CSCI1402 Introductory Java For Internet Computing Week 22 Lecture1

CSCI1402 Introductory Java
Associations between objects

· A “real” application would consist of many type of objects
· Each object would be responsible for looking after its own data

· Often, the objects would need to communicate with each other

Examples

code for Customer toString() method

return name+” “ + address + “ has ” + aStoreCard.getPoints() + “ points”;

Implementing a simple Banking system.

This simple example of a bank uses 3 classes :
(1) A BankCustomer class. A BankCustomer has a name, telephone number and email address

(2) A BankAccount class.
· A BankAccount has an account number, a balance and an association with a BankCustomer.
· A BankAccount has methods to credit and debit. It does not have overdraft facilities
· A BankAccount will have an automatically generated unique account number. The very first number allocated will be 1001
(3) A BankAccountBase class.
· A BankAccountBase is a collection (aggregation) of BankAccount objects. The class provides methods to manage this collection. These methods should include methods to:
· add a new bank account to the collection . This will be for an existing customer. (New customers must be created before they can have bank accounts)
· find and remove a specified bank account from the collection. Accounts should only be removed if the balance is 0. Account specified by account number.
· find and credit a specified BankAccount with a specified amount. Account specified by account number.
· find and debit a specified BankAccount with a specified amount. Account specified by account number.
· find and report all the accounts belonging to a specified customer – customer specified by name
· Error messages should be returned if specified customers or account numbers are not found in the collection
· report the details of all of the accounts currently held in the bank (Account number, balance, customer name)
· The BankAccountBase will use an ArrayList to store its collection of BankAccount objects

ALL REQUESTS FROM PROGRAMS RELATING TO BANK ACCOUNTS MUST BE SENT TO THE BANKACCOUNTBASE. PROGRAMS SHOULD NOT ACCESS INDIVIDUAL BANKACCOUNT

[image: image1]
public class BankCustomer

{
/* attributes*/

private String name;

private String telNo;

private String email;

/* constructor method */
public BankCustomer(String name, String telNo, String email){

this.name = name;

this.telNo = telNo;

this.email = email;

}

/* set methods */
public void setName(String name)
{ this.name = name;}

public void setTelNo(String telNo)

{ this.telNo = telNo; }

public void setEmail(String email)

{ this.email = email; }

/* get methods */

public String getName()

{ return name; }

public String getTelNo()

{ return telNo; }

public String getEmail()

{ return email; }

/*toString() method */
public String toString()

{ return "\n" + "Name: " + name + " Telephone: " + telNo + " Email: " + email; }

} // end Bank Customer class definition

public class BankAccount

{
/*A class attribute which is used by the class to allocate a unique account number to each object that it creates. Account numbers will begin at 1001 */

static int NEXTNUMBER = 1001;

/*The account number */

private int accountNumber;
/* The balance of the account */

private double balance;

/* an association with the BankCustomer object who owns the account. Enables a BankAccount object to send messages to the customer it belongs to */

private BankCustomer customer;

/* The constructor method */

/*A BankAccount cannot exist unless it is owned by a BankCustomer */
public BankAccount(BankCustomer customer)

{ /*The class allocates NEXTNUMBER as this object’s accountNumber. The class then increments NEXTNUMBER by 1, ensuring that the next object it creates gets a different account number */
this.accountNumber = NEXTNUMBER++;
this.customer = customer;

 balance = 0;

}

/* get methods */

public int getAccountNumber()

{
return accountNumber;

}

public double getBalance()

{
return balance;

}

public String getCustomerName()

{
return customer.getName();

}

/* The toString() method */

public String toString()

{

return "Account number " + accountNumber + " belonging to " + customer.getName() + “ email address” +
customer.getEmail() +
" has a balance of £" + balance;

}

/*Credits the account with an amount of money and returns a string confirming the *credit */
public String credit(double anAmount)

{

balance +=anAmount;

return " Account number " + accountNumber + " has been credited with £"+ anAmount;

}

/*returns true if existing balance is greater than or equal to the amount to be *debited, false otherwise */

public boolean canDebit(double anAmount)

{

return anAmount<=balance;

}

/** Returns a string confirming the debit of an amount of money from the account.

* If the account can be debited by the amount then the returned string should confirm the debit otherwise it should state that this account has insufficient funds. */
public String debit(double anAmount)
{
if(this.canDebit(anAmount))
 {

 balance -= anAmount;

 return £" + anAmount +
" has been debited from Acount number " +
accountNumber;

}

else

{

return "Account number " +
accountNumber +

" has insufficient funds to debit £"
+anAmount;

}
}

} // end BankAccount class definition
import java.util.*; /* ArrayList class part of Java API and found in package called “ util” */
public class BankAccountBase{

/*The attribute accounts which is an ArrayList */
private ArrayList accounts;

/** The constructor method. The new ArrayList called accounts is created. The BankAccount objects will be stored in this ArrayList. When it is created it will be empty. The size of the ArrayList does not need to be specified as an ArrayList is dynamic*/
public BankAccountBase()

{

accounts = new ArrayList();

}

/*A method to add a new Bank Account for an existing customer. The new BankAccount object, with a balance of £0 and an automatically generated Account Number will be created for this customer and then added to the collection of accounts in the ArrayList */
public void addNewAccount(BankCustomer customer)

{

accounts.add(new BankAccount(customer));

}

/*A method to remove an existing account from the collection of accounts. If the BankAccount with the specified account number is not found, an error message is returned. If it is found and has a balance > 0, then it cannot be removed and an error message is returned, otherwise a message is returned to indicate successful removal */

public String removeAccount(int accountNumber)
{

boolean found = false;

String results="";

ListIterator iter = accounts.listIterator();

while(iter.hasNext()&& !found)

