Requirement Elicitation for Enterprise Information Systems:
A Process Based on Meta-Model of Zachman Framework Developed using Ontologies

Zhuozhi Chen
Submitted for the degree of Doctor of Philosophy

Heriot-Watt University

School of Mathematical and Computer Science
Department of Computer Science

May 2011
The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information.
ABSTRACT
An enterprise information system distinguishes itself from other types of software as it is developed to facilitate the operation of an organization hence its requirement reflects its strategies, plans, organizations, processes, marketing etc. We believe that the requirements in the form of domain knowledge acquired in the early stage of system development can be organized and modeled in an Enterprise Architecture. Zachman Framework is one of the most widely used Enterprise Architectures Framework. However, in the original version of the Zachman Framework, there is neither a rigorous meta-model nor a well-defined sequence in which to instantiate the cells, which prevents it from being used practically during the requirement engineering phase of an enterprise information system project. To improve such a situation we develop a conceptual meta-model for the Zachman Framework by adapting and integrating the Bunge-Wand-Weber ontology and the Enterprise Ontology. Based on this meta-model, various requirement acquisition processes can be formulated by specifying a sequence to traverse the meta-model graph and instantiate its nodes and edges. In this thesis we present such a process, suitable for an enterprise system development project of a particular situation.
ACKNOWLEDGEMENTS

The process for achieving the PhD degree is widely considered long, lonely, challenging, yet rewarding. For me, it feels as though the process just began yesterday: a lot of reading, thinking, writing, discussion, frustration, and joy came along with the process. Looking back on the past four years, many people have in one way or the other contributed to this thesis.

First and foremost, special thanks go to my supervisor, Professor Rob Pooley for his confidence in my research and the freedom he left to me all along this work. Despite his busy schedule, his judicious and acute guidance always keeps me to see the big picture and focus on a goal that could otherwise be quite difficult for me to see.

Next I wish to thank the members of the committee, for the time they spent on reading and commenting my work, and for the advice on improvements.

I would also like to thank all the staff at the School of Mathematical and Computer Sciences at Heriot-Watt University for giving me excellent environment and administrative support for carrying out my research day and night. Also thanks to the financial support from the school I can have the chance to travel to some prestigious conferences to present my research and meet and exchange ideas with people who are doing similar research.
Finally I would like to thank my family, especially my mother, for their love, trust and encouragement that supports me through these four years.
ACADEMIC REGISTRY

[image: image379.wmf]Purpose

Strategic Purpose

Activity Specification

Actor

State

/

State of Affairs

Intended Purpose

Hold Purpose

MOTIVATION

/

Why

Strategy

Objective

Goal

Vision

Influence Factor

Critical Success Factor

Help Achieve

E

n

d

8

E

n

d

7

E

n

d

9

Risk

Assumption

Plan

RESEARCH THESIS SUBMISSION
	Name:
	

	School/PGI:
	

	Version: (i.e. First, Resubmission, Final)
	
	Degree Sought (Award and Subject area)
	

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1)
the thesis embodies the results of my own work and has been composed by myself

2)
where appropriate, I have made acknowledgement of the work of others and have made reference to work carried out in collaboration with other persons

3)
the thesis is the correct version of the thesis for submission and is the same version as any electronic versions submitted*.
4)
my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian may require
5)
I understand that as a student of the University I am required to abide by the Regulations of the University and to conform to its discipline.
*
Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.
	Signature of Candidate:
	
	Date:
	

Submission

	Submitted By (name in capitals):
	

	Signature of Individual Submitting:
	

	Date Submitted:

	

For Completion in Academic Registry
	Received in the Academic Registry by (name in capitals):
	

	1.1 Method of Submission

(Handed in to Academic Registry; posted through internal/external mail):
	

	1.2 E-thesis Submitted (mandatory for final theses from January 2009)
	

	Signature:
	
	Date:
	

TABLE OF CONTENTS

iiABSTRACT

iiiACKNOWLEDGEMENTS

ivRESEARCH THESIS SUBMISSION

iTABLE OF CONTENTS

vLIST OF TABLES

viLIST OF FIGURES

ixLIST OF PUBLICATIONS

1CHAPTER 1 – INTRODUCTION

11.1
Background and Motivation

31.2
Research Objectives

41.3
Thesis Outline

6CHAPTER 2 – REQUIREMENT ENGINEERING

62.1
Introduction

72.2
Requirement Acquisition/Elicitation/Analysis

82.2.1
Goal-Oriented Requirement Elicitation

102.2.2
Scenario-Oriented Requirement Elicitation

132.2.3
Viewpoint-Oriented Requirement Elicitation

162.3
Requirement Modelling/Specification

182.3.1
Formal Methods

192.3.2
Unified Modelling Language (UML)

222.3.2.1
Structure Diagrams

242.3.2.2
Behaviour Diagrams

262.3.2.3
Interaction Diagrams

282.3.2.4
Meta Modeling

292.3.3
Entity Relationship Diagram

322.4
Requirement Verification/Validation

332.4.1
Requirement Verification

342.4.2
Requirement Validation

342.5
Requirement Management

352.5.1
Requirements Volatility

352.5.2
Requirements Traceability

362.5.3
Requirements Documentation

372.5.4
Tool Support for Requirements Management

382.6
Challenges of Requirement Engineering

402.7
Conclusions

42CHAPTER 3 – ENTERPRISE INFORMATION SYSTEM AND ENTERPRISE ARCHITECTURE

423.1
Enterprise Information System

443.2
Enterprise Architecture

453.3
The Open Group Architecture Framework (TOGAF)

463.4
Federal Enterprise Architecture Framework (FEAF)

463.5
Department of Defense Architecture Framework (DoDAF)

473.6
Zachman Framework

503.7
Conclusions

51CHAPTER 4 – ONTOLOGY

514.1
Introduction

524.2
Ontology in Artificial Intelligence

524.3
Ontology in Information Systems/Concept Modelling/Requirement Engineering

534.4
Bunge-Wand-Weber Ontology

584.4.1
The Formal Definitions of the Constructs of BWW Representation Model

614.4.2
Application of BWW Ontology

694.4.3
Other Upper Level Ontology

714.5
Enterprise Ontology

724.5.1
The TOVE Project

724.5.2
The Enterprise Project

744.5.3
Meta Ontology

744.5.3.1
Entities, Relationships and States of Affairs

764.5.3.2
Actors

784.5.3.3
Time

794.5.3.4
Related Terms

794.5.4
Terms of Activity, Plan, Capability and Resource

794.5.4.1
Activities

844.5.4.2
Plans

844.5.4.3
Capabilities

844.5.4.4
Resources

854.5.4.5
Related Terms

864.5.5
Terms of Organization

864.5.5.1
Legal Entities and Machines

874.5.5.2
The Structure of Organisations

914.5.5.3
Related terms

914.5.6
Terms of Strategy

914.5.6.1
Purpose and Strategy

944.5.6.2
Decisions, Factors, Assumptions

954.5.6.3
Related Terms

954.5.7
Terms of Marketing

954.5.7.1
Sales

984.5.7.2
Market

994.5.7.3
Related Terms

1004.5.8
Formalization of Enterprise Ontology

1004.5.8.1
The Role of Formal Enterprise Ontology

1014.5.8.2
Meta-Ontology

1034.5.8.3
Producing Formal Definitions

1074.6
Conclusions

108CHAPTER 5 – MAPPING AND PARTITIONING ZACHMAN FRAMEWORK

1085.1
Introduction

1085.2
Mapping Phases of Domain Engineering to Zachman Framework

1095.2.1
Scope/Context Analysis

1095.2.2
Domain Modelling/Analysis

1095.2.3
Domain Design/Architecture Modeling

1095.3
Partitioning Zachman Framework According to RE Techniques

1095.3.1
Goal-Oriented RE

1105.3.2
Scenario-Oriented RE

1105.3.3
Viewpoint-Oriented RE

1115.4
Related Work

1125.5
Conclusion

113CHAPTER 6 – DEVELOPING A META-MODEL FOR ZACHMAN FRAMEWORK

1136.1
Introduction

1136.2
Conceptual Modelling at Different Levels

1156.3
Merging BWW Ontology and Enterprise Ontology

1176.3.1
Thing and Entity

1186.3.2
Property and Attribute

1186.3.3
State and State of Affairs

1186.3.4
Event

1196.3.5
Coupling and Relationship

1206.4
Differentiate Meta-Concepts and Meta-Relationships

1216.4.1
Meta-Concepts

1216.4.2
Meta-Relationships

1216.4.3
Decide Each Meta-Construct to Be Meta-Concept or Meta-Relationship

1246.5
Connect Meta-Constructs Semantically

1296.6
Mapping Meta-Constructs to Columns of Zachman Framework

1316.7
Potential Problems with Our Methods for Merging Ontologies

1316.7.1
Lack of Understandability

1316.7.2
Lack of Comparability

1316.7.3
Lack of Guidance

1326.7.4
Lack of Objectivity

1326.8
Related Work

1336.9
Conclusions

134CHAPTER 7 – REQUIREMENT ELICITATION AND MODELING BASED ON ONTOLOGICAL META-MODEL

1347.1
Introduction

1347.1.1
Introduction to the Sir Edward Kelly and Company Case

1357.1.1.1
Sir Edward Kelly and Company History

1357.1.1.2
Description of Business Operation

1377.1.1.3
Example Documents

1407.1.1.4
The As-Is Application Architecture

1417.1.1.5
Data Dictionary

1447.1.1.6
New e-Commerce Strategy

1457.2
Our Method

1467.2.1
Acquire High Level Goal/Strategy Tree model – MOTIVATION/Why

1467.2.1.1
Meta-Constructs of MOTIVATION/Why

1507.2.1.2
Acquire Goal/Strategy Model for Sir Edward Kelly Company Case

1537.2.2
Extract STATE OF AFFAIRS from the Goal-Strategy Tree model, and build Master Schedule by adding TIME POINT to STATE OF AFFAIRS – TIME/When

1537.2.2.1
Meta-Constructs of TIME/When

1557.2.2.2
Build Master Schedule for Sir Edward Kelly Company Case

1567.2.3
Draw Organizational Chart – PEOPLE/Who

1577.2.3.1
Meta-Constructs of PEOPLE/Who

1587.2.3.2
Draw Organizational Chart for Sir Edward Kelly Company Case

1607.2.4
Map Network Topology Diagram – NETWORK/Where

1607.2.4.1
Meta-Constructs of NETWORK/Where

1617.2.4.2
Map Network Topology Diagram for Sir Edward Kelly Company Case

1637.2.5
Semantic/Conceptual Level Data Modelling – DATA/What

1637.2.5.1
Meta-Constructs of DATA/What

1647.2.5.2
Entity-Relationship Modelling for Sir Edward Kelly Company Case

1677.2.6
Reduce Goal/Strategy Tree model to “operationalizable” Business Process Model – FUNCTION/How

1687.2.6.1
Meta-Constructs of FUNCTION/How

1697.2.6.2
Goal/Strategy Tree model Reduction

1717.2.6.3
Reduce to “Operationalizable” Business Process Model

1757.2.7
Analyse each ACTIVITY SPECIFICATION to identify concerned DOER and ENTITY, decide whether ENTITY is within the boundary of target system

1757.2.7.1
Connections between Meta-Constructs of FUNCTION/How, DATA/What and PEOPLE/Who

1767.2.7.2
Analyse each ACTIVITY SPECIFICATION to identify concerned DOER and ENTITY, decide whether ENTITY is within the boundary of target system

1797.2.8
Model the interaction between ACTOR and ENTITY as Scenario/Use Case, use scenario-oriented requirement analysis techniques to continue the requirement elicitation process

1797.3
Related Work

1797.3.1
KAOS Project

1817.3.2
Other Related Work

185CHAPTER 8 – VALIDATION

1858.1
Introduction

1868.2
Expert Feedback

1878.3
Questionnaire

1878.4
Result Analyse of Enterprise Architects’ Feedback

1878.4.1
First Part of Questionnaire

1968.4.2
Second Part of Questionnaire

2098.5
Conclusions

211CHAPTER 9 – CONCLUSION AND FUTURE WORK

2119.1
Introduction

2119.2
Summary of Contributions

2129.3
Limitation of Our Method

2129.4
Future Work

215APPENDIX A: QUESTIONNAIRE FOR EVALUATING RE METHOD FOR INFORMATION SYSTEMS

220BIBLIOGRAPHY

 LIST OF TABLES
56Table 4.1 Constructs of BWW Ontology [Rosemann and Green, 2002]

68Table 4.2 Related Work Using the BWW Models [Green, Roseman and Indulska, 2005]

73Table 4.3 Terms of Enterprise Ontology

141Table 7.1 Data Dictionary

LIST OF FIGURES

4Figure 1.1 Thesis Structure

21Figure 2.1 UML Diagrams Categorized Hierarchically

23Figure 2.2 UML Structure Diagrams

25Figure 2.3 UML Behaviour Diagrams

27Figure 2.4 UML Interaction Diagrams

29Figure 2.5 Meta-Object Facility

31Figure 2.6 Entity-Relationship Diagrams (ERDs)

32Figure 2.7 Cardinality in Entity-Relationship Diagrams (ERDs)

49Figure 3.1 Zachman Framework (www.zifa.com)

111Figure 5.1 Mapping and Partitioning Zachman Framework

114Figure 6.1 Conceptual Modeling Hierarchy

117Figure 6.2 Synonyms Mapping in BWW Ontology and Enterprise Ontology

120Figure 6.3 Merging of Two Ontologies

124Figure 6.4 Meta-Concepts and Meta-Relationships after Merging of Two Ontologies

125Figure 6.5 Connectors for New Meta-Construct as a Relationship between A and B

126Figure 6.6 Connectors for New Meta-Construct as a Role of A Playing in a Relationship with B

126Figure 6.7 Connectors for New Meta-Construct as “a A that”

127Figure 6.8 Connectors for New Meta-Construct as “a A that”

127Figure 6.9 Connectors for New Meta-Construct as “the union of A and B”

128Figure 6.10 Use Connectors to Connect Meta-Constructs Semantically

130Figure 6.11 Mapping Meta-Constructs to Columns of Zachman Framework

137Figure 7.1 Contract Summary

138Figure 7.2 Bill of Lading

139Figure 7.3 Shipping Sheet

141Figure 7.4 Application Architecture of Sir Edward Kelly and Company

149Figure 7.5 Meta-Constructs related to MOTIVATION/Why

151Figure 7.6 Sample Business Plan Model (Enterprise Model of MOTIVATION/Why column of Zachman Framework)

154Figure 7.7 Meta-Constructs related to TIME/When

156Figure 7.8 Master Schedule (Enterprise Model of TIME/When column of Zachman Framework)

158Figure 7.9 Meta-Constructs related to PEOPLE/Who

159Figure 7.10 Organizational Chart (Enterprise Model of PEOPLE/Who column of Zachman Framework)

161Figure 7.11 Meta-Constructs related to NETWORK/Where

162Figure 7.12 Network Topology Diagram (Enterprise Model of NETWORK/Where column of Zachman Framework)

163Figure 7.13 Meta-Constructs related to DATA/What

166Figure 7.14 Entity-Relationship Diagram (with degree but not participation of Coupling/RELATIONSHIP)

167Figure 7.15 Entity-Relationship Diagram (Enterprise Model of DATA/What column of Zachman Framework)

168Figure 7.16 Meta-Constructs related to FUNCTION/How

170Figure 7.17 Strategy Reduction through Decomposition of corresponding State of Affairs

171Figure 7.18 Strategy Reduction

174Figure 7.19 Goal/Strategy Reduction until Strategy become Operationalizable

175Figure 7.20 Link through Meta-Constructs of FUNCTION/How, DATA/What and PEOPLE/Who

178Figure 7.21 Analyze ACTIVITY SPECIFICATION to identify DOER and ENTITY

180Figure 7.22 A Portion of the KAOS Conceptual Meta-Model

184Figure 7.23 Part of the UML Meta-Model

187Figure 8.1 Percentage of Interviewee

187Figure 8.2 Question 1

189Figure 8.3 Question 2

190Figure 8.4 Question 3

191Figure 8.5 Question 4

192Figure 8.6 Question 5

192Figure 8.7 Question 6

193Figure 8.8 Question 7

194Figure 8.9 Question 8

195Figure 8.10 Question 9

196Figure 8.11 Question 10

196Figure 8.12 Question 11

197Figure 8.13 Question 12

198Figure 8.14 Question 13

199Figure 8.15 Question 14

199Figure 8.16 Question 15

200Figure 8.17 Question 16

201Figure 8.18 Question 17

202Figure 8.19 Question 18

203Figure 8.20 Question 19

204Figure 8.21 Question 20

204Figure 8.22 Question 21

205Figure 8.23 Question 22

206Figure 8.24 Question 23

206Figure 8.25 Question 24

207Figure 8.26 Question 25

208Figure 8.27 Question 26

209Figure 8.28 Question 27

209Figure 8.29 Question 28

LIST OF PUBLICATIONS
1. Zhuozhi Chen and Rob Pooley, "Requirement Analysis for Enterprise Information Systems - Developing an Ontological Meta-Model for Zackman Framework", 30th International Conference on Information Systems (ICIS 2009), December 15 - December 18, 2009, Phoenix, AZ, USA
2. Zhuozhi Chen and Rob Pooley, "Rediscovering Zachman Framework using Ontology from a Requirement Engineering Perspective", 3rd IEEE International Workshop on Requirements Engineering For Services (REFS'09), July 20 - July 24, 2009, Seattle, WA, USA
3. Zhuozhi Chen and Rob Pooley, "Requirement Acquisition for Information Systems - A Meta-Modeling Approach Using Ontologies", International Conference on Software Engineering Research and Practice (SERP'09), July 13 - July 16, 2009, Las Vegas, NV, USA
4. Zhuozhi Chen and Rob Pooley, "Domain Modeling for Enterprise Information Systems - Formalizing and Extending Zachman Framework using BWW Ontology", Proceedings of 2009 World Congress on Computer Science and Information Engineering (CSIE 2009), March 31 - Apr 2, 2009, Los Angeles, CA, USA

CHAPTER 1 – INTRODUCTION

1.1 Background and Motivation

Software has been widely used in business environment since as early as the first computer was invented. Such software together with the hardware where it is deployed is generally called information systems, though there is not a agreement on the definition of information systems yet. [Carvalho, 2000] Information systems greatly elevate the productivity of the organization unit where they are deployed. However as a type of software, they face the same problem of software crisis as all other types of software. Requirement Engineering (RE) is a sub discipline in software engineering devoted to tackle the problem at the early stage of whole lifecycle of software development. RE is usually divided into several stages, e.g. requirement elicitation, requirement modeling and specification, requirement verification and validation etc. In each stage of RE, many RE methods have been developed. For example, in requirement elicitation, researchers have proposed goal-oriented [Dardenne, 1993; Anton, 1996], scenario-oriented [Potts, 1994, 1999; Sutcliffe, 1998] and viewpoint-oriented [Finkelstein, 1990; Kotonya, 1992] requirement elicitation and acquisition techniques, while in requirement modeling and specification stage, methods can be generally divided into formal methods [Greenspan, 1984; Mylopoulos, 1990] and informal methods [Chen, 1976].
Although increased awareness about the importance of RE has resulted in impressive progress made in RE research over the last two decades, a significant gap still exists between theory and practice. There are several reasons why practitioners have been reluctant to adopt RE:

• Complexity of the problem domain. RE techniques have to adapt to the highly complex problem domains in order to elicit, model, document, verify and validate requirements.

