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Abstract

Component middleware is popu​lar for enterprise dis​tributed systems because it pro​vides effective reuse of the core intellectual property (i.e., the “busi​ness logic”). Component-based en​terprise distributed real-time and embed​ded (DRE) sys​tems, how​ever, incur new ​inte​gra​tion problems asso​ciated with compo​nent configura​tion and de​ployment. New re​search is there​fore needed to minimize the gap between the develop​ment and deploy​ment/configu​ra​tion of components, so that deploy​ment and con​figu​ration strate​gies can be evalu​ated well be​fore sys​tem integration. This paper uses an industrial case study from the domain of shipboard computing to show how system execution mod​eling tools can provide software and system engineers with quantita​tive esti​mates of system bottlenecks and per​formance char​acter​istics to help evaluate the performance of component-based enter​prise DRE systems and ​re​duce time/effort in the inte​gration phase. The re​sults from our case study show the benefits of system execution modeling tools and pin​point where more work is needed.
1. Introduction

Integration challenges of component-based enter​prise DRE systems. Enterprise DRE systems are in​creas​ingly developed using applications com​posed of dis​trib​uted components running on fea​ture–rich middle​ware frame​works. The distributed com​ponents are designed to provide reusable services to a range of ap​pli​cation do​mains, which are then composed into domain-specific as​semblies for application (re)use. Ex​amples of component middleware plat​forms include Enterprise Java Beans and the CORBA Component Model (CCM). 

The transition to component middleware is occurring in enter​prise business systems to ad​dress​ problems of in​flexibility and reinvention of core capabilities associated with prior mono​lithic, func​tion​ally-de​signed, and “stove-piped” leg​acy ap​plications. Legacy ap​plications were devel​oped with the precise capabilities required for a spe​cific set of re​quirements and operating conditions. Com​po​nent-based systems, however, are designed to have a range of capa​bilities that en​able their reuse in other con​texts. Moreover, these systems are devel​oped in lay​ers, e.g., layer(s) of infra​structure middleware services (such as naming and dis​covery, event and notifica​tion, security and fault toler​ance) and layer(s) of application compo​nents that use these ser​vices in differ​ent com​posi​tions. 


Certain types of component middleware, such as Real-time CCM [14], are also being ap​plied to the do​main of enterprise distributed real-time and embed​ded (DRE) sys​tems, such as shipboard com​puting envi​ron​ments and su​pervisory control and data acquisition sys​tems, to pro​vide users with quality of service (QoS) sup​port to process the right data in the right place at the right time over a grid of computers. Some QoS properties re​quired by en​terprise DRE sys​tems include the low la​tency and jitter as expected in con​ven​tional real-time and embedded systems, and high throughput, scalability, and reliability as ex​pected in con​ven​tional enterprise distrib​uted systems. Achieving this combi​nation of QoS capa​bilities in enterprise DRE systems developed using com​ponent middleware is hard.

Component middleware can also compli​cate soft​ware lifecy​cle proc​esses by shifting responsi​bility from software de​velop​ment engi​neers to software configura​tion/deployment en​gi​neers and sys​tems engineers. Soft​ware develop​ment engineers tradition​ally created entire applications in-house using top-down design methods that could be evaluated throughout the life​cycle. In con​trast, software configuration and de​ployment engineers and sys​tem en​gineers today assemble enterprise DRE systems by composing re​usable com​ponents, whose com​bined properties are usually evaluated only dur​ing the inte​gra​tion phase. Un​fortunately, problems un​cov​ered during integration are much more costly to fix than if they were discovered earlier in the life​cycle. A key re​search chal​lenge is thus exposing these types of issues (which often have dependencies on com​ponents that are not avail​able until late in de​velop​ment) earlier in the life​cy​cle, e.g., prior to the system inte​gration phase. 

Component-based enterprise DRE systems use de​sign- and run-time configuration steps to customize the be​havior of reusable components to meet QoS require​ments in the con​text where they execute. Finding the right configura​tions for compo​nents to meet application QoS require​ments is hard. For example, tuning the con​currency con​figura​tion of a shipboard computing system to sup​port both real-time and fault-tol​erant QoS involves trade​offs that chal​lenge even experienced engineers. More​over, ap​plication functionality is distributed over many components in a DRE system and de​vel​opers must inter​connect their compo​nents correctly and effi​ciently. This process can be tedious and error-prone us​ing con​ven​tional hand​crafted configuration processes. 


The compo​nents assembled into an application must also be de​ployed on the appropri​ate nodes in an en​ter​prise DRE system. De​ployment is hard since host and network char​ac​teristics can vary statically (e.g., due to different hard​ware/software plat​forms used in a product-line architec​ture) and dy​namically (e.g., due to dam​age/faults, change in computing objec​tives, or dif​fer​ences in the real vs. expected be​havior of applications during actual opera​tion). Evaluating the char​acteris​tics of system deploy​ments is there​fore tedious and er​ror-prone when deploy​ments are per​formed manually. 


Another complexity of evaluating deployments of com​ponent-based enterprise DRE systems stems from ap​plications sharing components with differing QoS re​quire​ments, such as a system resource manager that proc​esses requests from high-priority tacti​cal ap​plica​tions and low-priority desktop applica​tions. It is hard to assure that a stand-alone applica​tion can meet stringent QoS re​quire​ments using dedicated re​sources. It is harder to assure these re​quirements with components that share re​sources with other appli​ca​tions. 


