. Each lexeme is separated by eos. Symbol table has pointers to lexemes. 

A data structure called symbol table is generally used to store information about various source language constructs. Lexical analyzer stores information in the symbol table for the subsequent phases of the compilation process. The symbol table routines are concerned primarily with saving and retrieving lexemes. When a lexeme is saved, we also save the token associated with the lexeme. As an interface to the symbol table, we have two functions 
- Insert( s , t ): Saves and returns index of new entry for string s , token t .
- Lookup( s ): Returns index of the entry for string s , or 0 if s is not found.
Next, we come to the issue of implementing a symbol table. The symbol table access should not be slow and so the data structure used for storing it should be efficient. However, having a fixed amount of space to store lexemes is not advisable because a fixed amount of space may not be large enough to hold a very long identifier and may be wastefully large for a short identifier, such as i . An alternative is to store lexemes in a separate array. Each lexeme is terminated by an end-of-string, denoted by EOS, that may not appear in identifiers. The symbol table has pointers to these lexemes. 
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Here, we have shown the two methods of implementing the symbol table which we discussed in the previous slide in detail. As, we can see, the first one which is based on allotting fixed amount space for each lexeme tends to waste a lot of space by using a fixed amount of space for each lexeme even though that lexeme might not require the whole of 32 bytes of fixed space. The second representation which stores pointers to a separate array, which stores lexemes terminated by an EOS, is a better space saving implementation. Although each lexeme now has an additional overhead of five bytes (four bytes for the pointer and one byte for the EOS). Even then we are saving about 70% of the space which we were wasting in the earlier implementation. We allocate extra space for 'Other Attributes' which are filled in the later phases. 
How to handle keywords? 
. Consider token DIV and MOD with lexemes div and mod.

. Initialize symbol table with insert( "div" , DIV ) and insert( "mod" , MOD).

. Any subsequent lookup returns a nonzero value, therefore, cannot be used as an identifier . 

To handle keywords, we consider the keywords themselves as lexemes. We store all the entries corresponding to keywords in the symbol table while initializing it and do lookup whenever we see a new lexeme. Now, whenever a lookup is done, if a nonzero value is returned, it means that there already exists a corresponding entry in the Symbol Table. So, if someone tries to use a keyword as an identifier, it will not be allowed as an identifier with this name already exists in the Symbol Table. For instance, consider the tokens DIV and MOD with lexemes "div" and "mod". We initialize symbol table with insert("div", DIV) and insert("mod", MOD). Any subsequent lookup now would return a nonzero value, and therefore, neither "div" nor "mod" can be used as an identifier. 
Difficulties in design of lexical analyzers 

. Is it as simple as it sounds? 

. Lexemes in a fixed position. Fix format vs. free format languages

. Handling of blanks

- in Pascal, blanks separate identifiers

- in Fortran, blanks are important only in literal strings for example variable counter is same as counter

- Another example

DO 10 I = 1.25     DO10I=1.25 

DO 10 I = 1,25     DO10I=1,25 

The design of a lexical analyzer is quite complicated and not as simple as it looks. There are several kinds of problems because of all the different types of languages we have. Let us have a look at some of them. For example: 1. We have both fixed format and free format languages - A lexeme is a sequence of character in source program that is matched by pattern for a token. FORTRAN has lexemes in a fixed position. These white space and fixed format rules came into force due to punch cards and errors in punching. Fixed format languages make life difficult because in this case we have to look at the position of the tokens also. 2. Handling of blanks - It's of our concern that how do we handle blanks as many languages (like Pascal, FORTRAN etc) have significance for blanks and void spaces. When more than one pattern matches a lexeme, the lexical analyzer must provide additional information about the particular lexeme that matched to the subsequent phases of the lexical analyzer. In Pascal blanks separate identifiers. In FORTRAN blanks are important only in literal strings. For example, the variable " counter " is same as " count er ". 

Another example is DO 10 I = 1.25 DO 10 I = 1,25 The first line is a variable assignment DO10I = 1.25. The second line is the beginning of a Do loop. In such a case we might need an arbitrary long lookahead. Reading from left to right, we cannot distinguish between the two until the " , " or " . " is reached. 
- The first line is a variable assignment

DO10I=1.25
- second line is beginning of a

Do loop
- Reading from left to right one can not distinguish between the two until the ";" or "." is reached

. Fortran white space and fixed format rules came into force due to punch cards and errors in punching 
In the example 

DO 10 I = 1.25    DO 10 I = 1,25
The first line is a variable assignment DO10I = 1.25. The second line is the beginning of a Do loop. In such a case, we might need an arbitrary long lookahead. Reading from left to right, we can not distinguish between the two until the " , " or " . " is reached.
FORTRAN has a language convention which impacts the difficulty of lexical analysis. The alignment of lexeme may be important in determining the correctness of the source program; the treatment of blank varies from language to language such as FORTRAN and ALGOL 68. Blanks are not significant except in little strings. The conventions regarding blanks can greatly complicate the task of identified tokens.
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In many languages certain strings are reserved, i.e., there meaning is predefined and cannot be changed by the user. If keywords are not reserved then the lexical analyzer must distinguish between a keyword and a user defined identifier. PL/1 has several problems: 1. In PL/1 keywords are not reserved; thus, the rules for distinguishing keywords from identifiers are quite complicated as the following PL/1 statement illustrates. For example - If then then then = else else else = then 2. PL/1 declarations: Example - Declare (arg1, arg2, arg3,.., argn) In this statement, we can not tell whether 'Declare' is a keyword or array name until we see the character that follows the ")". This requires arbitrary lookahead and very large buffers. This buffering scheme works quite well most of the time but with it the amount of lookahead is limited and this limited lookahead may make it impossible to recognize tokens in salutations where the distance the forward pointer must travel is more than the length of the buffer, as the slide illustrates. The situation even worsens if the buffers have to be reloaded. 
Problem continues even today!! 
. C++ template syntax:Foo<Bar> 
. C++ stream syntax: cin >> var; 

. Nested templates: Foo<Bar<Bazz>>

. Can these problems be resolved by lexical analyzers alone? 

Even C++ has such problems like:
1. C++ template syntax: Foo<Bar> 
2. C++ stream syntax: cin >> var; 
3. Nested templates: Foo<Bar<Bazz>>
We have to see if these problems be resolved by lexical analyzers alone. 
How to specify tokens? 

. How to describe tokens
2.e0 20.e-01 2.000 
. How to break text into token
if (x==0) a = x << 1; 
iff (x==0) a = x < 1;
. How to break input into token efficiently
- Tokens may have similar prefixes 
- Each character should be looked at only once 
The various issues which concern the specification of tokens are:

1. How to describe the complicated tokens like e0 20.e-01 2.000

2. How to break into tokens the input statements like if (x==0) a = x << 1; iff (x==0) a = x < 1;
3. How to break the input into tokens efficiently? There are the following problems that are encountered:
- Tokens may have similar prefixes
- Each character should be looked at only once 

How to describe tokens? 

· Programming language tokens can be described by regular languages 
· Regular languages are easy to understand
· There is a well understood and useful theory 
· They have efficient implementation
· Regular languages have been discussed in great detail in the "Theory of Computation" course 
Here we address the problem of describing tokens. Regular expression is an important notation for specifying patterns. Each pattern matches a set of strings, so regular expressions will serve as names for set of strings. Programming language tokens can be described by regular languages. The specification of regular expressions is an example of a recursive definition. Regular languages are easy to understand and have efficient implementation. The theory of regular languages is well understood and very useful. There are a number of algebraic laws that are obeyed by regular expression which can be used to manipulate regular expressions into equivalent forms. We will look into more details in the subsequent slides. 

Operations on languages 

. L U M = {s | s is in L or s is in M} 

. LM = {st | s is in L and t is in M} 

The various operations on languages are:
. Union of two languages L and M written as L U M = {s | s is in L or s is in M} 
. Concatenation of two languages L and M written as LM = {st | s is in L and t is in M}
.The Kleene Closure of a language L written as 
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We will look at various examples of these operators in the subsequent slide. 
Example 

. Let L = {a, b, .., z} and D = {0, 1, 2, . 9} then

. LUD is a set of letters and digits

. LD is a set of strings consisting of a letter followed by a digit

. L* is a set of all strings of letters including ?

. L(LUD)* is a set of all strings of letters and digits beginning with a letter 

. D + is a set of strings of one or more digits 

Example:

Let L be a the set of alphabets defined as L = {a, b, .., z} and D be a set of all digits defined as D = {0, 1, 2, .., 9}. We can think of L and D in two ways. We can think of L as an alphabet consisting of the set of lower case letters, and D as the alphabet consisting of the set the ten decimal digits. Alternatively, since a symbol can be regarded as a string of length one, the sets L and D are each finite languages. Here are some examples of new languages created from L and D by applying the operators defined in the previous slide.
. Union of L and D, L U D is the set of letters and digits.
. Concatenation of L and D, LD is the set of strings consisting of a letter followed by a digit.
. The Kleene closure of L, L* is a set of all strings of letters including?
. L(LUD)* is the set of all strings of letters and digits beginning with a letter.
. D+ is the set of strings one or more digits. 
Notation 

. Let S be a set of characters. A language over S is a set of strings of characters belonging to S 

. A regular expression r denotes a language L(r)

. Rules that define the regular expressions over S 

- ? is a regular expression that denotes { ? } the set containing the empty string

- If a is a symbol in S then a is a regular expression that denotes {a} 

Let S be a set of characters. A language over S is a set of strings of characters belonging to S . A regular expression is built up out of simpler regular expressions using a set of defining rules. Each regular expression r denotes a language L( r ). The defining rules specify how L( r ) is formed by combining in various ways the languages denoted by the sub expressions of r . Following are the rules that define the regular expressions over S:
. ? is a regular expression that denotes { ? }, that is, the set containing the empty string. 
. If a is a symbol in S then a is a regular expression that denotes { a } i.e., the set containing the string a . Although we use the same notation for all three, technically, the regular expression a is different from the string a or the symbol a . It will be clear from the context whether we are talking about a as a regular expression, string or symbol. 
Notation 
. If r and s are regular expressions denoting the languages L(r) and L(s) then

. (r)|(s) is a regular expression denoting L(r) U L(s)

. (r)(s) is a regular expression denoting L(r)L(s) 

. (r)* is a regular expression denoting (L(r))* 

. (r) is a regular expression denoting L(r ) 

Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then,
. (r)|(s) is a regular expression denoting L(r) U L(s).

. (r) (s) is a regular expression denoting L(r) L(s).
. (r)* is a regular expression denoting (L(r))*. 
. (r) is a regular expression denoting L(r). 

Let us take an example to illustrate: Let S = {a, b}.

1. The regular expression a|b denotes the set {a,b}. 
2. The regular expression (a | b) (a | b) denotes {aa, ab, ba, bb}, the set of all strings of a's 
     and b's of length two. Another regular expression for this same set is aa | ab | ba | bb.
3. The regular expression a* denotes the set of all strings of zero or more a's i.e., { ? , a, 
     aa, aaa, .}.
4. The regular expression (a | b)* denotes the set of all strings containing zero or more 
     instances of an a or b, that is, the set of strings of a's and b's. Another regular 
     expression for this set is (a*b*)*.
5. The regular expression a | a*b denotes the set containing the string a and all strings consisting of zero or more a's followed by a b.
If two regular expressions contain the same language, we say r and s are equivalent and write r = s. For example, (a | b) = (b | a). 
Notation 
. Precedence and associativity
. *, concatenation, and | are left associative
. * has the highest precedence
. Concatenation has the second highest precedence
. | has the lowest precedence 
Unnecessary parentheses can be avoided in regular expressions if we adopt the conventions that:
. The unary operator * has the highest precedence and is left associative.
. Concatenation has the second highest precedence and is left associative.
. | has the lowest precedence and is left associative. Under these conventions, (a)|((b)*(c)) is equivalent to a|b*c. Both expressions denote the set of strings that are either a single a or zero or more b 's followed by one c . 
How to specify tokens 
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If S is an alphabet of basic symbols, then a regular definition is a sequence of definitions of the form

d1[image: image33.png]


r1 
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 r2
.............
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 rn
where each di is a distinct name, and each ri is a regular expression over the symbols in [image: image36.png]TUd, s . d )



i.e. the basic symbols and the previously defined names. By restricting each ri to symbols of S and the previously defined names, we can construct a regular expression over S for any ri by repeatedly replacing regular-expression names by the expressions they denote. If ri used dkfor some k >= i, then ri might be recursively defined, and this substitution process would not terminate. So, we treat tokens as terminal symbols in the grammar for the source language. The lexeme matched by the pattern for the token consists of a string of characters in the source program and can be treated as a lexical unit. The lexical analyzer collects information about tokens into there associated attributes. As a practical matter a token has usually only a single attribute, appointed to the symbol table entry in which the information about the token is kept; the pointer becomes the attribute for the token. 
Examples 
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Examples 
  

. My email address ska@iitk.ac.in
. S = letter U {@, . }

. Letter [image: image39.png]


a| b| .| z| A| B| .| Z 

. Name [image: image40.png]


letter +

. Address [image: image41.png]


name '@' name '.' name '.' name 

Now we look at the regular definitions for writing an email address ska@iitk.ac.in: 

Set of alphabets being S = letter U {@, . } ):

Letter [image: image42.png]


a| b| .| z| A| B| .| Z i.e., any lower case or upper case alphabet 

Name [image: image43.png]


letter + i.e., a string of one or more letters

Address [image: image44.png]


name '@' name '.' name '.' name 

Examples 
. Identifier

letter [image: image45.png]


a| b| .|z| A| B| .| Z 

digit [image: image46.png]


0| 1| .| 9 

identifier [image: image47.png]


letter(letter|digit)*

. Unsigned number in Pascal 

digit [image: image48.png]


0| 1| . |9 

digits [image: image49.png]


digit +

fraction [image: image50.png]


' . ' digits | ε

exponent[image: image51.png]


 (E ( ' + ' | ' - ' |ε ) digits) | ε 

number[image: image52.png]


 digits fraction exponent 

Here are some more examples:

The set of Identifiers is the set of strings of letters and digits beginning with a letter. Here is a regular definition for this set: 

letter [image: image53.png]


a| b| .|z| A| B| .| Z i.e., any lower case or upper case alphabet 

digit [image: image54.png]


0| 1| .| 9 i.e., a single digit 

identifier [image: image55.png]


letter(letter | digit)* i.e., a string of letters and digits beginning with a letter 

Unsigned numbers in Pascal are strings such as 5280, 39.37, 6.336E4, 1.894E-4. Here is a regular definition for this set:

digit [image: image56.png]


0| 1| .|9 i.e., a single digit

digits [image: image57.png]


digit + i.e., a string of one or more digits

fraction [image: image58.png]


' . ' digits | ε i.e., an empty string or a decimal symbol followed by one or more digits 

exponent [image: image59.png]


(E ( ' + ' | ' - ' | ε ) digits) | ε
number [image: image60.png]


digits fraction exponent 

Regular expressions in specifications 

· Regular expressions describe many useful languages

· Regular expressions are only specifications; implementation is still required

· Given a string s and a regular expression R, does s ? L(R) ? 

· Solution to this problem is the basis of the lexical analyzers

· However, just the yes/no answer is not important

· Goal: Partition the input into tokens 

Regular expressions describe many useful languages. A regular expression is built out of simpler regular expressions using a set of defining rules. Each regular expression R denotes a regular language L(R). The defining rules specify how L(R) is formed by combining in various phases the languages denoted by the sub expressions of R. But regular expressions are only specifications, the implementation is still required. The problem before us is that given a string s and a regular expression R , we have to find whether s e L(R). Solution to this problem is the basis of the lexical analyzers. However, just determining whether s e L(R) is not enough. In fact, the goal is to partition the input into tokens. Apart from this we have to do bookkeeping and push back the extra characters. 
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The algorithm gives priority to tokens listed earlier
- Treats "if" as keyword and not identifier 
. How much input is used? What if 
- x1 .xi? L(R) 
- x1.xj ? L(R)
- Pick up the longest possible string in L(R)
- The principle of "maximal munch" 
. Regular expressions provide a concise and useful notation for string patterns
. Good algorithms require a single pass over the input 
A simple technique for separating keywords and identifiers is to initialize appropriately the symbol table in which information about identifier is saved. The algorithm gives priority to the tokens listed earlier and hence treats "if" as keyword and not identifier. The technique of placing keywords in the symbol table is almost essential if the lexical analyzer is coded by hand. Without doing so the number of states in a lexical analyzer for a typical programming language is several hundred, while using the trick, fewer than a hundred states would suffice. If a token belongs to more than one category, then we go by priority rules such as " first match " or " longest match ". So we have to prioritize our rules to remove ambiguity. If both x1 .xi and x1 .xj ε L(R) then we pick up the longest possible string in L(R). This is the principle of " maximal munch ". Regular expressions provide a concise and useful notation for string patterns. Our goal is to construct a lexical analyzer that will isolate the lexeme for the next token in the input buffer and produce as output a pair consisting of the appropriate token and attribute value using the translation table. We try to use a algorithm such that we are able to tokenize our data in single pass. Basically we try to efficiently and correctly tokenize the input data. 
How to break up text 

	Elsex=0 
	else 

x 

= 

0 


	elsex 

= 

0 




. Regular expressions alone are not enough
. Normally longest match wins 

. Ties are resolved by prioritizing tokens 

. Lexical definitions consist of regular definitions, priority rules and maximal munch principle 

We can see that regular expressions are not sufficient to help us in breaking up our text. Let us consider the example " elsex=0 ".In different programming languages this might mean” else x=0 " or "elsex=0". So the regular expressions alone are not enough. In case there are multiple possibilities, normally the longest match wins and further ties are resolved by prioritizing tokens. Hence lexical definitions consist of regular definitions, priority rules and prioritizing principles like maximal munch principle. The information about the language that is not in the regular language of the tokens can be used to pinpoint the errors in the input. There are several ways in which the redundant matching in the transitions diagrams can be avoided.

Finite Automata 

Regular expression are declarative specifications. Finite automata is an implementation
A finite automata consists of - An input alphabet belonging to S 
- A set of states S 
- A set of transitions statei[image: image63.png]


 statej 
- A set of final states F 
- A start state n 
Transition s1 [image: image64.png]


s2 is read:
In state s1 on input a go to state s2
. If end of input is reached in a final state then accept
A recognizer for language is a program that takes as input a string x and answers yes if x is the sentence of the language and no otherwise. We compile a regular expression into a recognizer by constructing a generalized transition diagram called a finite automaton. Regular expressions are declarative specifications and finite automaton is the implementation. It can be deterministic or non deterministic, both are capable of recognizing precisely the regular sets. Mathematical model of finite automata consists of:

- An input alphabet belonging to S - The set of input symbols,

- A set of states S ,

- A set of transitions statei [image: image65.png]


statej , i.e., a transition function move that maps states 
   symbol pairs to the set of states, 

- A set of final states F or accepting states, and

- A start state n . If end of input is reached in a final state then we accept the string, otherwise reject it. 

. Otherwise, reject 
Pictorial notation 

. A state                          [image: image66.png]



. A final state                  [image: image67.png]



. Transition                       [image: image68.png]


 
. Transition from state i to state j on an input a [image: image69.png]



A state is represented by a circle, a final state by two concentric circles and a transition by an arrow. How to recognize tokens 

. Consider
relop [image: image70.png]


< | <= | = | <> | >= | >
id [image: image71.png]


letter(letter|digit)*
num [image: image72.png]


digit + ('.' digit + )? (E('+'|'-')? digit + )?
delim [image: image73.png]


blank | tab | newline 
ws [image: image74.png]


delim +
. Construct an analyzer that will return <token, attribute> pairs 
We now consider the following grammar and try to construct an analyzer that will return <token, attribute> pairs.

relop [image: image75.png]


< | = | = | <> | = | >

id [image: image76.png]


letter (letter | digit)*

num [image: image77.png]


digit+ ('.' digit+)? (E ('+' | '-')? digit+)?

delim [image: image78.png]


blank | tab | newline

ws [image: image79.png]


delim+

Using set of rules as given in the example above we would be able to recognize the tokens. Given a regular expression R and input string x , we have two methods for determining whether x is in L(R). One approach is to use algorithm to construct an NFA N from R, and the other approach is using a DFA. We will study about both these approaches in details in future slides. 

Transition diagram for relops 

	[image: image80.png]



	token is relop , lexeme is >= 

	
	token is relop, lexeme is > 

	
	 

	
	token is relop, lexeme is < 

	
	token is relop, lexeme is <> 

	
	token is relop, lexeme is <= 

	
	token is relop, lexeme is = 

	
	token is relop , lexeme is >= 

	
	token is relop, lexeme is > 


In case of < or >, we need a lookahead to see if it is a <, = , or <> or = or >. We also need a global data structure which stores all the characters. In lex, yylex is used for storing the lexeme. We can recognize the lexeme by using the transition diagram shown in the slide. Depending upon the number of checks a relational operator uses, we land up in a different kind of state like >= and > are different. From the transition diagram in the slide it's clear that we can land up into six kinds of relops. 
Transition diagram for identifier 
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Transition diagram for white spaces 

[image: image82.png]delim

delim other




Transition diagram for identifier : In order to reach the final state, it must encounter a letter followed by one or more letters or digits and then some other symbol. Transition diagram for white spaces : In order to reach the final state, it must encounter a delimiter (tab, white space) followed by one or more delimiters and then some other symbol. 
Transition diagram for unsigned numbers 
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Transition diagram for Unsigned Numbers : We can have three kinds of unsigned numbers and hence need three transition diagrams which distinguish each of them. The first one recognizes exponential numbers. The second one recognizes real numbers. The third one recognizes integers . 
Transition diagram for unsigned numbers 

· The lexeme for a given token must be the longest possible

· Assume input to be 12.34E56 

· Starting in the third diagram the accept state will be reached after 12

· Therefore, the matching should always start with the first transition diagram

· If failure occurs in one transition diagram then retract the forward pointer to the start state and activate the next diagram

· If failure occurs in all diagrams then a lexical error has occurred 

The lexeme for a given token must be the longest possible. For example, let us assume the input to be 12.34E56 . In this case, the lexical analyzer must not stop after seeing 12 or even 12.3. If we start at the third diagram (which recognizes the integers) in the previous slide, the accept state will be reached after 12. Therefore, the matching should always start with the first transition diagram. In case a failure occurs in one transition diagram then we retract the forward pointer to the start state and start analyzing using the next diagram. If failure occurs in all diagrams then a lexical error has occurred i.e. the input doesn't pass through any of the three transition diagrams. So we need to prioritize our rules and try the transition diagrams in a certain order (changing the order may put us into trouble). We also have to take care of the principle of maximal munch i.e. the automata should try matching the longest possible token as lexeme.
Implementation of transition diagrams 

Token nexttoken() { 
       while(1) { 
               switch (state) { 
.. 
case 10 : c=nextchar();

if(isletter(c)) state=10; 

elseif (isdigit(c)) state=10; else state=11;

break;

.. 

} 

} 

Another transition diagram for unsigned numbers 

[image: image84.png]others




      A more complex transition diagram is difficult to implement and may give rise to errors during coding, however, there are ways to better implementation 
We can reduce the number of transition diagrams (automata) by clubbing all these diagrams into a single diagram in some cases. But because of two many arrows going out of each state the complexity of the code may increase very much. This may lead to creeping in of errors during coding. So it is not advisable to reduce the number of transition diagrams at the cost of making them too complex to understand. However, if we use multiple transition diagrams, then the tradeoff is that we may have to unget() a large number of characters as we need to recheck the entire input in some other transition diagram.
Lexical analyzer generator 

. Input to the generator 
- List of regular expressions in priority order
- Associated actions for each of regular expression (generates kind of token and other book keeping information)
. Output of the generator
- Program that reads input character stream and breaks that into tokens
- Reports lexical errors (unexpected characters), if any 
 
 We assume that we have a specification of lexical analyzers in the form of regular expression and the corresponding action parameters. Action parameter is the program segment that is to be executed whenever a lexeme matched by regular expressions is found in the input. So, the input to the generator is a list of regular expressions in a priority order and associated actions for each of the regular expressions. These actions generate the kind of token and other book keeping information. Our problem is to construct a recognizer that looks for lexemes in the input buffer. If more than one pattern matches, the recognizer is to choose the longest lexeme matched. If there are two or more patterns that match the longest lexeme, the first listed matching pattern is chosen. So, the output of the generator is a program that reads input character stream and breaks that into tokens. It also reports in case there is a lexical error i.e. either unexpected characters occur or an input string doesn't match any of the regular expressions. 
LEX: A lexical analyzer generator 
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Refer to LEX User's Manual 

In this section, we consider the design of a software tool that automatically constructs the lexical analyzer code from the LEX specifications. LEX is one such lexical analyzer generator which produces C code based on the token specifications. This tool has been widely used to specify lexical analyzers for a variety of languages. We refer to the tool as Lex Compiler, and to its input specification as the Lex language. Lex is generally used in the manner depicted in the slide. First, a specification of a lexical analyzer is prepared by creating a program lex.l in the lex language. Then, the lex.l is run through the Lex compiler to produce a C program lex.yy.c . The program lex.yy.c consists of a tabular representation of a transition diagram constructed from the regular expressions of the lex.l, together with a standard routine that uses the table to recognize lexemes. The actions associated with the regular expressions in lex.l are pieces of C code and are carried over directly to lex.yy.c. Finally, lex.yy.c is run through the C compiler to produce an object program a.out which is the lexical analyzer that transforms the input stream into a sequence of tokens.

How does LEX work? 

. Regular expressions describe the languages that can be recognized by finite automata

. Translate each token regular expression into a non deterministic finite automaton (NFA)

. Convert the NFA into an equivalent DFA

. Minimize the DFA to reduce number of states

. Emit code driven by the DFA tables 

In this section, we will describe the working of lexical analyzer tools such as LEX. LEX works on some fundamentals of regular expressions and NFA - DFA. First, it reads the regular expressions which describe the languages that can be recognized by finite automata. Each token regular expression is then translated into a corresponding non-deterministic finite automaton (NFA). The NFA is then converted into an equivalent deterministic finite automaton (DFA). The DFA is then minimized to reduce the number of states. Finally, the code driven by DFA tables is emitted. 

Syntax Analysis 
 

Syntax Analysis 

Check syntax and construct abstract syntax tree 
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. Error reporting and recovery

. Model using context free grammars

. Recognize using Push down automata/Table Driven Parsers 

This is the second phase of the compiler. In this phase, we check the syntax and construct the abstract syntax tree. This phase is modeled through context free grammars and the structure is recognized through push down automata or table-driven parsers. The syntax analysis phase verifies that the string can be generated by the grammar for the source language. In case of any syntax errors in the program, the parser tries to report as many errors as possible. Error reporting and recovery form a very important part of the syntax analyzer. The error handler in the parser has the following goals: . It should report the presence of errors clearly and accurately. . It should recover from each error quickly enough to be able to detect subsequent errors. . It should not significantly slow down the processing of correct programs.

What syntax analysis cannot do! 

. To check whether variables are of types on which operations are allowed

. To check whether a variable has been declared before use

. To check whether a variable has been initialized 

. These issues will be handled in semantic analysis 

The information which syntax analysis phase gets from the previous phase (lexical analysis) is whether a token is valid or not and which class of tokens does it belong to. Hence it is beyond the capabilities of the syntax analysis phase to settle issues like:

. Whether or not a variable has already been declared?

. Whether or not a variable has been initialized before use?

. Whether or not a variable is of the type on which the operation is allowed?

All such issues are handled in the semantic analysis phase. 

Limitations of regular languages 

· How to describe language syntax precisely and conveniently. Can regular expressions be used? 

· Many languages are not regular, for example, string of balanced parentheses

· ((((.)))) 

· { ( i ) i | i = 0 }

· There is no regular expression for this language

Finite automata may repeat states, however, it cannot remember the number of times it has been to a particular state

A more powerful language is needed to describe a valid string of tokens. Regular expressions cannot be used to describe language syntax precisely and conveniently. There are many languages which are not regular. For example, consider a language consisting of all strings of balanced parentheses. There is no regular expression for this language. Regular expressions can not be used for syntax analysis (specification of grammar) because: . The pumping lemma for regular languages prevents the representation of constructs like a string of balanced parenthesis where there is no limit on the number of parenthesis. Such constructs are allowed by most of the programming languages. . This is because a finite automaton may repeat states, however, it does not have the power to remember the number of times a state has been reached. . Many programming languages have an inherently recursive structure that can be defined by Context Free Grammars (CFG) rather intuitively. So a more powerful language is needed to describe valid string of tokens. 
Syntax definition 

. Context free grammars

- a set of tokens (terminal symbols)

- a set of non terminal symbols 

- a set of productions of the form nonterminal [image: image87.png]


String of terminals & non terminals 

- a start symbol <T, N, P, S>

. A grammar derives strings by beginning with a start symbol and repeatedly replacing a non terminal by the right hand side of a production for that non terminal.

. The strings that can be derived from the start symbol of a grammar G form the language L(G) defined by the grammar.

In this section, we review the definition of a context free grammar and introduce terminology for talking about parsing. A context free grammar has four components:
· A set of tokens , known as terminal symbols. Terminals are the basic symbols from which strings are formed. 

· A set of non-terminals . Non-terminals are syntactic variables that denote sets of strings. The non-terminals define sets of strings that help define the language generated by the grammar. 

· A set of productions . The productions of a grammar specify the manner in which the terminals and non-terminals can be combined to form strings. Each production consists of a non-terminal called the left side of the production, an arrow, and a sequence of tokens and/or on- terminals, called the right side of the production. 

· A designation of one of the non-terminals as the start symbol , and the set of strings it denotes is the language defined by the grammar. 

The strings are derived from the start symbol by repeatedly replacing a non-terminal (initially the start symbol) by the right hand side of a production for that non-terminal. 

Examples 

. String of balanced parentheses

   S [image: image88.png]


( S ) S | ε 

. Grammar 

   list [image: image89.png]


list + digit | list - digit | digit 

   digit[image: image90.png]


 0 | 1 | . | 9 Consists of the language which is a list of digit separated by + or -. 

    S[image: image91.png]


 ( S ) S | ε

is the grammar for a string of balanced parentheses.

For example, consider the string: (( )( )). It can be derived as:

S (S)S [image: image92.png]


((S)S)S [image: image93.png]


(( )S)S [image: image94.png]


(( )(S)S)S [image: image95.png]


(( )( )S)S [image: image96.png]


(( )( ))S [image: image97.png]


(( )( )) 

Similarly,
list [image: image98.png]


list + digit

| list - digit

| digit digit [image: image99.png]


0 | 1 | . | 9

is the grammar for a string of digits separated by + or -. 

Derivation 

list      [image: image100.png]


list + digit
[image: image101.png]


list - digit + digit
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digit - digit + digit
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9 - digit + digit
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9 - 5 + digit
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9 - 5 + 2

Therefore, the string 9-5+2 belongs to the language specified by the grammar.

The name context free comes from the fact that use of a production X [image: image106.png]


. does not depend on the context of X 
For example, consider the string 9 - 5 + 2 . It can be derived as:

list [image: image107.png]


list + digit [image: image108.png]


list - digit + digit [image: image109.png]


digit - digit + digit [image: image110.png]


9 - digit + digit [image: image111.png]


9 - 5 + digit [image: image112.png]


9 - 5 + 2 
It would be interesting to know that the name context free grammar comes from the fact that use of a production X [image: image113.png]


. does not depend on the context of X. 
Examples 

. Grammar for Pascal block

block [image: image114.png]


begin statements end

statements [image: image115.png]


stmt-list | ε

stmt-list[image: image116.png]


 stmt-list ; stmt

| stmt 

block [image: image117.png]


begin statements end

statements [image: image118.png]


stmt-list | ε 

stmt-list [image: image119.png]


stmt-list ; stmt 

| stmt

is the grammar for a block of Pascal language. 

Syntax analyzers 

. Testing for membership whether w belongs to L(G) is just a "yes" or "no" answer 

. However the syntax analyzer 

- Must generate the parse tree

- Handle errors gracefully if string is not in the language 

. Form of the grammar is important

- Many grammars generate the same language

- Tools are sensitive to the grammar 

A parse tree may be viewed as a graphical representation for a derivation that filters out the choice regarding replacement order. Each interior node of a parse tree is labeled by some non-terminal A , and that the children of the node are labeled, from left to right, by the symbols in the right side of the production by which this A was replaced in the derivation. A syntax analyzer not only tests whether a construct is syntactically correct i.e. belongs to the language represented by the specified grammar but also generates the parse tree. It also reports appropriate error messages in case the string is not in the language represented by the grammar specified. It is possible that many grammars represent the same language. However, the tools such as yacc or other parser generators are sensitive to the grammar form. For example, if the grammar has shift-shift or shift-reduce conflicts, the parser tool will give appropriate warning message. We will study about these in details in the subsequent sections. 
Derivation 

. If there is a production A [image: image120.png]


a then we say that A derives a and is denoted by A [image: image121.png]


a 

. a A ߠ[image: image122.png]


a γ ߠif A [image: image123.png]


γ is a production

. If a1 [image: image124.png]


a2 [image: image125.png]
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 an then a 1[image: image127.png]


 an 

. Given a grammar G and a string w of terminals in L(G) we can write S [image: image128.png]


w

. If S [image: image129.png]


a where a is a string of terminals and non terminals of G then we say that a is a sentential form of G 

If there is a production A [image: image130.png]


a then it is read as " A derives a " and is denoted by A [image: image131.png]


a . The production tells us that we could replace one instance of an A in any string of grammar symbols by a . 

In a more abstract setting, we say that a A ߼/span> [image: image132.png]


a γ ߼/span> if A [image: image133.png]


? is a production and a and ߼/span> are arbitrary strings of grammar symbols 
If a 1 [image: image134.png]


a 2 [image: image135.png]


. [image: image136.png]


a n then we say a 1 derives a n . The symbol [image: image137.png]


means "derives in one step". Often we wish to say "derives in one or more steps". For this purpose, we can use the symbol [image: image138.png]


with a + on its top as shown in the slide. Thus, if a string w of terminals belongs to a grammar G, it 
+      * 
is written as S [image: image139.png]


w . If S [image: image140.png]


a , where a may contain non-terminals, then we say that a is a sentential form of G. A sentence is a sentential form with no non-terminals. 
Derivation:
. If in a sentential form only the leftmost non terminal is replaced then it becomes leftmost derivation 

. Every leftmost step can be written as wAγ [image: image141.png]


lm* wδγ where w is a string of terminals and A [image: image142.png]


δ is a production

. Similarly, right most derivation can be defined

. An ambiguous grammar is one that produces more than one leftmost/rightmost derivation of a sentence 

Consider the derivations in which only the leftmost non-terminal in any sentential form is replaced at each step. Such derivations are termed leftmost derivations. If a [image: image143.png]


߼/strong> by a step in which the leftmost non-terminal in a is replaced, we write a [image: image144.png]


lm ߠ. Using our notational conventions, every leftmost step can be written wAγ[image: image145.png]


lmwdγ where w consists of terminals only, A [image: image146.png]


d is the production applied, and ? is a string of grammar symbols. If a derives ߠby a leftmost derivation, then we write a [image: image147.png]


lm* ߠ. If S [image: image148.png]


lm* a , then we say a is a left-sentential form of the grammar at hand. Analogous definitions hold for rightmost derivations in which the rightmost non-terminal is replaced at each step. Rightmost derivations are sometimes called the canonical derivations. A grammar that produces more than one leftmost or more than one rightmost derivation for some sentence is said to be ambiguous . Put another way, an ambiguous grammar is one that produces more than one parse tree for some sentence is said to be ambiguous.
Parse tree 
· It shows how the start symbol of a grammar derives a string in the language 

· root is labeled by the start symbol 

· leaf nodes are labeled by tokens 

· Each internal node is labeled by a non terminal 

· if A is a non-terminal labeling an internal node and x1 , x2 , .xn are labels of the children of that node then A[image: image149.png]


 x1 x2 . xn is a production 

A parse tree may be viewed as a graphical representation for a derivation that filters out the choice regarding replacement order. Thus, a parse tree pictorially shows how the start symbol of a grammar derives a string in the language. Each interior node of a parse tree is labeled by some non-terminal A , and that the children of the node are labeled, from left to right, by the symbols in the right side of the production by which this A was replaced in the derivation. The root of the parse tree is labeled by the start symbol and the leaves by non-terminals or terminals and, read from left to right, they constitute a sentential form, called the yield or frontier of the tree. So, if A is a non-terminal labeling an internal node and x1 , x2 , .xn are labels of children of that node then A [image: image150.png]


x1 x2 . xn is a production. We will consider an example in the next slide. 
Example 
Parse tree for 9-5+2 
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The parse tree for 9-5+2 implied by the derivation in one of the previous slides is shown.

. 9 is a list by production (3), since 9 is a digit.

. 9-5 is a list by production (2), since 9 is a list and 5 is a digit.

. 9-5+2 is a list by production (1), since 9-5 is a list and 2 is a digit.

Production 1: list [image: image152.png]


list + digit 

Production 2: list [image: image153.png]


list - digit

Production 3: list [image: image154.png]


digit 

digit [image: image155.png]


0|1|2|3|4|5|6|7|8|9 

Ambiguity 

A Grammar can have more than one parse tree for a string 

Consider grammar 

string [image: image156.png]


string + string 

| string - string 

| 0 | 1 | . | 9 

String 9-5+2 has two parse trees 

A grammar is said to be an ambiguous grammar if there is some string that it can generate in more than one way (i.e., the string has more than one parse tree or more than one leftmost derivation). A language is inherently ambiguous if it can only be generated by ambiguous grammars.

For example, consider the following grammar:
string [image: image157.png]


string + string 
| string - string

| 0 | 1 | . | 9 

In this grammar, the string 9-5+2 has two possible parse trees as shown in the next slide. 
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Consider the parse trees for string 9-5+2, expression like this has more than one parse tree. The two trees for 9-5+2 correspond to the two ways of parenthesizing the expression: (9-5)+2 and 9-(5+2). The second parenthesization gives the expression the value 2 instead of 6. 
Ambiguity 
. Ambiguity is problematic because meaning of the programs can be incorrect

. Ambiguity can be handled in several ways 

- Enforce associativity and precedence 

- Rewrite the grammar (cleanest way)

. There are no general techniques for handling ambiguity

. It is impossible to convert automatically an ambiguous grammar to an unambiguous one 

Ambiguity is harmful to the intent of the program. The input might be deciphered in a way which was not really the intention of the programmer, as shown above in the 9-5+2 example. Though there is no general technique to handle ambiguity i.e., it is not possible to develop some feature which automatically identifies and removes ambiguity from any grammar. However, it can be removed, broadly speaking, in the following possible ways:- 

1) Rewriting the whole grammar unambiguously.

2) Implementing precedence and associatively rules in the grammar. We shall discuss this technique in the later slides. 

Associativity 

. If an operand has operator on both the sides, the side on which operator takes this operand is the associativity of that operator
. In a+b+c b is taken by left +
. +, -, *, / are left associative
. ^, = are right associative 
. Grammar to generate strings with right associative operators right à letter = right | letter letter [image: image159.png]


a| b |.| z 
A binary operation * on a set S that does not satisfy the associative law is called non-associative. A left-associative operation is a non-associative operation that is conventionally evaluated from left to right i.e., operand is taken by the operator on the left side.
For example, 
6*5*4 = (6*5)*4 and not 6*(5*4)
6/5/4 = (6/5)/4 and not 6/(5/4)
A right-associative operation is a non-associative operation that is conventionally evaluated from right to left i.e., operand is taken by the operator on the right side.
For example,
6^5^4 => 6^(5^4) and not (6^5)^4) 
x=y=z=5 => x=(y=(z=5))
Following is the grammar to generate strings with left associative operators. (Note that this is left recursive and may go into infinite loop. But we will handle this problem later on by making it right recursive)
left [image: image160.png]


left + letter | letter
letter [image: image161.png]


a | b | .... | z 
Precedence 

1. String a+5*2 has two possible interpretations because of two different parse trees corresponding to (a+5)*2 and a+(5*2)

2. Precedence determines the correct interpretation. 

Precedence is a simple ordering, based on either importance or sequence. One thing is said to "take precedence" over another if it is either regarded as more important or is to be performed first. For example, consider the string a+5*2. It has two possible interpretations because of two different parse trees corresponding to (a+5)*2 and a+(5*2). But the * operator has precedence over the + operator. So, the second interpretation is correct. Hence, the precedence determines the correct interpretation.

Parsing 

. Process of determination whether a string can be generated by a grammar 

. Parsing falls in two categories: 

- Top-down parsing: Construction of the parse tree starts at the root (from the start symbol) and proceeds towards leaves (token or terminals)

- Bottom-up parsing: Construction of the parse tree starts from the leaf nodes (tokens or terminals of the grammar) and proceeds towards root (start symbol) 

Parsing is the process of analyzing a continuous stream of input (read from a file or a keyboard, for example) in order to determine its grammatical structure with respect to a given formal grammar. The task of the parser is essentially to determine if and how the input can be derived from the start symbol within the rules of the formal grammar. This can be done in essentially two ways:

Top-down parsing - A parser can start with the start symbol and try to transform it to the input. Intuitively, the parser starts from the largest elements and breaks them down into incrementally smaller parts. LL parsers are examples of top-down parsers. We will study about these in detail in the coming slides.

Bottom-up parsing - A parser can start with the input and attempt to rewrite it to the start symbol. Intuitively, the parser attempts to locate the most basic elements, then the elements containing these, and so on. LR parsers are examples of bottom-up parsers. We will study about these in detail in the coming slides. 

Example: Top down Parsing 

Following grammar generates types of Pascal 
type [image: image162.png]


simple
|[image: image163.png]


id 
| array [ simple] of type
simple [image: image164.png]


integer 
| char
| num dotdot num 

Top-down parsing is a strategy of analyzing unknown data relationships by hypothesizing general parse tree structures and then considering whether the known fundamental structures are compatible with the hypothesis. For example, the following grammar generates the types in Pascal language by starting from type and generating the string: 

type [image: image165.png]


simple

|[image: image166.png]


id 

| array [ simple] of type

simple [image: image167.png]


integer 
| char

| num dotdot num 

Example 
. Construction of a parse tree is done by starting the root labeled by a start symbol

. repeat following two steps 

- at a node labeled with non terminal A select one of the productions of A and construct children nodes 

- find the next node at which subtree is Constructed 

To construct a parse tree for a string, we initially create a tree consisting of a single node (root node) labeled by the start symbol. Thereafter, we repeat the following steps to construct the of parse tree by starting at the root labeled by start symbol: 
. At node labeled with non terminal A select one of the production of A and construct the children nodes.
. Find the next node at which subtree is constructed. 
Example
. Parse array [ num dotdot num ] of integer 
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.
 Cannot proceed as non terminal "simple" never generates a string beginning with token "array". Therefore, requires back-tracking. 

