Richard L. Van Horn, Albert B. Schwarzkopf and R. Leon Price. Copyright pending, 2001. These materials may not be used or reproduced without the permission of the authors. A student enrolled at the University of Oklahoma in MIS 4663 or MIS 5203 has permission to print out a copy for his/her own use only.

[image: image1.jpg]

Table of Contents

1Introduction.

2Inputs to System Design.

2Outputs for System Design.

3Infrastructure

5Organization

6Data

7Relational Schema.

8Metadata.

12Other Data Schema.

12Process.

12Physical Data Flow Diagrams.

13Program Structure Charts.

14Function Hierarchy Diagrams.

16Dialog.

17Web Page Navigation Maps.

20Action-Event Diagrams.

21Web Metadata.

21Module Design.

23Module Specification.

25Pseudo-code.

32Typical System Design Requirements

32Process Driven Systems.

33Dialog Driven Systems.

33Data Warehouse Systems.

34Exercises.

Introduction

Up until now it has been possible to be fairly precise about the documentation requirements for problem definition and the analysis of system requirements. The functions that most systems must do can usually be captured by a standard data model like an Entity Relationship Diagram and a process model like a Data Flow Diagram.

The purpose of design documentation is to specify to a programmer exactly what to code without actually writing the program. A good rule of thumb is to expect the design documentation to be maintenance manual for a classmate to use for the system. It needs to specify how the program is to work, but be easier to follow than the actual code. This means that the documentation depends on both the system and the environment in which it is built. Design documentation has to match requirements of the program to the language.

The technique we use to generate documentation is modeling. A model is a simplified version of the system we want. It must be easier to work with but capture some essential feature of the final product. Each particular model we use – DFD, ERD, Relational Schema, Structure Chart, pseudo-code or other technique – focuses on part of the system and ignores other parts. The design documentation for the system consists of a set of models that capture the critical features of the system. The critical features, and choice of models, depend on the system.

When the team selects the alternative of building the proposed system, the team will carry out a system design effort. In a traditional SDLC model, the team performs system design after the completion of the requirements determination phase. As noted in Chapter 7, real-world teams may perform system design concurrently with requirements determination. With prototyping, a team may carry out system design – i.e., build the prototype, without any extensive requirements determination and then use the prototype to define or refine the requirements.

Inputs to System Design

The team brings the results from Project Definition, Proposed System Requirements and the Alternatives, Evaluation and Recommendation stages into systems design including the:

1. Statement of Work

2. RD Plan

3. Current Situation Analysis

4. Proposed System requirements including a Conceptual Data Model, Modified Data Flow Diagrams and Metadata for the CDM and MDFDs

5. A Recommendation to build or at least explore further a specific alternative

System Design thus builds directly on extensive prior work. As always, the team may wish to revise some of the prior work as more information is acquired.

Outputs for System Design

The outputs may include:

1. Infrastructure and organizational changes for the proposed system

2. A data schema, often a relational schema

3. Metadata to define the tables/files and columns/data-items

4. A function hierarchy diagram or web page map that graphically describes the structure of the program

5. Actual or pseudocode for each module in the program

6. A prototype for the proposed system

In Chapter 1, the content model identified the major content areas of an information system as data, process, infrastructure and organization. During system design, the team reviews each of the content areas and adds content or detail to arrive at complete design that when operational will solve the problem posed by the client. These system design activities may include:

1. Infrastructure - redefine the hardware and software as appropriate to facilitate performing the activities of the new system. For example, the new system may require some combination of new workstations, servers, telecommunications, data storage, operating system, database engine, or web software.

2. Organization – modify the organization as needed to match the functioning of the new system. Often, the new system requires the organization to define the people who have authority to create, update, retrieve or delete data.

3. Data - convert the CDM into a data design. For example, establish a new database in the database engine, create a data schema of tables or files, specify indices, etc.

4. Process – specify the detailed system logic. For example, prepare a FHD and write pseudo code for each program module and/or write and program code.

In the field project, system design for the build alternative includes the creation of a prototype.

Infrastructure

Infrastructure consists of such elements as database management systems, computers to perform the roles of clients and servers, telecommunications, operating systems, middleware, programming languages and development tools. The client’s standards, procedure and policy manuals may set forth guides and constraints for system design. For example, the client may specify a brand and configuration of PCs for users or may specify a DBMS to serve as the database engine for all new applications. Or new development may be restricted to one or several programming languages or tools.

As part of the narrative on the current situation, the team defined the current development environment and constraints established by the client. For some projects, the constraints may allow the team little or no choice with respect to the infrastructure for the proposed system. For example, the client may require the team to use existing hardware and software. In other projects, the team may receive agreement to make minor modifications – for example, add Microsoft Access to the existing portfolio of software on an existing computer.

Occasionally, the team may select much or the entire infrastructure for a project. Because client/server and net centric architectures are highly modular, the client may wish to acquire new hardware and software for the proposed application. If the client is not an IT person, the team should ask the client for permission to talk with an IT staff person to assure that the proposed infrastructure fits within company policy and standards. A review of characteristics and guidelines for selection of hardware and software components for the development environment appear in Appendix E.

The team prepares a comprehensive description of all the proposed changes to the infrastructure for the user. The description includes a text summary of changes and the following for each new item:

Name, address and contact information for the vendor

Complete specifications for the product

Price or cost, if available

Warranty or service agreement terms

Installation cost, method and requirements

Maintenance cost and options – client, vendor or third party maintenance

The infrastructure design also needs to specify the development environment. Critical issues include the following.
· Language(s) for the product. Specify what language and design approach (if appropriate) is used to develop the system. Include versions. E.g. The system is a Client/Server system in which the client has been written Visual Basic and will be installed on the client machines using a run-time version. The master copy will be maintained by Joe Smith on his personal machine. The server component is a SQL/Server database installed on the College server in CEMR.

· Host environment. Specify what machines will be used and how they fit into the infrastructure. The system will be installed on machines in the MIS Division which are attached to the College of Business LAN. These machines are all PC compatible with at least a Pentium III processor, 64MB of RAM and 500MB of available disk storage. The host will be the College Faculty Server which is a MS Windows/NT server with at least 128MB of internal memory, and 650MB of available memory.

· Network. For those systems that operate over a network it is important to specify the network requirements. Normally the issue is not how to change the network, but how the new solution will impact it. Larger systems may require new links or components. The design team should specify the client, LAN, server and network “cloud” requirements for the system.

· Access. Specify how the system will be accessed for use and for maintenance.
· Security Any access limitations, backup requirements, etc.
Organization

During design, the team identifies and describes any desired organizational changes. For example, the new system may eliminate or reassign some of the tasks performed by people in the current organization or may change the authority of people to create, update, delete or retrieve information in the database. In particular the design team should specify the following.

· Client. Who is the ultimate user of the information being generated and what do they want to use the information for?
· User. Who will actually use the system?
· Owner. Who owns the system and is responsible for assuring that it runs correctly. This could include the operation plan and the maintenance plan for the system.
· Support. Who is responsible for running the programs in the system?
· Maintainer. Who will make changes in the system if it needs them?
An example of the infrastructure and organizational environment for the proposed system for GB Video appears in Figure 8-1.

__

Proposed GB Video Environment

Infrastructure.
At present, the GB retail videotape rental and return environment operates manually. To implement the proposed system, the ream recommends that GB purchase the following or equivalents:

Each of the three current stores will require 2 workstations for a total of six and one modem. Specifications for a recommended workstation and modem appear below.

