4
Chapter 7

7. SUPERVISED METHODS
3

Chapter
7

SUPERVISED METHODS

Lluís Màrquez*, Gerard Escudero*, David Martínez♦, German Rigau♦

*Universitat Politècnica de Catalunya UPC ♦Euskal Herriko Unibertsitatea UPV/EHU

Abstract:
In this chapter, the supervised approach to Word Sense Disambiguation is presented, which consists of automatically inducing classification models or rules from annotated examples. We start by introducing the machine learning framework for classification and some important related concepts. Then, a review of the main approaches in the literature is presented, focusing on the following issues: learning paradigms, corpora used, sense repositories, and feature representation. We also include a more detailed description of five statistical and machine learning algorithms, which are experimentally evaluated and compared on the DSO corpus. In the final part of the chapter, the current challenges of the supervised learning approach to WSD are briefly discussed.

1. Introduction to supervised wsd

In the last fifteen years, the empirical and statistical approaches have increased their impact on NLP significantly. Among them, the algorithms and techniques coming from the machine learning (ML) community have been applied to a large variety of NLP tasks with a remarkable success and they are becoming the focus of an increasing interest. The reader can find excellent introductions to ML and its relation to NLP in Mitchell (1997), and Manning & Schütze (1999) and Cardie & Mooney (1999), respectively.

The type of NLP problems initially addressed by statistical and machine learning techniques are those of “language ambiguity resolution”, in which the correct interpretation should be selected, among a set of alternatives, in a particular context (e.g., word choice selection in speech recognition or machine translation, part-of-speech tagging, word sense disambiguation, co-reference resolution, etc.). They are particularly appropriate for ML because they can be seen as classification problems, which have been studied extensively in the ML community.

More recently, ML techniques have also been applied to NLP problems that do not reduce to a simple classification scheme. We place in this category: sequence tagging (e.g., with part-of-speech, named entities, etc.), and assignment of hierarchical structures (e.g., parsing trees, complex concepts in information extraction, etc.). These approaches typically proceed by decomposition of complex problems into simple decision schemes or by generalizing the classification setting in order to work directly with complex representations and outputs.

Regarding automatic WSD, one of the most successful approaches in the last ten years is the ‘supervised learning from examples’, in which statistical or ML classification models are induced from semantically annotated corpora. Generally, supervised systems have obtained better results than the unsupervised ones, as shown by experimental work and international evaluation exercises such as Senseval (see Chapter 4). However, the knowledge acquisition bottleneck is still an open problem that poses serious challenges to the supervised learning approach for WSD.
The overall organization of the chapter is as follows. The next subsection introduces the machine learning framework for classification. Section 2 contains a survey on the state-of-the-art in supervised WSD, concentrating on topics such as: learning approaches, sources of information, and feature codification. Section 3 describes five learning algorithms which are experimentally compared on the DSO corpus. The main challenges posed by the supervised approach to WSD are discussed in Section 4. Finally, Section 5 concludes and devotes some words to the possible future trends.
1.1 Machine learning for classification

The goal in supervised learning for classification consists of inducing from a training set S, an approximation (or hypothesis) h of an unknown function f that maps from an input space X to a discrete unordered output space Y={1,(,K}.
The training set contains n training examples, S={(x1,y1),(, (xn,yn)}, which are pairs (x,y) where x belongs to X and y=f(x). The x component of each example is typically a vector x=(x1,(,xm), whose components, called features (or attributes), are discrete- or real-valued and describe the relevant information/properties about the example. The values of the output space Y associated with each training example are called classes (or categories). Therefore, each training example is completely described by a set of attribute-value pairs, and a class label.

In the Statistical Learning Theory field (Vapnik 1998), the function f is viewed as a probability distribution P(X,Y) and not as a deterministic mapping, and the training examples are considered as a sample (independent and indentically distributed) from this distribution. Additionally, X is usually identified as (n, and each example x as a point in (n with one real-valued feature for each dimension. In this chapter we will try to maintain the descriptions and notation compatible with both approaches.

Given a training set S, a learning algorithm induces a classifier, denoted h, which is a hypothesis about the true function f. In doing so, the learning algorithm can choose among a set of possible functions H, which is referred to as the space of hypotheses. Learning algorithms differ in which space of hypotheses they take into account (e.g., linear functions, domain partitioning by axis parallel hyperplanes, radial basis functions, etc.) in the representation language used (e.g., decision trees, sets of conditional probabilities, neural networks, etc.), and in the bias they use for choosing the best hypothesis among several that can be compatible with the training set (e.g., simplicity, maximal margin, etc.).

Given new x vectors, h is used to predict the corresponding y values, that is, to classify the new examples, and it is expected to be coincident with f in the majority of the cases, or, equivalently, to perform a small number of errors. The measure of the error rate on unseen examples is called generalization (or true) error. It is obvious that the generalization error cannot be directly minimized by the learning algorithm since the true function f, or the distribution P(X,Y), is unknown. Therefore, an inductive principle is needed. The most common way to proceed is to directly minimize the training (or empirical) error, that is, the number of errors on the training set. This principle is known as Empirical Risk Minimization, and gives a good estimation of the generalization error in the presence of sufficient training examples. However, in domains with few training examples, forcing a zero training error can lead to overfit the training data and to generalize badly. The risk of overfitting is increased in the presence of outliers and noise (i.e., very exceptional and wrongly classified training examples, respectively). A notion of complexity of the hypothesis function h, defined in terms of the expressiveness of the functions in H, is also directly related to the risk of overfitting. This complexity measure is usually computed using the Vapnik-Chervonenkis (VC) dimension (see Vapnik (1998) for details). The trade-off between training error and complexity of the induced classifier is something that has to be faced in any experimental setting in order to guarantee a low generalization error.

An example on WSD. Consider the problem of disambiguating the verb to know in a sentence. The senses of the word know are the classes of the classification problem (defining the output space Y), and each occurrence of the word in a corpus will be codified into a training example (xi), annotated with the correct sense. In our example the verb know has 8 senses according to WordNet 1.6. The definition of senses 1 and 4 are included in Figure 7-1.
Sense 1: know, cognize. Definition: be cognizant or aware of a fact or a specific piece of information. Examples: "I know that the President lied to the people"; "I want to know who is winning the game!"; "I know it's time".

Sense 4: know. Definition: be familiar or acquainted with a person or an object. Examples: "She doesn't know this composer"; "Do you know my sister?" "We know this movie".

Figure 7-1. Sense definitions of verb know according to WordNet 1.6.

The representation of examples usually includes information about the context in which the ambiguous word occurs. Thus, the features describing an example may codify the bigrams and trigrams of words and POS tags next to the target word and all the words appearing in the sentence (bag-of-words representation). See Section 2.3 for details on example representation.

A decision list is a simple learning algorithm that can be applied in this domain. It acquires a list of ordered classification rules of the form: if (feature=value) then class. When classifying a new example x, the list of rules is checked in order and the first rule that matches the example is applied. Supposing that such a list of classification rules has been acquired from training examples, Table 7-1 contains the set of rules that match the example sentence: There is nothing in the whole range of human experience more widely known and universally felt than spirit. They are ordered by decreasing values of a log-likelihood measure indicating the confidence of the rule. We can see that only features related to the first and fourth senses of know receive positive values from its 8 WordNet senses. Classifying the example by the first two tied rules (which are activated because the word widely appears immediately to the left of the word know), sense 4 will be assigned to the example.

Table 7-1. Classification example of the word know using Decision Lists.

Feature
Value
Sense
Log-likelihood

(3-word-window
“widely”
4
2.99

word-bigram
“known widely”
4
2.99

word-bigram
“known and”
4
1.09

sentence-window
“whole”
1
0.91

sentence-window
“widely”
4
0.69

sentence-window
“known”
4
0.43

Finally, we would like to briefly comment a terminology issue that can be rather confusing in the WSD literature. Recall that, in machine learning, the term ‘supervised learning’ refers to the fact that the training examples are annotated with the class labels, which are taken from a pre-specified set. Instead, ‘unsupervised learning’ refers to the problem of learning from examples when there is no set of pre-specified class labels. That is, the learning consists of acquiring the similarities between examples to form clusters that can be later interpreted as classes (this is why it is usually referred to as clustering). In the WSD literature, the term ‘unsupervised learning’ is sometimes used with another meaning, which is the acquisition of disambiguation models or rules from non-annotated examples and external sources of information (e.g., lexical databases, aligned corpora, etc.). Note that in this case the set of class labels (which are the senses of the words) are also specified in advance. See Section 1.1 of Chapter 6 for more details on this issue.
2. A survey oF supervised wsd

In this section we overview the supervised approach to WSD, focussing on alternative learning approaches and systems. The three introductory subsections address also important issues related to the supervised paradigm, but in less detail: corpora, sense inventories, and feature design, respectively. Other chapters in the book are devoted to address these issues more thoroughly. In particular, Chapter 4 describes the corpora used for WSD, Appendix X overviews the main sense inventories, and, finally, Chapter 8 gives a much more comprehensive description of feature codification and knowledge sources.
2.1 Main corpora used

As we have seen in the previous section, supervised machine learning algorithms use semantically annotated corpora to induce classification models for deciding the appropriate word sense for each particular context. The compilation of corpora for training and testing such systems requires a large human effort since all the words in these annotated corpora have to be manually tagged by lexicographers with semantic classes taken from a particular lexical semantic resource—most commonly WordNet (Miller 1990, Fellbaum 1998). Despite the good results obtained, supervised methods suffer from the lack of widely available semantically tagged corpora, from which to construct broad-coverage systems. This is known as the knowledge acquisition bottleneck. And the lack of annotated corpora is even worse for languages other than English. The extremely high overhead for supervision (all words, all languages) explain why supervised methods have been seriously questioned.

Due to this obstacle, the first attempts of using statistical techniques for WSD tried to avoid the manual annotation of a training corpus. This was achieved by using pseudo-words (Gale et al. 1992), aligned bilingual corpora (Gale et al. 1993), or by working with the related problem of form restoration (Yarowsky 1994).

Methods that use bilingual corpora rely on the fact that the different senses of a word in a given language are translated using different words in another language. For example, the Spanish word partido translates to match in English in the sports sense and to party in the political sense. Therefore, if a corpus is available with a word-to-word alignment, when a translation of a word like partido is made, its English sense is automatically determined as match or party. Gale et al. (1993) used an aligned French and English corpus for applying statistical WSD methods with an accuracy of 92%. Working with aligned corpora has the obvious limitation that the learned models are able to distinguish only those senses that are translated into different words in the other language.

The pseudo-words technique is very similar to the previous one. In this method, artificial ambiguities are introduced in untagged corpora. Given a set of related words, for instance {match, party}, a pseudo-word corpus can be created by conflating all the examples for both words maintaining as labels the original words (which act as senses). This technique is also useful for acquiring training corpora for the accent restoration problem. In this case, the ambiguity corresponds to the same word having or not a diacritic, like the Spanish words {cantara, cantará}.

SemCor (Miller et al. 1993), which stands for Semantic Concordance, is the major sense-tagged corpus available for English1. The texts used to create SemCor were extracted from Brown corpus (80%) and a novel, The Red Badge of Courage (20%), and then manually linked to senses from the WordNet lexicon. The Brown Corpus is a collection of 500 documents, which are classified into fifteen categories. For an extended description of the Brown Corpus see (Francis & Kučera 1982). The SemCor corpus makes use of 352 out of the 500 Brown Corpus documents. In 166 of these documents only verbs are annotated (totalizing 41,525 links). In the remaining 186 documents all substantive words (nouns, verbs, adjectives and adverbs) are linked to WordNet (for a total of 193,139 links).

DSO (Ng & Lee 1996) is another medium(big size semantically annotated corpus. It contains 192,800 sense examples for 121 nouns and 70 verbs, corresponding to a subset of the most frequent and ambiguous English words. These examples, consisting of the full sentence in which the ambiguous word appears, are tagged with a set of labels corresponding, with minor changes, to the senses of WordNet 1.5. Ng and colleagues from the University of Singapore compiled this corpus in 1996 and since then it has been widely used. The DSO corpus contains sentences from two different corpora, namely the Wall Street Journal corpus (WSJ) and the Brown Corpus (BC). The former focused on the financial domain and the second is a general corpus.

Several authors have also provided the research community with the corpora developed for their experiments. This is the case of the line-hard-serve corpora with more than 4,000 examples per word (Leacock et al. 1998). The sense repository was WordNet 1.5 and the text examples were selected from the Wall Street Journal, the American Printing House for the Blind, and the San Jose Mercury newspaper. Another one is the interest corpus2 with 2,369 examples coming from the Wall Street Journal and using the LDOCE sense distinctions.

New initiatives like the Open Mind Word Expert3 (Chklovski & Mihalcea 2002) appear to be very promising (cf. Chapter 9). This system makes use of the web technology to help volunteers to manually annotate sense examples. The system includes an active learning component that automatically selects for human tagging those examples that were most difficult to classify by the automatic tagging systems. The corpus is growing daily and, nowadays, contains more than 70,000 instances of 230 words using WordNet 1.7 for sense distinctions. In order to ensure the quality of the acquired examples, the system requires redundant tagging. The examples are extracted from three sources: Penn Treebank corpus, Los Angeles Times collection (as provided for the TREC conferences), and Open Mind Common Sense. While the two first sources are well known, the Open Mind Common Sense corpus provides sentences that are not usually found in current corpora. They consist mainly in explanations and assertions similar to glosses of a dictionary, but phrased in less formal language, and with many examples per sense. The authors of the project suggest that these sentences could be a good source of keywords to be used for disambiguation. The examples obtained from this project were used in the English lexical-sample task in Senseval-3.