. Back-tracking is not desirable, therefore, take help of a "look-ahead" token. The current token is treated as look- ahead token. ( restricts the class of grammars ) 

To construct a parse tree corresponding to the string array [ num dotdot num ] of integer , we start with the start symbol type . Then, we use the production type à simple to expand the tree further and construct the first child node. Now, finally, the non-terminal simple should lead to the original string. But, as we can see from the grammar, the expansion of the non-terminal simple never generates a string beginning with the token "array". So, at this stage, we come to know that we had used the wrong production to expand the tree in the first step and we should have used some other production. So, we need to backtrack now. This backtracking tends to cause a lot of overhead during the parsing of a string and is therefore not desirable. To overcome this problem, a " look-ahead " token can be used. In this method, the current token is treated as look-ahead token and the parse tree is expanded by using the production which is determined with the help of the look-ahead token. 
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Parse array [ num dotdot num ] of integer using the grammar:
type [image: image170.png]


simple
| [image: image171.png]


id | 
array [ simple ] of type
simple[image: image172.png]


 integer | char | num dotdot num
Initially, the token array is the lookahead symbol and the known part of the parse tree consists of the root, labeled with the starting non- terminal type. For a match to occur, non-terminal type must derive a string that starts with the lookahead symbol array. In the grammar, there is just one production of such type, so we select it, and construct the children of the root labeled with the right side of the production. In this way we continue, when the node being considered on the parse tree is for a terminal and the terminal matches the lookahead symbol, then we advance in both the parse tree and the input. The next token in the input becomes the new lookahead symbol and the next child in the parse tree is considered. 

Recursive descent parsing 

First set: 

Let there be a production

A [image: image173.png]


α

then First( α ) is the set of tokens that appear as the first token in the strings generated from α

For example : 

First(simple) = {integer, char, num}

First(num dotdot num) = {num} 

Recursive descent parsing is a top down method of syntax analysis in which a set of recursive procedures are executed to process the input. A procedure is associated with each non-terminal of the grammar. Thus, a recursive descent parser is a top-down parser built from a set of mutually-recursive procedures or a non-recursive equivalent where each such procedure usually implements one of the production rules of the grammar.
For example, consider the grammar,
type [image: image174.png]


simple | [image: image175.png]


id | array [simple] of type 
simple [image: image176.png]


integer | char | num dot dot num
First ( a ) is the set of terminals that begin the strings derived from a . If a derives e then e too is in First ( a ). This set is called the first set of the symbol a . Therefore,
First (simple) = {integer, char , num}
First (num dot dot num) = {num}
First (type) = {integer, char, num, [image: image177.png]


, array} 
Define a procedure for each non terminal

[image: image178.png]procedure type;
it lookahead in {integer, char, num}
then simple
else if lookahead =T
then begin match(T);
match(id)

en
else if lookahead = array
then begin match(array);
match([)
simple;
match(]);
matchof);
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end
else error;




Procedure for each of the non-terminal is shown. 
[image: image179.png]procedure simple;
if lookahead = integer
then match(integer)
else if lookahead = char
then matchichar)
else if lookahead = num
then begin match(num);
match(dotdot);
match(num)
end
else
error;

procedure match(t:token);
if lookahead = t
then lookahead = next token
else error;




Apart from a procedure for each non-terminal we also needed an additional procedure named match . match advances to the next input token if its argument t matches the lookahead symbol.

Ambiguity 

. Dangling else problem 

Stmt [image: image180.png]


if expr then stmt

| if expr then stmt else stmt 

. according to this grammar, string if el then if e2 then S1 else S2 has two parse trees 

The dangling else is a well-known problem in computer programming in which a seemingly well-defined grammar can become ambiguous. In many programming languages you can write code like if a then if b then s1 else s2 which can be understood in two ways: 
Either as 
if a then 

if b then 

s1 

else 

s2 

or as 

if a then 
if b then 

s1 

else 
s2 

So, according to the following grammar, the string if el then if e2 then S1 else S2 will have two parse trees as shown in the next slide. 
stmt [image: image181.png]


if expr then stmt 
| if expr then stmt else stmt 
| other 
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The two parse trees corresponding to the string if a then if b then s1 else s2 . 
Resolving dangling else problem 

· General rule: match each else with the closest previous then. The grammar can be rewritten as 
stmt [image: image183.png]


matched-stmt

| unmatched-stmt

| others 

matched-stmt [image: image184.png]


if expr then matched-stmt

else matched-stmt

| others 

So, we need to have some way to decide to which if an ambiguous else should be associated. It can be solved either at the implementation level, by telling the parser what the right way to solve the ambiguity, or at the grammar level by using a Parsing expression grammar or equivalent. Basically, the idea is that a statement appearing between a then and an else must be matched i.e., it must not end with an unmatched then followed by any statement, for the else would then be forced to match this unmatched then . So, the general rule is " Match each else with the closest previous unmatched then".
Thus, we can rewrite the grammar as the following unambiguous grammar to eliminate the dangling else problem:

stmt [image: image185.png]


matched-stmt | unmatched-stmt | others

matched-stmt [image: image186.png]


if expr then matched-stmt else matched-stmt | others

unmatched-stmt [image: image187.png]


if expr then stmt

| if expr then matched-stmt else unmatched-stmt

A matched statement is either an if-then-else statement containing no unmatched statements or it is any other kind of unconditional statement. 

Left recursion 

. A top down parser with production A [image: image188.png]


A α may loop forever 

. From the grammar A [image: image189.png]


A α | b left recursion may be eliminated by transforming the grammar to

A [image: image190.png]


b R

R [image: image191.png]


α R | ε

Left recursion is an issue of concern in top down parsers. A grammar is left-recursive if we can find some non-terminal A which will eventually derive a sentential form with itself as the left-symbol. In other words, a grammar is left recursive if it has a non terminal A such that there is a derivation
A [image: image192.png]


+ A a for some string a . These derivations may lead to an infinite loop. 
Removal of left recursion: 
For the grammar A [image: image193.png]


A a | ߠ, left recursion can be eliminated by transforming the original grammar as: 
A [image: image194.png]


ߠR 
R [image: image195.png]


a R | ε 
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This slide shows the parse trees corresponding to the string ߡ * using the original grammar (with left factoring) and the modified grammar (without left factoring). 

Example . Consider grammar for arithmetic expressions 

E [image: image197.png]


E + T | T

T [image: image198.png]


T * F | F

F [image: image199.png]


( E ) | id 

. After removal of left recursion the grammar becomes 
E [image: image200.png]


T E' 
E' [image: image201.png]


+ T E' | ε
T [image: image202.png]


F T'
T' [image: image203.png]


* F T' | ε
F [image: image204.png]


( E ) | id 
As another example, a grammar having left recursion and its modified version with left recursion removed has been shown. 
Removal of left recursion 
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The general algorithm to remove the left recursion follows. Several improvements to this method have been made. For each rule of the form 

A [image: image206.png]


A a1 | A a2 | ... | A a m | β 1 |β 2 | .. |β n 

Where: 

. A is a left-recursive non-terminal.

. a is a sequence of non-terminals and terminals that is not null ( a≠ε ).

. ߠ is a sequence of non-terminals and terminals that does not start with A . 

Replace the A-production by the production: 

A [image: image207.png]


β 1 A' | β2 A' | ...| βn A' 

And create a new non-terminal 

A' [image: image208.png]


a1 A' | a2 A' |...| am A' | ε 

This newly created symbol is often called the "tail", or the "rest". 

Left recursion hidden due to many productions 

.Left recursion may also be introduced by two or more grammar rules. For example 

S [image: image209.png]


Aa | b

A [image: image210.png]


Ac | Sd | ε

there is a left recursion because 

S [image: image211.png]


Aa [image: image212.png]


Sda 

. In such cases, left recursion is removed systematically

- Starting from the first rule and replacing all the occurrences of the first non terminal symbol 

- Removing left recursion from the modified grammar 

What we saw earlier was an example of immediate left recursion but there may be subtle cases where left recursion occurs involving two or more productions. For example in the grammar

S [image: image213.png]


A a | b 

A [image: image214.png]


A c | S d | e 

there is a left recursion because 

S [image: image215.png]


A a [image: image216.png]


S d a

More generally, for the non-terminals A 0, A 1,..., An , indirect left recursion can be defined as being of the form:

An [image: image217.png]


A1 a 1 | .

A1 [image: image218.png]


A2 a2 | 

. .

A n [image: image219.png]


An a(n+1) | . 

Where a 1 , a2 ,..., a n are sequences of non-terminals and terminals. 

Following algorithm may be used for removal of left recursion in general case:

Input : Grammar G with no cycles or e -productions. 

Output: An equivalent grammar with no left recursion . 

Algorithm: 
Arrange the non-terminals in some order A1 , A2 , A3 ..... An . 

for i := 1 to n do begin 

replace each production of the form Ai [image: image220.png]


Ajγ 
by the productions A i [image: image221.png]


d1 γ | d2 γ | ...........| dkγ 
where Aj [image: image222.png]


d1 | d2 | .........| dk are all the current Aj -productions; 

end 

eliminate the immediate left recursion among the Ai-productions. 

end. 

Removal of left recursion due to many productions. 
After the first step (substitute S by its rhs in the rules) the grammar becomes 

S [image: image223.png]


Aa | b 

A [image: image224.png]


Ac | Aad | bd | ε

. After the second step (removal of left recursion) the grammar becomes 

S [image: image225.png]


Aa | b 

A [image: image226.png]


bdA' | A'

A' [image: image227.png]


cA' | adA' | ε

After the first step (substitute S by its R.H.S. in the rules), the grammar becomes 

S [image: image228.png]


A a | b
A [image: image229.png]


A c | A a d | b d | ε 
After the second step (removal of left recursion from the modified grammar obtained after the first step), the grammar becomes 
S [image: image230.png]


A a | b
A [image: image231.png]


b d A' | A'

A' [image: image232.png]


c A' | a d A' | ε 

Left factoring 

. In top-down parsing when it is not clear which production to choose for expansion of a symbol
defer the decision till we have seen enough input.
In general if A [image: image233.png]


αβ1 | αβ2 
defer decision by expanding A to a A' 
we can then expand A' to β1 or β2
. Therefore A [image: image234.png]


αβ1 | αβ2 
transforms to
A [image: image235.png]


α A' 
A' [image: image236.png]


β1 | β2 

Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive parsing. The basic idea is that when it is not clear which of two or more alternative productions to use to expand a non-terminal A, we defer the decision till we have seen enough input to make the right choice.

In general if A [image: image237.png]


α ߠ1 | α ߠ2 , we defer decision by expanding A to a A'.

and then we can expand A ' to ߼sub>1 or ߼sub>1 

Therefore A [image: image238.png]


α ߼sub>1 | α ߼sub>2 transforms to

A [image: image239.png]


α A' 

A ' [image: image240.png]


߼sub>1 | ߼sub>2 

Dangling else problem again

Dangling else problem can be handled by left factoring 
stmt [image: image241.png]


if expr then stmt else stmt 

| if expr then stmt 

can be transformed to 

stmt [image: image242.png]


if expr then stmt S' 

S' [image: image243.png]


else stmt | ε 

We can also take care of the dangling else problem by left factoring. This can be done by left factoring the original grammar thus transforming it to the left factored form. 

stmt [image: image244.png]


if expr then stmt else stmt 

| if expr then stmt 

is transformed to 

stmt [image: image245.png]


if expr then stmt S' 

S' [image: image246.png]


else stmt | ε 

Predictive parsers

. A non recursive top down parsing method
. Parser "predicts" which production to use
. It removes backtracking by fixing one production for every non-terminal and input token(s)
. Predictive parsers accept LL(k) languages 
- First L stands for left to right scan of input
- Second L stands for leftmost derivation 
- k stands for number of lookahead token 
. In practice LL(1) is used 
In general, the selection of a production for a non-terminal may involve trial-and-error; that is, we may have to try a production and backtrack to try another production if the first is found to be unsuitable. A production is unsuitable if, after using the production, we cannot complete the tree to match the input string. Predictive parsing is a special form of recursive-descent parsing, in which the current input token unambiguously determines the production to be applied at each step. After eliminating left recursion and left factoring, we can obtain a grammar that can be parsed by a recursive-descent parser that needs no backtracking . Basically, it removes the need of backtracking by fixing one production for every non-terminal and input tokens. Predictive parsers accept LL(k) languages where: 

. First L : The input is scanned from left to right. 

. Second L : Leftmost derivations are derived for the strings. 

. k : The number of lookahead tokens is k. 

However, in practice, LL(1) grammars are used i.e., one lookahead token is used. 

Predictive parsing

. Predictive parser can be implemented by maintaining an external stack 
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	Parse table is a two dimensional array M[X,a] where "X" is a non terminal and "a" is a terminal of the grammar 


It is possible to build a non recursive predictive parser maintaining a stack explicitly, rather than implicitly via recursive calls. A table-driven predictive parser has an input buffer, a stack, a parsing table, and an output stream. The input buffer contains the string to be parsed, followed by $, a symbol used as a right end marker to indicate the end of the input string. The stack contains a sequence of grammar symbols with a $ on the bottom, indicating the bottom of the stack. Initially the stack contains the start symbol of the grammar on top of $. The parsing table is a two-dimensional array M [X,a] , where X is a non-terminal, and a is a terminal or the symbol $ . The key problem during predictive parsing is that of determining the production to be applied for a non-terminal. The non-recursive parser looks up the production to be applied in the parsing table. We shall see how a predictive parser works in the subsequent slides.

Parsing algorithm

. The parser considers 'X' the symbol on top of stack, and 'a' the current input symbol

. These two symbols determine the action to be taken by the parser

. Assume that '$' is a special token that is at the bottom of the stack and terminates the input string

if X = a = $ then halt

if X = a ≠ $ then pop(x) and ip++

if X is a non terminal

then if M[X,a] = {X à UVW}

then begin pop(X); push(W,V,U)

end 

else error 

The parser is controlled by a program that behaves as follows. The program considers X , the symbol on top of the stack, and a , the current input symbol. These two symbols determine the action of the parser. Let us assume that a special symbol ' $ ' is at the bottom of the stack and terminates the input string. There are three possibilities: 

1. If X = a = $, the parser halts and announces successful completion of parsing.

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next input symbol.

3. If X is a nonterminal, the program consults entry M[X,a] of the parsing table M. This entry will be either an X-production of the grammar or an error entry. If, for example, M[X,a] = {X [image: image248.png]


UVW}, the parser replaces X on top of the stack by UVW (with U on the top). If M[X,a] = error, the parser calls an error recovery routine. 

The behavior of the parser can be described in terms of its configurations, which give the stack contents and the remaining input. 

Example: Consider the grammar 

E [image: image249.png]


T E'

E' [image: image250.png]


+T E' | ε
T [image: image251.png]


F T' 

T' [image: image252.png]


* F T' | ε
F [image: image253.png]


( E ) | id 

As an example, we shall consider the grammar shown. A predictive parsing table for this grammar is shown in the next slide. We shall see how to construct this table later. 

Parse table for the grammar
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Blank entries are error states. For example E cannot derive a string starting with '+' 

A predictive parsing table for the grammar in the previous slide is shown. In the table, the blank entries denote the error states; non-blanks indicate a production with which to expand the top nonterminal on the stack. 

Example

	Stack 
	input 
	action 

	$E 
	id + id * id $ 
	expand by E [image: image255.png]


TE' 

	$E'T 
	id + id * id $ 
	expand by T [image: image256.png]


FT' 

	$E'T'F 
	id + id * id $ 
	expand by F [image: image257.png]


id 

	$E'T'id 
	id + id * id $ 
	pop id and ip++ 

	$E'T' 
	+ id * id $ 
	expand by T' [image: image258.png]


ε

	$E' 
	+ id * id $ 
	expand by E' [image: image259.png]


+TE' 

	$E'T+ 
	+ id * id $ 
	pop + and ip++ 

	$E'T 
	id * id $ 
	expand by T [image: image260.png]


FT' 


Let us work out an example assuming that we have a parse table. We follow the predictive parsing algorithm which was stated a few slides ago. With input id [image: image261.png]


id * id , the predictive parser makes the sequence of moves as shown. The input pointer points to the leftmost symbol of the string in the INPUT column. If we observe the actions of this parser carefully, we see that it is tracing out a leftmost derivation for the input, that is, the productions output are those of a leftmost derivation. The input symbols that have already been scanned, followed by the grammar symbols on the stack (from the top to bottom), make up the left-sentential forms in the derivation. 

Constructing parse table

. Table can be constructed if for every non terminal, every lookahead symbol can be handled by at most one production 

. First( a ) for a string of terminals and non terminals a is

- Set of symbols that might begin the fully expanded (made of only tokens) version of a

. Follow(X) for a non terminal X is 

- set of symbols that might follow the derivation of X in the input stream 

[image: image262.png]first follow




The construction of the parse table is aided by two functions associated with a grammar G. These functions, FIRST and FOLLOW , allow us to fill in the entries of a predictive parsing table for G, whenever possible. If α is any string of grammar symbols, FIRST ( α ) is the set of terminals that begin the strings derived from α . If α [image: image263.png]


* ε , then ε is also in FIRST( α ). 

If X is a non-terminal, FOLLOW ( X ) is the set of terminals a that can appear immediately to the right of X in some sentential form, that is, the set of terminals a such that there exists a derivation of the form S [image: image264.png]


* α A a ß for some α and ß . Note that there may, at some time, during the derivation, have been symbols between A and a , but if so, they derived ε and disappeared. Also, if A can be the rightmost symbol in some sentential form, then $ is in FOLLOW(A). 

Compute first sets

. If X is a terminal symbol then First(X) = {X} 
. If X [image: image265.png]


ε is a production then ε is in First(X) 

. If X is a non terminal and X [image: image266.png]


Y 1 Y 2 2 . Yk is a production 

Then if for some i, a is in First(Yi ) and ε is in all of First(Yj ) (such that j<i)

then a is in First(X) 

. If ε is in First (Y1 ) . First(Yk ) then ε is in First(X) 

To compute FIRST ( X ) for all grammar symbols X, apply the following rules until no more terminals or e can be added to any FIRST set. 

1. If X is terminal, then First (X) is {X}.
2. If X [image: image267.png]


ε is a production then add e to FIRST(X). 
3. If X is a non terminal and X [image: image268.png]


Y 1 Yk .........Y k is a production, then place a in First (X) if for some i, a is in FIRST(Yi ) and e is in all of FIRST(Y 1 ), FIRST(Y 2 ),.., FIRST(Yi-1 );that is, Y1 ..Y i-1 [image: image269.png]


* ε . If ε is in FIRST(Yj ) for all i = 1,2,..,k, then add ε to FIRST(X). For example, everything in FIRST(Y1 ) is surely in FIRST(X). If Y 1 does not derive ε , then we add nothing more to FIRST(X), but if Y1 [image: image270.png]


* ε , then we add FIRST(Y2 ) and so on. 
Example

For the expression grammar 
E [image: image271.png]


T E' 

E' [image: image272.png]


+T E' | ε
T [image: image273.png]


F T' 

T' [image: image274.png]


* F T' | ε
F [image: image275.png]


( E ) | id 

First(E) = First(T) = First(F) = { (, id }

First(E') = {+, ε }

First(T') = { *, ε } 

Consider the grammar shown above. For example, id and left parenthesis are added to FIRST(F) by rule (3) in the definition of FIRST with i = 1 in each case, since FIRST(id) = {id} and FIRST{'('} = { ( } by rule (1). Then by rule (3) with i = 1, the production T = FT' implies that id and left parenthesis are in FIRST(T) as well. As another example, e is in FIRST(E') by rule (2). 

Compute follow sets

1. Place $ in follow(S)

2. If there is a production A [image: image276.png]


a B ߠthen everything in first( ߠ) (except ε ) is in follow(B)

3. If there is a production A [image: image277.png]


a B then everything in follow(A) is in follow(B)

4. If there is a production A [image: image278.png]


a B ߠ and First( ߠ) contains e then everything in follow(A) is in follow(B) 

Since follow sets are defined in terms of follow sets last two steps have to be repeated until follow sets converge 

To compute FOLLOW ( A ) for all non-terminals A , apply the following rules until nothing can be added to any FOLLOW set: 
1. Place $ in FOLLOW(S), where S is the start symbol and $ is the input right endmarker.
2. If there is a production A [image: image279.png]


a Bß, then everything in FIRST(ß) except for e is placed in FOLLOW(B).
3. If there is a production A [image: image280.png]


a ß, or a production A [image: image281.png]


a Bß where FIRST(ß) contains e (i.e., ß[image: image282.png]


 * e ), then everything in FOLLOW(A) is in FOLLOW(B). 

Practice Assignment

Construct LL(1) parse table for the expression grammar

bexpr [image: image283.png]


bexpr or bterm | bterm

bterm [image: image284.png]


bterm and bfactor | bfactor

bfactor [image: image285.png]


not bfactor | ( bexpr ) | true | false 


. Steps to be followed 

1. Remove left recursion 

2. Compute first sets 

3. Compute follow sets

4. Construct the parse table 

Practice Assignment

Construct LL(1) parse table for the expression grammar

bexpr [image: image286.png]


bexpr or bterm | bterm

bterm [image: image287.png]


bterm and bfactor | bfactor

bfactor [image: image288.png]


not bfactor | ( bexpr ) | true | false 

. Steps to be followed 

- Remove left recursion

- Compute first sets 

- Compute follow sets 

- Construct the parse table 

Error handling

. Stop at the first error and print a message

- Compiler writer friendly

- But not user friendly 

. Every reasonable compiler must recover from errors and identify as many errors as possible

. However, multiple error messages due to a single fault must be avoided 

. Error recovery methods

- Panic mode 

- Phrase level recovery 

- Error productions 

- Global correction 

Error handling and recovery is also one of the important tasks for a compiler. Errors can occur at any stage during the compilation. There are many ways in which errors can be handled. One way is to stop as soon as an error is detected and print an error message. This scheme is easy for the programmer to program but not user friendly. Specifically, a good parser should, on encountering a parsing error, issue an error message and resume parsing in some way, repairing the error if possible. However, multiple error messages due to a single fault are undesirable and tend to cause confusion if displayed. Error recovery is thus a non trivial task. The following error recovery methods are commonly used: 
1. Panic Mode
2. Phrase level recovery
3. Error productions
4. Global correction 
Panic mode

. Simplest and the most popular method 

. Most tools provide for specifying panic mode recovery in the grammar

. When an error is detected 

- Discard tokens one at a time until a set of tokens is found whose role is clear 

- Skip to the next token that can be placed reliably in the parse tree 

Let us discuss each of these methods one by one. Panic mode error recovery is the simplest and most commonly used method. On discovering the error, the parser discards input symbols one at a time until one of the designated set of synchronizing tokens is found. The synchronizing tokens are usually delimiters, such as semicolon or end , whose role in the source program is clear. The compiler designer must select the synchronizing tokens appropriate for the source language, of course.
Panic mode. 
Consider following code 

begin 

a = b + c; 

x = p r ;

h = x < 0; 

end; 

. The second expression has syntax error 

. Panic mode recovery for begin-end block skip ahead to next ';' and try to parse the next expression 

. It discards one expression and tries to continue parsing 

. May fail if no further ';' is found 

Consider the code shown in the example above. As we can see, the second expression has a syntax error. Now panic mode recovery for begin-end block states that in this situation skip ahead until the next ' ; ' is seen and try to parse the following expressions thereafter i.e., simply skip the whole expression statement if there is an error detected. However, this recovery method might fail if no further ' ; ' is found. While panic-mode correction often skips a considerable amount of input without checking it for additional errors, it has the advantage of simplicity and, unlike some other methods to be considered later, it is guaranteed not to go into an infinite loop. In situations where multiple errors in the same statement are rare, this method may be quite adequate. 

Phrase level recovery

. Make local correction to the input 

. Works only in limited situations 

- A common programming error which is easily detected

- For example insert a ";" after closing "}" of a class definition 

. Does not work very well! 

Phrase level recovery is implemented by filling in the blank entries in the predictive parsing table with pointers to error routines. These routines may change, insert, or delete symbols on the input and issue appropriate error messages. They may also pop from the stack. It basically makes local corrections to the input; that is, it may replace a prefix of the remaining input by some string that allows the parser to continue. A typical local correction would be to replace a comma by a semicolon, delete an extraneous semicolon, or insert a missing semicolon. This type of replacement can correct any input string and has been used in several error-repairing compilers. However, its major drawback is the difficulty it has in coping with situations in which the actual error has occurred before the point of detection. 

Error productions

. Add erroneous constructs as productions in the grammar 

. Works only for most common mistakes which can be easily identified

. Essentially makes common errors as part of the grammar

. Complicates the grammar and does not work very well 

If we have a good idea of the common errors that might be encountered, we can augment the grammar for the language at hand with productions that generate the erroneous constructs. We then use the grammar augmented by these error productions to construct a parser. If an error production is used by a parser, we can generate appropriate error diagnostics to indicate the error construct that has been recognized in the input. The main drawback of this approach is that it tends to complicate the grammar and thus does not work very well. 
Global corrections

. Considering the program as a whole find a correct "nearby" program
. Nearness may be measured using certain metric
. PL/C compiler implemented this scheme: anything could be compiled!
. It is complicated and not a very good idea! 
Ideally, we would like a compiler to make as few changes as possible in processing the incorrect input string. There are algorithms for choosing a minimal sequence of changes to obtain globally least-cost correction. Given an incorrect input string x and a grammar G, these algorithms will find a parse tree for a related string y such that the number of insertions, deletions, and changes of tokens required to transform x into y is as small as possible. Unfortunately, these methods are in general too costly to implement in terms of time and space, so these techniques are currently only of theoretical interest 
Error Recovery in LL(1) parser

. Error occurs when a parse table entry M[A,a] is empty 
. Skip symbols in the input until a token in a selected set (synch) appears
. Place symbols in follow(A) in synch set. Skip tokens until an element in follow(A) is seen. Pop(A) and continue parsing
. Add symbol in first(A) in synch set. Then it may be possible to resume parsing according to A if a symbol in first(A) appears in input. 
Let us consider error recovery in an LL(1) parser by panic-mode recovery method. An error occurs when the terminal on top of the stack does not match the next input symbol or when non-terminal A is on top of the stack, a is the next input symbol, and the parsing table entry M[A, a ] is empty. Panic-mode error recovery is based on the idea of skipping symbols on the input until a token in a selected set of synchronizing tokens appears. Its effectiveness depends on the choice of synchronizing set. The sets should be chosen so that the parser recovers quickly from errors that are likely to occur in practice. Some heuristics are as follows:
1. As a starting point, we can place all symbols in FOLLOW(A) into the synchronizing set for non-terminal A. If we skip tokens until an element of FOLLOW(A) is seen and pop A from the stack, it is likely that parsing can continue.
2. If we add symbols in FIRST(A) to the synchronizing set for non-terminal A, then it may be possible to resume parsing according to A if a symbol in FIRST(A) appears in the input.
Error Recovery in LL(1) parser

. Error occurs when a parse table entry M[A,a] is empty 
. Skip symbols in the input until a token in a selected set (synch) appears
. Place symbols in follow(A) in synch set. Skip tokens until an element in follow(A) is seen. Pop(A) and continue parsing
. Add symbol in first(A) in synch set. Then it may be possible to resume parsing according to A if a symbol in first(A) appears in input. 
Let us consider error recovery in an LL(1) parser by panic-mode recovery method. An error occurs when the terminal on top of the stack does not match the next input symbol or when non-terminal A is on top of the stack, a is the next input symbol, and the parsing table entry M[A, a ] is empty. Panic-mode error recovery is based on the idea of skipping symbols on the input until a token in a selected set of synchronizing tokens appears. Its effectiveness depends on the choice of synchronizing set. The sets should be chosen so that the parser recovers quickly from errors that are likely to occur in practice. Some heuristics are as follows:
1. As a starting point, we can place all symbols in FOLLOW(A) into the synchronizing set for non-terminal A. If we skip tokens until an element of FOLLOW(A) is seen and pop A from the stack, it is likely that parsing can continue.
2. If we add symbols in FIRST(A) to the synchronizing set for non-terminal A, then it may be possible to resume parsing according to A if a symbol in FIRST(A) appears in the input. 
Assignment

- introduce synch symbols (using both follow and first sets) in the parse table created for the boolean expression grammar in the previous assignment 

- Parse "not (true and or false)" and show how error recovery works 

. Reading assignment:
Read about error recovery in LL(1) parsers 

	Bottom up parsing

. Construct a parse tree for an input string beginning at leaves and going towards root OR 

. Reduce a string w of input to start symbol of grammar 

Consider a grammar 
S [image: image289.png]


aABe

A [image: image290.png]


Abc | b

B [image: image291.png]


d 

And reduction of a string 

a b b c d e 

a A b c d e 

a A d e

a A B e 
S 

Right most derivation 

S[image: image292.png]


 a A B e
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a A d e 
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a A b c d e

[image: image295.png]


a b b c d e 
We will now study a general style of bottom up parsing, also known as shift-reduce parsing. Shift-reduce parsing attempts to construct a parse tree for an input string beginning at the leaves (the bottom) and working up towards the root (the top). We can think of the process as one of "reducing" a string w to the start symbol of a grammar. At each reduction step a particular substring matching the right side of a production is replaced by the symbol on the left of that production, and if the substring is chosen correctly at each step, a rightmost derivation is traced out in reverse. For example, consider the grammar 

S [image: image296.png]


aABe

A [image: image297.png]


Abc | b

B [image: image298.png]


d 

The sentence a b b c d e can be reduced to S by the following steps: 

a b b c d e 
a A b c d e 
a A d e
a A B e 
S 
These reductions trace out the following right-most derivation in reverse: 
S[image: image299.png]


 a A B e
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a A d e 
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a A b c d e

[image: image302.png]


a b b c d e 


Shift reduce parsing

. Split string being parsed into two parts 

- Two parts are separated by a special character "." 

- Left part is a string of terminals and non terminals 

- Right part is a string of terminals

. Initially the input is .w 

A convenient way to implement a shift reduce parser is by using an input buffer to hold the string w to be parsed. At any stage, the input string is split into two parts which are separated by the character ' . '. The left part consists of terminals and non-terminals while the right part consists of terminals only. Initially, the string " .w " is on the input. 
Shift reduce parsing . 

. Bottom up parsing has two actions

. Shift : move terminal symbol from right string to left string

if string before shift is a .pqr

then string after shift is a p.qr

.Reduce : immediately on the left of "." identify a string same as RHS of a production and replace it by LHS

if string before reduce action is aߠ.pqr 

and A [image: image303.png]


ߠis a production

then string after reduction is a A.pqr 

There are two primary operations of a shift-reduce parser namely (1) shift and (2) reduce. In a shift action, the next input symbol is shifted from right string to the left string. For example, if string before shift is " a .pqr " then string after shift would be " a p.qr " . In a reduce action, the parser identifies a string which is same as the RHS of a production and replace it by the non-terminal at LHS. For example, if string before reduce action is " aߠ.pqr " and A [image: image304.png]


ߠ is a production, then string after reduction is " a A.pqr " . 
Example 

Assume grammar is E [image: image305.png]


E+E | E*E | id        Parse id*id+id 

	String 
	action 

	.id*id+id 
	shift 

	id.*id+id 
	reduce E [image: image306.png]


id 

	E.*id+id 
	shift 

	E*.id+id 
	shift 

	E*id.+id 
	reduce E [image: image307.png]


id 

	E*E.+id 
	reduce E [image: image308.png]


E*E 

	E.+id 
	shift 

	E+.id 
	shift 

	E+id. 
	Reduce E [image: image309.png]


id 

	E+E. 
	Reduce E [image: image310.png]


E+E 

	E. 
	ACCEPT 


Consider the following grammar as an example:
E [image: image311.png]


E + E
| E * E 
| id 
Detailed steps through the actions of a shift reduce parser might make in parsing the input string "id * id + id" as shown in the slide. Shift reduce parsing. 
. Symbols on the left of "." are kept on a stack

- Top of the stack is at "."

- Shift pushes a terminal on the stack

- Reduce pops symbols (rhs of production) and pushes a non terminal (lhs of production) onto the stack

. The most important issue: when to shift and when to reduce

. Reduce action should be taken only if the result can be reduced to the start symbol 

In actual implementation, a stack is used to hold the grammar symbols that are on the left of " . ". So, basically, the top of the stack is at " . ". The shift operation shifts the next input symbol onto the top of the stack. A reduce operation pops the symbols which are in the RHS of the identified production and pushes the non-terminal (LHS of the production) onto the top of the stack. During the whole procedure, we have to know when to use the shift operation and when to use the reduce operation. We must ensure that a reduce action is taken only if the result of the operation is further reducible to the start symbol. We must explain how choices of action are to be made so the shift reduce parser works correctly. 
Bottom up parsing 
. A more powerful parsing technique 

. LR grammars - more expensive than LL

. Can handle left recursive grammars

. Can handle virtually all the programming languages

. Natural expression of programming language syntax

. Automatic generation of parsers (Yacc, Bison etc.)

. Detects errors as soon as possible

. Allows better error recovery 

Bottom-up parsing is a more powerful parsing technique. Listed are some of the advantages of bottom-up parsing. A more powerful parsing technique. It is capable of handling almost all the programming languages. . It can fastly handle left recursion in the grammar. . It allows better error recovery by detecting errors as soon as possible. 

Issues in bottom up parsing 

. How do we know which action to take

- whether to shift or reduce

- Which production to use for reduction?

. Sometimes parser can reduce but it should not: X [image: image312.png]


ε can always be reduced!

. Sometimes parser can reduce in different ways! 

. Given stack d and input symbol a, should the parser 

- Shift a onto stack (making it d a) 

- Reduce by some production A [image: image313.png]


ߠassuming that stack has form αߠ(making it α A)

- Stack can have many combinations of αߠ 

- How to keep track of length of ߠ? 

There are several issues in bottom up parsing:

. Making a decision as to which action (shift or reduce) to take next is an issue. Another question is which production to use for reduction, if a reduction has to be done.

. If there is a production of the form X [image: image314.png]


ε , then we can introduce any number of X 's on the left side of the ' . ' (e.g., X and XX can derive the same string). In such cases we may not want the parser to reduce the epsilons to X's.

. A parser can reduce in different ways. For example, let the grammar be

S [image: image315.png]


aABe

A [image: image316.png]


Abc | b

B [image: image317.png]


d

then reduction of string " a b b c d e " can be done in the following two ways (3rd line).

a b b c d e a b b c d e 

a A b c d e a A b c d e

a A d e a A A c d e 

Handle 

. Handles always appear at the top of the stack and never inside it 

. This makes stack a suitable data structure 

. Consider two cases of right most derivation to verify the fact that handle appears on the top of the stack 

- S [image: image318.png]


a Az [image: image319.png]


aߠByz [image: image320.png]


aߦgamma;yz

- S [image: image321.png]


a BxAz [image: image322.png]


a Bxyz [image: image323.png]


aγxyz

. Bottom up parsing is based on recognizing handles 

There are two problems that must be solved if we are to parse by handle pruning. The first is to locate the substring to be reduced in a right sentential form, and the second is to determine what production to choose in case there is more than one production with that substring on the right side. A convenient way to implement a shift-reduce parser is to use a stack to hold grammar symbols and an input buffer to hold the string w to be parsed. We use $ to mark the bottom of the stack and also the right end of the input. Initially, the stack is empty, and the string w is on the input, as follows: 
	STACK 
	INPUT 

	$ 
	w $ 


The parser operates by shifting zero or more input symbols onto the stack until a handle ߠis on top of the stack. The parser then reduces ߠto the left side of the appropriate production. The parser repeats this cycle until it has detected an error or until the stack contains the start symbol and the input is empty: 
	STACK 
	INPUT 

	$ 
	w $ 


After entering this configuration, the parser halts and announces successful completion of parsing. There is an important fact that justifies the use of a stack in shift-reduce parsing: the handle will always appear on top of the stack, never inside. This fact becomes obvious when we consider the possible forms of two successive steps in any rightmost derivation. These two steps can be of the form: 
S [image: image324.png]
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aߠByz [image: image326.png]


aߦgamma; yz 
S [image: image327.png]


a BxAz [image: image328.png]


a Bxyz [image: image329.png]


aγ xyz 
Handle always appears on the top

Case I: S [image: image330.png]


a Az [image: image331.png]


aߠByz [image: image332.png]


aߦgamma; yz 
	stack 
	input 
	action 

	a߼/span>γ 
	yz 
	reduce by B [image: image333.png]


γ 

	aߠB 
	yz 
	shift y 

	aߠBy 
	z 
	reduce by A[image: image334.png]


 ߠBy 

	a A 
	z 
	 

	 
	 
	 


Case II: S [image: image335.png]


a BxAz [image: image336.png]


a Bxyz [image: image337.png]


aγ xyz 
	stack 
	input 
	action 

	aγ 
	xyz
	reduce by B [image: image338.png]


γ 

	a B 
	xyz
	shift x

	a Bx 
	yz 
	shift y 

	a Bxy 
	z 
	reduce A [image: image339.png]


y 

	a BxA 
	z 
	 


In case (1), A is replaced by ߠBy , and then the rightmost non-terminal B in that right side is replaced by γ . In case (2), A is again replaced first, but this time the right side is a string y of terminals only. The next rightmost non-terminal B will be somewhere to the left of y . In both cases, after making a reduction the parser had to shift zero or more symbols to get the next handle onto the stack. It never had to go into the stack to find the handle. It is this aspect of handle pruning that makes a stack a particularly convenient data structure for implementing a shift-reduce parser. 

Conflicts

. The general shift-reduce technique is: 

- if there is no handle on the stack then shift

- If there is a handle then reduce 

. However, what happens when there is a choice

- What action to take in case both shift and reduce are valid?

shift-reduce conflict
- Which rule to use for reduction if reduction is possible by more than one rule?

reduce-reduce conflict 
. Conflicts come either because of ambiguous grammars or parsing method is not powerful enough 
Shift reduce conflict

Consider the grammar E [image: image340.png]


E+E | E*E | id and input id+id*id 
	stack 
	input 
	action 
	stack 
	input 
	action 

	E+E 
	*id 
	reduce by E [image: image341.png]


E+E 
	E+E 
	*id 
	shift 

	E 
	*id 
	shift 
	E+E* 
	id 
	shift 

	E* 
	id 
	shift 
	E+E*id 
	 
	reduce by E [image: image342.png]


id 

	E*id 
	 
	reduce by E [image: image343.png]


id 
	E+E*E 
	 
	reduce by E [image: image344.png]


E*E 

	E*E 
	 
	reduce byE [image: image345.png]


E*E 
	E+E 
	 
	reduce by E [image: image346.png]


E+E 

	E 
	 
	 
	E 
	
	


Reduce reduce conflict

Consider the grammar M [image: image347.png]


R+R | R+c | R 

R [image: image348.png]


c 

and input c+c 
	Stack 
	input 
	action 
	Stack 
	input 
	action 

	 
	c+c 
	shift 
	 
	c+c 
	shift 

	c 
	+c 
	reduce by R [image: image349.png]


c 
	c 
	+c 
	reduce by R [image: image350.png]


c 

	R 
	+c 
	shift 
	R 
	+c 
	shift 

	R+ 
	c 
	shift 
	R+ 
	c 
	shift 

	R+c 
	 
	reduce by R [image: image351.png]


c 
	R+c 
	 
	reduce by M [image: image352.png]


R+c 

	R+R 
	 
	reduce by M [image: image353.png]


R+R 
	M 
	 
	 

	M 
	 
	 
	
	
	


LR parsing
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	. Input contains the input string. 
. Stack contains a string of the form S 0 X 1 S1 X2 ..X n Sn 
where each Xi is a grammar symbol and each S i is a state. 
. Tables contain action and goto parts. 
. action table is indexed by state and terminal symbols. 
. goto table is indexed by state and non terminal symbols. 


Actions in an LR (shift reduce) parser

. Assume Si is top of stack and ai is current input symbol

. Action [Si ,a i ] can have four values 

1. shift ai to the stack and goto state Sj 

2. reduce by a rule

3. Accept

4. error 

Configurations in LR parser

Stack: S0 X 1 S1 X2 .X m Sm Input: ai ai+1 .an $ 

. If action[Sm ,ai ] = shift S Then the configuration becomes

Stack : S0 X1 S1 ..Xm Sm a i S Input : ai+1 .an $

. If action[S m ,ai ] = reduce A [image: image355.png]


ߠ Then the configuration becomes

Stack : S0 X 1 S1 .X m-r Sm-r AS Input : ai ai+1 .an $ 

Where r = | ߠ| and S = goto[S m-r ,A]

. If action[Sm ,ai ] = accept

Then parsing is completed. HALT

. If action[Sm ,ai ] = error

Then invoke error recovery routine. 

[image: image356.png]LR parsing Algorithm
Initial state: Stack: §,  Input: w§

Loop{
if action[S.a] = shift S’
then push(a); push(S); ip++
else if action[S,a] = reduce A>p
then pop (2°[fl) symbols;
push(A); push (goto[S” A])
(S™ is the state after popping symbols)
else if action[S,a] = accept
then exit
else error





Example 

  

	Consider the grammar And its parse table 
	E [image: image357.png]


E + T | T 
T [image: image358.png]


T * F | F 
F [image: image359.png]


( E ) | id 
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Parse id + id * id 
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Parser states 

. Goal is to know the valid reductions at any given point

. Summarize all possible stack prefixes a as a parser state

. Parser state is defined by a DFA state that reads in the stack α 

. Accept states of DFA are unique reductions 

The parser states help us in identifying valid reductions at any particular step of parsing. In a nutshell, these parser states are all the possible stack prefixes possible. During the course of parsing, the input is consumed and we switch from one parser state to another and finally the input is accepted on unique reductions (or to say that the Deterministic Finite Automata reaches accepting state). 