Gentex Retail terminals Model 3301, $2,499 each, full one year warranty with in-office service Monday – Friday from 8:00 a.m. to 10:00 p.m. Includes MS Windows, PC, 17” monitor, bar code scan gun, credit card reader and printer. The terminals are connected within the store via twisted pair to a DSL connection. Vendor: Retail Systems, Inc. 7731 Main, Norman, OK 77019, Tel. 405-325-0768, Customer Rep: Tom Jones. After first year, a 14x5 in-store maintenance contract is available from Retail systems at a current cost of $10 per month per terminal.

DSL Modem units and DSL service. Three modems and installation $843. DSL service $49 per month including maintenance and Internet access. Each modem will connect to up to four workstations. Vendor: Sooner Telephone Co., 755 Lost Lane, Moore, OK 73170, Tel. 1-800-SOONER1

The team proposed that two servers be located at headquarters. These servers will connect to the existing router. Server specifications appear below. Retail Systems will purchase and install the servers (included in the price below) and make sure that they work correctly with the retail terminals. This server configuration should allow GB to expand to as many as ten branches without upgrading.

Delta Power 2000 Servers. $8,472 each. Includes high-speed link, dual processors, 100 GB hard drive, 1 GB of memory, and Windows NT. One year in office warranty 24X7; warranty service provided through Retail Systems. All transactions are shadowed on both servers so that full service is available as long as one is running. Vendor: Delta Systems, 1347 Boyd St., Houston, TX. 72211, Tel. 1-888-GoDELTA. After the first year, maintenance is available from Retail Systems on a per call rate of $30 plus $50 per hour (one hour minimum) plus part costs. Extra charge of $50 for weekend or evening service calls.

Organization

No direct changes in organization are required. All of the people in a branch still report to the branch manager. Central Purchasing will continue to make decisions on the titles and number of videotape copies at each branch.

Some changes do occur with respect to location, ownership and control of data. With the old system, each branch owned and held physical possession of the data relating to rentals at the branch. With the new system, the data on rentals and returns are stored on a server at GB Headquarters. No data are stored at each branch. People at the branch can retrieve data but cannot delete it. Only the system manager at headquarters can delete data.

People at each branch can retrieve data generated at any branch. A customer can change his/her customer data at any branch and can inquire about the status of any open rental. No data are sent to Accounting. Instead, Accounting has access to the data tables for the Rental System.

These changes have been discussed with and agreed to by all parties. No organizational problems or issues are anticipated.

__

Figure 8-1. Proposed Environment for GB Video

Data

At this stage, the team designs the specific data schema for the proposed system. The team converts the conceptual data model (CDM) into a data schema of relational tables, objects, other kinds of tables, flat files or other files, etc. If the team plans to utilize a relational data base management system (RDBMS), the team prepares a relational schema. Some CASE tools, for example, Oracle Designer/2000, with major help from the analyst, will convert a CDM (in Oracle notation using first normal form) into the corresponding relational table schema. With a flat file mechanism, the team specifies the file format using COBOL or other appropriate conventions.

Relational Schema.

Relational databases are widely used. Enterprise Resource Planning (ERP) Systems from such providers as SAP, People Soft and Oracle recommend storing data in and retrieving it from relational databases. Many other package programs operate with a RDBMS. Because of portability and flexibility concerns, a majority of organizations design new applications for a RDBM system. However, an enormous number of non-relational data stores remain in use for special applications and legacy systems.

If the team uses a relational database, the team prepares a relational schema with the following rules.

1. The proposed system CDM provides the structure for the relational schema. Represent the complete data structure from the CDM in the relational schema unless the team explicitly decides to make changes and documents the reasons in the System Design report.

2. Use set notation, table heading formats, MS Access type diagrams, or the equivalents to graphically represent the table and column structure.

3. The analyst normally uses the plural of the entity name on the CDM for the table name. Column names normally correspond exactly to attribute names.

4. Identify primary keys and note in the text the convention used to identify them

5. Add referential integrity arrows to link from each foreign key to each primary key

6. Prepare clear, neat and printed diagrams with a CASE tool, drawing tool, MS Word, etc.

7. If the schema is not in third normal form (3NF), explain briefly why the team chose to denormalize the structure in the CDM. Note: relational schema always must observe first normal form (1NF) and contain only a single value for each attribute in each instance.

A sample relational schema in table heading format for GB Video that follows the above rules appears in Figure 8-2. In the schema, the entities Title and Video appear combined in a single table. The diagram contains a note explaining why the schema is not in 3NF.

Note 1. Primary keys are underlined.

Note 2. For data integrity control, Purchasing does not want the rental system to access their primary tables of Video and Title. Instead Purchasing will replicate the relevant data as needed in a view or table for the Rental System called COMVIDEOS. The denormalized table COMVIDEOS in the relational schema contains the combined attributes of the Video and Title entities in the CDM except that the attributes “Title No” and “Vendor No” are omitted in the table prepared by Purchasing. The combined table results in a simpler data structure and possibly, a faster response for the rental system.

Figure 8-2. GB Video Relational Schema

Metadata.

As a critical part of the data design, the team selects metadata for the tables and columns. Data items consist of the attributes or column headings in relational tables or the data-element names in flat file records. The team may need to define data items for use in input, output and transformation operations that are not part of, or placed in, any data store. For example, the program may compute the total cost for a rental. Total-Cost is a data-item used to prepare and print an invoice, but is not part of any data store and thus is not an attribute or data-element. Data-items that are not part of a store are described in a separate section called “Data Items’ following the attribute or data-element descriptions.

In practice, the metadata for a table or file and data-items may include dozens of categories. The categories selected for the system design deliverables may depend both on (1) those categories included in the database engine and (2) the standards and policies of the organization.

A minimal set of table or file metadata might include:

1. A short text description of the table – normally identical to and copied from the CDM entity description

2. Retention policy – how long or under what circumstances is each record or instance or row in the table retained. Good retention decisions balance control of table size against the availability of data for operations and historical analysis. For such entities as Item, the retention policy may be obvious. The record for an item is retained as long as the Item is stocked or sold, etc., and deleted or transferred to a history file when the item no longer is stocked. Retention policy is most important when files tend to increase as a result of activity. Transaction files for sales, rentals, purchases, etc. exhibit this behavior.

3. File Size – how many records or rows will the file or table contain and how many megabytes of storage are required. As file size grows beyond the forecast number, physical storage requirements often pose less of a problem than processing time. Additional physical storage is easy to add and relatively inexpensive. But increased file sizes may cause a slowdown in file processing activities that is more difficult to remedy. As noted above, file size sometimes can and should be controlled by retention policy.

4. Authorization – identifies who is allowed to create, update, retrieve and delete records or rows in the table. Unless authorization is defined clearly, organizational conflict and loss of data integrity may result.

A minimal set of data item metadata includes:

1. A short text description for each data item – normally copied from the attribute descriptions in the CDM if relevant

2. Optionality – whether the user is allowed to omit a value for the data item when first creating a new row or record. Optionality is important for data integrity. By using optionality the team can assure that the primary key and other mandatory or required attributes are present at the time a record first is created.

3. Data type – a specification that allows the physical system to store data efficiently. The team normally will use the data types provides by the database engine specified in the Infrastructure for the proposed system or in the proof of concept model – for example, Access, MS SQL Server, etc. In Access, the available data types include: text, number, date/time, memo and yes/no. The team should reference the source of the data types used in their system design documents.