Solution approach System execution modeling tools. Despite the flexibility offered by component mid​dle​ware, there are often surprisingly few configurations and de​ploy​ments that can satisfy the functional and QoS re​quire​ments of an enterprise DRE system. We have there​fore developed a system exe​cution mod​eling tool chain called the Component Workload Emulator (Co​WorkEr) Utilization Test Suite (CUTS), which combines QoS-en​abled component middleware and model-driven engineering (MDE) technologies. Software architects, devel​opers, and systems engi​neers can use CUTS to ex​plore de​sign al​ter​na​tives from mul​tiple computational and valua​tion per​spectives at multiple lifecycle phases us​ing multi​ple qual​ity criteria with multi​ple stakeholders and suppli​ers. In addition to validating design rules and checking for design confor​mance, CUTS fa​cilitates “what if” analysis of alter​native designs to quantify the costs of certain de​sign choices on end-to-end system per​formance. For ex​ample, CUTS can help determine the maxi​mum number of com​ponents a host can handle be​fore performance de​grades, the average and worse re​sponse time for vari​ous work​loads, and the abil​ity of al​ternative system configura​tions and deployments to meet end-to-end QoS require​ments for a particular work​load.
In the context of enterprise DRE systems, our CUTS system exe​cution modeling tool helps developers dis​cover, meas​ure, and rec​tify perform​ance prob​lems early in the lifecycle (e.g., in the ar​chitec​ture and design phases), as opposed to the integration phase, when mis​takes are much harder and more costly to fix. This paper shows how we used CUTS to rapidly emulate compo​nent-based appli​ca​tions in an shipboard com​puting enter​prise DRE system and then per​form ex​periments that sys​tematically estimated and evalu​ated the end-to-end QoS for key scenarios in this system. 

Paper organization. This paper is or​gan​ized as fol​lows: Section 2 summaries limitations with prior work on QoS-enabled component middleware and MDE tools in the con​text of a shipboard comput​ing system case study; Sec​tion 3 describes CUTS, shows how it over​comes limitations with prior work, and explains how we re​solved key design chal​lenges when developing CUTS; Section 4 shows how we ap​plied CUTS to evaluate the QoS of various deploy​ments in our case study; Sec​tion 5 compares our R&D ef​forts with re​lated work; and Sec​tion 6 presents concluding re​marks and les​sons learned.
2. Background and Case Study
Our work on CUTS has evolved incrementally over the past three years in the context of a multi-phase pro​gram that is de​vel​oping multi-layer resource management (MLRM) services to support product-lines that coordi​nate a grid of com​puters to man​age many aspects of a ship's power, navi​gation, command and con​trol, and tac​tical op​era​tions [15]. The MLRM ser​vices have hun​dreds of different types and in​stances of infra​structure com​ponents written in ~500,000 lines of Java and C++ code and ~1,000 files de​veloped by six teams at dif​ferent geo​graphic loca​tions. This section uses our experience to motivate the need for the CUTS system execu​tion mod​eling tools. 
Our initial approach. To address the configu​ra​tion and deployment problems com​mon to integrating compo​nents in enterprise DRE systems, our initial work com​bined QoS-enabled component middle​ware plat​forms with MDE tools. QoS-enabled component mid​dleware sup​ports the provision​ing of key QoS proper​ties, e.g., (pre)allocating CPU re​sources, re​serving net​work band​width/connections, and moni​tor​ing/enforcing the proper use of DRE sys​tem resources at runtime, to meet end-to-end require​ments. MDE tools combine 
· Do​main-specific modeling lan​guages (DSMLs), which pro​vide programming nota​tions that for​malize the process of speci​fying applica​tion logic and QoS-re​lated require​ments using type systems that pre​cisely ex​press key characteristics and constraints as​so​ciated with DSMLs for particular appli​ca​tion do​mains and 
· Model trans​formations and code gen​eration, which auto​mate and en​sure the consis​tency of software im​ple​men​ta​tions via analy​sis information asso​ci​ated with func​tional and QoS re​quirements cap​tured by models of do​main-specific structure and behav​ior. 


In prior work with colleagues at Washing​ton Univer​sity, St. Louis we developed a QoS-enabled component mid​dle​ware plat​form called the Compo​nent-Integrated ACE ORB (CIAO) [14] that com​bines Lightweight CCM [4] capabili​ties (such as standards for specifying, imple​ment​ing, pack​aging, assembling, and deploying compo​nents) with Real-time CORBA [12] features (such as thread pools and pri​ority pres​ervation poli​cies) to create a Real-time CCM middleware platform. Like​wise, we cre​ated an MDE tool suite called Compo​nent Synthesis us​ing Model Integrated Comput​ing (CoSMIC) [7], which is an inte​grated set of DSMLs that support the devel​op​ment, deploy​ment, configu​ra​tion, and evalua​tion of enter​prise DRE sys​tems based on Real-time CCM. CoS​MIC is imple​mented using the Generic Model​ing Envi​ronment (GME) [9], which is an open-source MDE tool​kit for creating and us​ing DSMLs. These tools/platforms are open-source and available from www.dre.vanderbilt.edu.

By combining CIAO and CoSMIC, we tack​led many inte​gration challenges associated with con​figuring and deploy​ing enterprise DRE systems by lever​aging MDE tools to en​force correct-by-con​struction de​sign. For ex​ample, we used CoS​MIC’s model in​terpret​ers to gener​ate Real-time CCM XML configura​tion files [1] and CIAO’s De​ployment And Configura​tion Engine (DAnCE) [5] to ​de​ploy the resulting compo​nent assem​blies on DRE sys​tem nodes, as shown in Fig​ure 1.
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Figure 1. Integrating CIAO, DAnCE, and CoSMIC


Limitations with our initial approach and com​mon alternatives. To evaluate the bene​fits of combining CIAO, DAnCE, and CoSMIC, we applied them in phase one of our MLRM project [15]. Our experience, how​ever, indicated that CIAO, DAnCE, and CoSMIC were insufficient to evaluate the QoS of applications in enter​prise DRE systems due to the follow​ing limita​tions:

· Insufficient performance evaluation. In the MLRM environment, many different ap​plica​tions ran concurrently across net​works that in​cluded both shared and dedicated com​ponents. CIAO, DAnCE, and CoS​MIC, however, provided insufficient support for evalu​ating QoS-re​lated char​acteristics (such as commu​ni​cation delay, tem​poral phasing, par​allel execu​tion, and syn​chroni​za​tion). 
· Serialized phase ordering dependencies. Applica​tion compo​nents that exercised the MLRM infra​struc​ture mid​dle​ware ser​vices were not developed un​til later in the sys​tem lifecycle. The QoS of the in​fra​structure ser​vices therefore was not evaluated ade​quately under realistic workloads to vali​date their ar​chi​tec​ture and de​sign.