Finally, resulting from Senseval international evaluation exercises, small sets of tagged corpora have been developed for more than a dozen languages (see Section 2.5 for details). The reader may find an extended description of corpora used for WSD in Chapter 4 and Appendix Y.

2.2 Main sense repositories

Initially, machine readable dictionaries (MRDs) were used as the main repositories of word sense distinctions to annotate word examples with senses. For instance, LDOCE, the Longman Dictionary of Contemporary English (Procter 1978) was frequently used as a research lexicon (Wilks et al. 1993) and for tagging word sense usages (Bruce & Wiebe 1994).

At Senseval-1, the English lexical-sample task used the HECTOR dictionary to label each sense instance. This dictionary was produced jointly by Oxford University Press and DEC dictionary research project. However, WordNet (Miller 1991, Fellbaum 1998) and EuroWordNet (Vossen 1998) are nowadays becoming the most common knowledge sources for sense distinctions.

WordNet is a Lexical Knowledge Base of English. It was developed by the Cognitive Science Laboratory at Princeton University under the direction of Professor George Miller. Current version 2.0 contains information of more than 129,000 words which are grouped in more than 99,000 synsets (concepts or synonym sets). Synsets are structured in a semantic network with multiple relations, the most important being the hyponymy relation (class/subclass). WordNet includes most of the characteristics of a MRD, since it contains definitions of terms for individual senses like in a dictionary. It defines sets of synonymous words that represent a unique lexical concept, and organizes them in a conceptual hierarchy similar to a thesaurus. WordNet includes also other types of lexical and semantic relations (meronymy, antonymy, etc.) that provide the largest and richest freely available lexical resource. WordNet was designed to be computationally used. Therefore, it does not have many of the associated problems of MRDs (Rigau 1998).

Many corpora have been annotated using WordNet and EuroWordNet. Since version 1.4 up to 1.64 Princeton provides also SemCor (Miller et al. 1993). DSO is annotated using a slightly modified version of WordNet 1.5, the same version used for the line-hard-serve corpus. The Open Mind Word Expert initiative uses WordNet 1.7. The English tasks of Senseval-2 were annotated using a preliminary version of WordNet 1.7 and most of the Senseval-2 non-English tasks were labeled using EuroWordNet. Although using different WordNet versions can be seen as a problem for the standardization of these valuable lexical resources, successful algorithms have been proposed for providing compatibility across the European wordnets and the different versions of the Princeton WordNet (Daudé et al. 1999, 2000, 2001).

2.3 Representation of examples by means of features

Before applying any ML algorithm, all the sense examples of a particular word have to be codified in a way that the learning algorithm can handle them. As explained in Section 1.2, the most usual way of codifying training examples is as feature vectors. In this way, they can be seen as points in an n dimensional feature space, where n is the total number of features used.

Features try to capture information and knowledge about the context of the target words to be disambiguated. Computational requirements of learning algorithms and the availability of the information impose some limitations on the features that can be considered, thus they necessarily codify only a simplification (or generalization) of the word sense instances (see Chapter 8 for more details on features).

Usually, a complex pre-processing step is performed to build a feature vector for each context example. This pre-process usually considers the use of a windowing schema or a sentence-splitter for the selection of the appropriate context (it ranges from a fixed number of content words around the target word to some sentences before and after the target sense example), a POS tagger to stablish POS patterns around the target word, ad-hoc routines for detecting multi-words or capturing n-grams, or parsing tools for detecting dependencies between lexical units.

Although this preprocessing step, in which each example is converted into a feature vector, can be seen as an independent process from the ML algorithm to be used, there are strong dependencies between the kind and codification of the features and the appropriateness for each learning algorithm (e.g., exemplar-based learning is very sensitive to irrelevant features, decision tree induction does not properly handle attributes with many values, etc.). Escudero et al. (2000b) discusse how the feature representation affects both the efficiency and accuracy of two learning systems for WSD. See also (Agirre & Martínez 2001) for a survey on the types of knowledge sources that could be relevant for codifying training examples.

The feature sets most commonly used in the supervised WSD literature can be grouped as follows :

1. Local features, represent the local context of a word usage. The local context features comprise n-grams of POS tags, lemmas, word forms and their positions with respect to the target word. Sometimes, local features include a bag-of-words or lemmas in a small window around the target word (the position of these words is not taken into account). These features are able to capture knowledge about collocations, argument-head relations and limited syntactic cues.

2. Topic features, represent more general contexts (wide windows of words, other sentences, paragraphs, documents), usually in a bag-of-words representation. These features aim at capturing the semantic domain of the text fragment or document.

3. Syntactic dependencies, at a sentence level, have also been used to try to better model syntactic cues and argument-head relations.

2.4 Main approaches to supervised WSD

We may classify the supervised methods according to the ‘induction principle’ they use for acquiring the classification models. The one presented in this chapter is a possible categorization, which does not aim at being exhaustive. The combination of many paradigms is another possibility, which is covered in Section 4.6. Note also that many of the algorithms described in this section are lately used in the experimental setting of Section 3. When this occurs we try to keep the description of the algorithms to the minimum in the present section and explain the details in Section 3.1.

2.4.1 Probabilistic methods

Statistical methods usually estimate a set of probabilistic parameters that express the conditional or joint probability distributions of categories and contexts (described by features). These parameters can be then used to assign to each new example the particular category that maximizes the conditional probability of a category given the observed context features.

 The Naive Bayes algorithm (Duda et al. 2001) is the simplest algorithm of this type, which uses the Bayes inversion rule and assumes the conditional independence of features given the class label (see Section 3.1.1 below). It has been applied to many investigations in WSD (Gale et al. 1992, Leacock et al. 1993, Pedersen & Bruce 1997, Escudero et al. 2000b) and, despite its simplicity, Naive Bayes is claimed to obtain state-of-the-art accuracy in many papers (Mooney 1996, Ng 1997a, Leacock et al. 1998). It is worth noting that the best performing method in the Senseval-3 English lexical sample task is also based on Naive Bayes (Grozea 2004).

A potential problem of Naive Bayes is the independence assumption. Bruce & Wiebe (1994) present a more complex model known as the ‘decomposable model’ which considers different characteristics dependent on each other. The main drawback of this approach is the enormous number of parameters to be estimated, proportional to the number of different combinations of the interdependent characteristics. As a consequence, this technique requires a great quantity of training examples. In order to solve this problem, Pedersen & Bruce (1997) propose an automatic method for identifying the optimal model by means of the iterative modification of the complexity level of the model.

The Maximum Entropy approach (Berger et al. 1996) provides a flexible way to combine statistical evidence from many sources. The estimation of probabilities assumes no prior knowledge of data and it has proven to be very robust. It has been applied to many NLP problems and it also appears as a promising alternative in WSD (Suárez & Palomar 2002).

2.4.2 Methods based on the similarity of the examples

The methods in this family perform disambiguation by taking into account a similarity metric. This can be done by comparing new examples to a set of learned vector prototypes (one for each word sense) and assigning the sense of the most similar prototype, or by searching in a stored base of annotated examples which are the most similar and assigning the most frequent sense among them.

There are many forms to calculate the similarity between two examples. Assuming the Vector Space Model (VSM), one of the simplest similarity measures is to consider the angle that both example vectors form (a.k.a. cosine measure). Leacock et al. (1993) compared VSM, Neural Networks, and Naive Bayes methods, and drew the conclusion that the two first methods slightly surpass the last one in WSD. Yarowsky et al. (2001) included a VSM model in their system that combined the results of up to six different supervised classifiers, and obtained very good results in Senseval-2. For training the VSM component, they applied a rich set of features (including syntactic information), and weighting of feature types.
The most widely used representative of this family of algorithms is the k-Nearest Neighbor (kNN) algorithm, which we also describe and test in the experimental Section 3. In this algorithm the classification of a new example is performed by searching the set of the k most similar examples (or nearest neighbors) among a pre-stored set of labeled examples, and performing an ‘average’ of their senses in order to make the prediction. In the simplest case, the training step reduces to store all of the examples in memory (this is why this technique is called Memory-based, Exemplar-based, Instance-based, or Case-based learning) and the generalization is postponed until each new example is being classified (this is why it is sometimes also called Lazy learning). A very important issue in this technique is the definition of an appropriate similarity (or distance) metric for the task, which should take into account the relative importance of each attribute and be efficiently computable. The combination scheme for deciding the resulting sense among the k nearest neighbors also leads to several alternative algorithms. kNN-based learning is said to be the best option for WSD by Ng (1997a). Other authors (Daelemans et al. 1999) argue that exemplar-based methods tend to be superior in NLP problems because they do not apply any kind of generalization on data and, therefore, they do not forget exceptions.

Ng & Lee (1996) did the first work on kNN for WSD. Ng (1997a) automatically identified the optimal value of k for each word improving the previously obtained results. Escudero et al. (2000b) focused on certain contradictory results in the literature regarding the comparison of Naive Bayes and kNN methods for WSD. The kNN approach seemed to be very sensitive to the attribute representation and to the presence of irrelevant features. For that reason alternative representations were developed, which were more efficient and effective. The experiments demonstrated that kNN was clearly superior to Naive Bayes when applied with an adequate feature representation and with feature and example weighting, and sophisticated similarity metrics. Stevenson & Wilks (2001) also applied kNN in order to integrate different knowledge sources, reporting high precision figures for LDOCE senses (see Section 4.6).

Regarding Senseval evaluations, Hoste et al. (2001; 2002a) used, among others, a kNN system in the English all words task of Senseval-2, with good performance. At Senseval-3, a new system was presented by Decadt et al. (2004) winning the all-words task. However, they submitted a similar system to the lexical task, which scored lower than kernel-based methods.

2.4.3 Methods based on discriminating rules

These methods use selective rules associated with each word sense. Given an example to classify, the system selects one or more rules that are satisfied by the example features and assign a sense based on their predictions.

Decision Lists. Decision lists are ordered lists of rules of the form (condition, class, weight). According to Rivest (1987) decision lists can be considered as weighted if-then-else rules where the exceptional conditions appear at the beginning of the list (high weights), the general conditions appear at the bottom (low weights), and the last condition of the list is a ‘default’ accepting all remaining cases. Weights are calculated with a scoring function describing the association between the condition and the particular class, and they are estimated from the training corpus. When classifying a new example, each rule in the list is tested sequentially and the class of the first rule whose condition matches the example is assigned as the result. Decision Lists is one of the algorithms compared in Section 3. See details in Section 3.1.3.

Yarowsky (1994) used decision lists to solve a particular type of lexical ambiguity: Spanish and French accent restoration. In a subsequent work, Yarowsky (1995a) applied decision lists to WSD. In this work, each condition corresponds to a feature, the values are the word senses and the weights are calculated by a log-likelihood measure indicating the plausibility of the sense given the feature value.

Some more recent experiments suggest that decision lists could also be very productive for high precision feature selection for bootstrapping (Martínez et al. 2002).

Decision Trees. A decision tree (DT) is a way to represent classification rules underlying data by an n-ary branching tree structure that recursively partitions the training set. Each branch of a decision tree represents a rule that tests a conjunction of basic features (internal nodes) and makes a prediction of the class label in the terminal node. Although decision trees have been used for years in many classification problems in artificial intelligence they have not been applied to WSD very frequently. Mooney (1996) used the C4.5 algorithm (Quinlan 1993) in a comparative experiment with many ML algorithms for WSD. He concluded that decision trees are not among the top performing methods. Some factors that make decision trees inappropriate for WSD are: (i) The data fragmentation performed by the induction algorithm in the presence of features with many values; (ii) The computational cost is high in very large feature spaces; and (iii) Terminal nodes corresponding to rules that cover very few training examples do not produce reliable estimates of the class label. Part of these problems can be partially mitigated by using simpler related methods such as decision lists. Another way of effectively using DTs is considering the weighted combination of many decision trees in an ensemble of classifiers (see Section 2.4.4).

2.4.4 Methods based on rule combination

The combination of many heterogeneous learning modules for developing a complex and robust WSD system is currently a common practice, which is explained in Section 4.6. In the current section, ‘combination’ refers to a set of homogeneous classification rules that are learned and combined by a single learning algorithm. The AdaBoost learning algorithm is one of the most successful approaches to do it.

 The main idea of the AdaBoost algorithm is to linearly combine many simple and not necessarily very accurate classification rules (called weak rules or weak hypotheses) into a strong classifier with an arbitrarily low error rate on the training set. Weak rules are trained sequentially by maintaining a distribution of weights over training examples and by updating it so as to concentrate weak classifiers on the examples that were most difficult to classify by the ensemble of the preceding weak rules (see Section 3.1.4 for details). AdaBoost has been successfully applied to many practical problems, including several NLP tasks (Schapire 2002) and it is especially appropriate when dealing with unstable learning algorithms (e.g., decision tree induction) as the weak learner.