4. Size – the maximum length to allow for each data type. Some data types, for example date, integer, etc., possess a size determined by the database engine. Part of the size description for a decimal number includes the number of decimal places.

A sample set of metadata for the GB Video relational data schema in Figure 8-2 appears in Figure 8-3. Note that in this example and in most cases, the table and column descriptions follow the CDM entity and attribute descriptions.

__

GB Video Data Table Metadata

Table and Column Descriptions

Note: (PK) shows a primary key and (FK) a foreign key. Data-types are from MS Access.

Customers. Contains all the available information about each customer who has made a transaction in the last year.

Retention. The records for customers who had not had a transaction for one year are deleted.

Size. The database will initially contain 3,000 customer records and require about 1 MB.

Authorization. Clerk: create, update, and retrieve. System Manager: all.

	Data-Item
	Description

	Optional
	Type
	Size
	Decimal

	Cust_No
	A unique identifier assigned to each customer (PK)
	No
	Text
	10
	

	F_Name
	First name and middle initial if any
	Yes
	Text
	15
	

	L_Name
	Last name
	No
	Text
	30
	

	Ads1
	Street or box address
	No
	Text
	30
	

	Ads2
	Apartment number or other as needed
	Yes
	Text
	30
	

	City
	Name of city
	No
	Text
	20
	

	State
	State id code
	No
	Text
	2
	

	Zip
	Zip code
	No
	Text
	9
	

	Tel_No
	Telephone number
	Yes
	Text
	10
	

	CC_No
	Credit card number
	No
	Text
	16
	

	Expire
	Expiration date on the credit card
	No
	Date
	
	

Rentals. Contains the header information on each rental transaction.

Retention: Transaction instances are removed to backup storage 15 days after a transaction is complete

Size: Approximately 1500 records and less than one megabyte

Authorization: Clerk: create, update, retrieve

	Data-Item
	Description

	Optional
	Type
	Size
	Decimal

	Rental_No
	Unique identifier assigned to each rental (PK)
	No
	Auto-number
	
	

	Cust_No
	The customer for the rental (FK)
	No
	Text
	10
	

	Date
	Date of the rental
	No
	Date
	
	

	Clerk_No
	Employee number of the clerk entering the rental
	No
	Text
	3
	

	Pay_type
	Cash, check or credit card
	No
	Text
	1
	

	CC_No
	Credit card number
	Yes
	Text
	16
	

	Expire
	Expiration date of the credit card
	Yes
	Date
	
	

	CC_Apv
	Credit card approval code
	Yes
	Text
	6
	

Lines. Contains the information on each video associated with a rental transaction
Retention: same as Rentals
Size: Approximately 2000 records and less than one megabyte
Authorization: same as Rentals.
	Data-Item
	Description

	Optional
	Type
	Size
	Decimal

	Line_No
	Unique identifier assigned to each line (PK)
	No
	Auto-number
	
	

	Rental_No
	The rental number that this line belongs to (FK)
	No
	Long

Integer
	10
	

	Video_No
	Video rented on this line (FK)
	No
	Text
	14
	

	Due_date
	Date tape is to be returned
	No
	Date
	
	

	Return_Date
	Actual return date
	Yes
	Date
	
	

	OD Charge
	Charge for days kept after due date if applies
	Yes
	Currency
	
	2

	Pay_type
	Method of payment for the overdue charge
	Yes
	Text
	1
	

ComVideo. Contains information on each video. This database table is maintained and supplied to the rental system by purchasing.

Retention. NA

Size. Approximately 500 records and less than one megabyte

Authorization. Clerk: retrieve only.

	Data-Item
	Description

	Optional
	Type
	Size
	Decimal

	Video_No
	A unique identifier assigned to each video tape (PK)
	No
	Text
	14
	

	Name
	The title of the video
	No
	Text
	30
	

	One_day
	First day rental fee
	No
	Currency
	
	2

	Extra_day
	Extra days rental fee
	Yes
	Currency
	
	2

	Weekend
	Rental fee for Sat. & Sun.
	Yes
	Currency
	
	2

Figure 8-3. GB Data Schema Metadata.

Other Data Schema.

Some projects will involve a data schema other than relational tables. For example, in a system that uses flat files, tables similar to those that make up the COBOL data division may define the data schema. The team should discuss the appropriate model representation with their team manager. The model selected must describe completely the data schema – the table, file or object structure, and must include a full set of metadata.

Process.

Design documentation requires what we call physical models. A physical model maps directly onto the system the way it is actually to be build. Module and flow names should be the same in the model as in the code; attributes should have the same names in the databases as in the model; calling and triggering sequences should be specified and match that in the code.

In this step, the team specifies both (1) the module or program structure and (2) the system logic within each module or process. The way that logic is specified will vary from project to project. The basic requirements for logic specification are:

1. Represent the structure of the logic in an appropriate graphical form – a Program Structure Chart, Physical Data Flow Diagram, Function Hierarchy Diagram, object schema, web page map, or other.

2. Specify the detail logic within each module or procedure shown on the graphical representation in pseudo code or program code.

Data transfer to and from tables or externals is usually captured on a Physical Data Flow Diagram. A Data Flow Diagram is a good tool for showing data access for a system. A Modified Data Flow Diagram also keeps track of triggers. We use data flow diagrams to track data usage throughout the system. The architecture of classical batch programs consists of subroutines and functions that take the data from calling routines, modified it and called another subroutine. In these systems the flow of data drives the execution of the system. Data flow diagrams were developed to capture the essentials of these systems.

Physical Data Flow Diagrams.

Data Flow Diagrams may be physical or logical. We talked about using a Logical Data Flow Diagram to capture the requirements of a system in Chapter 6. The purpose of a logical data flow Diagram is to understand how the fundamental process in a system fit together. Logical data flow diagrams do not indicate sequence of execution and create the names of boxes, flows and stores for understandability. They do not include error checks or flags.

We may use a Physical Data Flow Diagram to describe how the final system should work. Physical DFD’s describe the process of data transformation as it is coded. In a Physical DFD the objects on the diagram correspond to actual constructs in the code. Processes have the same name as components in the program, bubbles are sequenced in the order that they will be executed in the real program, flows are named the same as in the code, and all tables or queries have the same names as in the actual database. Physical data flow diagrams include the flags, audit trails and error checks that are needed for the actual system.

Program Structure Charts.

Data flow diagrams focus on data transformation. A Program Structure Chart is a graphical model designed to show program architecture. It models components of a program, the triggering sequence of the components and what control or data flows pass among components to make them work well. Each component corresponds to a box on the diagram. Boxes are numbered and named. Where possible the numbers correspond to a parent-child triggering relationship: Component 2. should call Component 2.2. This numbering scheme works reasonable well for hierarchical designs. Designs in which a component can be invoked by several parents cannot be numbered so regularly. An arrow connects each parent to the components that the parent may call. The arrow represents a triggering action and does not have a name. Some authors also include indicators of control flags and data flows passing from one module to another. Typically these diagrams do not include flows for data passing into or out of data stores or externals. Those data flows are captured on a physical data flow diagram instead.