Constructing parse table 

Augment the grammar 

. G is a grammar with start symbol S 

. The augmented grammar G' for G has a new start symbol S' and an additional production S' [image: image362.png]


S

. When the parser reduces by this rule it will stop with accept 

The first step in the process of constructing the parse table, is to augment the grammar to include one more rule. The input is accepted by the parser, only when it reduces with this rule. We add a new start symbol in the augmented grammar (say S' ) and another rule ( S'[image: image363.png]


 S ), where S is the start symbol in the original grammar. The parser stops and accepts only when it reduces with this rule. 

Viable prefixes

.α is a viable prefix of the grammar if 

- There is a w such that α w is a right sentential form 

- α .w is a configuration of the shift reduce parser 

. As long as the parser has viable prefixes on the stack no parser error has been seen

. The set of viable prefixes is a regular language (not obvious)

. Construct an automaton that accepts viable prefixes 

The set of prefixes of right sequential forms that can appear on the stack of a shift-reduce parser are called viable prefixes. It is always possible to add terminal symbols to the end of a viable prefix to obtain a right-sentential form. Thus, as long as we are able to reduce the portion on the stack to a viable prefix, we are safe and no error occurs. Or to say, the input is accepted by the parser if we are able to manage viable prefixes as we consume the input, and at the last, we are left with the start symbol on the stack. The set of viable prefixes is a regular expression. This is not so obvious, but soon we are going to define the states for such an automaton which can accept viable prefixes. 

LR(0) items 

. An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side

. Thus production A [image: image364.png]


XYZ gives four LR(0) items

A [image: image365.png]


.XYZ 

A [image: image366.png]


X.YZ 

A [image: image367.png]


XY.Z 

A [image: image368.png]


XYZ.

. An item indicates how much of a production has been seen at a point in the process of parsing 

- Symbols on the left of "." are already on the stacks 

- Symbols on the right of "." are expected in the input 

An LR(0) item represents a production in such a way, that you keep track of the input already read (i.e., present on the stack) and the input yet to be expected. Consider a typical example A [image: image369.png]


Y.XZ , here the special symbol " . " means that the expression to the left of it (i.e., Y ) is present on the stack, while the one of its right is yet expected to complete this production. 

Start state

. Start state of DFA is an empty stack corresponding to S' [image: image370.png]


.S item

- This means no input has been seen 

- The parser expects to see a string derived from S 

. Closure of a state adds items for all productions whose LHS occurs in an item in the state, just after "." 

- Set of possible productions to be reduced next 

- Added items have "." located at the beginning 

- No symbol of these items is on the stack as yet 

The start state of the parser corresponds to an empty stack corresponding the production S' [image: image371.png]


.S (the production added during the augmentation). This means, that the parser expects to see input which can be reduced to S and then further to S' (in which case, the input is accepted by the parser). Closure is the method to find the set of all productions that can be reduced next. The items added by closure have " . " at the beginning of the RHS of production. To put in simple words, it adds alternate ways to expect further input. 

Closure operation

. If I is a set of items for a grammar G then closure(I) is a set constructed as follows: 

- Every item in I is in closure (I) 

- If A [image: image372.png]


α .B ߠis in closure(I) and B [image: image373.png]


γ is a production then B [image: image374.png]


. γ is in closure(I)

. Intuitively A [image: image375.png]


α .B ߠindicates that we might see a string derivable from B ߠas input

. If input B [image: image376.png]


γ is a production then we might see a string derivable from γ at this point 

As stated earlier, closure operation requires us to find all such alternate ways to expect further input. If I is a set of items for a grammar G then closure( I ) is the set of items constructed from I by the two rules:

1. Initially, every item in I is added to closure (I).

2. If A [image: image377.png]


α .B ߠis in closure( I ) and B [image: image378.png]


γ is a production then add the item B [image: image379.png]


. γ to I , if it is not already there. We apply this rule until no more new items can be added to closure( I ).

Intuitively A [image: image380.png]


α .B ߠin closure( I ) indicates that, at some point in the parsing process, we think we might next see a substring derivable from B ߠas input. If B [image: image381.png]


γ is a production, we also expect we might see a substring derivable from γ at this point. For this reason, we also include B [image: image382.png]


. γ in closure( I ). 
Example 

Consider the grammar 

E' [image: image383.png]


E

E [image: image384.png]


E + T | T 

T [image: image385.png]


T * F | F

F [image: image386.png]


( E ) | id 

If I is { E' [image: image387.png]


.E } then closure(I) is 

E' [image: image388.png]


.E

E [image: image389.png]


.E + T

E [image: image390.png]


.T 

T [image: image391.png]


.T * F

T [image: image392.png]


.F

F [image: image393.png]


.id

F [image: image394.png]


.(E) 

Consider the example described here. Here I contains the LR(0) item E' [image: image395.png]


.E . We seek further input which can be reduced to E. Now, we will add all the productions with E on the LHS. Here, such productions are E [image: image396.png]


.E+T and E [image: image397.png]


.T. Considering these two productions, we will need to add more productions which can reduce the input to E and T respectively. Since we have already added the productions for E, we will need those for T. Here these will be T[image: image398.png]


 .T+F and T [image: image399.png]


.F. Now we will have to add productions for F, viz. F [image: image400.png]


.id and F [image: image401.png]


.(E). 

Goto operation

. Goto(I,X) , where I is a set of items and X is a grammar symbol,

- is closure of set of item A [image: image402.png]


α X. ߠ 

- such that A [image: image403.png]


α .X ߠis in I 

. Intuitively if I is a set of items for some valid prefix a then goto(I,X) is set of valid items for prefix α X 

. If I is { E' [image: image404.png]


E. , E [image: image405.png]


E. + T } then goto(I,+) is 

E [image: image406.png]


E + .T 

T [image: image407.png]


.T * F

T [image: image408.png]


.F

F [image: image409.png]


.(E)

F [image: image410.png]


.id 

The second useful function is Goto(I,X) where I is a set of items and X is a grammar symbol. Goto(I,X) is defined to be the closure of the set of all items [ A [image: image411.png]


a X. ߠ] such that [ A [image: image412.png]


a .X ߠ] is in I. Intuitively, if I is set of items that are valid for some viable prefix a , then goto(I,X) is set of items that are valid for the viable prefix a X. Consider the following example: If I is the set of two items { E ' [image: image413.png]


E. , E [image: image414.png]


E. + T }, then goto(I,+) consists of 

E [image: image415.png]


E + .T

T [image: image416.png]


.T * F 

T [image: image417.png]


.F

F [image: image418.png]


.(E)

F [image: image419.png]


.id 

We computed goto(I,+) by examining I for items with + immediately to the right of the dot. E' [image: image420.png]


E. is not such an item, but E [image: image421.png]


E. + T is. We moved the dot over the + to get {E [image: image422.png]


E + .T} and the took the closure of this set. 

Sets of items

C : Collection of sets of LR(0) items for grammar G' 

C = { closure ( { S' [image: image423.png]


.S } ) }

repeat

for each set of items I in C and each grammar symbol X such that goto (I,X) is not empty and not in C ADD goto(I,X) to Cuntil no more additions 

We are now ready to give an algorithm to construct C, the canonical collection of sets of LR(0) items for an augmented grammar G'; the algorithm is as shown below: 

C = { closure ( { S' [image: image424.png]


.S } ) } 

repeat 

for each set of items I in C and each grammar symbol X such that goto (I,X) is not empty and not in C do ADD goto(I,X) to C until no more sets of items can be added to C 

Example

	Grammar: 
	I 2 : goto(I 0 ,T) 
	I6 : goto(I1 ,+) 
	I9 : goto(I6 ,T) 

	E ' [image: image425.png]


E 
	E [image: image426.png]


T. 
	E [image: image427.png]


E + .T 
	E [image: image428.png]


E + T. 

	E [image: image429.png]


E+T | T 
	T [image: image430.png]


T. *F 
	T [image: image431.png]


.T * F 
	T [image: image432.png]


T. * F 

	T [image: image433.png]


T*F | F 
	I3 : goto(I0 ,F) 
	T [image: image434.png]


.F 
	goto(I6 ,F) is I 3 

	F [image: image435.png]


(E) | id 
	T [image: image436.png]


F. 
	F [image: image437.png]


.(E) 
	goto(I6 ,( ) is I4 

	I 0 : closure(E ' [image: image438.png]


.E) 
	I4 : goto( I0 ,( ) 
	F [image: image439.png]


.id 
	goto(I6 ,id) is I5 

	E ' [image: image440.png]


.E 
	F [image: image441.png]


(.E) 
	I 7 : goto(I2 ,*) 
	I 10 : goto(I 7 ,F) 

	E [image: image442.png]


.E + T 
	E [image: image443.png]


.E + T 
	T [image: image444.png]


T * .F 
	T [image: image445.png]


T * F. 

	E [image: image446.png]


.T 
	E [image: image447.png]


.T 
	F [image: image448.png]


.(E) 
	goto(I7 ,( ) is I4 

	T [image: image449.png]


.T * F 
	T [image: image450.png]


.T * F 
	F [image: image451.png]


.id 
	goto(I7 ,id) is I5 

	T [image: image452.png]


.F 
	T [image: image453.png]


.F 
	I 8 : goto(I4 ,E) 
	I 11 : goto(I8 ,) ) 

	F [image: image454.png]


.(E) 
	F [image: image455.png]


.(E) 
	F [image: image456.png]


(E.) 
	F [image: image457.png]


(E). 

	F [image: image458.png]


.id 
	F [image: image459.png]


.id 
	E [image: image460.png]


E. + T 
	goto(I8 ,+) is I6 

	I 1 : goto(I0 ,E) 
	I5 : goto( I0 ,id) 
	goto(I4 ,T) is I2 
	goto(I9 ,*) is I 7 

	E ' [image: image461.png]


E. 
	F [image: image462.png]


id. 
	goto(I 4 ,F) is I3 
	 

	E [image: image463.png]


E. + T 
	 
	goto(I 4 ,( ) is I4 
	 

	  
	 
	goto(I4 ,id) is I5 
	 


Let's take an example here. We have earlier calculated the closure I0 . Here, notice that we need to calculate goto (I0 ,E), goto(I0 ,T), goto(I 0 , F) , goto (I0 , ( ) and goto(I0 , id). For calculating goto(I0 , E), we take all the LR(0) items in I 0 , which expect E as input (i.e. are of the form A [image: image464.png]


α .E ߠ), and advance ".". Closure is then taken of this set. Here, goto(I 0 , E) will be closure { E ' [image: image465.png]


E. , E [image: image466.png]


E.+T }. The closure adds no item to this set, and hence goto(I 0 , E)={ E ' [image: image467.png]


E. , E [image: image468.png]


E.+T }. 

Example

[image: image469.png]db.@.@@v




The figure shows the finite automaton containing different parser states viz. I 0 to I n and possible transitions between the states on seeing a terminal symbol i.e., from a set of LR(0) items, for every item goto(I i , x) = I j where x is a terminal, we have a transition from I i to I j on 'x'. 

Example

[image: image470.png]



The figure shows the finite automaton containing different parser states viz. I0 to In and possible transitions between them on seeing a non- terminal symbol i.e., from set of LR(0) items, for every item goto(I i , x) = Ij where x is a non-terminal, we have a transition from Ii to Ij on 'x'.

Example

[image: image471.png]



The figure shows the finite automaton containing different parser states viz. I0 to In and possible transitions between them on seeing a non- terminal symbol i.e., from set of LR(0) items, for every item goto(I i , x) = Ij where x is a non-terminal, we have a transition from Ii to Ij on 'x'. 

Example

[image: image472.png]



The figure shows the finite automaton containing different parser states viz. I0 to In and possible transitions between them on seeing a non- terminal symbol i.e., from set of LR(0) items, for every item goto(I i , x) = Ij where x is a non-terminal, we have a transition from Ii to Ij on 'x'. 

Construct SLR parse table

. Construct C={I0 , . , In } the collection of sets of LR(0) items 

. If A [image: image473.png]


α .a ߠis in Ii and goto(Ii , a) = Ij then action[i,a] = shift j

. If A [image: image474.png]


a . is in Ii 

then action[i,a] = reduce A [image: image475.png]


a for all a in follow(A)

. If S' [image: image476.png]


S. is in Ii then action[i,$] = accept

. If goto(I i ,A) = Ij then goto[i,A]=j for all non terminals A

. All entries not defined are errors 

The SLR parse table is constructed for parser states (I0 to In ) against terminal and non terminal symbols . For terminals, entries are referred as 'action' for that state and terminal, while for non terminal, entries are 'goto' for state and non terminal. The way entries are filled is :

. If A [image: image477.png]


α .a ߼/strong> is in Ii and goto(Ii , a) = I j where a is a terminal then action[i, a] = shift j.

. If A [image: image478.png]


α . is in Ii where a is a string of terminals and non terminals then action[i, b] = reduce A [image: image479.png]


a for all b in follow(A).
. If S' [image: image480.png]


S. is in Ii where S' is symbol introduced for augmenting the grammar then action[i, $] = accept.

. If goto(Ii , A) = Ij where A is a non terminal then goto[i, A] = j.

. The entries which are not filled are errors. 

Notes

. This method of parsing is called SLR (Simple LR) 

. LR parsers accept LR(k) languages

- L stands for left to right scan of input

- R stands for rightmost derivation

- k stands for number of lookahead token

. SLR is the simplest of the LR parsing methods. SLR is too weak to handle most languages!

. If an SLR parse table for a grammar does not have multiple entries in any cell then the grammar is unambiguous

. All SLR grammars are unambiguous

. Are all unambiguous grammars in SLR? 

This parsing method is called SLR which stands for Simple LR. LR parsers accept LR ( k ) languages. Here, L stands for left to right scan of input, R stands for rightmost derivation and k stands for number of look ahead tokens. SLR parsing is the simplest of all parsing methods. This method is weak and cannot handle most of the languages. For instance, SLR parsing cannot handle a language which depends not only on top of stack but the complete stack. Also, look ahead symbols cannot be handled by SLR parser.

If an SLR parse table for a grammar does not have multiple entries in any cell then the grammar is unambiguous. All SLR grammars are unambiguous but all unambiguous grammars are not in SLR. 

Assignment 

Construct SLR parse table for following grammar
E [image: image481.png]


E + E | E - E | E * E | E / E | (E) | digit Show steps in parsing of string 9*5+ (2+3*7)

. Steps to be followed

- Augment the grammar 

- Construct set of LR(0) items

- Construct the parse table 

- Show states of parser as the given string is parsed 

Example 

. Consider following grammar and its SLR parse table: 

	S ' [image: image482.png]


S 

	S [image: image483.png]


L = R 

	S [image: image484.png]


R 

	L [image: image485.png]


*R 

	L [image: image486.png]


id 

	R [image: image487.png]


L 

	I0 : S'[image: image488.png]


 .S 

	S [image: image489.png]


.L=R 

	S [image: image490.png]


.R 

	L [image: image491.png]


.*R 

	L [image: image492.png]


.id 

	R [image: image493.png]


.L 

	I1 : goto(I0 , S) 

	S' [image: image494.png]


S. 

	I2 : goto(I0 , L) 

	S [image: image495.png]


L.=R 

	R [image: image496.png]


L. 


Construct rest of the items and the parse table. 

Given grammar:

S [image: image497.png]


L = R

S [image: image498.png]


R

L [image: image499.png]


*R

L [image: image500.png]


id

R [image: image501.png]


L

Augmented grammar:

S ' [image: image502.png]


S

S [image: image503.png]


L = R

S [image: image504.png]


R

L [image: image505.png]


*R

L [image: image506.png]


id

R [image: image507.png]


L

Constructing the set of LR(0) items:

Using the rules for forming the LR(0) items, we can find parser states as follows:

I0 : closure(S ' [image: image508.png]


.S) 

S ' [image: image509.png]


.S

S [image: image510.png]


.L = R 

S [image: image511.png]


.R

L [image: image512.png]


.*R

L [image: image513.png]


.id

R [image: image514.png]


.L

I 1: goto(I0 , S)

S '[image: image515.png]


 S.

I2 : goto(I0 , L)

S [image: image516.png]


L.=R

R [image: image517.png]


L.

I3 : goto(I 0 , R)

S [image: image518.png]


R.

I4 : goto(I0 , *)

L [image: image519.png]


*.R

R [image: image520.png]


.L

L [image: image521.png]


.*R

L [image: image522.png]


.id

I5 : goto(I0 , id)

L [image: image523.png]


id.

I 6 : goto(I2 , =) 

S [image: image524.png]


L=.R

R [image: image525.png]


.L

L [image: image526.png]


.*R

L[image: image527.png]


 .id

I 7 : goto(I 4 , R)

L [image: image528.png]


*R.

I 8 : goto(I4 , L)

R [image: image529.png]


L.

goto(I 4 , *) = I 4 

goto(I4 , id) = I5 

I 9 : goto(I6 , R) S [image: image530.png]


L=R.

I10 : goto(I 6 , L) R [image: image531.png]


L.

goto(I 6, *) = I 4
goto(I6 , id) = I 5 

So, the set is C = { I0, I1, I2, ... I10 } SLR parse table for the grammar 
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The table has multiple entries in action[2,=] 

Using the rules given for parse table construction and above set of LR(0) items, parse table as shown can be constructed. For example:

Consider [6,*] : I6 contains L[image: image533.png]


 .*R and goto (I 6 , *) = I 4. So [6,*] = shift 4 or s4. 

Consider [4,L] : goto(I4 , L) = I 8. So [4,L] = 8.

Consider [7,=] : I7 contains L [image: image534.png]


*R. and ' = ' is in follow(L).

So [7,=] = reduce L [image: image535.png]


*R or r4 i.e. reduce by 4th rule.

Similarly the other entries can be filled .

Consider the entry for [2,=]

I 2 contains S [image: image536.png]


L.=R and goto(I2 , =) = I 6. So [2,=] contains 'shift 6'.

I2 contains R [image: image537.png]


L. and '=' is in follow(R).

So [2,=] contains 'reduce 6'. So [2,=] has multiple entries viz. r6 and s6. 

There is both a shift and a reduce entry in action[2,=]. Therefore state 2 has a shift-reduce conflict on symbol "=", However, the grammar is not ambiguous. 
. Parse id=id assuming reduce action is taken in [2,=] 
	Stack 
	input 
	action 

	0
	id=id 
	shift 5 

	0 
	=id
	reduce by L [image: image538.png]


id 

	0 L 2 
	=id 
	reduce by R [image: image539.png]


L 

	0 R 3 
	=id
	error 


. if shift action is taken in [2,=] 
	Stack 
	input 
	action 

	0 
	id=id$ 
	shift 5 

	0 id 5 
	=id$ 
	reduce by L [image: image540.png]


id 

	0 L 2 
	=id$ 
	shift 6 

	0 L 2 = 6 
	id$ 
	shift 5 

	0 L 2 = 6 id 5 
	$ 
	reduce by L [image: image541.png]


id 

	0 L 2 = 6 L 8 
	$ 
	reduce by R [image: image542.png]


L 

	0 L 2 = 6 R 9 
	$ 
	reduce by S [image: image543.png]


L=R 

	0 S 1 
	$ 
	ACCEPT 


We can see that [2,=] has multiple entries, one shift and other reduce, which makes the given grammar ambiguous but it is not so. 'id = id' is a valid string in S' as 

S ' [image: image544.png]


S [image: image545.png]


L=R [image: image546.png]


L=L [image: image547.png]


L=id [image: image548.png]


id=id

but of the given two possible derivations, one of them accepts it if we use shift operation while if we use reduce at the same place, it gives error as in the other derivation. 

Problems in SLR parsing 

. No sentential form of this grammar can start with R=. 

. However, the reduce action in action[2,=] generates a sentential form starting with R= 

. Therefore, the reduce action is incorrect 

. In SLR parsing method state i calls for reduction on symbol "a", by rule A [image: image549.png]


α if I i contains [A [image: image550.png]


α.] and "a" is in follow(A)

. However, when state I appears on the top of the stack, the viable prefix ߦalpha; on the stack may be such that ߠA can not be followed by symbol "a" in any right sentential form

. Thus, the reduction by the rule A [image: image551.png]


α on symbol "a" is invalid 

. SLR parsers cannot remember the left context 

The reason for the above is that in derivation which gave an error, if we inspect the stack while reducing for [2,=], it would generate a sentential form 'R='which is incorrect as can be seen from the productions. Hence using the reduce action is incorrect and other one is the correct derivation. So, the grammar is not allowing multiple derivations for [2,=] and thus, is unambiguous.

The reason why using this reduction is incorrect is due to limitation of SLR parsing. A reduction is done in SLR parsing on symbol b in state i using rule A [image: image552.png]


a if b is in follow(A) and I i contains [A [image: image553.png]


a.] but it might be possible that viable prefix on stack ߠa may be such that ߠA cannot be followed by 'b' in any right sentential form, hence doing the reduction is invalid.

So, in given example, in state 2 on symbol ' = ' , we can reduce using R [image: image554.png]


L but the viable prefix is 0L which on reduction gives 0R, which cannot be followed by '=' in any right sentential form as can be seen from the grammar. So, we can conclude SLR parsers cannot remember left context which makes it weak to handle all languages. 

Canonical LR Parsing 

. Carry extra information in the state so that wrong reductions by A [image: image555.png]


α will be ruled out 

. Redefine LR items to include a terminal symbol as a second component (look ahead symbol)

. The general form of the item becomes [A [image: image556.png]


α . ߠ, a] which is called LR(1) item.

. Item [A [image: image557.png]


α ., a] calls for reduction only if next input is a. The set of symbols 

Canonical LR parsers solve this problem by storing extra information in the state itself. The problem we have with SLR parsers is because it does reduction even for those symbols of follow(A) for which it is invalid. So LR items are redefined to store 1 terminal (look ahead symbol) along with state and thus, the items now are LR(1) items.

An LR(1) item has the form : [A[image: image558.png]


 a . ߠ, a] and reduction is done using this rule only if input is 'a'. Clearly the symbols a's form a subset of follow(A). 

Closure(I) 

repeat 

for each item [A [image: image559.png]


α .B ߠ, a] in I 

for each production B [image: image560.png]


γ in G' 

and for each terminal b in First( ߠa) 

add item [B [image: image561.png]


. γ , b] to I 

until no more additions to I 

To find closure for Canonical LR parsers: 

Repeat 
for each item [A [image: image562.png]


α .B ߠ, a] in I 

for each production B [image: image563.png]


γ in G' 

and for each terminal b in First( ߠa) 

add item [B [image: image564.png]


. γ , b] to I 

until no more items can be added to I 
Example 

Consider the following grammar 

S' [image: image565.png]


S

S [image: image566.png]


CC

C [image: image567.png]


cC | d 

Compute closure(I) where I={[S' [image: image568.png]


.S, $]} 
	S' [image: image569.png]


.S, 
	 
	$ 

	S [image: image570.png]


.CC, 
	 
	$ 

	C [image: image571.png]


.cC, 
	 
	c 

	C [image: image572.png]


.cC, 
	 
	d 

	C [image: image573.png]


.d, 
	 
	c

	C [image: image574.png]


.d, 
	 
	d


For the given grammar: 

S ' [image: image575.png]


S 

S [image: image576.png]


CC 

C [image: image577.png]


cC | d 

I : closure([S ' [image: image578.png]


S, $]) 
	S '[image: image579.png]


 .S 
	$ 
	as first( e $) = {$} 

	S [image: image580.png]


.CC 
	$ 
	as first(C$) = first(C) = {c, d} 

	C [image: image581.png]


.cC 
	c 
	as first(Cc) = first(C) = {c, d} 

	C [image: image582.png]


.cC 
	d 
	as first(Cd) = first(C) = {c, d} 

	C [image: image583.png]


.d 
	c 
	as first( e c) = {c} 

	C [image: image584.png]


.d 
	d 
	as first( e d) = {d} 


Example

Construct sets of LR(1) items for the grammar on previous slide 

  

	I0 :
	S ' [image: image585.png]


.S, 
	$ 

	  
	S [image: image586.png]


.CC, 
	$ 

	  
	C [image: image587.png]


.cC,
	c /d 

	  
	C [image: image588.png]


.d, 
	c /d 

	I1 : 
	goto(I0 ,S) 
	 

	  
	S ' [image: image589.png]


S., 
	$ 


	I2 :
	goto(I 0 ,C) 
	  

	  
	S [image: image590.png]


C.C, 
	$ 

	  
	C [image: image591.png]


.cC, 
	$ 

	  
	C [image: image592.png]


.d, 
	$ 

	I3 : 
	goto(I 0 ,c) 
	  

	  
	C [image: image593.png]


c.C, 
	c/d 

	 
	C [image: image594.png]


.cC, 
	c/d 

	 
	C [image: image595.png]


.d, 
	c/d 

	I 4 : 
	goto(I 0 ,d) 
	 

	 
	C [image: image596.png]


d., 
	c/d 

	I5 : 
	goto(I 2 ,C) 
	 

	 
	S [image: image597.png]


CC., 
	$ 

	I6 : 
	goto(I 2 ,c) 
	 

	 
	C [image: image598.png]


c.C, 
	$ 

	 
	C [image: image599.png]


.cC, 
	$ 

	 
	C [image: image600.png]


.d, 
	$ 

	I 7 : 
	goto(I 2 ,d) 
	 

	 
	C [image: image601.png]


d., 
	$ 

	I 8 : 
	goto(I 3 ,C) 
	 

	 
	C [image: image602.png]


cC., 
	c/d 

	I9 : 
	goto(I 6 ,C) 
	 

	 
	C [image: image603.png]


cC., 
	$ 


To construct sets of LR(1) items for the grammar given in previous slide we will begin by computing closure of {[S ´ [image: image604.png]


.S, $]}. 
To compute closure we use the function given previously. 
In this case α = ε , B = S, ß =ε and a=$. So add item [S [image: image605.png]


.CC, $].
Now first(C$) contains c and d so we add following items 
we have A=S, α = ε , B = C, ß=C and a=$
Now first(C$) = first(C) contains c and d 
so we add the items [C [image: image606.png]


.cC, c], [C [image: image607.png]


.cC, d], [C [image: image608.png]


.dC, c], [C [image: image609.png]


.dC, d].
Similarly we use this function and construct all sets of LR(1) items. 

Construction of Canonical LR parse table

. Construct C={I0 , . , I n } the sets of LR(1) items.

. If [A [image: image610.png]


α .a ߠ, b] is in I i and goto(Ii , a)=Ij then action[i,a]=shift j

. If [A [image: image611.png]


α ., a] is in Ii then action[i,a] reduce A [image: image612.png]


α

. If [S ' [image: image613.png]


S., $] is in Ii then action[i,$] = accept

. If goto(I i , A) = Ij then goto[i,A] = j for all non 

We are representing shift j as sj and reduction by rule number j as rj. Note that entries corresponding to [state, terminal] are related to action table and [state, non-terminal] related to goto table. We have [1,$] as accept because [S ´ [image: image614.png]


S., $] ε I 1 . 

Parse table
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We are representing shift j as sj and reduction by rule number j as rj. Note that entries corresponding to [state, terminal] are related to action table and [state, non-terminal] related to goto table. We have [1,$] as accept because [S ´ [image: image616.png]


S., $] ε I 1 

Notes on Canonical LR Parser

. Consider the grammar discussed in the previous two slides. The language specified by the grammar is c*dc*d.

. When reading input cc.dcc.d the parser shifts cs into stack and then goes into state 4 after reading d. It then calls for reduction by C [image: image617.png]


d if following symbol is c or d.

. IF $ follows the first d then input string is c*d which is not in the language; parser declares an error

. On an error canonical LR parser never makes a wrong shift/reduce move. It immediately declares an error

. Problem : Canonical LR parse table has a large number of states 

An LR parser will not make any wrong shift/reduce unless there is an error. But the number of states in LR parse table is too large. To reduce number of states we will combine all states which have same core and different look ahead symbol. 

LALR Parse table

. Look Ahead LR parsers 

. Consider a pair of similar looking states (same kernel and different lookaheads) in the set of LR(1) items

I 4 : C [image: image618.png]


d. , c/d I7 : C [image: image619.png]


d., $ 

. Replace I4 and I7 by a new state I 47 consisting of (C [image: image620.png]


d., c/d/$)

. Similarly I 3 & I6 and I 8 & I 9 form pairs

. Merge LR(1) items having the same core 

We will combine Ii and Ij to construct new Iij if Ii and Ij have the same core and the difference is only in look ahead symbols. After merging the sets of LR(1) items for previous example will be as follows: 

I0 : S' [image: image621.png]


S $

S [image: image622.png]


.CC $

C [image: image623.png]


.cC c/d 

C [image: image624.png]


.d c/d 

I1 : goto(I 0 ,S) 

S' [image: image625.png]


S. $ 

I2 : goto(I 0 ,C) 

S [image: image626.png]


C.C $ 

C[image: image627.png]


 .cC $ 

C [image: image628.png]


.d $ 

I36 : goto(I 2 ,c) 

C [image: image629.png]


c.C c/d/$

C [image: image630.png]


.cC c/d/$ 

C [image: image631.png]


.d c/d/$ 

I4 : goto(I 0 ,d)

C [image: image632.png]


d. c/d 

I 5 : goto(I 2 ,C)

S [image: image633.png]


CC. $ 

I7 : goto(I 2 ,d) 

C [image: image634.png]


d. $ 

I 89 : goto(I 36 ,C)

C [image: image635.png]


cC. c/d/$ 
Construct LALR parse table

. Construct C={I0 , .. ,In } set of LR(1) items 

. For each core present in LR(1) items find all sets having the same core and replace these sets by their union 

. Let C' = {J0 , .. .,Jm } be the resulting set of items 

. Construct action table as was done earlier 

. Let J = I1 U I2 .. .U Ik 

since I 1 , I2 .. ., Ik have same core, goto(J,X) will have he same core 

Let K=goto(I1 ,X) U goto(I2 ,X) .. goto(Ik ,X) the goto(J,X)=K 

The construction rules for LALR parse table are similar to construction of LR(1) parse table.

LALR parse table . 
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The construction rules for LALR parse table are similar to construction of LR(1) parse table. 

Notes on LALR parse table

. Modified parser behaves as original except that it will reduce C [image: image637.png]


d on inputs like ccd. The error will eventually be caught before any more symbols are shifted. 
. In general core is a set of LR(0) items and LR(1) grammar may produce more than one set of items with the same core.
. Merging items never produces shift/reduce conflicts but may produce reduce/reduce conflicts. 
. SLR and LALR parse tables have same number of states. 

Canonical parser will catch error as soon as it is encountered, since it manages a state for each possible look-ahead, but on the other hand LALR parser does not distinguish between the possible lookaheads. Consider the example, where the grammar accepts c*dc*d. Suppose the parser is given input ccd. While canonical parser will exit with error status as soon as it sees d, because it does not expect $ to be seen after first d. On the other hand, LALR parser will first reduce C [image: image638.png]


d, but will eventually report an error. It does not produce shift/reduce conflict since it keeps track of possible look-ahead symbol (not whole follow set) and hence is able to find when a reduction is possible. But since we are not managing each of the different look-ahead, reduce/reduce conflicts can not be avoided 

Notes on LALR parse table. 

. Merging items may result into conflicts in LALR parsers which did not exist in LR parsers 

. New conflicts can not be of shift reduce kind: 

- Assume there is a shift reduce conflict in some state of LALR parser with items {[X [image: image639.png]


α .,a],[Y [image: image640.png]


γ .a ߠ,b]} 

- Then there must have been a state in the LR parser with the same core 

- Contradiction; because LR parser did not have conflicts 

. LALR parser can have new reduce-reduce conflicts 

- Assume states {[X [image: image641.png]


α ., a], [Y [image: image642.png]


ߠ., b]} and {[X [image: image643.png]


α ., b], [Y [image: image644.png]


ߠ., a]} 

- Merging the two states produces {[X [image: image645.png]


α ., a/b], [Y [image: image646.png]


ߠ., a/b]} 

Merging states will never give rise to shift-reduce conflicts but may give reduce-reduce conflicts and have some grammars which were in canonical LR parser may become ambiguous in LALR parser. To realize this, suppose in the union there is a conflict on lookahead a because there is an item [A [image: image647.png]


α . ,a] calling for a reduction by A [image: image648.png]


α , and there is another item [B [image: image649.png]


ߠ.a γ ,b] calling for a shift. Then some set of items from which the union was formed has item [A [image: image650.png]


α . ,a], and since the cores of all these states are the same, it must have an item [B [image: image651.png]


ߠ.a γ ,c] for some c. But then this state has the same shift/reduce conflict on a, and the grammar was not LR(1) as we assumed. Thus the merging of states with common core can never produce a shift/reduce conflict that was not present in one of the original states, because shift actions depend only on the core, not the lookahead. But LALR parser can have reduce-reduce conflicts. Assume states {[X [image: image652.png]


α ., a], [Y [image: image653.png]


ߠ., b]} and {[X [image: image654.png]


α ., b], [Y [image: image655.png]


ߠ., a]}. Now, merging the two states produces {[X [image: image656.png]


α ., a/b], [Y [image: image657.png]


ߠ., a/b]} which generates a reduce-reduce conflict, since reductions by both X [image: image658.png]


α and Y [image: image659.png]


ߠare called for on inputs a and b. 

Notes on LALR parse table. 

. LALR parsers are not built by first making canonical LR parse tables

. There are direct, complicated but efficient algorithms to develop LALR parsers

. Relative power of various classes 

- SLR(1) ≤ LALR(1) ≤ LR(1) 

- SLR(k) ≤ LALR(k) ≤ LR(k) 

- LL(k)≤ LR(k) 

In practice, we never first construct a LR parse table and then convert it into a LALR parser but there are different efficient algorithms which straight away give us the LALR parser. In fact, YACC and BISON generate LALR parser using these algorithms. Relative power of various classes:

SLR (1) <LALR (1) <LR (1)
SLR (K) <LALR (1) <LR (K) 

LL (K) < LR (K) 

But LL (K1) < LR (K2) IF K1>K2 for some large enough value of K1. 
Error Recovery 

. An error is detected when an entry in the action table is found to be empty. 

. Panic mode error recovery can be implemented as follows: 

- scan down the stack until a state S with a goto on a particular nonterminal A is found. 

- discard zero or more input symbols until a symbol a is found that can legitimately follow A. 

- stack the state goto[S,A] and resume parsing. 

. Choice of A: Normally these are non terminals representing major program pieces such as an expression, statement or a block. For example if A is the nonterminal stmt, a might be semicolon or end. 

Parser Generator

. Some common parser generators 

- YACC: Y et A nother C ompiler C ompiler 

- Bison: GNU Software

- ANTLR: AN other T ool for L anguage R ecognition 

. Yacc/Bison source program specification (accept LALR grammars)

declaration 

%%

translation rules

%%

supporting C routines 

Yacc and Lex schema
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Refer to YACC Manual 
Semantic Analysis
 Semantic Analysis 
	. Check semantics 
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	. Error reporting 
	

	.Disambiguate overloaded operators 
	

	. Type coercion 
	

	. Static checking 
	

	- Type checking 
	

	-Control flow checking 
	

	- Uniqueness checking 
	

	- Name checks 
	


Assume that the program has been verified to be syntactically correct and converted into some kind of intermediate representation (a parse tree). One now has parse tree available. The next phase will be semantic analysis of the generated parse tree. Semantic analysis also includes error reporting in case any semantic error is found out. 

Semantic analysis is a pass by a compiler that adds semantic information to the parse tree and performs certain checks based on this information. It logically follows the parsing phase, in which the parse tree is generated, and logically precedes the code generation phase, in which (intermediate/target) code is generated. (In a compiler implementation, it may be possible to fold different phases into one pass.) Typical examples of semantic information that is added and checked is typing information ( type checking ) and the binding of variables and function names to their definitions ( object binding ). Sometimes also some early code optimization is done in this phase. For this phase the compiler usually maintains symbol tables in which it stores what each symbol (variable names, function names, etc.) refers to. 
Following things are done in Semantic Analysis:
Disambiguate Overloaded operators : If an operator is overloaded, one would like to specify the meaning of that particular operator because from one will go into code generation phase next.
Type checking: The process of verifying and enforcing the constraints of types is called type checking. This may occur either at compile-time (a static check) or     run-time (a dynamic check). Static type checking is a primary task of the semantic analysis carried out by a compiler. If type rules are enforced strongly (that is, generally allowing only those automatic type conversions which do not lose information), the process is called strongly typed, if not, weakly typed.
Uniqueness checking : Whether a variable name is unique or not, in the its scope.
. Type coercion: If some kind of mixing of types is allowed. Done in languages which are not strongly typed. This can be done dynamically as well as statically.
. Name Checks : Check whether any variable has a name which is not allowed. Ex. Name is same as an identifier( Ex. int in java). 
Beyond syntax analysis 

· Parser cannot catch all the program errors 

· There is a level of correctness that is deeper than syntax analysis 

· Some language features cannot be modeled using context free grammar formalism 

- Whether an identifier has been declared before use

- This problem is of identifying a language {w α w | w ε Σ *} 

- This language is not context free 

A parser has its own limitations in catching program errors related to semantics, something that is deeper than syntax analysis. Typical features of semantic analysis cannot be modeled using context free grammar formalism. If one tries to incorporate those features in the definition of a language then that language doesn't remain context free anymore. 

Beyond syntax . 
Example 1

string x;int y; 

y = x + 3
the use of x is a type error 

int a, b;

a = b + c

C is not declared 

. An identifier may refer to different variables in different parts of the program 

. An identifier may be usable in one part of the program but not another 

These are a couple of examples which tell us that typically what a compiler has to do beyond syntax analysis. The third point can be explained like this: An identifier x can be declared in two separate functions in the program, once of the type int and then of the type char. Hence the same identifier will have to be bound to these two different properties in the two different contexts. The fourth point can be explained in this manner: A variable declared within one function cannot be used within the scope of the definition of the other function unless declared there separately. This is just an example. Probably you can think of many more examples in which a variable declared in one scope cannot be used in another scope. 
Compiler needs to know? 
. Whether a variable has been declared?

. Are there variables which have not been declared?

. What is the type of the variable? 

. Whether a variable is a scalar, an array, or a function?

. What declaration of the variable does each reference use?

. If an expression is type consistent?

. If an array use like A[i,j,k] is consistent with the declaration? Does it have three dimensions? 

What does a compiler need to know during semantic analysis?

For example, we have the third question from the above list, i.e., what is the type of a variable and we have a statement like

int a, b , c; 

Then we see that syntax analyzer cannot alone handle this situation. We actually need to traverse the parse trees to find out the type of identifier and this is all done in semantic analysis phase. Purpose of listing out the questions is that unless we have answers to these questions we will not be able to write a semantic analyzer. This becomes a feedback mechanism. 

How many arguments does a function take?

. Are all invocations of a function consistent with the declaration?

. If an operator/function is overloaded, which function is being invoked?

. Inheritance relationship

. Classes not multiply defined

. Methods in a class are not multiply defined 

. The exact requirements depend upon the language 

If the compiler has the answers to all these questions only then will it be able to successfully do a semantic analysis by using the generated parse tree. These questions give a feedback to what is to be done in the semantic analysis. These questions help in outlining the work of the semantic analyzer. 

How to answer these questions? 

. These issues are part of semantic analysis phase

. Answers to these questions depend upon values like type information, number of parameters etc.

. Compiler will have to do some computation to arrive at answers

. The information required by computations may be non local in some cases 

In order to answer the previous questions the compiler will have to keep information about the type of variables, number of parameters in a particular function etc. It will have to do some sort of computation in order to gain this information. Most compilers keep a structure called symbol table to store this information. At times the information required is not available locally, but in a different scope altogether. 

How to. ? 

. Use formal methods

- Context sensitive grammars

- Extended attribute grammars 

. Use ad-hoc techniques

- Symbol table 

- Ad-hoc code

. Something in between !!! 

- Use attributes

- Do analysis along with parsing - Use code for attribute value computation

- However, code is developed in a systematic way 

In syntax analysis we used context free grammar. Here we put lot of attributes around it. So it consists of context sensitive grammars along with extended attribute grammars. Ad-hoc methods also good as there is no structure in it and the formal method is simply just too tough. So we would like to use something in between. Formalism may be so difficult that writing specifications itself may become tougher than writing compiler itself. So we do use attributes but we do analysis along with parse tree itself instead of using context sensitive grammars. 

We have already seen some technique, like in the calculator program, we used $$,$1,$2 etc. as temporary variables. $$ = $1 + $3; // Attribute computation For actual language it won't be so simple but the framework will be same . 

Why attributes ? 

. For lexical analysis and syntax analysis formal techniques were used.

. However, we still had code in form of actions along with regular expressions and context free grammar

. The attribute grammar formalism is important

- However, it is very difficult to implement 

- But makes many points clear 

- Makes "ad-hoc" code more organized 

- Helps in doing non local computations 
Attribute grammar is nothing but it is a CFG and attributes put around all the terminal and non-terminal symbols are used. Despite the difficulty in the implementation of the attribute grammar formalism it has certain big advantages which makes it desirable. 

Attribute Grammar Framework 

. Generalization of CFG where each grammar symbol has an associated set of attributes

. Values of attributes are computed by semantic rules

. Two notations for associating semantic rules with productions

- Syntax directed definition 

. high level specifications

. hides implementation details

. explicit order of evaluation is not specified 

- Translation schemes

. indicate order in which semantic rules are to be evaluated 

. allow some implementation details to be shown 

An attribute grammar is the formal expression of the syntax-derived semantic checks associated with a grammar. It represents the rules of a language not explicitly imparted by the syntax. In a practical way, it defines the information that will need to be in the abstract syntax tree in order to successfully perform semantic analysis. This information is stored as attributes of the nodes of the abstract syntax tree. The values of those attributes are calculated by semantic rule. 

There are two ways for writing attributes:

1) Syntax Directed Definition : It is a high level specification in which implementation details are hidden, e.g., $$ = $1 + $2; /* does not give any implementation details. It just tells us. This kind of attribute equation we will be using, Details like at what point of time is it evaluated and in what manner are hidden from the programmer.*/

2) Translation scheme : Sometimes we want to control the way the attributes are evaluated, the order and place where they are evaluated. This is of a slightly lower level. 