We initially considered evaluating MLRM QoS char​acter​istics via simulation. Due to size, inter​dependen​cies, and the sheer number of vari​ables in​volved it was impractical to develop and evolve real​istic models that simu​late complex scenarios. Moreover, while pure simu​lation can provide valuable in​formation about system QoS behav​ior, it is hard to lever​age simula​tion re​sults di​rectly in the production opera​tional environ​ment. 
3. The Component Workload Emulator (Co​WorkEr) Utili​za​tion Test Suite (CUTS)
To overcome the limitations described in Section 2, we needed more effective technolo​gies to evaluate the end-to-end QOS characteris​tics of MLRM ap​plications in a production-scale envi​ron​ment, even be​fore any actual appli​cation com​ponents were developed. Our goals were motivated by our experience in phase one of the MLRM project and involved:
· Not obtaining 100% precision, but pro​viding systems engineers and architects with rapid, reasonably accu​rate estimates of system QoS early in the lifecycle. 
· Improving the accuracy of our estimates of sys​tem QoS incrementally as our under​standing of applica​tion require​ments, implementa​tions, and execu​tion environ​ments in​creased.

· Automatically transitioning select artifacts used in our evaluations (such as models of deployment plans that met end-to-end QoS re​quirements) to the com​ponent-based application and middleware deploy​ments and configu​rations we were creat​ing.

To meet our goals and overcome limitations with prior work, we developed the Component Workload Emulator (Co​WorkEr) Utilization Test Suite (CUTS). CUTS is a system exe​cution modeling tool chain for cre​ating compo​nent-based appli​cations rapidly and per​form​ing ex​peri​ments that systematically evaluate inter​ac​tions that are hard to simulate. In par​ticular, CUTS provides model-based workload generation, data re​duction, and visuali​zation tools to construct ex​periments rapidly and analyze results from alternate execution ar​chitec​tures. CUTS can also import measured per​formance data from faux applica​tion components run​ning over actual infra​structure mid​dleware services to estimate en​terprise DRE system behavior in a realistic en​vironment.


When combined with our prior work on QoS-en​abled component middleware and MDE tools, CUTS allowed more robust and complete solutions for emulat​ing actual appli​cation compo​nents and evaluat​ing QoS earlier in the enter​prise DRE system lifecycle. For exam​ple, we used CoS​MIC to cre​ate models of DRE systems com​posed of faux application components and actual sys​tem infrastruc​ture components. We then used these mod​els with DAnCE to de​ploy these compo​nents into a repre​senta​tive testbed (www.dre.vanderbilt.edu/ISISlab) and con​duct system​atic experiments that meas​ured how well the system per​formed relative to QoS specifi​ca​tions from production computing sys​tems. This remainder of this sec​tion pre​sents the CUTS archi​tecture and solu​tions to de​sign challenges we faced when developing it and ap​plying it to the MLRM case study.
3.1 CUTS Architecture

As outlined in Section 2, CUTS is a system execu​tion modeling toolkit that (1) emulates portions of enter​prise DRE systems (2) collec​ts performance data pro​vided by the emulation, and (3) analyzes the data to esti​mate sys​tem QoS and pinpoint performance bottle​necks. At the heart of CUTS is an assembly of CCM com​po​nents, called a CoWorkEr (Figure 2). A CoWorkEr is a faux com​ponent that can be pro​grammed rapidly to emu​late the ex​pected behavior and resource consumption of its counter​part in the production applica​tion.
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Figure 2. A CoWorkEr Component Assembly
CoWorkErs can be connected together via their ex​posed ports to create operational strings, which are task graphs that capture the par​tial ordering of a set of execut​ing soft​ware compo​nents. Figure 2 shows the key ele​ments of the CoWorkErs, which fall into two broad cate​go​ries: work​load genera​tion and test control and analy​sis. 

3.1.1. Workload generation is imple​ment​ed in CUTS as an as​sembly-based CCM component composed of the fol​lowing monolithic CCM compo​nents:

· The EventHandler can receive user-de​fined events. It records the number of events re​ceived for each type and performance metrics regarding the delay be​tween original publication and the onset of proc​ess​ing. The EventHandler also tracks the time re​quired to process each event it re​ceives. Workloads, which are per​formed by the worker compo​nents de​scribed next, may also be associated with receiving combi​nations and numbers of events. 

· The CPUWorker performs CPU opera​tions. As with all workers, the quantity of work to per​form is speci​fied as a number of repe​ti​tions, which represent an ab​stract unit of work.

· The MemoryWorker performs alloca​tion and dealloca​tion of memory.

· The DatabaseWorker performs a series of insert, up​date, and delete operations on a speci​fied da​tabase. 

· The EventProducer (which is also a worker) pub​lishes events that carry a data payload of the desired size. Events are time-stamped prior to transmis​sion.