Unlike data flow diagrams in which higher level bubbles may not exist in code, all of the boxes on a structure chart correspond one-to-one with code components in the final program. In a procedural language like COBOL or C these components are typically paragraphs, subroutines or functions. In a GUI language like Visual Basic they correspond to forms, controls, macros, queries or modules. The name of the box on the structure chart should be the same as the name of the corresponding structure in the working code. Each box should be supported with a narrative description in pseudo-code or structured English. Connections between boxes are not named; however, the connection should correspond to triggers or triggered actions in the narrative description of the related boxes.

If control flags or data are to be passed between components, the flow should be indicated with a named arrow. Control flags are indicated by arrows with an open circle on the tail. Data flows are indicated by arrows with solid circles. Each flag or flow should be named with a descriptive name that matches (as much as possible) the name of the element actually passed between components.

Function Hierarchy Diagrams.

Function hierarchy diagrams are structure charts that have a tree structure. They are particularly common in structured programming designs in which the top module corresponds to the master control module for the program.

Function hierarchy diagrams are sometimes used in the analysis of a system to describe the logical grouping of system functions. This use leads to some confusion among textbooks about what should appear on the diagram. Logical function hierarchy diagrams are used to group the functions of a system into logical units and do not indicate either data passing or order of execution sequences. Typically the only modules expanded in a logical FHD are the leaf modules. In design (physical) FHD’s, all modules are expanded. Hierarchical designs tend to be easier to debug and maintain than more complex structures. In a hierarchical design each component has a unique path into it. That makes it easier to debug and maintain than an architecture that allows multiple paths into modules.

A sample FHD for GB Video appears in Figure 8-6. The modules in this diagram correspond directly to the MDFD modules in Chapter 6.

Figure 8-6. Function Hierarchy Diagram for GB Video.

__

Dialog.

 As noted in Chapter 6, web sites can present a challenge for modeling. The team may wish to try using a web page navigation map to provide a graphical framework for the system design of the site. Web page navigation maps are intended to display the navigation paths and data access requirements of a dialog driven system. Dialog systems, especially Web designs, include simple document retrieval components and function processing components. A web site that displays course descriptions is a document retrieval system that requires very little design documentation. A Web site that allows students to enroll in those courses executes a complex function.

Document retrieval systems are conveniently described by menus. A menu displays a set of options. Clicking on the option (or perhaps a box) transfers the system to that location, possibly on the same page. No data is passed. The most common menus are document access menus but any choice list that only transfers screen control and does not pass data or execute a system function can be a menu. Many modern Web sites have a basic function menu across the top of every page that transfers from one branch of the site to another. Frequently there is another menu along the left hand side that allows the user to select which page or function he wishes to access. The logic of these menus is simple. All the designer needs is a list of display text and reference locations. We indicate menus on page maps with a letter M and a number along with an optional menu name (many programming systems don’t make use of menu names). The same menu (using the same number and name) can appear on several pages.

Web sites that perform some function or process logic should be documented in more detail. The Web page map should show the sequence of screen calls. It should also indicate table access to any database being used using the same table symbols that appear on a DFD. We use dotted arrows to indication the direction(s) of data flow. We also need to indicate any document files being accessed. These files are not normally included in a database model. We use a document symbol from a standard flowchart to indicate document files or folders.

Web Page Navigation Maps.

The Web page map shows each page and the major links between pages. The general rules appear below:

1. Page. Each page of the site is represented by a rectangle. A page is the unit available from the browser to the viewer without clicking a hyperlink. Pages are numbered consecutively – i.e., 1, 2, …, n. A descriptor follows the number – i.e., P1. Home Page. The page name should correspond to the name used in the code: a form name, a html file name, or a display routine. All pages are assumed to have display code.

2. Links. Links are indicated by solid lines. They show the main links from the current page to other pages. All links are bi-directional unless the back function is disabled for a particular link.

3. Menus. Menus are indicated by the letter M followed by a number inside the page box. The numbers should be unique across the entire diagram. A menu with links to other pages receives labels that start with an M followed by a number (i.e., M1, M2, etc.) The menu number may be followed by an optional descriptor (i.e., M1. Main Menu.) Frequently a site has one or several menus that appear on a number of pages.

4. Processes (but see the discussion on Action-Event diagrams.) A page may contain one or more processes on sites that allow the user to initiate some action – enter data, download a data set, transform data, retrieve from or write to a database, etc. Normally the process is triggered by the user clicking on a Action Button – a button with a label “Submit”, “Place in Shopping Cart” or “Compute”, etc. An action button is represented by the letter “A” followed by a number – A1, A2, etc. A process may consist of one or more modules in accord with the rules for good module design. The metadata for an action button may consist of the pseudo-code for a simple process or a FHD with pseudo-code for multi-module processes. Use DFD label conventions for the modules starting from the process label. Procedures may receive data from external sources, send data to external sinks and store data in or retrieve data from a data store. DFDs and a FHD provide a graphic model for the structure and operation of the modules in a site.
5. Data store – a procedure and only a procedure may interact with a data store to store or retrieve data. Use the DFD symbol for a data store. A graphical data model or data schema defines the data stores as discussed in the previous section.

6. Data flows – flows show data transfers from or to externals, between modules and to/from data stores. Use DFD rules and symbols – for example, all flows must have a process (i.e., a page with an action button) at one end and the flows actually go to and from the process initiated by the action button. (Note: a user click on a hyperlink represents a control flow not a data flow. A hyperlink click is not shown as a data flow from the user to the page. The control flow may initiate a data flow – for example, cause a procedure to retrieve data from a data store.)

7. Externals – externals, for example, the site user or a credit card processor, are represented by the DFD ellipse symbol.

8. Documents. Documents or document folders should be indicated by the flow chart document symbol. Documents are files of any type that are displayed and not managed by the dialog. Examples include text files, spreadsheets, or even other programs that don’t communicate with the dialog.
An illustrative web page map for a GB Video reservation system appears in Figure 8-7. This site allows customers to look at availability of videos and make reservations to pick them up. To make a reservation, the customer goes to the home page. If the customer is not a member, he/she can become one by clicking Become a Member” on the main menu. On the New Member screen, the customer fills in the customer data (see Figures 8-2,3.) and presses a submit button. The system creates a customer record and displays the customer number on the screen. The text asks the customer to print the screen for a written record of the customer number.

To reserve a tape, the customer clicks “Reserve a Video” on the main menu. Note that the main menu (M1) appears on every page. On this page (P2), an index of Videos appears. The customer can enter a member number, date and the title of a desired video and click the Find button (A2) Or the customer can use the index to find a video. For each title on the selected date, the screen shows either “Unavailable, try again later” or “Available”. When the customer, finds a desired video, the customer clicks the Reserve button (A3). The system displays the Reservation data on the screen and invites the customer to print a hard copy. To get the video, the customer must come to the store on the day of the reservation.

To find out more about GB Video, the customer may click “About GB” on the main menu and view a page that tells about GB and gives branch locations and telephone numbers.

Figure 8-7. Web Page Map for GB Video – Web Reservation System.

Combinations of design tools may provide the best graphical process model for a site. For processes in the page map that contain more than several modules, a FHD and/or DFD for the process (or one for the entire site) can add clarity and reduce ambiguity. A data schema model defines and clarifies the data store structure.

Action-Event Diagrams.

In some cases it is not reasonable to describe actions or processes on the Web page navigation map. Trying to include all controls and procedures on a single diagram usually makes it too messy. A second diagram can be used to expand the actions and events that cause processes to be executed. Each page is represented by a box. Controls on that page are represented by sub boxes. Each event (click, double-click, get focus, etc.) is represented by an arrow that connects to a circle. The circle acts like a process symbol in a DFD. Data stores and data flows are represented similarly. Each of the objects on this diagram, including the page itself, should be supported by metadata.