Conceptually both:

- parse input token stream

- build parse tree 

- traverse the parse tree to evaluate the semantic rules at the parse tree nodes

. Evaluation may: 

- generate code 

- save information in the symbol table 

- issue error messages 

- perform any other activity 

To avoid repeated traversal of the parse tree, actions are taken simultaneously when a token is found. So calculation of attributes goes along with the construction of the parse tree.

Along with the evaluation of the semantic rules the compiler may simultaneously generate code, save the information in the symbol table, and/or issue error messages etc. at the same time while building the parse tree.

This saves multiple passes of the parse tree. 

Example 

Number [image: image662.png]


sign list 

sign [image: image663.png]


+ | - 

list [image: image664.png]


list bit | bit 

bit [image: image665.png]


0 | 1 

. Build attribute grammar that annotates Number with the value it represents

. Associate attributes with grammar symbols 

	symbol 
	attributes 

	Number 
	value 

	sign 
	negative 

	list 
	position, value 

	bit 
	position, value 


	production 
	Attribute rule 

	number [image: image666.png]


sign list 
	list.position [image: image667.png]


0 

if sign.negative

then number.value [image: image668.png]


- list.value

else number.value [image: image669.png]


list.value 

	sign [image: image670.png]


+ 
	sign.negative [image: image671.png]


false 

	sign [image: image672.png]


- 
	sign.negative [image: image673.png]


true 

	list [image: image674.png]


bit 
	bit.position [image: image675.png]


list.position 

list.value [image: image676.png]


bit.value 

	list0 [image: image677.png]


list 1 bit 
	list1 .position [image: image678.png]


list 0 .position + 1 

bit.position [image: image679.png]


list 0 .position 

list0 .value [image: image680.png]


list1 .value + bit.value 

	bit [image: image681.png]


0 
	bit.value [image: image682.png]


0 

	bit [image: image683.png]


1 
	bit.value [image: image684.png]


2bit.position 


Explanation of attribute rules 

	Num -> sign list 
	/*since list is the rightmost so it is assigned position 0 

	 
	*Sign determines whether the value of the number would be 

	 
	*same or the negative of the value of list*/ 

	Sign -> + | - 
	/*Set the Boolean attribute (negative) for sign*/ 

	List -> bit 
	/*bit position is the same as list position because this bit is the rightmost 

	 
	*value of the list is same as bit.*/ 

	List0 -> List1 bit 
	/*position and value calculations*/ 

	Bit -> 0 | 1 
	/*set the corresponding value*/ 

	 


Attributes of RHS can be computed from attributes of LHS and vice versa. 

Parse tree and the dependence graph 
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Dependence graph shows the dependence of attributes on other attributes, along with the syntax tree. Top down traversal is followed by a bottom up traversal to resolve the dependencies. Number, val and neg are synthesized attributes. Pos is an inherited attribute. 

Attributes

 . attributes fall into two classes: synthesized and inherited 
. value of a synthesized attribute is computed from the values of its children nodes

. value of an inherited attribute is computed from the sibling and parent nodes 

The attributes are divided into two groups, called synthesized attributes and inherited attributes. The synthesized attributes are the result of the attribute evaluation rules also using the values of the inherited attributes. The values of the inherited attributes are inherited from parent nodes and siblings. 

Attributes . 

Each grammar production A [image: image686.png]


a has associated with it a set of semantic rules of the form 

b = f (c1 , c2 , ..., ck ) 

where f is a function, and either 

- b is a synthesized attribute of A OR 

- b is an inherited attribute of one of the grammar symbols on the right 

. attribute b depends on attributes c1 , c2 , ..., ck 

Dependence relation tells us what attributes we need to know before hand to calculate a particular attribute. Here the value of the attribute b depends on the values of the attributes c1 to ck . If c1 to ck belong to the children nodes and b to A then b will be called a synthesized attribute. And if b belongs to one among a (child nodes) then it is an inherited attribute of one of the grammar symbols on the right. 

Synthesized Attributes 

A syntax directed definition that uses only synthesized attributes is said to be an S- attributed definition

A parse tree for an S-attributed definition can be annotated by evaluating semantic rules for attributes 

S-attributed grammars are a class of attribute grammars, comparable with L-attributed grammars but characterized by having no inherited attributes at all. Inherited attributes, which must be passed down from parent nodes to children nodes of the abstract syntax tree during the semantic analysis, pose a problem for bottom-up parsing because in bottom-up parsing, the parent nodes of the abstract syntax tree are created after creation of all of their children. Attribute evaluation in S-attributed grammars can be incorporated conveniently in both top-down parsing and bottom-up parsing . 
Syntax Directed Definitions for a desk calculator program 
	L [image: image687.png]


E n 
	Print (E.val) 

	E [image: image688.png]


E + T 
	E.val = E.val + T.val 

	E [image: image689.png]


T 
	E.val = T.val 

	T [image: image690.png]


T * F 
	T.val = T.val * F.val 

	T [image: image691.png]


F 
	T.val = F.val 

	F [image: image692.png]


(E) 
	F.val = E.val 

	F [image: image693.png]


digit 
	F.val = digit.lexval 


. terminals are assumed to have only synthesized attribute values of which are supplied by lexical analyzer

. start symbol does not have any inherited attribute 

This is a grammar which uses only synthesized attributes. Start symbol has no parents, hence no inherited attributes. 
Parse tree for 3 * 4 + 5 n 
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Using the previous attribute grammar calculations have been worked out here for 3 * 4 + 5 n. Bottom up parsing has been done. 

Inherited Attributes 
. an inherited attribute is one whose value is defined in terms of attributes at the parent and/or siblings

. Used for finding out the context in which it appears

. possible to use only S-attributes but more natural to use inherited attributes 

	D [image: image695.png]


T L 
	L.in = T.type 

	T [image: image696.png]


real 
	T.type = real 

	T [image: image697.png]


int 
	T.type = int 

	L [image: image698.png]


L1 , id 
	L1 .in = L.in; addtype(id.entry, L.in) 

	L [image: image699.png]


id 
	addtype (id.entry,L.in) 


Inherited attributes help to find the context (type, scope etc.) of a token e.g., the type of a token or scope when the same variable name is used multiple times in a program in different functions. An inherited attribute system may be replaced by an S -attribute system but it is more natural to use inherited attributes in some cases like the example given above. 
Here addtype(a, b) functions adds a symbol table entry for the id a and attaches to it the type of b . 
Parse tree for real x, y, z  
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Dependence of attributes in an inherited attribute system. The value of in (an inherited attribute) at the three L nodes gives the type of the three identifiers x , y and z . These are determined by computing the value of the attribute T.type at the left child of the root and then valuating L.in top down at the three L nodes in the right subtree of the root. At each L node the procedure addtype is called which inserts the type of the identifier to its entry in the symbol table. The figure also shows the dependence graph which is introduced later. 
Dependence Graph 

. If an attribute b depends on an attribute c then the semantic rule for b must be evaluated after the semantic rule for c

. The dependencies among the nodes can be depicted by a directed graph called dependency graph 

Dependency Graph : Directed graph indicating interdependencies among the synthesized and inherited attributes of various nodes in a parse tree.
Algorithm to construct dependency graph 

for each node n in the parse tree do 

for each attribute a of the grammar symbol do 

construct a node in the dependency graph

for a 
for each node n in the parse tree do 

for each semantic rule b = f (c1 , c2 , ..., ck ) do 

{ associated with production at n } 

for i = 1 to k do 

construct an edge from ci to b 

An algorithm to construct the dependency graph. After making one node for every attribute of all the nodes of the parse tree, make one edge from each of the other attributes on which it depends.
Example 
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The semantic rule A.a = f(X.x , Y.y) for the production A -> XY defines the synthesized attribute a of A to be dependent on the attribute x of X and the attribute y of Y . Thus the dependency graph will contain an edge from X.x to A.a and Y.y to A.a accounting for the two dependencies. Similarly for the semantic rule X.x = g(A.a , Y.y) for the same production there will be an edge from A.a to X.x and an edg e from Y.y to X.x. 

Example 

. Whenever following production is used in a parse tree 

E [image: image702.png]


E 1 + E 2          E.val = E 1 .val + E 2 .val 

we create a dependency graph 

[image: image703.png]E.val E,.val




The synthesized attribute E.val depends on E1.val and E2.val hence the two edges one each from E 1 .val & E 2 .val 
Example 

. dependency graph for real id1, id2, id3 

. put a dummy synthesized attribute b for a semantic rule that consists of a procedure call 
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The figure shows the dependency graph for the statement real id1, id2, id3 along with the parse tree. Procedure calls can be thought of as rules defining the values of dummy synthesized attributes of the nonterminal on the left side of the associated production. Blue arrows constitute the dependency graph and black lines, the parse tree. Each of the semantic rules addtype (id.entry, L.in) associated with the L productions leads to the creation of the dummy attribute. 
Evaluation Order 

Any topological sort of dependency graph gives a valid order in which semantic rules must be evaluated 

a4 = real 

a5 = a4 

addtype(id3.entry, a5)

a7 = a5 

addtype(id2.entry, a7 )

a9 := a7 addtype(id1.entry, a9 ) 

A topological sort of a directed acyclic graph is any ordering m1, m2, m3 ..... mk of the nodes of the graph such that edges go from nodes earlier in the ordering to later nodes. Thus if mi -> mj is an edge from mi to mj then mi appears before mj in the ordering. The order of the statements shown in the slide is obtained from the topological sort of the dependency graph in the previous slide. 'an' stands for the attribute associated with the node numbered n in the dependency graph. The numbering is as shown in the previous slide. 
Abstract Syntax Tree 

. Condensed form of parse tree,

. useful for representing language constructs.

. The production S [image: image705.png]


if B then s1 else s2 may appear as 
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In the next few slides we will see how abstract syntax trees can be constructed from syntax directed definitions. Abstract syntax trees are condensed form of parse trees. Normally operators and keywords appear as leaves but in an abstract syntax tree they are associated with the interior nodes that would be the parent of those leaves in the parse tree. This is clearly indicated by the examples in these slides. 
Abstract Syntax tree . 

. Chain of single productions may be collapsed, and operators move to the parent nodes 

[image: image707.png]



Chain of single production are collapsed into one node with the operators moving up to become the node. 

Constructing Abstract Syntax tree for expression 

. Each node can be represented as a record

. operators : one field for operator, remaining fields ptrs to operands mknode( op,left,right )

. identifier : one field with label id and another ptr to symbol table mkleaf(id,entry)

. number : one field with label num and another to keep the value of the number mkleaf(num,val) 

Each node in an abstract syntax tree can be implemented as a record with several fields. In the node for an operator one field identifies the operator (called the label of the node) and the remaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may have additional fields to hold values (or pointers to values) of attributes attached to the node. The functions given in the slide are used to create the nodes of abstract syntax trees for expressions. Each function returns a pointer to a newly created note. 

Example 
	the following 
	[image: image708.png]5]
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	sequence of function 
	

	calls creates a parse 
	

	tree for a- 4 + c 
	

	  
	

	P 1 = mkleaf(id, entry.a) 
	

	P 2 = mkleaf(num, 4) 
	

	P 3 = mknode(-, P 1 , P 2 ) 
	

	P 4 = mkleaf(id, entry.c) 
	

	P 5 = mknode(+, P 3 , P 4 ) 
	


An example showing the formation of an abstract syntax tree by the given function calls for the expression a-4+c.The call sequence can be explained as:

1. P1 = mkleaf(id,entry.a) : A leaf node made for the identifier Qa R and an entry for Qa R is made in the symbol table.

2. P2 = mkleaf(num,4) : A leaf node made for the number Q4 R.

3. P3 = mknode(-,P1,P2) : An internal node for the Q- Q.I takes the previously made nodes as arguments and represents the expression Qa-4 R.

4. P4 = mkleaf(id,entry.c) : A leaf node made for the identifier Qc R and an entry for Qc R is made in the symbol table.

5. P5 = mknode(+,P3,P4) : An internal node for the Q+ Q.I takes the previously made nodes as arguments and represents the expression Qa- 4+c R. 

A syntax directed definition for constructing syntax tree 
	E [image: image709.png]


E 1 + T 
	E.ptr = mknode(+, E 1 .ptr, T.ptr) 

	E[image: image710.png]


 T 
	E.ptr = T.ptr 

	T [image: image711.png]


T 1 * F 
	T.ptr := mknode(*, T 1 .ptr, F.ptr) 

	T [image: image712.png]


F 
	T.ptr := F.ptr 

	F [image: image713.png]


(E) 
	F.ptr := E.ptr 

	F [image: image714.png]


id 
	F.ptr := mkleaf(id, entry.id) 

	F[image: image715.png]


 num 
	F.ptr := mkleaf(num,val) 

	 
	 


Now we have the syntax directed definitions to construct the parse tree for a given grammar. All the rules mentioned in slide 29 are taken care of and an abstract syntax tree is formed. 
DAG for Expressions 

Expression a + a * ( b - c ) + ( b - c ) * d make a leaf or node if not present, otherwise return pointer to the existing node 

	P 1 = makeleaf(id,a) 
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	P 2 = makeleaf(id,a) 
	

	P 3 = makeleaf(id,b) 
	

	P 4 = makeleaf(id,c) 
	

	P 5 = makenode(-,P 3 ,P 4 ) 
	

	P 6 = makenode(*,P 2 ,P 5 ) 
	

	P 7 = makenode(+,P 1 ,P 6 ) 
	

	P 8 = makeleaf(id,b) 
	

	P 9 = makeleaf(id,c) 
	

	P 10 = makenode(-,P 8 ,P 9 ) 
	

	P 11 = makeleaf(id,d) 
	

	P 12 = makenode(*,P 10 ,P 11 ) 
	

	P 13 = makenode(+,P 7 ,P 12 ) 
	

	 
	


A directed acyclic graph (DAG) for the expression : a + a * (b V c) + (b V c) * d All the function calls are made as in the order shown. Whenever the required node is already present, a pointer to it is returned so that a pointer to the old node itself is obtained. A new node is made if it did not exist before. The function calls can be explained as: 

P1 = makeleaf(id,a)

A new node for identifier Qa R made and pointer P1 pointing to it is returned. 

P2 = makeleaf(id,a)

Node for Qa R already exists so a pointer to that node i.e. P1 returned.

P3 = makeleaf(id,b)

A new node for identifier Qb R made and pointer P3 pointing to it is returned.

P4 = makeleaf(id,c)

A new node for identifier Qc R made and pointer P4 pointing to it is returned.

P5 = makenode(-,P3,P4)

A new node for operator Q- R made and pointer P5 pointing to it is returned. This node becomes the parent of P3,P4.

P6 = makenode(*,P2,P5)

A new node for operator Q- R made and pointer P6 pointing to it is returned. This node becomes the parent of P2,P5.

P7 = makenode(+,P1,P6)

A new node for operator Q+ R made and pointer P7 pointing to it is returned. This node becomes the parent of P1,P6.

P8 = makeleaf(id,b) 

Node for Qb R already exists so a pointer to that node i.e. P3 returned.

P9 = makeleaf(id,c) 

Node for Qc R already exists so a pointer to that node i.e. P4 returned.

P10 = makenode(-,P8,P9)

A new node for operator Q- R made and pointer P10 pointing to it is returned. This node becomes the parent of P8,P9.

P11 = makeleaf(id,d)

A new node for identifier Qd R made and pointer P11 pointing to it is returned.

P12 = makenode(*,P10,P11)

A new node for operator Q* R made and pointer P12 pointing to it is returned. This node becomes the parent of P10,P11.

P13 = makenode(+,P7,P12)

A new node for operator Q+ R made and pointer P13 pointing to it is returned. This node becomes the parent of P7, P12. 

Bottom-up evaluation of S-attributed definitions 

.Can be evaluated while parsing 

. Whenever reduction is made, value of new synthesized attribute is computed from the attributes on the stack

. Extend stack to hold the values also 

[image: image717.png]state value
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. The current top of stack is indicated by ptr top 

Synthesized attributes are evaluated using the attributes of the children nodes only. So in a bottom up evaluation, if the attributes are maintained on a stack then the attributes of nodes higher up in the parse tree can be evaluated. The stack is extended to hold the state as well as the value. Top of the stack is maintained in a location pointed by the pointer top. 

Suppose semantic rule A.a = f(X.x, Y.y, Z.z) is associated with production A [image: image718.png]


XYZ

. Before reducing XYZ to A, value of Z is in val(top), value of Y is in val(top-1) and value of X is in val(top-2)

. If symbol has no attribute then the entry is undefined 

. After the reduction, top is decremented by 2 and state covering A is put in val(top) 

An example of a parser stack while parsing of A.a := f( X.x,Y.y,Z.z). The details are included in the slide itself. Top is decremented by two because three values viz. X,Y and Z are popped and value of A has to be pushed in. 

Assignment 5: 

Extend the scheme which has a rule number [image: image719.png]


sign list .

List replacing number [image: image720.png]


sign list 

	number [image: image721.png]


sign list 
	list.position [image: image722.png]


0 

	 
	if sign.negative 

	 
	then number.value [image: image723.png]


- list.value 

	 
	else number.value [image: image724.png]


list.value 

	sign [image: image725.png]


+ 
	sign.negative [image: image726.png]


false 

	sign [image: image727.png]


- 
	sign.negative [image: image728.png]


true 

	list [image: image729.png]


bit 
	bit.position [image: image730.png]


list.position 

	 
	list.value [image: image731.png]


bit.value 

	list 0 [image: image732.png]


list 1 bit 
	list 1 .position [image: image733.png]


list 0 .position + 1 

	  
	bit.position [image: image734.png]


list 0 .position 

	 
	list 0 .value [image: image735.png]


list 1 .value + bit.value 

	bit [image: image736.png]


0 
	bit.value [image: image737.png]


0 

	bit [image: image738.png]


1 
	bit.value [image: image739.png]


2 bit.position 


Example: desk calculator 

	L [image: image740.png]


En 
	print(val(top)) 

	E [image: image741.png]


E + T 
	val(ntop) = val(top-2) + val(top) 

	E [image: image742.png]


T 
	 

	T [image: image743.png]


T * F 
	val(ntop) = val(top-2) * val(top) 

	T [image: image744.png]


F 
	 

	F [image: image745.png]


(E) 
	val(ntop) = val(top-1) 

	F [image: image746.png]


digit 
	 


Before reduction ntop = top - r +1 

After code reduction top = ntop 

The code fragments (like val(ntop) = val(top-1) ) in the implementation of the desk calculator shown in this slide have been obtained from the semantic rules of slide 17 by replacing each attribute by a position in the val array. When a production with r symbols on then right side is reduced, the value of ntop is set to top V r + 1 . After each code fragment is executed, top is set to ntop . 
	INPUT 
	STATE 
	Val 
	PRODUCTION 

	3*5+4n 
	 
	 
	 

	*5+4n 
	digit 
	3 
	 

	*5+4n 
	F 
	3 
	F [image: image747.png]


digit 

	*5+4n 
	T 
	3 
	T [image: image748.png]


F 

	5+4n 
	T* 
	3 - 
	 

	+4n 
	T*digit 
	3 - 5 
	 

	+4n 
	T*F 
	3 - 5 
	F [image: image749.png]


digit 

	+4n 
	T 
	15 
	T [image: image750.png]


T * F 

	+4n 
	E 
	15 
	E [image: image751.png]


T 

	4n 
	E+ 
	15 - 
	 

	n 
	E+digit 
	15 - 4 
	 

	n 
	E+F 
	15 - 4 
	F [image: image752.png]


digit 

	n 
	E+T 
	15 - 4 
	T [image: image753.png]


F 

	n 
	E 
	19 
	E [image: image754.png]


E +T 


This slide shows the evaluation of the synthesized attributes of 3*5+4n by an LR parser during a bottom up pass. Initial sequence of events on seeing the input : The parser shifts the state corresponding to token digit (taken as digit here) onto the stack. In the second move, the parser reduces by the production F -> digit. It implements the semantic rule F.val = digit.lexval. In the third move, the parser reduces by T -> F. No code fragment is associated so the val array is unchanged. Rest of the implementation goes on similar lines. After each reduction, the top of the val stack contains the attribute value associated with the left side of the reducing production. 

L-attributed definitions 

. When translation takes place during parsing, order of evaluation is linked to the order in which nodes are created

. A natural order in both top-down and bottom-up parsing is depth first-order

. L-attributed definition: where attributes can be evaluated in depth-first order 

L-attributed definitions are a class of syntax-directed definitions where attributes can always be evaluated in depth first order. (L is for left as attribute information appears to flow from left to right). Even if the parse tree is not actually constructed, it is useful to study translation during parsing by considering depth-first evaluation of attributes at the nodes of a parse tree. 

L attributed definitions . 

. A syntax directed definition is L-attributed if each inherited attribute of X j (1 = j = n) as the right hand side of

A [image: image755.png]


X1 X 2 .Xn depends only on 

- Attributes of symbols X1 X 2 .X j-1 and

- Inherited attribute of A 

. Consider translation scheme 

	A [image: image756.png]


LM 
	L.i = f1 (A.i) 

	 
	M.i = f2 (L.s) 

	 
	As = f 3 (M.s) 

	A [image: image757.png]


QR 
	Ri = f 4 (A.i) 

	 
	Qi = f 5 (R.s) 

	 
	A.s = f6 (Q.s) 


We assume that we have inherited attributes, which means that attribute of a symbol will be defined in terms of its sibling and its parent node. Suppose for the production A -> XYZ, if we have to write a function of Yi . Yi can be a function of, in general, of A inherited attribute of X and attribute of Y. However, no matter what parsing we use (top-down or bottom up) we won't be able to evaluate Y in a single pass, as we can never have Z evaluated till then. Clearly, the general definition of attribute equation doesn't work. We, therefore have to modify the attribute equation, in effect limit it. 

This further restriction is such that we can evaluate a function in a left-first traversal order . To achieve this Yi should be a function of A (inherited) and X (inherited and synthesized). The generalization of this rule is that inherited attribute of X will depend only on its left sibling and not on its right sibling. Note that we cannot use the synthesized attribute of the parent, because these, in general, will be a function of all X, Y and Z. By this limitation, we can (in both top-down and bottom-up parsing) evaluate the tree as we parse it in a single pass. In the two examples, the first has all functions which satisfy the conditions of L-attributed definitions, but in the second one the second function is using synthesized attribute of R, this violates the rule that we look only at left sibling, hence the second example is not an L-attributed definition. 

Translation schemes 

. A CFG where semantic actions occur within the rhs of production

. A translation scheme to map infix to postfix 

E [image: image758.png]


T R

R[image: image759.png]


 addop T {print(addop)} R | e

T [image: image760.png]


num {print(num)} 

parse tree for 9 - 5 + 2 
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. Assume actions are terminal symbols

. Perform depth first order traversal to obtain 9 5 - 2 +

. When designing translation scheme, ensure attribute value is available when referred to

. In case of synthesized attribute it is trivial (why ?) 

In a translation scheme, as we are dealing with implementation, we have to explicitly worry about the order of traversal. We can now put in between the rules some actions as part of the RHS. We put this rules in order to control the order of traversals. In the given example, we have two terminals (num and addop). It can generally be seen as a number followed by R (which necessarily has to begin with an addop). The given grammar is in infix notation and we need to convert it into postfix notation. If we ignore all the actions, the parse tree is in black, without the red edges. If we include the red edges we get a parse tree with actions. The actions are so far treated as a terminal. Now, if we do a depth first traversal, and whenever we encounter a action we execute it, we get a post-fix notation. In translation scheme, we have to take care of the evaluation order; otherwise some of the parts may be left undefined. For different actions, different result will be obtained. Actions are something we write and we have to control it. Please note that translation scheme is different from a syntax driven definition. In the latter, we do not have any evaluation order; in this case we have an explicit evaluation order. By explicit evaluation order we have to set correct action at correct places, in order to get the desired output. Place of each action is very important. We have to find appropriate places, and that is that translation scheme is all about. If we talk of only synthesized attribute, the translation scheme is very trivial. This is because, when we reach we know that all the children must have been evaluated and all their attributes must have also been dealt with. This is because finding the place for evaluation is very simple, it is the rightmost place. 

. In case of both inherited and synthesized attributes

. An inherited attribute for a symbol on rhs of a production must be computed in an action before that symbol 
	S [image: image762.png]


A 1 A 2 
	{A 1 .in = 1,A 2 .in = 2} 

	A [image: image763.png]


a 
	{print(A.in)} 
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depth first order traversal gives error undefined 
. A synthesized attribute for non terminal on the lhs can be computed after all attributes it references, have been computed. The action normally should be placed at the end of rhs 

We have a problem when we have both synthesized as well as inherited attributes. For the given example, if we place the actions as shown, we cannot evaluate it. This is because, when doing a depth first traversal, we cannot print anything for A1. This is because A1 has not yet been initialized. We, therefore have to find the correct places for the actions. This can be that the inherited attribute of A must be calculated on its left. This can be seen logically from the definition of L-attribute definition, which says that when we reach a node, then everything on its left must have been computed. If we do this, we will always have the attribute evaluated at the correct place. For such specific cases (like the given example) calculating anywhere on the left will work, but generally it must be calculated immediately at the left. 

Example: Translation scheme for EQN 

	S [image: image765.png]


B 
	B.pts = 10 

	  
	S.ht = B.ht 

	B [image: image766.png]


B1 B2 
	B1 .pts = B.pts 

	 
	B 2 .pts = B.pts 

	 
	B.ht = max(B 1 .ht,B2 .ht) 

	B [image: image767.png]


B1 sub B 2 
	B1 .pts = B.pts; 

	 
	B 2 .pts = shrink(B.pts) 

	 
	B.ht = disp(B1 .ht,B2 .ht) 

	B [image: image768.png]


text 
	B.ht = text.h * B.pts 


We now look at another example. This is the grammar for finding out how do I compose text. EQN was equation setting system which was used as an early type setting system for UNIX. It was earlier used as an latex equivalent for equations. We say that start symbol is a block: S - >B We can also have a subscript and superscript. Here, we look at subscript. A Block is composed of several blocks: B -> B1B2 and B2 is a subscript of B1. We have to determine what is the point size (inherited) and height Size (synthesized). We have the relevant function for height and point size given along side

After putting actions in the right place 
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We have put all the actions at the correct places as per the rules stated. Read it from left to right, and top to bottom. We note that all inherited attribute are calculated on the left of B symbols and and synthesized attributes are on the right. 

Top down Translation 

Use predictive parsing to implement L-attributed definitions 

	E [image: image770.png]


E 1 + T 
	E.val := E 1 .val + T.val 

	E [image: image771.png]


E 1 - T 
	E.val := E 1 .val - T.val 

	E [image: image772.png]


T 
	E.val := T.val 

	T [image: image773.png]


(E) 
	T.val := E.val 

	T [image: image774.png]


num 
	T.val := num.lexval 


We now come to implementation. We decide how we use parse tree and L-attribute definitions to construct the parse tree with a one-to-one correspondence. We first look at the top-down translation scheme. The first major problem is left recursion. If we remove left recursion by our standard mechanism, we introduce new symbols, and new symbols will not work with the existing actions. Also, we have to do the parsing in a single pass.

Eliminate left recursion 

	E [image: image775.png]



	T 
	{R.i = T.val} 

	 
	R 
	{E.val = R.s} 

	R [image: image776.png]



	+ 
	 

	 
	T 
	{R 1 .i = R.i + T.val} 

	 
	R 1 
	{R.s = R1.s} 

	R [image: image777.png]



	- 
	 

	 
	T 
	{R 1 .i =R.i - T.val} 

	 
	R 1 
	{R.s = R1.s} 

	R [image: image778.png]



	ε
	{R.s = R.i} 

	T [image: image779.png]



	(E) 
	T.val = E.val} 

	T [image: image780.png]



	num 
	{T.val = num.lexval} 


To remove left recursion, we use our earlier rule of removing left recursion and rewrite the attribute equations in a systematic manner. We look at a particular solution for this example, a general algorithm will be discussed later. Our old attribute equations are no longer valid. Some new symbols have been added. We say R inherited is T val. What we are trying to do is to take the attribute of the left subtree below. We just keep taking attribute form the left subtree to a right and lower subtree until we hit the last production (R??). 

Parse tree for 9-5+2 
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This slide shows the parse tree for the above grammar with the actions at the correct places (in red). The traversal for the given example 9-5+2 is self explanatory. 

[image: image782.png]



For top-down parsing, we can assume that an action is executed at the time that a symbol in the same position would be expanded. Thus, in the second production in Fig. 2., the 1st action (assignment to R1:i) is done after T has been fully expanded to terminals, and the second action is done after R1 has been fully expanded. Also, as discussed in the previous lecture, for an L-attributed translation an inherited attribute of a symbol must be computed by an action appearing before the symbol and a synthesized attribute of the non-terminal on the left must be computed after all the attributes it depends on, have been computed. The new scheme produces annotated parse tree of the figure shown in slide 49 for the expression 9 - 5 + 2. The arrows show the evaluation order of all the L-attributes of various grammar symbols as per the new symbol.

Removal of left recursion 

Suppose we have translation scheme: 

	A [image: image783.png]


A1 Y 
	{A = g(A 1 ,Y)} 

	A [image: image784.png]


X 
	{A = f(X)} 


After removal of left recursion it becomes 

	A [image: image785.png]


X 
	{R.in = f(X)} 

	R 
	{A.s =R.s} 

	R [image: image786.png]


Y 
	{R1 .in = g(Y,R)} 

	R1 
	{R.s = R1 .s} 

	R [image: image787.png]


ε 
	{R.s = R.i} 


The general scheme for transforming left-recursive translation for predictive parsing is shown below: Suppose we have the following translation scheme: 
	A -> A1Y 
	{A.s = g(A1.s, Y.s)} 

	A -> X 
	{A.s = f(X.s)} 


Each grammar symbol has a synthesized attribute written using the lower case letter s. (f and g are arbitrary functions.) After removing left recursion from the above grammar and taking semantic actions into account, the transformed scheme becomes: 
	A -> X 
	{R.in = f(X.s)} 

	R 
	{A.s = R.s} 

	R -> Y 
	{R1.in = g(Y.s,R.in)}

	R1 
	{R.s = R1.s} 

	R ->ε 
	{R.s = R.in} 

	 
	 


Bottom up evaluation of inherited attributes 

. Remove embedded actions from translation scheme

. Make transformation so that embedded actions occur only at the ends of their productions

. Replace each action by a distinct marker non terminal M and attach action at end of M[image: image788.png]


ε 

In this section, the method to implement L-attributed definitions in the framework of bottom-up parsing will be shown. To handle inherited attributes bottom up, the given translation scheme is transformed so that all embedded actions in the transformed translation scheme occur at the right ends of their productions. For this we replace each embedded action in the given scheme by a distinct marker M, a non-terminal and attach action at end of M ->ε. 

Therefore, 

E [image: image789.png]


T R

R [image: image790.png]


+ T {print (+)} R

R [image: image791.png]


- T {print (-)} R

R [image: image792.png]


ε 

T [image: image793.png]


num {print(num.val)} 

transforms to 

E [image: image794.png]


T R

R [image: image795.png]


+ T M R

R [image: image796.png]


- T N R

R [image: image797.png]


ε 

	T [image: image798.png]


num 
	{print(num.val)} 

	M [image: image799.png]


ε 
	{print(+)} 

	N [image: image800.png]


ε 
	{print(-)} 


Actions in the transformed scheme terminate productions, so they can be performed just before the right side is reduced during bottom-up parsing. 

Inheriting attribute on parser stacks 

. bottom up parser reduces rhs of A [image: image801.png]


XY by removing XY from stack and putting A on the stack

. synthesized attributes of Xs can be inherited by Y by using the copy rule Y.i=X.s 

Example :take string real p,q,r 
	D [image: image802.png]


T 
	{L.in = T.type} 

	L 
	 

	T [image: image803.png]


int 
	{T.type = integer} 

	T [image: image804.png]


real 
	{T.type = real} 

	L [image: image805.png]



	{L 1 .in =L.in} L 1 ,id 

	 
	{addtype(id.entry,L in )} 

	L [image: image806.png]


id 
	{addtype(id.entry,L in )} 


A bottom-up parser reduces the right side of production A -> XY by removing X and Y from the top of the parser stack and putting A on the stack. Since the synthesized attribute of X, X.s is already on the parser stack before any reduction takes place in the subtree below Y , this value can be inherited by Y by using the copy rule Y.i = X.s. Similarly, in the above given example T.type is the synthesized attribute and L.in is the inherited attribute.

	State stack 
	INPUT 
	PRODUCTION 

	 
	real p,q,r 
	 

	real 
	p,q,r 
	 

	T 
	p,q,r 
	T [image: image807.png]


real 

	Tp 
	,q,r 
	 

	TL 
	,q,r 
	L [image: image808.png]


id 

	TL, 
	q,r 
	 

	TL,q 
	,r 
	 

	TL 
	,r 
	L [image: image809.png]


L,id 

	TL, 
	r 
	 

	TL,r 
	- 
	 

	TL 
	- 
	L [image: image810.png]


L,id 

	D 
	- 
	D [image: image811.png]


TL 


Every time a string is reduced to L, T.val is just below it on the stack 

Ignoring the actions in the translation scheme given in the previous slide, the sequence of the moves made by the parser on the given input have been given here. 

Example . 

. Every tine a reduction to L is made value of T type is just below it

. Use the fact that T.val (type information) is at a known place in the stack

. When production L ® id is applied, id.entry is at the top of the stack and T.type is just below it, therefore, 

addtype(id.entry, L.in) [image: image812.png]


addtype(val[top], val[top-1]) 
. Similarly when production L ® L 1 , id is applied id.entry is at the top of the stack and T.type is three places below it, therefore, 
addtype(id.entry, L.in) [image: image813.png]


addtype(val[top],val[top-3]) 
Suppose that the parser stack is implemented as a pair of arrays, state and val. If state[i] is grammar symbol X, then val[i] holds a synthesized attribute X.s. T.val (type information) is at a known place in the val stack, relative to the top. Let top and ntop be the indices of the top entry in the stack just before and just after a reduction takes place, respectively. When production L -> id is applied, id.entry is at the top of the val stack and T.type is just below it, therefore, 
addtype(id.entry, L.in) [image: image814.png]


addtype(val[top], val[top - 1]). 
Similarly, when production L -> L1, id is applied id.entry is at the top of the stack and T.type is three places below it where T is. Hence, 
addtype(id.entry, L.in) [image: image815.png]


addtype(val[top], val[top - 3]) 
Example . 

Therefore, the translation scheme becomes 

	D [image: image816.png]


T L 
	 

	T [image: image817.png]


int 
	val[top] =integer 

	T [image: image818.png]


real 
	val[top] =real 

	L [image: image819.png]


L,id 
	addtype(val[top], val[top-3]) 

	L [image: image820.png]


id 
	addtype(val[top], val[top-1]) 


The value of T.value is used in place of L.in Simulating the evaluation of inherited attributes 

. The scheme works only if grammar allows position of attribute to be predicted.

. Consider the grammar 

	S [image: image821.png]


aAC 
	Ci = A s 

	S [image: image822.png]


bABC 
	Ci = A s 

	C [image: image823.png]


c 
	Cs = g(Ci ) 


. C inherits A s 

. there may or may not be a B between A and C on the stack when reduction by rule C [image: image824.png]


c takes place 

. When reduction by C[image: image825.png]


 c is performed the value of C i is either in [top- 1] or [top-2] 

Reaching into the parser stack for an attribute value works only if grammar allows position of attribute to be predicted. As an instance where we cannot predict the position, consider the grammar given above. C inherits A.s by a copy rule. Note that there may or may not be a B between A and C on the stack when reduction by rule C -> c takes place. When reduction by C -> c is performed the value of C.i is either in [top-1] or [top-2], but it is not clear which case applies. 
Simulating the evaluation . 

. Insert a marker M just before C in the second rule and change rules to 

	S [image: image826.png]


aAC 
	Ci = As 

	S [image: image827.png]


bABMC 
	Mi = As ; Ci = Ms 

	C [image: image828.png]


c 
	C s = g(Ci ) 

	M [image: image829.png]


ε 
	M s = Mi 


. When production M [image: image830.png]


ε is applied we have M s = Mi = A s 

. Therefore value of C i is always at [top-1] 

If we insert a marker M just before C in the second rule and change rules to those given above. When production M -> ε is applied, a copy rule M.s = M.i ensures that we have M.s = M.i = A.s just before the part of the stack used for parsing the subtree for C. Therefore, value of C.i is always in val[top -1] when C -> c is applied, independent of first or second productions in transformed scheme being applied. 
Simulating the evaluation. 

. Markers can also be used to simulate rules that are not copy rules 
	S [image: image831.png]


aAC 
	Ci = f(A.s) 

	. using a marker 
	  

	S [image: image832.png]


aANC 
	Ni = A s ; Ci = Ns 

	N [image: image833.png]


ε 
	N s = f(N i ) 


Markers can also be used to simulate rules that are not copy rules. For example, consider 

	PRODUCTION 
	SEMANTIC RULES 

	S -> aAC 
	C.i = f(A.s) 


The rule defining C.i is not a copy rule, so the value of C.i is not already in the stack. To solve this problem this scheme is transformed into the following scheme, using a Marker 

	PRODUCTION 
	SEMANTIC RULES 

	S -> aANC 
	N.i = A.s; C.i = N.s 

	N -> ε 
	N.s = f(N.i) 


N inherits A.s by a copy rule. Its synthesized attribute N.s is set to f(A.s); then C.i inherits this value using a copy rule. When we reduce by N - > ε , we find the value of N.i in the place for A.s, i.e., in val[top - 1]. When we reduce by S -> aANC, we get the value of C.i in the place for N.s, i.e., in val [top - 1]. 
General algorithm 

. Algorithm : Bottom up parsing and translation with inherited attributes

. Inpu t: L attributed definitions

. Output : A bottom up parser

. Assume every non terminal has one inherited attribute and every grammar symbol has a synthesized attribute

. For every production A [image: image834.png]


X 1 . X n introduce n markers M 1 ..Mn and replace the production by 

A [image: image835.png]


M 1 X 1 ... M n X n 

M1 . M n [image: image836.png]


ε 

. Synthesized attribute Xj ,s goes into the value entry of X j 

. Inherited attribute Xj,i goes into the value entry of M j 

General Algorithm for bottom-up parsing and translation with inherited attributes Input. An L-attributed definition with an underlying LL(1) grammar. Output: A bottom up parser that computes the values of all attributes on its parsing stack. Method: Assume every nonterminal A has one inherited attribute, A.i and every grammar symbol X has a synthesized attribute, X.s. For every production A -> X1.Xn introduce n markers M1.Mn and replace the production by A -> M1X1.MnXn. The synthesized attribute Xj.s goes into the value entry of Xj and inherited attribute Xj.i goes into the value entry of Mj . 
Algorithm . 

. If the reduction is to a marker M j and the marker belongs to a production 

A [image: image837.png]


M1 X1 . Mn X n then 

Ai is in position top-2j+2 

X 1.i is in position top-2j+3

X1.s is in position top-2j+4 

. If reduction is to a non terminal A by production A [image: image838.png]


M 1 X 1 . M n Xn then compute A s and push on the stack 

If the reduction is to a marker Mj and the marker belongs to a production A -> M1X1.MnXn then A.i is in position top-2j+2, X1.i is in position top-2j+3 and X1.s is in position top-2j+4. If reduction is to a non-terminal A by production A -> M1X1.MnXn, then compute A.s and push on the stack.
This algorithm is valid only if the input grammar is LL(1), or else we might not be sure that we were reducing to one particular marker non- terminal, and thus could not locate the proper attributes, or even know what formula to apply in general. To reduce the number of markers, we apply the following simplifications: 
(a) If Xj has no inherited attribute, we need not use marker Mj and we incorporate the expected positions for the attributes on the stack accordingly.
(b) If X1->i exists, but is computed by a copy rule X1->i A.i, then we can omit M1, since A.i will already be located just below X1 on the stack, and this value can serve for X.i as well. 
Space for attributes at compile time 

. Lifetime of an attribute begins when it is first computed

. Lifetime of an attribute ends when all the attributes depending on it, have been computed 

. Space can be conserved by assigning space for an attribute only during its lifetime 

Since a large number of attributes may need to be evaluated at the compile time, therefore it is important to study the computation of attributes during runtime so as to optimize the usage of memory during the semantic analysis phase of compilation. The attributes in a grammar may not be necessarily evaluated in depth first order. In general, 

. The lifetime of an attribute begins when it is first computed

. The lifetime of an attribute ends when all the attributes depending on it have been computed.

Therefore, we can conserve space by allocating space to an attribute only during its lifetime 
Example: Consider following definition 
	D [image: image839.png]


T L 
	L.in := T.type 

	T [image: image840.png]


real 
	T.type := real 

	T [image: image841.png]


int 
	T.type := int 

	L [image: image842.png]


L1 ,I 
	L 1 .in :=L.in; I.in=L.in 

	L [image: image843.png]


I 
	I.in = L.in 

	I [image: image844.png]


I 1 [num] 
	I1 .in=array(numeral, I.in) 

	I [image: image845.png]


id 
	addtype(id.entry,I.in) 


As an example, consider the attributed grammar given in the slide. We will consider the string int x[3], y[5]. The parse tree and dependency graph for this expression can be seen in the next Slide.

Consider string int x[3], y[5] its parse tree and dependence graph 

[image: image846.png]



After topological sorting, the dependency graph for this expression looks like as shown in the above figure. It will help us in knowing the order in which the resources are allocated in this case. This numbering here is the topological order in which the attributes are calculated. 

Resource requirement 
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If we allocate resources during the compile time using the above information, then the resources will be allocated in the order shown above ( just below the arrow diagram showing the dependencies). Note that where R3 is written it means that R1 and R2 are already in use. Note how we have used the information from the topologically sorted graph to allocate the resources. We could thus evaluate 9 attributes by just allocating 3 resources. For example, after evaluating node 1, we reused the resource held by 1, because 1 is not needed any longer by any other node for its attributes evaluation. 

However , we can do even better : Note that, most of the time, the attributes are just copied from one node to another without any modification. For attributes that are just copied, we need not allocate any extra resource ( Register), we can simply use the re-source of the node whose attribute is being copied. Thus, in the previous example, the attribute evaluation can be done using just 2 Resources (Registers), as shown in the lowermost figure. 