 {

BankAccount account = (BankAccount)iter.next();
if(account.getAccountNumber()==accountNumber)

 {

found = true; // there is a match, stop the loop

if(account.getBalance()==0)

{

iter.remove(); // remove this BankAccount object

results = "Account number " +

accountNumber + " has been removed";

}

else

{

results = "Account number " + accountNumber +

" cannot be removed as it has a balance of £"

+ account.getBalance();

}

} //end if there is a match

} // end while loop
if(!found) results = " No such account";

return results;

}

/** A method to credit an existing account in the collection of accounts. If the BankAccount with the specified account number is not found, an error message is returned. If it is found then it will be credited with the specified amount and a message is returned to indicate a successful credit */
public String creditAccount(int accountNumber, double anAmount){

boolean found = false;

String results ="";

ListIterator iter = accounts.listIterator();

while(iter.hasNext()&& !found)

 {

BankAccount account = (BankAccount)iter.next(); if(account.getAccountNumber()==accountNumber)

 {

 results = account.credit(anAmount);

found = true; // stop the loop

 }

}

if(!found) results = " No such customer";

return results;

}

/** A method to debit an existing account in the collection of accounts. If the BankAccount with the specified account number is not found, an error message is returned. If it is found then if the specified amount is <= balance, it will be debited with the specified amount and a message returned to indicate a successful credit, otherwise an error message indicating insufficient funds is returned */

public String debitAccount(int accountNumber, double anAmount){

boolean found = false;

String results ="";

ListIterator iter = accounts.listIterator();

while(iter.hasNext()&& !found)

 {

BankAccount account = (BankAccount)iter.next();

 if(account.getAccountNumber()== accountNumber)

 {

 results = account.debit(anAmount);

found = true;

 }

}

if(!found) results = " No such customer";

return results;

}

/*A method that returns a String which represents all the account numbers owned by the specified customer . This method is NOT robust and will not produce correct results if there are 2 customers with the same name ……Solutions? */
public String getAccountNumbersFor(String CustomerName)

{

String details = "The following accounts have the specified name:" + '\n';

Iterator iter = accounts.iterator();
// visit all of the accounts in the ArrayList
while(iter.hasNext())
 {

BankAccount account = (BankAccount)iter.next();
if(account.getCustomerName().equals(customerName))

 {

 details += "Account Number " +

 account.getAccountNumber() +
 “Balance = “ +
 account.getBalance() + '\n';

} // end if

 } // end while loop
return details;

}

/ * This method returns a String representation of the details of all of the accounts in the accounts collection */
public String toString()

{

String details = '\n' + " BANK ACCOUNTS " + '\n' + " --------------------" + '\n';

if(accounts.size()==0)

details+= "There are no bank accounts";

else

{

Iterator iter = accounts.iterator();

while(iter.hasNext())

details+=iter.next().toString() + '\n';

}

return details;

}

} // end BankAccountBase class
A program to test that Banking system works. AS GUI would be a better interface to the BankAccountBase
public class BankProgram

{

public static void main (String args[])

{

/* Declare and create 2 BankCustomer objects */

BankCustomer cust1, cust2;

cust1 = new BankCustomer("Diana","123456", "Diana@dmu.ac.uk");

cust2 = new BankCustomer("Lesz", "01765-98765", "lz@dmu.ac.uk");

/* Declare and create a BankAccountBase object called bank */

BankAccountBase bank = new BankAccountBase();

/* Display the details of the bank */

System.out.println(bank.toString());

/* add a new account for Diana */
bank.addNewAccount(cust1);

/*List the account numbers of accounts held by Diana */

System.out.println(bank.getAccountNumbersFor("Diana"));

/* Credit Diana’s account number 1001 with £200*/

System.out.println();

System.out.println(bank.creditAccount(1001,200));

System.out.println(bank);

/* debit Diana’s account number 1001 with £100*/
System.out.println(bank.debitAccount(1001,100));

System.out.println(bank);

/* add a new account for Lesz */

bank.addNewAccount(cust2);

/* Display the details of the bank */

System.out.println(bank.toString());

/* add another new account for Diana */

bank.addNewAccount(cust1);

/* Credit Lesz’s account number 1002 with £999*/

System.out.println(bank.creditAccount(1002,999));

/* Display the details of the bank */

System.out.println(bank.toString());

/* Display the account numbers of all the accounts held by Diana */

System.out.println("DISPLAY THE ACCOUNT NUMBERS OF ALL ACCOUNTS HELD BY DIANA");

System.out.println(bank.getAccountNumbersFor("Diana"));

System.out.println();

/* Remove Diana’s account 1003 */

System.out.println(bank.removeAccount(1003));

/* Remove Diana’s account 1001 */

System.out.println(bank.removeAccount(1001));

/* Display the details of the bank */

System.out.println(bank.toString());

}

}

aBankAccountBase

accounts

aBankAccount

1001

£10

customer

anotherBankAccount

1642

£500

customer

aCustomer

“Lesz”

“01789654”

“lz@dmu.ac.uk”

andAnother

1404

£0

customer

anotherCustomer

“Diana”

“015289076”

“diana@dmu.ac.uk”

Local variable being assigned the next BankAccount in the ArrayList

 aCustomer object

“Maisie”

“2, Acacaia Avenue”

19/5/86

.

.

.

+ toString()

 aStoreCard object

1234

19 points

.

.

.

+ toString()

aLibrary

aBookBase

books

aMemberBase

members

 null null null

 null null null null

aMember

IDNumber = 1234

name = “Asha”

address = “1 The Street”

currentLoans

anotherBook

code = “456DEF”

title = “Robotics”

copy number = 3

onLoanTo = null

aBook

code = “123ABC”

title = “Java made easy”

copy number = 12

onLoanTo =

 null null null

The account to be removed

PAGE
1