• Unawareness of existing RE techniques: Many practitioners are unaware of the range of RE methods available. Additionally only very few universities offer dedicated courses on RE meaning that new graduates have little RE knowledge.

• Different levels of maturity of RE techniques: Some RE techniques are relatively mature and well defined and have been used in various applications. Others are less mature and are rarely used. Due to a lack of guidance when to use which RE technique, it is very difficult for RE practitioners to correctly apply RE techniques [Maiden, 1996].

• The imposition of organizational standards and the adoption of large-scale methodologies have been shown to be ineffective at providing a good solution for the diverse tasks of RE [Bickerton and Siddiqi, 1993]. This ineffectiveness has caused a bias against the application of RE theory and techniques. Consequently, this makes the industry unwilling to invest in RE.

• There is a lack of tool support for RE process development and RE techniques selection for specific software projects.
Business domain itself is a highly complex domain. Besides many industries have additional specialized domain knowledge which makes it more complex. Although information systems have been independently researched as a field for decades, the RE techniques applied in information system development have been largely adopted from generic RE research results which claim to be able to cope with any type of software development. There are very few operational modeling methods or guidelines that are specially designed to cater for enterprise information system.

Information system distinguishes itself from other types of software as it is developed to facilitate the operation of an organization, hence it reflects the knowledge of the enterprise’s structure, strategies, plans, organizations, people, activities, processes, resources, business rules, external relations etc. The complete computational representation of all such information can be called Enterprise Model or Enterprise Architecture. In enterprise information system development project, a significant portion of RE activity is about acquiring, eliciting and modeling such information, in other words, Enterprise Modeling or building Enterprise Architecture. To develop enterprise architecture for a specific enterprise, some meta-architecture should be used to facilitate communication and provide terminology. This kind of meta-architecture is widely named as Enterprise Architecture Framework. Various enterprise architecture frameworks have been proposed from both industry and academia, e.g. Zachman Framework [Zachman, 1987; Sowa, 1992], TOGAF (The Open Group Architecture Framework), FEAF (Federal Enterprise Architecture Framework), C4ISR (Command, Control, Communications, Computers, and Intelligence, Surveillance, and Reconnaissance), DODAF (Department of Defense Architecture Framework) and MoDAF (Ministry of Defense Architecture Framework) and many more.

Among them Zachman Framework has been the most widely used in industry for various purposes, e.g. IT Planning, Business Process Reengineering, etc. [Noran, 2003; Tang, Han and Chen, 2004; Leist and Zellner, 2006; Urbaczewski and Mrdalj, 2006] It has six columns representing DATA/What, FUNCTION/How, NETWORK/Where, PEOPLE/Who, TIME/When and MOTIVATION/Why to describe different aspects of the enterprise and its systems, and five rows representing different perspectives of different stakeholders at different levels, including SCOPE/Contextual, ENTERPRISE MODEL/Conceptual, SYSTEM MODEL/Logical, TECHNOLOGY MODEL/Physical, and DETAILED REPRESENTATION/Out-of-context.
However Zachman Framework is difficult to be practically used in enterprise system development project due to the flexibility of Zachman Framework, especially during RE stage. We will discuss the reason in detail in Chapter 6. There has been some effort to further enhance and formalize Zachman Framework since Zachman’s paper was published, for example, [Martin and Robertson, 1999], [Kingston and Macintosh, 2000] and [Pereira and Sousa, 2004].
We claim that the key solution to make Zachman Framework to be used more rigorously and consistently by EA practitioner is to develop a meta-model for it. However, we need to seek inspirations from other areas. One of the recent popular methods for formalization is ontology.
In this thesis we explore the possibility to develop a RE method tailored for Enterprise Information System which is based on the meta-model we developed for Zachman Framework. We will apply knowledge from various areas, including Requirement Engineering, Domain Engineering, Enterprise Architecture and Ontology. Our idea and objectives are introduced in next section.
1.2 Research Objectives

In Requirement Engineering, there is both functional requirement and non-functional requirement. In this paper we focus on functional requirements only.
We consider requirement elicitation for functional requirement as a group of well defined sequential processes of acquiring instantiations of a number of concepts. Such concepts can be called conceptual meta-model, which in our work is defined by ontology and Zachman Framework. In this thesis we intend to achieve below objectives:
· Develop a conceptual meta-model for Zachman Framework using Ontology
· Design a requirement elicitation method that traverses above meta-model to acquire instances of the node and edge in a well defined sequence.
· Using an example to validate the meta-model and RE process to be more efficient than traditional generic RE methods which were not specifically designed for information systems.
1.3 Thesis Outline

This thesis consists of eight chapters. The overall structure of the thesis is illustrated in Figure 1.1. Chapter 2 to Chapter 4 gives background information of the relevant research areas contributing to this research. It also reviews related work that has been done in these domains. The following four chapters present the work that has been done during this PhD study.

[image: image1.emf]Chapter 1:

Introduction

Chapter 2:

Requirement

Engineering

Chapter 3:

Enterprise

Architecture

Chapter 4:

Ontology

Chapter 5:

Mapping and

Partitioning

Zachman

Framework

Chapter 6:

Developing A

Meta-Model for

Zachman

Framework

Chapter 7:

Requirement

Elicitation and

Modelling Based

on Meta-Model

Chapter 9:

Conclusion

and Future

Work

Chapter 8:

Validation

Figure 1.1 Thesis Structure
Chapter 2 gives an introduction about Requirement Engineering. It describes why RE is considered important in the whole system development lifecycle. Different stages and activities of RE are introduced and various techniques are compared. While these activities and techniques are described independently and in a particular order, in practice, they are actually interleaved, iterative and span the entire software systems development life cycle.

Chapter 3 introduces the study of Enterprise Information System and Enterprise Architecture. It first gives the definition of Enterprise Architecture Framework. Then four different Enterprise Architecture Frameworks are introduced and compared.
Chapter 4 reviews the research of applying ontology in computer science, especially in Information System Modeling. It first introduces the history of Ontology as a subject in Philosophy, then focus on the application of ontology as a tool in four areas of computer science, Artificial Intelligence, Information Systems, Requirement Engineering and Conceptual Modeling. After that, two particular ontologies which are used in this PhD research, BWW Ontology and Enterprise Ontology, are described.
Chapter 5 presents our work on mapping and partitioning Zachman Framework in order to reduce the complexity when deal with the whole Zachman Framework. Zachman Framework is viewed and partitioned from various fields and perspectives, for example, software engineering, domain engineering, requirement engineering, etc. Finally we look at how it can be mapped and partitioned according to phases of Domain Engineering and RE techniques.
Chapter 6 firstly presents the idea of modeling at different levels. Then the procedure of developing the meta-model for Zachman Framework is illustrated. We first merge BWW Ontology and Enterprise Ontology by merging the synonyms. Then we differentiate meta-concepts and meta-relationships according to their definitions in both ontologies. Finally we classify the construct according to What/How/Where/Who/When/Why columns in Zachman Framework.
Chapter 7 firstly reviews existing Model Driven RE method including KAOS and many others. Then an innovative requirement elicitation method which is based on the meta-model presented in previous chapter is developed. The method traverses the meta-model to acquire instances of the node and edge in a specifically defined sequence.
Chapter 8 validates the meta-model developed in Chapter 6 and the requirement elicitation methodology developed in Chapter 7.

Chapter 9 summarizes the contributions of the thesis and future work is suggested.
CHAPTER 2 – REQUIREMENT ENGINEERING
2.1 Introduction

Requirement Engineering (RE) is widely regarded as the first stage of software development life cycle. The term “Requirement Engineering” was first coined by Alford [Alford, 1977] in the development of SREM (Software Requirements Engineering Method). Before this the process RE is usually called “system analysis” which has a focus on information systems. RE is a process to turn informal input into formal specifications. In the 1990s, RE gradually established itself as an independent discipline. This has been reflected in the International Requirements Engineering Conferences series, beginning in the 1990s. Research in requirement engineering today includes a variety of skills, processes, methods, techniques and tools.
The concept of requirement is fundamental in requirements engineering. The IEEE software engineering glossary [IEEE, 1990] defines a requirement as: “(1) A condition or capability needed by a user to solve a problem or achieve an objective; or (2) A condition or capability that must be met or possessed by a system or system component to satisfy a contract, standard, specification, or other formally imposed documents; (3) a documented representation of a condition or capability as in (1) or (2).” Generally speaking, the concept of “requirements” discussed in the RE domain refers to “what a system should do rather than how it should do it” [Sommerville, 1997].
One of the most comprehensive definitions was given by [Zave, 1997] as “Requirements engineering is the branch of software engineering concerned with the real-world goals for, functions of, and constraints on software systems. It is also concerned with the relationship of these factors to precise specifications of software behavior, and to their evolution over time and across software families.”
Requirement engineering itself can be further divided into several phases. The most common way is to be divided into Requirement Acquisition/Elicitation, Requirement Modeling/Specification/Documentation and Requirement Verification/Validation phases. In this chapter, we will review different techniques and methods in these different phases.
2.2 Requirement Acquisition/Elicitation/Analysis
Requirements elicitation is “the process of identifying needs and bridging the disparities among the involved communities for the purpose of defining and distilling requirements to meet the constraints of these communities.” [SEI, 1991] It is often regarded as the first step in the RE process. [Nuseibeh, 2000] Requirement Elicitation are often alternatively called requirement acquisition, requirement capture, etc. However, the term “elicitation” is preferred to “acquisition or capture”, to avoid the suggestion that requirements is simply collected by asking the right person the right questions.
There are many sources of requirement to elicit:
· Clients (actual and potential)

· Customer requirements specifications

· Documentation of pre-existing systems (i.e. systems that perform functions similar to the anticipated new software system)

· Users of pre-existing systems

· Potential users of the new system
There are many techniques for eliciting requirements:
· Traditional information gathering techniques: The most commonly used techniques, like interviews, surveys and questionnaires, etc.
· Analysis of existing documents: These documents include organizational charts, process models, job descriptions, etc.
· Model-driven techniques: Such techniques provide a specific model (or meta-model) for the type of information to be captured in a usually well-defined sequence. Goal, Scenarios and Viewpoint oriented RE methods all belong to this category.
· Cognitive techniques: These techniques were originally developed for knowledge acquisition for knowledge-based systems. [Shaw, 1996]

· Contextual techniques: These techniques adopt techniques from ethnography, such as the observation of participants. For more information see [Goguen, 1993] [Holtzblatt, 1993].

· Prototyping is used for projects with uncertainty or projects that need early feedback from stakeholders. [Davis, 1992]
Since the requirement elicitation we proposed in this thesis is model-driven techniques, we focus on reviewing goal, scenario and viewpoint oriented RE methods in the next sections respectively.
2.2.1 Goal-Oriented Requirement Elicitation
Goals Oriented Requirement Elicitation began to become popular in the 1990s. Before that although goals have long been recognized as important, it is mostly implicitly mentioned in literature. As in SADT [Ross, 1977] method, “requirement definition must say why a system is needed, based on current or foreseen conditions, which may be internal operations or an external market. It must say what system features will serve and satisfy this context. And it must say how the system is to be constructed”.
KAOS [Dardenne, 1991, 1993] is probably the first research project to investigate the use of goals explicitly in requirement elicitation. KAOS framework has three components: 1) a conceptual model for acquiring and structuring requirements models, with an associated acquisition language, 2) a set of strategies for elaborating requirements models, and 3) an automated assistant to provide guidance in the acquisition process according to such strategies.

· The conceptual model provides a number of abstractions in terms of which requirements models have to be acquired. It is thus a meta-model and is aimed at being rich enough to allow both functional and non-functional requirements for any kind of composite system to be captured in a precise and natural way.

· An acquisition strategy defines a well-justified sequence of steps for acquiring components of the requirements model as instances of meta-model components. In other words, a strategy corresponds to a specific way of traversing the meta-model graph to acquire instances of its various nodes and links.

· The acquisition assistant is aimed at providing automated support in following one acquisition strategy or another. It is built around two repositories: a requirements database and a requirements knowledge base. Both are structured according to the meta-model components. The requirements database maintains the requirements model built gradually during acquisition. The requirements knowledge base can be analyzed using query facilities similar to those provided by project database systems.
GBRAM (Goal-Based Requirements Analysis Method) [Anton, 1996] is another Goal-Oriented RE method. It is a systematic method for inferring goals from espoused requirements, and deriving more complete requirements from the goals. It involves the timely posing of systematic questions (so that requirements can be improved as early as possible), the relaxation of initial goals by considering obstacles (anything that can happen that could thwart a goal), and the exploration of scenarios. GBRAM assumes that goals have not been previously documented or explicitly elicited from stakeholders and that analysts must work from various sources of available information, each with its own scope of knowledge, to determine the goals of the desired system. It differentiates between the goal analysis and goal refinement activities. Goal analysis concerns the exploration of available information sources for goal identification followed by the organization and classification of goals. Goal refinement concerns the evolution of goals from the moment they are first identified to the moment they are translated into operational requirements for the system specification. Goal analysis activities may be summarized as follows:

· Explore activities entail the examination of available information.

· Identify activities entail extracting goals and their responsible agents from the information available to the analyst about the system.

· Organize activities involve the classification of goals and organization of those goals according to goal dependency relations.

Goal refinement activities may be summarized as follows:

· Refine activities entail the actual pruning of the goal set.

· Elaborate refers to the process of analyzing the goal set by considering possible goal obstacles and constructing scenarios to uncover hidden goals and requirements.