Space for attributes at compiler Construction time 

. Attributes can be held on a single stack. However, lot of attributes are copies of other attributes

. For a rule like A [image: image848.png]


B C stack grows up to a height of five (assuming each symbol has one inherited and one synthesized attribute)

. Just before reduction by the rule A [image: image849.png]


B C the stack contains I(A) I(B) S(B) I (C) S(C)

. After reduction the stack contains I(A) S(A) 

Now we face the issue of allocating space for evaluation of attributes at compile time. We can use a single stack to hold all the attributes. However, as we have seen earlier, many of the attributes are simply a copy of previously generated attribute. 

Example

. Consider rule B [image: image850.png]


B1 B2 with inherited attribute ps and synthesized attribute ht

. The parse tree for this string and a snapshot of the stack at each node appears as 
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For example, consider the following rule that was discussed in the context of a type-setting system 

	B -> B1B2 
	B1.ps = B.ps 

	 
	B2.ps = B.ps 

	 
	B.ht = max(B1.ht;B2.ht) 


This slide gives the snapshot of the stack as each node appears. Note that in this case, the stack size may increase by as much as 5. This is because we have to push B1:ps and B2:ps on to the stack, even though there are simply copies of B:ps. 

Example: However, if different stacks are maintained for the inherited and synthesized attributes, the stacks will normally be smaller 
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The space used can be reduced by using different stacks for synthesized and inherited attributes. In the above example, if we use such a scheme, then less space is used by the two stacks as a whole. Now B.ps need not be pushed on to the stack for the inherited attribute of B1 and B2 since it is on the top of the synthesized attribute stack, and can be directly accessed from this stack. This completes the discussion on attribute generation and semantic analysis. Next, we discuss type systems used by different programming languages.

Type system 

. A type is a set of values

. Certain operations are legal for values of each type

. A language's type system specifies which operations are valid for a type

. The aim of type checking is to ensure that operations are used on the variable/expressions of the correct types

Type checking is an important aspect of semantic analysis. A type is a set of values. Certain operations are valid for values of each type. For example, consider the type integer in Pascal. The operation mod can only be applied to values of type integer, and to no other types. A language's type specifies which operations are valid for values of each type. A type checker verifies that the type of a construct matches which is expected by its context, and ensures that correct operations are applied to the values of each type. 
Type systems

. Languages can be divided into three categories with respect to the type: 
- "untyped" 

. No type checking needs to be done 
. Assembly languages 
- Statically typed 

. All type checking is done at compile time 
. Algol class of languages
. Also, called strongly typed 
- Dynamically typed 
. Type checking is done at run time
. Mostly functional languages like Lisp, Scheme etc. 
Languages can be classified into three main categories depending upon the type system they employ. These are : 

Untyped: In these languages, there are no explicit types. Assembly languages fall into the category of these languages. 

Statically typed : In these type of languages, all the type checking is done at the compile time only. Because of this, these languages are also called Strongly typed languages. Example of languages in this category are Algol class of languages.

Dynamically typed : In dynamically typed languages, the type checking is done at the runtime. Usually, functional programming languages like Lisp, Scheme etc. have dynamic type checking. 

In this course, our main focus will be on statically typed languages, particularly imperative programming languages. 
Type systems . 

. Static typing

- Catches most common programming errors at compile time 

- Avoids runtime overhead 

- May be restrictive in some situations

- Rapid prototyping may be difficult

. Most code is written using static types languages 

. In fact, most people insist that code be strongly type checked at compile time even if language is not strongly typed (use of Lint for C code, code compliance checkers) 

There are several advantages of static typing:

. Most of the error in the program is caught at the compile time only.

. Since type checking at run time is not involved, therefore runtime type checking overhead is avoided. 
Most of the programming is done generally in statically typed languages because of above mentioned advantages. However, there are also certain drawbacks of static typing:

. It can be restrictive in certain situations. For example, in Pascal, all the identifiers are identified by a unique name. This can give rise to confusion in many cases.

. Rapid prototyping of statically typed programs can be difficult, since one has to ensure that the types are correct when prototyping in order that the code compiles 
Disadvantages notwithstanding, most programmers emphasize that the code should be strongly type checked at compile time even if the language is not strongly typed. For example, Lint can be used to strong type checking of C programs. 
Type System 

1. A type system is a collection of rules for assigning type expressions to various parts of a program

2. Different type systems may be used by different compilers for the same language

3. In Pascal type of an array includes the index set. Therefore, a function with an array parameter can only be applied to arrays with that index set 

4. Many Pascal compilers allow index set to be left unspecified when an array is passed as a parameter 

A type system is a collection of rules for assigning type expressions to various parts of a program. The implementation of a type system is a type checker. Different compilers or processors of the same language may use different type systems. For example, in the language definition of Pascal, the type of an array includes the index set of an array. This implies that a function with an array argument can only be applied to arrays with that particular index set. Many Pascal compiler implementations allow the index set to be left unspecified when an array is passed as an argument. Thus the type system used by these compilers differs from that specified in the language definition. Similarly, in the UNIX system, it is possible to use a more detailed type system than that used by the C compiler; it is done using the lint command.

Type system and type checking

. If both the operands of arithmetic operators +, -, x are integers then the result is of type integer 

. The result of unary & operator is a pointer to the object referred to by the operand. 

- If the type of operand is X the type of result is pointer to X 
. Basic types: integer, char, float, boolean

. Sub range type : 1 . 100 

. Enumerated type: (violet, indigo, red)

. Constructed type: array, record, pointers, functions 

In Pascal, types are classified under: 
1. Basic types: These are atomic types with no internal structure. They include the types boolean, character, integer and real.
2. Sub-range types: A sub-range type defines a range of values within the range of another type. For example, type A = 1..10; B = 100..1000; U = 'A'..'Z';
3. Enumerated types: An enumerated type is defined by listing all of the possible values for the type. For example: type Colour = (Red, Yellow, Green); Country = (NZ, Aus, SL, WI, Pak, Ind, SA, Ken, Zim, Eng); Both the sub-range and enumerated types can be treated as basic types.
4. Constructed types: A constructed type is constructed from basic types and other basic types. Examples of constructed types are arrays, records and sets. Additionally, pointers and functions can also be treated as constructed types. 

Type expression

. Type of a language construct is denoted by a type expression

. It is either a basic type or it is formed by applying operators called type constructor to other type expressions 

. A type constructor applied to a type expression is a type expression

. A basic type is type expression 

- type error : error during type checking 

- void : no type value 

The type of a language construct is denoted by a type expression. A type expression is either a basic type or is formed by applying an operator called a type constructor to other type expressions. Formally, a type expression is recursively defined as:
1. A basic type is a type expression. Among the basic types are boolean , char , integer , and real . A special basic type, type_error , is used to signal an error during type checking. Another special basic type is void which denotes "the absence of a value" and is used to check statements.
2. Since type expressions may be named, a type name is a type expression.
3. The result of applying a type constructor to a type expression is a type expression.
4. Type expressions may contain variables whose values are type expressions themselves. 
Type Constructors 

. Array: if T is a type expression then array(I, T) is a type expression denoting the type of an array with elements of type T and index set I 

var A: array [1 .. 10] of integer 

A has type expression array(1 .. 10, integer) 

. Product: if T1 and T2 are type expressions then their Cartesian product T1 x T2 is a type expression 

Type constructors are used to construct type expressions from other type expressions. The following are instances of type constructors: 

Arrays : If T is a type expression and I is a range of integers, then array ( I , T ) is the type expression denoting the type of array with elements of type T and index set I. For example, the Pascal declaration, var A: array[1 .. 10] of integer; associates the type expression array ( 1..10, integer ) with A.
Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2 is also a type expression. 
Type constructors . 

Records : it applies to a tuple formed from field names and field types. Consider the declaration 

type row = record 

addr : integer;

lexeme : array [1 .. 15] of char

end; 

var table: array [1 .. 10] of row; 

The type row has type expression 

record ((addr x integer) x (lexeme x array(1 .. 15, char))) 

and type expression of table is array(1 .. 10, row) 

Records : A record type constructor is applied to a tuple formed from field names and field types. For example, the declaration 

type row = record 
addr: integer;
lexeme: array[1 .. 15] of char
end; 
declares the type name row representing the type expression 
record ((address X integer ) X (lexeme X array (1..15, char ))) 
Note: Including the field names in the type expression allows us to define another record type with the same fields but with different names without being forced to equate the two. 
Type constructors . 

. Pointer : if T is a type expression then pointer( T ) is a type expression denoting type pointer to an object of type T
. Function : function maps domain set to range set. It is denoted by type expression D [image: image853.png]


R 
- For example mod has type expression int x int [image: image854.png]


int 

- function f( a, b: char ) : ^ integer; is denoted by 

char x char [image: image855.png]


pointer( integer ) 

Pointers: If T is a type expression, then pointer ( T ) is a type expression denoting the type "pointer to an object of type T". For example, in Pascal, the declaration
var p: row 
declares variable p to have type pointer( row ). 
Functions
Analogous to mathematical functions, functions in programming languages may be defined as mapping a domain type D to a range type R. The type of such a function is denoted by the type expression D R. For example, the built-in function mod of Pascal has domain type int X int, and range type int . Thus we say mod has the type: 
int x int -> int 

As another example, according to the Pascal declaration
function f(a, b: char) : integer; 

Here the type of f is denoted by the type expression 
char X char pointer( integer )

Specifications of a type checker 
. Consider a language which consists of a sequence of declarations followed by a single expression 
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D ; E 
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D ; D | id : T 
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char | integer | array [ num] of T | ^ T 

E [image: image859.png]


literal | num | E mod E | E [E] | E ^ 

A type checker is a translation scheme that synthesizes the type of each expression from the types of its sub-expressions. Consider the above given grammar that generates programs consisting of a sequence of declarations D followed by a single expression E. 

Specifications of a type checker. 

. A program generated by this grammar is

key : integer;

key mod 1999 

. Assume following: 

- basic types are char, int, type-error 

- all arrays start at 1

- array[256] of char has type expression array(1 .. 256, char) 

A program generated by this grammar is:
key : integer ;
key mod 1999 
Assumptions: 
1. The language has three basic types: char , int and type-error 
2. For simplicity, all arrays start at 1. For example, the declaration array[256] of char leads to the type expression array ( 1.. 256, char). 
Rules for Symbol Table entry 
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id : T 
	addtype(id.entry, T.type) 
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char 
	T.type = char 
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integer 
	T.type = int 
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^T1 
	T.type = pointer(T1 .type) 
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array [ num ] of T 1 
	T.type = array(1..num, T 1 .type) 


Type checking of functions 
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E1 ( E2 ) 
	E. type = if E2 .type == s and 

E1 .type == s [image: image866.png]


t 

then t 

else type-error 

	 
	

	 
	

	 
	


The rules for the symbol table entry are specified above. These are basically the way in which the symbol table entries corresponding to the productions are done. 

Type checking of functions 
The production E -> E ( E ) where an expression is the application of one expression to another can be used to represent the application of a function to an argument. The rule for checking the type of a function application is E -> E1 ( E2 ) { E.type := if E2.type == s and E1. type == s -> t then t else type_error }This rule says that in an expression formed by applying E1 to E2, the type of E1 must be a function s -> t from the type s of E2 to some range type t ; the type of E1 ( E2 ) is t . The above rule can be generalized to functions with more than one argument byconstructing a product type consisting of the arguments. Thus n arguments of type T1 , T2 ... Tn can be viewed as a single argument of the type T1 X T2 ... X Tn . 
For example, 
root : ( real real) X real real declares a function root that takes a function from reals to reals and a real as arguments and returns a real. The Pascal-like syntax for this declaration is function root ( function f (real) : real; x: real ) : real 
Type checking for expressions 
	E [image: image867.png]


literal 
	E.type = char 
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num 
	E.type = integer 
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id 
	E.type = lookup(id.entry) 
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E1 mod E2 
	E.type = if E 1 .type == integer and 

	  
	E2 .type==integer 

	 
	then integer 

	 
	else type_error 

	E [image: image871.png]


E1 [E2 ] 
	E.type = if E2 .type==integer and 

	 
	E1 .type==array(s,t) 

	 
	then t 

	 
	else type_error 

	E [image: image872.png]


E1 ^ 
	E.type = if E1 .type==pointer(t) 

	 
	then t 

	 
	else type_error 


The following rules are used to type-check expressions, where the synthesized attribute type for E gives the type expression assigned by the type system to the expression generated by E. 

The following semantic rules say that constants represented by the tokens literal and num have type char and integer , respectively: 

E -> literal { E.type := char }

E -> num { E.type := integer } 

. The function lookup ( e ) is used to fetch the type saved in the symbol-table entry pointed to by e. When an identifier appears in an expression, its declared type is fetched and assigned to the attribute type: 

E -> id { E.type := lookup ( id . entry ) } 

. According to the following rule, the expression formed by applying the mod operator to two sub-expressions of type integer has type integer ; otherwise, its type is type_error . 

E -> E1 mod E2 { E.type := if E1.type == integer and E2.type == integer then integer else type_error }

In an array reference E1 [ E2 ], the index expression E2 must have type integer , inwhich case the result is the element type t obtained from the type array ( s, t ) of E1. 

E -> E1 [ E2 ] { E.type := if E2.type == integer and E1.type == array ( s, t ) then t else type_error } 

. Within expressions, the postfix operator yields the object pointed to by its operand.The type of E is the type t of the object pointed to by the pointer E: 

E E1 { E.type := if E1.type == pointer ( t ) then t else type_error } 
Type checking for statements

. Statements typically do not have values. Special basic type void can be assigned to them. 
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id := E 
	S.Type = if id.type == E.type 

	  
	then void 

	  
	else type_error 
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if E then S1 
	S.Type = if E.type == boolean 

	  
	then S1.type 

	 
	else type_error 
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while E do S1 
	S.Type = if E.type == boolean 

	 
	then S1.type 

	 
	else type_error 

	S [image: image876.png]


S1 ; S2 
	S.Type = if S1.type == void 

	 
	and S2.type == void 

	  
	then void 

	 
	else type_error 


Since statements do not have values, the special basic type void is assigned to them, but if an error is detected within a statement, the type assigned to the statement is type_error . The statements considered below are assignment, conditional, and while statements. Sequences of statements are separated by semi-colons. The productions given below can be combined with those given before if we change the production for a complete program to P -> D; S. The program now consists of declarations followed by statements. 

Rules for checking statements are given below. 

1. S id := E { S.type := if id . type == E.type then void else type_error } 

This rule checks that the left and right sides of an assignment statement have the same type.

2. S if E then S1 { S.type := if E.type == boolean then S1.type else type_error } 

This rule specifies that the expressions in an if -then statement must have the type boolean .

3. S while E do S1 { S.type := if E.type == boolean then S1.type else type_error } 

This rule specifies that the expression in a while statement must have the type boolean . 

4. S S1; S2 { S.type := if S1.type == void and S2.type == void then void else type_error } 

Errors are propagated by this last rule because a sequence of statements has type void only if each sub-statement has type void . 

Equivalence of Type expression 

. Structural equivalence: Two type expressions are equivalent if

. either these are same basic types

. or these are formed by applying same constructor to equivalent types

. Name equivalence : types can be given names 

. Two type expressions are equivalent if they have the same name 

The checking rules enumerated above have the form "if two type expressions are equal then return a certain type else return type_error ". Thus, it is often required to make the decision whether two expressions are equivalent. In particular, the case where names are given to type expressions and the names are then used in subsequent type expressions produces ambiguities. There are two distinct notions of equivalence of type-expressions: 

Structural equivalence: Two expressions are structurally equivalent if they are either the same basic type, or are formed by applying the same constructor to structurally equivalent types. 

Name equivalence: In this case, each type name is viewed as a distinct type, and equivalence of two type-expressions is based on their having identical type names. When names are not allowed in type expressions, two type-expressions are structurally equivalent only if they are identical. If names are allowed, two type expressions are name-equivalent only if they are identical, but are structurally independent if they represent two structurally equivalent expressions when all names have been substituted out by the type expressions they define. 

Function to test structural equivalence 
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Based on the definition of Structural equivalence we can write a function which checks for the structural equivalence of two types for a simple language. 

Efficient implementation

. Bit vectors can be used to used to represent type expressions. Refer to: A Tour Through the Portable C Compiler: S. C. Johnson, 1979. 
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This representation saves space and keeps track of constructors 

How to efficiently implement Structural type checking? One Possible Approach is decided in the slide which maintains a bit vector for each type expression. Drawbacks: First, notice that each Type Constructor is described as a unary operator/function. For example type contractor "function(t)" just says that the return type of the function is of type t. 

The types or the number of arguments of the function are kept some where else, i.e. not a part of the type system. If the bit patterns for two types are same then the two types are said to be structurally same. Thus the two functions 

a) char getFirst(char *string) // returns the first character of the string

b) char getPosition(char *string, int p) // returns the p'th character of the string will be same because they are both defined by function(char), i.e., the same bit vector. 

Similar is the case with Array construct where the index range is not specified in the construct. Two structurally equivalent types (defined by the function in prev. slide) are guaranteed to have same bit vector representation. However two structurally different types can have the same bit vector representation. Thus this type system is a weaker system. 

Checking name equivalence

. Consider following declarations 

type link = ^cell;

var next, last : link;

p, q, r : ^cell; 

. Do the variables next, last, p, q and r have identical types ? 

. Type expressions have names and names appear in type expressions. 

. Name equivalence views each type name as a distinct type 

. Type expressions are name equivalent iff they are identical 

Name equivalence . 

	variable 
	type expression 

	next 
	link 

	last 
	link 

	p 
	pointer(cell) 

	q 
	pointer(cell) 

	r 
	pointer(cell) 


. Under name equivalence next = last and p = q = r , however, next≠ p 

. Under structural equivalence all the variables are of the same type 

. Some compilers allow type expressions to have names.

. However, some compilers assign implicit type names to each declared identifier in the list of variables.

. Consider 

	type link 
	= ^ cell; 

	var next 
	: link; 

	last 
	: link; 

	p : 
	^ cell; 

	q : 
	^ cell; 

	r : 
	^ cell; 


. In this case type expression of p, q and r are given different names and therefore, those are not of the same type 

The code is similar to 

type link = ^ cell 

np = ^ cell; 

nq = ^ cell; 

nr = ^ cell; 

var next : link; 

last : link; 

p : np; 

q : nq; 

r : nr; 

Name Equivalence: Some languages allow named types by the type construct or some thing similar. This situation can be modeled by allowing type expressions to have names. Name equivalence views each name to be of distinct type. This type system is a stronger type system because structurally different types are guaranteed to have different names. However structurally same types can have different names as seen in the example. 

Having a Name Equivalent type system has its own advantages. For example, one may operate an account having multiple currency types each with an integer denomination. Thus his data will look like: 

int rupees;

int dollars;

int euro;

. . . 

Now consider what happens when we accidentally add dollar with rupee using the normal "+" operator. The Structurally Equivalent type system will allow this as both the operands are integers. 

In a Name Equivalent system we define types for each currency. For example, 

Type t_rupee = int;

Type t_dollar = int;

Type t_eur0 = int; 

Now the data looks like this:

t_rupee rupee;

t_dollar dollar;

t_euro euro; 

Now we can specify special operators/functions to add a rupee type and a dollar type and avoid error like the above. 

t_rupee addDollarToRupee(t_rupee rs, t_dollar ds)

{ 

 return(rs + 40*ds); //Assuming the exchange rate is 40 rs/dollar.

} 

Later when we study operator overloading we will see how "+" can be overloaded to add dollars and rupees. 

Cycles in representation of types

. Data structures like linked lists are defined recursively

. Implemented through structures which contain pointers to structures

. Consider following code 

type link = ^ cell; 

cell = record 

info : integer; 

next : link 

end; 

. The type name cell is defined in terms of link and link is defined in terms of cell (recursive definitions) 

. Recursively defined type names can be substituted by definitions

. However, it introduces cycles into the type graph 
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. C uses structural equivalence for all types except records 

. It uses the acyclic structure of the type graph

. Type names must be declared before they are used 

- However, allow pointers to undeclared record types

- All potential cycles are due to pointers to records 

. Name of a record is part of its type 

- Testing for structural equivalence stops when a record constructor is reached 

As we had seen earlier the definition of a structural type is recursive in nature, so it is likely that there is a cycle in the definition of a type as in the first example. This is generally the case with recursive data structures like Trees, Linked Lists etc. 

Substituting the definitions in the type diagram will lead to cycles as seen in second example which is undesirable. Languages like C avoid cycles by using Structural equivalence for all types except records thereby using the acyclic representation. Records are same if they are name equivalent. Thus the row records, 

struct t_rupee

{ 

int val;

}; 

struct t_dollar

{ 

int val;

}; 

though structurally same will be of different types in C as records are checked by name equivalence and these two are of different names. Thus the following code fragment is not consistent according to the grammar. 

/*  A code fragment demonstrating the name equivalence in C. */ 

struct t_dollar dol;

struct t_rupeee rs; 

dol.val = 10; 

rs = dol;// error "incompatible types" 

Type conversion

. Consider expression like x + i where x is of type real and i is of type integer 

. Internal representations of integers and reals are different in a computer

- different machine instructions are used for operations on integers and reals 

. The compiler has to convert both the operands to the same type 

. Language definition specifies what conversions are necessary. 

. Usually conversion is to the type of the left hand side

. Type checker is used to insert conversion operations: x + i _ x real+ inttoreal(i) 

. Type conversion is called implicit/coercion if done by compiler. 

. It is limited to the situations where no information is lost

. Conversions are explicit if programmer has to write something to cause conversion 

Type checking for expressions 
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num 
	E.type = int 
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num.num 
	E.type = real 
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id 
	E.type = lookup( id.entry 
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E 1 op E 2 
	E.type = if E 1 .type == int && E 2 .type == int 

	 
	then int 

	 
	elseif E 1 .type == int && E 2 .type == real 

	 
	then real 

	 
	elseif E 1 .type == real && E 2 .type == int 

	 
	then real 

	 
	elseif E 1 .type == real && E 2 .type== real 

	 
	then real 

	 
	 


The language has to perform implicit type conversions where ever it is possible. As a thumb rule compiler performs a type conversion if it doesn't lead to any loss of information. For example, int can be converted into real, single precision to a double precision etc. under this rule. Compilers also support explicit type conversions. This conversion translates into many cases in the type assignment of a Left Hand side of a expression. For example, x = y + z ; Then the type of x depends on the type of y, z as described above. 

Overloaded functions and operators 

. Overloaded symbol has different meaning depending upon the context

. In maths + is overloaded; used for integer, real, complex, matrices 

. In Ada () is overloaded; used for array, function call, type conversion

. Overloading is resolved when a unique meaning for an occurrence of a symbol is determined 

The compiler must determine which overloaded function to use in a particular context. It looks at the number and type of arguments passed. Overloading is resolved when a unique meaning for an occurrence of a symbol is determined. Compiler does NOT look at function return types to resolve choice. It is illegal for two or more functions to differ only by return type.
Overloaded functions and operators . 

. Suppose only possible type for 2, 3 and 5 is integer and Z is a complex variable 

- then 3*5 is either integer or complex depending upon the context

- in 2*(3*5) 

3*5 is integer because 2 is integer 

- in Z*(3*5) 

3*5 is complex because Z is complex 

Here you can see that the compiler decides version of an overloaded operator to use from the types of the parameters passed to it. In 2*(3*5), 3*5 is integer because 2 is integer. And in Z*(3*5), 3*5 is complex because Z is complex. Hence the resolution depends on the context in which the operator is being used. 

Type resolution

. Try all possible types of each overloaded function (possible but brute force method!)
. Keep track of all possible types 

. Discard invalid possibilities 

. At the end, check if there is a single unique type

. Overloading can be resolved in two passes: 

- Bottom up: compute set of all possible types for each expression 

- Top down: narrow set of possible types based on what could be used in an expression 

Now the question arises : how should the type be resolved? One possible brute force method is to try all possible types of each overloaded function. A better way to do this is to keep a track of all possible types and discard invalid possibilities. At the end if the compiler finds one unique type left then the ambiguity is resolved. Overloading can be resolved in two passes which are described above. You will have a look at them in the next slide. 

Determining set of possible types 

[image: image884.png]ESE E'types = Etypes
E->id E.types = lookup (id)

E>E(E) E.types = {t| there exists an s in E,.types
and s>tis in Ey.types)

N

M E

) exe>e) ©




When E is reduced to 3 or 5, lookup(id) returns i (integer) in both cases. Then * has three possible types: 
ixi [image: image885.png]
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c 
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c 
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E 1 (E 2 ) is used on * where * is E 1 and 3,5 are E 2 . Since both 3,5 are of the type i, E.types in this case can be either i or c. 
Narrowing the set of possible types 

. Ada requires a complete expression to have a unique type
. Given a unique type from the context we can narrow down the type choices for each expression

. If this process does not result in a unique type for each sub expression then a type error is declared for the expression 

Ada requires every expression to have one unique type. Hence when narrowing down the types in top down pass we make use of the fact that each expression has only one unique type. Refer to the next page for details. 
	Narrowing the set of possible types
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E 

E'.types = E.types 

 

E.unique = if E'.types=={t} then t 

 

else type_error 
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id 

E.types = lookup(id) 
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E1 (E2 ) 

E.types = { t | there exists an s in E2 .types 

 

and s [image: image892.png]


t is in E1 .types} 

 

t = E.unique 

 

S = {s | s ε E2.types and (s [image: image893.png]


t)ε E1.types} 

 

E 2 .unique = if S=={s} then s else type_error 

 

E1 .unique = if S=={s} then s [image: image894.png]


t else type_error 

In E' [image: image895.png]


E, it is checked whether we have finally narrowed down only one type. If not then type error is generated since Ada does not tolerate any type ambiguity in complete expressions.

In E [image: image896.png]


E1 (E 2 ), you can see that it is made sure that E1 and E2 have only one unique type and they are such that they lead to only one unique type for E. 


Polymorphic functions 

. Functions can be invoked with arguments of different types
. Built in operators for indexing arrays, applying functions, and manipulating pointers are usually polymorphic

. Extend type expressions to include expressions with type variables

. Facilitate the implementation of algorithms that manipulate data structures (regardless of types of elements)

- Determine length of the list without knowing types of the elements 

In some circumstances, it is useful to write a function that can accept any data type for one of its parameters. Polymorphic functions facilitate the implementation of algorithms that manipulate data structures (regardless of types of elements). 
Polymorphic functions . 

. Strongly typed languages can make programming very tedious
. Consider identity function written in a language like Pascal function identity (x: integer): integer; 
. This function is the identity on integers identity: int [image: image897.png]


int
. In Pascal types must be explicitly declared 
. If we want to write identity function on char then we must write function identity (x: char): char;
. This is the same code; only types have changed. However, in Pascal a new identity function must be written for each type 
The above example tells us that how tedious it can be to code in strongly typed languages. Polymorphism gives the user flexibility in coding. The user can use just one function declaration to handle multiple input types. Otherwise (s)he will have to write a separate function for each input type as in Pascal. 
Type variables 

. Variables can be used in type expressions to represent unknown types 
. Important use: check consistent use of an identifier in a language that does not require identifiers to be declared
. An inconsistent use is reported as an error
. If the variable is always used as of the same type then the use is consistent and has lead to type inference
. Type inference: determine the type of a variable/language construct from the way it is used 
- Infer type of a function from its body 
Type inference is the problem of determining the type of a statement from its body:
. Similar to type checking and coercion. 
. But inference can be much more expressive when type variables can be used. 
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In the above example p is taken as a type variable. Later on we see that p^ is used. Since operator ^ takes pointer to an object and returns the object, this implies that p must be pointer to an object of some unknown type a . Thus, the type expression of the function deref is pointer( a ) [image: image899.png]


a for any type of object a . Similarly, if we had an identity function in some weakly typed language then its type would have been a [image: image900.png]


a , for any type of object a . 
Reading assignment 
Rest of Section 6.6 and Section 6.7 of Aho, Sethi and Ullman 

Runtime System 
Runtime Environment 

. Relationship between names and data objects (of target machine)

. Allocation & de-allocation is managed by run time support package

. Each execution of a procedure is an activation of the procedure. If procedure is recursive, several activations may be alive at the same time.

. If a and b are activations of two procedures then their lifetime is either non overlapping or nested

. A procedure is recursive if activation can begin before an earlier activation of the same procedure has ended 

When one starts running the program then some data is only available at run time, so we must relate the static source text of a program to the actions that must occur at run time to implement the program. We need to understand the relationship between names and data objects ( address and value ). Allocation & de-allocation is managed by run time support package which consists of routines loaded with the generated target code. Each execution of a procedure is referred to as an activation of the procedure. If the procedure is recursive, several of its activations may be alive at the same time. We will be dealing with activations of two procedures whose lifetimes are either non overlapping or nested. That is, if a and b are procedure activations and b is entered before a is left, then control must leave b before leaves a. We will not be dealing with partially overlapping activations (threads). A procedure is recursive if a new activation can begin before an earlier activation of the same procedure has ended. 

Procedure 

. A procedure definition is a declaration that associates an identifier with a statement (procedure body)

. When a procedure name appears in an executable statement, it is called at that point

. Formal parameters are the one that appear in declaration. Actual Parameters are the one that appear in when a procedure is called .

A procedure definition is a declaration that associates an identifier with a statement. The identifier is the procedure name and the statement is the procedure body. Procedures that return value are also referred as procedures so a complete program is also a procedure. When a procedure name appears within an executable statement, the procedure is said to be called at that point. Basically, this procedure call executes the procedure body. The identifiers appearing in the procedure definition are called the formal parameters (or just formals) of the procedure. Arguments, known as actual arguments may be passed to a called procedure, they are substituted for the formal parameters in the procedure body. 

Activation tree 

. Control flows sequentially

. Execution of a procedure starts at the beginning of body

. It returns control to place where procedure was called from

. A tree can be used, called an activation tree, to depict the way control enters and leaves activations

. The root represents the activation of main program

. Each node represents an activation of procedure 

. The node a is parent of b if control flows from a to b 
. The node a is to the left of node b if lifetime of a occurs before b 
In our discussion we will make the following assumptions about the flow of control among procedures during the execution of the program:

1. Control flows sequentially: that is, the execution of a program consists of a sequence of steps and the control does not change arbitrarily but only on explicit calls. 

2. Each execution of a procedure starts at the beginning of the procedure body and eventually returns control to the point immediately following the place where the procedure was called. A tree like data structure can be used to depict the way control enters and leaves activation this tree is called an activation tree.

3. The root represents the activation of the main program.

4. Each node represents an activation of a procedure.

5. The node for a is the parent of the node for b if and only if control flows from activation a to b.

6. The node for a is to the left of the node for b if and only if the lifetime of a occurs before the lifetime of b. 

Example 
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In this example we are only concerned about the declarations and the variables and so the body of the procedures is not mentioned. In the example it is assumed that the value retuned by partition (1,9) is 4. 
Activation Tree 
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The flow of control of the call quicksort(1,9) would be like 
Execution begins ..

enter readarray

exit readarray

enter quicksort(1,9) 

enter partition(1,9)

exit partition(1,9)

enter quicksort(1,3) 

exit quicksort(1,3)

enter quicksort(5,9) 

exit quicksort(5,9) 

exit quicksort(1,9) 

Execution terminates 

When the information is represented as an activation tree we get the tree as shown. 

Control stack 

. Flow of control in program corresponds to depth first traversal of activation tree

. Use a stack called control stack to keep track of live procedure activations

. Push the node when activation begins and pop the node when activation ends

. When the node n is at the top of the stack the stack contains the nodes along the path from n to the root 

The flow of control in a program corresponds to a depth first traversal of the activation tree that starts at the root, visits a node before its children, and recursively visits children at each node in a left to right fashion. A stack called control stack is used to keep track of live procedure activations. The idea is to push the node for an activation onto the control stack as the activation begins and to pop the node when the activation ends. Then the contents of the control stack are related to paths to the root of the activation tree. When node n is at the top of the control stack, the stack contains the nodes along the path from n to the root. If in the previous example, we consider the activation tree when the control reaches q(2,3), then at this point the control stack will contain the following nodes:

s, q(1,9), q(1,3), q(2,3)

following the path to the root. 

Scope of declaration 

. A declaration is a syntactic construct associating information with a name 

- Explicit declaration :Pascal (Algol class of languages) var i : integer

- Implicit declaration: Fortran i is assumed to be integer

. There may be independent declarations of same name in a program. 

. Scope rules determine which declaration applies to a name 

. Name binding 
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A declaration in a language is a syntactic construct associating information with a name. There can be two types of declarations 

. Explicit declaration : Pascal (Algol class of languages) e.g.- var i : integer.

. Implicit declaration: e.g.,- In Fortran the variable i is assumed to be integer unless declared. 
There may be independent declarations of the same name in different parts of a program. The portion of the program to which a declaration applies is called the scope of the declaration. An occurrence of a name in a procedure is said to be local to the procedure if it is in the scope of a declaration within the procedure, or else it is called nonlocal. Scope rules determine which declaration applies to a name. 
Storage organization 

 

	The runtime storage might be subdivided into 
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	- Target code 
	

	- Data objects 
	

	- Stack to keep track of procedure activation 
	

	- Heap to keep all other information 
	

	 
	


This kind of organization of run-time storage is used for languages such as Fortran, Pascal and C. The size of the generated target code, as well as that of some of the data objects, is known at compile time. Thus, these can be stored in statically determined areas in the memory. Pascal and C use the stack for procedure activations. Whenever a procedure is called, execution of an activation gets interrupted, and information about the machine state (like register values) is stored on the stack. When the called procedure returns, the interrupted activation can be restarted after restoring the saved machine state. The heap may be used to store dynamically allocated data objects, and also other stuff such as activation information (in the case of languages where an activation tree cannot be used to represent lifetimes). Both the stack and the heap change in size during program execution, so they cannot be allocated a fixed amount of space. Generally they start from opposite ends of the memory and can grow as required, towards each other, until the space available has filled up. 

Activation Record 

	. temporaries: used in expression evaluation 
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	. local data: field for local data 
	

	. saved machine status: holds info about machine status before procedure call 
	

	. access link : to access non local data 
	

	. control link : points to activation record of caller 
	

	. actual parameters: field to hold actual parameters 
	

	. returned value : field for holding value to be returned 
	

	 
	


The activation record is used to store the information required by a single procedure call. Not all the fields shown in the figure may be needed for all languages. The record structure can be modified as per the language/compiler requirements. For Pascal and C, the activation record is generally stored on the run-time stack during the period when the procedure is executing. Of the fields shown in the figure, access link and control link are optional (e.g. Fortran doesn't need access links). Also, actual parameters and return values are often stored in registers instead of the activation record, for greater efficiency. The activation record for a procedure call is generated by the compiler. Generally, all field sizes can be determined at compile time. However, this is not possible in the case of a procedure which has a local array whose size depends on a parameter. The strategies used for storage allocation in such cases will be discussed in the coming slides. 

Issues to be addressed 

. Can procedures be recursive?

. What happens to locals when procedures return from an activation?

. Can procedure refer to non local names?

. How to pass parameters?

. Can procedure be parameter?

. Can procedure be returned? 

. Can storage be dynamically allocated?

. Can storage be de-allocated? 

There are several issues that need to be looked at relating to procedure calls, and they are listed here. All of these are relevant to the design of the runtime system. For instance, the runtime system may have to be designed differently to support recursion. In some cases, local variables may need to be preserved after a procedure returns. Parameter passing may be carried out in multiple ways, such as call by value and call by reference. If storage is dynamically allocated, then a de-allocation mechanism (a garbage collector) may be required. The coming slides will look at these issues and their possible resolutions. 

Layout of local data 

. Assume byte is the smallest unit 

. Multi-byte objects are stored in consecutive bytes and given address of first byte

. The amount of storage needed is determined by its type

. Memory allocation is done as the declarations are processed

. Data may have to be aligned (in a word) padding is done to have alignment.

- Complier may pack the data so no padding is left 

- Additional instructions may be required to execute packed data 

We are assuming here that runtime storage is allocated in blocks of contiguous bytes. As mentioned, type determines the amount of space needed. Elementary types generally require an integral number of bytes. For aggregates like arrays or structures, enough memory is needed to store all their components. This memory is usually allocated contiguously for easy access. As declarations are examined, the space for local data is laid out. A count is kept of the number of allocated memory locations. From this count, a relative address for each local data object can be determined, with respect to some fixed starting point such as the beginning of the activation record. This relative address, or offset, represents the difference between the addresses of the starting point and the data object. The layout of data may be influenced by the machine's addressing system. For example, a machine may have a word of length 4 bytes, and may expect separate data objects to be stored in separate words (i.e., each object should have a starting byte address divisible by 4). In order to achieve this kind of alignment, padding has to be used, which means that blank spaces are left in between objects, with the number of blanks after an object depending on its size. Even if the machine can operate on non- aligned data, it may increase runtime delays, so padding is useful to speed up data access. For example, FORTRAN has a specification for a packed array, which can be declared as follows: 

a: packed array [1.10] of boolean; 

As per the language specification, this should take up only 10 bits of memory , but it was actually implemented in such a way as to take up 10 words (on a typical machine, each word has 32 bits), because it was too inefficient to store it without padding. Sometimes, due to space constraints, padding may not be possible, so that the data has to be packed together, with no gaps. Since the machine generally expects aligned data, special instructions may be required at runtime to position packed data so that it can be operated on as if aligned. 

Storage Allocation Strategies 

. Static allocation: lays out storage at compile time for all data objects 

. Stack allocation: manages the runtime storage as a stack

. Heap allocation :allocates and de-allocates storage as needed at runtime from heap 

These represent the different storage-allocation strategies used in the distinct parts of the run-time memory organization (as shown in slide 8). We will now look at the possibility of using these strategies to allocate memory for activation records. Different languages use different strategies for this purpose. For example, old FORTRAN used static allocation, Algol type languages use stack allocation, and LISP type languages use heap allocation. 

Static allocation

. Names are bound to storage as the program is compiled

. No runtime support is required

. Bindings do not change at run time

. On every invocation of procedure names are bound to the same storage

. Values of local names are retained across activations of a procedure 

These are the fundamental characteristics of static allocation. Since name binding occurs 
during compilation, there is no need for a run-time support package. The retention of local name values across procedure activations means that when control returns to a procedure, the values of the locals are the same as they were when control last left. For example, suppose we had the following code, written in a language using static 
allocation: function F( ) 

{

int a; 

print(a);

a = 10;

} 

After calling F( ) once, if it was called a second time, the value of a would initially be 10, and this is what would get printed. 
Type of a name determines the amount of storage to be set aside 
. Address of a storage consists of an offset from the end of an activation record
. Compiler decides location of each activation 
. All the addresses can be filled at compile time
. Constraints 
- Size of all data objects must be known at compile time
- Recursive procedures are not allowed
- Data structures cannot be created dynamically 
The type of a name determines its storage requirement, as outlined in slide 11. The address for this storage is an offset from the procedure's activation record, and the compiler positions the records relative to the target code and to one another (on some computers, it may be possible to leave this relative position unspecified, and let the link editor link the activation records to the executable code). After this position has been decided, the addresses of the activation records, and hence of the storage for each name in the records, are fixed. Thus, at compile time, the addresses at which the target code can find the data it operates upon can be filled in. The addresses at which information is to be saved when a procedure call takes place are also known at compile time. Static allocation does have some limitations:

. Size of data objects, as well as any constraints on their positions in memory, must be available at compile time. 

. No recursion, because all activations of a given procedure use the same bindings for local names.

. No dynamic data structures, since no mechanism is provided for run time storage allocation. 

Stack Allocation 
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Figure shows the activation records that are pushed onto and popped for the run time stack as the control flows through the given activation tree. First the procedure is activated. Procedure readarray 's activation is pushed onto the stack, when the control reaches the first line in the procedure sort . After the control returns from the activation of the readarray , its activation is popped. In the activation of sort , the control then reaches a call of qsort with actuals 1 and 9 and an activation of qsort is pushed onto the top of the stack. In the last stage the activations for partition (1,3) and qsort (1,0) have begun and ended during the life time of qsort (1,3), so their activation records have come and gone from the stack, leaving the activation record for qsort (1,3) on top. 

Calling Sequence 
	.A call sequence allocates an activation record and enters information into its field 
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	.A return sequence restores the state of the machine so that calling procedure can continue execution 
	

	 
	

	 
	

	 
	

	 
	


A call sequence allocates an activation record and enters information into its fields. A return sequence restores the state of the machine so that the calling sequence can continue execution. Calling sequence and activation records differ, even for the same language. The code in the calling sequence is often divided between the calling procedure and the procedure it calls. There is no exact division of runtime tasks between the caller and the callee. As shown in the figure, the register stack top points to the end of the machine status field in the activation record. This position is known to the caller, so it can be made responsible for setting up stack top before control flows to the called procedure. The code for the callee can access its temporaries and the local data using offsets from stack top. 
Call Sequence 

. Caller evaluates the actual parameters
. Caller stores return address and other values (control link) into callee's activation record

. Callee saves register values and other status information 

. Callee initializes its local data and begins execution 

The fields whose sizes are fixed early are placed in the middle. The decision of whether or not to use the control and access links is part of the design of the compiler, so these fields can be fixed at compiler construction time. If exactly the same amount of machine-status information is saved for each activation, then the same code can do the saving and restoring for all activations. The size of temporaries may not be known to the front end. Temporaries needed by the procedure may be reduced by careful code generation or optimization. This field is shown after that for the local data. The caller usually evaluates the parameters and communicates them to the activation record of the callee. In the runtime stack, the activation record of the caller is just below that for the callee. The fields for parameters and a potential return value are placed next to the activation record of the caller. The caller can then access these fields using offsets from the end of its own activation record. In particular, there is no reason for the caller to know about the local data or temporaries of the callee. 
Return Sequence 

. Callee places a return value next to activation record of caller
. Restores registers using information in status field 

. Branch to return address

. Caller copies return value into its own activation record 

As described earlier, in the runtime stack, the activation record of the caller is just below that for the callee. The fields for parameters and a potential return value are placed next to the activation record of the caller. The caller can then access these fields using offsets from the end of its own activation record. The caller copies the return value into its own activation record. In particular, there is no reason for the caller to know about the local data or temporaries of the callee. The given calling sequence allows the number of arguments of the called procedure to depend on the call. At compile time, the target code of the caller knows the number of arguments it is supplying to the callee. The caller knows the size of the parameter field. The target code of the called must be prepared to handle other calls as well, so it waits until it is called, then examines the parameter field. Information describing the parameters must be placed next to the status field so the callee can find it. 