Several experiments on the DSO corpus (Escudero et al. 2000a, 2000c, 2001), including the one reported in Section 3.2 below, concluded that the boosting approach surpasses many other ML algorithms on the WSD task. We can mention, among others, Naive Bayes, exemplar-based learning and decision lists. In those experiments, simple decision stumps (extremely shallow decision trees that make a test on a single binary feature) were used as weak rules, and a more efficient implementation of the algorithm, called LazyBoosting, was used to deal with the large feature set induced.

2.4.5 Linear classifiers and kernel-based approaches

Linear classifiers have been very popular in the field of information retrieval (IR), since they have been successfully used as simple and efficient models for text categorization. A linear (binary) classifier is a hyperplane in an n-dimensional feature space that can be represented with a weight vector w and a bias b indicating the distance of the hyperplane to the origin. The weight vector has a component for each feature, expressing the importance of this feature in the classification rule, which can be stated as: h(x)=+1 if (w·x)+b (0 and h(x)=(1 otherwise. There are many on-line learning algorithms for training such linear classifiers (Perceptron, Widrow-Hoff, Winnow, Exponentiated-Gradient, Sleeping Experts, etc.) that have been applied to text categorization—see, for instance, Dagan et al. (1997).

Despite the success in IR, the use of linear classifiers in the late 90’s for WSD reduces to a few papers. Mooney (1996) used the perceptron algorithm

and Escudero et al. (2000c) used the SNoW architecture (based on Winnow). In both cases, the results obtained with the linear classifiers were very low.

The expressivity of this type of classifiers can be boosted to allow the learning of non-linear functions by introducing a non-linear mapping of the input features to a higher-dimensional feature space, where new features can be expressed as combinations of many basic features and where the standard linear learning is performed. If example vectors appear only inside dot product operations in the learning algorithm and the classification rule, then the non-linear learning can be performed efficiently (i.e., without making explicit non-linear mappings of the input vectors), via the use of kernel functions. The advantage of using kernel-methods7 is that they offer a flexible and efficient way of defining application-specific kernels for exploiting the singularities of the data and introducing background knowledge. Currently, there exist several kernel implementations for dealing with general structured data. Regarding WSD, we find some recent contributions in Senseval-3 (Strapparava et al. 2004, Popescu 2004).

Support Vector Machines (SVM), introduced by Boser et al. (1992), is the most popular kernel-method. The learning bias consists of choosing the hyperplane that separates the positive examples from the negatives with maximum margin (see (Cristianini & Shawe-Taylor 2000) and also Section 3.1.5 for details. This learning bias has proven to be very powerful and lead to very good results in many pattern recognition, text, and NLP problems. The first applications of SVMs to WSD are those of Murata et al. (2001) and Lee & Ng (2002).

More recently, an explosion of systems using SVMs has been observed in the Senseval-3 evaluation (most of them among the best performing ones). Among others, we highlight Strapparava et al. (2004), Lee et al. (2004), Agirre & Martínez (2004a), Cabezas et al. (2004) and Escudero et al. (2004).

Other kernel-methods for WSD presented at Senseval-3 and recent conferences are: Kernel Principal Component Analysis (KPCA, Carpuat et al. 2004, Wu et al. 2004), Regularized Least Squares (Popescu 2004), and Averaged Multiclass Perceptron (Ciaramita & Johnson 2004). We think that kernel-methods are the most popular learning paradigm in NLP because they offer a remarkable performance in most of the desirable properties: accuracy, efficiency, ability to work with large and complex feature sets, and robustness in the presence of noise and exceptions. Moreover, some robust and efficient implementations are currently available.

Artificial Neural Networks, characterized by a multi-layer architecture of interconnected linear units, are an alternative for learning non-linear functions. Such connectionist methods were broadly used in the late eighties and early nineties to represent semantic models in the form of networks. More recently, Towell et al. (1998) presented a standard supervised feed-forward neural network model for disambiguating highly ambiguous words, in a framework including the combined use of labeled and unlabeled examples.

2.4.6 Discursive properties: the Yarowsky Bootstrapping Algorithm

The Yarowsky algorithm (Yarowsky 1995a) was, probably, one of the first and more successful applications of the bootstrapping approach to NLP tasks. It can be considered as a semi-supervised method, and , thus, it is not directly comparable to the rest of approaches described in this section. However, we will devote this entire subsection to explain the algorithm given its importance and impact on the subsequent work on bootstrapping for WSD. See, for instance, Abney (2004) and Section 4.4.

The Yarowsky algorithm is a simple iterative and incremental algorithm. It assumes a small set of seed labeled examples, which are representatives of each of the senses, a large set of examples to classify, and a supervised base learning algorithm (Decision Lists in this particular case). Initially, the base learning algorithm is trained on the set of seed examples and used to classify the entire set of (unlabeled) examples. Only those examples that are classified with a confidence above a certain threshold are keep as additional training examples for the next iteration. The algorithm repeats this re-training and re-labeling procedure until convergence (i.e., when no changes are observed from the previous iteration).

Regarding the initial set of seed labeled examples, Yarowsky (1995a) discusses several alternatives to find them, ranging from fully automatic to manually supervised procedures. This initial labeling may have very low coverage (and, thus, low recall) but it is intended to have extremely high precision. As iterations proceed, the set of training examples tends to increase, while the pool of unlabeled examples shrinks. In terms of performance, recall improves with iterations, while precision tends to decrease slightly. Ideally, at convergence, most of the examples will be labeled with high confidence.

Some well-known discourse properties are at the core of the learning process and allow the algorithm to generalize to confidently label new examples. We refer to: one sense per discourse, language redundancy, and one sense per collocation (heuristic WSD methods based on these discourse properties have been covered by Chapter 5). First, the one-sense-per-collocation heuristic gives a good justification for using DLs as the base learner, since DL uses a single rule, based on a single contextual feature, to classify each new example. Actually, Yarowsky refers to contextual features and collocations indistinctly.

Second, we know that language is very redundant. This makes that the sense of a concrete example is overdetermined by a set of multiple relevant contextual features (or collocations). Some of these collocations are shared among other examples of the same sense. These intersections allow the algorithm to learn to classify new examples, and, by transitivity, to increase more and more the recall as iterations go. This is the key point in the algorithm for achieving generalization. For instance, borrowing the examples from the original paper, a seed rule may stablish that all the examples of the word plant presenting the collocation “plant_life” should be labeled with the vegetal sense of plant (by oposition to the industrial plant). If we run DL on the set of seed examples determined by this collocation, we may obtain many other relevant collocations for the same sense in the list of rules, for instance, “presence_of_word_animal_in_a ±10_word_window”. This rule would allow to classify correctly some examples for traning at the second iteration, which were left unlabeled by the seed rule, for instance “...contains a varied plant and animal life”.

Third, Yarowsky also applies the one-sense-per-discourse heuristic, as a post-process at each iteration, to uniformly label all the examples in the same discourse with the majority sense. This has a double effect. On the one hand, it allows to extend the number of labeled examples, wich, in turn, will provide new ‘bridge’ collocations that cannot be captured directly from intersections among currently labeled examples. On the other hand, it allows to correct some missclassified examples in a particular discourse.

The evaluation presented in Yarowsky (1995a) showed that, with a minimum set of annotated seed examples, this algorithm obtained comparable results to a fully supervised setting (again, using DL). The evaluation framework consisted of a small set of words limited to binary sense distinctions.

Apart of simplicity, we would like to highlight another good propety of the Yarowsky algorithm, which is the ability of recovering from initial misclassifications. The fact that at each iteration all the examples are relabeled makes possible that an initial wrong prediction for a concrete example may lower its strength in subsequent iterations (due to the more informative training sets) until the confidence for that collocation falls below the threshold. In other words, we may say that language redundancy makes the Yarowsky algorithm self-correcting.

As a drawback, this bootstrapping approach has been theoretically poorly understood since its appearance in 1995. Recently, Abney (2004) performed some advances in this direction, by analyzing a number of variants of the Yarowsky algorithm, showing that they optimize natural objective functions. Another critizism refers to real applicability, since Martínez & Agirre (2000) observed a far less predictive power of the one-sense-per-discourse and one-sense-per-collocation heuristics when tested in a real domain with highly polysemous words.

2.5 Supervised systems in the Senseval evaluations

Like other international competitions of the style of those sponsored by the American government, MUC or TREC, Senseval (Kilgarriff 1998) was designed to compare, within a controlled framework, the performance of the different approaches and systems for WSD (see Chapter 4). The goal of Senseval is to evaluate the strength and the weakness of WSD systems with respect to different words, different languages, and different tasks. In an all-words task, the evaluation consists of assigning the correct sense to all content words of a text. In a lexical sample task, the evaluation consists of assigning the correct sense to all the occurrences of a few words. In a translation task, senses correspond to distinct translations of a word in another language.

Basically, Senseval classifies the systems into two different types: supervised and unsupervised systems. However, there are systems difficult to classify. In principle, knowledge-based systems (mostly unsupervised) can be applied to all three tasks, whereas corpus-based systems (mostly supervised) can participate preferably in the lexical-sample and translation tasks. In Chapter 8, there is an analysis of the methods that took part in the Senseval competitions. The study is based on the knowledge sources they relied on.

The first Senseval edition (hereinafter Senseval-1) was carried out during summer of 1998 and it was designed for English, French and Italian, with 25 participating systems. Up to 17 systems participated in the English lexical-sample task (Kilgarriff & Rosenszweig 2000), and the best performing systems achieved 75-80% precision/recall.

The second Senseval contest (hereinafter Senseval-2) was made in July 2001 and included tasks for 12 languages: Basque, Czech, Dutch, English, Estonian, Chinese, Danish, Italian, Japanese, Korean, Spanish and Swedish (Edmonds & Cotton 2001). About 35 teams participated, presenting up to 94 systems. Some teams participated in several tasks allowing the analysis of the performance across tasks and languages. Furthermore, some words for several tasks were selected to be “translation-equivalents” to some English words to perform further experiments after the official competition. All the results of the evaluation and data are now in the public domain including: results (system scores and plots), data (system answers, scores, training and testing corpora, and scoring software), system descriptions, task descriptions and scoring criteria. About 26 systems took part in the English lexical-sample task, and the best were in the 60-65% range of accuracy.

An explanation for these low results, with respect to Senseval-1, is the change of the sense repository. In Senseval-1, the English lexical-sample task was made using the HECTOR dictionary, whereas in Senseval-2 a preliminary version of WordNet 1.7 was used. Apart of the different sense granularity of both repositories, in the HECTOR dictionary the senses of the words are discriminated with respect not only semantic, but collocational, or syntactic reasons. For Senseval-1 also manual connections to WordNet 1.5 and 1.6 were provided.

The third edition of Senseval (hereinafter Senseval-3) took place in Barcelona on summer 2004, and included fourteen tasks. Up to 55 teams competed on them presenting more than 160 system evaluations. There were typical WSD tasks (lexical-sample and all-words) for seven languages, and new tasks were included, involving identification of semantic roles, logic forms, multilingual annotations, and subcategorization acquisition.

In Senseval-3, the English lexical-sample task had the highest participation. 27 teams submitted 46 systems to this task. According to the official description, 37 systems were considered supervised, and only 9 were unsupervised; but this division is always controversial.

The results of the top systems presented very small differences in performance for this task. This suggests that a plateau has been reached for this design of task with this kind of ML approaches. The results of the best system (72.9% accuracy) are way ahead of the Most-Frequent-Sense baseline (55.2% accuracy), and present a significant improvement from the previous Senseval edition, which could be due, in part, to the change in the verb sense inventory (Wordsmyth instead of WordNet). Attending to the characteristics of the top-performing systems, this edition has shown a predominance of kernel-based methods (e.g., SVM, see Section 3.1.5), which were used by most of the top systems. Other approaches that have been adopted by several systems are the combination of algorithms by voting, and the usage of complex features, such as syntactic dependencies and domain tags.

Regarding the English all-words task, 20 systems from 16 different teams participated on it. The best system presented an accuracy of 65.1%, while the “WordNet first sense” baseline would achieve 60.9% or 62.4% (depending on the treatment of multiwords and hyphenated words). The top nine systems were supervised, although the 10th system was a fully-unsupervised domain-driven approach with very competitive results (Strapparava et al. 2004). Furthermore, it is also worth mentioning that in this edition there are a few systems above the “first sense” baseline: between four and six.

Contrary to the English lexical sample task, a plateau was not observed in the English all-words task, since significantly different approaches with significant differences in performance were present among the top systems. The supervised methods relied mostly on Semcor to get hand-tagged examples; but there were several groups that incorporated other corpora like DSO, WordNet definitions and glosses, all-words and lexical-sample corpora from other Senseval editions, or even the line/serve/hard corpora. Most of the participant systems included rich features in their models, specially syntactic dependencies and domain information.

An interesting issue could be the fact that the teams with good results in the English lexical sample and those in the all-words do not necessarily overlap. The reason could be the different behavior of the algorithms with respect the different settings of each task: the number of training examples per word, number of words to deal with, etc.

However, it is very difficult to make direct comparisons among the Senseval systems because they differ so much in the methodology, the knowledge used, the task in which they participated, and the measures that they wanted to optimize.