· Operationalize refers to translating goals into operational requirements for the final requirements specification.
A lot of research has been undertaken to investigate the relationships between goal, agent and scenario. According to [Lamsweerde, 2004B], for example, to explicitly model agent dependencies in goal satisfying [Yu, 1993], derive goal refinements that are provably complete [Darimont, 1996] and realizable by agents [Leiter, 2002A], derive goal operationalizations [Leiter, 2002B], identify goals from scenarios [Lamsweerde, 1998B, Rolland, 1998], handle obstacles to goal satisfaction [Potts, 1995; Anton, 1998; Lamsweerde, 2000], manage conflicting goals [Lamsweerde, 1998A], monitor goal violation scenarios at run time [Feather, 1998], negotiate goal-based requirements [Boehm, 1995], reuse goal taxonomies and specifications [Anton, 1998; Massonet, 1997], model and reason about security requirements [Anton, 2002; Liu, 2003; Lamsweerde, 2004A], reason about partial goal satisfaction [Leiter, 2004], and assess or derive software architectures from goal-based requirements [Gross, 2001; Lamsweerde, 2003].
2.2.2 Scenario-Oriented Requirement Elicitation

Historically, the notion of scenario has long been used by researchers and practitioners from many different disciplines. The scenario concept can find its origin in theatrical studies. The Oxford English Dictionary defines a scenario as “the outline or script of a film, with details of scenes or an imagined sequence of future events”. More generally it is defined as a description of a possible set of events that might reasonably take place. Economists have successfully used scenarios for long range planning. Management scientists use them for strategic decision making. Policy makers use them to weigh the consequences of their actions. Scenarios are also used as a means to examine the interplay among economic, social, and technological issues. The main purpose of developing scenarios is to stimulate thinking and facilitate communication about possible occurrences, assumptions relating these occurrences, possible opportunities and risks, and courses of action.
In Computer Science and Information System discipline it is mainly used in Requirement Engineering (RE), Human-Computer Interaction (HCI), and Business Process Management (BPM). Scenarios here are used as representation of system requirements to improve communication between stakeholders which can be designers, developers, users and other stakeholders. Scenarios can describe concrete system behaviors and reason about interactions between system and environment. However, they are also useful during planning and design stage to describe systems that do not yet exist in a tangible, usable form. During those pre-implementation stages, designers, users and other stakeholders may not fully understand the implications of many of their proposed decisions. By forcing stakeholders to pay attention to particularities of real use, scenarios facilitate a better understanding of the envisaged system.
Although scenario has attracted considerable attention in RE, it has unfortunately been interpreted differently by too many authors to have a common meaning. Interpretations of scenarios can vary from rich descriptions of system usage to help understand socio-technical system implications to experience based narratives for requirements elicitation and validation, to event sequences in tabular formats as a basis for generating use cases, to other more formal models of system behavior. [Sutcliffe, 1998B, 2003]
As a result, there are many Scenario-Oriented RE methods proposed, e.g. the Inquiry Cycle Model [Potts et al, 1994, 1995] and its successor ScenIC [Potts, 1999], SCRAM [Sutcliffe et al, 1998A, 1998B, 1998C], etc. However only after the emergence of object-oriented software engineering, scenarios started to gain enormous popularity through Ivar Jacobsenı’s Use Case which is now a crucial part of the Unified Modelling Language (UML).
The Inquiry Cycle Model uses scenario scripts to identify obstacles or problems in a goal-oriented requirements analysis. Dependencies between the events originating in the scenario are validated against the requirements specification, and the requirements are elaborated to deal with obstacles or problems that prevent successful system operation. Unfortunately, the Inquiry Cycle does not give detailed advice about how scenarios are used to generate questions and how problems may be discovered in scenarios. Furthermore it leaves open to human judgment on how dependencies between system output and users and how system requirements are determined. Nevertheless, the Inquiry Cycle has demonstrated its utility in industrial scale case studies.
ScenIC extended the Inquiry Cycle Model by applying goal refinement and scenario analysis as its primary methodological strategies. ScenIC rests on an analogy with human memory. In human memory, semantic memory consists of generalizations about system properties while episodic memory consists of specific episodes and scenarios. Working memory consists of reminders about incomplete refinements. Method-specific reminders and resolution guidelines are activated by the state of episodic or semantic memory. ScenIC instantiates the Inquiry Cycle, the cyclical application of the following steps: expression of semantic or episodic ideas, raising and resolution of issues (criticism), and refinement of long-term memory. Expression is supported by adopting semantic and episodic memory schemas, criticism by issue-raising guidelines that direct attention. Refinement is supported by resolution guidelines that suggest refinements. This model of mediated issue-raising and resolution derives from earlier research into design rationale.
SCRAM goes further than the Inquiry Cycle and ScenIC in integrating concept demonstrators, scenarios, design rationale and questioning techniques. It employs scenarios scripts in a walkthrough method that validated design options for ‘key points’ in the script and provides advice on how to structure scenario based requirements sessions. Scenarios described typical user tasks and concept demonstrators portray an early design vision of the required system. Alternative designs were documented in design rationale and explained to users by demonstration of early prototypes.
The SCRAM method is based on four techniques for requirements capture and validation:

• Use of prototypes or concept demonstrators: a key concept is providing a designed artefact which users can react to.

• Scenarios: the designed artefact is situated in a context of use, thereby helping users relate the design to their work/task context.

• Design rationale: the designer’s reasoning is deliberately exposed to the user to encourage user participation in the decision process. The QOC (Questions, Options, Criteria) notation is used to illustrate the various trade-offs.
• Whiteboard summary: the designer’s requirements are summarised on a whiteboard to identify dependencies and priorities.
The techniques are combined with process guidance for the requirements analyst. The method consists of the following phases:

1. Initial requirements capture and domain familiarization. This is conducted with conventional interviewing and fact finding to gain sufficient information to develop a first concept demonstrator.

2. Specification and development of the concept demonstrator. The concept demonstrator has limited functionality and interactivity, so it can only be run as a ‘script’ to illustrate a typical task undertaken by the user. Scripts illustrate a scenario of typical user actions with effects mimicked by the designer.

3. Requirements analysis and validation session. The users are invited to critique the concept demonstrator and interview the designer. The session is recorded for subsequent analysis.

4. Session analysis. Data collected during the analysis session is analyzed and conclusions reported back to the users.

The end point of the method delivers a requirements specification comprising the concept demonstrator, a set of analyzed design rationale diagrams expressing users’ preferences for different design options, and specification as text, graphics or more formal notations depending on the requirements analyst’s choice. In addition, video of the analysis sessions is available for requirements traceability analysis.
SCRAM is useful in facilitating requirements elaboration once an early prototype was in place. The empirical evidence suggests that the method was effective as many requirements elaborations were triggered by reference to the concept demonstrator and the design rationale. However, similar to the Inquiry Cycle Model, it gave only outline guidance for a scenario-based analysis.
2.2.3 Viewpoint-Oriented Requirement Elicitation

Viewpoint as a means of organizing and structuring the requirements engineering activity was implicitly mentioned in SADT (Structured Analysis and Design Techniques) [Ross, 1977A, 1997B, 1985], and was first made explicit in the CORE (COntrolled Requirements Expression) [Mullery, 1979]. Since then there have been various viewpoint-oriented methods proposed, for example, SRD (Structured Requirements Definition) [Orr, 1981], VOSD (Viewpoint Oriented Software Development) [Finkelstein, 1990, 1992], VORD (Viewpoint-Oriented Requirements Definition) [Kotonya, 1992, 1996].
Most of these methods did not explicitly define which stage or activity of Requirement Engineering they can be applied to. Some of them can be used throughout Requirement Engineering or even the whole Software Engineering process, e.g. VOSD. The others can be used in a specific RE phase or for a particular RE task, for example, SADT and SRD can be used in requirement elicitation and specification.
SADT was developed in the early 1970s by Ross at Soft.Tech. SADT is based on a data-flow model that views a system as a set of interesting activities. A rectangular box representing the system's most abstract activity, together with a set of data input, data output and control arrows, forms the starting point for functional decomposition. Consistency checking involves matching the set of inputs and outputs at each successive functional level with the higher function. The SADT “viewpoint” is not defined. It is an intuitive extension of the underlying modelling technique. SADT “viewpoints” are not analysed beyond being seen as data sources and sinks.
CORE was developed for British Aerospace in the late 1970s by System Designers. CORE has been used to specify large aerospace systems by British Aerospace. Some notable systems include the Experimental Aircraft Programme (EAP) in the mid 1980s, in which CORE was used for control mechanism system and software definition, and recently the European Fighter Aircraft in which CORE has been chosen as the standard requirements analysis method. CORE is one of the few requirements definition methodologies that explicitly adopt a viewpoint approach and attempts to give a definition to it. CORE defines its viewpoints as all entities that interact or affect the system in some way. CORE provides guidelines for distinguishing between functional and non-functional viewpoints.
SRD is proposed by Orr in 1980s. It is divided into following four steps:

· Define a user-level data flow diagram by interviewing each role in the organization to analyze which role currently performs some useful task. Record the input/output as a data flow model.

· Combine all user-level data flow diagrams to create one integrated data flow diagram. Conflicting data flows should be resolved at this stage.

· Define the application-level data flow diagram by drawing a dotted line around that part of the combined user data-flow diagram that corresponds to the organization being analyzed.

· Define the application-level functions by showing the order that comprises each function being performed by organization for its environment.
VOSD proposed the use of viewpoints as a way of managing the software development process. It uses viewpoints to capture the role and responsibility performed by a participant at a particular stage of the software development process. Viewpoints are identified by the role of the participant, the domain relevant to their interest and the knowledge about the domain. This knowledge is encapsulated in a viewpoint and represented using a single appropriate representative scheme (style). A VOSD viewpoint is defined as “a loosely coupled, locally managed object which encapsulates partial knowledge about the application domain, specified in a particular suitable formal representation, and partial knowledge of the process of software development”. A viewpoint is seen as a combination of a style or representative scheme in which the viewpoint expresses what it sees. VOSD viewpoints can be organised in configurations, which are collections of related viewpoints. A template is defined as a viewpoint with only the style and work plan.
VORD proposed a notion of viewpoint which is based on the entities whose requirements are responsible for, or may constrain, the development of the intended system. These requirements sources comprise the end-users, stake-holders, systems interfacing with the proposed system and other entities in the environment of the intended system that may be affected by its operation. Each requirements source (viewpoint) has a relationship with the proposed system based on its needs and interactions with the system. It is therefore important that the techniques used should adequately capture and organize not only global, but also the specific requirements of the different viewpoints into a cohesive knowledge structure that is both complete and visible. The most important part of VORD concentrates on the first three iterative steps in their method:

· Viewpoint identification and structuring.

· Viewpoint documentation.

· Viewpoint requirements analysis and specification

The first step, viewpoint identification and structuring, is concerned with identifying relevant viewpoints in the problem domain and structuring them. The starting point for viewpoint identification is with abstract statements organisational needs and abstract viewpoint classes.
The second step is concerned with documenting the viewpoints which are identified in the first step. Viewpoint documentation consists of documenting the viewpoint name, requirements, constraints on its requirements and its requirements source. Viewpoint requirements comprise a set of required services, control requirements and set of non-functional requirements.

The last step is concerned with specifying the functional and non-functional viewpoint requirements in an appropriate form. The notation used depends on the viewpoint, the requirements and requirements source associated with the viewpoint. Appropriate notations range from natural language (if the requirements source is concerned with nontechnical requirements), through equations (e.g. if the requirements source is a physicist), to system models expressed in formal or structured notations.
2.3 Requirement Modelling/Specification

After the acquisition of requirements, the issue of representing and reasoning about the collected knowledge is predominant [Greenspan, 1994]. This is often referred to as requirements modeling or conceptual modeling. Modeling, the construction of abstract descriptions that are amenable to interpretation - is a fundamental activity in RE. Some RE textbooks focus almost entirely on modeling methods and their associated analysis techniques. Models can be used to represent a whole range of products of the RE process. Such models should comprise both the structure and the behavior of the system. A good model helps to reduce the amount of complexity that must be comprehended at one time, is inexpensive to build compared to the real thing, and facilitates the description of complex aspects. However, in addition to models of the explicit behavior of a system, models of the development process, surroundings (e.g., domain), usage and quality characteristics (e.g., non-functional requirements) could also be useful [Mylopoulos, 1990]. Moreover, many modeling approaches are used as elicitation tools, where the modeling notation and partial models produced are used as drivers to prompt further information gathering.

Languages which are suitable for requirements modeling can be categorized into three classes:

• Informal language: Natural language is the most typical and widely used informal modeling technique. It has an intuitive syntax and semantics, and is so expressive that it can be easily understood and used by all stakeholders, including non-technical customers. One of the major problems of requirement modeling with an informal language is that it can easily cause ambiguity, inconsistencies and incompleteness of requirements.
• Semi-formal language: Such a language has a formal syntax but informal semantics. Typical examples of semi-formal language are conceptual modeling languages, e.g. Unified Modeling Languages, UML [Booch, 2000], Entity Relationship Diagrams (ERD) [Chen, 1976], Data Flow Diagrams (DFD), State Transition Diagrams (STD) and many process modeling languages. They are easy to understand, and provide a good overview of the system. Such languages represent a middle way between complete informality and complete formality, and can be used for the transition from informal requirements to a formal specification.
• Formal language: This category of languages has a well-defined formal syntax and semantics. They are typically built on sound mathematical theory, such as set, logic or algebra theory, or a mixture of them.
There is a need to distinguish between two different formal languages used in RE: specification languages and modeling languages [Greenspan, 1994].

Formal requirements specification language is also widely called Formal Methods. Typical examples are SDL, Petri Nets, VDM and Z. One of the major advantages of requirements specification with formal method is that it enables automatic analysis and verification of the requirements. Although traditional prescriptive specification languages offer unambiguous, precise reasoning support and the clear representation of interrelations between requirements, they have mostly been used for describing the functions and the internal behavior of systems. Generally they are not suitable for comprehensive requirements modeling, as not all the concepts have a mathematical definition.
Formal requirements modeling languages have been around for quite a while but they are not very common. They have all the advantages of formal languages (such as conciseness, completeness, automated reasoning, etc.) but usually are not executable. Examples are RML [Greenspan, 1984] and its successor Telos [Mylopoulos, 1990], and KAOS [Dardenne, 1993].
All three language categories have advantages and disadvantages. To decide which one should be used is often very difficult. Expressiveness, precision and familiarity are key issues to be considered when making a choice. A very good approach is to integrate informal, semi-formal and formal requirements modeling approaches. The initial interaction with stakeholders will always be informal. Semi-formal graphical notations can be used to facilitate the communication and help the understanding. However, the relationship between semi-formal and formal representations is less well understood [Jarke, 1993; Wieringa, 1995], and the transformation between them very much depends on the notations used and will require expert knowledge of the notations. Telos as an example of a formal requirements modeling language is able to represent an informal object (such as an image or video clip), a semi-formal object (such as a data flow diagram) as well as a formal object (such as a piece of SDL specification) as a node described by some attributes that give information about its contents. It integrated the whole range of formality, and of being able to use the advantages of various kinds of notations: the expressiveness of informal and the conciseness of formal notations. Informality is not only an essential part of the human thought process, but also part of a powerful debugging strategy for dealing with complexity. Therefore, some [Balzer, 1978] argue that informality is more than an inevitable part of the development process: it is rather a desirable one. Even inconsistencies are productive (conflicts increase creativity) and incompleteness (i.e., oversimplification) improves understanding. Although it is assumed that the final specification needs to be consistent, temporary inconsistencies need to be catered for [Easterbrook, 1995; Finkelstein, 1994; Nuseibeh, 1996]).
The term “model” is often used for different purpose. In this paper we use the definitions by [Wand and Weber, 1993]: A grammar “provides a set of constructs and rules that show how to combine the constructs to model real world domains”. Modeling, the construction of abstract descriptions that are amenable to interpretation using models, is a fundamental activity in Requirement Engineering. [Nuseibeh, 2000] Modeling method “provides procedures by which a grammar can be used”. [Opdahl, 2001] Scripts are the product of the modeling process which is representations of real-world domains using a particular grammar.

2.3.1 Formal Methods

In computer science and software engineering, formal methods are particular kind of mathematically-based techniques for the specification and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analyses can contribute to the reliability and robustness of a design. However, the high cost of using formal methods means that they are usually only used in the development of high-integrity systems, where safety or security is important.

Formal methods apply a fairly broad variety of theoretical computer science fundamentals, in particular logic calculi, formal languages, automata theory, and program semantics, but also type systems and algebraic data types to different types of system specifications.
Some formal methods such as Z [Spivey, 1992], B [Abrial, 1996] and VDM [Bjørner, 1978], focusing on specifying the behavior of sequential systems. States are described in terms of rich mathematical structures such as sets, relations, and functions; state transitions are given in terms of pre and post-conditions. Other methods such as CSP (Communicating Sequential Processes) [Hoare, 1985], Petri net [Petri, 2008], CCS (Calculus of Communicating Systems) [Milner, 1980], Statecharts [Harel, 1987], Temporal Logic [Pnueli, 1981], and I/O automata [Lynch and Tuttle, 1987] focus on specifying the behavior of concurrent systems; states typically range over simple domains like integers or are left uninterpreted, and behavior is defined in terms of sequences, trees, or partial orders of events. Still others such as RAISE [Nielsen et al. 1989] and LOTOS [ISO 1987] wed two different methods, one for handling rich state spaces and one for handling complexity due to concurrency. Common to all these methods is the use of the mathematical concepts of abstraction and composition.

2.3.2 Unified Modelling Language (UML)
Unified Modeling Language (UML) is a standardized general-purpose modeling language in the field of software engineering. The standard is managed, and was created by, the Object Management Group.

UML includes a set of graphic notation techniques to create visual models of software-intensive systems.
The Unified Modeling Language (UML) is used to specify, visualize, modify, construct and document the artifacts of an object-oriented software intensive system under development. UML offers a standard way to visualize a system's architectural blueprints, including elements such as:

· actors
· business processes
· (logical) components
· activities
· programming language statements

· database schemas, and

· reusable software components.
UML combines techniques from data modeling (entity relationship diagrams), business modeling (work flows), object modeling, and component modeling. It can be used with all processes, throughout the software development life cycle, and across different implementation technologies. UML has synthesized the notations of the Booch method, the Object-modeling technique (OMT) and Object-oriented software engineering (OOSE) by fusing them into a single, common and widely usable modeling language. UML aims to be a standard modeling language which can model concurrent and distributed systems. UML is a de facto industry standard, and is evolving under the auspices of the Object Management Group (OMG).

UML models may be automatically transformed to other representations (e.g. Java) by means of QVT-like transformation languages, supported by the OMG. UML is extensible, offering the following mechanisms for customization: profiles and stereotype.
UML is not a development method by itself, however, it was designed to be compatible with the leading object-oriented software development methods of its time (for example OMT,Booch method, Objectory). Since UML has evolved, some of these methods have been recast to take advantage of the new notations (for example OMT), and new methods have been created based on UML. The best known is IBM Rational Unified Process (RUP). There are many other UML-based methods like Abstraction Method, Dynamic Systems Development Method, and others, to achieve different objectives.

UML diagrams represent two different views of a system model:

· Static (or structural) view: emphasizes the static structure of the system using objects, attributes, operations and relationships. The structural view includes class diagrams and composite structure diagrams.

· Dynamic (or behavioral) view: emphasizes the dynamic behavior of the system by showing collaborations among objects and changes to the internal states of objects. This view includes sequence diagrams, activity diagrams and state machine diagrams.

UML models can be exchanged among UML tools by using the XMI interchange format.

UML 2.2 has 14 types of diagrams divided into these two categories. Seven diagram types represent structural information, and the other seven represent general types of behavior, including four that represent different aspects of interactions. These diagrams can be categorized hierarchically as shown in Figure 2.1.