· The Trigger is provided to represent exter​nal input to a simulated application, or regu​larly sched​uled, time-driven processing not result​ing from the re​ceipt of an event. Triggers provide both periodic and pseudo-ran​dom behavior by inducing work​ers to perform a workload at a specified inter​val and prob​abil​ity of oc​currence. A Trigger can also perform startup work​load during activation.
To simplify the programming and configuration of Co​WorkErs, we created an MDE-based DSML called the Workload Modeling Language (WML) [15]. WML is used to char​acter​ize the be​havior of individual CoWork​Ers by speci​fying their processor, memory, data​base, and in​put/output usage pro​files. XML charac​terization files are then gener​ated from a WML model, and subse​quently parsed by EventHandler and Trig​ger compo​nents to dic​tate the be​havior of their respective CoWorkEr.

3.1.2. Test control and analysis in CUTS includes the fol​lowing ele​ments:

· The BenchmarkAgent completes the CoWorkEr assem​bly shown in Figure 2. It requests test data col​lected by EventHandlers at a user-defined inter​val and transmits this data to the Benchmark​Data​Col​lector.

· The BenchmarkDataCollector (BDC) submits test data to an in-mem​ory Bench​markData​base. 

· The BenchmarkManagerWeb-inter​face (BMW) im​plements the test control and analysis functionality via an ASP.NET application. This man​ager proc​esses data captured in the Bench​mark​Data​base and invokes DAnCE’s Execution​Manager to start and end the de​ployment of test assemblies. In addition to the web browser interface, the BMW provides a web-services in​terface that al​lows any programming language that supports the Simple Object Access Pro​tocol (SOAP) to automate CUTS tests.
Figure 3 shows how CUTS can evaluate the QoS of enter​prise DRE systems. Dedi​cated hosts, called test host, run inside the test network and the Bench​markDataCol​lector and BenchmarkMan​ager​Web-in​terface exist out​side the test network. This setup limits outside inter​fer​ence on tests run using CUTS while per​mitting users to ana​lyze their re​sults either during or after the test run.
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Figure 3. Example Setup of CUTS to Evaluate QoS in an Enter​prise DRE System

3.2 CUTS Design Challenges and Solutions


We now describe solutions to key problems encoun​tered when developing and applying CUTS.

Challenge 1. Non-intrusive metrics collection. An ad hoc met​rics collection system might inter​fere with the emulation and skew test results. Met​ric collection should therefore have minimally intrusion and resource usage.

Solution ( Decouple metrics collection from emula​tion, and collect metrics using a 3-phase data ac​qui​sition process. The components de​scribed in Sec​tion 3.1 work to​gether to collect perform​ance metrics in three separate stages. In stage 1, the Even​tHandler main​tains for each event type a local in-memory re​cord of the number received, the max/min transmis​sion and process​ing time, and run​ning totals for transmission and proc​essing time. In state 2, the BenchmarkAgent obtains the data from the Even​tHan​dler at a user-specified interval in a dedicated thread, and resets the EventHandler’s running totals. The BenchmarkAgent transmits the collected data to the Bench​mark​DataCollec​tor, which immedi​ately queues the data and returns. In stage 3, the Benchmark​DataCol​lec​tor de​queues the data and inserts it into a MySQL data​base. Each phase of the data acquisition process also uses a dedi​cated thread to minimize the im​pact of data collec​tion on the emulation 

All data stored and transmitted by the EventHandler and the BenchmarkAgent is a fixed-size to ensure mem​ory usage is bounded by a constant factor. The as​pects of met​ric collec​tion that cause variable mem​ory usage and delays, e.g., queuing and entry of data into a database, are placed the Bench​markDataCollec​tor, which is deployed on a node not used by a CoWorkEr. Moreover, separate networks can be used to de​couple transmis​sion of met​ric data from the transmis​sion of Co​WorkEr opera​tions.

Challenge 2. Simplify characterization of applica​tion workload. Some CoWorkEr users will be sys​tems engineers or architects, who may not be familiar with with third-generation lan​guages, such as C++ or Java, or configura​tion lan​guages, such as XML. It is therefore im​portant for CUTS to offer alter​natives to pro​gram​matic interfaces and con​figura​tion files for these types of users.


Solution ( Provide graphical user interfaces for charac​terizing, deploying and analyzing applica​tions. CUTS allows users to de​sign simulated applica​tions en​tirely through visual models. In particular, the CoSMIC and WML DSMLs allow users to create structural and be​havioral models of their ap​plica​tions without manu​ally editing configuration files or third-generation language code. Deployment and analysis of the application is pro​vided through an in​tuitive Bench​markManagerWeb-in​ter​face. More details and examples of WML appear in [15].
Challenge 3. Simplify Customization. Co​WorkErs can emulate four cate​gories of core application work (CPU, mem​ory, da​tabase, and network resource utiliza​tion), but the need for more customized behavior may arise for par​ticular types of enterprise DRE systems. The design of the CoWorkErs therefore needs to sup​port user-defined ​exten​sions to its basic work rep​er​toire.


Solution ( Support custom CoWorkEr compo​nents. In the spirit of CCM, CoWorkErs em​ploy a modu​lar de​sign where any monolithic com​ponents comprising the CoWorkEr assembly shown in Figure 2 can be re​placed with a customized component that implements the same inter​face, without modifi​cation or recom​pila​tion of other compo​nents. For ex​am​ple, it is straight​for​ward to re​place the default CPU​Worker with a FCPU​Worker that only performs float​ing-point arithmetic. In addition, GME’s conven​ient in​heritance support makes swapping of com​ponents straightforward within a CoS​MIC model,.

Challenge 4. Descriptive analysis of performance. If an emulation shows that a pro​posed configu​ration and de​ployment of enterprise DRE system compo​nents will not meet QoS expectations, CUTS users must be able to pin​point the source of the problem quickly to correct it.

