CS 224N Final Project

Colin G. Schatz / cschatz@stanford.edu
June 1, 2005

Introduction
This project is concerned, generally, with natural language processing in the context of fictional interactive environments. Various interesting NLP problems arise in this context and are the subject of previous or ongoing research. For instance, Mateas and Stern (2005) describe work on the “one-act interactive drama” Façade, in which both the human and AI/agent participants in the drama interact in real time and using natural English. The Dialog Engine project, on the other hand, focuses on providing non-programmer authors with tools for writing dialogue that is transformed into interactive conversation (Daly et al, 2005).
A substantial body of work exists which is focused on interactive gaming environments For instance, Gorniak and Roy (2005) report on a gaming environment in which synthetic characters (“sidekicks” of the player’s character) respond to natural-language speech – in this environment, the system is trained by human evaluators who adjust the guessed parse-trees of sample player utterances, so it can handle a wide range of human-uttered commands and questions relatively well.
My project focuses on a set of interactive environments generally referred to as Interactive Fiction (IF). This genre is, in essence, a superset of “text adventures” (e.g., Zork) that enjoyed commercial popularity in the 1980s. Modern IF works include interactive experiences that are game-like as well as those that are not. What they have in common is a virtual world made up of human-created text descriptions. The human player [or “interactor,” the term used in Montfort’s (2003) historical and theoretical overview] interacts with the environment by issuing commands in a simplified, stylized version of English. Most commands are basically stripped-down imperative sentences, such as “go north” or “open jar.” These commands are typically handled by an interpreter, which has been provided a grammar and various other elements of parsing functionality by the author of the given IF work.
This project attempts to create a computer application that can accomplish automatically some aspect of what a human interactor would normally doing when “playing” an IF work. To define a problem of reasonable scope, I focused on the task of creating a “player model” that could, at the initial location (“room”) in a IF work’s virtual word, issue reasonable commands in one of four categories:

· examine – request a description of an object in the location

· take – pick up an object in the location, to be transferred into the set of the player’s possessions

· go – go a particular direction (to an adjoining location / room)

· open/close – open or close an object in the location which is openable or closeable

II. Project elements
Several platforms exist for the creation of IF works. The platform used in this project consists of a programming language, Inform, which is compiled into bytecode for a virtual machine called a Z-machine, or Z-code. (Each of these are described extensively in Nelson, 2001.) My project contains these major interconnected elements (italics indicate the location of the elements in the project’s directory tree):
· The interpreter Frotz (bin/frotz) “runs” a given Z-code file. Using Frotz by itself would allow a human player to interact with the corresponding IF work.
· A Perl script (scripts/interact.pl) handles the interconnection between Frotz and my (Java) player-model implementation. It performs some low-level tokenizing and other processing, passing informatively-arranged Frotz output to the player model and getting commands from the player model through a pair of named pipes. The script’s major function is to extract full sentences (descriptions and command responses) from the interpreter and pass them to the Java application in a tokenized form. It also sends the Java application indications of when the interpreter requests input.
· The player-model implementation (src/*) processes information from the Perl script and is used in a number of different ways (see below).
II. Preparation and Testing
The “test data” for the project was generated from a set of 23 IF works. This set was derived by first downloading a large set of “major” IF works created in Inform (taken from Short, 2005). I then eliminated from this list those that were inappropriate for the project for various reasons (e.g., works that involved real-time elements instead of being purely turn-based, works that used highly non-standard interface conventions, works that used a substantial quantity of non-English language). To determine “reasonable” commands for each work’s initial location, I created a “fake” player-model that simply issues a “look” (request description of the current location) command and then applies every possible command in my command set to every word in the location description. (This fake player-model also issues an “undo” after each command to prevent unintended changes in the environment.) The IF work’s response to each of these commands was compared to a list of standard “failure” responses (scripts/responses) derived from the “standard library” of Inform’s parsing code. Any time a response matched one of these, the command was considered unreasonable. The remaining commands and their responses were printed out, and I looked through by hand to find other responses that indicated unreasonable commands and add some reasonable commands. The final list was stored as the “gold command” set (commands/gold.cmd). To test each of the real player-models, I ran them with each of the 23 works. The commands they tried to issue were compared against the gold command set, with the following statistics computed (within each command category):
· Precision – The fraction of tried commands that were in the gold set
· Recall – The fraction of all commands in the gold set that were tried
· F1 – The harmonic mean of Precision and Recall
Arguably, a good player (or, in this case, player-model) is one with relatively high values of both precision and recall. Low precision indicates trying a number of unreasonable commands (hence wasting time), and low recall suggests that the player is likely missing some important information by not manipulating enough of the environment. However, note that there is a natural upper bound to precision, even for a highly proficient human player. For instance, a location description may say “ornate carvings run along the door frame”; it would be reasonable to “examine carvings,” but it may be that the author declined to implement this.
III. Models
I created and tested 4 different models. Their performance is shown in Table I. A description of each model and interpretation of its performance follows. (Results for each model are in results/)
Table I
	