Figure 2.1 UML Diagrams Categorized Hierarchically
UML does not restrict UML element types to a certain diagram type. In general, every UML element may appear on almost all types of diagrams; this flexibility has been partially restricted in UML 2.0. UML profiles may define additional diagram types or extend existing diagrams with additional notations.

In keeping with the tradition of engineering drawings, a comment or note explaining usage, constraint, or intent is allowed in a UML diagram.

2.3.2.1 Structure Diagrams

Structure diagrams emphasize the things that must be present in the system being modeled. Since structure diagrams represent the structure they are used extensively in documenting the architecture of software systems.

· Class diagram: describes the structure of a system by showing the system's classes, their attributes, and the relationships among the classes.

· Component diagram: describes how a software system is split up into components and shows the dependencies among these components.

· Composite structure diagram: describes the internal structure of a class and the collaborations that this structure makes possible.

· Deployment diagram: describes the hardware used in system implementations and the execution environments and artifacts deployed on the hardware.

· Object diagram: shows a complete or partial view of the structure of a modeled system at a specific time.

· Package diagram: describes how a system is split up into logical groupings by showing the dependencies among these groupings.

· Profile diagram: operates at the meta-model level to show stereotypes as classes with the <<stereotype>> stereotype, and profiles as packages with the <<profile>> stereotype. The extension relation (solid line with closed, filled arrowhead) indicates what meta-model element a given stereotype is extending.
An example of all types of UML structure diagrams are illustrated in Figure 2.2.

	[image: image3.png]BankAccount

wmer : String
balance : Doliars =0

deposit (amount : Dollars)
withdraw! (amount : Dolars)

Class Diagram
	[image: image4.png]3 X

<ccomponeni] | emoiaooen [
MallEingang Beied

bewachen; i

o emai

abholen

<<omponent>>
<<component] 1 Emaianagement

MailAusgang

versendan

Component Diagram
	[image: image5.png]Fibonaccisystem

+FibonaceiFunction

avart Tenvar view

+Viewer [0.7]

MMinus2 || /iMinust | | 1w

Composite Structure Diagram
	[image: image6.png]gmm

Deployment Diagram

	
	[image: image7.png]Ausprégungsspezikationfir eine.
Objskbeziehung

rson PotorPorson

vater sonn

Object Diagram
	[image: image8.png]&ffentlicher Paketimport

Heizungssteuerung

Geschiftslogik

Sensoren
privater Paketimport
\
\
N
“raccess>> Datenbank-

zugriff

Package Diagram
	

Figure 2.2 UML Structure Diagrams

2.3.2.2 Behaviour Diagrams

Behavior diagrams emphasize what must happen in the system being modeled. Since behavior diagrams illustrate the behavior of a system, they are used extensively to describe the functionality of software systems.
· Activity diagram: describes the business and operational step-by-step workflows of components in a system. An activity diagram shows the overall flow of control.

· UML state machine diagram: describes the states and state transitions of the system.

· Use case diagram: describes the functionality provided by a system in terms of actors, their goals represented as use cases, and any dependencies among those use cases.
An example of all types of UML behaviour diagrams are illustrated in Figure 2.3.
	[image: image9.jpg]Activity Diagram

Syistem Y

Activity Diagram
	[image: image10.png]Start]

[}

Pause] [Unpause]

[Data rpquested]

Log retrivial

[Continue] 30/CUPULIR

D

State Machine Diagram
	[image: image11.png]Restaurant (simplified)

Use Case Diagram

Figure 2.3 UML Behaviour Diagrams
2.3.2.3 Interaction Diagrams

Interaction diagrams, a subset of behavior diagrams, emphasize the flow of control and data among the things in the system being modeled:

· Communication diagram: shows the interactions between objects or parts in terms of sequenced messages. They represent a combination of information taken from Class, Sequence, and Use Case Diagrams describing both the static structure and dynamic behavior of a system.

· Interaction overview diagram: provides an overview in which the nodes represent interaction diagrams.

· Sequence diagram: shows how objects communicate with each other in terms of a sequence of messages. Also indicates the lifespans of objects relative to those messages.

· Timing diagram: is a specific type of interaction diagram, where the focus is on timing constraints.
An example of all types of UML interaction diagrams are illustrated in Figure 2.4.
	[image: image12.png]1: einschaten()

Koeh

2 ausschalten()

Herd

Communication Diagram
	[image: image13.png]sd Zutitskontrolle

sd Code eingeben,

Benutzer

Zuriiskonirol
System

T oo eingeben |

Code prifen

[Coce OK] [Code icht OK]

ref) Drehiir for einen
Durchgang reigeben

Interaction Diagram
	[image: image14.png]Koch

Herd

sinschation

Wasser kochen

Sequence Diagram

Figure 2.4 UML Interaction Diagrams
2.3.2.4 Meta Modeling
The Object Management Group (OMG) has developed a meta-modeling architecture to define the Unified Modeling Language (UML), called the Meta-Object Facility (MOF). The Meta-Object Facility is a standard for model-driven engineering, designed as a four-layered architecture, as shown in the image in Figure 2.5. It provides a meta-meta model at the top layer, called the M0 layer. This M0-model is the language used by Meta-Object Facility to build meta-models, called M1-models. The most prominent example of a Layer 2 Meta-Object Facility model is the UML meta-model, the model that describes the UML itself. These M2-models describe elements of the M2-layer, and thus M2-models. These would be, for example, models written in UML. The last layer is the M3-layer or data layer. It is used to describe runtime instance of the system.

Beyond the M3-model, the Meta-Object Facility describes the means to create and manipulate models and meta-models by defining CORBA interfaces that describe those operations. Because of the similarities between the Meta-Object Facility M3-model and UML structure models, Meta-Object Facility metamodels are usually modeled as UML class diagrams. A supporting standard of Meta-Object Facility is XMI, which defines an XML-based exchange format for models on the M3-, M2-, or M1-Layer.
The hierarchical level of Meta-Object Facility is illustrated in Figure 2.5.

Figure 2.5 Meta-Object Facility
2.3.3 Entity Relationship Diagram
In software engineering, an entity-relationship model (ERM) is an abstract and conceptual representation of data. Entity-relationship modeling is a database modeling method, used to produce a type of conceptual schema or semantic data model of a system, often a relational database, and its requirements in a top-down fashion. Diagrams created by this process are called entity-relationship diagrams, ER diagrams, or ERDs.

The definitive reference for entity-relationship modeling is Peter Chen's 1976 paper.[Chen, 1976] The first stage of information system design uses these models during the requirements analysis to describe information needs or the type of information that is to be stored in a database. The data modeling technique can be used to describe any ontology for a certain area of interest. In the case of the design of an information system that is based on a database, the conceptual data model is, at a later stage (usually called logical design), mapped to a logical data model, such as the relational model. This in turn is mapped to a physical model during physical design. Sometimes both of these phases are referred to as “physical design”.

There are a number of conventions for entity-relationship diagrams (ERDs). The classical notation mainly relates to conceptual modeling. There are a range of notations employed in logical and physical database design, such as IDEF1X.

An entity usually can be thought of as a noun. It may be a physical object such as a house or a car, an event such as a house sale or a car service, or a concept such as a customer transaction or order. Although the term entity is the one most commonly used, we should really distinguish between an entity and an entity-type. An entity-type is a category. An entity, strictly speaking, is an instance of a given entity-type. There are usually many instances of an entity-type. Because the term entity-type is somewhat cumbersome, most people tend to use the term entity as a synonym for this term. Every entity (unless it is a weak entity) must have a minimal set of uniquely identifying attributes, which is called the entity's primary key.

A relationship captures how two or more entities are related to one another. Relationships can be thought of as verbs, linking two or more nouns. Examples: an owns relationship between a company and a computer, a supervises relationship between an employee and a department, a performs relationship between an artist and a song, a proved relationship between a mathematician and a theorem.
Entities and relationships can both have attributes. Examples: an employee entity might have a Social Security Number (SSN) attribute; the proved relationship may have a date attribute.

Entity-relationship diagrams don't show single entities or single instances of relations. Rather, they show entity sets and relationship sets. Example: a particular song is an entity. The collection of all songs in a database is an entity set. The eaten relationship between a child and her lunch is a single relationship. The set of all such child-lunch relationships in a database is a relationship set. In other words, a relationship set corresponds to a relation in mathematics, while a relationship corresponds to a member of the relation.
In the original paper [Chen, 1976] original paper rectangles are used to represent entities, and diamonds to represent relationships appropriate for first-class objects. If an entity set participates in a relationship set, they are connected with a line. Both entities and relationships can have attributes of their own. Most modeling techniques follow Chen’s as entity sets are drawn as rectangles and relationship sets as diamonds.
Attributes are drawn as ovals and are connected with a line to exactly one entity or relationship set. However they are often omitted as they can clutter up a diagram. Some modeling techniques list entity attributes within the rectangles drawn for entity sets.

A few notations of Entity-Relationship Diagram is illustrated in Figure 2.6.

Two related entities

An entity with an attribute

A relationship with an attribute

Primary key

Figure 2.6 Entity-Relationship Diagrams (ERDs)
In [Chen, 1976], cardinality constraints are expressed as follows:

· a double line indicates a participation constraint, totality or surjectivity: all entities in the entity set must participate in at least one relationship in the relationship set;

· an arrow from entity set to relationship set indicates a key constraint, i.e. injectivity: each entity of the entity set can participate in at most one relationship in the relationship set;

· a thick line indicates both, i.e. bijectivity: each entity in the entity set is involved in exactly one relationship.

· an underlined name of an attribute indicates that it is a key: two different entities or relationships with this attribute always have different values for this attribute.
However, different modeling techniques have different rules on how the cardinality is modeled. We have illustrated below diagramming techniques in Figure 2.7.
· IDEF1X
· Bachman notation
· Martin notation
· (min, max)-notation of Jean-Raymond Abrial in 1974

· UML class diagrams

Figure 2.7 Cardinality in Entity-Relationship Diagrams (ERDs)
2.4 Requirement Verification/Validation
Requirement Verification and Validation is the essential process of examining the requirements document to ensure that not only the requirement is correct, unambiguous, consistent and complete, but also the stakeholders are satisfied with the final requirements specification. In a waterfall software engineering process model, it takes place after requirement modeling (specification or documentation), and is the last stage before the start of software development phase. The input of the requirement verification and validation process is the output of the requirement documentation process. The output of the requirement verification and validation process is the finalized requirements document agreed and authorized by all stakeholders. Requirement Verification and Validation is an ongoing process through the whole software life cycle. The earlier it is performed the more rewarding it is, but errors can still be introduced later on in the life cycle.

The techniques for Requirement Verification and Requirement Validation are quite different. Formal methods are often used for Requirement Verification, while Requirement Validation often employs informal techniques, e.g. requirement testing and requirement checklist, etc.
Although the two terms are often used interchangeably, they focus on different aspect of the requirement. We will discuss them separately in the next two sections.
2.4.1 Requirement Verification
A very useful but informal question to ask during Requirement Verification is: Am I going to build the product right? According to the Capability Maturity Model (CMMI-SW v1.1), the definition of Requirement Verification is the process of checking whether the requirements comply with given constraints, and are consistent, complete and unambiguous. Such processes often take the form of checking that a model satisfies some constraint. This is usually done by formal verifications or simulation. For example, model checking [Chan, 1998; Easterbrook, 2001; Sreemani, 1996] checks behavioral models against temporal-logic properties about execution traces.
Certain requirements, by their very structure, are not verifiable. These include requirements that say the system shall never or always exhibit a particular property. Proper testing of these requirements would require an infinite testing cycle. Such requirements must be rewritten to be verifiable.

Non-functional requirements, which are unverifiable at the requirement level, may resort to process requirement which is a practical way of meeting them. For example, a non-functional requirement to be free from backdoors may be satisfied by replacing it with a process requirement to use pair programming. Other non-functional requirements will trace to other system components and be verified at that level. For example system reliability is often verified by analysis at the system level. Avionics software with its complicated safety requirements must follow the DO-178B development process.

Verifiability is necessary for a requirement but there are other important issues. A requirement can be verifiable yet incorrect. Assessing verifiability alone will not detect incorrect requirements. Moreover, verification can not lead to the discovery of a requirement which has been overlooked.
2.4.2 Requirement Validation

A similarly informal question to ask during Requirement Validation is: Am I going to build the right product? Capability Maturity Model (CMMI-SW) defines Requirement Validation as the process of checking that the specified requirements comply with the given user and customer intentions. This means that the requirements need to be expressed in a notation that is understandable by the customer. Suitable techniques for validation are prototyping, scenarios, checking of specifications against domain models, natural language paraphrasing, animation, simulation, etc.
Scenarios may be used to validate requirements, as ‘test data’ collected from the observable practice, against which the operation of a new system can be checked. This enables validation by inspection of the behavior of the future system.
2.5 Requirement Management
During RE, system development, test and operation, new requirements are discovered and current requirements are changed. This evolution of requirements throughout the whole software development life cycle has to be managed in order to ensure high-quality specifications.

Requirements management is the process of identifying, organizing, documenting and tracking changing requirements in a project as well as the impact of these changes. It is an ongoing task throughout the whole RE process and might span the whole software lifecycle.
Issues such as information storage, organisation, volatility, traceability, visualization and documentation need to be managed. Additionally, relationships between requirements, and dependencies between requirements documents, have to be recorded. Finkelstein [Finkelstein, 1994a] claimed that more than 70% of project costs are spent on reworking, and half the effort in these activities is aimed at understanding the system in order to make effective corrections and enhancements. As a result it is necessary to annotate the development process, i.e., to keep a record of all assumptions, rejected solutions and decision rationales. Although requirements management may look like an overhead in the beginning, it is usually rewarded by lower overall system development costs and better customer satisfaction.

2.5.1 Requirements Volatility
One of the key characteristics of requirements is that they frequently change. Such changes might be due to misunderstandings or errors in the requirements elicitation process, or due to design and implementation problems. New requirements are discovered as the development progresses and a deeper understanding of the system is achieved. In addition to the technical issues, the political and contractual implications of changing requirements need to be considered. For example, the customers may simply change their minds, or the environment of the system, laws or regulations might change. This means that requirements volatility is unavoidable. By increasing the effort during requirements capture, changes can be kept low, although some will still occur. In order to accommodate requirements volatility, a mechanism needs to be set up so that a requirement change will trigger a re-engineering process, so that the modification is correctly integrated into the system. This will result in an iterative requirements engineering process.
2.5.2 Requirements Traceability
A definition for requirements traceability is given in [Gotel, 1994] as: “Requirements traceability refers to the ability to describe and follow the life of a requirement, in both a forwards and backwards direction (i.e., from its origins, through its development and specification, to its subsequent deployment and use, and through all periods of on-going refinement and iteration in any of these phases).”

Requirements traceability is an area of requirements engineering that has received a lot of attention in the last few years. [Sommerville, 1997] suggests several types of traceability information as below:

· Requirements-sources traceability: Links the requirement with the people or documents that specified it.

· Requirements-rationale traceability: Links the requirement with a description of the rationale for it.

· Requirements-requirements traceability: Links the requirement with other requirements that depend on it, and allows the creation of a requirements hierarchy.

· Requirements-architecture traceability: Links the requirement with the sub-system in which it is implemented. This is especially important for sub-contracting.

· Requirements-design traceability: Links the requirement with specific design components that are used to implement the requirement.

· Requirements-interface traceability: Links the requirement with the interfaces of external systems that are used in the provision of the requirement. This is important where there is a high dependency on other systems.

Several requirements management tools have evolved to address the need for requirements traceability (e.g., Doors, Requisite Pro). Even though such tools could be integrated with systems that support object-oriented methods (e.g., Rational Rose) at the syntactic level, this would still be inadequate because the semantic relationships between requirements and object-oriented models need to be established.
2.5.3 Requirements Documentation
Requirements documentation is the process of documenting the agreed requirements at an appropriate level of detail in the most suitable notation based on a well-defined document structure. The documentation process receives its input from the Requirement Modeling/Specification process. The output of the process is a well-structured specification, which will need to go through the Requirement Verification and Validation process.
The resulting requirements documents, which are also the outcome of the entire requirements engineering process, play an important role in the development of a system. Such document is generally referred to as the software requirements specification (SRS). Generally SRS must be internally consistent, consistent with the existing business practice documents, correct and complete in relation to the users’ needs, clear to users, customers, designers and testers, and capable of serving as a basis for design, validation and testing procedures. Furthermore, the SRS needs to be non-ambiguous, modifiable, traceable, annotated and verifiable [Davis, 1990].

The structure of SRS is very important since they will directly relate to requirements traceability. As a result there are several sources [IEEE, 93a], [Davis, 1990] [Jones, 1990], [Sommerville, 1995] that describe the necessary structure, contents and qualities of the SRS, together with a recommended outline that can serve as a template. Such a template ensures that all relevant topics are addressed.

SRS serves several purposes throughout the whole software development lifecycle:

• Since the SRS is ideally an architecture and implementation independent “drawing” of the future system, it can be used as the basis for a user manual, or generally for documents that the customers will read to understand how the derived system fits together.

• The SRS can be used as the basis for project planning and project management activities.

• The SRS acts as a legal document between the customer and the developers, and the final system will be tested against the SRS.

The key are to select proper notations to document requirements and at the appropriate level of detail. As mentioned in section 2.3, requirements can be modeled in informal (natural language), semi-formal (diagrams, graph) and formal languages (mathematical notations), therefore, the requirements documentation might contain models in any of the three different notations or combinations of them. Even if the system is documented in a formal notation, an informal document is usually also required to improve understandability of the SRS.
2.5.4 Tool Support for Requirements Management
Requirements Management tools are defined to help and ease the software development process. They are usually designed for use in quite large projects, especially in collaborative software development where development teams are geographically dispersed, the RM tool support is invaluable.