Solution ( Present metrics in layers to support gen​eral and detailed analysis. In addition to providing a graphical representation of observed per​form​ance vs. dead​lines along a critical path, CUTS Bench​markMan​agerWeb-inter​face allows users to view statis​tics for in​dividual Co​WorkErs. A tabular display allows users to view summary statistics for operational strings of Co​WorkErs simultane​ously, whereas detailed graphs sup​port scrutiny of an indi​vidual CoWorkEr’s perform​ance over time. Statistics for processing time can also be subdi​vided to reflect the four categories of work, thereby allowing analysts to determine whether QoS target re​quirements are missed due to reli​ance upon a slug​gish database, paging due to excessive mem​ory alloca​tion, saturation of network bandwidth, etc. Us​age and further discussion of these features can be found in Sec​tion 4.2.
4. Applying CUTS to Evaluate an Enterprise DRE System

This section describes the design and results of an ex​peri​ment that uses the CUTS systems execution mod​eling toolchain to evaluate the QoS of a representative enterprise DRE system from the domain of ship​board comput​ing. This experiment is based upon work con​ducted in the MLRM project described in Section 2. This project provided a representative case study for evalu​ating CUTS since it runs on general-pur​pose oper​ating systems (such as Solaris and Linux) with real-time en​hancements. It also uses a component-based archi​tecture devel​oped using the CIAO and DAnCE Real-time CCM middle​ware and CoS​MIC MDE tools, has hun​dreds of compo​nents types/instances and hundreds of thou​sands of lines of C++ and Java code, and has been developed over the past three years by a group of geo​graphically dis​trib​uted teams. As a result, the MLRM soft​ware base incurs many of the same inte​gration challenges associ​ated with configu​ration, de​ployment, and QoS evaluation that oc​cur in other pro​duc​tion enterprise DRE sys​tems.
4.1 The MLRM SLICE Experiment using CUTS
4.1.1. Experiment motivation. One of the challenging prob​lems in the second phase of the MLRM project is called the SLICE scenario, which consists of 2 sensors, 2 plan​ners, 1 configuration, 1 error recovery, and 2 ef​fector compo​nents. The SLICE scenario requires the transmis​sion of informa​tion detected by the sensors to each plan​ner in se​quence, then to the configura​tion compo​nent, and lastly to both effectors to perform ac​tions that con​trol devices in the physical world. Com​ponents in the SLICE scenario are deployed across 3 computing nodes because the workload generated by each component collectively is more than a single node can handle. The main sensor and effector (rep​re​sented as sensor-1 and effector-1 in Figure 4 and in fol​lowing sections) are deployed on sepa​rate nodes to re​flect the placement of physical equipment in the production shipboard system. Fig​ure 4 shows a model of the end-to-end layout of SLICE com​ponents, with the criti​cal path specified by the dashed arrows.
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Figure 4. Model of SLICE Showing the Com​po​nents and Their Interconnections


In phase two of the MLRM project, the multi-layer resource man​ager infrastructure was re-implemented to use Real-time CCM (via CIAO and DAnCE), and MDE tools (via CoS​MIC), instead of Real-time CORBA and ad hoc de​ploy​ment mechanisms used in phase one. Based on the MLRM phase two development schedule, the inte​gra​tion of components that implemented the SLICE sce​nario atop the new multi-layer resource management in​fra​struc​ture was not slated to occur until 12 months into the pro​gram to pro​vide sufficient time to finish develop​ing, test​ing, and optimizing the multi-layer resource manage​ment infra​structure. The SLICE scenario, how​ever, uses soft​ware compo​nents similar to product-lines and chal​lenge prob​lems in phase one of the MLRM pro​ject. We there​fore already understood each compo​nent’s behavior in SLICE, but did not know how overall per​formance of the SLICE scenario would be affected by the new MLRM infra​structure.


In phase one, we waited until the integration phase of our schedule to begin benchmarking the system, only to learn none of the QoS requirements were met due to improperly designed multi-layer resource management infrastruc​ture. As a consequence, our schedule slipped and the process of reconfiguring and redeploying MLRM appli​cation and middleware components to meet QoS re​quire​ments re​quired ​significant manual effort. To prevent the same prob​lems from hap​pening in phase two of the pro​gram, we used CUTS to evaluate the QoS challenges of the SLICE scenario prior to the integration phase. Our goal was to determine which con​figuration and deploy​ment strategies will en​able us to meet the QoS critical path deadline and create a pool of selectable deployment strate​gies that meet the per​formance requirements. The under​lying hypothesis driv​ing the experiment was much of the performance information could be collected prior to the integration phase by emulating key properties of the SLICE scenario components using CUTS. As a result, less time would be spent integrating and testing the actual SLICE compo​nents after they were com​pleted.
4.1.2. Experiment design. For the SLICE scenario, there is a 350 ms QoS critical path deadline, which is represen​tative of the end-to-end execution time of a similar sce​nario from phase one of the MLRM project. This dead​line corre​sponds to receiving a command event on sen​sor-1 up to perform​ing an action with effector-1. Sensor-1 and ef​fector-1 must be deployed on separate nodes to meet the constraints dis​cussed in section 4.1.1. Table 1 de​scribes the pre​dicted behavior for two of the ​SLICE components (which were defined using the Workload Modeling Lan​guage) to illus​trate the various types of workload and ac​tions for a Co​WorkEr.
	Planner -1 CoWorkEr 

	Workload performed every second
	publish command of size 24 bytes

	Workload performed after receipt of a track event
	alloc 30 KB; 55 dbase ops; 45 CPU ops; publish assessment of size 132 bytes; de​alloc 30 KB