Long Length Data 
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The procedure P has three local arrays. The storage for these arrays is not part of the activation record for P; only a pointer to the beginning of each array appears in the activation record. The relative addresses of these pointers are known at the compile time, so the target code can access array elements through the pointers. Also shown is the procedure Q called by P . The activation record for Q begins after the arrays of P. Access to data on the stack is through two pointers, top and stack top. The first of these marks the actual top of the stack; it points to the position at which the next activation record begins. The second is used to find the local data. For consistency with the organization of the figure in slide 16, suppose the stack top points to the end of the machine status field. In this figure the stack top points to the end of this field in the activation record for Q. Within the field is a control link to the previous value of stack top when control was in calling activation of P. The code that repositions top and stack top can be generated at compile time, using the sizes of the fields in the activation record. When q returns, the new value of top is stack top minus the length of the machine status and the parameter fields in Q's activation record. This length is known at the compile time, at least to the caller. After adjusting top, the new value of stack top can be copied from the control link of Q. 

Dangling references 

Referring to locations which have been deallocated 

main() 

{int *p; 

p = dangle(); /* dangling reference */ 

} 

int *dangle(); 

{ 

int i=23; 

return &i; 

} 

The problem of dangling references arises, whenever storage is de-allocated. A dangling reference occurs when there is a reference to storage that has been de-allocated. It is a logical error to use dangling references, since the value of de-allocated storage is undefined according to the semantics of most languages. Since that storage may later be allocated to another datum, mysterious bugs can appear in the programs with dangling references. 
Heap Allocation 

. Stack allocation cannot be used if: 

- The values of the local variables must be retained when an activation ends

- A called activation outlives the caller

. In such a case de-allocation of activation record cannot occur in last-in first-out fashion 

. Heap allocation gives out pieces of contiguous storage for activation records 

There are two aspects of dynamic allocation -: 

. Runtime allocation and de-allocation of data structures. 
. Languages like Algol have dynamic data structures and it reserves some part of memory for it.
If a procedure wants to put a value that is to be used after its activation is over then we cannot use stack for that purpose. That is language like Pascal allows data to be allocated under program control. Also in certain language a called activation may outlive the caller procedure. In such a case last-in-first-out queue will not work and we will require a data structure like heap to store the activation. The last case is not true for those languages whose activation trees correctly depict the flow of control between procedures. 
Heap Allocation . 

. Pieces may be de-allocated in any order 

. Over time the heap will consist of alternate areas that are free and in use 

. Heap manager is supposed to make use of the free space

. For efficiency reasons it may be helpful to handle small activations as a special case

. For each size of interest keep a linked list of free blocks of that size 

Initializing data-structures may require allocating memory but where to allocate this memory. After doing type inference we have to do storage allocation. It will allocate some chunk of bytes. But in language like lisp it will try to give continuous chunk. The allocation in continuous bytes may lead to problem of fragmentation i.e. you may develop hole in process of allocation and de-allocation. Thus storage allocation of heap may lead us with many holes and fragmented memory which will make it hard to allocate continuous chunk of memory to requesting program. So we have heap mangers which manage the free space and allocation and de-allocation of memory. It would be efficient to handle small activations and activations of predictable size as a special case as described in the next slide. The various allocation and de-allocation techniques used will be discussed later. 

Heap Allocation . 

. Fill a request of size s with block of size s ' where s ' is the smallest size greater than or equal to s 

. For large blocks of storage use heap manager

. For large amount of storage computation may take some time to use up memory so that time taken by the manager may be negligible compared to the computation time 

As mentioned earlier, for efficiency reasons we can handle small activations and activations of predictable size as a special case as follows: 
1. For each size of interest, keep a linked list if free blocks of that size
2. If possible, fill a request for size s with a block of size s', where s' is the smallest size greater than or equal to s. When the block is eventually de-allocated, it is returned to the linked list it came from.
3. For large blocks of storage use the heap manger.
Heap manger will dynamically allocate memory. This will come with a runtime overhead. As heap manager will have to take care of defragmentation and garbage collection. But since heap manger saves space otherwise we will have to fix size of activation at compile time, runtime overhead is the price worth it. 
Access to non-local names 

. Scope rules determine the treatment of non-local names 

. A common rule is lexical scoping or static scoping (most languages use lexical scoping) 

The scope rules of a language decide how to reference the non-local variables. There are two methods that are commonly used: 

1. Static or Lexical scoping: It determines the declaration that applies to a name by examining the program text alone. E.g., Pascal, C and ADA.
2. Dynamic Scoping: It determines the declaration applicable to a name at run time, by considering the current activations. E.g., Lisp 

Block 

. Blocks can be nested 

. The property is referred to as block structured 

. Scope of the declaration is given by most closely nested rule 

- The scope of a declaration in block B includes B 

- If a name X is not declared in B then an occurrence of X is in the scope of declarator X in B ' such that 

. B ' has a declaration of X

. B ' is most closely nested around B 

Blocks contains its own local data structure. Blocks can be nested and their starting and ends are marked by a delimiter. They ensure that either block is independent of other or nested in another block. That is, it is not possible for two blocks B1 and B2 to overlap in such a way that first block B1 begins, then B2, but B1 end before B2. This nesting property is called block structure. The scope of declaration in a block-structured language is given by the most closely nested rule: 1. The scope of a declaration in a block B includes B. 2. If a name X is not declared in a block B, then an occurrence of X in B is in the scope of a declaration of X in an enclosing block B ' such that . B ' has a declaration of X, and . B ' is more closely nested around B then any other block with a declaration of X. 
Example 
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For the example in the slide, the scope of declaration of b in B0 does not include B1 because b is re-declared in B1. We assume that variables are declared before the first statement in which they are accessed. The scope of the variables will be as follows: 
	Declaration 
	Scope 

	int a=0 
	B0 not including B2 

	int b=0 
	B0 not including B1 

	int b=1 
	B1 not including B3 

	int a =2 
	B2 only 

	int b =3 
	B3 only 

	The outcome of the print statement will be, therefore: 

	2 1

0 3

0 1 

0 0 
	 


Blocks 
	. Blocks are simpler to handle than procedures 
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	. Blocks can be treated as parameter less procedures 
	

	. Use stack for memory allocation 
	

	. Allocate space for complete procedure body at one time 
	

	 
	

	 
	


There are two methods of implementing block structure: 

1. Stack Allocation : This is based on the observation that scope of a declaration does not extend outside the block in which it appears, the space for declared name can be allocated when the block is entered and de-allocated when controls leave the block. The view treat block as a "parameter less procedure" called only from the point just before the block and returning only to the point just before the block.
2. Complete Allocation : Here you allocate the complete memory at one time. If there are blocks within the procedure, then allowance is made for the storage needed for declarations within the books. If two variables are never alive at the same time and are at same depth they can be assigned same storage. 
Lexical scope without nested procedures 

. A procedure definition cannot occur within another

. Therefore, all non local references are global and can be allocated at compile time

. Any name non-local to one procedure is non-local to all procedures

. In absence of nested procedures use stack allocation

. Storage for non locals is allocated statically

. A non local name must be local to the top of the stack

. Stack allocation of non local has advantage:

- Non locals have static allocations

- Procedures can be passed/returned as parameters 

In languages like C nested procedures are not allowed. That is, you cannot define a procedure inside another procedure. So, if there is a non- local reference to a name in some function then that variable must be a global variable. The scope of a global variable holds within all the functions except those in which the variables have been re-declared. Storage for all names declared globally can be allocated statically. Thus their positions will be known at compile time. In static allocation, we use stack allocation. Any other name must be a local of the activation at the top of the stack, accessible through the top pointer. Nested procedures cause this scheme to fail because a non-local may then refer to a local of parent variable which may be buried deep in the stack and not at the top of stack. An important benefit of static allocation for non- locals is that declared procedures can freely be passed as parameters and returned as results (a function is passed in C by passing a pointer to it). 
Scope with nested procedures 
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The above example contains a program in Pascal with nested procedure sort 

readarray

exchange 

quicksort 

partition 

Here we apply the most closely nested rule for deciding scoping of variables and procedure names. The procedure exchange called by partition , is non-local to partition . Applying the rule, we first check if exchange is defined within quicksort ; since it is not, we look for it in the main program sort .
Nesting Depth 

. Main procedure is at depth 1

. Add 1 to depth as we go from enclosing to enclosed procedure 

Access to non-local names 

. Include a field 'access link' in the activation record

. If p is nested in q then access link of p points to the access link in most recent activation of q 

Nesting Depth : The notion of nesting depth is used to implement lexical scope. The main program is assumed to be at nesting depth 1 and we add 1 to the nesting depth as we go from an enclosing to an enclosed procedure.
Access Links : To implement the lexical scope for nested procedures we add a pointer called an access link to each activation record. If a procedure p is nested immediately within q in the source text, then the access link in an activation record for p points to the access link in the record for most recent activation of q . 
The access links for finding storage for non-locals are shown below.
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Access to non local names. 

. Suppose procedure p at depth np refers to a non- local a at depth na, then storage for a can be found as 

- follow (np-na) access links from the record at the top of the stack

- after following (np-na) links we reach procedure for which a is local 

. Therefore, address of a non local a in procedure p can be stored in symbol table as 

(np-na, offset of a in record of activation having a ) 

Suppose procedure p at depth np refers to a non-local a with nesting depth na = np. The storage for a can be found as follows: 
. When control is in p, an activation record for p is at the top of the stack. Follow the (np - na) access links from the record at the top of the stack. 
. After following (np - na) links, we reach an activation record for the procedure that a is local to. As discussed earlier, its storage is at a fixed offset relative to a position in the record. In particular, the offset can be relative to the access link.
The address of non-local a in procedure p is stored as following in the symbol table:
(np - na, offset within the activation record containing a) 
How to setup access links? 

. suppose procedure p at depth np calls procedure x at depth nx. 

. The code for setting up access links depends upon whether the called procedure is nested within the caller.

- np < nx

Called procedure is nested more deeply than p. Therefore, x must be declared in p. The access link in the called procedure must point to the access link of the activation just below it 

- np ≥ nx

From scoping rules enclosing procedure at the depth 1,2,. ,nx-1 must be same. Follow np-(nx-1) links from the caller, we reach the most recent activation of the procedure that encloses both called and calling procedure 

Suppose procedure p at depth np calls procedure x at depth nx . The code for setting up the access link in the called procedure depends on whether or not the called procedure is nested within the caller.
. Case np < nx. Since the called procedure x is nested more deeply than p, therefore, x must be declared in p, or it would not be accessible to p. This case occurs when sort calls quicksort and when quicksort calls partition in the previous example. In this case, the access link in the called procedure must point to the access link of the activation record of the caller just below it in the stack.
. Case np ≥ nx. From the scope rules, the enclosing procedures at the nesting depths 1,2,. ,nx-1 of the called and calling procedures must be the same. Following np-nx+1 access links from the caller, we reach the most recent activation record of the procedure that statically encloses both the called and calling procedures most closely. The access link reached is the one to which the access link in the called procedure must point. This case occurs when quicksort calls itself in the previous 
Example. 
Procedure Parameters 

program param (input,output); 

procedure b( function h(n:integer): integer); 

begin 

writeln (h(2)) 

end; 

procedure c; 

var m: integer; 

function f(n: integer): integer; 

begin

f := m + n

end; 

begin 

m :=0; b(f) 

end; 

begin 

c 

end. 

Consider the following program to illustrate the fact that an access link must be passed with the actual parameter f. The details are explained in the next slide. 

Procedure Parameters . 

. Scope of m does not include procedure b

. within b, call h(2) activates f

. it outputs f(2) which is 2

. how is access link for activation of f is set up? 

. a nested procedure must take its access link along with it

. when c passes f:

- it determines access link for f as if it were calling f 

- this link is passed along with f to b 

Lexical scope rules apply even when a nested procedure is passed as a parameter. In the program shown in the previous slide, the scope of declaration of m does not include the body of b. Within the body of b, the call h(2) activates f because the formal h refers to f. Now how to set up the access link for the activation of f? The answer is that a nested procedure that is passed as a parameter must take its access link along with it, as shown in the next slide. When procedure c passes f, it determines an access link for f, just as it would if it were calling f. This link is passed along with f to b. Subsequently, when f is activated from within b, the link is used to set up the access link in the activation record for f. 
Procedure Parameters. 

[image: image913.png]param

4





Actual procedure parameter f carries its access link along as described earlier. 

Displays 

	. Faster access to non locals 
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	. Uses an array of pointers to activation records 
	

	. Non locals at depth i is in the activation record pointed to by d[i] 
	

	 
	

	 
	

	 
	


Faster access to non locals than with access links can be obtained using an array d of pointers to activation records, called a display. We maintain display so that storage for a non local a at nesting depth i is in the activation record pointed to by display element d[i].
The display changes when a new activation occurs, and it must be reset when control returns from the new activation. When a new activation record for a procedure at nesting depth i is set up, we first save the value of d[i] in the new activation record and then set d[i] to point to the new activation record. Just before an activation ends , d[i] is reset to the saved value. 
Justification for Displays 

. Suppose procedure at depth j calls procedure at depth i

. Case j < i then i = j + 1 
- called procedure is nested within the caller
- first j elements of display need not be changed 

- set d[i] to the new activation record 

. Case j = i 
- enclosing procedure at depthes 1.i-1 are same and are left un- disturbed 
- old value of d[i] is saved and d[i] points to the new record

- display is correct as first i-1 records are not disturbed 

Suppose procedure at depth j calls procedure at depth i. There are two cases, depending on whether or not the called procedure is nested within the caller in the source text, as in the discussion of access links. 1. Case j < i. Then i = j + 1 and the called procedure is nested within the caller, therefore, the first j elements of display need not be changed, and we set d[i] to the new activation record. The case is illustrated in the figure in the previous slide when sort calls quicksort and also when quicksort calls partition. 2. Case j > i. The enclosing procedure at nesting depths 1,2,.i-1 of the called and calling procedures must be the same and are left un- disturbed. Here the old value of d[i] is saved in the new activation record, and d[i] is pointed to the new record. The display is maintained correctly because first the i-1 records are left as it is. 
Dynamic Scope 

. Binding of non local names to storage do not change when new activation is set up

. A non local name a in the called activation refers to same storage that it did in the calling activation 

In dynamic scope , a new activation inherits the existing bindings of non local names to storage. A non local name a in the called activation refers to the same storage that it did in the calling activation. New bindings are set up for the local names of the called procedure, the names refer to storage in the new activation record. 

Dynamic Scoping: Example 

. Consider the following program 

program dynamic (input, output); 

var r: real; 

procedure show; 

begin write(r) end; 

procedure small; 

var r: real; 

begin r := 0.125; show end; 

begin 

r := 0.25; 

show; small; writeln;

show; small; writeln; 

end. 

Consider the example shown to illustrate that the output depends on whether lexical or dynamic scope is used. 
Example . 

. Output under lexical scoping
0.250 0.250
0.250 0.250 
. Output under dynamic scoping
0.250 0.125
0.250 0.125 
The outputs under the lexical and the dynamic scoping are as shown. Under dynamic scoping, when show is called in the main program, 0.250 is written because the variable r local to the main program is used. However, when show is called from within small, 0.125 is written because the variable r local to small is used. 

Implementing Dynamic Scope 

. Deep Access
- Dispense with access links
- use control links to search into the stack 
- term deep access comes from the fact that search may go deep into the stack
. Shallow Access 
- hold current value of each name in static memory 
- when a new activation of p occurs a local name n in p takes over the storage for n 
- previous value of n is saved in the activation record of p 
We will discuss two approaches to implement dynamic scope. They bear resemblance to the use of access links and displays, respectively, in the implementation of the lexical scope. 
1. Deep Access : Dynamic scope results if access links point to the same activation records that control links do. A simple implementation is to dispense with access links and use control links to search into the stack, looking for the first activation record containing storage for the non- local name. The term deep access comes from the fact that search may go deep into the stack. The depth to which the search may go depends on the input of the program and cannot be determined at compile time.
2. Shallow Access : Here the idea is to hold the current value of each name in static memory. When a new activation of a procedure p occurs, a local name n in p takes over the storage for n. The previous value of n is saved in the activation record for p and is restored when the activation of p ends. 
Parameter Passing 

. Call by value 

- actual parameters are evaluated and their rvalues are passed to the called procedure 

- used in Pascal and C

- formal is treated just like a local name 

- caller evaluates the actual parameters and places rvalue in the storage for formals 

- call has no effect on the activation record of caller 

This is, in a sense, the simplest possible method of passing parameters. The actual parameters are evaluated and their r-values are passed to the called procedure. Call-by-value is used in C, and Pascal parameters are usually passed this way. Call-by-Value can be implemented as follows: 

1. A formal parameter is treated just like a local name, so the storage for the formals is in the activation record of the called procedure.

2. The caller evaluates the actual parameters and places their r-values in the storage for the formals. A distinguishing feature of call-by-value is that operations on the formal parameters do not affect values in the activation record of the caller. 

Parameter Passing . 

. Call by reference (call by address) 

- the caller passes a pointer to each location of actual parameters

- if actual parameter is a name then lvalue is passed 

- if actual parameter is an expression then it is evaluated in a new location and the address of that location is passed 

When the parameters are passed by reference (also known as call-by-address or call-by location), the caller passes to the called procedure a pointer to the storage address of each actual parameter.

1. If an actual parameter is a name or an expression having an l-value, then that l-value itself is passed.

2. However, if the actual parameter is an expression, like a + b or 2, that has no l-value, then the expression is evaluated in a new location, and the address of that location is passed.

A reference to a formal parameter in the called procedure becomes, in the target code, an indirect reference through the pointer passed to the called procedure. 

Parameter Passing . 

. Copy restore (copy-in copy-out, call by value result) 

- actual parameters are evaluated, rvalues are passed by call by value, lvalues are determined before the call 

- when control returns, the current rvalues of the formals are copied into lvalues of the locals 

This is a hybrid form between call-by-value and call-by-reference (also known as copy-in copy-out or value-result).

1. Before control flows to the called procedure, the actual parameters are evaluated. The r-values of the actuals are passed to the called procedure as in call-by-value. In addition, however, the l-values of those actual parameters having l-values are determined before the call.
2. When the control returns, the current r-values of the formal parameters are copied back into the l-values of the actuals, using the l-values computed before the call. Only the actuals having l-values are copied. 
Parameter Passing . 

. Call by name (used in Algol) 

- names are copied 

- local names are different from names of calling procedure 

swap(i,a[i])

temp = i

i = a[i]

a[i] = temp 

This is defined by the copy-rule as used in Algol.

1. The procedure is treated as if it were a macro; that is, its body is substituted for the call in the caller, with the actual parameters literally substituted for the formals. Such a literal substitution is called macro-expansion or inline expansion.
2. The local names of the called procedure are kept distinct from the names of the calling procedure. We can think of each local of the called procedure being systematically renamed into a distinct new name before macro-expansion is done.
3. The actual parameters are surrounded by parentheses if necessary to preserve their integrity. 

Language Facility for Dynamic Storage Allocation 

. Storage is usually taken from heap 

. Allocated data is retained until deallocated

. Allocation can be either explicit or implicit 

- Pascal : explicit allocation and de-allocation by new() and dispose()

- Lisp : implicit allocation when cons is used, and de- allocation through garbage collection 

Static storage allocation is usually done on the stack, as this is a convenient way to take care of the normal scoping rules, where the most recent values have to be considered, and when the scope ends, their values have to be removed. But for dynamic allocation, no such prior information regarding the use of the variables is available. So we need the maximum possible flexibility in this. For this a heap is used. For the sake of a more efficient utilization of memory, the stack grows downwards and the heap grows upwards, starting from different ends of the available memory. This makes sure that all available memory is utilized. Pascal allows for explicit allocation and de-allocation of memory. This can be done by using the new() and dispose() functions. However, in Lisp, continuous checking is done for free memory. When less than 20 percent of the memory is free, then garbage collection is performed. In garbage collection, cells that can no longer be accessed are de-allocated. (Storage that has been allocated but can no longer be accessed is called 'garbage'.) 
Dynamic Storage Allocation 
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Generally languages like Lisp and ML which do not allow for explicit de-allocation of memory do garbage collection. A reference to a pointer that is no longer valid is called a 'dangling reference'. For example, consider this C code: 
int main (void) 
{

int* a=fun();
} 
int* fun() 
{ 
int a=3;
int* b=&a; 
return b; 
} 
Here, the pointer returned by fun() no longer points to a valid address in memory as the activation of fun() has ended. This kind of situation is called a 'dangling reference'. In case of explicit allocation it is more likely to happen as the user can de-allocate any part of memory, even something that has to a pointer pointing to a valid piece of memory. 
Explicit Allocation of Fixed Sized Blocks 

. Link the blocks in a list 
. Allocation and de-allocation can be done with very little overhead 
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The simplest form of dynamic allocation involves blocks of a fixed size. By linking the blocks in a list, as shown in the figure, allocation and de-allocation can be done quickly with little or no storage overhead. 
Explicit Allocation of Fixed Sized Blocks . 

. blocks are drawn from contiguous area of storage 
. An area of each block is used as pointer to the next block

. A pointer available points to the first block

. Allocation means removing a block from the available list

. De-allocation means putting the block in the available list 

. Compiler routines need not know the type of objects to be held in the blocks

. Each block is treated as a variant record 

Suppose that blocks are to be drawn from a contiguous area of storage. Initialization of the area is done by using a portion of each block for a link to the next block. A pointer available points to the first block. Generally a list of free nodes and a list of allocated nodes is maintained, and whenever a new block has to be allocated, the block at the head of the free list is taken off and allocated (added to the list of allocated nodes). When a node has to be de-allocated, it is removed from the list of allocated nodes by changing the pointer to it in the list to point to the block previously pointed to by it, and then the removed block is added to the head of the list of free blocks. The compiler routines that manage blocks do not need to know the type of object that will be held in the block by the user program. These blocks can contain any type of data (i.e., they are used as generic memory locations by the compiler). We can treat each block as a variant record, with the compiler routines viewing the block as consisting of some other type. Thus, there is no space overhead because the user program can use the entire block for its own purposes. When the block is returned, then the compiler routines use some of the space from the block itself to link it into the list of available blocks, as shown in the figure in the last slide. 
Explicit Allocation of Variable Size Blocks 

. Storage can become fragmented

. Situation may arise

. If program allocates five blocks

. then de-allocates second and fourth block 
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. Fragmentation is of no consequence if blocks are of fixed size

. Blocks can not be allocated even if space is available 

In explicit allocation of fixed size blocks, internal fragmentation can occur, that is, the heap may consist of alternate blocks that are free and in use, as shown in the figure. The situation shown can occur if a program allocates five blocks and then de-allocates the second and the fourth, for example. Fragmentation is of no consequence if blocks are of fixed size, but if they are of variable size, a situation like this is a problem, because we could not allocate a block larger than any one of the free blocks, even though the space is available in principle. So, if variable- sized blocks are allocated, then internal fragmentation can be avoided, as we only allocate as much space as we need in a block. But this creates the problem of external fragmentation, where enough space is available in total for our requirements, but not enough space is available in continuous memory locations, as needed for a block of allocated memory. For example, consider another case where we need to allocate 400 bytes of data for the next request, and the available continuous regions of memory that we have are of sizes 300, 200 and 100 bytes. So we have a total of 600 bytes, which is more than what we need. But still we are unable to allocate the memory as we do not have enough contiguous storage. The amount of external fragmentation while allocating variable-sized blocks can become very high on using certain strategies for memory allocation. So we try to use certain strategies for memory allocation, so that we can minimize memory wastage due to external fragmentation. These strategies are discussed in the next few slides. 

First Fit Method 

. When a block of size s is to be allocated 
- search first free block of size f ≥ s

- sub divide into two blocks of size s and f-s 

- time overhead for searching a free block 

. When a block is de-allocated 

- check if it is next to a free block

- combine with the free block to create a larger free block 

Implicit De-allocation 

	. Requires co-operation between user program and run time system 
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	. Run time system needs to know when a block is no longer in use 

 
	

	. Implemented by fixing the format of storage blocks 
	

	 
	


Implicit deallocation requires cooperation between the user program and run time package, because the latter needs to know when a storage block is no longer in use. This cooperation is implemented by fixing the format of storage blocks. For implicit deallocation it is possible that we periodically make the garbage collector go through each and every link that has been allocated and then try to figure out which are no longer needed. But for efficiency we want that instead of globally considering all the accessible links there are some local tests that can be run on each block to see if it can be deallocated. For this we fix the format of the storage blocks and try to store some extra information to help us more efficiently find whether any given block needs to be deallocated. In spite of these measures, a lot of time is generally wasted on deallocation. For example in Lisp, for sufficiently large programs, around 30 percent of the execution time is spent on garbage collection. While garbage collection is going on, no other execution work can be going on as all links have to be frozen for integrity reasons. So garbage collection greatly slows down execution time, slowing down the production cycle. 
Recognizing Block boundaries 

. If block size is fixed then position information can be used 

. Otherwise keep size information to determine the block boundaries 

Whether Block is in Use 
. References may occur through a pointer or a sequence of pointers

. Compiler needs to know position of all the pointers in the storage

. Pointers are kept in fixed positions and user area does not contain any pointers 

While the user program deals with pointers individually, for allocation and de-allocation by the run-time system action must be taken at the level of blocks. That is, a block can be de-allocated only when no pointers are pointing to it. For this, for any pointer we have to keep track of what blocks are being referenced by it. Here we must note that a block can be pointed to differently by a pointer, or the pointer can point to some other pointer, which then points to the block, and so on. For ease in keeping track of this, pointers are kept in fixed positions and the user area does not contain any pointers. 

Reference Count 

. Keep track of number of blocks which point directly to the present block

. If count drops to 0 then block can be de-allocated

. Maintaining reference count is costly 

- assignment p:=q leads to change in the reference counts of the blocks pointed to by both p and q

. Reference counts are used when pointers do not appear in cycles 

One convenient way is to keep track of the number of blocks pointing to any given block. When this number reaches zero, we can see that the block can no longer be reachable and so it has become garbage. This method is easy to implement but can be costly in time as for the assignment p:=q, the reference count of block which was previously pointed to by p goes down by one, while that of q goes up by one. Reference counts are best used when the graph of blocks pointing to blocks is guaranteed to be a forest (can not contain cycles). That is because if there is a cycle, which is not reachable, then the reference count of all blocks in the cycle will be non-zero, even though they are all unreachable. So they will never get de-allocated, thus leading to space wastage. 
Marking Techniques 

. Suspend execution of the user program

. use frozen pointers to determine which blocks are in use

. This approach requires knowledge of all the pointers

. Go through the heap marking all the blocks unused

. Then follow pointers marking a block as used that is reachable 

. De-allocate a block still marked unused 

. Compaction: move all used blocks to the end of heap. All the pointers must be adjusted to reflect the move 

Marking techniques can be seen as first freezing all activity, and then using an algorithm where you first 'color' all nodes as unused. Then at each pointer, you 'drop down' the color 'used' through links, and all nodes which are colored by this color become marked as 'used'. After this , if a node remains marked as 'unused', then it is truly unused, and can be discarded as garbage. Compaction can be used to save space, but it takes a lot of time as when a block is moved in memory, all pointers pointing to it have to be changed to point to the new location. This also requires us to keep track of all the pointers. The need for compaction is a major problem with variable-sized allotment. 
Run Time Storage Management 

. Run time allocation and de-allocation of activations occurs as part of procedure call and return sequences

. Assume four kind of statements 

call, return, halt and action 
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To study the run-time storage management system it is sufficient to focus on the statements: action, call, return and halt, because they by themselves give us sufficient insight into the behavior shown by functions in calling each other and returning. And the run-time allocation and de-allocation of activations occur on the call of functions and when they return. There are mainly two kinds of run-time allocation systems: static allocation and stack allocation. While static allocation is used by the Fortran class of languages, stack allocation is used by the Ada class of languages. 

Static Allocation 

. A call statement is implemented by a sequence of two instructions

. A move instruction saves the return address 

. A goto transfers control to the target code 

. The instruction sequence is 

MOV #here+20, callee.static-area 

GOTO callee.code-area 

Static Allocation . 

. callee.static-area and callee.code-area are constants referring to address of the activation record and the first address of called procedure respectively.
. #here+20 in the move instruction is the return address; the address of the instruction following the goto instruction
. A return from procedure callee is implemented by
GOTO *callee.static-area 
For the call statement, we need to save the return address somewhere and then jump to the location of the callee function. And to return from a function, we have to access the return address as stored by its caller, and then jump to it. So for call, we first say: MOV #here+20, callee.static-area. Here, #here refers to the location of the current MOV instruction, and callee.static- area is a fixed location in memory. 20 is added to #here here, as the code corresponding to the call instruction takes 20 bytes (at 4 bytes for each parameter: 4*3 for this instruction, and 8 for the next). Then we say GOTO callee.code-area, to take us to the code of the callee, as callee.codearea is merely the address where the code of the callee starts. Then a return from the callee is implemented by: GOTO *callee.static area. Note that this works only because callee.static-area is a constant. 
Example

	. Assume each
	100: ACTION-l 

	action 
	120: MOV 140, 364 

	block takes 20 
	132: GOTO 200 

	bytes of space 
	140: ACTION-2 

	.Start address 
	160: HALT 

	of code for c 
	: 

	and p is 
	200: ACTION-3 

	100 and 200 
	220: GOTO *364 

	. The activation
	: 

	records
	300: 

	arestatically 
	304: 

	allocated starting 
	: 

	at addresses
	364: 

	300 and 364. 
	368: 


This example corresponds to the code shown in slide 57. Statically we say that the code for c starts at 100 and that for p starts at 200. At some point, c calls p. Using the strategy discussed earlier, and assuming that callee.staticarea is at the memory location 364, we get the code as given. Here we assume that a call to 'action' corresponds to a single machine instruction which takes 20 bytes. 

Stack Allocation 

. Position of the activation record is not known until run time

. Position is stored in a register at run time, and words in the record are accessed with an offset from the register

. The code for the first procedure initializes the stack by setting up SP to the start of the stack area

MOV #Stackstart, SP

code for the first procedure

HALT 

In stack allocation we do not need to know the position of the activation record until run-time. This gives us an advantage over static allocation, as we can have recursion. So this is used in many modern programming languages like C, Ada, etc. The positions of the activations are stored in the stack area, and the position for the most recent activation is pointed to by the stack pointer. Words in a record are accessed with an offset from the register. The code for the first procedure initializes the stack by setting up SP to the stack area by the following command: MOV #Stackstart, SP. Here, #Stackstart is the location in memory where the stack starts.

Stack Allocation . 

. A procedure call sequence increments SP, saves the return address and transfers control to the called procedure 
ADD #caller.recordsize, SP 
MOVE #here+ 16, *SP 
GOTO callee.code_area 
Consider the situation when a function (caller) calls the another function(callee), then procedure call sequence increments SP by the caller record size, saves the return address and transfers control to the callee by jumping to its code area. In the MOV instruction here, we only need to add 16, as SP is a register, and so no space is needed to store *SP. The activations keep getting pushed on the stack, so #caller.recordsize needs to be added to SP, to update the value of SP to its new value. This works as #caller.recordsize is a constant for a function, regardless of the particular activation being referred to. 
Stack Allocation . 

. The return sequence consists of two parts.
. The called procedure transfers control to the return address using 
GOTO *0(SP) 
0(SP) is the address of the first word in the activation record and *0(SP) is the return address saved there. 
. The second part of the return sequence is in caller which decrements SP 
SUB #caller.recordsize, SP 
The value that was referred to by *SP while making the call, is here being referred to as *O(SP). What this means is that the return address previously stored by the caller is now being used by the callee to return back to the caller's code. After this, the caller is removed from the stack by deleting the caller's record size from the stack. So at any point in time, the current activation is not on the stack, but the activations of the function which called it, the function which called that, etc. are on the stack. The code for SUB #caller.recordsize, SP needs to be in the caller, as only the caller has access to #caller.recordsize as a constant.
	Example

. Consider the 

action-l 

/* code for s * / 

quicksort 

call q 

 

program

action-2 

 

. Assume activation 

halt 

 

records for procedures 

action-3 

/* code for p * / 

s, p and q are ssize, psize 

return 

 

and qsize respectively 

action-4 

/* code for q * / 

(determined at compile time) 

call p 

 

.First word in each 

action-5 

 

activation holds the 

call q 

 

return address 

action-6 

 

.Code for the procedures 

call q 

 

start at 100, 200 and 

return 

 

300 respectively, and stack starts at 600. 

 

s is calling q, q is calling p and q (2 times), p is calling nothing. 


	100: MOVE #600, SP 
	300: action-4 

	108: action-1 
	320: ADD #qsize, SP 

	128: ADD #ssize, SP 
	328: MOVE 344, *SP 

	136: MOVE 152, *SP 
	336: GOTO 200 

	144: GOTO 300 
	344: SUB #qsize, SP 

	152: SUB #ssize, SP 
	352: action-5 

	160: action-2 
	372 ADD #qsize, SP 

	180: HALT 
	380: MOVE 396, *SP 

	. . . 
	388: GOTO 300 

	 
	396 SUB #qsize, SP 

	200: action-3 
	404: action-6 

	220: GOTO *0(SP) 
	424: ADD #qsize, SP 

	. . . 
	432: MOVE 448, *SP 

	 
	440: GOTO 300 

	 
	448: SUB #qsize, SP 

	  
	456: GOTO *0(SP) 


We assume here that: 

The code for s starts at 100.

The code for p starts at 200. 

The code for q starts at 300. 

The stack area starts at 600. 

Code for 'action' takes 20 bytes. 

At the beginning, we push 600 to SP so that it points to the start of the stack area. We simplify the strategy outlined earlier. Here we note that 136+16 is 152 (in line 136) and so on in all the MOV instructions at address x, we have written MOV x+16, *SP.

Intermediate Representation and Symbol Table
 

Intermediate Representation Design 

. More of a wizardry rather than science

. each compiler uses 2-3 IRs 

. HIR (high level IR) preserves loop structure and array bounds

. MIR (medium level IR) reflects range of features in a set of source languages

- language independent

- good for code generation for one or more architectures

- appropriate for most optimizations 

. LIR (low level IR) low level similar to the machines 

Intermediate Representation (IR) is language-independent and machine-independent. A good intermediate representation can be said as one which:
. Captures high level language constructs,
. Should be easy to translate from abstract syntax tree,
. Should support high-level optimizations,
. Captures low-level machine features,
. Should be easy to translate to assembly,
. Should support machine-dependent optimizations,
. Has narrower interface i.e. small number of node types (instructions), and
. Should be easy to optimize and retarget .
To design such an IR having all these features is a very difficult task. Thus most compliers use multiple IRs. So, various optimizations are done by different IRs and are easy to implement and extend.
For this, IR can be categorized into 3 types: 
1. High Level IR (HIR): This is language independent but closer to the high level language. HIR preserves high-level language constructs such as structured control flows: if, for, while, etc; variables, expressions, functions etc. It also allows high level optimizations depending on the source language, e.g., function inlining, memory dependence analysis, loop transformations, etc. 
for v <- v1 by v2 to v3 do
a[v]:=2 
endfor 
2. Medium Level IR (MIR): This is machine and language independent and can represent a set of source languages. Thus MIR is good for code generation for one or more architectures. It utilizes simple control flow structure like "if" and "goto"; allows source language variables (human form names) as well as front-end created "temporaries" (symbolic registers). Compared to HIR, it reveals computations in greater detail (much closer to the machine than HIR), and therefore is usually preferred for needs of optimization. 
The HIR Example is translated into the following MIR code: 
v <- v1 
t2 <- v2
t3 <- v3 
L1: 
if v > t3 goto L2 
t4 <- addr a 
t5 <- 4 * v 
t6 <- t4 + t5 
*t6 <- 2 
v <- v + t2 
goto L1 
L2: 
3. Low Level IR (LIR): This is machine independent but more closer to the machine (e.g., RTL used in GCC). It is easy to generate code from LIR but generation of input program may involve some work. LIR has low level constructs such as unstructured jumps, registers, memory locations. LIR has features of MIR and LIR. It can also have features of HIR depending on the needs. The LIR code for the above MIR example is: 
s2 <- s1 
s4 <- s3
s6 <- s5 
L1: 

if s2 > s6 goto L2 

s7 <- addr a
s8 <- 4 * s9 
s10 <- s7 + s8
[s10] <- 2 
s2 <- s2 + s4 
goto L1 
L2: 

Compiler writers have tried to define Universal IRs and have failed. (UNCOL in 1958)

. There is no standard Intermediate Representation. IR is a step in expressing a source program so that machine understands it

. As the translation takes place, IR is repeatedly analyzed and transformed

. Compiler users want analysis and translation to be fast and correct

. Compiler writers want optimizations to be simple to write, easy to understand and easy to extend

. IR should be simple and light weight while allowing easy expression of optimizations and transformations. 

Compiler writers have tried to define Universal IRs and have failed . UNCOL , UNiversal Computer Oriented Language, was a proposed universal language for compilers . It was discussed but never implemented. UNCOL would have supported a back-end for every machine architecture. A compiler for a new programming language would only have to compile to UNCOL. Everybody knows that UNCOL was a failure. As of now, there is no standard Intermediate Representation. A significant part of the compiler is both language and machine independent. 

There are many issues in choosing an IR: 

. Analysis and translation should be fast and correct.

. Writing an IR should be simple for compiler writers.

. IR should be easy to understand and easy to extend.

. It should be light weight and should allow optimizations and translation easily. 

Issues in IR Design 

. source language and target language

. porting cost or reuse of existing design

. whether appropriate for optimizations

. U-code IR used on PA-RISC and Mips. Suitable for expression evaluation on stacks but less suited for load- store architectures

. both compilers translate U-code to another form

- HP translates to very low level representation

- Mips translates to MIR and translates back to U-code for code generator 

IR design is very much dependent on both the source language and the target language. There are many factors while choosing an intermediate language such as porting cost and reuse of existing design i.e., whether is it economical to reuse the existing design or rather redo from scratch. Here, portability mainly refers to machine-independence, rather than source-language independence. Also, will the IR be appropriate for the optimizations needed. Complexity of the compiler: reuse of legacy compiler parts, compilation cost, multiple vs. one IR levels (as mentioned, a compiler may use several IRs from different levels, or a single IR featuring several levels), and compiler maintenance. To emphasize the latter claim, here are two examples of implementation of optimization in the MIPS and the PA-RISC. Don't give too much attention to the examples as of now. Just try to get a hang of what's being said. 

1. MIPS The problem introduced was how to optimize the front-end generated representation, namely UCODE Stack Based IR (a language that was something like an old instance of Java Byte-Code, which served as a target language for many front-ends). Given that the translation from UCODE to machine code ("load"/"store" based architecture) was already written, and since the required optimization used a higher-level representation, what was finally implemented is as follows: Ironically, this solution translates into a higher-level representation, performs the required optimizations, and then translates back to the low- level representation, from which the machine code is generated. Note, however, that we assume here that translation from one representation to another is accurate (but not necessarily efficient). 

[image: image920.png]|
| UCODE Stack Bassd IR

v
Translator
|
I MR
N
Optimizer
|
I MR
v
Translator
|
| UCODE Stack Based IR
v

Code Generator
|

| Load/Store based architecture
W




2. PA-RISC The second example shows a similar design for PA-RISC (developed by HP), but such that is using a lower-level IR (SLLIC) for optimization and doesn't translate back to UCODE. This is schematically represented as follows: 
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Issues in new IR Design 

. how much machine dependent
. expressiveness: how many languages are covered
. appropriateness for code optimization
. appropriateness for code generation
. Use more than one IR (like in PA-RISC) 
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The issues in an IR design are: 

1. Machine dependence: for machine level optimizations.

2. Expressiveness: for ease of understanding and extensibility.

3. Appropriateness for code optimization.

4. Appropriateness for code generation.

5. Whether it will use existing design or not? This is an important issue as if optimum; it should use pre-existing design so that it doesn't have issues of portability with previously existing architectures, and other issues. 

6. Use of more than one IR for more optimization: Different IRs have different levels of optimizations possible.

7. Suitable for dependence analysis by representing subscripts by list of subscripts.

8. Make addresses explicit in linearized form. This is suitable for constant folding, strength reduction, loop invariant code motion and other basic optimizations. 

Issues in new IR Design. 

. Use more than one IR for more than one optimization

. represent subscripts by list of subscripts: suitable for dependence analysis

. make addresses explicit in linearized form: 

- suitable for constant folding, strength reduction, loop invariant code motion, other basic optimizations 

float a[20][10]; 
use a[i][j+2] 
	HIR 
	MIR 
	LIR 

	t1 [image: image923.png]


a[i,j+2] 
	t1 [image: image924.png]


j+2 
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[fp-4] 
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i*20 
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r1+2 
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t1+t2 
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[fp-8] 
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4*t3 
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r3*20 
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addr a 
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r4+r2 
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t4+t5 
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4*r5 
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*t6 
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fp-216 
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[r7+r6] 

	 
	 
	 


This example shows the representation of the same code in three different IRs, all at different levels of abstraction. In the MIR, the size of the float and the array is used along with the address of the variable a . In the LIR, we are dealing with registers and file pointers instead (lower level of abstraction). 
High level IR 

int f(int a, int b) {

int c; 

c = a + 2; print(b, c);

} 

. Abstract syntax tree 

- keeps enough information to reconstruct source form 

- keeps information about symbol table 

Consider the code given above. We will be showing the corresponding Abstract Syntax tree (AST) corresponding to it in the next slide. An Abstract Syntax tree (a form of HIR) is used to generate the medium or low level intermediate language. We can also generate the original source form from the AST. 
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An abstract syntax tree (AST) is a finite , labeled, directed tree, where the nodes are labeled by operators, and the edges represent the operands of the node operators. Thus, the leaves have nullary operators, i.e., pointers to the symbol table entries of the variables or constants. An AST differs from a parse tree by omitting nodes and edges for syntax rules that do not affect the semantics of the program. The classic example of such an omission is grouping parentheses, since in an AST the grouping of operands is explicit in the tree structure. 
Medium level IR 

- reflects range of features in a set of source languages

- language independent

- good for code generation for a number of architectures

- appropriate for most of the optimizations

- normally three address code

. Low level IR

- corresponds one to one to target machine instructions

- architecture dependent

. Multi-level IR 

- has features of MIR and LIR

- may also have some features of HIR 

MIR

Many optimizations are based on this level of representation. It is characterized by the following:
. Source-language and target-machine independent: this is the commonly claimed advantage of MIR. 