Tools can offer many features, such as a general repository, communication capabilities, change control mechanisms and information sharing, which can improve development process and in that way, improve the product quality.

Most of RM tools are based on a database. They may have relatively few records but each of them may include many links, i.e. to documents, text files or other requirements. Commonly used database types are relational database systems and object-oriented database systems.

The RM tools offer several advantages for ensuring requirements traceability. When using RM tools, all requirements and other information are kept in the tool’s database instead of those of different documents and tools, which do not necessarily communicate with each other. The tools provide various methods by which the developer is able to update the links between the unique requirements identifiers. The RM tools integrate requirements management activities as a natural and logical part of the development process.
Most of the existing RM tools have integrated configuration management support, which makes it easy to access the latest available information and makes it possible to find out, for example, when a requirement was changed, who made the change and why it was made. This kind of activity is usually called change management. Change management usually includes a change impact analysis with appropriate notifications, which helps in making conclusions and fixing problems that will be caused by a requirement change.

The RM tools allow different types of attributes to be associated with each item in the database. The attributes may be used later to organise the data. For example, different development team roles (project managers, software engineers, testing and QA engineers) can create different views to the requirement data. Another example can be a situation, where the project has more than one customer. It should be possible to select only one customer’s requirements from the central database before printing them for that particular customer to review. The tools can be configured to give different reports and statistics, for instance, for an inspection meeting or a customer meeting. In addition, some of the tools are able to communicate and integrate with other tools and to store the other tools' data in their database together with ordinary textual data.

2.6 Challenges of Requirement Engineering
Many researchers have identified the challenges of future RE. [Nuseibeh and Easterbrook, 2000; Lamsweerde, 2000] listed a few major challenges:
· Development of new techniques for formally modelling and analyzing properties of the environment, as opposed to the behaviour of the software. Such techniques must take into account the need to deal with inconsistent, incomplete, and evolving models. This facilitates migration of software components to different software and hardware environments, and the adaptation of products into product families.

· Bridging the gap between requirements elicitation approaches based on contextual enquiry and more formal specification and analysis techniques. Contextual approaches, such as those based on ethnographic techniques, provide a rich understanding of the organizational context for a new software system, but do not map well onto existing techniques for formally modeling the current and desired properties of problem domains. This includes the incorporation of a wider variety of media, such as video and audio, into behavioral modeling techniques.

· Richer models for capturing and analyzing non-functional requirements. These are also known as the "ilities" and have defied a clear characterization for decades.

· Better understanding of the impact of software architectural choices on the prioritization and evolution of requirements. While work in software architectures has concentrated on how to express software architectures and reason about their behavioral properties, there is still an open question about how to analyze what impact a particular architectural choice has on the ability to satisfy current and future requirements, and variations in requirements across a product family.

· Reuse of requirements models. It is expected that in many domains of application the development of reference models for specifying requirements can reduce the effort of developing requirements models from scratch. This will help move many software projects from being creative design to being normal design, and will facilitate the selection of commercial off-the-shelf (COTS) software.

· Multidisciplinary training for requirements practitioners. “Requirements Engineer” is often used to refer to any development participant who applies the techniques described in the paper to elicit, specify, and analyze requirements. While many organizations do not even employ such a person, the skills that such a person or group should possess is a matter of critical importance. The requirements engineer must possess both the social skills to interact with a variety of stakeholders, including potentially non-technical customers, and the technical skills to interact with systems designers and developers.

2.7 Conclusions

In this chapter we give a general introduction to requirement engineering, its problems and ongoing research. As a key process of software engineering, requirements engineering plays a crucial role throughout the whole software engineering lifecycle. A lot of research has shown that failures of software projects are often related to poor requirements. Well-defined requirements will increase the likelihood of the overall success of the software project. However, it will not be possible to develop better quality requirements without a well defined RE process. Therefore numerous requirement elicitation, modeling and verification techniques and methodologies have been developed to cope with the crisis caused by the complicated, multidisciplinary and multidimensional nature of requirement engineering. The advantages of applying well-defined requirement engineering methodologies and techniques in software projects are that they can bring a clear structure and engineering discipline into the development process; thus, they provide a means to improve the quality of software products. However, the gap between requirement engineering research and its application in industry is still very large.
Requirements engineering has a role throughout the whole software development life cycle, from initial requirements acquisition, via specification, design, implementation and testing to maintenance. The initially acquired requirements have to be examined carefully, before they are documented in the specification document. Unfortunately, the volatile nature of requirements makes this process very difficult, and calls for requirements engineering processes and tools that can cope with changing requirements and that provide a means for the documentation of responsibilities as well as decision rationales. Good tool support is important in order not only to make currently available methods usable to the developer, but also to manage the volume of requirements that has to be handled during the life cycle of a project. Processes and methods are some of the fundamental means that bring discipline and structure into requirements engineering, although there are still many issues which need clarification. The current suggestions are still immature and need further investigation. Nevertheless, wise investments in requirements are essential, as previous mistakes have shown. The expected rewards are reduced development time and cost, higher software quality and higher customer satisfaction.

Since requirements engineering is the starting point of software engineering and later stages of software development rely heavily on the quality of requirements, there is a good reason to pay close attention to the RE process. Proper means have to be studied to provide effective help in developing the most suitable RE process by considering the characteristics of the software project under development. In this thesis we focus on Enterprise Information System software that is normally deployed in an enterprise environment.
CHAPTER 3 – ENTERPRISE INFORMATION SYSTEM AND ENTERPRISE ARCHITECTURE
3.1 Enterprise Information System
Enterprise Information System is quite a buzzword in both business and IT community today. Before we continue, we first need to understand the accurate meaning of this word so that the scope of this thesis can be clearly defined.
The word “Enterprise” here can have various connotations. However the term is most popularly used only to refer to large organizations which can be commercial organizations or non-profit organizations.
There is hardly any consensus on the definition of “Information System”. Carvalho has identified 4 objects that can be called information systems. [Carvalho, 2000]

IS1 – Organizations (autonomous systems) whose business (purpose) is to provide information to their clients. The following are some examples that can be considered as IS1 information systems: libraries, information services, information brokers, newspapers, radios or TV stations.

IS2 – A sub-system that exists in any system that is capable of governing itself (autonomous system). The information system (IS2) assures the communication between the managerial and operational sub-systems of an organization.

IS3 – Any combination of active objects (processors) that deal with symbolic objects (information) and whose agents are computers or computer-based devices – a computer-based system.

IS4 – Any combination of active objects (processors) that deal only with symbolic objects (information). When applied to an organization, this view corresponds to all organizational activities excepting those that deal with materials or energy.

We adopt only IS3 as information system within the scope of our research and thesis.
Combing the definition of “Enterprise” and “Information System”, an Enterprise Information System is generally any kind of computing system that is of "enterprise class". This means typically offering high quality of service, dealing with large volumes of data and capable of supporting large organizations (enterprise). Enterprise Information Systems provide a technology platform that enables organizations to integrate and coordinate their business processes. Enterprise Information System is normally comprised of both software and hardware.
Enterprise software, also known as enterprise application, is the software that provides business logic support functionality for an enterprise, which aims to improve the enterprise's productivity and efficiency. Enterprise software accounts for a significant portion of all the software deployed world wide. They perform vital roles in supporting the efficient running of almost all enterprises. As a result of this they are of major importance among all different types of software, e.g. real time system, embedded software systems etc. Enterprise software is typically initiated, developed and deployed at the enterprise level rather than at the department level and is the core IT system of governing the enterprise and the core of communication within the enterprise. Services provided by enterprise software are typically business-oriented such as Accounting/Finance, Enterprise Resource Planning (ERP), Customer Relationship Management (CRM), Supply Chain Management (SCM), Human Resource Management (HR), Production Planning, Procurement, Online Shopping and Payment Processing, Automated Billing, Business Intelligence and Decision Support etc. Characteristics of enterprise software are performance, scalability, and robustness. Enterprise software usually has interfaces to other enterprise software and is centrally managed.

Due to the cost of development for software of such scale, only large enterprises attempt to build such enterprise software that models the entire business enterprise. As business enterprises have similar departments and systems in common, enterprise software is often available as a suite of software packages that can be customized to the specific need of a specific enterprise. There are thousands of vendors of Enterprise Application, among them the major ones are SAP, Oracle, IBM, HP and a few more.
Enterprise software is often designed and implemented by the Information Technology (IT) or Information Systems (IS) Department within an enterprise. It may also be purchased from an independent enterprise software developer who also provides a whole line of services from consulting, business process change, installation, customization to maintenance to their customers.

Enterprise software is often categorized by the business function that it automates - such as accounting software, inventory management software or human resource software. Similarly there is enterprise software that specially caters for different industries. For example, there is enterprise software developed for the telecommunication industry, banking industry, oil and gas industry or manufacture industry.

There are many different technical architectures used in enterprise software. But the most popular architecture is client-server based or web server based.
3.2 Enterprise Architecture

Enterprise information system distinguish themselves from other types of software in that they are developed to facilitate the operation of an organization and, hence, reflect the knowledge of the enterprise’s structure, strategies, plans, organizations, people, activities, processes, resources, products, business rules, external relations etc. The complete computational representation of all such information can be called an Enterprise Model or Enterprise Architecture. It is an abstraction of an enterprise, namely its elements of various types and their interrelationships. It also reflects the relationships between information system requirements and other relevant knowledge, acquired about one specific industry or more generally about enterprise management. A significant portion of requirement engineering activity is about acquiring, eliciting and modeling such information. The process of document all such information, not only restricted in “functional specification”, can be called Enterprise Modeling, or in other words, building an Enterprise Architecture. Although Enterprise Architecture is already a widespread term, unambiguous and rigorously defined models exist only in several narrow views of business. Wide and comprehensive models are very informal and generic. [Kalnins, 2003]
Before we continue, we need to clarify the ambiguities and misuse of the terms “Architecture” and “Framework” in the context of information systems and enterprise modeling. We refer to the clarification made by [Whitman, 2001] as “Architectures help in building the enterprise system in such a way that it targets the end system while a framework builds on defining the various points of the architecture. An architecture provides a bigger picture of the entire enterprise by taking into account all possible views, integrates them to provide the bigger picture thereby enabling enterprise to achieve it goals. A framework is much more focused as compared to an architecture and is generally used when applied to a particular industry, situation or sector.”
To develop an Enterprise Architecture for a particular enterprise, a fundamental question is where and how to begin? First of all, some meta-architecture should be used to facilitate communication and provide terminology. This kind of meta-architecture, which also serves as the meta-model of a particular enterprise modeling method, is widely known as an Enterprise Architecture Framework. We believe that requirement engineering activities for enterprise software should be organized under an Enterprise Architecture Framework. Various enterprise architecture frameworks have been proposed from both industry and academia, e.g. the Zachman Framework, The Open Group Architecture Framework (TOGAF), Federal Enterprise Architecture Framework (FEAF), Command, Control, Communications, Computers, and Intelligence, Surveillance, and Reconnaissance Framework (C4ISR), Department of Defense Architecture Framework (DoDAF), Department of Defense Architecture Framework (MoDAF) and many more.
3.3 The Open Group Architecture Framework (TOGAF)
The Open Group Architecture Framework (TOGAF) was developed by the Architecture Forum of The Open Group [http://www.opengroup.org/] and continuously evolved since the mid-1990. The development of TOGAF Version 1 in 1995 was based on the Technical Architecture Framework for Information Management (TAFIM). The US Department of Defense gave The Open Group explicit permission and encouragement to create TOGAF by building on the TAFIM, which itself was the result of many years of development effort and many millions of dollars of US Government investment. TOGAF 7 ("Technical Edition") was published in December 2001. TOGAF 8 ("Enterprise Edition") was first published in December 2002 and republished in updated form as TOGAF 8.1 in December 2003, which was updated in November 2006 as TOGAF 8.1.1. There are over 10,000 TOGAF 8 Certified individuals. The latest version is TOGAF 9, launched on 2 February 2009.

TOGAF is modeled at four levels or domains: Business, Application, Data and Technology. A set of foundation architectures are provided to enable the architecture team to envision the current and future state of the architecture.
As an architecture framework, TOGAF:
· Describes a method for defining an information system in terms of a set of building blocks

· Shows how the building blocks fit together

· Contains a set of tools

· Provides a common vocabulary

· Includes a list of recommended standards

· Includes a list of compliant products that can be used to implement the building blocks
3.4 Federal Enterprise Architecture Framework (FEAF)
The U.S. Federal Enterprise Architecture Framework (FEAF) Version 1.1 was published by the Federal CIO Council in September 1999. It was originally an initiative of the U.S. Office of Management and Budget that aims to comply with the Clinger-Cohen Act and provide a common methodology for information technology (IT) acquisition, use, and disposal in the United States federal government. It is designed to ease sharing of information and resources across federal agencies, reduce costs, and improve citizen services.

The FEAF comprises an assortment of reference models, which develop a common taxonomy and ontology for describing IT resources. These include the:

· Performance Reference Model
· Business Reference Model
· Service Component Reference Model
· Data Reference Model

· Technical Reference Model
3.5 Department of Defense Architecture Framework (DoDAF)
The first version of Department of Defense Architecture Framework (DoDAF) was developed in the 1990s and was called Command, Control, Communications, Computers, and Intelligence, Surveillance, and Reconnaissance (C4ISR) Architecture Framework. In the same period the development of a reference model TAFIM started. The first C4ISR Architecture Framework v1.0, released on June 7, 1996, was created in response to the passage of the Clinger-Cohen Act. Continued development effort resulted in the second version C4ISR Architecture Framework v2.0 in December 1997.
In August 2003 the DoDAF v1.0 was released, which restructured the C4ISR Framework v2.0 to offer guidance, product descriptions, and supplementary information in two volumes and a Desk Book. It broadened the applicability of architecture tenets and practices to all Mission Areas rather than just the C4ISR community. This document addressed usage, integrated architectures, DoD and Federal policies, value of architectures, architecture measures, DoD decision support processes, development techniques, analytical techniques, and the CADM v1.01, and moved towards a repository-based approach by placing emphasis on architecture data elements that comprise architecture products. In April 2007, Version 1.5 was released with a documentation of "Definitions and Guidelines", "Product Descriptions" and "Architecture Data Description".
All major U.S. Government Department of Defense (DoD) weapons and information technology system acquisitions are required to develop and document an EA using the views prescribed in the DoDAF. While it is clearly aimed at military systems, DoDAF has broad applicability across all sectors and industries.
Like TOGAF, DoDAF is organized around a shared repository to hold work products. The repository is defined by the Core Architecture Data Model 2.0 (CADM) and the DoD Architecture Registry System (DARS). A key feature of DoDAF is interoperability, which is organized as a series of levels, called Levels of Information System Interoperability (LISI).

Other derivative frameworks based on DoDAF include the NATO Architecture Framework (NAF) and Ministry of Defence Architecture Framework (MoDAF, the UK version of DoDAF).
3.6 Zachman Framework
Zachman Framework is the earliest and most widely used EA Framework. [Noran, 2003; Tang, Han and Chen, 2004; Leist and Zellner, 2006; Urbaczewski and Mrdalj, 2006] It was first proposed by J. Zachman in [Zachman, 1987] as a 3 column/5 row matrix, derived by drawing an analogy between information systems architecture and classical architecture. Zachman illustrates the five perspectives by using an analogy to the design and construction of a building, starting from the “scope” level, which is primarily the concern of the architect, and may represent the gross sizing, shape and spatial relationships as well as the mutual understanding between the architect and owner, going through the “enterprise” level, which is primarily the concern of the owner, representing the final building as seen by the owner, and floor plans, based on architect’s drawings and on through two other levels, the “system” level and the “technology” level respectively, the concerns of the designer and the builder, before arriving at the “detailed representation” level, the subcontractor.
The five rows represent the different perspectives of the stakeholders involved in the planning, conception, designing, building and using of the information systems of the organization. These five different perspectives each have three sets of names which can be Scope/Contextual/Planner, Business Model/Conceptual/Owner, System Model/Logical/Designer, Technology Model/Physical/Builder and Detailed Representations/Out-of-Context/User. The three resulting columns were later extended to six columns [Sowa, 1992], representing DATA/What, FUNCTION/How, NETWORK/Where, PEOPLE/Who, TIME/When and MOTIVATION/Why respectively, to describe different aspects of the enterprise and its systems.
Each column of Zachman Framework has a generic variable and a connector. For example, the variable in Data column is entity and connector is relationship, while in Function column, variable is function and connector is argument. For any one of the 30 cells in the framework, it is possible to develop a special notation that is ideally suited to the subject matter described in that cell. However, few formalisms are available for who, when, and why column cells.
The most recent version of the Zachman Framework is shown in Figure 3.1.
[image: image21.png]A FRAMEWORK

THE ZACHMAN FEAMEWORK FOR ENTERPRISE ARCHITECTURE

Figure 3.1 Zachman Framework (www.zifa.com)
Zachman framework can be thought as a multidimensional visual checklist for the deliverables created and maintained during a software development lifecycle. However the framework itself does not impose architectural rigor. [Iyer and Gottlieb, 2004] In reality, the artifacts chosen to capture and represent activities within each one of the cells within Zachman Framework are left to the discretion of the enterprise, making it difficult to impose rigor or share knowledge across enterprises.
The Zachman Framework is a meta-model and unlike a methodology, does not imply anything about:

· Whether you do Architecture or whether you simply build implementations that is, whether you build Primitive Models, the ontological, single-variable intersections between the Interrogatives and the Transformations or whether you simply build ad hoc, multi-variable, composite models made up of components of several Primitive Models.