	Configuration-Optimization CoWorkEr

	Workload performed at startup time
	alloc 1 KB; 25 dbase ops; 1 CPU ops; 10 dbase ops; dealloc 1 KB

	Workload performed after receipt of an as​sessment event
	alloc 5 KB; 40 dbase ops; 1 CPU op; pub​lish command of size 128 bytes; dealloc 5 KB

	Workload performed after receipt of a status event
	1 dbase op


Table 1. Expected Behavior for 2 SLICE CoWorkErs
The workload specifications for each component listed in Table 1 is based on the behavior of components imple​mented in phase one. We obtained these values by esti​mating the number and types of operations based our understanding gained by implementing and testing the functionality of the workload generators explained in Sec​tion 3.1.1. For the predicted behavior for the remain​ing components, please refer to [13].
	Host
	Operating System
	Database

	1
	Fedora Core3
	YES

	2, 3, BDC
	Fedora Core3
	NO

	BMW
	Windows XP
	YES


Table 2. System Characteristics for Experiment Host
Each host in the CUTS-based ex​periments was an IBM Blade Type L20, dual-CPU 2.8 GHz processor with 1 GB RAM with the char​acteris​tics listed in Table 2. The middleware was version 0.4.7 of CIAO/DAnCE, and the MDE tools used were version 0.4.6 of CoSMIC, which is the target middleware and MDE tool for the SLICE sce​nario in phase two. Each test was run for 10 minutes.

4.2 Viewing and Interpreting the Results of the SLICE Experiment

This section describes the results of tests that used CUTS to evaluate various deployments of SLICE compo​nents onto hosts to (1) test the capability of CUTS, (2) de​ter​mine which deployment strategies meet the 350 ms criti​cal path deadline when components Sensor-1 and Effector-1 are de​ployed on separate nodes, and (3) prove that workload generated by SLICE is too much when the criti​cal path components are deployed on a single node. The first listing in Table 3 contains the legend for the Co​WorkEr symbols used in the second listing.
	SLICE CoWorkEr Legend for Test Table

	Symbol
	CoWorkEr
	Symbol
	CoWorkEr

	A
	Sensor-1 *
	E
	Config-Op *

	B
	Sensor-2
	F
	Error-Recovery

	C 
	Planner-2 *
	G
	Effector-1 *

	D
	Planner-1 *
	H
	Effector-2

	* represents CoWorkEr in the critical path


	Test
	Deployment Strategy
	Critical Path Exe​cution Time

(avg./worse) (ms)

	
	Host 1
	Host 2
	Host 3
	

	1
	C,D,E,F
	A,B
	G,H
	411 / 1,028

	2
	A,B,C,D
	F
	E,G,H
	420 / 1,094

	3
	A,B,C,D,E
	F
	G,H
	416,/ 1,085

	4
	A,B,C,D,E,F,G,H
	
	
	463 / 1,247

	5
	A,B,C,D,E,G,H
	F
	
	467 / 1,219

	6
	A,C,D,E,G
	F
	B,H
	323 / 844

	7
	A,G
	C,D,E
	B,F,H
	363 / 887

	8
	D
	A,B,C, F,G,H
	E
	405 / 975

	9 
	A,D
	C,E,G
	B,F,H
	235 / 387

	10
	A,D
	E,G
	B,C,F,H
	251 / 395

	11
	A,D,E
	C,G
	B,F,H
	221 / 343


Table 3: SLICE Results for Experiments using Dif​fer​ent De​ployment Strategies in CUTS
4.2.1. Discussion of the hypothesis. Test 4 and 5 were two tests that not only missed the 350 ms deadline, they in​curred the worst critical path execution time for all 11 tests. The main pur​pose of test 4 and 5 was to evaluate our hypothesis that the 350 ms dead​line could not be met if all components were de​ployed on the same node. After com​pleting test 4 and 5, we validated this hypothesis – the workload generated by components in the critical path is more than a single node can handle, so they must be de​ployed across multi​ple nodes. On the other hand, test 6 deployed only the components in the critical path on the same node, and had an average execution time of 323 ms. CUTS therefore enabled us to learn that we could meet the 350 ms deadline if only the critical path components were deployed on the same node.

	Workload
	Avg. Samples
	Avg./Rep (ms)
	Avg. Time (ms)

	Transmit Delay
	5
	
	6.19

	Total Workload
	5
	
	169.6

	CPU
	
	2.20859
	99.39

	Memory
	
	0.00727
	0.51

	Publication
	
	1.40206
	1.4


Table 4. Snapshot of Timing Data for Sensor-1 in Test 8 obtained from the BMW Test Results Page

	CoWorkEr
	Transmission 

Delay (ms)
	Avg. Time of 

Completion (ms)

	Sensor-1
	6.19
	169.6

	Planner-1
	12.11
	54.03

	Planner-2
	10.69
	110.66

	Config-Op
	17.04
	23.84

	Effector-1
	
	0.34


Table 5. Snapshot of the Critical Path Timing Data for Test 8 from the BMW Analysis Page
4.2.2. Interpreting the CUTS benchmark data results. Running 11 tests with vari​ous deployment strategies pro​vided key in​formation about the current MLRM infra​structure. Of the 11 tests, only 3 deployed the critical path components across multiple nodes and completed their end-to-end execution in 350 ms. Of these 3 tests, 2 de​ployed the critical path across all three nodes and com​pleted it within an average time of 350 ms, and 1 test (test 11) completed it within a worse time of 350 ms. Al​though we did not exhaust all pos​sible de​ployment strategies in this experiment, we learned that only 18% (2 out of 11) of the current test passed on their planned infra​structure while meeting the deployment require​ments and test 11 yield the best performance.