1. Process. Describe the process with a box. Number and label the box with the same numbers and labels on the Web page map

2. Controls. Each control should be represented by a small box. The box should have the same label as the control in the corresponding code.

3. Events. Each event corresponds to a line connecting the control box to a process circle. The lines should be labeled with the event name. Only controls with actions need be represented.

4. Actions. Each action should be represented by a circle. Circles should have a descriptive name. If the actual code module has a name (VB scripts don’t) the bubble name should match the name in the code. Actions should be supported by IPO charts.

5. Data Stores. Data stores should be represented by open squares using the same conventions as DFD’s. The store name should match table names in the corresponding database.

6. Data Flows. Data flows should be represented by arrows. Arrows should be labeled. Data flows in GUI programs are not normally labeled with names so arbitrary labels are allowed. The arrow should flow to the control or form to which the table is attached.

Web Metadata.

The objects on a web page map are defined further by metadata. Possible metadata for each is as follows:

1. Page – a brief description of the html text on the page or the actual text enclosed in quotes. Provide a table that shows the each hypertext link on the page that is not part of a menu in the first column and the web address for the link in the second column.

2. Menu – the table showing menu number, text and hypertext addresses for the menu. Note: a menu is defined once although it may be used for multiple pages

3. Link lines – none.

4. Procedures – a brief description of the procedure plus the detail logic for each module in the procedure. Use a MDFD for complex procedures.

5. Data store – defined by a table schema or a data division with their metadata.

6. External – brief description

7. Data flows – the data items that make up each flow. The metadata for each data item appears in the data model.

Module Design.

Several different names are used to refer to modules; the most common names are program module, code module, process module and business function module. Normally code or program module names are used at the detail design level. Business functions names are used for modules at the requirements level. A program or code module contains a set of code, pseudo-code or logic statements that work together toward a common purpose in a program. A module may correspond to a box in a DFD or Structure Chart, or a module or several modules may contain the code for a radio button in Visual Basic or for a procedure in an object.

Identifying a good set of program modules for a program requires skill and careful thought. In general, a good module contains a high level of cohesion and a low level of coupling.

The strength of the interrelationships between the logic statements in a module is called cohesion. In a functionally cohesive module all of the statements relate to the performance of the same function. For example, one of the GB Video modules might focus on the function of “inputting and recording the ID numbers of the tapes that a customer wishes to rent.” Note that the logic statements for this function also may possess temporal cohesion – they occur in time sequence without interruption by statements from any other module. Functional cohesion generally is the most important cohesion issue in designing effective program modules. Functionally cohesive modules simplify program design, testing and maintenance.

The module structure in the FHD for GB Video is functionally and temporally cohesive. Each module at each level deals with a set of activities that relate to the same function and occur continuously in time – i.e., one after another without pause or interruption.

One easily can devise modules that do not show a high level of cohesion. For example, consider the module N2.9 with the description “Read in the videotape identifier from the scanner, create a rental record and calculate the overdue change for a late return of a videotape.” Intuitively, most analysts would recognize that such a module seems like poor design. The set of logic for calculating overdue charges for the late return of a video clearly shows little cohesion with inputting video numbers and creating rental records for a rental – the two sets of logic statements relate to different functions and occur at different times.

Other forms of cohesion exist. For example, statement may be placed in the same module to enhance communicational cohesion – statements that all utilize the same set of data or sequential cohesion – a statement requires the results produced by a previous statement to perform its function – i.e. to compute the tax on a rental, the program first needs to compute the total charge.

Coupling refers to the nature of the interactions between modules. Coupling is reduced when modules do not use or modify code from another module – each module uses only the logic contained within it (plus subroutines). The objective is to be able to modify the module without having to understand the logic of other related modules. In general, less coupling is better. The loosest kind of coupling is called Data coupling. In data coupling the only thing that connects one module to another is the data passed to it. Less desirable coupling includes stamp coupling in which the format as well as the content of the data carries information. A program may store a telephone number as one field with the first three being the area code. This creates stamp coupling. If someone decides to include international phone numbers in which the first digits are country codes, then the program fails. Furthermore the failure would be caused by code in a seemingly unrelated module. Even more difficult to deal with is hybrid coupling. In hybrid coupling one module changes the code in another module at run time. In these cases you cannot tell what statements actually ran by looking at the code. These systems can be almost impossible to maintain. In most applications, modules are coupled mainly by data – a module may pass data to another module that it triggers. Data coupling can be a problem when unknown data-sensitive actions or limits exist in a module. For example, if a create rental record module is set up to handle a maximum of 10 videos per rental, the module may fail if the data input module passes more than 10 video IDs to it. If the module receiving the data will perform the expected actions and only those actions for all allowable values and sets of data, then data coupling presents few problems.

Module Specification.

Structured module design guidelines try to increase cohesion and reduce coupling. However, no one knows how to design the “best set” of modules. As in many other parts of IS design, the analyst follows the procedure called “satisficing” by Simon (xxxx); avoid clearly bad structures of modules and strive to find a structure that at least is “satisfactory.”

Guidelines for structured module design at the detail logic level include:

1. A module performs one and only one major function – charge credit card, prepare invoice, retrieve data, update data, etc. The statements within the module should show a high degree of functional and temporal cohesion unless another form of cohesion is more important.

2. Each module should work correctly for any data set that its trigger module(s) may send to it. The less data transfer the less chance for data coupling problems, but good design involves tradeoffs. Retrieving data from a data store instead of receiving them from another module may reduce the incidence of data coupling problems, but may increase processing time.

3. Every module contains logic defined by pseudo-code or actual program code. To carry out their function, modules may (a) operate on data stores to: retrieve, create, update or delete records; (b) read input from external sources – keyboards, scanners, etc., (c) send output to external sinks – printers, other systems, etc.; (d) perform data transformations (e) call or perform subroutines or procedures and (d) use sequence control logic to direct the control flow within the module or to select the next module to trigger

4. A module should have one and only one entrance – the statement executed when the process is triggered. It may exit – transfer control, to one or more other modules or it may cause the program either to close or to wait for an external event trigger. A module may have sequence control logic at the exit point – i.e., it may trigger one of several modules or none depending on internal conditions. Control transfers in one direction only: from the exit point of the trigger module to the entrance point of the triggered module

5. The only communication allowed between modules consists of the data items passed from the trigger module to the triggered module at the time of the trigger event. The data may include flag or switch values. Flags and switches increase the potential for data coupling problems and should be used with caution.

Using correct statements from a recognized programming language or pseudo-code specifies the logic within a module. When statements from a programming language are used, the analyst specifies the specific language and version. The actual code statements should follow the format and conventions of the language. However, the analyst can substitute pseudo-code or a brief description for actual code in complex or stub modules to be coded at a later time.

Analysts use several different conventions to govern which modules may contain code. With one convention, code may appear only in the lowest level modules, those modules with no children or descendents on the FHD. These modules are called basic functional modules or elementary modules. With this convention, additional elementary modules are added as appropriate to contain switchboards, menus and setup instructions. Other analysts find it more convenient to allow modules that are not elementary modules to contain switchboards, menus and setup instructions.

A good way to document individual modules is through an Input-Process-Output (IPO) module chart. An IPO chart is a traditional way of organizing the information needed to code a particular module. As with FHD’s, the term IPO has also been used differently to describe a requirements capture tool. IPO charts should capture the triggers, input, process, output and triggered modules in a narrative form. The chart should have five sections, one for each part.