3. AN empiricaL Study of SUpervised algorithms for wsd

Apart from the Senseval framework, one can find many works in the recent literature presenting empirical comparisons among several machine learning algorithms for WSD, from different perspectives. Among others, we may cite Escudero et al. (2000c), Pedersen (2001), Lee & Ng (2002), and Florian et al. (2003). This section presents an experimental comparison, in the framework of the DSO corpus, among five significant machine learning algorithms for WSD. The comparison is presented from the fundamental point of view of the accuracy and agreement achieved by all competing classifiers. Other important aspects, such as knowledge sources, efficiency, and tuning, have been deliberately left out for brevity.

3.1 Five learning algorithms under study

In this section, the five algorithms that will be compared in Section 3.2 are presented. Due to space limitations the description cannot be very detailed. We try to provide the main principles that the algorithms rely on, and the main design decisions affecting the specific implementations tested. Some references to more complete descriptions are also provided.

3.1.1 Naive Bayes (NB)

Naive Bayes is the simplest representative of probabilistic learning methods (Duda et al. 2001). In this model, an example is assumed to be ‘generated’ first by stochastically selecting the sense k of the example and then each of the features independently according to their individual distributions P(xi|k). The classification rule of a new example x=(x1,(,xm) consists of assigning the sense k that maximizes the conditional probability of the sense given the observed sequence of features:

[image: image4.emf]b/

||

w

||

w

b/

||

w

||

w

The first equality is the Bayesian inversion, while the factorization comes from the independence assumption: P(xi|k,xj(i)=P(xi|k). Since we are calculating an arg_max over k there is no need to keep the denominator, which is independent of k, in the objective function. P(k) and P(xi|k) are the probabilistic parameters of the model and they can be estimated, from the training set, using relative frequency counts (i.e., maximum likelihood estimation, MLE). For instance, the a priori probability of sense k, P(k), is estimated as the ratio between the number of examples of sense k and the total number of examples in the training set. P(xi|k) is the probability of observing the feature xi (e.g., previous and target words are widely_known) given that the observed sense is k. The MLE estimation in this case is the number of sense-k examples that have the feature xi active divided by the total number of examples of sense k.

In order to avoid the effects of zero counts when estimating the conditional probabilities of the model, a very simple smoothing technique, proposed by Ng (1997a) has been used in this experiment. It consists in replacing zero counts of P(xi|k) with P(k)/n where n is the number of training examples.

3.1.2 Exemplar-based learning (kNN)

We will use a k-nearest-neighbor (kNN) algorithm as a representative of exemplar-based learning. As described in Section 2.4.2, all examples are stored in memory during training and the classification of a new example is based on the senses of the k most similar stored examples. In order to obtain the set of nearest neighbors, the example to be classified x=(x1,(,xm) is compared to each stored example xi=(xi1,(,xim), and the distance between them is calculated. The most basic metric for instances with symbolic features is the overlap metric (also called Hamming distance), defined as follows:

[image: image2.wmf]å

=

=

D

m

j

i

j

j

j

i

x

x

w

1

)

,

(

)

,

(

d

x

x

where wj is the weight of the j-th feature and ((xj,xij) is the distance between two values, which is 0 if xj=xij and 1 otherwise.

In the implementation tested in these experiments, we used Hamming distance to measure closeness and the Gain Ratio measure (Quinlan 1993) to estimate feature weights. For k values greater than 1, the resulting sense is the weighted majority sense of the k nearest neighbors—where each example votes its sense with a strength proportional to its closeness to the test example. There exist more complex metrics for calculating graded distances between symbolic feature values, for example, the modified value difference metric (MVDM, Cost & Salzberg 1993) that could lead to better results. We do not use MVDM here for simplicity reasons. Working with MVDM has a significant computational overhead and its advantage in performance is reduced to a minimum when using feature and example weighting to complement the simple Hamming distance (Escudero et al. 2000b), as we do in this experimental setting.

The kNN algorithm is run several times using a different number of nearest neighbors: 1, 3, 5, 7, 10, 15, 20, and 25. The results corresponding to the best choice for each word are reported.

3.1.3 Decision lists (DL)

As we saw in Section 2.4.4, a decision list consists of a set of ordered rules of the form (feature-value, sense, weight). In this setting, the decision lists algorithm works as follows: the training data is used to estimate the importance of individual features, which are weighted with a log-likelihood measure (Yarowsky 1995a, 2000) indicating the likelihood of a particular sense given a particular feature value. The list of all rules is sorted by decreasing values of this weight. When testing new examples, the decision list is checked, and the feature with highest weight that is matching the test example selects the winning word sense.

The original formula in Yarowsky (1995a) can be adapted in order to handle classification problems with more than two classes. In this case, the weight of sense k when feature i occurs in the context is computed as the logarithm of the probability of sense k (sk) given feature i (fi) divided by the sum of the probabilities of the other senses given feature i. That is:

[image: image3.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

å

¹

k

j

i

j

i

k

i

k

f

s

P

f

s

P

f

s

)

|

(

)

|

(

log

)

,

weight(

These probabilities can be calculated using the maximum likelihood estimate, and some kind of smoothing so as to avoid the problem of zero counts. There are many approaches for smoothing probabilities (we already saw a simple method applied to NB in Section 3.1.1). A complete survey of different smoothing techniques can be found in Chen (1996). For our experiments, a very simple solution has been adopted, which consists of replacing the denominator by 0.1 when the frequency is zero.

3.1.4 AdaBoost (AB)

As seen in Section 2.4.5, AdaBoost is a general method for obtaining a highly accurate classification rule by combining many weak classifiers, each of which being only moderately accurate. A generalized version of the AdaBoost algorithm, which combines weak classifiers with confidence-rated predictions (Schapire & Singer 1999), has been used in these experiments. This particular boosting algorithm has been successfully applied to a number of practical problems.

The weak hypotheses are learned sequentially, one at a time, and, conceptually, at each iteration the weak hypothesis is biased to classify the examples which were most difficult to classify by the ensemble of preceding weak hypotheses. AdaBoost maintains a vector of weights as a distribution Dt over examples. At round t, the goal of the weak learner algorithm is to find a weak hypothesis, ht : X ((, with moderately low error with respect to the weight distribution Dt. In this setting, weak hypotheses ht(x) make real-valued confidence-rated predictions. Initially, the distribution D1 is uniform, but after each iteration, the boosting algorithm exponentially increases (or decreases) the weights Dt(i) for which ht(xi) makes a bad (or good) prediction, with a variation proportional to the confidence |ht(xi)|. The final combined hypothesis, ht : X ((, computes its predictions using a weighted vote of the weak hypotheses f(x) = ((t=1(T)(t(ht(x). For each example x, the sign of f(x) is interpreted as the predicted class (the basic AdaBoost works only with binary outputs, (1 or +1), and the magnitude |f(x)| is interpreted as a measure of confidence in the prediction. Such a function can be used either for classifying new unseen examples or for ranking them according to the confidence degree.

In this work we have used decision stumps as weak hypotheses. They are rules that test the value of a single binary (or Boolean) feature and make a real-valued prediction based on that value. Features describing the examples are predicates of the form: the word widely appears immediately to the left of the word know to be disambiguated. Formally, based on a given predicate p, weak hypotheses h are considered that make predictions of the form: h(x)=c0 if p holds in x, and h(x)=c1 otherwise (where c0 and c1 are real numbers). See Schapire & Singer (1999) for the details about how to select the best predicate p at each iteration, the ci values associated with p, and the weight i corresponding to the resulting weak rule.

Regarding the particular implementation used in these experiments, two final details should be mentioned. First, WSD defines multi-class classification problems, not binary. We have used the AdaBoost.MH algorithm that generalizes AdaBoost to multi-class multi-label classification (Schapire & Singer 2000). Second, a simple modification of the AdaBoost algorithm, which consists of dynamically selecting a much reduced feature set at each iteration, has been used to significantly increase the efficiency of the learning process with no loss in accuracy. This variant is called LazyBoosting and it is described in Escudero et al. (2000a).

3.1.5 Support Vector Machines (SVM)

SVMs are based on the Structural Risk Minimization principle from the Statistical Learning Theory (Vapnik 1998) and, in their basic form, they learn a linear discriminant that separates a set of positive examples from a set of negative examples with maximum margin (the margin is defined by the distance of the hyperplane to the nearest of the positive and negative examples). This learning bias has proved to have good properties in terms of generalization bounds for the induced classifiers. The left plot in Figure 7-2 shows the geometrical intuition about the maximal margin hyperplane in a two-dimensional space. The linear classifier is defined by two elements: a weight vector w (with one component for each feature), and a bias b which stands for the distance of the hyperplane to the origin. The classification rule assigns +1 to a new example x, when f(x) = (x·w)+b > 0, and -1 otherwise. The positive and negative examples closest to the (w,b) hyperplane (on the dashed lines) are called support vectors.

[image: image1.wmf].

1

1

1

1

)

|

(

)

(

max

arg

)

,

,

(

)

(

)

|

,

,

(

max

arg

)

(

max

arg

,

,

|

Õ

=

=

=

m

i

i

m

m

m

k

x

P

k

P

x

x

P

k

P

k

x

x

P

x

x

k

P

k

k

k

K

K

K

Figure 7-2. Geometrical interpretation of Support Vector Machines

Learning the maximal margin hyperplane (w,b) can be simply stated as a convex quadratic optimization problem with a unique solution, consisting of (primal form): minimize ||w|| subject to the constraints (one for each training example) yi [(w·xi) + b] (1, indicating that all training examples are classified with a margin equal or greater than 1.

Sometimes, training examples are not linearly separable or, simply, it is not desirable to obtain a perfect hyperplane. In these cases it is preferable to allow some errors in the training set so as to maintain a better solution hyperplane (see the right plot of Figure 7-2). This is achieved by a variant of the optimization problem, referred to as soft margin, in which the contribution to the objective function of the margin maximization and the training errors can be balanced through the use of a parameter called C.

As seen in Section 2.4.6, SVMs can be used in conjunction with kernel functions to produce non-linear classifiers. Thus, the selection of an appropriate kernel to the dataset is another important element when using SVMs. In the experiments presented below we used the SVMlight software8, a freely available implementation. We have worked only with linear kernels, performing a tuning of the C parameter directly on the DSO corpus. No significant improvements were achieved by using polynomial kernels.

3.2 Empirical evaluation on the DSO corpus

We tested the algorithms on the DSO corpus. From the 191 words represented in the DSO corpus, a group of 21 words which frequently appear in the WSD literature was selected to perform the comparative experiment. We chose 13 nouns (age, art, body, car, child, cost, head, interest, line, point, state, thing, work) and 8 verbs (become, fall, grow, lose, set, speak, strike, tell) and we treated them as independent classification problems. The number of examples per word ranged from 202 to 1,482 with an average of 801.1 examples per word (840.6 for nouns and 737.0 for verbs). The level of ambiguity is quite high in this corpus. The number of senses per word is between 3 and 25, with an average of 10.1 senses per word (8.9 for nouns and 12.1 for verbs).

Two kinds of information are used to perform disambiguation: local and topical context. Let [w-3, w-2, w-1, w, w+1, w+2, w+3] be the context of consecutive words around the word w to be disambiguated, and pi (-3 (i (3) be the part-of-speech tag of word wi. Fifteen feature patterns referring to local context are considered: p-3, p-2, p-1, p+1, p+2, p+3, w-1, w+1, (w-2, w-1), (w-1, w+1), (w+1, w+2), (w-3, w-2, w-1), (w-2, w-1, w+1), (w-1, w+1, w+2), and (w+1, w+2, w+3). The last seven correspond to collocations of two and three consecutive words. The topical context is formed by the bag-of-words {c1,...,cm}, which stand for the unordered set of open class words appearing in the sentence.

The already described set of attributes contains those attributes used by Ng (1996), with the exception of the morphology of the target word and the verb-object syntactic relation. See Chapter 8 for a complete description of the knowledge sources used by the supervised WSD systems to represent examples.

The methods evaluated in this section codify the features in different ways. AB and SVM algorithms require binary features. Therefore, local context attributes have to be binarized in a pre-process, while the topical context attributes remain as binary tests about the presence or absence of a concrete word in the sentence. As a result of this binarization, the number of features is expanded to several thousands (from 1,764 to 9,900 depending on the particular word). DL has been applied also with the same example representation as AB and SVM.

The binary representation of features is not appropriate for NB and kNN algorithms. Therefore, the 15 local-context attributes are considered as is. Regarding the binary topical-context attributes, the variants described by Escudero et al. (2000b) are considered. For kNN, the topical information is codified as a single set-valued attribute (containing all words appearing in the sentence) and the calculation of closeness is modified so as to handle this type of attribute. For NB, the topical context is conserved as binary features, but when classifying new examples only the information of words appearing in the example (positive information) is taken into account.

3.2.1 Experiments

We performed a 10-fold cross-validation experiment in order to estimate the performance of the systems. The accuracy figures reported below are micro-averaged over the results of the 10 folds and over the results on each of the 21 words. We have applied a paired Student’s t-test of significance with a confidence value of t9,0.995=3.250(see Dietterich (1998) for information about statistical tests for comparing ML classification systems. When classifying test examples, all methods are forced to output a unique sense, resolving potential ties among senses by choosing the most frequent sense among all those tied.

Table 7-2 presents the results (accuracy and standard deviation) of all methods in the reference corpus. MFC stands for a most-frequent-sense classifier, that is, a naive classifier that learns the most frequent sense of the training set and uses it to classify all the examples of the test set. Averaged results are presented for nouns, verbs, and overall and the best results are printed in boldface.