After running test 1 through 8, only 1 test met the 350 ms end-to-end deadline, and 7 of the tests had faults in their deployment specification, e.g., placing a Co​WorkEr on a host with insufficient resources to han​dle its workload without missing deadlines. We used CUTS graphical analysis features to inves​tigate why these de​ployment strategies did not meet their QoS require​ments.
Tables 4 and 5 show the results pro​vided via the BenchmarkManagerWeb-inter​face (BMW) for test 8, which measures the behavior when two com​po​nents in the critical path handling the most workload are deployed on their own node. Table 4 shows the time to transmit a mes​sage be​tween two CoWorkErs and how long it took to complete each type of workload – CPU, database, or memory – for Sensor-1. For the Co​WorkErs in the criti​cal path in test 8, it took 169.6 ms for Sensor-1 to process its workload after receipt of a com​mand event from Plan​ner-1; 54.0 ms for Planner-1 to perform its workload af​ter receipt of a track event from Sensor-1 or Sensor-2; and 110.6 ms for Planner-2 to per​form its workload after re​ceipt of a command event from Planner-1.

For test 8, Sensor-1 and Planner-2 have the longest completion times. Based on the quantitative analysis pro​vided by CUTS, we realized that the Sen​sor-1 and Plan​ner-2 CoWorkEr components had a heav​ier workload than expected, and must be deployed on sepa​rate nodes. We then used CoS​MIC and DAnCE to place the Sensor-1 and Planner-2 Co​Wok​Ers on different hosts, which cre​ated the de​ployment strategies used in test 9, 10 and 11, all of which met the 350 ms deadline. Of those 3 tests, test 11 was the best test case and was the only test to have a worse execution time that meets the 350 ms dead​line. In addi​tion, these de​ploy​ment strategies meet the de​ployment re​quire​ments of placing Sensor-1 and Effector-1 on different nodes, as dis​cussed in Section 4.1.4.
More detailed examples of the types of visualizations and analysis provided by CUTS is presented in [13].

5. Related Work

Distrubuted sys​tem emulation environments. Vari​ous environments can be used to emulate and evalu​ate dis​tributed system behavior. A popular environment is Emu​lab [6], which provides tools that can be used to configure the topology of experiments, e.g., by mod​eling the underly​ing communi​cation links. This topology is mapped to ~250 physi​cal nodes that can be ac​cessed via the Internet. CUTS en​hances the Emulab net​work-centric focus via the WML and CoSMIC DSMLs that create tests and deploy​ment/configuration specifica​tions at a high-level of ab​straction that is more suitable for emu​lating component-based DRE systems than the NS scripts provided by Emu​lab to provision communi​cation links.

ModelNet [17] is another environment for evaluat​ing large-scaled distributed systems. In ModelNet, devel​opers emu​late multiple clients and hosts using one host. For example, 100 Gnutella clients each with a 1 Mbps bottleneck band​width can be emulated on one dual proces​sor-1 GHz machine. ModelNet also facilitates the emulation of faux and real applica​tions. The CUTS emulation environment is simi​lar to the Model​Net envi​ronment in that both address large-scaled distributed systems. CUTS, however, focuses on DRE systems and uses the target architecture to facili​tate emula​tion and performance accu​racy. Whereas, ModelNet seeks to pro​vide scalable and accurate solutions using as few hosts as possible.
System execution modeling tools. KLAPER [8] is a modeling language that speci​fies system behavior for component-based systems. Similar to WML in CUTS, KLAPER specifies workload, such as resource utiliza​tion, but does not capture han​dling of events. WML ex​tends KLAPER by allowing sequential specifi​cation of resource utiliza​tion, transmission and re​ceipt of events, and work​load types, e.g. event, periodic, or startup. 
UPPAAL [3] is a system execution modeling tool that verifies properties of DRE systems via a modeling-language and environ​ment for veri​fying a sys​tem’s speci​fied behavior early in the develop​ment stage. by dynami​cally validates all pos​sible behav​iors with its model-checking simulator. CUTS focuses on complementary areas, such as (1) emulating system be​havior on the target platforms, (2) bench​marking DRE systems as a whole and as individ​ual components, and (3) monitoring system flows to verify QoS require​ments are met.
RT-UML [11] models and evalu​ates the performance of component-based systems by defining services and QoS policies for compo​nents, though modeling system be​havior is future work. RT-UML is also designed to be sup​ported by exter​nal simula​tion tools, which are still under de​velopment. WML en​hances RT-UML by pro​viding a working DSML tool that al​lows developers to specify a compo​nent-based system be​hav​ior, which is then emulated by CUTS. 
Evaluation techniques for component architec​tures. [16] discusses a technique called trace-based analy​sis for En​ter​prise Java Bean (EJB) components. In trace-based analysis, different execution traces in a com​ponent are monitored and dumped to a trace file con​tained on the host. After the emula​tion, the trace files are parsed and com​bined with the deploy​ment descriptors, which define the structure of the system, to determine the different paths of execution in the system. CUTS is similar to trace-based analysis since it collects traces of execution times, but these traces are logged to a central data​base. CUTS also monitors prede​termined execution paths in real-time, whereas [16] uses methods to recon​struct every path autono​mously, but does not moni​tor performance in real-time over the dura​tion of the emu​lation. [16] also focuses on service calls, whereas CUTS per​formance met​rics use events sent between compo​nents.
[18] and [19] discuss vertical profiling evaluation techniques in the context of EJB. In vertical profiling, per​formance metrics based on the types of operations and ac​tions (e.g., cache misses and CPU cycles) are collected in trace files across multiple execu​tions of the same tests. The trace files are then fused through a process called trace-alignment using a common metric that occurs in the source traces. After the traces are aligned, cor​relation analysis is applied to the traces to help determine what other metrics collected in the trace may influence its be​havior. [19] also discusses how to automate this process. CUTS provides a similar approach in the context of CCM that allows analysis of individual actions and operations in a component. CUTS, how​ever, goes further and allows the analysis to happen at real-time with the emulation. 
Architectures for deployment and configu​ra​tion of components. Proactive [2] is a framework for compo​nent de​ployment and configuration designed for conven​tional Java appli​cations running on JVMs. In con​trast, CUTS lever​ages DAnCE [5], which is targeted for de​ploying and con​figu​ration components in DRE systems.
The Globus Tool​kit [10], which is part of the Open Grid Standard Architecture (OGSA), is an​other frame​work that handles deployment and configu​ration of com​po​nents for Grid computing. Unlike DAnCE, however, Globus does not provide DSMLs for modeling various concerns of enter​prise DRE systems and validating sys​tems before de​ploy​ing them. Lastly, the DAnCE frame​work conforms to the OMG D&C standards, which al​lows it to leverage other efforts based on the OMG D&C specifications, such as OpenCCM and MICO-CCM.
6. Concluding Remarks