1. Triggers. The first section should list all possible triggers for the module. A trigger may be an event on a data entry screen (e.g. a button click), a call from another module with or without associated data, or an automatic event such as a timed execution.

2. Input. The IPO description should describe all required input data and where it is obtained from. Input can come from a calling module, a screen, or a database. Screens are usually treated as a flow (all fields) from an external. Calls to a database should include appropriate calling pseudo-code. An input of all orders from an order table for a given customer should indicate that the input is from the Orders table where Order-Id = Current-Customer-ID. If the input is from a query to the database and not a table then the input can either indicate that the flow is from Query-A: (SQL pseudo-code) or just name the query if the query is defined as a part of the data model.

3. Process. Process descriptions should be in structured English or pseudo-code. The objective is to write instructions that a competent programmer could follow to generate what you want. The statements should match the language environment that you use. If you have an I/O screen shot associated with the module it should be referenced (e.g. See Fig 27).

4. Output. The IPO should describe all outputs and where they go.

5. Triggered Events. The description should indicate all potential named components called from the module including subroutines, macros, or modules. Logic for determining which event is called should appear in the process logic.

Pseudo-code.
Pseudo-code or its close relative, structured English, offer a generalized programming language to specify the detail logic associated with each module. Pseudocode consists of a set of instructions or statements similar to those found in programming languages. As in a programming language, the pseudocode statements in each module must explicitly, completely and unambiguously define the actions performed by the module to transform inputs into the required outputs including links to subroutines and other modules..

The actions or statements available in pseudocode include:

1. Read input data from an external source – keyboard, scanner, etc.

2. Transform data – assign a given or computed value to a data element

3. Operate on a data store – retrieve or update attributes in an existing record and create or delete records

4. Call or perform subroutines or procedures

5. Use a control to execute statements, macros, modules or subroutines.

6. Manage the flow of control. Unless otherwise specified, control within a module is assumed to flow sequentially – from each statement to the following statement. Use conditional logic to control any other sequence of actions – if, class or do statements. Control flow in event driven systems is managed by the user activating a control event.

7. Write output data to an external sink – print a card, document or report, send data by EDI, etc.

While some general conventions apply, much of pseudo-code is flexible. Companies and/or analysts may develop their own versions as needed. The material below sketches out some pseudocode statements for use in a field project. You should be familiar with the actions performed by these statements from programming courses. You may use standard programming conventions – for example, separate data item names by commas. However, punctuation is not critical in pseudocode as long as meaning is clear – for example you may use either periods or semicolons to mark the end of a statement. For a number of situations, you will wish to invent or expand on core pseudocode to represent some complex action in a simplified form.

The following sections illustrate pseudocode format and general conventions for use in the field project. This material assumes that team members are familiar with programming languages and conventions. Review an introductory programming language book if any of the statements below are unclear.

Input Data. The general form of the pseudocode statement is: Read (data item names) [From (source name)]. Any part of a statement in square brackets [xxx] is optional. The following pseudocode statement reads in the customer number for a video rental:

Read I-Cust-No From Scanner.

The “I” before the attribute name is an optional convention to identify the fact that this data-item, which contains input data from an external source, is not an attribute or data-element retrieved from a data store. The programmer may use the Read statement only to bring in data from an external source; you may not Read from a data store.

Transforming Data. The Set statement sets a data item equal to the value of an expression. The format of the pseudocode is: [Set] (data-item) = (a given or computed value of an expression). The word “Set” is optional but helpful to clarify that this statement sets or assigns a value to the data-item on the left hand side of the equation. For example, the statement “Set Tax-rate = 0.07 will set the sales tax rate to a given value, 7 percent. The statement “Set Tax = Tax-Rate * Total-Cost sets the value of tax equal to a computed value – the tax rate multiplied by the total cost. All standard functions – average, maximum, total, etc., may be used in pseudocode.

When you use or invent a non-standard function described in English, provide an adequate detail on what it does. For example, the statement “Set Cust-No = (next unused customer number in the sequence) represents the automatic generation of customer numbers more clearly than Set Cust-No. = (next).

Operate on a Data Store. SQL provides the basis for the pseudocode to specify data store operations – create, delete, retrieve or update a row or record. If you do not remember or are unclear about the format and effect of SQL statements, review SQL before trying to write pseudocode. You may use standard SQL or mix SQL with some English phrases that are clear but will not execute in SQL.

A pseudocode statement to retrieve data about a GB Video customer might be “Select * From Customers Where Cust-No = I-Cust-No. This statement retrieves all the data for the customer whose member number was scanned and stored in I-Cust-No. Any valid form of the Select statement may be used in the pseudocode.

Pseudocode also allows the designer to invent English phrases to simplify the code as long as the meaning is explicit and complete. For example, the system may provide for retrieval of a customer record by customer number, telephone number or name – normally three different SQL statements. The customer number option retrieves the data for one customer; the others may retrieve data for several customers. Additional program logic is required to let the clerk select the desired customer from multiple choices. A shorthand expression for this process that is acceptable at the pseudocode level is “Select * From Customer Where (the current customer may be identified by customer number, telephone number or name).

Statements that contain incorrect SQL only because of carelessness or ignorance do not belong in pseudocode. For example, if the designer wishes to find the customer numbers of customers with more than three rentals, the statement “Select Cust-No, Count (*) From Rentals Group By Cust-No Where Count (*)>3” is incorrect SQL and inappropriate pseudocode. Either use a correct SQL statement with Having in place of Where or use a statement in the form “Select Cust-No, Count (*) From Rentals (for customers with more than three rentals) where the condition clearly is in English not SQL.

All other SQL statement may appear in pseudocode. For example, an Insert statement will create new rows or records. The statement “Insert Into Rentals Values (I-Rental-No, I-Cust-No, I-Date, I-Clerk-No, I-Pay-Type, I-CC-No, I-Expire) will take the values inputted to or generated in the GB Video Rental Process and place then in a new row in the Rentals table. The Delete statement will delete an entire row or record. An Update Statement changes one or more values in an existing row or record. The statement “ Update Lines Set Return-Date = (current date) Where Video-No = I-Video-No and Return-Date = null will update the record to reflect the return of a video tape.

Statements to create new tables or files may be but normally are not included in the pseudocode. The data schema and its metadata should provide an adequate system design specification for the actual code to create the tables. Some CASE tools, for example, D/2000 will create will create the data schema from an ERD and (with some help from the designer) create the tables from the schema.

Perform a Procedure. The perform statement is used to execute a procedure – a named block of code inside the module, or to call a subroutine outside the module. Procedures inside the module allow the programmer to use the same set of instructions at more than one point inside the module or to simply complex conditional expressions by separating out the statements in the procedure. A procedure is created inside the module by giving a set of statements a heading “Procedure (name)” where name is any unique procedure name – a name not used by another procedure. In the metadata for a module, the Procedures follow the sequentially executed code block. The format is:

Procedure Name-1

Begin

Statement 1

…

Statement n

End

Subroutines consist of procedures used by more than one module. The descriptions for these procedures follow the module descriptions in a section called “Common Subroutines”

The format of the statement to execute both internal and subroutine procedures is: Perform (name).