Table 7-2. Accuracy and standard deviation of all learning methods

MFC
NB
kNN
DL
AB
SVM

Nouns
46.59 (1.08
62.29 (1.25
63.17 (0.84
61.79 (0.95
66.00 (1.47
66.80 (1.18

Verbs
46.49 (1.37
60.18 (1.64
64.37 (1.63
60.52 (1.96
66.91 (2.25
67.54 (1.75

ALL
46.55 (0.71
61.55 (1.04
63.59 (0.80
61.34 (0.93
66.32 (1.34
67.06 (0.65

All methods clearly outperform the MFC baseline, obtaining accuracy gains between 15 and 20.5 points. The best performing methods are SVM and AB (SVM achieves a slightly better accuracy but this difference is not statistically significant). On the other extreme, NB and DL are methods with the lowest accuracy with no significant differences between them. The kNN method is in the middle of the previous two groups. That is, according to the paired t-test, the partial order between methods is:

SVM (AB > kNN > NB (DL > MFC

where ‘(’ means that the accuracies of both methods are not significantly different, and ‘>’ means that the left method accuracy is significantly better than the right one.

The low performance of DL seems to contradict some previous research, in which very good results were reported with this method. One possible reason for this failure is the simple smoothing method applied. Yarowsky (1995b) showed that smoothing techniques can help to obtain good estimates for different feature types, which is crucial for methods like DL. These techniques were also applied to different learning methods in (Agirre & Martínez 2004b), showing a significant improvement over the simple smoothing. Another reason for the low performance is that when DL is forced to make decisions with few data points it does not make reliable predictions. Rather than trying to force 100% coverage, the DL paradigm seems to be more appropriate for obtaining high precision estimates. In Martínez et al. (2002) DLs are shown to have a very high precision for low coverage, achieving 94.90% accuracy at 9.66% coverage, and 92.79% accuracy at 20.44% coverage. These experiments were performed on the Senseval-2 datasets.

In this corpus subset, the average accuracy values achieved for nouns and verbs are very close; the baseline MFC results are almost identical (46.59% for nouns and 46.49% for verbs). This is quite different from the results reported in many papers taking into account the whole set of 191 words of the DSO corpus. For instance, differences of between 3 and 4 points can be observed in favor of nouns in Escudero et al. (2000b). This is due to the singularities of the subset of 13 nouns studied here, which are particularly difficult. Note that in the whole DSO corpus the MFC over nouns (56.4%) is fairly higher than in this subset (46.6%) and that an AdaBoost-based system is able to achieve 70.8% on nouns (Escudero et al. 2000b) compared to the 66.0% in this section. Also, the average number of senses per noun is higher than in the entire corpus. Despite this fact, a difference between two groups of methods can be observed regarding the accuracy on nouns and verbs. On the one hand, the worst performing methods (NB and DL) do better on nouns than on verbs. On the other hand, the best performing methods (kNN, AB, and SVM) are able to better learn the behavior of verb examples, achieving an accuracy value around 1 point higher than for nouns.

Some researchers, Schapire (2002) for instance, argue that the AdaBoost algorithm may perform poorly when training from small samples. In order to verify this statement, we calculated the accuracy obtained by AB in several groups of words sorted by increasing size of the training set. The size of a training set is taken as the ratio between the number of examples and the number of senses of that word, that is, the average number of examples per sense. Table 7-3 shows the results obtained, including a comparison with the SVM method. As expected, the accuracy of SVM is significantly higher than that of AB for small training sets (up to 60 examples per sense). On the contrary, AB outperforms SVM in the larger training sets (over 120 examples per sense). Recall that the overall accuracy is comparable in both classifiers (Table 7-2).

In absolute terms, the overall results of all methods can be considered quite low (61-67%). We do not claim that these results cannot be improved by using richer feature representations, by a more accurate tuning of the systems, or by the addition of more training examples. Additionally, it is known that the DSO words included in this study are among the most polysemous English words and that WordNet is a very fine-grained sense repository. Supposing that we had enough training examples for every ambiguous word in the language, it seems reasonable to think that a much more accurate all-words system could be constructed based on the current supervised technology. However, this assumption is not met at present, and the best current supervised systems for English all-words disambiguation achieve accuracy figures around 65% (see Senseval-3 results). Our opinion is that state-of-the art supervised systems still have to be qualitatively improved in order to be really practical.

Table 7-3. Overall accuracy of AB and SVM classifiers by groups of words of increasing average number of examples per sense

(35
35-60
60-120
120-200
>200

AB
60.19%
57.40%
70.21%
65.23%
73.93%

SVM
63.59%
60.18%
70.15%
64.93%
72.90%

Apart from accuracy figures, the observation of the predictions made by the classifiers provides interesting information about the comparison between methods. Table 7-4 presents the percentage of agreement and the Kappa statistic between all pairs of systems on the test sets. ‘DSO’ stands for the annotation of the DSO corpus, which is taken as the correct annotation. Therefore, the agreement rates with respect to DSO contain the accuracy results previously reported. The Kappa statistic (Cohen 1960) is a measure of inter-annotator agreement, which reduces the effect of chance agreement, and which has been used for measuring inter-annotator agreement during the construction of some semantically annotated corpora (Véronis 1998, Ng et al. 1999b). A Kappa value of 1 indicates perfect agreement, values around 0.8 are considered to indicate very good agreement (Carletta 1996), and negative values are interpreted as systematic disagreement on non-frequent cases.

Table 7-4. Kappa statistic (below diagonal) and percentage of agreement (above diagonal) between all pairs of systems on the DSO corpus

DSO
MFC
NB
kNN
DL
AB
SVM

DSO
—
46.6
61.5
63.6
61.3
66.3
67.1

MFC
-0.19
—
73.9
58.9
64.9
54.9
57.3

NB
0.24
-0.09
—
75.2
76.7
71.4
76.7

kNN
0.39
-0.15
0.43
—
70.2
72.3
78.0

DL
0.31
-0.13
0.39
0.40
—
69.9
72.5

AB
0.44
-0.17
0.37
0.50
0.42
—
80.3

SVM
0.44
-0.16
0.49
0.61
0.45
0.65
—

NB obtains the most similar results with regard to MFC in agreement rate and Kappa value. The 73.9% of agreement means that almost 3 out of 4 times it predicts the most frequent sense (which is correct in less than half of the cases). SVM and AB obtain the most similar results with regard to DSO in agreement rate and Kappa values, and they have the less similar Kappa and agreement values with regard to MFC. This indicates that SVM and AB are the methods that best learn the behavior of the DSO examples. It is also interesting to note that the three highest values of Kappa (0.65, 0.61, and 0.50) are between the top performing methods (SVM, AB, and kNN), and that despite that NB and DL achieve a very similar accuracy on the corpus, their predictions are quite different, since the Kappa value between them is one of the lowest (0.39).

The Kappa values between the methods and the DSO annotation are very low. But as Véronis (1998) suggests, evaluation measures should be computed relative to the agreement between the human annotators of the corpus and not to a theoretical 100%. It seems pointless to expect more agreement between the system and the reference corpus than between the annotators themselves. Besides, although hand-tagging initiatives that proceed through discussion and arbitration report fairly high agreement rates (Kilgarriff & Rosenszweig 2000), this is not the case when independent groups hand-tag the same corpus separately. For instance, Ng et al. (1999b) report an accuracy rate of 56.7% and a Kappa value of 0.317 when comparing the annotation of a subset of the DSO corpus performed by two independent research groups. Similarly, Véronis (1998) reports values of Kappa near to zero when annotating some special words for the Romanseval corpus9 (see Chapter 4).

From this point of view, the Kappa values of 0.44 achieved by SVM and AB could be considered high results. Unfortunately, the subset of the DSO corpus treated in this work does not coincide with Ng et al. (1999b) and, therefore, a direct comparison is not possible.

4. Current challenges of the supervised approach

Supervised methods for WSD based on machine learning techniques are undeniably effective and they have obtained the best results up to date. However, there exists a set of practical questions that should be resolved before stating that the supervised approach is a realistic way to construct really accurate systems for wide-coverage WSD on open text. In this section, we will discuss some of the problems and current efforts for overcoming them.

4.1 Right-sized training sets

One question that arises concerning supervised WSD methods is the quantity of data needed to train the systems. Ng (1997b) estimates that to obtain a high accuracy domain-independent system, at least 3,200 words should be tagged in about 1,000 occurrences per each. The necessary effort for constructing such a training corpus is estimated to be 16 person-years, according to the experience of the authors on the building of the DSO corpus. However, Ng suggests that active learning methods, described afterwards in this section, could reduce the required effort significantly.

Unfortunately, many people think that Ng’s estimate might fall short, as the annotated corpus produced in this way is not guaranteed to enable high accuracy WSD. In fact, recent studies using DSO have shown that: 1) The performance for state of the art supervised WSD systems continues to be 60–70% for this corpus (Escudero et al. 2001), and 2) Some highly polysemous words get very low performance (20–40% accuracy).

There has been some work exploring the learning curves of each different word to investigate the amount of training data required. Ng (1997b) trained the exemplar-based-learning LEXAS system for a set of 137 words with at least 500 examples each, and for a set of 43 words with at least 1,300 examples each. In both situations, the accuracy of the system was still rising with the whole training data. In independent work, Agirre & Martínez (2000) studied the learning curves of two small sets of words (containing nouns, verbs, adjectives, and adverbs) using different corpora (SemCor and DSO). Words of different types were selected, taking into account their characteristics: high/low polysemy, high/low frequency, and high/low skew of the most frequent sense in SemCor. Using decision lists as the learning algorithm, SemCor is not big enough to get stable results. However, on the DSO corpus, results seemed to stabilize for nouns and verbs before using all the training material. The word set tested in DSO had on average 927 examples per noun, and 1,370 examples per verb.

The importance of having enough examples is also highlighted in our experiment in Section 3.2.1., where the best performance is clearly achieved on the set of words with more examples (more than 200 per sense).

4.2 Porting across corpora

The porting of the corpora to new genre/domains (cf. Chapter 10) also presents important challenges. Some studies show that the assumptions for supervised learning do not hold when using different corpora, and that there is a dramatic degradation of performance.

Escudero et al. (2000c) studied the performance of some ML algorithms (Naive Bayes, exemplar-based learning, decision lists, AdaBoost, etc.) when tested on a different corpus (target corpus) than the one they were trained on (source corpus), and explored their ability to adapt to new domains. They carried out three experiments to test the portability of the algorithms. For the first and second experiments, they collected two equal-size sets of sentence examples from the WSJ and BC portions of the DSO corpus. The results obtained when training and testing across corpora were disappointing for all ML algorithms tested, since significant decreases in performance were observed in all cases. In some of them the cross-corpus accuracy was even lower than the most-frequent-sense baseline. A tuning technique consisting of the addition of an increasing percentage of supervised training examples from the target corpus was applied. However, this did not help much to raise the accuracy of the systems. Moreover, the results achieved in this mixed training situation were only slightly better than training on the small supervised part of the target corpus, making no use at all of the set of examples from the source corpus.

The third experiment showed that WSJ and BC have very different sense distributions and that relevant features acquired by the ML algorithms are not portable across corpora, since they were indicating different senses in many cases.

Martínez & Agirre (2000) also attribute the low performance in cross-corpora tagging to the change in domain and genre. Again, they used the DSO corpus and a disjoint selection of the sentences from the WSJ and BC parts. In BC, texts are classified according to predefined categories (reportage, religion, science-fiction, etc.); this allowed them to perform tests on the effect of the domain and genre on cross-corpora tagging.

Their experiments, training on WSJ and testing on BC and vice versa, show that the performance drops significantly from the performance on each corpus separately. This happened mainly because there were few common collocations, but also because some collocations received systematically different tags in each corpus—a similar observation to that of Escudero et al. (2000c). Subsequent experiments were conducted taking into account the category of the documents of the BC, showing that results were better when two independent corpora shared genre/topic than when using the same corpus with different genre/topic. The main conclusion is that the one sense per collocation constraint does hold across corpora, but that collocations vary from one corpus to other, following genre and topic variations. They argued that a system trained on a specific genre/topic would have difficulties to adapt to new genres/topics. Besides, methods that try to extend automatically the set of examples for training should also take into account these phenomena.

4.3 The knowledge acquisition bottleneck

As we mentioned in the introduction, an important issue for supervised WSD systems is the knowledge acquisition bottleneck. In most of the tagged corpora available it is difficult to find at least the required minimum number of occurrences per each sense of a word. In order to overcome this problem, a number of lines of research are currently being pursued, including: (i) Automatic acquisition of training examples; (ii) Active learning; (iii) Combining training examples from different words; (iv) Exploiting parallel corpora; and (v) Learning from labeled and unlabeled examples. We will focus on the former four in this section, and devote the next section to the latter.

In automatic acquisition of training examples (see Chapter 9), an external lexical source, for instance WordNet, or a sense-tagged corpus is used to obtain new examples from a very large untagged corpus (e.g., the Internet).

Leacock et al. (1998) used a pioneering knowledge-based technique to automatically find training examples from a very large corpus. WordNet was used to locate monosemous words semantically related to those word senses to be disambiguated (monosemous relatives). The particular algorithm is described in Chapter 9.