· How you do Architecture: top-down, bottom-up, left to right, right to left, where to start, etc., etc.

· The long-term/short-term trade-off relative to instantiating the expression of the components of the object that is, what is formalized in the short-term for implementation purposes versus what is engineered for long-term reuse.

· How much flexibility you want for producing composite models (Enterprise implementations) from your Enterprise Architecture (primitive models), that is, how constrained (little flexibility) or unconstrained (much flexibility) you make the horizontal, integrative relationships between the Cell components across the Rows and the vertical, transformational relationships of the Cell components down the Columns.

· Although these are significant, identifiable, methodological choices, they are not prescriptions of The Framework structure.

3.7 Conclusions
In this chapter, we reviewed the definition of Enterprise Architecture and Enterprise Architecture Framework. Four specific EA frameworks, TOGAF, FEAF, DoDAF and Zachman Framework have been introduced respectively. For Zachman Framework, we pointed out that as a meta-model instead of a methodology, Zachman Framework is impossible to be used directly in requirement engineering without any extension or refinement.
CHAPTER 4 – ONTOLOGY
4.1 Introduction
Ontology is a discipline of philosophy that deals with what is, with the kinds and structures of objects, properties, and other aspects of reality. While much of the philosophical practice of Ontology dates back to Aristotle and what his students called “metaphysics,” the term ontology (ontologia) was coined in 1613 by Rudolf Gockel and apparently independently by Jacob Lorhard. According to the Oxford Dictionary, the first recorded use in English is in 1721.
Adoption of a specific ontology is a fundamental philosophical commitment to the belief in the existence of certain entities in the world, including business and organizational domains. As any philosophy, ontology provides the framework that enables one to carry out research. Hence, the ontology can only be justified by evaluating the outcomes of that research (i.e., empirically). [Evermann, 2005A]
Recently the awareness and integration of ontology research grew and spread into many other areas. The term “ontology” actually became a buzz-word, as enterprise modeling, e-commerce, emerging XML meta-data standards, and knowledge management, among others, reached the top of many businesses strategic plans. In addition, an emphasis on “knowledge sharing” and interchange has made ontology an application area in its own right. [Welty, 2001]

Unfortunately, as with most areas of scientific endeavor, over the years, many different models of reality – ontologies – have emerged. [Mylopoulos, 1998] suggests that ontologies can be classified into four categories: static, dynamic, intentional, and social. Each of these categories focuses on different concepts in the real world. Ontologies that fall into the static category focus on things and their properties. Dynamic ontologies extend static ontologies to focus on such concepts as events and processes – that is, how concepts in the real world change over time. Intentional ontologies attempt to explain abstract concepts like goals and objectives while social ontologies emphasize the concepts of values and beliefs.
An ontology may take a variety of forms, but necessarily, it will include a vocabulary of terms, and some specification of their meaning. This includes definitions and an indication of how concepts are inter-related which collectively impose a structure on the domain and constrain the possibly interpretations of terms. [Noy, 1997] Thus an ontology consists of concepts and relations, and their definitions, properties and constrains expressed as axioms. An ontology is not only a hierarchy of terms, but a fully axiomatized theory about the domain.
4.2 Ontology in Artificial Intelligence

Ontologies have been increasingly used mainly in two computer science field. [Evermann, 2005B] One of them is knowledge engineering, which is a crucial sub area of artificial intelligence (AI). By the early 1980s, researchers in AI had realized that work in ontology was relevant to the necessary process of describing the world for intelligent systems to reason about and act.
Research in the AI and knowledge engineering uses the term “ontology” in a subjective or constructive nature. Here ontologies do not necessarily imply a firm commitment to the existence of a particular set of entities in reality. [Ushold, 1996; Noy, 1997] They are computer based resources that represent agreed domain semantics, which are understood as vocabularies, dictionaries, lexicon, taxonomies, categorization schemata or modeling languages without commitment to any real, metaphysical existence in the world. The modeler or knowledge engineer is free to design or engineer ontologies as needed. [Gruninger, 2002] Such “ontologies” are not universal, but can be changed, adapted, and customized to fit a specific purpose or domain. The connections of the ontologies in AI to the real world have been precisely illustrate by [Smith, 2001] as “Most of AI chose not to consider the work of the much older overlapping field of philosophy ontology, preferring instead to use the term ‘ontology’ as an exotic name for what they had been doing all along in knowledge engineering…It became correspondingly more remote from anything which might stand in a direct relation to existence or reality.”
4.3 Ontology in Information Systems/Concept Modelling/Requirement Engineering
The other major application of ontology can be found is in Information Systems, Concept Modelling and Requirement Engineering. In these fields, two different understandings of the word “ontology” are found, although both of them deal with representing the reality of the application domain. [Evermann, 2005B] One is similar to ontologies in knowledge engineering, in that it is used as a technology to formally represent agreed domain semantics. The other approach, mainly used in Information System and Conceptual Modeling, applies ontology in its original philosophical sense, understood as metaphysics or the philosophy of existence, as a benchmark for evaluating the expressiveness of conceptual modeling techniques.
The process of using a reference ontology as a benchmark for the evaluation of the representational capabilities of a modeling grammar forms the core of the research method called ontological evaluation. The popularity of such evaluation research has been growing steadily. One of the most popular reference ontology used is Bunge-Wand-Weber Ontology.
4.4 Bunge-Wand-Weber Ontology
Wand and Weber are among the first researchers that initiated the use of ontology theories in information system analysis and design. They [Wand and Weber, 1990, 1993, 1995] had taken, adapted, and extended an ontology presented by Bunge [Bunge, 1977, 1979], and applied it to the conceptual modeling of information systems, which has been widely referred as Bunge-Wand-Weber (BWW) model or BWW Ontology.
The BWW model consists of the representation model, the state-tracking model, and the good decomposition model.
The representation model defines a set of constructs that are thought to be necessary and sufficient to describe the structure and behavior of the real world. The elementary construct is a substantial thing. The world is made up of substantial things that exist physically in the world. Therefore, entities such as “addresses” and “jobs” are not things as neither can be physically manipulated. An address or a job is a property of a substantial thing, the employee. Properties in general are those possessed by a set of things, e.g., “color,” “speed,” “salary,” etc. Every thing in the real world possesses at least one property. Conversely, every property belongs to at least one thing. The specific manifestation of a general property for an individual (specific thing) is called individual property, such as “blue in color,” “speeds of 100 mph,” or “salary of $2,000.” Properties can be either intrinsic or mutual. Intrinsic properties are those that a thing possesses by itself, e.g., “color,” whereas mutual properties exist between two or more things, e.g., “employed by.” A thing can be either simple or composite where the latter can be decomposed into other things, their components. Composite things possess emergent properties not possessed by their components. For example, a computer possesses processing power, not possessed by any individual component.

All things are changeable. Change may be quantitative, in which case, the values of one or more properties are changed or it may be qualitative (also called deep change), in which case properties are acquired or lost. Things are not destroyed or created. Rather, they come into being or disappear through acquisition or loss of properties. Two common cases of property acquisition or loss are through interaction between things or composition or decomposition of things. The composite acquires or loses emergent properties. For example, a set of bricks combined into a house “creates” the new thing “house” with the emergent property of “NumberOfBedrooms”. Altering the way the bricks are combined (interactions between construction workers and the house) makes the house into an office building. It undergoes a qualitative change, losing the property “NumberOfBedrooms” and acquiring the property “NumberOfOffices”.
Things possess properties. A property is modeled via a function that maps the thing onto some value. For example, the attribute “weight” represents a property that all humans possess. In this regard, weight is an attribute standing for a property in general. If we focus on the weight of a specific individual, however, we would be concerned with a property in particular. Other properties are properties of pairs or many things. Such properties are called mutual property. Non-binding mutual properties are those properties shared by two or more things that do not “make a difference” to the things involved, for example, order relations or equivalence relations. By contrast, binding mutual properties are those properties shared by two or more things that do “make a difference” to the things involved, e.g. a “job” is a binding mutual property between a person and a company. A property of a composite thing that belongs to a component thing is called a hereditary property. Otherwise it is called an emergent property. Some properties are inherent properties of individual things. Such properties are called intrinsic.
Properties cannot be observed directly. Instead attributes are representations of the properties of a thing as perceived by an observer. An attribute is a function of time indicating an individual property of a thing at a particular point of time. A set of attributes of a thing forms a functional schema. Depending on which aspects one is interested in, a thing can be described by different schemas. For example, a specific person may be described by functions indicating height and weight for one purpose, or described by location and organizational unit for another purpose. The state of a thing is a complete assignment of the vector of values to all the attributes that are associated with specific functional schema of this thing.
A law is any restriction on the property values of a single thing. Common forms of law statements relate the value of one property to those of other properties. In particular, a law can be specified in terms of precedence of properties: Property A precedes property B if and only if whenever a thing possesses B, it possesses A. A thing is always in a lawful state, one that is allowed by the laws by which it abides. A state may be stable or unstable. A state that can be changed only by external interaction is a stable state. Otherwise, the state is unstable. If a thing is in an unstable state, it will spontaneously undergo a transition to another state until it reaches a stable state.

An event is a change of the state of a thing, e. g. “manufacturing machine of a production system is repaired” is an event. It can be represented as a pair of states that are part of a state space of some thing. Two things are said to interact if the presence of one of them affects the states the other traverses. Such interaction happens when a mutual property of the two things changes. This means there exist two events, one in each thing. For example, if one thing hits another, this will change the combined speed of the pair.

A class is a set of things that possess one common characteristic property. A subclass is a set of things that possess their class properties in addition to other common properties. A kind is a set of things that have two or more common properties. A natural kind is a kind where some of the properties are related by laws. A thing keeps its name until it changes its natural kind (qualitative change or deep change). Properties are restricted by natural or human laws.
The notions of things and couplings enable us to define precisely the concept of a system. Intuitively, a system comprises a set of things where each thing in the set is coupled to at least one other thing in the set and where, in addition, it is impossible to partition the set of things such that the histories of the two partitions are independent of each other.
Most of the BWW representation model constructs is introduced in plain English. A complete list and explanation of all the constructs in the BWW representation model can be found in Table 4.1.
Table 4.1 Constructs of BWW Ontology [Rosemann and Green, 2002]
	Ontological Construct
	Explanation

	Thing
	The elementary unit in our ontological model. The real world is made up of things. A composite thing may be made of other things (composite or primitive)

	Property

Intrinsic

Hereditary

Emergent

Attributes
	Things possess properties. A property is modeled via a function that maps the thing into some value. A property of a composite thing that belongs to a component thing is called a hereditary property. Otherwise it is called an emergent property. A property that is inherently a property of an individual thing is called an intrinsic property. Other properties that are meaningful only in the context of two or more things are called mutual or relational properties.

	State
	The vector of values for all property functions of a thing

	Conceivable state space
	The set of all states that the thing might ever assume

	State law
	Restricts the values of the property functions of a thing to a subset that is deemed lawful because of natural laws or human laws

	Lawful state space
	The set of states of a thing that comply with the state laws of the thing. It is usually a proper subset of the conceivable state space

	Event
	A change of state of a thing. It is effected via a transformation (see below)

	Event space
	The set of all possible events that can occur in the thing

	Transformation
	A mapping from a domain comprising states to a codomain comprising states

	Lawful transformation
	Defines which events in a thing that are lawful

	Lawful event space
	The set of all events in a thing that are lawful

	History
	The chronologically ordered states that a thing traverses

	Coupling

Binding Mutual Property
	A thing acts on another thing if its existence affects the history of the other thing. The two things are said to be coupled or interacted.

Furthermore, those two things are said to share a binding mutual property (or relation); that is, they participate in a relation that ‘‘makes a difference’’ to the things.

	System
	A set of things is a system if, for any bi-partitioning of the set, couplings exist among things in the two subsets.

	System composition
	The things in the system are called its composition.

	System environment
	Things that are not in the system but interact with things in the system are called the environment of the system.

	System structure
	The set of couplings that exist among things in the system and things in the environment of the system

	Subsystem
	A system whose composition and structure are subsets of the composition and structure of another system

	System decomposition
	A set of subsystems such that every component in the system is either one of the subsystems in the decomposition or is included in the composition of one of the subsystems in the decomposition

	Level structure
	Defines a partial order over the subsystems in a decomposition

	Stable state

	A state in which a thing, subsystem or system will remain unless forced to change by virtue of the action of a thing in the environment (an external event)

	Unstable state

	A state that will be changed into another state by virtue of the action of transformation in the system.

	External event

	An event that arises in a thing, subsystem or system by virtue of lawful transformations in the thing, subsystem, or system. The before-state of an external event is always stable. The after-state may be stable or unstable.

	Internal event

	An event that arises in a thing, subsystem, or system by virtue of lawful transformation in the thing, subsystem or system. The before-state of an internal event is always unstable. The after-state may be stable or unstable.

	Well-defined event

	An event in which the subsequent state can always be predicted given the prior state is known

	Poorly defined event

	An event in which the subsequent state cannot be predicted given the prior state is known

	Class

	A set of things that possess a common property

	Kind

	A set of things that possess two or more common properties

	

BWW Ontology is considered as a benchmark ontology for evaluating the expressiveness of various conceptual modeling languages. Their fundamental premise is that any conceptual modeling grammar (set of modeling symbols and their construction rules) must be capable to represent all the realities in the real world that might be of interest to the information systems.
There are two evaluation criteria. First, a modeling grammar is deemed ontologically complete if it contains constructs that enable it to model ANY real-world phenomenon in the target domain. Otherwise the resultant model is ontologically incomplete. If the model is incomplete, the analyst/designer will somehow have to augment the models to ensure that the final computerized information system adequately reflects that portion of the real world it is intended to simulate.
Second, a modeling grammar is deemed ontologically clear if each of its constructs has a one-to-one correspondence with one of the BWW ontological constructs. If not, there can be three situations:

· One grammatical construct may map to two or more ontological constructs. This situation is called construct overload.

· Two or more grammatical constructs may map to one ontological construct. This situation is called construct redundancy.

· A grammatical construct may not map to any ontological construct. This situation is called construct excess.
4.4.1 The Formal Definitions of the Constructs of BWW Representation Model
Definition 1: Let X be a thing modeled by a functional schema X
[image: image22.wmf]m

 = (M,
[image: image23.wmf]~

F

), and let each component of the function

[image: image24.wmf]~

F

= <F
[image: image25.wmf]1

, … , F
[image: image26.wmf]n

>: M
[image: image27.wmf]®

 V
[image: image28.wmf]1

 EMBED Equation.3 [image: image29.wmf]Ä

…
[image: image30.wmf]Ä

V
[image: image31.wmf]n

represent a property of X. Then F
[image: image32.wmf]i

, 1
[image: image33.wmf]£

 i
[image: image34.wmf]£

 n, is called the ith state function (variable) of X,
[image: image35.wmf]~

F

 is called the total state function of X, and S(X) = {< x
[image: image36.wmf]i

, … , x
[image: image37.wmf]n

>
[image: image38.wmf]Î

 V
[image: image39.wmf]1

 EMBED Equation.3 [image: image40.wmf]Ä

…
[image: image41.wmf]Ä

V
[image: image42.wmf]n

| x
[image: image43.wmf]i

= F
[image: image44.wmf]i

(M)} is called the possible state space of X.
Definition 2: Let X
[image: image45.wmf]m

 = (M,
[image: image46.wmf]~

F

) be a functional schema for a thing X. Any restrictions on the possible values of the components of
[image: image47.wmf]~

F

 and any relation among two or more such components is called a law statement, l (X)
[image: image48.wmf]Î

 L(X). Thus, l (X): V
[image: image49.wmf]1

 EMBED Equation.3 [image: image50.wmf]Ä

…
[image: image51.wmf]Ä

V
[image: image52.wmf]n

 EMBED Equation.3 [image: image53.wmf]®

 {unlawful, lawful}
Definition 3: Let X
[image: image54.wmf]m

 = (M,
[image: image55.wmf]~

F

) be a functional schema for a thing X, where
[image: image56.wmf]~

F

 = (F
[image: image57.wmf]1

, … ,F
[image: image58.wmf]n

) : M
[image: image59.wmf]®

 V
[image: image60.wmf]1

 EMBED Equation.3 [image: image61.wmf]Ä

…
[image: image62.wmf]Ä

V
[image: image63.wmf]n

 is the total state function, and let L(X) be the set of all law statements on X. Then the subset of the codomain V restricted under L(X) is called the lawful state space of X in the representation X
[image: image64.wmf]m

. That is, S
[image: image65.wmf]L

(X) {< x
[image: image66.wmf]i

, … , x
[image: image67.wmf]n

>
[image: image68.wmf]Î

 V
[image: image69.wmf]1

 EMBED Equation.3 [image: image70.wmf]Ä

…
[image: image71.wmf]Ä

V
[image: image72.wmf]n

|
[image: image73.wmf]~

F

 satisfies every l (X)
[image: image74.wmf]Î

 L(X)}
Definition 4: An ordered pair (s, s’), where s, s’
[image: image75.wmf]Î

 S(X), will be called an event.

Definition 5: Let S
[image: image76.wmf]L

(X) be the lawful state space of a thing X. We denote by G
[image: image77.wmf]L

(X) the set of transformations from the lawful state space into itself that are given as lawful in the system. That is, G
[image: image78.wmf]L

(X)
[image: image79.wmf]Í

 S
[image: image80.wmf]L

(X)
[image: image81.wmf]Ä

S
[image: image82.wmf]L

(X).