	
	Model

	
	
	Naïve
	POS
	Parser
	Parser2

	examine
	Precision
	2.7 %
	40.8%
	44.2 %
	44.1 %

	
	Recall
	100 %
	68.5%
	83.8 %
	83.4 %

	
	F1
	5.3 %
	51.1 %
	57.7 %
	57.7 %

	open/close
	Precision
	0.1 %
	50.0 %
	80.0 %
	27.6 %

	
	Recall
	96.2 %
	3.8 %
	15.4 %
	19.2 %

	
	F1
	0.3 %
	7.1 %
	25.8 %
	22.7 %

	take
	Precision
	0.6 %
	7.5 %
	7.6 %
	8.5 %

	
	Recall
	100 %
	58.9 %
	66.1 %
	12.5 %

	
	F1
	1.3 %
	13.2 %
	13.6 %
	10.1 %

	go
	Precision
	10.1 %
	54.3 %
	61.0 %
	61.0 %

	
	Recall
	100 %
	67.6 %
	67.6 %
	67.6 %

	
	F1
	18.3 %
	60.2 %
	64.1 %
	64.1 %

Naïve Model
This model is really just a baseline model, and is simply a variation on the “fake” model described above (with a small amount of extra intelligence). The naïve model applies each verb to all “significant” words in the location description. A significant word is defined as any word except a pre-defined set of articles, prepositions and other connecting words (e.g., relative pronouns and adjectives like “this”, “that”, “which”; and conjunctions). The naïve model also tries to “go” in all standard directions (8 cardinal compass directions, plus “up”, “down”, “out”, “ahead”, “back”, “right” and “left”), and omits these same standard directions from attempts to apply the other command types.
Performance. The performance of the naïve model is predictably terrible. Its recall is nearly perfect, but precision is very low for all command categories. (The non-perfect recall for open/close points to a quirk of the test data. Investigating the details of the performance indicates that, in one work, there is an openable object that isn’t explicitly referred to in the initial location description – an object that is in the initial description must first be examined.)
POS Model
The part-of-speech model uses the part-of-speech classifier developed for HW#3 (using a maximum-entropy classifier with engineered word/context features and trained on Treebank POS tagging data) to generate commands.

** Implementation note: I altered the POS classifier code. It reads tagged sentences and feature weights (pos_data/tokens_train and pos_data/weight.list) from files that were generated previously, rather than training a classifier from the original Treebank data each time the player-model is run.
After tagging the words in each sentence of the description, it looks for patterns in the tags and generates certain fixed command forms. These patterns and “instructions” for how to generate a command from each are as follows
.

1) DT ... NN*
Generate “examine x” and “take x” for any adjective (JJ) or noun (NN*) within … and the final NN*
2a) VB … NN
2b) TO <any single tag> NN
Generate “go NN” if NN is a standard direction

3) JJ NN*
Generate “open NN*”if JJ is “closed”
Generate “close NN*” if JJ is “open”

4) <first NN* in the sentence> … JJ
Generate “open NN*” if JJ is “closed”
Generate “close NN*” if JJ is “open”

The first rule reflects the fact that a phrase like “a giant purple dinosaur” appearing anywhere in a description is a good indication that that object is examinable. Well-written IF works provide as many sensible ways to refer to a given object as possible. In this case, the work should respond to “examine giant,” “examine purple” or “examine dinosaur”
The second rule reflects the typical way exit directions appear in descriptions (e.g., “A tunnel leads west”, “The control room lies to the southeast.”)
The last two rules attempt to discern which words refer to objects are openable/closeable based on an admittedly blind examination of where the words “open” and “closed” occur. The sorts of descriptions these patterns would be effective with are:

“Looking east, you see a closed gate blocking the entrance to the compound.”

“An ancient wooden box, faded and cracked, lies open at the foot of the bed.”

Performance. Considering the relatively superficial information this model uses, its performance in the examine and go categories is reasonably good. The moderately low precision for examine is understandable given that location descriptions often include mentions of nouns that aren’t examinable objects. Some fraction of the nouns were also tagged incorrectly.
The low precision for take is due to the fact that the model tries to take all nouns that it examines. The number of take-able objects in any one location is usually small, but there is no simple way to determine which these are using mere patterns of POS tags.