In a similar approach, Mihalcea & Moldovan (1999) used information in WordNet (e.g., monosemous synonyms and glosses) to construct queries, which later fed the Altavista10 web search engine. Four procedures were used sequentially, in a decreasing order of precision, but with increasing levels of retrieved examples. Results were evaluated by hand finding out that over 91% of the examples were correctly retrieved among a set of 1,080 instances of 120 word senses. However, the number of examples acquired does not have to correlate with the frequency of senses, and the resulting corpus was not used for training a real WSD system.

Mihalcea (2002a) generated a sense tagged corpus (GenCor) by using a set of seeds consisting of sense-tagged examples from four sources: SemCor, WordNet, examples created using the method above, and hand-tagged examples from other sources (e.g., the Senseval-2 corpus). A corpus with about 160,000 examples was generated from these seeds. A comparison of the results obtained by the WSD system, when training with the generated corpus or with the hand-tagged data provided in Senseval-2, was reported. She concluded that the precision achieved using the generated corpus is comparable, and sometimes better, than learning from hand-tagged examples. She also showed that the addition of both corpora further improved the results in the all-words task. Their method has been tested in the Senseval-2 framework with good results for some words.

This approach was also taken by Agirre and Martinez (2004c), where they rely on monosemous relatives of the target word to query the Internet and gather sense-tagged examples. In this case, they analyze the effect of the bias of the word senses in the performance of the system. They propose to integrate the work from McCarthy et al. (2004), who devised a method to automatically find the predominant senses in an unlabeled corpus. Although this latter study only solves partially the problem, and is limited to nouns only, it seems to be very promising (see Chapter 6 for details). Combining this method with their automatically sense-tagged corpus, Agirre and Martinez (2004c) improve over the performance of the best unsupervised systems in English Senseval-2 lexical-sample.

Following also similar ideas, Cuadros et al. (2004) present ExRetriever, a software tool for automatically acquiring large sets of sense tagged examples from large collections of text or the Web. This tool has been used to directly compare on SemCor different types of query construction strategies. Using the powerful and flexible declarative language of ExRetriever, new strategies can be easily designed, executed and evaluated.

Active learning is used to choose informative examples for hand-tagging, in order to reduce the acquisition cost. Argamon-Engelson & Dagan (1999) describe two main types of active learning: membership queries and selective sampling. In the first approach, the learner constructs examples and asks a teacher to label them. This approach would be difficult to apply to WSD. Instead, in selective sampling the learner selects the most informative examples from unlabeled data. The informativeness of the examples can be measured using the amount of uncertainty in their classification, given the current training data. Lewis & Gale (1994) use a single learning model and select those examples for which the classifier is most uncertain (uncertainty sampling). Argamon-Engelson & Dagan (1999) propose another method, called committee-based sampling, which randomly derives several classification models from the training set, and the degree of disagreement among them is used to measure the informativeness of the examples. Regarding WSD, Fujii et al. (1998) applied selective sampling to the acquisition of examples for disambiguating verb senses, in an iterative process with human taggers. The disambiguation method was based on nearest neighbor classification, and the selection of examples via the notion of training utility. This utility is determined based on two criteria: Number of neighbors in unsupervised data (i.e., examples with many neighbors will be more informative in next iterations), and similarity of the example with other supervised examples (the less similar, the more interesting). A comparison of their method with uncertainty and committee-based sampling showed a significantly better learning curve for the “training utility” approach.

Open Mind Word Expert (Chklovski & Mihalcea 2002) is a project to collect sense-tagged examples from web users (see Section 2.1 in this chapter, and also Section 3.4 of Chapter 9). They select the examples to be tagged applying a selective sampling method. Two different classifiers are independently applied on untagged data: an instance-based classifier that uses active feature selection, and a constraint-based tagger. Both systems have a low inter-annotation agreement, high accuracy when they agree, and low accuracy when they disagree. This makes the disagreement cases the hardest to annotate, therefore they are presented to the user.

Another recent trend to alleviate the knowledge acquisition bottleneck is the combination of training data from different words. In (Kohomban and Lee, 2005) they build semantic classifiers by merging the training data from words in the same semantic class. Once the system selects the class, simple heuristics are applied to obtain the fine-grained sense. The classifier follows the memory-based learning paradigm, and the examples are weighted according to their semantic similarity to the target word (computed using WordNet similarity). Their final system improved the overall results of the Senseval-3 all-words competition. Another approach that uses training data from different words in their model is presented in (Niu et al., 2005). They build a word-independent model to compute the similarity between two contexts. A maximum entropy algorithm is trained with the all-words Semcor corpus, and the model is used for clustering the instances of a given target word. One usual problem of clustering systems is the evaluation, and in this case they map the clusters to the Senseval-3 lexical-sample data by looking at 10% of the examples in the training data. Their final system obtained the best results for unsupervised systems on the English Senseval-3 lexical-sample task.

Another potential source for automatically obtaining WSD training data is parallel corpora. This approach was already suggested a few years ago by Resnik & Yarowsky (1997) but only recently has been applied to real WSD. The key point is that by using the alignment tools from the Statistical Machine Translation community one can unsupervisedly align at word level all the sentence pairs in both languages. By using the alignments in the two directions and some knowledge sources (e.g., WordNet) to test consistency and eliminate noisy alignments, one can extract all possible translations for each given word in the source language, which, in turn, can be considered as the relevant senses to disambiguate. Two recent papers present very promising evidence for the validity of this approach (Chan & Ng 2005, Tufis et al. 2005). The former validates the approach by evaluating on the Senseval-2 all-words setting (restricted to nouns), which implies to map the coarse-grained senses coming from translation pairs to the fine-grained sense inventory of WordNet. They conclude that using a Chinese-English parallel corpus of 680MB is enough to achieve the accuracy of the best Senseval-2 system at competition time.

4.4 Bootstrapping

As a way to partly overcome the knowledge acquisition bottleneck, some methods have been devised for building sense classifiers when only a few annotated examples are available jointly with a high quantity of unannotated examples. These methods, which use labeled and unlabeled data are also referred to as bootstrapping methods (Abney 2002; 2004). Among them, we can highlight co-training (Blum & Mitchell 1998), their derivatives (Collins & Singer 1999; Abney 2002, 2004), and self-training (Nigam & Ghani 2000).

In short, co-training algorithms work by learning two complementary classifiers for the classification task trained on a small starting set of labeled examples, which are then used to annotate new unlabeled examples. From these new examples, only the most confident predictions are added to the set of labeled examples, and the process starts again with the re-training of classifiers and re-labeling of examples. This process may continue for several iterations until convergence, alternating at each iteration from one classifier to the other. The two complementary classifiers are constructed by considering two different views of the data (i.e., two different feature codifications), which must be conditionally independent given the class label. In several NLP tasks, co-training generally provided moderate improvements with respect to not using additional unlabeled examples.

One important aspect of co-training consist on the use of different views to train different classifiers during the iterative process. While Blum & Mitchell (1998) stated the conditional independence of the views as a requirement, Abney (2002) shows that this requirement can be relaxed. Moreover, Clark et al. (2003) show that simply re-training on all the newly labeled data can, in some cases, yield comparable results to agreement-based co-training, with only a fraction of the computational cost.

Self-training starts with a set of labeled data, and builds a unique classifier (there are no different views of the data), which is then used on the unlabeled data. Only those examples with a confidence score over a certain threshold are included to the labeled set. The classifier is then retrained on the new set of labeled examples. This process continues for several iterations. Notice that only a single classifier is derived. The Yarowsky algorithm, already described in Section 2.4.6 (Yarowsky 1995a) and theoretically studied by Abney (2004), is the best known representative of this family of algorithms. These techniques seem to be appropriate for WSD and other NLP tasks because of the wide availability of raw data and the scarcity of annotated data.

Mihalcea (2004) introduces a new bootstrapping schema that combines co-training with majority voting, with the effect of smoothing the bootstrapping learning curves, and improving the average performance. However, this approach assumes a comparable distribution of classes between both labeled and unlabeled data (see section 4.2). At each iteration, the class distribution in the labeled data is maintained, by keeping a constant ratio across classes between already labeled examples and newly added examples. This implies to know a priori the distribution of sense classes in the unlabeled corpus, which seems unrealistic. Maybe, a possible solution to this cycling problem will come from the work of McCarthy et al. (2004), introduced in section 4.3.

Pham et al. (2005) also experimented with a number of co-training variants on the Senseval-2 WSD lexical sample and all-words settings, including the ones presented in Mihalcea (2004). Although the original co-training algorithm did not provide any advantage over using only labeled examples, all the sophisticated co-training variants obtained significant improvements (taking Naive Bayes as the base learning method). The best method reported was Spectral-Graph-Transduction Cotraining.

4.5 Feature selection and parameter optimization

Another current trend in WSD is the automatic selection of features. Some recent work has focused on defining separate feature sets for each word, claiming that different features help to disambiguate different words. The exemplar-based learning algorithm is very sensitive to irrelevant features, so in order to overcome this problem Mihalcea (2002b) used a forward-selection iterative process to select the optimal features for each word. She ran cross-validation on the training set, adding the best feature to the optimal set at each iteration, until no improvement was observed. The final system achieved good results in the Senseval-2 competition.

Very interesting research has been conducted connecting parameter optimization and feature selection for WSD. Hoste et al. (2002b) observed that although there have been many comparisons among ML algorithms trying to determine the method with the best bias for WSD, there are large variations on performance depending on three factors: algorithm parameters, input representation (i.e., features), and interaction between both. They claim that changing any of these factors produces large fluctuations in accuracy, and that exhaustive optimization of parameters is required in order to obtain reliable results. They argue that there is little understanding of the interaction among the three influential factors, and while no fundamental data-independent explanation is found, data-dependent cross-validation can provide useful clues for WSD. In their experiments, they show that memory-based WSD benefits from optimizing architecture, information sources, and algorithmic parameters. The optimization is carried out using cross-validation on the learning data for each word. In order to do it, one promising direction is the use of genetic algorithms (Daelemans & Hoste 2002), which lead to very good results in the Senseval-3 English all-words task (Decadt et al. 2004)—though the results were less satisfactory in the English lexical-sample task.

Martínez et al. (2002) made use of feature selection for high precision disambiguation at the cost of coverage. By using cross validation on the training corpus, a set of individual features with a discriminative power above a certain threshold was extracted for each word. The threshold parameter allows to adjust the desired precision of the final system. This method was used to train decision lists, obtaining 86% precision for 26% coverage, or 95% precision for 8% coverage on the Senseval-2 data. In principle, such a high precision system could be used to acquire almost error-free new examples in a bootstrapping framework.

Another approach to feature engineering consists in using smoothing methods to optimize the parameters of the models. In (Agirre and Martinez, 2004c), they integrate different smoothing techniques from the literature with four well-known ML methods. The smoothing techniques focus on the different feature types and provide better probability estimations for dealing with sparse data. They claim that the systems are more robust when integrating smoothing techniques. They combine the single methods and their final ensemble of algorithms improves the best results in the English Senseval-2 lexical-sample task.

4.6 Combination of algorithms and knowledge sources

The combination paradigm, known as ensembles of classifiers, is a very well-known approach in the machine learning community. It helps to reduce variance and to provide more robust predictions for unstable base classifiers. The key for improving classification results is that the different classifiers combined commit non-correlated errors. For an in-depth analysis on classifier combination one may consult Dietterich (1997). The AdaBoost algorithm already explained in Sections 2.4.5 and 3.1.4 can be seen as a method for constructing and combining an ensemble of classification rules. When the different classifiers are heterogeneous (e.g., coming from different learning algorithms), an important issue is to define an appropriate combination scheme to decide an output class from individual predictions. The most common combination schemes are based on a weighted voting strategy with a winner-take-all rule. Sometimes, an additional learning problem can be set in order to learn how to combine the available classifiers. In this case we talk about metalearning.

The integration of heterogeneous ML methods and knowledge sources in combined systems has been one of the most popular approaches in recent supervised WSD systems, including many of the best performing systems at the last Senseval editions. For instance, the JHU-English system (Yarowsky et al. 2001, Florian et al. 2003), which consisted of a voting-based classifier combination, and obtained the best performance at the English lexical-sample task in Senseval-2. Relying on this architecture, a large set of experiments evaluating different parameter settings was carried out in Yarowsky & Florian (2003). The main conclusions of their study are that the feature space has significantly greater impact than the algorithm choice, and that the combination of different algorithms helps to construct significantly more robust WSD systems.

In (Agirre et al., 2005), we find an example of recent work on dealing with the sparseness of data by means of combining classifiers with different feature spaces. Three possible improvements of the system are tested: (i) Applying Singular Value Decomposition (SVD) to find correlations in the feature space; (ii) Using unlabeled data from a related corpus for background knowledge; (iii) Partitioning the feature space and training different voting classifiers. They found that each of the parameters improves the results of their nearest-neighbors learner, and overall they obtained the best published results on the English Senseval-3 lexical-sample task.
The use of ensembles helps improving results in almost all learning scenarios and it constitutes a very helpful and powerful tool for system engineering. However, the accuracy improvement obtained by the majority of combined WSD systems is only marginal. Thus, our impression is that combination itself is not enough and other issues referring to the knowledge taken into account must be addressed for overcoming the limitations of the current supervised systems.