Definition 6: Let S
[image: image83.wmf]L

(X) be the lawful state space of a thing X, and let G
[image: image84.wmf]L

 (X) be the set of lawful transformations on the state space into itself. Then a lawful event in X is represented by the ordered pair (s, s’), where s, s’
[image: image85.wmf]Î

 S
[image: image86.wmf]L

(X), and s’ = g(s), g
[image: image87.wmf]Î

 G
[image: image88.wmf]L

(X).

Definition 7: Let X be a thing modeled by a functional schema X
[image: image89.wmf]m

 = (M,
[image: image90.wmf]~

F

), let t
[image: image91.wmf]Î

M, t > 0 be a time instant. Then a history of X is the set of ordered pairs, h(X) = {(t,
[image: image92.wmf]~

F

(t))}.

Definition 8: A thing X acts on a thing Y, denoted X
[image: image93.wmf]>

 Y if h(Y | X)
[image: image94.wmf]¹

 h(Y).

Definition 9: Two things X and Y are coupled, denoted B(X, Y), iff (X
[image: image95.wmf]>

Y)
[image: image96.wmf]Ú

 (Y
[image: image97.wmf]>

X).
Definition 10: Let C be a set of things, and let B
[image: image98.wmf]C

 = {(X, Y) | X, Y
[image: image99.wmf]Î

 C
[image: image100.wmf]Ù

B(X, Y)}. Let
[image: image101.wmf]s

(C, B
[image: image102.wmf]C

) be a graph, where C is the set of vertices (things) and B
[image: image103.wmf]C

 is the set of edges (couplings). Then
[image: image104.wmf]s

(C, B
[image: image105.wmf]C

) is a system iff it is a connected graph. Henceforth,
[image: image106.wmf]s

(C, B
[image: image107.wmf]C

) will be denoted by
[image: image108.wmf]s

.
Definition 11: Let
[image: image109.wmf]s

 be a system. Then:

· the composition of
[image: image110.wmf]s

 at time t is the set of things in
[image: image111.wmf]s

 at t:

[image: image112.wmf]
[image: image113.wmf]

 EMBED Equation.3 [image: image114.wmf]
[image: image115.wmf]~

C

(
[image: image116.wmf]s

, t) = {x | x
[image: image117.wmf]Î

 EMBED Equation.3 [image: image118.wmf]s

}

· the environment of
[image: image119.wmf]s

 at time t is the set of things that are not components of
[image: image120.wmf]s

 but which act on or are acted upon by components of
[image: image121.wmf]s

 at t:

[image: image122.wmf]
[image: image123.wmf]~

E

(
[image: image124.wmf]s

, t) = {x | x
[image: image125.wmf]Ï

[image: image126.wmf]~

C

(
[image: image127.wmf]s

, t)
[image: image128.wmf]Ù

(
[image: image129.wmf]$

y) (y
[image: image130.wmf]Î

[image: image131.wmf]~

C

(
[image: image132.wmf]s

, t)
[image: image133.wmf]Ù

B(x, y))}

· the structure of
[image: image134.wmf]s

 at time t is the set of couplings among the components of
[image: image135.wmf]s

and among them and the set of components in the environment of
[image: image136.wmf]s

at t:

[image: image137.wmf]~

S

(
[image: image138.wmf]s

, t) = {R
[image: image139.wmf]i

[image: image140.wmf]Î

[image: image141.wmf]_

B

(
[image: image142.wmf]s

, t)
[image: image143.wmf]È

[image: image144.wmf]Ù

B

(
[image: image145.wmf]s

, t)}
Where

[image: image146.wmf]_

B

(
[image: image147.wmf]s

, t) = {B(x, y) | x, y
[image: image148.wmf]Î

[image: image149.wmf]~

C

(
[image: image150.wmf]s

, t)}

[image: image151.wmf]Ù

B

(
[image: image152.wmf]s

, t) = {B(x, y) | x
[image: image153.wmf]Î

[image: image154.wmf]~

C

(
[image: image155.wmf]s

, t)
[image: image156.wmf]Ù

 y
[image: image157.wmf]Î

[image: image158.wmf]~

E

(
[image: image159.wmf]s

, t)}
Definition 12: Let
[image: image160.wmf]s

 be a system with composition
[image: image161.wmf]~

C

(
[image: image162.wmf]s

, t), environment
[image: image163.wmf]~

E

(
[image: image164.wmf]s

, t), and structure
[image: image165.wmf]~

S

(
[image: image166.wmf]s

, t) at time t. Then x is a subsystem of
[image: image167.wmf]s

, denoted x
[image: image168.wmf]p

[image: image169.wmf]s

, iff

· x is a system at time t, and

· [
[image: image170.wmf]~

C

(x, t)
[image: image171.wmf]Í

[image: image172.wmf]~

C

(
[image: image173.wmf]s

, t)]
[image: image174.wmf]Ù

 [
[image: image175.wmf]~

E

(x, t)
[image: image176.wmf]Í

{
[image: image177.wmf]~

E

(
[image: image178.wmf]s

, t)
[image: image179.wmf]È

{
[image: image180.wmf]~

C

(
[image: image181.wmf]s

, t) -
[image: image182.wmf]~

C

(x, t) }}]
[image: image183.wmf]Ù

 [
[image: image184.wmf]~

S

(x, t)
[image: image185.wmf]Í

[image: image186.wmf]~

S

(
[image: image187.wmf]s

, t)]
Definition 13: Let
[image: image188.wmf]s

 be a system, and let G’
[image: image189.wmf]Í

 G (
[image: image190.wmf]s

) be a subset of the set of transformations on the possible state space S (
[image: image191.wmf]s

). Furthermore, let S’ (
[image: image192.wmf]s

)
[image: image193.wmf]Í

 S (
[image: image194.wmf]s

) be a subset of the possible state space of the system. Then
[image: image195.wmf]s

 is in equilibrium in the region S’ (
[image: image196.wmf]s

) with respect to the set of transformations G’ (
[image: image197.wmf]s

) iff (
[image: image198.wmf]"

s
[image: image199.wmf]Î

 S’ (
[image: image200.wmf]s

)), (
[image: image201.wmf]"

g
[image: image202.wmf]Î

 G’ (
[image: image203.wmf]s

)), s’ = g(s) and s’
[image: image204.wmf]Î

 S‘(
[image: image205.wmf]s

). Note, for some transformations, s’ may equal s.
Definition 14: Let x
[image: image206.wmf]Î

 EMBED Equation.3 [image: image207.wmf]~

C

(
[image: image208.wmf]s

). Then x is an input component of
[image: image209.wmf]s

 iff
[image: image210.wmf]$

y, y
[image: image211.wmf]Î

[image: image212.wmf]~

E

(
[image: image213.wmf]s

) such that y
[image: image214.wmf]>

x.
Definition 15: Let x and y be two things such that x acts on y. Then the total action of x on y is A(x, y) = h(y | x) - h(y).
Definition 16: Let x be an input component of
[image: image215.wmf]s

. Then the totality of input of x is the set of environmental actions on x: U(x) =
[image: image216.wmf]~

)

(

s

E

y

Î

U

A(y, x).
Definition 17: S
[image: image217.wmf]I

(
[image: image218.wmf]s

) = {
[image: image219.wmf]~

F

(t) | < t,
[image: image220.wmf]~

F

(t) >
[image: image221.wmf]Î

U (
[image: image222.wmf]s

)} is the set of input states of a system
[image: image223.wmf]s

. s
[image: image224.wmf]Î

 S
[image: image225.wmf]I

 (
[image: image226.wmf]s

) is an input state.
Definition 18: An event <s, s’> is an external event iff s’
[image: image227.wmf]Î

 S
[image: image228.wmf]I

(
[image: image229.wmf]s

).
Definition 19: An event <s, s’> is an internal event iff s’
[image: image230.wmf]Ï

 S
[image: image231.wmf]I

(
[image: image232.wmf]s

).
Definition 20: Let x
[image: image233.wmf]Î

[image: image234.wmf]~

C

(
[image: image235.wmf]s

). Then x is an output component of
[image: image236.wmf]s

 iff
[image: image237.wmf]$

y, y
[image: image238.wmf]Î

[image: image239.wmf]~

E

(
[image: image240.wmf]s

) such that x
[image: image241.wmf]>

y.
Definition 21: Let x be an output component of
[image: image242.wmf]s

. Then the totality of output of x is the set of all actions of x on the environment of
[image: image243.wmf]s

: V(x) =
[image: image244.wmf]~

)

(

s

E

y

Î

U

A(x, y).
Definition 22: Let
[image: image245.wmf]s

 be a system, and let U (
[image: image246.wmf]s

)
[image: image247.wmf]Æ

¹

and V (
[image: image248.wmf]s

)
[image: image249.wmf]Æ

¹

. Then the function f that maps the totality of inputs of
[image: image250.wmf]s

 to the totality of outputs of
[image: image251.wmf]s

 is called the transfer (or transducer) function of
[image: image252.wmf]s

. That is, f: U (
[image: image253.wmf]s

)
[image: image254.wmf]®

V (
[image: image255.wmf]s

).
Definition 23: Let I be an index set, and let D (
[image: image256.wmf]s

) = {x
[image: image257.wmf]i

}
[image: image258.wmf]I

i

Î

 where x
[image: image259.wmf]i

 EMBED Equation.3 [image: image260.wmf]p

[image: image261.wmf]s

. Then D (
[image: image262.wmf]s

) is a decomposition over
[image: image263.wmf]s

 iff
[image: image264.wmf]~

C

(
[image: image265.wmf]s

) =
[image: image266.wmf]U

 EMBED Equation.3 [image: image267.wmf]I

i

Î

 EMBED Equation.3 [image: image268.wmf]~

C

(x
[image: image269.wmf]i

)
Definition 24: Let ∑ be a set of systems. Let L be a partition of ∑: L = {L
[image: image270.wmf]i

| i = 1,…, n} with n > 1. Then L will be called a level structure iff (
[image: image271.wmf]"

i > l), (
[image: image272.wmf]"

x) [x
[image: image273.wmf]Î

 L
[image: image274.wmf]i

[image: image275.wmf]Þ

[image: image276.wmf]$

y
[image: image277.wmf]Î

 L
[image: image278.wmf]1

-

i

[image: image279.wmf]Ù

x
[image: image280.wmf]p

y].

Definition 25: Let D (
[image: image281.wmf]s

) be a decomposition of a system
[image: image282.wmf]s

. D (
[image: image283.wmf]s

) will be termed a level structure of
[image: image284.wmf]s

 iff a partition L of D (
[image: image285.wmf]s

) exists that is a level structure.
Definition 26: Let I be an index set and D (
[image: image286.wmf]s

) be a decomposition over a system
[image: image287.wmf]s

. Then the possible state space of the decomposition is the Cartesian product of the possible state spaces of the subsystems that constitute the decomposition. That is S (D (
[image: image288.wmf]s

)) =
[image: image289.wmf]Ä

[image: image290.wmf]I

i

Î

S(x
[image: image291.wmf]i

).
Definition 27: Let <s, s’>
[image: image292.wmf]Î

 E (
[image: image293.wmf]s

) be an event in the possible event space of the system, and let d
[image: image294.wmf]j

(s) and d
[image: image295.wmf]k

(s’) be corresponding states in S(D) (j and k are not necessarily distinct). Let d
[image: image296.wmf]j

i

(s) and d
[image: image297.wmf]k

i

(s’) be the state of the ith subsystem when the system is in states s and s’, respectively. Then the pair < d
[image: image298.wmf]j

i

(s), d
[image: image299.wmf]k

i

(s’) > will be called an induced event on subsystem x
[image: image300.wmf]i

 EMBED Equation.3 [image: image301.wmf]p

[image: image302.wmf]s

 iff d
[image: image303.wmf]j

i

(s)
[image: image304.wmf]¹

 d
[image: image305.wmf]k

i

(s’). The induced event on the subsystem x
[image: image306.wmf]i

, will be designated e
[image: image307.wmf]i

.
4.4.2 Application of BWW Ontology

BWW representation model has been used in over thirty research projects for the evaluation of different modeling techniques. We give a brief review of such effort.

[Wand and Weber, 1993, 1995] have applied the BWW representation model to Entity-Relationship (ER) modeling and Logical Data Flow Diagramming (LDFD). In both grammars, they found ontological incompleteness and deficiencies in ontological clarity. They claimed that some of their conclusions are well known (e.g., deficiencies with respect to dynamics). However, they did not test their propositions empirically. Moreover, they pointed out the difficulties in performing the ontological analyses due to the fact that many of the constructs in the grammars examined are defined imprecisely.

[Weber and Zhang, 1996] examined the Nijssen Information Analysis Method (NIAM) [Nijssen, 1989]. This analysis led to a number of propositions with regard to the ontological deficiencies of NIAM. They attempted to gain empirical insight into their predictions by conducting semi-structured interviews with 10 NIAM users. One significant result was that, where ontological incompleteness existed in a grammar, users would overcome this deficiency by combining a set of grammars that overlapped minimally with each other from an ontological standpoint. This concept was termed as Minimal Ontological Overlap (MOO).

[Green, 1997] analyzed various ISAD grammars as they have been extended and implemented in CASE tools. From the analysis, he formulated a number of hypotheses concerning the grammars as they were implemented within a particular structured CASE tool - Excelerator. He then surveyed and interviewed users of Excelerator in Australia and Southeast Asia to validate the hypotheses. He found that ontological incompleteness was a significant factor in the analyst/designer’s decision to use a combination of grammars for modeling. He also extended and operationalized the concept of MOO through a proposition that, to form a MOO-set of grammars, the user would select a starting grammar and add grammars to it until the set was as ontologically complete as possible (Maximal Ontological Completeness (MOC)). Following the rule of parsimony, this set of grammars would be formed using as few candidate grammars as possible.

[Parsons and Wand, 1997A, 1997B] proposed an initial model of objects and identified representation-oriented characteristics of objects using the ontological models. They discussed some implications, such as helping systems analysts using an object-oriented approach to phrase questions that are meaningful to users, rather than using terms like “encapsulation,” “inheritance,” “composition,” and the like. However, they did not suggest ways of empirically testing their predictions.

[Opdahl and Henderson-Sellers, 2001] evaluated OPEN Modeling Language (OML) [Henderson-Sellers, 1999] based on “conventional” object-oriented constructs. OML is a component of Object-oriented Process, Environment and Notation (OPEN) [Henderson-Sellers, 1999] which is an integrated information systems development methodology. They identified ontological deficiencies in OML constructs, differences between the assumptions behind OML modeling and those of the BWW representational model, the multiple roles played by OML constructs when used in modeling, and more precise guidelines for the definition of OML constructs. The propositions deriving from the ontological deficiencies identified in this analysis have not been tested to date however.
Their later work [Opdahl and Henderson-Sellers, 2002] used the BWW representation model to analyze and evaluate the use of UML as a language for representing concrete problem domains. They mapped each relevant individual UML modeling construct to the BWW model constructs. The result showed that many of the central UML constructs are well matched with the BWW-model, but there are still some deficiencies with the UML metamodel. They proposed some improvements to UML based on the deficiencies identified.

[Evermann and Wand, 2001] also mapped UML constructs to BWW constructs. However their purpose is slightly different. Instead of evaluating the representational capability of UML as a modeling grammar, they tried to assign clear real-world semantics to UML constructs. They specially looked into class diagram, state chart diagram and collaboration and sequence diagram in UML. Based on the mapping they formulated 17 intra- and inter-diagram integrity rules to guide the application of UML in certain conceptual modeling situations and ensure that inconsistencies across diagrams are identified. However, as they pointed out in future research section, their formulated rules have to be validated by empirical observations.

[Irwin and Turk, 2005] focused specifically on one kind of UML diagrams, the Use Case Diagram. Use case modeling is widely accepted as the initial step in UML modeling. Their analysis shows that there are mainly three problems in the use case modeling grammar. First, the grammar is ontologically incomplete with respect to representing the system structure or decomposition. There are no clearly-defined constructs for representing systems at different levels of detail such that no information is lost between levels. Second, the definitions of actor, use case, association, and generalization are ontologically overloaded, or at best, ambiguous and imprecise. Finally, the <<include>> and <<extend>> constructs are ontologically redundant. Their semantics overlap with other UML constructs, such as aggregation. The authors proposed nine hypotheses regarding the problems.

Among all types of modeling languages being ontologically evaluated, there is a particular focus on the evaluation of “relationship” construct in various conceptual modeling grammars.

[Wand et al, 1999] looked at some practical issues in modeling relationships in Entity-Relationship (ER) diagrams. In particular, they examined the meaning and validity of relationship with attributes, binary and higher-order relationships and optional and mandatory relationships. They generate a few simple, prescriptive rules that they believe will enhance the meaning when communicating via conceptual models. However they did not validate the usefulness of their rules empirically.
[Bodart et al, 2001] refined the idea of [Wand et al, 1999] and devised experiments to test their rules on the optional and mandatory relationships in ER diagrams. They found that, when users of the diagrams require a deep-level understanding of the problem situation being modeled by the ER diagram, optional roles should not be used as they undermine the users’ abilities to grasp important problem domain semantics.

[Burton-Jones and Weber, 1999] focused specifically on the relationship construct with attributes in ER modeling. They argued that use of this construct produces ontologically unclear representations of a domain. They also report results from an experiment where the impact of using relationships with attributes on the problem-solving performance of users is investigated. Consistent with their predictions derived from ontological evaluation, they found that using relationships with attributes undermined problem-solving performance in unfamiliar domains. But contrary to their predictions, the use did not undermine problem-solving performance in familiar domains.

[Opdahl et al, 1995] evaluated whole-part relationships in OO-models, e.g. UML’s aggregation and composition constructs.