Flow of Control. As noted earlier, control flows sequentially from statement to statement in the pseudocode unless changed by a conditional statement. Conditional statements in pseudocode include If Then Else, Do and Class. The format for the IF statement is: IF (condition) Then (action) [Else (action)]. Action can consist of any pseudocode statement including a Perform.

When a module wishes to pass control to another module, the statement is Trigger (module ID number [{list of data-items}]), for example, the statement Trigger P2.2 {Cust-No, Rental-No} may appear at the end of module P2.1. The flow of control and the values of the data-items pass from P2.1 to P2.2.

Do statements appear in many forms. Three general forms for pseudocode are:

While (condition) Do

 (Actions)

EndWhile

Do

 (actions)

Until (condition)

Do For (index = initial To limit)

 (Actions)

EndDo

In Do statements, actions may consist of a set or block of pseudocode statements including Performs.

The Case structure provides an efficient way to show the choice among several alternatives. The format is:

Select (data-item)

 Case (value-1, action-1)

 ……

 Case (value-n, action-n)

 Default Case (action)

EndSelect

The statement involves a set of linked values and actions. The action paired with the case value that matches the value of the data-element is executed. If pushing the Member button, sets the data-item choice = 1, Rental sets choice = 2 and Return sets choice = 3, then the following pseudocode will select the appropriate GB Video process:

Module 0.0

Read Choice

Select Choice

 Case 1 Trigger P1.0

 Case 2 Trigger P2.0

 Case 3 Trigger P3.0

 Default Case Trigger P0.0

EndSelect

No data are passed in this example, only the flow of control. Note that the programmer may use embedded If statements to accomplish the above selection but the Case statement offers an easier to follow form.

Output Data. The Write statement is used only for output to an external sink. The programmer may not write to a data store. The format is

Write (data-item list) {To (device)}.

For example, Write Name To (member card imprinter) places the customers name on a member card that already contains both a printed and bar coded member number.

A sample set of pseudocode for the first several modules of GB Video appears in Figure 8-8. The module structure is defined in the FHD in Figure 8-6.

Figure 8-8. GB Video Pseudocode.

Psuedocode for the GB Video – Videotape Rental and Return System

Each module is shown below with appropriate pseudocode. Note that the example uses the convention of including switchboards, triggers, menus and setup in the non-elementary modules.

N0.0 GB Video - Videotape Rental and Return System.

The system manager or operator triggers this module. The module contains the code to start and restart the system and to display the main switchboard that allows the user to select or trigger N1.0, N2.0 or N3.0.

Read (function) from Keyboard

Select (function)
Case (1, Trigger N1.0)
Case (2, Trigger N2.0)
Case (3, Trigger N3.0)
End Select

End

N1.0 Enroll a new member or update data.

Triggered by N0.0

Input (I-Customer_status) from Keyboard

Select (I-Customer_status)
Case(Old, Perform Old)
Case(New, Perform New)
End Select

Procedure Old
Begin
Read I-member_no, I-telephone_no from keyboard
Select * From Customer Where Customer_No = I-Customer_No or Telephone_Number = I-Telephone_No
Read (all attributes of customer) from keyboard [Note: user enters any corrections into the input form] which contains the retrieved data.]
Update Customer
End

Procedure New
Begin
Read (all attributes of customer except Customer_No) from keyboard)
Read I-Customer_No from Scanner [Note: the customer number is scanned from a blank member card]
Insert Into Customer Values (from scanner and keyboard input)
Print “Member Card”
End

End

N2.0 Rental Process.

Triggered by N2.0. This module triggers N2.1.

N2.1 Input customer and video data for a rental.

Triggered by N2.0.

Read (I-Customer_No) from scanner

Read (I-Video_No) from scanner

Trigger N2.2

N2.2 Receive cash/check or post a CC transaction.

Triggered by N2.1

Read (I-Pay_type) from keyboard

If I-Pay_type = check then get a check approval number else if I-Pay_type = CC, then get a CC approval number else trigger N3.0 [Note: getting an approval number is a complex process to be coded later]

If approval denied, then end else trigger N3.0

End

Typical System Design Requirements

The architecture of a program is the set of modules or units that make up the program and the relationship among them. In a traditional procedural program a unit is a subroutine or a called function; in a GUI based language like Visual Basic a unit is a screen or a control on a screen. The purpose of program architecture is to put into one place the things that are likely to change together when the system is changed.

The most common architectures are functionally driven and dialogue driven. A functionally driven architecture tries to put into the same module those lines of code that support the same function. If a system for GB Video allows a customer to select items to purchase, specify shipping and then arrange for payment then a functional decomposition would have a Select-Items module, a Specify-Shipping module and an Arrange-Payment module. These modules might be code subroutines or they might be forms, depending on the language used to implement the system.

A dialogue driven architecture is organized around the dialog interface with the user. A program for GB Video designed to evaluate performance might allow the analyst to show a map of sales by location, then put a cursor on a location and display either a chart or table of sales, then modify the displays into categories and print the result. The analyst would like to be able to switch among these display options in any order. In this case you might choose to create a Display-Map module, a Produce-Chart module, and a Print-Results module.

Process Driven Systems.

Process driven systems are systems for which processes that occur within the system are triggered by the outcomes of other processes in the system. Batch programs are typically process driven as are most order entry systems. Design documentation should include:

· I/O layouts or screen shots

· Physical Data Flow Diagram

· Physical Data Model (usually relational)

· Structure Chart or Functional Hierarchy Diagram

· IPO process description of all modules in the Structure Chart/FHD

· Detailed repository metadata (tables, attributes, flows)

· Individual data models for any user data views including appropriate query tables.

· Query logic for all queries.

Dialog Driven Systems.

These are sometimes called “event driven” systems. The sequence of actions executed by the program is determined by user activated events (key strokes and mouse clicks) in the dialog. Design documentation should include:

· Web navigation map

· Action-Event diagram for any Action Screens (screens that execute process other than navigation)

· IPO process logic for all action screens

· I/O layouts or screen shots

· Physical Data Flow Diagram for any process actions

· Physical Data Model for all data accessed by the system as well as any operational data files used for executing code such as PHP or ASP logic

· Individual data models for any user data views including appropriate query tables.

· Query logic for all queries.

Data Warehouse Systems.

These are read oriented database structures used for reporting or strategic data exploration. Documentation needs to specify source data, transformation and editing requirements, database properties, and usage requirements. Documentation should include:

· Physical data model of all source data.

· A DFD description of the Extraction, Transformation, and Loading (ETL) processes.

· Process logic descriptions of all primitive bubbles that describe any transformations or edits.

· Physical data model of any intermediate working data structures.

· Source-Destination loading tables that describe the sources of all data loaded into either working or warehouse data structures.

· Physical model for the Data Warehouse.

· Complete metadata for the Data Warehouse

· SQL-like metadata for all loading processes into either the Data Warehouse or the working data structures.

· I/O layouts or screen shots for all standard reports.

· Individual data models for any user data views including appropriate query tables.

· Query logic for all queries.

Exercises.

OSU operates a car rental service that rents orange cars to faculty and staff members for use on university business. When a person arrives to pick up a car, a clerk goes to a car file in the next room with a card for each vehicle and selects a vehicle that appears to be available. For the selected vehicle, the clerk writes the date/time out and department for this rental on the card. The clerk fills out a rental form with complete customer and vehicle data. The form is placed in a file folder at the rental desk.