Another approach is the combination of different linguistic knowledge sources to disambiguate all the words in the context, as in Stevenson & Wilks (2001). In this work, they integrate the answers of three partial taggers based on different knowledge sources in a feature-vector representation for each sense. The vector is completed with information about the sense (including rank in the lexicon), and simple collocations extracted from the context. The TiMBL memory-based learning algorithm is then applied to classify the new examples. The partial taggers apply the following knowledge: (i) Dictionary definition overlap, optimized for all-words by means of simulated annealing; (ii) Selectional preferences based on syntactic dependencies and LDOCE codes; (iii) Subject codes from LDOCE using the algorithm by Yarowsky (1992). Very good results, with accuracies on the 90%, are obtained in this experimental setting under the LDOCE sense inventory.

A different approach of combination is presented by Montoyo et al. (to appear). This work explores three different schemas of collaboration between knowledge-based and corpus-based WSD methods. Two complementary methods are presented: Specification Marks and Maximum Entropy. Both methods have benefits and drawbacks. The results show that the combination of both methods outperforms each of them individually, demonstrating that both approaches can collaborate to obtain an enhanced WSD system.

5. conclusions And FUTURE TRENDS

This chapter has presented the state-of-the-art of the supervised approach to WSD, which consists of automatically inducing classification (or disambiguation) models from examples. We started by introducing the machine learning framework for classification, including an in-depth review of the main ML approaches present in the WSD-related literature. We focused on the following issues: learning paradigms, corpora used, sense repositories, and feature representation. We included a description of five machine learning algorithms, which are experimentally evaluated and compared on a controlled framework. Finally, we have briefly described some of the current challenges of the supervised learning approach.

The supervised approach to WSD makes use of semantically annotated corpora to train machine learning algorithms in order to decide which word sense to choose in which contexts. The words in these annotated corpora are manually tagged with semantic classes taken from a particular lexical semantic resource. Many standard ML techniques have been investigated, including: probabilistic models, exemplar-based learning, decision lists, and, more recently, learning methods based on rule combination (like AdaBoost), and kernel functions and margin maximization (like Support Vector Machines).

Despite the work devoted to the task, it can be said that no large-scale broad-coverage accurate WSD system has been built up to date (Snyder & Palmer 2004). Although performance figures reported may greatly vary from work to work (depending on the sense inventory used, the experimental setting, the knowledge sources used, etc.) it seems clear that the performance of current state-of-the-art systems is still below the operational threshold, making difficult to empirically test the advantages of using WSD components in a broader NLP system addressing a real task. Therefore, we can still consider WSD as an important open problem in NLP.

As we have seen in the last Senseval editions, machine learning classifiers are undeniably effective, but, due to the knowledge acquisition bottleneck, they will not be feasible until reliable methods for acquiring large sets of training examples with a minimum human annotation effort are available. Furthermore, automatic methods for helping in the collection of examples should be robust to noisy data and changes in sense frequency distributions and corpus domain (or genre). The WSD classifiers should be also noise-tolerant (both in class-label and feature values), easy to adapt to new domains, robust to overfitting, and efficient for learning thousands of classifiers using large training sets and high dimensional feature spaces.

The interrelated use of the individually learned classifiers in order to obtain a full text disambiguation (e.g., in an all-words scenario) is an issue that still has to be faced. A solution to this problem might have important implications in the way in which individual classifiers are learned.

In order to make significant advances in the performance of current supervised WSD systems, we also think that the feature representation must be enriched with a set of features with linguistic knowledge that is not currently available in wide-coverage lexical knowledge bases. We refer, for instance, to sub-categorization frames, syntactic structure, selectional preferences, semantic roles and domain information. Moreover, future WSD systems will need to automatically detect and group spurious sense distinctions, as well as to discover, probably in an on-line learning setting, occurrences of new senses in running text.

Acknowledgements

The research presented in this work has been partially funded by the Spanish Research Department (HERMES project, TIC2000-0335-C03-02) and by the European Commission (MEANING project, IST-2001-34460). David Martínez was supported by a Basque Government research grant: AE-BFI:01.245. Authors want to thank the reviewer of the first draft of the chapter for her/his useful comments and suggestions.

Notes

1. WordNet web site at http://www.cogsci.princeton.edu/~wn
2. The corpora for the words line, hard, serve, and interest can be found at the Senseval web site: http://www.senseval.org

3. Open Mind Word Expert web: http://www.teach-computers.org/word-expert.html
4. Rada Mihalcea automatically created SemCor 1.7a from SemCor 1.6.

5. TiMBL software freely available at http://ilk.kub.nl/software.html

6. Ripper software available at http://www.wcohen.com

7. Web site on kernel-based methods at http://www.kernel-machines.org

8. SVMlight software available at http://svmlight.joachims.org
9. More information about Romanseval http://www.lpl.univ-aix.fr/projects/romanseval

10. Altavista web search engine http://www.altavista.com
References

Abney, Steven. 2002. “Bootstrapping”, Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL’02), Philadelphia, U.S.A.

Abney, Steven. 2004. “Understanding the Yarowsky Algorithm”. Computational Linguistics. 30:3.
Agirre, Eneko & David Martínez. 2000. “Exploring Automatic Word Sense Disambiguation with Decision Lists and the Web”, Proceedings of the Semantic Annotation and Intelligent Annotation workshop organized by COLING. Luxembourg.

Agirre, Eneko & David Martínez. 2001. “Knowledge Sources for WSD”, Proceedings of the Fourth International TSD Conference, Plzen (Pilsen), Czech Republic.

Agirre, Eneko & David Martínez. 2004a. “The Basque Country University System: English and Basque Tasks”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 44-48.

Agirre, Eneko & David Martínez. 2004b. “Smoothing and Word Sense Disambiguation”, Proceedings of España for Natural Language Processing (EsTAL’04), Alicante, Spain.

Agirre, Eneko & David Martínez. 2004c. “Unsupervised WSD based on Automatically Retrieved Examples: The Importance of Bias”, Proceedings of the 10th Conference on Empirical Methods in Natural Language Processing (EMNLP’04), Barcelona, Spain.

Agirre Eneko, Oier Lopez de Lacalle, & David Martinez. 2005. “Exploring Feature Spaces with SVD and Unlabeled Data for Word Sense Disambiguation”. Proceedings of the 5th Conference on Recent Advances on Natural Language Processing (RANLP'05), Borovets, Bulgary.

Argamon-Engelson, S. & Ido Dagan. 1999. “Committee-based Sample Selection for Probabilistic Classifiers”, Journal of Artificial Intelligence Research, 11.335-460.

Berger A., Steven Della Pietra & Vincent Della Pietra. 1996. “A Maximum Entropy Approach to Natural Language Processing”, Computational Linguistics, 22:1.

Boser, B., I. Guyon & Vladimir Vapnik. 1992. “A Training Algorithm for Optimal Margin Classifiers”, Proceedings of the 5th Annual Workshop on Computational Learning Theory (CoLT’92), Pittsburgh, PA, U.S.A. ACM.

Blum, Avrim & Thomas Mitchell. 1998. “Combining Labeled and Unlabeled Data with Co-training”, Proceedings of the 11h Annual Conference on Computational Learning Theory (CoLT’98), 92-100. New York: ACM Press.

Bruce, Rebecca & Janice Wiebe. 1994. “Word-sense Disambiguation Using Decomposable Models”. Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL’94), 139-146.

Cabezas, Clara, Indrajit Bhattacharya & Philip Resnik. 2004. “The University of Maryland Senseval-3 System Descriptions”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 83-87.

Cardie, Claire & Raymond Mooney. 1999. “Guest Editors' Introduction: Machine Learning and Natural Language”, Machine Learning (Special Issue on Natural Language Learning) 34.5-9. Boston: Kluwer Academic.

Carletta, J. 1996. “Assessing Agreement of Classification Tasks: the Kappa Statistic”, Computational Linguistics, 22:2.249-254.

Carpuat, Marine, Weifeng Su & Dekai Wu. 2004. “Augmenting Ensemble Classification for Word Sense Disambiguation with a Kernel PCA Model”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 88-92.

Chen, S. F. 1996. “Building Probabilistic Models for Natural Language”. Ph.D. thesis. Technical Report TR-02-96, Center for Research in Computing Technology, Harvard University.

Ciaramita, Massimiliano & Mark Johnson. 2004. “Multi-component Word Sense Disambiguation”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 97-100.

Chan, Yee S. & Hwee T. Ng. 2005. “Scaling Up Word Sense Disambiguation via Parallel Texts”. Proceedings of the 20th National Conference on Artificial Intelligence (AAAI’05), Pittsburgh, Pennsylvania, U.S.A., 1037-1042.

Chklovski, Timothy & Rada Mihalcea. 2002. “Building a Sense Tagged Corpus with Open Mind Word Expert”, Proceedings of the ACL-2002 Workshop on ‘Word Sense Disambiguation: Recent Successes and Future Directions’, Philadelphia, U.S.A.

Clark, Stephen, James Curran & Miles Osborne. 2003. “Bootstrapping POS taggers using Unlabelled Data”. Proceedings of 7th Conference of Natural Language Learning (CoNLL’03). Edmonton, Canada.

Cohen, J. 1960. “A Coefficient of Agreement for Nominal Scales”, Journal of Educational and Psychological Measurement, 20.37-46.

Collins, Michael & Yoram Singer. 1999. “Unsupervised Models for Named Entity Classification”, Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC’99), College Park, MD, U.S.A.

Cost, S. & S. Salzberg. 1993. “A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features”, Machine Learning, 10:1.57-78.

Cristianini, Nello & John Shawe-Taylor. 2000. “An Introduction to Support Vector Machines”. Cambridge University Press.

Cuadros, Montse, Jordi Atserias, Mauro Castillo & German Rigau. 2004. “Automatic Acquisition of Sense Examples using ExRetriever”, Proceedings of the Iberamia Workshop on Lexical Resources and The Web for Word Sense Dismabiguation. Puebla, México.

Dagan, Ido, Yael Karov & Dan Roth. 1997. “Mistake-Driven Learning in Text Categorization”, Proceedings of the 2nd Conference on Empirical Methods in Natural Language Processing (EMNLP’97), Brown University, Providence, RI, U.S.A.
Daudé Jordi, Lluís Padró & German Rigau. 1999. “Mapping Multilingual Hierarchies using Relaxation Labelling”, Proceedings of Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC'99), College Park, MD, U.S.A.

Daudé Jordi, Lluís Padró & German Rigau. 2000. “Mapping WordNets using Structural Information”, Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (ACL'00), Hong Kong, China.

Daudé Jordi, Lluís Padró & German Rigau. 2001. “A Complete WN1.5 to WN1.6 Mapping”, Proceedings of NAACL’01 Workshop: ‘WordNet and Other Lexical Resources: Applications, Extensions and Customizations’, Pittsburg, PA, U.S.A.
Daelemans, Walter, Antal Forgetting Exceptions is Harmful in Language Learning”, Machine Learning (Special Issue on Natural Language Learning), 34.11-41. Boston: Kluwer Academic.Van den Bosch & Jakub Zavrel. 1999. “
Daelemans, Walter & Véronique Hoste. 2002. “Evaluation of Machine Learning Methods for Natural Language Processing Tasks”, Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC’02), Las Palmas, Spain, 755-760.

Decadt Bart, Véronique Hoste, Walter Daelemans & Antal Van den Bosch. 2004. “GAMBL, Genetic Algorithm Optimization of Memory-based WSD”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 108-112.

Dietterich, Thomas G. 1997. “Machine Learning Research: Four Current Directions”, AI Magazine, 18:4.97-136.

Dietterich, Thomas G. 1998. “Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms”, Neural Computation, 10:7.
Duda, Richard O.Pattern Classification , 2nd Edition”. New York: John Wiley & Sons.
, Peter E. Hart & David G. Stork. 2001. “
Edmonds, Philip & Scott Cotton. 2001. “Senseval-2: Overview”, Proceedings of Senseval-2: The Second International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Toulouse, France.

Escudero, Gerard, Lluís Màrquez & German Rigau. 2000a. “Boosting Applied to Word Sense Disambiguation”, Proceedings of the 12th European Conference on Machine Learning (ECML’00), Barcelona, Spain.

Escudero, Gerard, Lluís Màrquez & German Rigau. 2000b. “Naive Bayes and Exemplar-Based approaches to Word Sense Disambiguation Revisited”, Proceedings of the 14th European Conference on Artificial Intelligence (ECAI’00), Berlin, Germany.

Escudero, Gerard, Lluís Màrquez & German Rigau. 2000c. “On the Portability and Tuning of Supervised Word Sense Disambiguation Systems”, Proceedings of the joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC’00), Hong Kong, China.

Escudero, Gerard, Lluís Màrquez & German Rigau. 2001 “Using LazyBoosting for Word Sense Disambiguation”. Proceedings of Senseval-2: The Second International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Toulouse, France.

Escudero, Gerard, Lluís Màrquez & German Rigau. 2004. “TALP System for the English Lexical Sample Task”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, 113-116, Barcelona, Spain.

Fellbaum, Christiane, ed. 1998. “WordNet. An Electronic Lexical Database”. The MIT Press.
Florian, Radu, Silviu Cucerzan, C. Schafer & David Yarowsky. 2003. “Combining Classifiers for Word Sense Disambiguation”, Natural Language Engineering, Special Issue on Evaluating Word Sense Disambiguation Systems, 8:4.