. Machine independent representation for program variables and temporaries.

. Simplified control flow construct.

. Portable (immediate outcome of source and target independence). Hence, good for code generation for a number of architectures. . Sufficient in many optimizing compilers: MIR, Sun-IR, etc. 

LIR
Key characteristics:
. One-to-one correspondence with machine instructions (this is not 100% accurate, but is a major design issue).

. Deviations from machine language: alternative code for non-primitive operations (e.g., MULTIPLY); addressing modes; side effects (e.g., auto-increment by the machine that is not suitably represented).

. It is machine dependant. However, appropriate compiler data structures can hide machine dependence, for example: register allocation can be kept for the very last phase, thus we can still use symbolic register. 

Multi-level IR
Key characteristics:
. Combining multiple representations levels in the same language: this way we hope to benefit from the advantages of some IRs for different optimization needs.

. Compromise computation exposure and high-level description (clearly, since we take some from high and low levels).

. Examples: in SUN-IR arrays can be represented with multiple subscripts; in SLLIC, MULTIPLY and DIVIDE operations exist. 

Abstract Syntax Tree/DAG 

. Condensed form of a parse tree

. useful for representing language constructs

. Depicts the natural hierarchical structure of the source program 

- Each internal node represents an operator 

- Children of the nodes represent operands 

- Leaf nodes represent operands 

. DAG is more compact than abstract syntax tree because common sub expressions are eliminated 

A syntax tree depicts the natural hierarchical structure of a source program. Its structure has already been discussed in earlier lectures.

DAGs are generated as a combination of trees: operands that are being reused are linked together, and nodes may be annotated with variable names (to denote assignments). This way, DAGs are highly compact, since they eliminate local common sub-expressions. On the other hand, they are not so easy to optimize, since they are more specific tree forms. However, it can be seen that proper building of DAG for a given sequence of instructions can compactly represent the outcome of the calculation.
An example of a syntax tree and DAG has been given in the next slide . 
a := b * -c + b * -c 
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You can see that the node " * " comes only once in the DAG as well as the leaf " b ", but the meaning conveyed by both the representations (AST as well as the DAG) remains the same. 
Postfix notation 

. Linearized representation of a syntax tree
. List of nodes of the tree

. Nodes appear immediately after its children

. The postfix notation for an expression E is defined as follows: 

- If E is a variable or constant then the postfix notation is E itself 

- If E is an expression of the form E 1 op E 2 where op is a binary operator then the postfix notation for E is

. E 1 ' E 2 ' op where E 1 ' and E 2 ' are the postfix notations for E 1 and E 2 respectively 

- If E is an expression of the form (E 1 ) then the postfix notation for E 1 is also the postfix notation for E 

 

At some point in your career you will be asked to write a program that can interpret an expression in a notation similar to that of algebra. Getting something like (A+B)/(C- D) right can seem like a daunting task, especially when you are asked to write code that will interpret any valid expression. It turns out to be surprisingly easy if the program is decomposed into two steps: translation to postfix notation and evaluation of the postfix notation expression. This is not a new idea... it was described by Donald Knuth in 1962 and he was writing a history!
Postfix notation is a way of writing algebraic expressions without the use of parentheses or rules of operator precedence. The expression above would be written as AB+CD-/ in postfix notation. (Don't panic! We'll explain this in a moment.) Postfix notation had its beginnings in the work of Jan L ukasiewicz * (1878-1956), a Polish logician, mathematician, and philosopher. L ukasiewicz developed a parenthesis-free prefix notation that came to be called Polish notation and a postfix notation now called Reverse Polish Notation or RPN. From these ideas, Charles Hamblin developed a postfix notation for use in computers. L ukasiewicz's work dates from about 1920. Hamblin's work on postfix notation was in the mid-1950's. Calculators, notably those from Hewlett-Packard, used various postfix formats beginning in the 1960s. Postfix notation is a linearized representation of a syntax tree; it is a list of nodes of the tree which appear immediately after its children. You must read the three points written in the slide above to see how postfix expressions are made corresponding to a set of expressions. 
Postfix notation 

. No parenthesis are needed in postfix notation because
- the position and parity of the operators permit only one decoding of a postfix expression
. Postfix notation for 
a = b * -c + b * - c
is
a b c - * b c - * + = 
No parenthesis is needed in postfix notation because it is made in a way that it has only one unique decoding. The parity of the operators (number of operands an operator takes) and their position uniquely determine the decoding. Have a look at the postfix notation example given above. We had made the AST and DAG for this example a couple of slides back. The edges in a syntax tree do not appear explicitly in postfix notation. They can be recovered from the order in which the nodes (operators) appear and the number of operands that the operators at the nodes expect. The recovery of edges is similar to the evaluation, using a stack, of an expression in postfix notation. 
Three address code 

. It is a sequence of statements of the general form X := Y op Z where 

- X, Y or Z are names, constants or compiler generated temporaries 

- op stands for any operator such as a fixed- or floating-point arithmetic operator, or a logical operator 

Three address code is a sequence of statements of the general form: x := y op z where x, y and z are names, constants, or compiler generated temporaries. op stands for any operator, such as a fixed or floating-point arithmetic operator, or a logical operator or boolean - valued data. Compilers use this form in their IR. 
Three address code . 

. Only one operator on the right hand side is allowed
. Source expression like x + y * z might be translated into t 1 := y * z t 2 := x + t 1 where t 1 and t 2 are compiler generated temporary names
. Unraveling of complicated arithmetic expressions and of control flow makes 3-address code desirable for code generation and optimization
. The use of names for intermediate values allows 3-address code to be easily rearranged 
. Three address code is a linearized representation of a syntax tree where explicit names correspond to the interior nodes of the graph 
Note that no built-up arithmetic expressions are permitted, as there is only one operator on the right side. Its advantage is that it can be easily rearranged. Each statement usually contains three addresses, two for the operands and one for the result. It is a linearized representation of a syntax tree in which explicit names correspond to the interior nodes of the graph. Variable names can appear directly in three address statements, so there are no statements corresponding to the leaves. The various types of the three-address code are shown in the next slide. 
Three address instructions 

	. Assignment 
	. Function 

	- x = y op z 
	- param x 

	- x = op y 
	- call p,n 

	- x = y 
	- return y 

	. Jump 
	 

	- goto L 
	. Pointer 

	- if x relop y goto L 
	- x = &y 

	.Indexed assignment 
	- x = *y 

	- x = y[i] 
	- *x = y 

	- x[i] = y 
	 


The various types of the three-address codes. Statements can have symbolic label and there are statements for flow of control. A symbolic label represents the index of a three-address statement in the array holding intermediate code. Actual indices can be substituted for the labels either by making a separate pass, or by using backpatching. 

Other representations 

. SSA: Single Static Assignment
. RTL: Register transfer language 
. Stack machines: P-code 
. CFG: Control Flow Graph 
. Dominator Trees
. DJ-graph: dominator tree augmented with join edges
. PDG: Program Dependence Graph
. VDG: Value Dependence Graph
. GURRR: Global unified resource requirement representation. Combines PDG with resource requirements
. Java intermediate bytecodes
. The list goes on ...... 
These are some other types of representations that the compilers use. 
Symbol Table 

. Compiler uses symbol table to keep track of scope and binding information about names
. symbol table is changed every time a name is encountered in the source; changes to table occur
- if a new name is discovered 
- if new information about an existing name is discovered
. Symbol table must have mechanism to: 
- add new entries
- find existing information efficiently
. Two common mechanism:
- linear lists, simple to implement, poor performance
- hash tables, greater programming/space overhead, good performance
. Compiler should be able to grow symbol table dynamically 
. if size is fixed, it must be large enough for the largest program 

A compiler uses a symbol table to keep track of scope and binding information about names. It is filled after the AST is made by walking through the tree, discovering and assimilating information about the names. There should be two basic operations - to insert a new name or information into the symbol table as and when discovered and to efficiently lookup a name in the symbol table to retrieve its information.

Two common data structures used for the symbol table are -
1. Linear lists:- simple to implement, poor performance.
2. Hash tables:- greater programming/space overhead, good performance.
Ideally a compiler should be able to grow the symbol table dynamically, i.e., insert new entries or information as and when needed. But if the size of the table is fixed in advance then ( an array implementation for example), then the size must be big enough in advance to accommodate the largest possible program. 

Symbol Table Entries

. each entry for a declaration of a name
. format need not be uniform because information depends upon the usage of the name
. each entry is a record consisting of consecutive words
. to keep records uniform some entries may be outside the symbol table
. information is entered into symbol table at various times
- keywords are entered initially
- identifier lexemes are entered by lexical analyzer
. symbol table entry may be set up when role of name becomes clear
. attribute values are filled in as information is available 
For each declaration of a name, there is an entry in the symbol table. Different entries need to store different information because of the different contexts in which a name can occur. An entry corresponding to a particular name can be inserted into the symbol table at different stages depending on when the role of the name becomes clear. The various attributes that an entry in the symbol table can have are lexeme, type of name, size of storage and in case of functions - the parameter list etc. 
A name may denote several objects in the same block 
- int x; struct x {float y, z; } 
- lexical analyzer returns the name itself and not pointer to symbol table entry 
- record in the symbol table is created when role of the name becomes clear
- in this case two symbol table entries will be created
. attributes of a name are entered in response to declarations
. labels are often identified by colon
. syntax of procedure/function specifies that certain identifiers are formals 
. characters in a name
- there is a distinction between token id, lexeme and attributes of the names 
- it is difficult to work with lexemes
- if there is modest upper bound on length then lexemes can be stored in symbol table 
- if limit is large store lexemes separately 
There might be multiple entries in the symbol table for the same name, all of them having different roles. It is quite intuitive that the symbol table entries have to be made only when the role of a particular name becomes clear. The lexical analyzer therefore just returns the name and not the symbol table entry as it cannot determine the context of that name. Attributes corresponding to the symbol table are entered for a name in response to the corresponding declaration. There has to be an upper limit for the length of the lexemes for them to be stored in the symbol table. 
Storage Allocation Information 

. information about storage locations is kept in the symbol table
. if target is assembly code then assembler can take care of storage for various names
. compiler needs to generate data definitions to be appended to assembly code
. if target is machine code then compiler does the allocation
. for names whose storage is allocated at runtime no storage allocation is done
Information about the storage locations that will be bound to names at run time is kept in the symbol table. If the target is assembly code, the assembler can take care of storage for various names. All the compiler has to do is to scan the symbol table, after generating assembly code, and generate assembly language data definitions to be appended to the assembly language program for each name. If machine code is to be generated by the compiler, then the position of each data object relative to a fixed origin must be ascertained. The compiler has to do the allocation in this case. In the case of names whose storage is allocated on a stack or heap, the compiler does not allocate storage at all, it plans out the activation record for each procedure. 

Data Structures 

. List data structure 

- simplest to implement

- use a single array to store names and information

- search for a name is linear 

- entry and lookup are independent operations

- cost of entry and search operations are very high and lot of time goes into book keeping

. Hash table 

- The advantages are obvious 

Representing Scope Information 

. entries are declarations of names

. when a lookup is done, entry for appropriate declaration must be returned 

. scope rules determine which entry is appropriate

. maintain separate table for each scope

. symbol table for a procedure or scope is compile time equivalent an activation record

. information about non local is found by scanning symbol table for the enclosing procedures 

. symbol table can be attached to abstract syntax of the procedure (integrated into intermediate representation) 

The entries in the symbol table are for declaration of names. When an occurrence of a name in the source text is looked up in the symbol table, the entry for the appropriate declaration, according to the scoping rules of the language, must be returned. A simple approach is to maintain a separate symbol table for each scope most closely nested scope rule can be implemented in data structures discussed so far

. give each procedure a unique number

. blocks must also be numbered 

. procedure number is part of all local declarations

. name is represented as a pair of number and name

. names are entered in symbol table in the order they occur

. most closely nested rule can be created in terms of following operations:

- lookup: find the most recently created entry

- insert: make a new entry

- delete: remove the most recently created entry 

Most closely nested scope rules can be implemented by adapting the data structures discussed in the previous section. Each procedure is assigned a unique number. If the language is block-structured, the blocks must also be assigned unique numbers. The name is represented as a pair of a number and a name. This new name is added to the symbol table. Most scope rules can be implemented in terms of following operations:
a) Lookup - find the most recently created entry.
b) Insert - make a new entry. 
c) Delete - remove the most recently created entry. 
Symbol table structure 

. Assign variables to storage classes that prescribe scope, visibility, and lifetime

- scope rules prescribe the symbol table structure

- scope: unit of static program structure with one or more variable declarations

- scope may be nested

. Pascal: procedures are scoping units 

. C: blocks, functions, files are scoping units

. Visibility, lifetimes, global variables

. Common (in Fortran)

. Automatic or stack storage

. Static variables 

storage class : A storage class is an extra keyword at the beginning of a declaration which modifies the declaration in some way. Generally, the storage class (if any) is the first word in the declaration, preceding the type name. Ex. static, extern etc.
Scope: The scope of a variable is simply the part of the program where it may be accessed or written. It is the part of the program where the variable's name may be used. If a variable is declared within a function, it is local to that function. Variables of the same name may be declared and used within other functions without any conflicts. For instance, 
int fun1() 
{ 
    int a; 
    int b; 
    .... 
} 

int fun2() 
{ 
    int a; 
    int c; 
    .... 
} 

Visibility: The visibility of a variable determines how much of the rest of the program can access that variable. You can arrange that a variable is visible only within one part of one function, or in one function, or in one source file, or anywhere in the program

Local and Global variables: A variable declared within the braces {} of a function is visible only within that function; variables declared within functions are called local variables. On the other hand, a variable declared outside of any function is a global variable , and it is potentially visible anywhere within the program
Automatic Vs Static duration: How long do variables last? By default, local variables (those declared within a function) have automatic duration : they spring into existence when the function is called, and they (and their values) disappear when the function returns. Global variables, on the other hand, have static duration : they last, and the values stored in them persist, for as long as the program does. (Of course, the values can in general still be overwritten, so they don't necessarily persist forever.) By default, local variables have automatic duration. To give them static duration (so that, instead of coming and going as the function is called, they persist for as long as the function does), you precede their declaration with the static keyword: static int i; By default, a declaration of a global variable (especially if it specifies an initial value) is the defining instance. To make it an external declaration, of a variable which is defined somewhere else, you precede it with the keyword extern: extern int j; Finally, to arrange that a global variable is visible only within its containing source file, you precede it with the static keyword: static int k; Notice that the static keyword can do two different things: it adjusts the duration of a local variable from automatic to static, or it adjusts the visibility of a global variable from truly global to private-to-the-file. 

Symbol attributes and symbol table entries 

. Symbols have associated attributes

. typical attributes are name, type, scope, size, addressing mode etc.

. a symbol table entry collects together attributes such that they can be easily set and retrieved

. example of typical names in symbol table 
	Name 
	Type 

	name 
	character string 

	class 
	enumeration 

	size 
	integer 

	type 
	enumeration 


Local Symbol Table Management 

NewSymTab : SymTab [image: image941.png]


SymTab 

DestSymTab : SymTab [image: image942.png]


SymTab 

InsertSym : SymTab X Symbol [image: image943.png]


boolean 

LocateSym : SymTab X Symbol [image: image944.png]


boolean 

GetSymAttr : SymTab X Symbol X Attr [image: image945.png]


boolean 

SetSymAttr : SymTab X Symbol X Attr X value [image: image946.png]


boolean 

NextSym : SymTab X Symbol [image: image947.png]


Symbol 

MoreSyms : SymTab X Symbol [image: image948.png]


boolean 

These are prototypes of typical function declarations used for managing local symbol table. The right hand side of the arrows is the output of the procedure and the left side has the input. 
A major consideration in designing a symbol table is that insertion and retrieval should be as fast as possible 
. One dimensional table: search is very slow
. Balanced binary tree: quick insertion, searching and retrieval; extra work required to keep the tree balanced
. Hash tables: quick insertion, searching and retrieval; extra work to compute hash keys
. Hashing with a chain of entries is generally a good approach 
A major consideration in designing a symbol table is that insertion and retrieval should be as fast as possible. We talked about the one dimensional and hash tables a few slides back. Apart from these balanced binary trees can be used too. Hashing is the most common approach. 

Hashed local symbol table 
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Hash tables can clearly implement 'lookup' and 'insert' operations. For implementing the 'delete', we do not want to scan the entire hash table looking for lists containing entries to be deleted. Each entry should have two links:

a) A hash link that chains the entry to other entries whose names hash to the same value - the usual link in the hash table.
b) A scope link that chains all entries in the same scope - an extra link. If the scope link is left undisturbed when an entry is deleted from the hash table, then the chain formed by the scope links will constitute an inactive symbol table for the scope in question. 
Nesting structure of an example Pascal program
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Look at the nesting structure of this program. Variables a, b and c appear in global as well as local scopes. Local scope of a variable overrides the global scope of the other variable with the same name within its own scope. The next slide will show the global as well as the local symbol tables for this structure. Here procedure I and h lie within the scope of g ( are nested within g). 

Global Symbol table structure 
	. scope and visibility rules determine the structure of global symbol table

. for Algol class of languages scoping rules structure the symbol table as tree of local tables

- global scope as root 

- tables for nested scope as children of the table for the scope they are nested in 
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The global symbol table will be a collection of symbol tables connected with pointers. The exact structure will be determined by the scope and visibility rules of the language. Whenever a new scope is encountered a new symbol table is created. This new table contains a pointer back to the enclosing scope's symbol table and the enclosing one also contains a pointer to this new symbol table. Any variable used inside the new scope should either be present in its own symbol table or inside the enclosing scope's symbol table and all the way up to the root symbol table. A sample global symbol table is shown in the slides later. 
[image: image952.png]y
x
readarray — to readarray
exchange — to exchange
‘quicksort
readammay exchange quicksort
header header
T 3
v
‘patition
patition
— ] hoader
i
i





Storage binding and symbolic registers 

. Translates variable names into addresses

. This process must occur before or during code generation

. each variable is assigned an address or addressing method

. each variable is assigned an offset with respect to base which changes with every invocation

. variables fall in four classes: global, global static, stack, local (non-stack) static 

The variable names have to be translated into addresses before or during code generation. There is a base address and every name is given an offset with respect to this base which changes with every invocation. The variables can be divided into four categories:
a) Global Variables
b) Global Static Variables
c) Stack Variables
d) Stack Static Variables 

global/static: fixed relocatable address or offset with respect to base as global pointer

. stack variable: offset from stack/frame pointer

. allocate stack/global in registers

. registers are not indexable, therefore, arrays cannot be in registers

. assign symbolic registers to scalar variables

. used for graph coloring for global register allocation 

Global variables, on the other hand, have static duration ( hence also called static variables): they last, and the values stored in them persist, for as long as the program does. (Of course, the values can in general still be overwritten, so they don't necessarily persist forever.) Therefore they have fixed relocatable address or offset with respect to base as global pointer . By default, local variables (stack variables) (those declared within a function) have automatic duration : they spring into existence when the function is called, and they (and their values) disappear when the function returns. This is why they are stored in stacks and have offset from stack/frame pointer. Register allocation is usually done for global variables. Since registers are not indexable, therefore, arrays cannot be in registers as they are indexed data structures. Graph coloring is a simple technique for allocating register and minimizing register spills that works well in practice. Register spills occur when a register is needed for a computation but all available registers are in use. The contents of one of the registers must be stored in memory to free it up for immediate use. We assign symbolic registers to scalar variables which are used in the graph coloring.
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Local Variables in Frame 

. assign to consecutive locations; allow enough space for each

- may put word size object in half word boundaries

- requires two half word loads

- requires shift, or, and

. align on double word boundaries 

- wastes space

- machine may allow small offsets 

word boundaries - the most significant byte of the object must be located at an address whose two least significant bits are zero relative to the frame pointer half-word boundaries - the most significant byte of the object being located at an address whose least significant bit is zero relative to the frame pointer sort variables by the alignment they need

. store largest variables first 

- automatically aligns all the variables

- does not require padding

. store smallest variables first 

- requires more space (padding) 

- for large stack frame makes more variables accessible with small offsets 

While allocating memory to the variables, sort variables by the alignment they need. You may:

. store largest variables first: It automatically aligns all the variables and does not require padding since the next variable's memory allocation starts at the end of that of the earlier variable
. store smallest variables first: It requires more space (padding) since you have to accommodate for the biggest possible length of any variable data structure. The advantage is that for large stack frame, more variables become accessible within small offsets 
How to store large local data structures 

. Requires large space in local frames and therefore large offsets

. If large object is put near the boundary other objects require large offset either from fp (if put near beginning) or sp (if put near end)

. Allocate another base register to access large objects

. Allocate space in the middle or elsewhere; store pointer to these locations from at a small offset from fp

. Requires extra loads 

Large local data structures require large space in local frames and therefore large offsets. As told in the previous slide's notes, if large objects are put near the boundary then the other objects require large offset. You can either allocate another base register to access large objects or you can allocate space in the middle or elsewhere and then store pointers to these locations starting from at a small offset from the frame pointer, fp. 
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In the unsorted allocation you can see the waste of space in green. In sorted frame there is no waste of space. 

Intermediate Code Generation 
 

Intermediate Code Generation 

. Abstraction at the source level identifiers, operators, expressions, statements, conditionals, iteration, functions (user defined, system defined or libraries)

. Abstraction at the target level memory locations, registers, stack, opcodes, addressing modes, system libraries, interface to the operating systems

. Code generation is a mapping from source level abstractions to target machine abstractions 

After syntax and semantic analysis, some compilers generate an explicit intermediate representation of the source program. We can think of this IR as a program for an abstract machine. This IR should have two important properties: It should be easy to produce and it should be easy to translate into target program. IR should have the abstraction in between of the abstraction at the source level (identifiers, operators, expressions, statements, conditionals, iteration, functions (user defined, system defined or libraries)) and of the abstraction at the target level (memory locations, registers, stack, opcodes, addressing modes, system libraries and interface to the operating systems). Therefore IR is an intermediate stage of the mapping from source level abstractions to target machine abstractions. 

Intermediate Code Generation ... 

. Front end translates a source program into an intermediate representation 

. Back end generates target code from intermediate representation 

. Benefits 

- Retargeting is possible 

- Machine independent code optimization is possible 
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In the analysis-synthesis model of a compiler, the front end translates a source program into an intermediate representation from which the back end generates target code. Details of the target language are confined to the back end, as far as possible. Although a source program can be translated directly into the target language, some benefits of using a machine-independent intermediate form are:
1. Retargeting is facilitated: a compiler for a different machine can be created by attaching a back-end for the new machine to an existing front-end.
2. A machine-independent code optimizer can be applied to the intermediate representation. 
Syntax directed translation of expression into 3-address code 

	S [image: image956.png]


id := E 
	S.code = E.code || 

	 
	gen(id.place:= E.place) 

	E [image: image957.png]


E1 + E2 
	E.place:= newtmp 

	 
	E.code:= E 1 .code || E2 .code || 

	 
	gen(E.place := E 1 .place + E 2 .place) 

	E [image: image958.png]


E1 * E 2 
	E.place:= newtmp 

	 
	E.code := E 1 .code || E 2 .code || 

	 
	gen(E.place := E1 .place * E 2 .place) 

	 
	 


Three-address code is a sequence of statements of the general form

X := y op z

Where x, y and z are names, constants, or compiler generated temporaries. op stands for any operator, such as fixed- or floating-point arithmetic operator, or a logical operator on Boolean-valued data. Note that no built up arithmetic expression are permitted, as there is only one operator on the right side of a statement. Thus a source language expression like x + y * z might be translated into a sequence

t1 := y * z

t2 := x + t1 

where t1 and t2 are compiler-generated temporary names. This unraveling of complicated arithmetic expression and of nested flow-of-control statements makes three- address code desirable for target code generation and optimization.

The use of names for the intermediate values computed by a program allows three-address code to be easily rearranged unlike postfix notation. We can easily generate code for the three-address code given above. The S-attributed definition above generates three-address code for assigning statements. The synthesized attribute S.code represents the three-address code for the assignment S. The nonterminal E has two attributes:

. E.place , the name that will hold the value of E, and 

. E.code , the sequence of three-address statements evaluating E.

The function newtemp returns a sequence of distinct names t1, t2,.. In response to successive calls. 

Syntax directed translation of expression . 

	E [image: image959.png]


-E 1 
	E.place := newtmp 

	 
	E.code := E1 .code || 

	 
	gen(E.place := - E 1 .place) 

	E [image: image960.png]


(E1 ) 
	E.place := E 1 .place 

	 
	E.code := E1 .code 

	E [image: image961.png]


id 
	E.place := id.place 

	 
	E.code := ' ' 


Example 

For a = b * -c + b * -c 

following code is generated [image: image962.png]



t 1 = -c 
t 2 = b * t 1 

t 3 = -c 
t 4 = b * t 3 

t 5 = t 2 + t 4 

a = t 5 

	S [image: image963.png]


while E do S1 

	S.begin := newlabel 


	S. begin : 

	S.after := newlabel 


	E.code 

	 


	if E.place = 0 goto S.after 

	S.code := gen(S.begin:) || 


	S1 .code 

	E.code || 


	goto S.begin 

	gen(if E.place = 0 goto S.after) || 


	S.after : 

	S 1 .code || 


	 

	gen(goto S.begin) || 


	 

	gen(S.after:) 


	  

	  



	


The syntax directed definition is shown in the slide. A new label S .begin is created and attached to the first instruction for E. Another new label S. after is created. The code for E generates a jump to the label if E is true, a jump to S.next if E is false; again, we set E.false to be S.next. After the code for S1 we place the instruction goto S.begin, which causes a jump back to the beginning of the code for the Boolean expression. Note that S1.next is set to this label S.begin, so jumps from within S1.code can directly to S.begin.

	Flow of Control . 

S [image: image964.png]


if E then S1 else S2 

S.else := newlabel 

 

S.after := newlabel 

E.code 

S.code = E.code || 

if E.place = 0 goto S.else 

gen(if E.place = 0 goto S.else) || 

S1 .code 

S 1 .code || 

goto S.after 

gen(goto S.after) || 

S.else: 

gen(S.else :) || 

S 2 .code 

gen(S.after :) 

S.after: 

 

 

 

In translating the if-then-else statement the Boolean expression E jumps out of it to the first instruction of the code for S1 if E is true, and to first instruction of the code for S2 if E is false, as illustrated in the figure above. As with the if-then statement, an inherited attribute s.next gives the label of the three-address instruction to be executed next after executing the code for S. An explicit goto S.next appears after the code for S1, but not after S2. 


Declarations 

For each name create symbol table entry with information like type and relative address 

	P [image: image965.png]


{offset=0} D 
	 

	D [image: image966.png]


D ; D 
	 

	D [image: image967.png]


id : T 
	enter(id.name, T.type, offset); 

	 
	offset = offset + T.width 

	T [image: image968.png]


integer 
	T.type = integer; T.width = 4 

	T [image: image969.png]


real 
	T.type = real; T.width = 8 

	 
	 


In the translation scheme nonterminal P generates a sequence of declarations of the form id : T . Before the first declaration is considered, offset is set to 0. As each new name is seen, that name is entered in the symbol table with the offset equal to the current value of offset, and offset is incremented by the width of the data object denoted by the name.
The procedure - enter (name, type, offset) creates a symbol-table entry for name , gives it type and relative address offset in its data area. We use synthesized attributes type and width for nonterminal T to indicate the type and Width, or number of memory units for nonterminal T to indicate the type and width, or number of memory units taken by objects of that type. If type expressions are represented by graphs, then attribute type might be a pointer to the node representing a type expression. We assume integers to have width of 4 and real to have width of 8. The width of an array is obtained by multiplying the width of each element by the number of elements in the array. The width of each pointer is also assumed to be 4. 
Declarations . 

T [image: image970.png]


array [ num ] of T1 
T.type = array(num.val, T 1 .type) 
T.width = num.val x T1 .width 

T [image: image971.png]


[image: image972.png]


T1 

T.type = pointer(T 1 .type) 

T.width = 4 

This is the continuation of the example in the previous slide.. 

Keeping track of local information 

. when a nested procedure is seen, processing of declaration in enclosing procedure is temporarily suspended
. assume following language P [image: image973.png]


D D [image: image974.png]


D ;D | id : T | proc id ;D ; S
. a new symbol table is created when procedure declaration D [image: image975.png]


proc id ; D1 ; S is seen
. entries for D1 are created in the new symbol table 
. the name represented by id is local to the enclosing procedure 
Until now, it has been discussed how declarations are processed when the language is such that it allows all the declarations in a procedure to be processed as a group. A single symbol table is used and a global variable offset is used to keep track of the next available relative address. In a language with nested procedures, names local to each procedure can be assigned relative addresses. Multiple symbol tables are used. When a procedure declaration is seen, processing of declarations in the enclosing procedure is temporarily suspended. Consider the following language: 

P -> D

D -> D; D | id : T | proc id ; D ;S 
Whenever a procedure declaration D proc id ; D1 ; S is processed, a new symbol table with a pointer to the symbol table of the enclosing procedure in its header is created and the entries for declarations in D1 are created in the new symbol table. The name represented by id is local to the enclosing procedure and is hence entered into the symbol table of the enclosing procedure. 

Example

[image: image976.png]program sort;
vara : array[1,

x
procedure readarray;

procedure quicksortim,n

var ky : integer;

function partition .y:
integer;

nteger;





For the above procedures, entries for x, a and quicksort are created in the symbol table of sort. A pointer pointing to the symbol table of quicksort is also entered. Similarly, entries for k,v and partition are created in the symbol table of quicksort. The headers of the symbol tables of quicksort and partition have pointers pointing to sort and quicksort respectively 
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This structure follows from the example in the previous slide. 
Creating symbol table 

. mktable (previous) 
create a new symbol table and return a pointer to the new table. The argument previous points to the enclosing procedure 

. enter (table, name, type, offset) 
creates a new entry 

. addwidth (table, width) 
records cumulative width of all the entries in a table 

. enterproc (table, name, newtable) 

creates a new entry for procedure name. newtable points to the symbol table of the new procedure 

The following operations are designed :
1. mktable(previous): creates a new symbol table and returns a pointer to this table. previous is pointer to the symbol table of parent procedure.
2. enter(table,name,type,offset): creates a new entry for name in the symbol table pointed to by table .
3. addwidth(table,width): records cumulative width of entries of a table in its header.
4. enterproc(table,name ,newtable): creates an entry for procedure name in the symbol table pointed to by table . newtable is a pointer to symbol table for name . 

	Creating symbol table . 

P [image: image978.png]



{t=mktable(nil); 

 

push(t,tblptr); 

 

push(0,offset)} 

D 

 

 

{addwidth(top(tblptr),top(offset)); 

 

pop(tblptr); 

 

pop(offset)} 

D[image: image979.png]


 D ;

D 

 

 

 

  

The symbol tables are created using two stacks: tblptr to hold pointers to symbol tables of the enclosing procedures and offset whose top element is the next available relative address for a local of the current procedure. Declarations in nested procedures can be processed by the syntax directed definitions given below. Note that they are basically same as those given above but we have separately dealt with the epsilon productions. Go to the next page for the explanation. 
[image: image980.png]P->MD  {  addwidth(iop(iblpr)  top(ofisen);
Pop(tblptr); pop(offset);

¥
M- L t= mable(i);
push(s blptr);
push(@,offset);
¥
D->D1;02
D->procid ; NDL; S £ t=topbpr);
addwiding, top(offset);
Pop(tblptr); pop(affset)|
enterproc(top(ibipt), idname , t)
¥
D> idiT { enter (top(tblptr), dnarme, T.type , op(ofisen);
op(offset) = top(affset) + T.widh
¥
N> Tt= mktable (op(blpr));

push(t tiptr); push(@,offset);
3




 


Creating symbol table . 

D [image: image981.png]


proc id; 

{t = mktable(top(tblptr)); 

push(t, tblptr); push(0, offset)} 

D 1 ; S 

{t = top(tblptr); 

addwidth(t, top(offset)); 

pop(tblptr); pop(offset);; 

enterproc(top(tblptr), id.name, t)} 

D [image: image982.png]


id: T 

{enter(top(tblptr), id.name, T.type, top(offset)); 

top(offset) = top (offset) + T.width} 

The action for M creates a symbol table for the outermost scope and hence a nil pointer is passed in place of previous. When the declaration, D proc id ; ND1 ; S is processed, the action corresponding to N causes the creation of a symbol table for the procedure; the pointer to symbol table of enclosing procedure is given by top(tblptr). The pointer to the new table is pushed on to the stack tblptr and 0 is pushed as the initial offset on the offset stack. When the actions corresponding to the subtrees of N, D1 and S have been executed, the offset corresponding to the current procedure i.e., top(offset) contains the total width of entries in it. Hence top(offset) is added to the header of symbol table of the current procedure. The top entries of tblptr and offset are popped so that the pointer and offset of the enclosing procedure are now on top of these stacks. The entry for id is added to the symbol table of the enclosing procedure. When the declaration D -> id :T is processed entry for id is created in the symbol table of current procedure. Pointer to the symbol table of current procedure is again obtained from top(tblptr). Offset corresponding to the current procedure i.e. top(offset) is incremented by the width required by type T to point to the next available location. 

	Field names in records

T [image: image983.png]


record 

{t = mktable(nil); 

push(t, tblptr); push(0, offset)} 

D end 

{T.type = record(top(tblptr)); 

T.width = top(offset); 

pop(tblptr); pop(offset)} 

T -> record LD end 
{ t = mktable(nil); 
 

push(t, tblptr); push(0, offset) 
 

} 
L -> 
{ T.type = record(top(tblptr)); 
 

T.width = top(offset); 
 

pop(tblptr); pop(offset) 
 

} 
The processing done corresponding to records is similar to that done for procedures. After the keyword record is seen the marker L creates a new symbol table. Pointer to this table and offset 0 are pushed on the respective stacks. The action for the declaration D -> id :T push the information about the field names on the table created. At the end the top of the offset stack contains the total width of the data objects within the record. This is stored in the attribute T.width. The constructor record is applied to the pointer to the symbol table to obtain T.type.


Names in the Symbol table 

S [image: image984.png]


id := E 
{p = lookup(id.place); 

if p <> nil then emit(p := E.place) 

else error} 

E [image: image985.png]


id 

{p = lookup(id.name); 

if p <> nil then E.place = p 

else error} 

The operation lookup in the translation scheme above checks if there is an entry for this occurrence of the name in the symbol table. If an entry is found, pointer to the entry is returned else nil is returned. lookup first checks whether the name appears in the current symbol table. If not then it looks for the name in the symbol table of the enclosing procedure and so on. The pointer to the symbol table of the enclosing procedure is obtained from the header of the symbol table.
Addressing Array Elements 

. Arrays are stored in a block of consecutive locations

. assume width of each element is w

. ith element of array A begins in location base + (i - low) x w where base is relative address of A[low]

. the expression is equivalent to

i x w + (base-low x w)

[image: image986.png]


i x w + const 

Elements of an array are stored in a block of consecutive locations. For a single dimensional array, if low is the lower bound of the index and base is the relative address of the storage allocated to the array i.e., the relative address of A[low], then the i th Elements of an array are stored in a block of consecutive locations
For a single dimensional array, if low is the lower bound of the index and base is the relative address of the storage allocated to the array i.e., the relative address of A[low], then the i th elements begins at the location: base + (I - low)* w . This expression can be reorganized as i*w + (base -low*w) . The sub-expression base-low*w is calculated and stored in the symbol table at compile time when the array declaration is processed, so that the relative address of A[i] can be obtained by just adding i*w to it. 
2-dimensional array

. storage can be either row major or column major
. in case of 2-D array stored in row major form address of A[i1 , i2 ] can be calculated as 
base + ((i1 - low 1 ) x n2 + i2 - low 2 ) x w 
where n 2 = high2 - low2 + 1 
. rewriting the expression gives 
((i1 x n 2 ) + i 2 ) x w + (base - ((low 1 x n2 ) + low 2 ) x w) 
[image: image987.png]


((i1 x n2 ) + i2 ) x w + constant 
. this can be generalized for A[i1 , i2 ,., ik ] 
Similarly, for a row major two dimensional array the address of A[i][j] can be calculated by the formula : 
base + ((i-lowi )*n2 +j - lowj )*w where low i and lowj are lower values of I and j and n2 is number of values j can take i.e. n2 = high2 - low2 + 1. 
This can again be written as : 
((i * n2) + j) *w + (base - ((lowi *n2) + lowj ) * w) and the second term can be calculated at compile time. 
In the same manner, the expression for the location of an element in column major two-dimensional array can be obtained. This addressing can be generalized to multidimensional arrays. 

Example

. Let A be a 10x20 array therefore, n 1 = 10 and n 2 = 20 and assume w = 4 
. code to access A[y,z] is 
t 1 = y * 20

t 1 = t 1 + z

t2 = 4 * t 1 

t 3 =A-84 {((low1 Xn2 )+low2 )Xw)=(1*20+1)*4=84}

t4 = t2 + t 3 

x = t 4 

Let A be a 10x20 array

n1 = 10 and n2 = 20
Assume width of the type stored in the array is 4. The three address code to access A[y,z] is 
t1 = y * 20
t1 = t1 + z
t2 = 4 *t1
t3 =base A -84 {((low 1 *n2)+low 2 )*w)=(1*20+1)*4=84}
t4 =t2 +t3 
x = t4 
Type conversion within assignments 

E [image: image988.png]


E1 + E2 
E.place= newtmp;
if E1 .type = integer and E2 .type = integer
then emit(E.place ':=' E 1 .place 'int+' E 2 .place);
E.type = integer; 
. 

similar code if both E1 .type and E2 .type are real 
. 

else if E 1 .type = int and E2 .type = real 

then 

u = newtmp;

emit(u ':=' inttoreal E 1 .place); 

emit(E.place ':=' u 'real+' E2 .place); 

E.type = real; 

. 

similar code if E1 .type is real and E2 .type is integer 
When a compiler encounters mixed type operations it either rejects certain mixed type operations or generates coercion instructions for them. 
Semantic action for E -> E1+ E2:
E.place= newtmp;
if E1.type = integer and E2.type = integer
then emit(E.place ':=' E1.place 'int+' E2.place);
E.type = integer;
..
similar code if both E1.type and E2.type are real
.
else if E1.type = int and E2.type = real
then
u = newtmp;
emit(u ':=' inttoreal E1.place);
emit(E.place ':=' u 'real+' E2.place);
E.type = real;
. 
similar code if E1.type is real and E2.type is integer
The three address statement of the form u ':=' inttoreal E1.place denotes conversion of an integer to real. int+ denotes integer addition and real+ denotes real addition. 
Code generation is done along with type checking and if type resolution can be done in a single pass no intermediate representation like an abstract syntax tree would be required. 

Example

real x, y; 

int i, j; 

x = y + i * j 

generates code

t1 = i int* j

t2 = inttoreal t 1
t3 = y real+ t 2
x = t 3 

Here is an example of type conversion within assignments 

Boolean Expressions

. compute logical values
. change the flow of control
. boolean operators are: and or not 
[image: image989.png]E—EorE

Eand E
not E

®)

id relop id
true

false




Boolean expressions are used to compute logical values and as conditional expressions in statements that alter flow of control such as if-then statements. Boolean expressions are composed of the Boolean operators and, or, not - applied to boolean variables or relational expressions. 
Relational expressions are of the form E1 relop E2 where E1 and E2 are arithmetic expressions. Boolean expressions can be generated by the following grammar- 
E -> E or E | E and E | not E | (E) | id relop id | true | false 
Methods of translation

. Evaluate similar to arithmetic expressions
- Normally use 1 for true and 0 for false 
. implement by flow of control
- given expression E 1 or E2 if E1 evaluates to true then E1 or E 2 evaluates to true without evaluating E2 
There are two principal methods of representing the value of Boolean expressions- 
1. Encode true and false numerically and evaluate analogously to an arithmetic expression. Normally 1 is used to denote true and 0 to denote false.
2. Implementing Boolean expressions by flow of control, that is, representing the value of a Boolean expression by the position reached in the program. For example, consider the expression - a or (b and c). If the value of a is true the values of b and c can be ignored and the entire expression can be assigned the value true. If a is false the value of (b and c) needs to be considered. If the value of b is false, the expression (b and c) and hence the entire expression can be assigned value false. The value of c needs to be considered only if a is false and b is true. 
Numerical representation

. a or b and not c 

t 1 = not c

t2 = b and t1 

t3 = a or t2 

. relational expression a < b is equivalent to if a < b then 1 else 0 

1. if a < b goto 4.

2. t = 0

3. goto 5

4. t = 1

5. 

Consider the implementation of Boolean expressions using 1 to denote true and 0 to denote false. Expressions are evaluated in a manner similar to arithmetic expressions. 
For example, the three address code for a or b and not c is:
t1 = not c
t2 = b and t1
t3 = a or t2 
Syntax directed translation of boolean expressions 

E [image: image990.png]


E 1 or E2 

E.place := newtmp

emit(E.place ':=' E 1 .place 'or' E2 .place) 

E[image: image991.png]


 E1 and E 2 

E.place:= newtmp

emit(E.place ':=' E 1 .place 'and' E2 .place) 

E [image: image992.png]


not E1 

E.place := newtmp 

emit(E.place ':=' 'not' E1 .place) 

E [image: image993.png]


(E1 ) E.place = E1 .place 

The above written translation scheme produces three address code for Boolean expressions. It is continued to the next page. 
Syntax directed translation of boolean expressions 

E[image: image994.png]


 id1 relop id2 

E.place := newtmp

emit(if id1.place relop id2.place goto nextstat+3)

emit(E.place = 0) emit(goto nextstat+2)

emit(E.place = 1) 

E [image: image995.png]


true 

E.place := newtmp

emit(E.place = '1') 

E [image: image996.png]


false 

E.place := newtmp

emit(E.place = '0') 

In the above scheme, nextstat gives the index of the next three address code in the output sequence and emit increments nextstat after producing each three address statement. 