Customers who rent regularly complain that they should not have to supply all their customer information each time they rent and wait while the clerk slowly and sometimes incorrectly writes it down. Depending on how many people are in line to rent a car, this process may take from 30 minutes to well over an hour. Many customers become annoyed or even angry at the delay. A number of customers have asked for special permission to use Hertz Local Edition even though Hertz charges higher rates. The rental office has added more clerks to improve service and now has three people on duty all day, but most of the time the clerks have nothing to do.

When a car is returned, a clerk walks out to check the mileage and gas tank level and look for any damage. The clerk then retrieves the vehicle card from the next room and the rental form from the file folder, fills in the mileage and return time on the rental form and vehicle card, calculates the charge and makes a copy of the rental form for the renter. The original form is stored in a filing cabinet for historical analysis. The return process may take from 20 minutes to more than an hour.

The office was set up to rent cars at the lowest possible rate – at least rates below those of the major car rental companies, provide service comparable the majors, and cover all its costs through the fees it charges. The maintenance people complain that the mileage either is not written on the vehicle card or is incorrect, making it more expensive for them to schedule service on the vehicles. In addition, the rental clerks have no standard method for recording and reporting problems on the cars, again increasing maintenance problems and expense.

The rental office has asked your team to develop a simple, computer-based information system for them to reduce cost and improve service. Your team can change the data structure, flows, etc., in accord with good practice, but is asked to preserve the basic organization, functions and operations of the current office. The Vice President, Dr. Peter Pistol, to whom the office reports has told the office to have the new system in place by next Fall at the beginning of the semester. The office is to use the existing software, network and servers already in place in its division.

1.
Traditional Design OSU has decided to have you build the information system specified at the beginning of this test.

a.
Convert the Data Flow Diagram for the case into a Functional Hierarchy Diagram (precedence chart.) Use correct numbering and naming conventions. Indicate any data that flows among modules.

b.
Provide complete design documentation for the “Return a Vehicle” process. Include appropriate triggers, input, process, output and triggered events. Write a pseudo-code (or similar) description of the process logic.

c.
Assume you will write the system in MS Access. Select the necessary design view properties to provide appropriate design metadata for the RENTAL table in the database.

2.
Data Warehouse
The OSU administration wants to create a Data Warehouse to track vehicle use. Questions include

· How far has each vehicle been driven each month?

· What are the number of rentals, total miles, and total charges for each department each month?

· What is the total mileage on each vehicle?

Data Warehousing specialists have designed the following structure for the Data Mart.

a.
Draw a Data Flow Diagram for the update process (ETL) for the data mart. Assume the source tables are the ones from the case at the beginning of the test.

b.
Provide complete design documentation for the “Load Data into Rental” process. Include appropriate input, process, and output. Write a pseudo-code (or similar) description of the process logic.

 c.
Write pseudo-code (or SQL) to retrieve “Total miles rented by each Customer Department each month” from the Data Mart.

3. Web Design

OSU has decided to move the reservation part of the rental system to the Web. They have indicated that they want a home screen for the Rental Program that includes a description of the department and the mission of the program. From that page they want to be able to select a “Vehicles Owned” sheet that describes the types of vehicles available and their rate. They also want a “Rent Vehicles” screen that allows customers to reserve a vehicle for rental.

The Vehicles Owned link brings up a MS Word document “Vehicles.doc” stored in the folder OSURental on the OSU administrative server.

The “Rent Vehicles” link goes to a screen that allows users to browse and reserve vehicles. The screen should operate as follows. The customer enters their Name, Telephone, Address, Department, and departmental Account_no. Once the account number has been verified (customer is on a list of people authorized to rent on the account) the screen displays a box for the desired Date/Time_in and Date/Time_out. When this information is entered, the system displays a list of all vehicles available (LicPlateNo, Make, Model). A vehicle is available if there is no rental record for that vehicle that overlaps with the rental time requested. The customer clicks on a vehicle and the system records a rental entry for that vehicle and customer.

a.
Draw a Web Map to track the navigation through the system.

b.
Draw a screen layout for the Rent Vehicles screen. Include any trigger buttons you need.

c.
Provide complete design documentation for the “Rent Vehicle” process. Include appropriate input, process, and output. Write a pseudo-code (or similar) description of the process logic.

Purchase
(Teams 1, 2, 6, 7, 23)
OSU has decided to outsource the entire rental process. Dr. Pistol said that any outsourcer must be able to provide cars, vans and delivery trucks for the campus. He was concerned that the vehicles be of high quality (clean and well maintained), service be prompt and convenient, and that costs be low. Candidates include Hartz Automotive, Penny Rental, and Eskimo Joe’s Garage.

Hartz has an office in Stillwater just off campus. They agree to have a supply of cars, vans and delivery trucks kept at the site and can get additional vehicles driven in with one day’s notice if necessary. They have an on-site maintenance garage and do not keep any vehicle that has more than 18,000 miles on it. The daily rental rate they bid was $35 per day for cars, $45 per day for vans, and $60 for delivery trucks.

Penny has an office about 4 miles from campus. They stock cars, vans and delivery trucks, but would have difficulty obtaining additional vehicles for a special event. They maintain their vehicles at their garage facility in Tulsa and sell vehicles that have more than 25,000 miles on them. They bid a rental rate of $35 per day for cars, $40 per day for vans and $55 per day for delivery trucks.

Eskimo Joe’s is right off campus. They provide cars and vans but do not provide delivery trucks. They keep their vehicles for 40,000 miles but do a complete mechanical overhaul every 5,000 miles. They agreed to rent additional vehicles from Hartz or Dollar for any special event at their bid rate. Joe’s bid a rental price of $20 per day for either cars or vans.

Answer the following questions in bullet form.

a.
Write a project statement to put in an RFP specific enough for vendors to be able to tell whether they are competitive. Include mandatory and desirable requirements.

b.
What is your proposed evaluation procedure? Indicate

c.
Conduct an evaluation using the approach above and make a recommendation. Explain how you would obtain your data in a real situation.

d.
What is your Test and Acceptance plan? (How will you assure OSU that the outsourcer can deliver what is promised?)

Make

Model

Rate

LastMileage

VEHICLE

Reservation

Data

Video

Availability

Data

Member

Data

Member

Data

 Rentals DS

 Videos DS

Video

Data

Reservation

Data

Member

Number

Customer

Data

 Members DS

Customer

P2. Member Page

M1. Main Menu 	

A1. Submit Data

P3. Reservation Page

M1. Main Menu 	

A2. Find a Title

A3. Reserve Video			

P4. About GB Page

M1. Main Menu 		

P1. Home Page

M1. Main Menu

N2.4 Print a Receipt

N2.3 Create Rental and Lines

N2.2 Receive cash/check or post a CC transaction

N2.1 Input customer and video data for a rental

N0.0 GB Video -

Videotape Rental and Return System

N4.0 Identify overdue videos

N3.0 Record return of video(s)

N2.0 Rental Process

N1.0 Enroll a new member or update data

Video No Name One day fee Extra days Weekend Cost

COMVIDEOS)

Line No Rental No Video No Due Date Return Date OD Charge Pay type

LINES

Rental No Cust No Date Clerk No Pay Type CC No Expire CC Apv

RENTALS

CUSTOMERS

Cust No F Name L Name Ads1 Ads2 City State Zip Tel No CC No Expire

Chapter 8 Revised 7-10-02

System Design

RentalNum

LicPlateNo

Date/Time_out

CustDepartment

VehicleMake

EndingMileage

MilesDriven

RENTAL

7
8-1