The very low recall for open/close is interesting, and reflects two facts: First, looking for linguistic clues is generally a bad way to determine if something is openable/closeable, as an IF author can normally expect the openability/closeability of various objects to be obvious (e.g., boxes, doors, lids, jars, files). One solution to this problem – which I did not explore – is to “train” the model about which noun types are operable/closeable by using transcripts from a separate set of “solved” games. Second, the gold command set includes several open/close commands that apply to adjectives rather than verbs (e.g. for a “front door” in one work, “open front” and “open door” are both gold commands). This could be resolved by changing the open/close rules to include adjectives, as with the examine rules.
Parser Model
The parser model attempts to improve on the POS model by looking more carefully at the syntax of the description sentence. It relies on the same basic reasoning as the POS model – i.e. about where examinable objects, exit directions, etc. are likely to show up in a sentence – but instead of looking at patterns of POS tags it looks at patterns within entire parse trees.

** Implementation note: The parser I used is a PCFG parser as constructed in HW #4. In order to compact the grammar and improve processing time (since ideally the player-model would eventually be run in a “live” interactive environment), I “reduced” various nonterminals. In general, I collapsed certain subcategories of nonterminals in cases where the distinction was relatively unlikely to matter for the types of sentences found in IF works and the types of patterns I would be looking for. For instance I collapsed: all tags beginning with “S,” all types of adverbs (RB), nouns and proper nouns, VBP and VBZ into VB. Also, note that the parser in the player-model code reads lexicon and grammar entries from a file (generated previously by the parser code) on startup.
The rules used are as follows:

· For any “simple NP” (a NP whose children are all preterminals): extract all adjectives and nouns and apply both “examine” and “take” to them.

· As above: If any adjective preceding any noun in the NP is “open” or “closed”, apply the corresponding comment (“close” and “open”, respectively) to that noun.

[These two rules are essentially the parse-tree versions of rules (1) and (3) for the POS model.]
· A “locative phrase” is a PP whose first child is a TO tag. If any of the remaining children of a locative phrase are a preterminal (usually JJ, NN or RB) whose leaf is a one of the standard direction words, apply “go” to that direction.

· For any VP: If a direction word is a descendant of that VP, apply “go” to that direction.

[These two rules are the parse-tree versions of (2a) and (2b) above.]
· Scan the entire parse-tree for “open” and “closed.” If found, then look at the “first” (i.e. highest and leftmost) simple NP in the tree. Extract all the adjectives and nouns that are immediate children of that NP, and apply “close” or “open” (as appropriate) to those adjectives and nouns.
[This rule doesn’t correspond well to any in the POS model. It reflects a broad guess that (a) the first simple noun phrase in a sentence is the subject of the sentence and (b) if “open” or “closed” appear later in the same sentence, there’s a good chance they are descriptions of the subject.]
Performance. This is an improvement on the POS model in all categories. The improved recall for examine and the improved precision for open/close is particularly encouraging. The low precision for take remains understandable – there is clearly a reasonable chance that a given simple NP refers to an examinable object, but linguistic information doesn’t tell us if something is takeable.

Parser2 Model
This model behaves like the first Parser Model, but takes some extra steps in an attempt to improve performance. These are:
· For each object it tries to examine, if that object turns out to be examinable, it then looks at the response to that command, applying the existing rules regarding open/close in an attempt to find other reasonable open/close commands. This is motivated by the fact that a location description could may mention an object (e.g., “A large wooden cabinet…”) whose description, upon examination, may note openability/closeability (e.g. “The cabinet is made of oak. Its door is currently closed.”)

· For take, instead of applying exactly the same rule as with examine, it only applies the rule to a simple NP that has a VP as an ancestor. This is an attempt to limit take approximately only to simple NPs that correspond to the object of the sentence.
Performance. The first change does appear to have improved recall for open/close somewhat, but the improvement is not substantial, and has the additional consequence of decreasing precision. Essentially, examining all examinable objects for the words “open” and “closed” appears to find some additional openable/closeable objects, but also many other instances of the words “open” and “close” that are misleading.
The second change clearly didn’t work. It only marginally improved precision and substantially decreased recall. Apparently takeable objects do not fall into a simple enough syntactic pattern to be captured by the sort of rules I tried. As with open/close, performance in this category would likely benefit from training with commands issued in “solved” games.
References

Daly, B., Hirschfield, D., Schaaf, R. About the Dialog Engine Project. http://www.etc.cmu.edu/projects/DialogEngine/about.html. June 1, 2005.
Gorniak, P. & Roy, D. Speaking with your Sidekick: Understanding Situated Speech in Computer Role Playing Games. Proceedings of Artificial Intelligence and Interactive Digital Entertainment, 2005 (in press).
Mateas, M. & Stern, A. InteractiveStory.net. http://www.quvu.net/interactivestory.net/. June 1, 2005.

Montfort, N. Twisty Little Passages. Cambridge, MA: The MIT Press. 2003.

Nelson, G. The Inform Designer’s Manual. Fourth Edition, 2001.
Short, E. Recommended Playing List. http://emshort.home.mindspring.com/literacy.htm. June 1, 2005.

� In these patterns, “*” means a single wildcard character – it isn’t an operator on the previous character as in standard regular expressions. “…” means any list of tags.