Francis, W. N. & H. Kučera. 1982. “Frequency Analysis of English Usage: Lexicon and Grammar”. Boston: Houghton Mifflin Company.

Fujii, A., K. Inui, T. Tokunaga & H. Tanaka. 1998. “Selective Sampling for Example-based Word Sense Disambiguation”, Computational Linguistics, 24:4.573-598.

Gale, William, Kenneth Church & David Yarowsky. 1992. “One Sense per Discourse”, Proceedings of the DARPA Speech and Natural Language Workshop, 233-237. New York: Harriman.

Gale, William, Kenneth Church & David Yarowsky. 1993. “A Method for Disambiguating Word Senses in a Large Corpus”, Computers and the Humanities, 26. 415-439.

Grozea, Cristian. 2004. “Finding Optimal Parameter Settings for High Performance Word Sense Disambiguation”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 125-128.

Hoste, Véronique, A. Kool & Walter Daelemans. 2001. “Classifier Optimization and Combination in the English All Words Task”, Proceedings of Senseval-2: The Second International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Toulouse, France, 83-86.

Hoste, Véronique, Walter Daelemans, I. Hendrickx & Antal van den Bosch. 2002a. “Evaluating the Results of a Memory-Based Word-Expert Approach to Unrestricted Word Sense Disambiguation”, Proceedings of the Workshop on Word Sense Disambiguation: Recent Successes and Future Directions, Philadelphia, PA, U.S.A., 95-101.

Hoste, Véronique, I. Hendrickx, Walter Daelemans & Antal van den Bosch. 2002b. “Parameter Optimization for Machine-Learning of Word Sense Disambiguation”, Natural Language Engineering, Special Issue on Word Sense Disambiguation Systems, 8:4.311-325.

Kilgarriff, Adam. 1998. “Senseval: An Exercise in Evaluating Word Sense Disambiguation Programs”, Proceedings of EURALEX-98, 176-174, Liege, Belgium, and Proceedings of the 1st Conference on Language Resources and Evaluation (LREC’98), Granada, Spain, 581-588.
Kilgarriff, Adam & J. Rosenszweig. 2000. “English Senseval: Report and Results”, Proceedings of the 2nd Conference on Language Resources and Evaluation (LREC’00), Athens, Greece, 1239-1244.

Kohombah, Upali & Wee S. Lee. 2005. “Learning Semantic Classes for Word Sense Disambiguation”. Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), Ann Harbor, Michigan, U.S.A.

Leacock, Claudia, Geoffrey Towell & Ellen Voorhees. 1993. “Towards Building Contextual Representations of Word Senses Using Statistical Models”, Proceedings of the SIGLEX Workshop on Acquisition of Lexical Knowledge from Text”.
Leacock, Claudia, M. Chodorow & George A. Miller. 1998. “Using Corpus Statistics and WordNet Relations for Sense Identication”. Computational Linguistics, 24:1.147-166.

Lee, Y. K. & Hwee T. Ng. 2002. “An Empirical Evaluation of Knowledge Sources and Learning Algorithms for Word Sense Disambiguation”, Proceedings of the 7th Conference on Empirical Methods in Natural Language Processing (EMNLP’02), Philadelphia, Pennsylvania, U.S.A., 41-48.
Lee, Yoong Keok, Hwee Tou Ng & Tee Kiah Chia. 2004. “Supervised Word Sense Disambiguation with Support Vector Machines and Multiple Knowledge Sources”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 137-140.

Lewis, David & William Gale. 1994. “Training Text Classifiers by Uncertainty Sampling”, Proceedings of the International ACM Conference on Research and Development in Information Retrieval, 3-12.
Manning, Christopher & Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing. The MIT Press.

Martínez David, Eneko Agirre & Lluís Màrquez. 2002. “Syntactic Features for High Precision Word Sense Disambiguation”, Proceedings of the 19th International Conference on Computational Linguistics (COLING’02), Taipei, Taiwan.

Martínez David & Eneko Agirre. 2000. “One Sense per Collocation and Genre/Topic Variations”, Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC’00), Hong Kong, China.

McCarthy, Diana, Rob Koeling, Julie Weeds & John Carroll. 2004. “Finding predominant senses in untagged text”. Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL’04). Barcelona, Spain.

Mihalcea, Rada. 2002a. “Bootstrapping Large Sense Tagged Corpora”, Proceedings of the 3rd International Conference on Languages Resources and Evaluation (LREC’02), Las Palmas, Spain.

Mihalcea, Rada. 2002b. “Instance Based Learning with Automatic Feature Selection Applied to Word Sense Disambiguation”, Proceedings of the 19th International Conference on Computational Linguistics (COLING’02), Taipei, Taiwan.

Mihalcea Rada. 2004. “Co-training and Self-training for Word Sense Disambiguation”. Proceedings of the Conference on Natural Language Learning (CoNLL’04). Boston, U.S.A.

Mihalcea, Rada & Dan Moldovan. 1999. “An Automatic Method for Generating Sense Tagged Corpora”, Proceedings of the 16th National Conference on Artificial Intelligence (AAAI’99), Orlando, FL, U.S.A.

Miller, George. 1990. “Wordnet: An On-line Lexical Database”, International Journal of Lexicography, 3:4.235-312.

Miller, George A., Claudia Leacock, R. Tengi & R. T. Bunker. 1993. “A Semantic Concordance”, Proceedings of the ARPA Workshop on Human Language Technology.

Mitchell, Tom. 1997. Machine Learning. McGraw Hill.

Montoyo Andrés, Armando Suárez, German Rigau & Manuel Palomar. To appear. “Combining Knowledge- and Corpus-based Word-Sense-Disambiguation Methods” Journal of Artificial Intelligence Research.
Mooney, Raymond J. 1996. “Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning”, Proceedings of the 1st Conference on Empirical Methods in Natural Language Processing (EMNLP’96), 82-91.
Murata, M., M. Utiyama, K. Uchimoto, Q. Ma, & H. Isahara. 2001. “Japanese Word Sense Disambiguation Using the Simple Bayes and Support Vector Machine Methods”, Proceedings of Senseval-2: The Second International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Toulouse, France.

Ng, Hwee T. & Hian B. Lee. 1996. “Integrating Multiple Knowledge Sources to Disambiguate Word Senses: An Exemplar-based Approach”, Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics (ACL’96).

Ng, Hwee T. 1997a. “Exemplar-Based Word Sense Disambiguation: Some Recent Improvements”, Proceedings of the 2nd Conference on Empirical Methods in Natural Language Processing, (EMNLP’97), Brown University, Providence, RI, U.S.A.
Ng, Hwee T. 1997b. “Getting Serious about Word Sense Disambiguation”, Proceedings of the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and How?, Washington, D.C., U.S.A., 1-7.

Ng, Hwee T., C. Y. Lim & S. K. Foo. 1999. “A Case Study on Inter-Annotator Agreement for Word Sense Disambiguation”, Proceedings of the ACL SIGLEX Workshop on Standarizing Lexical Resources, College Park, MD, U.S.A.

Nigam, Kamal & Rayid Ghani. 2000. “Analyzing the Effectiveness and Applicability of Co-training”. Proceedings of 9th International Conference on Information and Knowledge Management (CIKM’00), McLean, VA. U.S.A., 86-93.
Niu, Chen, Wei Li, Rohini K. Srihari, & Huifeng Li.. 2005. “Word Independent Context Pair Classification Model for Word Sense Disambiguation”. Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005). Ann Arbor, Michigan, U.S.A.

Pedersen, Ted & Rebecca Bruce. 1997. “A New Supervised Learning Algorithm for Word Sense Disambiguation”. Proceedings of the 14th National Conference on Artificial Intelligence (AAAI’97), Providence, RI, U.S.A.

Pedersen, Ted. 2001. “A Decision Tree of Bigrams is an Accurate Predictor of Word Senses”, Proceedings of the 2nd Meeting of the North American Chapter of the ACL (NAACL’01), Pittsburgh, PA, U.S.A., 79-86.

Pham, Thanh P., Hwee T. Ng, & Wee S. Lee. 2005. “Word Sense Disambiguation with Semi-Supervised Learning”. Proceedings of the 20th National Conference on Artificial Intelligence (AAAI’05), Pittsburgh, Pennsylvania, U.S.A., 1093-1098.

Popescu, Marius. 2004. “Regularized Least-Squares Classification for Word Sense Disambiguation”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 209-212.

Procter, P. 1978. Longman’s Dictionary of Contemporary English. Longmans, Harlow.

Quinlan, John R. 1993. “C4.5: Programs for Machine Learning”. San Mateo, Calif: Morgan Kaufmann.

Resnik, Philip & David Yarowsky. 1997. “A Perspective on Word Sense Disambiguation Methods and their Evaluation”. Proceedings of the ACL’97 SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and How?, 79-86.

Rigau, German. 1998. “Automatic Acquisition of Lexical Knowledge from MRDs”. PhD. thesis, LSI Department, Polytechnical University of Catalonia, Barcelona, Spain.
Rivest, Ronald. 1987. “Learning Decision Lists”, Machine Learning, 2:3. 229-246.

Schapire, Robert E. & Yoram Singer. 1999. “Improved Boosting Algorithms Using Confidence-rated Predictions”, Machine Learning, 37:3.297-336.

Schapire, Robert E. & Yoram Singer. 2000. “Boostexter: A Boosting-based System for Text Categorization”, Machine Learning, 39:2/3.135-168.

Schapire, Robert E. 2002. “The Boosting Approach to Machine Learning: An Overview”. Proceedings of the MSRI Workshop on Nonlinear Estimation and Classification. Berkeley, Calif., U.S.A.

Snyder, B. & Martha Palmer. 2004. “The english all-words task”. Proceedings of the 3rd ACL workshop on the Evaluation of Systems for the Semantic Analysis of Text (SENSEVAL). Barcelona, Spain, 2004.

Stevenson, Mark & Yorick Wilks. 2001. “The Interaction of Knowledge Sources in Word Sense Disambiguation”, Computational Linguistics, 27:3.321-349.
Strapparava, Carlo, Alfio Gliozzo & Claudio Giuliano. 2004. “Pattern abstraction and term similarity for Word Sense Disambiguation: IRST at Senseval-3”, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, 229-234.

Suárez, Armando & Manuel Palomar. 2002. “A Maximum Entropy-based Word Sense Disambiguation System”, Proceedings of the 19th International Conference on Computational Linguistics (COLING’02), Taipei, Taiwan, 960-966.

Towell, Geoffrey, Ellen Voorhees & Claudia Leacock. 1998. “Disambiguating Highly Ambiguous Words”, Computational Linguistics, 24:1.125-146.

Tufis, Dan, Radu Ion & Nancy Ide. 2004. “Fine-Grained Word Sense Disambiguation Based on Parallel Corpora, Word Alignment, Word Clustering and Aligned Wordnets”. Proceedings of the 20th International Conference on Computational Linguistics (COLING’04), Geneva, Switzerland, 1312-1318.

Vapnik, Vladimir. 1998. “Statistical Learning Theory”. John Wiley.

Véronis, Jean. 1998. “A Study of Polysemy Judgements and Inter-annotator Agreement”, Programme and Advanced Papers of Senseval-1: The First International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Herstmonceux Castle, England.
Vossen, Piek, ed. 1998. EuroWordNet. A Multilingual Database with Lexical Semantic Networks. Kluwer Academic.

Wilks, Yorick, D. Fass, C. Guo, J. McDonald, T. Plate & B. Slator. 1993. “Providing Machine Tractable Dictionary Tools”. Semantics and the Lexicon, ed. by James Pustejowsky, 341-401.

Wu Dekai, Weifeng Su & Marine Carpuat. 2004. “A Kernel PCA Method for Superior Word Sense Disambiguation”, Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL’04), Barcelona, Spain.

Yarowsky, David. 1992. “Word-Sense Disambiguation Using Statistical Models of Roget’s Categories Trained on Large Corpora”, Proceedings of the 14th International Conference on Computational Linguistics (COLING’92), Nantes, France, 454-460.

Yarowsky, David. 1994. “Decision Lists for Lexical Ambiguity Resolution: Application to Accent Restoration in Spanish and French”, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL’94), Las Cruces, NM, U.S.A., 88-95.
Yarowsky, David. 1995a. “Unsupervised Word Sense Disambiguation Rivaling Supervised Methods”, Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics (ACL’95), Cambridge, Mass., U.S.A., 189-196.

Yarowsky, David. 1995b. “Three Machine Learning Algorithms for Lexical Ambiguity Resolution”, PhD thesis, Department of Computer and Information Sciences, University of Pennsylvania.

Yarowsky, David. 2000. “Hierarchical Decision Lists for Word Sense Disambiguation”, Computers and the Humanities, 34:2.179-186.

Yarowsky, David, Silviu Cucerzan, Radu Florian, C. Schafer & Richard Wicentowski. 2001. “The Johns Hopkins Senseval-2 System Descriptions”, Proceedings of Senseval-2: The Second International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Toulouse, France.

Yarowsky, David & Radu Florian. 2003. “Evaluating Sense Disambiguation Performance Across Diverse Parameter Spaces”, Journal of Natural Language Engineering 8:4. Cambridge University Press.

_1161515092.unknown

_1161578696.unknown

_1161144052.unknown