This paper described the Component Workload Emula​tor (CoWorkEr) Utilization Test Suite (CUTS). CUTS is a system execution modeling tool​chain that sim​plifies the creation of – and experimenta​tion with –emu​la​tions of applications that help evaluate the QoS of compo​nent-based enterprise DRE systems. We also de​scribed the design and implementation of CUTS, along with the chal​lenges we encountered and solutions we ap​plied. 
Our experience applying CUTS to the SLICE sce​nario in phase two showed how systems execution mod​eling tools can decrease the time spent re​solving inte​gra​tion prob​lems. In​stead of waiting until full system inte​gra​tion, CUTS allowed us to test deploy​ments of the MLRM infra​structure in the actual target environment using emulated application compo​nents. When combined with other QoS-enabled compo​nent middleware and MDE tools, al​terna​tive deploy​ment plans could be evalu​ated rapidly ear​lier in the life​cycle, thereby re​ducing the time and effort spent in integration. Although phase two is still ongoing, CUTS has al​ready saved signifi​cant amounts of time and effort com​pared to phase one.

The following sum​marizes the benefits of applying CUTS based on our experience thus far: 

· CUTS allowed us to emulate system components us​ing the target hardware and software infrastructure, in​stead of waiting until completely implementing the real components and trying to resolve all issues dur​ing integration phase, as we had attempted to do (rather un​successfully) in phase one.

· CUTS allowed us to rapidly create and quantitatively evaluate a range of deployment plans to see how they impacted end-to-end QoS behavior. Much more time and effort would have been re​quired if these tests were conducted manually, i.e., without the vis​ual MDE func​tionality and automa​tion provided by CUTS and the underlying CoSMIC MDE tools and CIAO/DAnCE middleware.

· CUTS provided qualitative performance analysis to assist in locating deficiencies in current deployments so we can determine alternative deployments that meet end-to-end QoS requirements more effectively.

· The use of MDE tools enabled CUTS to substitute real components for the emulated ones quickly, so we can incrementally evaluate QoS perform​ance with more realistic workloads as knowledge of the application and system infrastructure evolves. 


Although using CUTS in phase two provided the benefits outlined above, we also discovered that the fol​lowing work is needed to improve the evalu​ation of QoS in component-based enterprise DRE systems:
· There were test cases in the em​piri​cal results in Sec​tion 4.2 where the criti​cal path deadline was missed signifi​cantly. After fur​ther analyzing these results, spe​cifi​cally after test 8, we real​ized that messages not on the critical path were handled at the same pri​ority as arbi​trary messages in the system. We there​fore need to extend​ CUTS to allow QoS specifi​ca​tions for the various com​ponents of a Co​WorkEr. 
· CoWorkErs currently generate a pre-defined set of events, which is representative of a certain class of statically provisioned DRE systems. Enterprise DRE systems, however, often must adapt to changes in the environment. We therefore need to extend CUTS and WML to permit specification and enforcement of adaptive behavior for QoS evaluation. 
· CUTS uses XML specifications to config​ure the be​hav​ior of generic Co​WorkErs, whose internals and ​interfaces do not resemble the components they emu​late. We are therefore ex​tending WML to generate proxy Co​WorkErs that simplify the inter​change of ​emu​lated with production application components. This enhancement will also en​able the collection of performance metrics from actual and emulated com​ponents to evaluate their similarities and differences.
· Enterprise DRE systems can share resources either locally or remotely, which affects QoS performance of the system. Further work is therefore needed to extend CUTS to allow CoWorkErs to share re​sources both remotely and locally for QoS perform​ance evaluation.
· QoS does not always depend on behavior at the appli​ca​tion level. In many instances, QoS can de​pend​ent on performance metrics at the different lay​ers of middleware below the application, and the machine, e.g., CPU operations and cache misses. CUTS there​fore needs to be extended to monitor per​formance metrics at all levels in an application and apply QoS requirements to these metrics.

· Derivation of workloads in the SLICE scenario re​quired us to estimate each component’s workload based on our understanding of performance charac​ter​istics of similar components from phase one. This process is labor intensive and faulty if the char​acter​istics are misinterpreted. Since CUTS relies on “trial and error” methods we are developing heuris​tics that will automatically derive work​loads using the work​load heuristics and performance characteristics.

CUTS is currently being transitioned from the MLRM project to a production shipbuilding program to assist system engineers and architects in evaluating QoS per​formance metrics of DRE systems. Our future R&D ef​forts will therefore focus on adding the capa​bilities listed above to further enhance CUTS and provide system ar​chi​tects and engineers with a stronger tool suite. An open-source version of CUTS and the other MDE tools and middleware platforms described in this paper can be downloaded from www.dre.vanderbilt.edu/CoSMIC.
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