	Example: 
Code for a < b or c < d and e < f

  

100: if a < b goto 103 

if e < f goto 111 

101: t1 = 0 

109: t3 = 0 

102: goto 104 

110: goto 112 

103: t1 = 1 

111: t3 = 1 

104: 

112: 

if c < d goto 107 

t4 = t2 and t3 

105: t2 = 0 

113: t5 = t1 or t 4 

106: goto 108 

 

107: t2 = 1 

 

108: 

 

 

 

A relational expression a < b is equivalent to the conditional statement if a < b then 1 else 0 and three address code for this expression is:
100: if a < b goto 103.
101: t = 0 
102: goto 104 
103: t = 1
104:
It is continued from 104 in the same manner as the above written block. 


Short Circuit Evaluation of boolean expressions 

. Translate boolean expressions without:

- generating code for boolean operators 

- evaluating the entire expression

. Flow of control statements

S [image: image997.png]


if E then S1 

| if E then S1 else S 2
| while E do S 1 

We can translate a boolean expression into three-address code without generating code for boolean operators and without evaluating the entire expression. Take the case of the previous example, here we can tell the value of t by whether we reach statement 101 or 103, so the value of t becomes redundant. Similarly, for larger expressions the value can be determined without having to evaluate the expression completely. However, if a part of the expression having a side effect is not evaluated, the side effect will not be visible. 
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S ? if E then S 1 

E.true = newlabel

E.false = S.next

S1 .next = S.next 

S.code = E.code || 

gen(E.true ':') || 

S1 .code 

Now we will consider the translation of boolean expressions into three address code generated by the following grammar: 
S -> if E then S1
| if E then S1 else S2

| while E do S1 
where E is the boolean expression to be translated. 
Consider the following:

newlabel - returns a new symbolic label each time it is called.
E.true - the label to which control flows if E is true.
E.false - the label to which control flows if E is false. 
For if-then 
S -> if E then S1 
E.true = newlabel      //generate a new label for E.true 
E.false = S.next      //jump to S.next if E is false 
S1.next = S.next 
S.code = E.code || gen(E.true ':') || S1.code      // associate the label created for E.true with the 
// three address code for the first statement for S1 
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	S [image: image1000.png]


if E then S1 else S2 


		E.true = newlabel 


		E.false = newlabel 


		S 1 .next = S.next 


		S2 .next = S.next 


		S.code = E.code || 


		gen(E.true ':') || 

S 1 .code || 

gen(goto S.next) || 

gen(E.false ':') ||

S 2 .code 



	For if-then-else
S -> if E then S1 else S2 

E.true = newlabel

E.false = newlabel
S1.next = S.next
S2.next = S.next 
S.code = E.code || gen(E.true ':') || S1.code || gen('goto' S.next) || gen(E.false ':') || S2.code 
In the above code, the labels E.true and E.false created are associated with the first three address code instructions for S1 and S2 respectively, so that if E is true, jump to S1 occurs and if E is false jump to S2 occurs. An explicit goto S.next is required after the code of S1 to ensure that after execution of code for S1 control moves to the statement after S instead of falling through the code of S2, in case E is true. 
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	S [image: image1002.png]


while E do S 1 

	
	S.begin = newlabel 

	
	E.true = newlabel 

	
	E.false = S.next 

	
	S 1 .next = S.begin 

	
	S.ocde = gen(S.begin ':') || 

	
	E.code || 

gen(E.true ':') || 

S 1 .code || 

gen(goto S.begin) 


For while-do
S -> while E do S1 
S.begin = newlabel 

E.true = newlabel
E.false = S.next 
S1.next = S.begin
S.code = gen(S.begin ':') || E.code || gen(E.true ':') || S1.code || gen(goto S.begin) 
In case of while-do statement a new label S.begin is created and associated with the first instruction of the code for E, so that control can be transferred back to E after the execution of S1. E.false is set to S.next, so that control moves out of the code for S in case E is false. Since S1.next is set to S.begin, jumps from the code for S1 can go directly to S.begin. 
	Control flow translation of boolean expression 

  

E [image: image1003.png]


E1 or E 2 

E1 .true := E.true 

 

E 1 .false := newlabel 

 

E2 .true := E.true 

 

E2 .false := E.false 

 

E.code := E 1 .code || gen(E 1 .false) || E2 .code 

E [image: image1004.png]


E 1 and E2 

E 1 .true := new label 

 

E 1 false := E.false 

 

E2 .true := E.true 

 

E2 false := E.false 

 

E.code := E 1 .code || gen(E1 .true) || E2 .code 

 

 

 

 

E is translated into a sequence of conditional and unconditional jumps to one of the two locations: E.true or E.false depending if E is true or false. If E is of the form E1 or E2, then if E1 is true then we immediately know that E itself is true, so E1.true is the same as E.true. If E1 is false then E2 must be evaluated, so E1.false is the label of the first statement of E2. If E2 is evaluated and E2 is true, it implies that E is true, so E2.true is set to E.true. Similarly, if E2 is evaluated and it is false, the entire expression is false. 

E -> E1 or E2 E1.true := E.true 

E1.false := newlabel 

E2.true := E.true 

E2.false := E.false 

E.code := E1.code || gen(E1.false) || E2.code 

Analogously E1 and E2 can also be translated. Here if E1 is false then there need be no further considerations. 

E -> E1 and E2 E1.true := new label 

E1 false := E.false 

E2.true := E.true 

E2 false := E.false 

E.code := E1.code || gen(E1.true) || E2.code 


Control flow translation of boolean expression . 
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not E 1 
	E 1 .true := E.false 

	 
	E 1 .false := E.true 

	 
	E.code := E1 .code 

	E [image: image1006.png]


(E 1 ) 
	E 1 .true := E.true 

	 
	E1 .false := E.false 

	 
	E.code := E 1 .code 

	 
	 


For an expression E of the form not E1, just interchange the true and false exits of E1 to get the true and false exits of E. 
E -> not E1 E1.true := E.false 
E1.false := E.true 

E.code := E1.code 

If E is a bracketed expression, it means the same as E1 and so E1.false and E1.true are set to E.false and E.true respectively. 
E -> (E1) E1.true := E.true 
E1.false := E.false 
E.code := E1.code 
Control flow translation of boolean expression . 
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if E is of the form a < b then the generated code is of the form: 

if a < b goto E.true

goto E.false 

E -> id1 relop id2 E.code = gen( if id1 relop id2 goto E.true) ||gen(goto E.false) 
E -> true E.code= gen(goto E.true) 
E -> false E.code= gen(goto E.false) 
Example 

Code for a < b or c < d and e < f 

if a < b goto Ltrue

goto L1 

L1: if c < d goto L2

goto Lfalse

L2: if e < f goto Ltrue

goto Lfalse 

Ltrue:

Lfalse: 

Code for a < b or c < d and e < f 
It is equivalent to a<b or (c<d and e<f) by precedence of operators. 
Code:

if a < b goto L.true
goto L1 
L1 : if c < d goto L2 
goto L.false
L2 : if e < f goto L.true
goto L.false 
where L.true and L.false are the true and false exits for the entire expression.

(The code generated is not optimal as the second statement can be eliminated without changing the value of the code). 

Example . 
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Code for while a < b do 
if c < d then

x = y + z 

else 

x = y - z 

L1 : if a < b goto L2      //no jump to L2 if a>=b. next instruction causes jump outside the loop 
goto L.next 

L2 : if c < d goto L3 
goto L4 

L3 : t1 = Y + Z 
X= t1 

goto L1      //return to the expression code for the while loop 

L4 : t1 = Y - Z 
X= t1 

goto L1      //return to the expression code for the while loop 

L.next: 
Here too the first two goto statements can be eliminated by changing the direction of the tests (by translating a relational expression of the form id1 < id2 into the statement if id1 id2 goto E.false). 

Case Statement 

. switch expression 
begin 

case value: statement

case value: statement 

.. 

case value: statement

default: statement 

end 

.evaluate the expression 
. find which value in the list of cases is the same as the value of the expression
. - Default value matches the expression if none of the values explicitly mentioned in the cases matches the expression

. execute the statement associated with the value found 

There is a selector expression, which is to be evaluated, followed by n constant values that the expression can take. This may also include a default value which always matches the expression if no other value does. The intended translation of a switch case code to: 
.evaluate the expression
. find which value in the list of cases is the same as the value of the expression.
. Default value matches the expression if none of the values explicitly mentioned in the cases matches the expression . execute the statement associated with the value found 
Most machines provide instruction in hardware such that case instruction can be implemented easily. So, case is treated differently and not as a combination of if-then statements. 

Translation

	code to evaluate E into t 
	code to evaluate E into t 

	if t <> V1 goto L1 
	goto test 

	code for S1 
	L1: code for S1 

	goto next 
	goto next 

	L1 if t <> V2 goto L2 
	L2: code for S2 

	code for S2 
	goto next 

	goto next 
	.. 

	L2: .. 
	Ln: code for Sn 

	Ln-2 if t <> Vn-l goto Ln-l 
	goto next 

	code for Sn-l 
	test: if t = V1 goto L1 

	goto next 
	if t = V2 goto L2 

	Ln-1: code for Sn 
	.. 

	next: 
	if t = Vn-1 goto Ln-1 

	 
	goto Ln 

	 
	next: 

	  
	 


Efficient for n-way branch 
There are two ways of implementing switch-case statements, both given above. The above two implementations are equivalent except that in the first case all the jumps are short jumps while in the second case they are long jumps. However, many machines provide the n-way branch which is a hardware instruction. Exploiting this instruction is much easier in the second implementation while it is almost impossible in the first one. So, if hardware has this instruction the second method is much more efficient. 
BackPatching 

. way to implement boolean expressions and flow of control statements in one pass

. code is generated as quadruples into an array

. labels are indices into this array

. makelist(i): create a newlist containing only i, return a pointer to the list.

. merge(p1,p2): merge lists pointed to by p1 and p2 and return a pointer to the concatenated list 

. backpatch(p,i): insert i as the target label for the statements in the list pointed to by p 

Backpatching is a technique to solve the problem of replacing symbolic names in goto statements by the actual target addresses. This problem comes up because of some languages do not allow symbolic names in the branches. Idea: Maintain a list of branches that have the same target label ( the function backpatch(p,i) does this only) and replace them once they are defined. 
Backpatching can be summarized as this:
. Two-pass implementation: (1) syntax tree (2) depth-first walk
. back-patching (one-pass)
. construct the syntax tree
. depth-first order tree walk computing translations
. generate jumps with unspecified targets (labels)
. keep a list of such statements
. subsequently fill in the labels (back-patching)
. implementation + operations
. table of quadruples; labels as indexes into this table
. makelist(i) create a new list containing only i
. merge(p1, p2) concatenate lists and return pointer
. backpatch(p, i) insert i as a target label for each of statements on list with pointer p 
Boolean Expressions 

E [image: image1009.png]


E1 or M E2 

| E1 and M E 2
| not E1
| (E 1 ) 

| id 1 relop id 2
| true

| false M ? ε 

. Insert a marker non terminal M into the grammar to pick up index of next quadruple.

. attributes truelist and falselist are used to generate jump code for boolean expressions

. incomplete jumps are placed on lists pointed to by E.truelist and E.falselist 

E.truelist and E.falselist have just incomplete jumps as of now. The entries in this list will be given targets (subsequent filling of labels) later on - backpatching. 
Boolean expressions . 

. Consider E [image: image1010.png]


E1 and M E 2 

- if E 1 is false then E is also false so statements in E1 .falselist become part of E.falselist

- if E1 is true then E2 must be tested so target of E1 .truelist is beginning of E2 

- target is obtained by marker M 

- attribute M.quad records the number of the first statement of E2 .code 

truelist and faliselist are synthesized attributes. if E 1is false then E is also false so statements in E1.falselist become part of E.falselist. And if E1 is true then E2 must be tested so target of E 1.truelist is beginning of E 2 . The target of E1 .truelist is obtained from the marker M with the help of M.quad which records the number ( position) of the first statement of E 2 .code because if E1 is true then the code flow will depend on E 2 . 
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E1 or M E 2 

backpatch(E 1 .falselist, M.quad)

E.truelist = merge(E1 .truelist, E2 .truelist)

E.falselist = E2 .falselist 

E [image: image1012.png]


E 1 and M E2 

backpatch(E1 .truelist, M.quad) 

E.truelist = E 2 .truelist

E.falselist = merge(E1 .falselist, E2 .falselist) 

E [image: image1013.png]


not E1 

E.truelist = E 1 falselist

E.falselist = E1 .truelist 

E [image: image1014.png]


( E 1 ) 

E.truelist = E 1 .truelist

E.falselist = E1 .falselist 

This is the backpatching translation scheme, continued through to the next slide.

E [image: image1015.png]


E1 or M E2 
In this case
. if E1 is false then E2 will be looked into. Hence backpatch(E 1 .falselist, M.quad)
. If one of E1 or E2 is true then E is true, hence E.truelist = merge(E 1 .truelist, E2 .truelist)
. If E2 is checked then E1 must have been found to be false, hence Es falselist will be same as E1s falselist. Hence E.falselist = E2 .falselist
E [image: image1016.png]


E 1 and M E 2
. In this case if E1 is true then E2 will be looked into. Hence backpatch(E1 .truelist, M.quad)
. If one of E1 or E2 is false then E is false, hence E.falselist = merge(E1 .falselist, E 2 .falselist)
. If E2 checked then E1 must have been found to be true, hence Es truelist will be same as E2s truelist. Hence E.truelist = E2 .truelist 
Similarly we can conclude for other two cases given above. 
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id 1 relop id 2 

E.truelist = makelist(nextquad)

E.falselist = makelist(nextquad+ 1)

emit(if id 1 relop id 2 goto --- )

emit(goto ---) 

E [image: image1018.png]


true 

E.truelist = makelist(nextquad) 

emit(goto ---) 

E [image: image1019.png]


false 

E.falselist = makelist(nextquad) 

emit(goto ---) 

M [image: image1020.png]


ε 

M.quad = nextquad 

Generate code for a < b or c < d and e < f 
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Using the rules given in the previous two slides, we finally get the values of E.t and E.f by bottom up evaluation of the tree. 
from E => E1 or M E 2 
{ backpatch(E 1 .falselist, M.quad); ...}
=> 
{ backpatch({101}, 102); ...}
gives 101: goto 102
from E => E1 and M E 2
{ backpatch(E 1 .truelist, M.quad); ...}
=>
{ backpatch({102}, 104); ...} gives
102: if c < d goto 104 
Note that:
. the entire expression is true if the gotos of statements 100 or 104 are reached,
. the entire expression is false if the gotos of statements 103 or 105 are reached, and
. these targets will be filled in later when the action depending on the true/false is known. 
Flow of Control Statements 

S [image: image1022.png]


if E then S 1 

| if E then S 1 else S 2 

| while E do S 1 

| begin L end 

| A 

L [image: image1023.png]


L ; S 

| S 

S : Statement 

A : Assignment 

L : Statement list 

The above given example has these flow of control statements of the backpatching grammar. We will attach rules to each reduction for the backpatching. Continue to the next slides to have a look at how to do that. 
Scheme to implement translation

. E has attributes truelist and falselist 
. L and S have a list of unfilled quadruples to be filled by backpatching
. S [image: image1024.png]


while E do S 1 requires labels S.begin and E.true
- markers M1 and M2 record these labels S [image: image1025.png]


while M 1E do M 2 S1 
- when while. .. is reduced to S backpatch S 1 .nextlist to make target of all the statements to
M 1 .quad
- E.truelist is backpatched to go to the beginning of S 1 (M 2 .quad) 

E has attributes truelist and falselist. L and S have a list of unfilled quadruples to be filled by backpatching. 
For example consider S [image: image1026.png]


while E do S1 
M 1and M 2are used to record the quad numbers of S.begin and E.true respectively. B ackpatching is used to ensure that all targets on S 1 . nextlist are M 1 .quad. E.truelist is back-patched to go to the beginning of S 1 by making jumps on E.truelist targeted towards M 2 .quad. A n explicit jump to the beginning of the code for E is appended after the code for S1 to prevent control from "falling out the bottom". 
Scheme to implement translation . 

S [image: image1027.png]


if E then M S 1 
backpatch(E.truelist, M.quad)
S.nextlist = merge(E.falselist, S 1 .nextlist) 
S [image: image1028.png]


if E them M 1 S1 N else M 2 S2 
backpatch(E.truelist, M 1 .quad) 

backpatch(E.falselist, M 2 .quad )

S.next = merge(S 1 .nextlist, N.nextlist, S 2 .nextlist 

S [image: image1029.png]


while M 1 E do M 2 S1 

backpatch(S1 .nextlist, M 1 .quad)

backpatch(E.truelist, M2 .quad)

S.nextlist = E.falselist

emit(goto M 1 .quad) 

We explained the rules for S [image: image1030.png]


while M 1 E do M2 S1 in the previous slide. Now you can see the rules for all the other statements and you can infer them quite easily on similar grounds, from all you have been told in the previous few slides. 
Scheme to implement translation . 
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begin L end 
	S.nextlist = L.nextlist 
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A 
	S.nextlist = makelist() 
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L 1 ; M S 
	backpatch(L 1 .nextlist, M.quad) 

	 
	L.nextlist = S.nextlist 
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S 
	L.nextlist = S.nextlist 

	N [image: image1035.png]


ε 
	N.nextlist = makelist(nextquad) 

	 
	emit(goto ---) 

	M [image: image1036.png]


ε 
	M.quad = nextquad 


Procedure Calls 

S [image: image1037.png]


call id ( Elist )

Elist [image: image1038.png]


Elist , E

Elist [image: image1039.png]


E 
. Calling sequence
- allocate space for activation record
- evaluate arguments
- establish environment pointers 
- save status and return address
- jump to the beginning of the procedure 
calling sequences
. allocate space for activation record (AR) on stack
. evaluate arguments to procedure and make available at known location
. save state of calling procedure - used to resume execution after call
. save return address (in known location) (instruction following call)
. generate jump to the beginning of the called procedure
return sequence 
. if a function, save the result(s) in a known place 
. restore the activation record of the calling procedure
. generate a jump to the return address (of calling procedure) 
Procedure Calls . 

Example

. parameters are passed by reference

. storage is statically allocated

. use param statement as place holder for the arguments

. called procedure is passed a pointer to the first parameter 

. pointers to any argument can be obtained by using proper offsets 

Consider the example given in the last slide. The parameters are passed by reference and have statically allocated storage. 
Code Generation 

. Generate three address code needed to evaluate arguments which are expressions

. Generate a list of param three address statements

. Store arguments in a list 

S [image: image1040.png]


call id ( Elist ) 

for each item p on queue do emit('param' p) 

emit('call' id.place) 

Elist [image: image1041.png]


Elist , E 

append E.place to the end of queue 

Elist [image: image1042.png]


E 

initialize queue to contain E.place 

For code generation, we generate three address code which is needed to evaluate arguments that are in fact expressions. As a result a list of param three address statements are generated. This is a syntax-directed translation and gives: param p 1 ; param p2 ; param pn ; call id.place Note that each of the expression will also generate 3ac code 
Code Generation 
 

Code generation and Instruction Selection 
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. output code must be correct

. output code must be of high quality

. code generator should run efficiently 

As we see that the final phase in any compiler is the code generator. It takes as input an intermediate representation of the source program and produces as output an equivalent target program, as shown in the figure. Optimization phase is optional as far as compiler's correct working is considered. In order to have a good compiler following conditions should hold:
1. Output code must be correct: The meaning of the source and the target program must remain the same i.e., given an input, we should get same output both from the target and from the source program. We have no definite way to ensure this condition. What all we can do is to maintain a test suite and check.
2. Output code must be of high quality: The target code should make effective use of the resources of the target machine.
3. Code generator must run efficiently: It is also of no use if code generator itself takes hours or minutes to convert a small piece of code. 
Issues in the design of code generator 

. Input: Intermediate representation with symbol table assume that input has been validated by the front end 

. target programs :

- absolute machine language fast for small programs

- relocatable machine code requires linker and loader 

- assembly code requires assembler, linker, and loader 

Let us examine the generic issues in the design of code generators.

1. Input to the code generator: The input to the code generator consists of the intermediate representation of the source program produced by the front end, together with the information in the symbol table that is used to determine the runtime addresses of the data objects denoted by the names in the intermediate representation. We assume that prior to code generation the input has been validated by the front end i.e., type checking, syntax, semantics etc. have been taken care of. The code generation phase can therefore proceed on the assumption that the input is free of errors.
2. Target programs: The output of the code generator is the target program. This output may take a variety of forms; absolute machine language, relocatable machine language, or assembly language.
. Producing an absolute machine language as output has the advantage that it can be placed in a fixed location in memory and immediately executed. A small program can be thus compiled and executed quickly.
. Producing a relocatable machine code as output allows subprograms to be compiled separately. Although we must pay the added expense of linking and loading if we produce relocatable object modules, we gain a great deal of flexibility in being able to compile subroutines separately and to call other previously compiled programs from an object module.
. Producing an assembly code as output makes the process of code generation easier as we can generate symbolic instructions. The price paid is the assembling, linking and loading steps after code generation. 

Instruction Selection 

. Instruction selection

. uniformity

. completeness 

. Instruction speed 

. Register allocation Instructions with register operands are faster

- store long life time and counters in registers 

- temporary locations

- Even odd register pairs

. Evaluation order 

The nature of the instruction set of the target machine determines the difficulty of instruction selection. The uniformity and completeness of the instruction set are important factors. So, the instruction selection depends upon:

1. Instructions used i.e. which instructions should be used in case there are multiple instructions that do the same job. 
2. Uniformity i.e. support for different object/data types, what op-codes are applicable on what data types etc.
3. Completeness: Not all source programs can be converted/translated in to machine code for all architectures/machines. E.g., 80x86 doesn't support multiplication.
4. Instruction Speed: This is needed for better performance.
5. Register Allocation:
. Instructions involving registers are usually faster than those involving operands memory. 
. Store long life time values that are often used in registers.
6. Evaluation Order: The order in which the instructions will be executed. This increases performance of the code. 
Instruction Selection 

. straight forward code if efficiency is not an issue 
	a=b+c 
	Mov b, R 0 
	 

	d=a+e 
	Add c, R 0 
	 

	 
	Mov R0 , a 
	 

	 
	Mov a, R0 
	can be eliminated 

	 
	Add e, R0 
	 

	 
	Mov R 0 , d 
	 

	 
	 
	 

	a=a+1 
	Mov a, R0 
	Inc a 

	 
	Add #1, R 0 
	 

	 
	Mov R 0, a 
	 


Here is an example of use of instruction selection: Straight forward code if efficiency is not an issue 
	a=b+c 
	Mov b, R 0 
	 

	d=a+e 
	Add c, R 0 
	 

	 
	Mov R0 , a 
	 

	 
	Mov a, R0 
	can be eliminated 

	 
	Add e, R0 
	 

	 
	Mov R 0 , d 
	 

	 
	 
	 

	a=a+1 
	Mov a, R0 
	Inc a 

	 
	Add #1, R 0 
	 

	 
	Mov R 0, a 
	 


Here, "Inc a" takes lesser time as compared to the other set of instructions as others take almost 3 cycles for each instruction but "Inc a" takes only one cycle. Therefore, we should use "Inc a" instruction in place of the other set of instructions. 
Target Machine 

. Byte addressable with 4 bytes per word 
. It has n registers R0 , R1 , ..., R n-l
. Two address instructions of the form opcode source, destination
. Usual opcodes like move, add, sub etc. 
. Addressing modes 

	MODE 
	FORM 
	ADDRESS 

	Absolute 
	M 
	M 

	register 
	R 
	R 

	index 
	c(R) 
	c+cont(R) 

	indirect register 
	*R 
	cont(R) 

	indirect index 
	*c(R) 
	cont(c+cont(R)) 

	literal 
	#c 
	c 

	 
	 
	 


Familiarity with the target machine and its instruction set is a prerequisite for designing a good code generator. Our target computer is a byte addressable machine with four bytes to a word and n general purpose registers, R 0 , R1 ,..Rn-1 . It has two address instructions of the form

op source, destination

In which op is an op-code, and source and destination are data fields. It has the following op-codes among others:
MOV (move source to destination)

ADD (add source to destination)

SUB (subtract source from destination) 

The source and destination fields are not long enough to hold memory addresses, so certain bit patterns in these fields specify that words following an instruction contain operands and/or addresses. The address modes together with their assembly-language forms are shown above. 
Basic blocks 

. sequence of statements in which flow of control enters at the beginning and leaves at the end

. Algorithm to identify basic blocks

. determine leader 

- first statement is a leader

- any target of a goto statement is a leader

- any statement that follows a goto statement is a leader 

. for each leader its basic block consists of the leader and all statements up to next leader 

A basic block is a sequence of consecutive statements in which flow of control enters at the beginning and leaves at the end without halt or possibility of branching except at the end. The following algorithm can be used to partition a sequence of three-address statements into basic blocks:
1. We first determine the set of leaders, the first statements of basic blocks. The rules we use are the following:
. The first statement is a leader. 
. Any statement that is the target of a conditional or unconditional goto is a leader.
. Any statement that immediately follows a goto or conditional goto statement is a leader.
2. For each leader, its basic block consists of the leader and all statements up to but not including the next leader or the end of the program. 

Flow graphs 

. add control flow information to basic blocks

. nodes are the basic blocks 

. there is a directed edge from B1 to B2 if B 2can follow B1 in some execution sequence 

- there is a jump from the last statement of B1 to the first statement of B2
- B2 follows B 1 in natural order of execution

. initial node: block with first statement as leader 

We can add flow control information to the set of basic blocks making up a program by constructing a directed graph called a flow graph. The nodes of a flow graph are the basic nodes. One node is distinguished as initial; it is the block whose leader is the first statement. There is a directed edge from block B1 to block B2 if B2 can immediately follow B1 in some execution sequence; that is, if
. There is conditional or unconditional jump from the last statement of B1 to the first statement of B2 , or
. B2 immediately follows B1 in the order of the program, and B1 does not end in an unconditional jump. We say that B1 is the predecessor of B 2 , and B 2 is a successor of B 1 . 
Next use information 

. for register and temporary allocation

. remove variables from registers if not used

. statement X = Y op Z defines X and uses Y and Z

. scan each basic blocks backwards 

. assume all temporaries are dead on exit and all user variables are live on exit 

The use of a name in a three-address statement is defined as follows. Suppose three-address statement i assigns a value to x. If statement j has x as an operand, and control can flow from statement i to j along a path that has no intervening assignments to x, then we say statement j uses the value of x computed at i. We wish to determine for each three-address statement x := y op z what the next uses of x, y and z are. We collect next-use information about names in basic blocks. If the name in a register is no longer needed, then the register can be assigned to some other name. This idea of keeping a name in storage only if it will be used subsequently can be applied in a number of contexts. It is used to assign space for attribute values. The simple code generator applies it to register assignment. Our algorithm is to determine next uses makes a backward pass over each basic block, recording (in the symbol table) for each name x whether x has a next use in the block and if not, whether it is live on exit from that block. We can assume that all non-temporary variables are live on exit and all temporary variables are dead on exit. 
Algorithm to compute next use information 

. Suppose we are scanning i : X := Y op Z       in backward scan 

- attach to i, information in symbol table about X, Y, Z

- set X to not live and no next use in symbol table 

- set Y and Z to be live and next use in i in symbol table 

As an application, we consider the assignment of storage for temporary names. Suppose we reach three-address statement i: x := y op z in our backward scan. We then do the following:
1. Attach to statement i the information currently found in the symbol table regarding the next use and live ness of x, y and z.
2. In the symbol table, set x to "not live" and "no next use".
3. In the symbol table, set y and z to "live" and the next uses of y and z to i. Note that the order of steps (2) and (3) may not be interchanged because x may be y or z.
If three-address statement i is of the form x := y or x := op y, the steps are the same as above, ignoring z. 

Example 

1: t1 = a * a

2: t 2 = a * b 

3: t3 = 2 * t2 

4: t4 = t 1 + t3 

5: t5 = b * b

6: t6 = t 4 + t5 

7: X = t 6
For example, consider the basic block shown above

Example 
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We can allocate storage locations for temporaries by examining each in turn and assigning a temporary to the first location in the field for temporaries that does not contain a live temporary. If a temporary cannot be assigned to any previously created location, add a new location to the data area for the current procedure. In many cases, temporaries can be packed into registers rather than memory locations, as in the next section. 

Example . 
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The six temporaries in the basic block can be packed into two locations. These locations correspond to t 1 and t 2 in: 
1: t 1 = a * a 
2: t 2 = a * b
3: t2 = 2 * t2 
4: t1 = t 1 + t2 
5: t2 = b * b 
6: t1 = t1 + t 2 
7: X = t1 
Code Generator 

. consider each statement

. remember if operand is in a register

. Register descriptor 
- Keep track of what is currently in each register. 

- Initially all the registers are empty

. Address descriptor 
- Keep track of location where current value of the name can be found at runtime

- The location might be a register, stack, memory address or a set of those 

The code generator generates target code for a sequence of three-address statement. It considers each statement in turn, remembering if any of the operands of the statement are currently in registers, and taking advantage of that fact, if possible. The code-generation uses descriptors to keep track of register contents and addresses for names.
1. A register descriptor keeps track of what is currently in each register. It is consulted whenever a new register is needed. We assume that initially the register descriptor shows that all registers are empty. (If registers are assigned across blocks, this would not be the case). As the code generation for the block progresses, each register will hold the value of zero or more names at any given time.
2. An address descriptor keeps track of the location (or locations) where the current value of the name can be found at run time. The location might be a register, a stack location, a memory address, or some set of these, since when copied, a value also stays where it was. This information can be stored in the symbol table and is used to determine the accessing method for a name. 
Code Generation Algorithm 

for each X = Y op Z do 
. invoke a function getreg to determine location L where X must be stored. Usually L is a register. 

. Consult address descriptor of Y to determine Y'. Prefer a register for Y'. If value of Y not already in L generate

Mov Y', L

. Generate

op Z', L 
Again prefer a register for Z. Update address descriptor of X to indicate X is in L. If L is a register update its descriptor to indicate that it contains X and remove X from all other register descriptors.

. If current value of Y and/or Z have no next use and are dead on exit from block and are in registers, change register descriptor to indicate that they no longer contain Y and/or Z. 
The code generation algorithm takes as input a sequence of three-address statements constituting a basic block. For each three-address statement of the form x := y op z we perform the following actions:
1. Invoke a function getreg to determine the location L where the result of the computation y op z should be stored. L will usually be a register, but it could also be a memory location. We shall describe getreg shortly.
2. Consult the address descriptor for u to determine y', (one of) the current location(s) of y. Prefer the register for y' if the value of y is currently both in memory and a register. If the value of u is not already in L, generate the instruction MOV y', L to place a copy of y in L.
3. Generate the instruction OP z', L where z' is a current location of z. Again, prefer a register to a memory location if z is in both. Update the address descriptor to indicate that x is in location L. If L is a register, update its descriptor to indicate that it contains the value of x, and remove x from all other register descriptors.
4. If the current values of y and/or y have no next uses, are not live on exit from the block, and are in registers, alter the register descriptor to indicate that, after execution of x := y op z, those registers no longer will contain y and/or z, respectively. 

Function getreg

1. If Y is in register (that holds no other values) and Y is not live and has no next use after

X = Y op Z

then return register of Y for L.

2. Failing (1) return an empty register

3. Failing (2) if X has a next use in the block or op requires register then get a register R, store its content into M (by Mov R, M) and use it.

4. else select memory location X as L 

The function getreg returns the location L to hold the value of x for the assignment x := y op z.
1. If the name y is in a register that holds the value of no other names (recall that copy instructions such as x := y could cause a register to hold the value of two or more variables simultaneously), and y is not live and has no next use after execution of x := y op z, then return the register of y for L. Update the address descriptor of y to indicate that y is no longer in L.
2. Failing (1), return an empty register for L if there is one.
3. Failing (2), if x has a next use in the block, or op is an operator such as indexing, that requires a register, find an occupied register R. Store the value of R into memory location (by MOV R, M) if it is not already in the proper memory location M, update the address descriptor M, and return R. If R holds the value of several variables, a MOV instruction must be generated for each variable that needs to be stored. A suitable occupied register might be one whose datum is referenced furthest in the future, or one whose value is also in memory.
4. If x is not used in the block, or no suitable occupied register can be found, select the memory location of x as L. 
Example 

	Stmt 
	code 
	reg desc 
	addr desc 

	 
	 
	 
	 

	t 1 =a-b 
	mov a,R 0 
	R 0 contains t 1 
	t 1 in R0 

	 
	sub b,R 0 
	 
	 

	t2 =a-c 
	mov a,R 1 
	R0 contains t 1 
	t1 in R0 

	 
	sub c,R1
	R 1 contains t2 
	t 2 in R1 

	t3 =t1 +t 2 
	add R 1 ,R0 
	R 0contains t3 
	t3 in R 0 

	 
	 
	R 1 contains t2 
	t 2 in R1 

	d=t3 +t2 
	add R 1 ,R 0 
	R 0contains d 
	d in R0 

	 
	mov R 0 ,d 
	 
	d in R0 and 

	 
	 
	 
	memory 

	 
	 
	 
	 

	 
	 
	 
	 


For example, the assignment d := (a - b) + (a - c) + (a - c) might be translated into the following three- address code sequence: 
t1 = a - b 

t 2 = a - c
t 3 = t 1 + t2 
d = t 3 + t2 
The code generation algorithm that we discussed would produce the code sequence as shown. Shown alongside are the values of the register and address descriptors as code generation progresses. 
Conditional Statements 

. branch if value of R meets one of six conditions negative, zero, positive, non-negative, non-zero, non-positive 

	if X < Y goto Z 
	Mov X, R0 

	 
	Sub Y, R0 

	 
	Jmp negative Z 


. Condition codes: indicate whether last quantity computed or loaded into a location is negative, zero, or positive 

Machines implement conditional jumps in one of two ways. One way is to branch if the value of a designated register meets one of the six conditions: negative, zero, positive, non-negative, non-zero, and non-positive. On such a machine a three-address statement such as if x < y goto z can be implemented by subtracting y from x in register R, and then jumping to z if the value in register is negative. A second approach, common to many machines, uses a set of condition codes to indicate whether the last quantity computed or loaded into a register is negative, zero or positive.
Conditional Statements . 

. Compare instruction: sets the codes without actually computing the value

. Cmp X, Y sets condition codes to positive if X > Y and so on 

	if X < Y goto Z 
	Cmp X, Y 

	 
	CJL Z 

	 
	 


. maintain a condition code descriptor: tells the name that last set the condition codes 

	X =Y + Z 
	Mov Y,R0 

	if X < 0 goto L 
	Add Z, R0 

	 
	Mov R0, X 

	 
	CJN L 


A compare instruction has the property that it sets the condition code without actually computing the value. That is, CMP x, y sets the condition code to positive if x > y, and so on. A conditional jump machine instruction makes the jump if a designated condition <, =, >, =, = or ≠ is met. For example, if x < y goto z could be implemented by 

CMP x, y

CJ< z 

If we are generating code for a machine with condition codes it is useful to maintain a condition-code descriptor as we generate code. This descriptor tells the name that last set the condition code, or the pair of names compared, if the condition code was last set that way. Thus we could implement 
x := y + z
if x < 0 goto z
by
MOV Y,R0
ADD Z, R0 
MOV R0, X
CJ< L 
DAG representation of basic blocks 

. useful data structures for implementing transformations on basic blocks
. gives a picture of how value computed by a statement is used in subsequent statements

. good way of determining common sub-expressions

. A dag for a basic block has following labels on the nodes

- leaves are labeled by unique identifiers, either variable names or constants 

- interior nodes are labeled by an operator symbol

- nodes are also optionally given a sequence of identifiers for labels 

DAG (Directed Acyclic Graphs) are useful data structures for implementing transformations on basic blocks. A DAG gives a picture of how the value computed by a statement in a basic block is used in subsequent statements of the block. Constructing a DAG from three-address statements is a good way of determining common sub-expressions (expressions computed more than once) within a block, determining which names are used inside the block but evaluated outside the block, and determining which statements of the block could have their computed value used outside the block. A DAG for a basic block is a directed cyclic graph with the following labels on nodes: 1. Leaves are labeled by unique identifiers, either variable names or constants. From the operator applied to a name we determine whether the l-value or r-value of a name is needed; most leaves represent r- values. The leaves represent initial values of names, and we subscript them with 0 to avoid confusion with labels denoting "current" values of names as in (3) below. 2. Interior nodes are labeled by an operator symbol. 3. Nodes are also optionally given a sequence of identifiers for labels. The intention is that interior nodes represent computed values, and the identifiers labeling a node are deemed to have that value. 
DAG representation: example 
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For example, the slide shows a three-address code. The corresponding DAG is shown. We observe that each node of the DAG represents a formula in terms of the leaves, that is, the values possessed by variables and constants upon entering the block. For example, the node labeled t 4 represents the formula 
b[4 * i] 
that is, the value of the word whose address is 4*i bytes offset from address b, which is the intended value of t 4 . 
Code Generation from DAG 

	S 1= 4 * i 
	S 1 = 4 * i 

	S2 = addr(A)-4 
	S 2 = addr(A)-4 

	S3 = S 2 [S 1 ] 
	S 3 = S2 [S 1 ] 

	S 4 = 4 * i 
	 

	S5 = addr(B)-4 
	S 5= addr(B)-4 

	S 6 = S 5 [S4 ] 
	S6 = S5 [S 4 ] 

	S7 = S 3 * S6 
	S 7 = S3 * S 6 

	S8 = prod+S7 
	 

	prod = S8 
	prod = prod + S 7 

	S9 = I+1 
	 

	I = S9 
	I = I + 1 

	If I <= 20 goto (1) 
	If I <= 20 goto (1) 


We see how to generate code for a basic block from its DAG representation. The advantage of doing so is that from a DAG we can more easily see how to rearrange the order of the final computation sequence than we can starting from a linear sequence of three-address statements or quadruples. If the DAG is a tree, we can generate code that we can prove is optimal under such criteria as program length or the fewest number of temporaries used. The algorithm for optimal code generation from a tree is also useful when the intermediate code is a parse tree. 
Rearranging order of the code 

	. Consider following basic block 
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	t 1 = a + b 
	

	t 2 = c + d 
	

	t 3 = e -t 2 
	

	X = t 1 -t 3 
	

	 
	

	and its DAG 
	


Here, we briefly consider how the order in which computations are done can affect the cost of resulting object code. Consider the basic block and its corresponding DAG representation as shown in the slide. 
Rearranging order . 

	Three adress code for the DAG (assuming only two registers are available) 
	 
	Rearranging the code as

t2 = c + d 

t3 = e -t 2

t1 = a + b 

	MOV a, R0 
	 
	X = t 1 -t3 

	ADD b, R0 
	 
	gives 

	MOV c, R 1 
	 
	MOV c, R 0 

	ADD d, R 1 
	 
	ADD d, R 0 

	MOV R0 , t1 
	Register spilling 
	MOV e, R 1 

	MOV e, R0 
	 
	SUB R 0 , R1 

	SUB R 1 , R0 
	 
	MOV a, R 0 

	MOV t1 , R 1 
	Register reloading 
	ADD b, R0 

	SUB R 0 , R1 
	 
	SUB R 1 , R0 

	MOV R1 , X 
	 
	MOV R 1 , X 

	 
	 
	


If we generate code for the three-address statements using the code generation algorithm described before, we get the code sequence as shown (assuming two registers R0 and R1 are available, and only X is live on exit). On the other hand suppose we rearranged the order of the statements so that the computation of t 1 occurs immediately before that of X as: 

t2 = c + d 

t3 = e -t 2

t1 = a + b 

X = t 1 -t3 

Then, using the code generation algorithm, we get the new code sequence as shown (again only R0 and R1 are available). By performing the computation in this order, we have been able to save two instructions; MOV R0, t 1 (which stores the value of R0 in memory location t 1 ) and MOV t 1 , R1 (which reloads the value of t 1 in the register R1). 

Peephole Optimization 
. target code often contains redundant instructions and suboptimal constructs 

. examine a short sequence of target instruction (peephole) and replace by a shorter or faster sequence

. peephole is a small moving window on the target systems 

A statement-by-statement code-generation strategy often produces target code that contains redundant instructions and suboptimal constructs. A simple but effective technique for locally improving the target code is peephole optimization, a method for trying to improve the performance of the target program by examining a short sequence of target instructions (called the peephole) and replacing these instructions by a shorter or faster sequence, whenever possible. The peephole is a small, moving window on the target program. The code in the peephole need not be contiguous, although some implementations do require this. 

Peephole optimization examples. 

Redundant loads and stores
. Consider the code sequence 
Move R0 , a Move a, R0 
. Instruction 2 can always be removed if it does not have a label. 
Now, we will give some examples of program transformations that are characteristic of peephole optimization: Redundant loads and stores: If we see the instruction sequence 

Move R0 , a
Move a, R0 
We can delete instruction (2) because whenever (2) is executed, (1) will ensure that the value of a is already in register R0. Note that is (2) has a label, we could not be sure that (1) was always executed immediately before (2) and so we could not remove (2). 

Peephole optimization examples. 

Unreachable code 
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Another opportunity for peephole optimization is the removal of unreachable instructions. 

Unreachable code example . 

constant propagation 
if 0 <> 1 goto L2 

print debugging information 

L2: 

Evaluate boolean expression. Since if condition is always true the code becomes 

goto L2 

print debugging information 

L2: 

The print statement is now unreachable. Therefore, the code becomes 

L2: 

Peephole optimization examples. 
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Peephole optimization examples. 

. Strength reduction

- Replace X^2 by X*X 

- Replace multiplication by left shift 

- Replace division by right shift

. Use faster machine instructions 

replace      Add #1,R 

by Inc      R 

Code Generator Generator 

. Code generation by tree rewriting

. target code is generated during a process in which input tree is reduced to a single node

. each rewriting rule is of the form replacement [image: image1050.png]


template { action} where

- replacement is a single node 

- template is a tree 

- action is a code fragment 

Instruction set for a hypothetical machine 
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Example 
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Example . 
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Example . 
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Example . 
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Example . 
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Example . 
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Example . 
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Example . 

[image: image1059.png]/H\

R,

U matches 2
AddR,R@

Generate

Move #a, R
Add Ry, R,
Add R,@(b), R,
Add R,@(c), Ry
Add #9,R,
AddRy,R,
Move R,, R,@




Example . 
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