[Shanks et al, 2003] also investigated part-whole relationships in conceptual modeling grammars. They used the BWW model to support their argument for representation of part-whole relationships as entities as opposed to relationships or associations. Their argument is further supported by an empirical study which concludes that using entities to represent part-whole relationships leads to an improvement in the level of the user’s understanding of the domain.

[Fettke and Loos, 2003] evaluated reference models. The main idea of their approach is the ontological normalization of a reference model. An ontological normalization is comparable with the normalization of a database schema but considers the structure of reality and not technical aspects. The ontological normalization of a reference model consists of four steps: (1) Developing a transformation mapping, (2) Identifying ontological modeling deficiencies, (3) Transforming the reference model, and (4) Assessing the results. They pointed out that an ontological evaluation is not inherently superior to other evaluation approaches. The authors identify a number of possible application areas, including evaluation of reference models, comparison of two or more reference models, representation of reference models in model repositories, and describing the key characteristics of reference models in order to facilitate selection of appropriate models in specific situations.

[Evermann and Wand, 2005A] proposed a method to restrict the syntax of a modeling language to ensure that only possible configurations of a domain can be modeled, thus increasing the likelihood of creating correct domain models. The proposed method, based on domain ontologies, captures relationships among domain elements via constraints on the language meta-model, thus restricting the set of statements about the domain that can be generated with the language. In effect, this method creates domain specific modeling languages from more generic ones. The method is demonstrated using UML. Specifically, it is applied to the subset of UML dealing with object behavior and its applicability is demonstrated on a specific modeling example.

Process modeling grammars are also popular target modeling grammars to be evaluated. Such work started from [Keen and Lakos, 1996] They determined essential features for a process modeling scheme by evaluating six process modeling techniques in a historical sequence. Among the modeling techniques evaluated were: Flowcharts, IS0 Conceptual Schema Model, Merise process model, Data Flow Diagrams (DFD), IDEF3 and Object Petri Nets and LOOPN++. The evaluation is restricted to the assessment of the ontological completeness of each technique. From the analysis the authors concluded that, in general, the BWW ontology facilitates the interpretation and comparison of process modeling techniques. The authors did not, however, empirically verify their findings on the features of process modeling schemes.

[Green and Rosemann, 2000] analyzed the five views - process, data, function, organization and output of the Architecture of Integrated Information Systems (ARIS) popularized by [Scheer, 2000] The analysis especially focused on the process view - event-driven process chains (EPC). Some propositions were prompted that the process view alone is not sufficient to model all the real-world constructs required, as there are no direct representations for thing, class, and/or kind in EPC. Some other symbols or views are needed to overcome these deficiencies. However, even when considering all five views in combination, problems may still arise in representing all potentially required business rules, specifying the scope and boundaries of the system under consideration, and employing a “top-down” approach to analysis and design. They later did an empirical study [Green and Rosemann, 2002] to test the evaluative propositions that they derived. The study is conducted with post-graduate students as well as with experienced users of ARIS. Even when considering all five views of ARIS, modelers have problems representing business rules and the scope and boundary of systems. Surprisingly, even though it is completely ontologically redundant, users still find the function view useful in modeling.

[Green, Roseman and Indulska, 2005] evaluated many leading standards in the Enterprise System Interoperability domain, including Business Process Execution Language for Web Services v1.1 (BPEL4WS), Business Process Modeling Language v1.0 (BPML), Web Service Choreography Interface v1.0 (WSCI), and ebXML Business Process Specification Schema (ebXML BPSS) v1.1. All these standards, which proclaim to allow for specification of intra- and inter-organizational business processes, have been analyzed in terms of their ontological completeness. They found that users will lack important implementation information because of representational deficiencies with regard to things, external events, and system-level structure and decomposition. Additionally due to ontological redundancy, the complexity of the specification is unnecessarily increased. Finally, users of the specification will have to bring in extra-model knowledge to understand constructs in the specification due to instances of ontological excess. Such propositions need to be empirically tested in order to be verified. Interestingly they found that ebXML provides a wider range of language constructs for specification requirements, indicated through its comparatively high degree of ontological completeness. In addition, a minimal ontological overlap (MOO) analysis was conducted in order to determine the set of modeling standards with a minimum number of overlapping constructs but with maximal ontological completeness (MOC). The study identified two sets of standards that together allow for the most expressive power with the least overlap of constructs, viz., ebXML and BPEL4WS, and, ebXML and WSCI.

[Recker, Indulska, Rosemann and Green, 2005] evaluated the most recent process modeling notation standard BPMN, which claims to support the process-oriented specification of business and system requirements and attracts significant attention in academic and practice communities. They also made a comparison of 12 process modeling language, including Petri Net, EPC, ebXML, BPML, BPEL4WS and BPMN. Their ontological analysis confirmed the relatively high maturity of BPMN. Still, a few potential shortcomings have been identified. An empirical study with BPMN users was able to confirm that BPMN contains some ambiguous elements in its specification, for example the Pool and the Lane constructs. We found that they mapped the ontological construct “thing” to BPMN construct Lane and Pool. However Lane and Pool denotes the agent who is supposed to perform specific action. The information about the business object the agent operates is lost. This paper has a limitation that it focused on ontological completeness only. Analyzing the ontological clarity of process modeling notations will lead to further insights into the process modeling discipline.

Up to now, the evaluation work of all process modeling grammar (ARIS [Green and Rosemann, 2000, 2002], ebXML, BPEL4WS, WSCI [Green, Roseman and Indulska, 2005], BPMN [Recker, Indulska, Rosemann and Green, 2005]) using BWW model reveals following ontological incompleteness:

· Lack of representation of thing, class and kind.

· Lack of representation of conceivable state space, lawful state space, conceivable event space and lawful event space. This can explain the result of the empirical experiment conducted by [Green and Rosemann, 2002] regarding the limited expressiveness on modeling business rules.

· Lack of representation of system, system composition, system environment, system structure, system decomposition, and coupling. This can explain the difficulties the interviewees encountered when they try to represent the scope and boundary of a system and try to decompose the system when they only used process modeling.

Table 4.2 [Green, Roseman and Indulska, 2005] summarizes the related representational analysis work using BWW model to date.

Table 4.2 Related Work Using the BWW Models [Green, Roseman and Indulska, 2005]

[image: image308.emf]
Not only the BWW representation model, but also other models of BWW ontology were used. [Burton-Jones and Meso, 2002] report the results of an empirical study of the applicability of the BWW good decomposition model in object-oriented analysis (OOA). The study operationalized each of the conditions of the model in a set of UML diagrams and, subsequently, tests the study participants’ understanding of the diagrams. From the results of the study, Burton-Jones and Meso conclude that the good decomposition model conditions could be used as an effective training device to help analysts develop “good” UML diagrams. Moreover, they suggest that the model should be tested as an OOA quality metric.

[Herrera et al, 2005] incorporated Bunge’s ontology’s latest development in social systems into BWW model, to overcome its most important weakness as criticized by researchers. Bunge’s theory has made progress in his last proposition in 1993. He proposed an ontological model of social systems (BSS model) which towards the mastery of the social systems, their organizations and applications. The author hence emphasize the necessity to incorporate the new social systems model into the original representational analysis using BWW model.

4.4.3 Other Upper Level Ontology

BWW Ontology is considered to be the most popular reference ontology used for representational analyses in current research and this situation is clearly reflected in published research. However there are other competing ontology-based theories that have been proposed as a theoretical foundation for representational analysis of conceptual modeling in Information Systems. These upper-level ontologies have been built to address similar issues and appear to be equally expressive on the level of abstraction and generosity. However they have not yet achieved the popularity and dissemination of the BWW model.

[Milton, Kazmierczak and Keen, 2001, 2002] employed Chisholm’s ontology to evaluate five data modeling languages: ER model, Functional Data Model, Semantic Data Model [Hammer, 1981], NIAM and Object Modeling Technique (OMT) [Blaha, 1998]. Chisholm’s ontology has given some new insights into the role of attributes and into the changing nature of relationships. They found that Chisholm’s ontology shares to a significant degree the world view with the data modeling languages. However the key difference lies in the flexibility. Chisholm’s ontology achieves more flexibility through its relations and loose-coupling of attributes with respect to entities (individuals), while E-R and NIAM do not because of their tight coupling between entities and attributes. However, Functional Data Model captures the fundamental nature of Chisholm’s ontology more closely than the other models and has more potential to be able to support other elements presently not supported.

[Guizzardi et al, 2002] disagreed with some research effort to use UML as an Ontology Representation Language claiming that in order to model reality a conceptual modeling language should be founded on formal upper-level ontologies. General Ontological Language (GOL) and its underlying upper level ontology [Degen et al, 2001] is used to evaluate the ontological correctness of a conceptual UML class model and guidelines for how to assign well-defined ontological semantics to UML constructs are developed.

As the number of ontologies proposed by researchers for the evaluation of conceptual modeling methods is increasing, the need to choose the right ontology becomes apparent. This further requires guidance on comparing and evaluating different ontologies for determining their strengths and weaknesses. At this stage, the methods proposed by researchers are mainly based on developing meta-models for ontologies.

[Rosemann and Green, 2002] presented an extended Entity-Relationship based meta-model for the BWW constructs. This meta-model is familiar to many IS professionals and more specific than plain English text, but easier to understand than the set-theoretic language of the original BWW models. It also facilitates the comparison of constructs of different ontologies. Moreover, this approach supports the identification of patterns of constructs that might be common across meta models for modeling techniques. Such findings are useful in extending and refining the BWW theory.

[Davies, Green and Rosemann, 2002] demonstrated the potential usefulness of the use of meta-models for comparing and evaluating ontologies. They compared the meta-models of the BWW representation model and Chisolm’s Ontology, concentrating on ontological equivalence, depth of structure, and comprehensiveness of scope of the models. The findings of the work revealed that the two models were not completely ontologically equivalent, with the BWW model being more comprehensive in scope and Chisolm’s Ontology having a deeper structure than that of the BWW model. They later [Davies, Green and Rosemann, 2003] extended their work to include a detailed discussion of the benefits of the use of meta-models for evaluating ontologies.

[Green et al, 2006] argued that representational analysis is a popular and useful approach to the evaluation of not just conceptual modeling techniques but any communicative technique in which there exists semantic meaning underlying the technique constructs. However, critical questions remain as to choosing the appropriate reference ontology as a representational benchmark for a given situation and applying that ontology analytically in the process of representational analysis. They demonstrated how meta-models of proposed reference ontologies can be compared and evaluated on the bases of ontological equivalence, deep structure, and comprehensiveness of the scope of the candidate meta-models in order to aid the selection task. In this way, an appropriate reference ontology can be selected for an analytical process. Having selected the reference ontology for the analytical task, this paper explains the current practice of representational analysis and clearly delineates the shortcomings in the current analytical procedure at the input, process and output stages of which the researcher must be aware. Finally, the paper demonstrated, through the use of an example, how an improved version of the representational analytical methodology can be achieved by mitigating some of the shortcomings

Besides theoretical evaluation, there is also advocate for taking into account cognitive-based empirical approach, because information represented is not necessarily the same as information understood. [Evermann, 2005A] Also representational analysis has to consider the purpose of the modeling grammar as well as the background of the modeler who is applying this modeling grammar.
4.5 Enterprise Ontology

Although BWW Ontology has been successfully used as reference ontology for evaluating many conceptual modeling grammars, we have found several deficiencies in it, e.g. incapable or at least inefficient in representing phenomenon that entails doing or cognition.
Because of these deficiencies, when modeling phenomenon in enterprise environment, in order to develop a modeling grammar with Maximal Ontological Completeness, we propose to complement BWW Ontology with other ontology which together can act as a benchmark ontology for ontological analysis. We propose that the best candidate ontology is enterprise ontology.
Unlike an upper level ontology, very few enterprise ontologies have been developed, although there are abundant Enterprise Modeling methodologies. One of the reasons for a lack of comprehensive enterprise ontologies is that such ontologies must be able to represent various concepts of time, activity, actor, resource, organization, market, strategy etc. Many of these concepts are difficult to derive definitions that can be linked to an upper level ontology. Furthermore, these concepts must be integrated to support reasoning.
4.5.1 The TOVE Project
We have found two projects worldwide that have built complete enterprise ontologies. One is the TOVE Project at the Enterprise Integration Laboratory, University of Toronto [http://www.eil.utoronto.ca/enterprise-modelling/TOVE/]. The goal of the TOVE project is to create an ontology that has the following characteristics [Fox, 1992]:

· provides a shared terminology for the enterprise that every application can jointly understand and use

· defines the meaning (semantics) of each term in as precise and as unambiguous as possible a manner using first-order logic

· implements the semantics in a set of PROLOG axioms that enable TOVE to automatically deduce the answer to many commonsense questions about the enterprise

· defines a symbology for depicting a term, or the concept constructed thereof, in a graphic context

The TOVE project has produced ontologies of Activity [Gruninger, 1994], Resource [Fadel, 1994], Organization [Fox, 1998], Product and Requirement [Lin, 1996], Quality [Kim, 1995] and Cost [Tham, 1994].
4.5.2 The Enterprise Project
The other is The Enterprise Project at Artificial Intelligence Applications Institute at the University of Edinburgh [http://www.aiai.ed.ac.uk/project/enterprise/]. The Enterprise Ontology they developed was initially informal, consisting of terms and definitions in natural language. They later converted it into a formal ontology encoded in Ontolingua [Gruber, 1993], an online distributed collaborative ontology editing environment. The syntax and semantics of Ontolingua definitions are based on a notation and semantics for an extended version of first-order predicate calculus called Knowledge Format Interchange Format (KIF) [Genesereth, 1992]. Their experiences during the conversion were recorded in [Uschold, 1996]. A complete list of terms is listed in Table 2. Their definitions expressed in natural language can be found in [Uschold, 1998]. The Ontolingua version is held online in the Library of Ontologies maintained by Knowledge Systems Lab (KSL) at Stanford University [http://www.ksl.stanford.edu/software/ontolingua/].
A list of all the terms defined in the Enterprise Ontology can be found in Table 4.3.

Table 4.3 Terms of Enterprise Ontology
	ACTIVITY
	ORGANISATION
	STRATEGY
	MARKETING
	TIME

	Activity
	Person
	Purpose
	Sale
	Time Line

	Activity Specification
	Machine
	Hold Purpose
	Potential Sale
	Time

	Execute
	Corporation
	Intended Purpose
	For Sale
	Time Point

	Executed Activity Specification
	Partnership
	Purpose-Holder
	Sale Offer
	

	T-Begin
	Partner
	Strategic Purpose
	Vendor
	

	T-End
	Legal
	Entity
	Objective
	Actual Customer

	Pre-Condition
	Organizational Unit
	Vision
	Potential Customer
	

	Effect
	Manage
	Mission
	Customer
	

	Doer
	Delegate
	Goal
	Reseller
	

	Sub-Activity
	Management Link
	Help Achieve
	Product
	

	Authority
	Legal Ownership
	Strategy
	Asking Price
	

	Activity Owner
	Non-Legal Ownership
	Strategic Planning
	Sale Price
	

	Event
	Ownership
	Strategic Action
	Market
	

	Plan
	Owner
	Decision
	Segmentation Variable
	

	Sub-Plan
	Asset
	Assumption
	Market Segment
	

	Planning
	Stakeholder
	Critical Assumption
	Market Research
	

	Process Specification
	Employment Contract
	Non-Critical Assumption
	Brand
	

	Capability
	Share
	Influence Factor
	Image
	

	Skill
	Shareholder
	Critical Influence Factor
	Feature
	

	Resource
	
	Non-Critical Influence Factor
	Need
	

	Resource Allocation
	
	Critical Success Factor
	Market Need
	

	Resource Substitute
	
	Risk
	Promotion
	

	
	
	
	Competitor
	

We adopt the Enterprise Ontology developed by University of Edinburgh in this paper rather than the one developed by TOVE project for the following reasons:

· The former has been formally defined using an extended version of first-order logic (KIF, [Genesereth, 1992]).

· The former is integrated while the latter is fragmented.
In the next a few sections, we will present all the terms of the Enterprise Ontology along with their definitions and examples. Most of them were adapted from [Uschold, 1998]. Within each section, the terms that were regarded as most basic are first defined, and then other terms can be defined using these basic ones. Finally we present the conversion process from an informal Enterprise Ontology to a formal Enterprise Ontology.
4.5.3 Meta Ontology

In this section, we present the main terms and concepts used to define the other terms in Enterprise Ontology. These terms together are called Meta Ontology.
4.5.3.1 Entities, Relationships and States of Affairs

The Enterprise Ontology is composed of a set of ENTITIES and a set of RELATIONSHIPS between ENTITIES. ENTITIES can play ROLES in RELATIONSHIPS. An ATTRIBUTE is a special kind of RELATIONSHIP. A STATE OF AFFAIRS is a situation characterised by any combination of ENTITIES being in any number of RELATIONSHIPS with one another.

ENTITY: a fundamental thing in the domain being modelled.

Examples:

· a human being is an ENTITY.

· a plan is an ENTITY.

Notes:

1. An ENTITY may participate in RELATIONSHIPS with other ENTITIES.

2. To conform to common English usage, and to avoid complicating the text of the definitions in the EO, we intentionally avoid distinguishing between a type of ENTITY, (frequently called a class) and a particular ENTITY of a certain type (frequently called an instance). We use the word ENTITY for both, relying on context to resolve potential ambiguity.

RELATIONSHIP: the way that two or more ENTITIES can be associated with each other.

Examples:

· Have-Capability is a relationship between a Person and an Activity denoting that the Person is able to perform the Activity.

· a Sale is a relationship constituting an agreement between two Legal Entities to exchange a Product for a Sale Price.

Notes:

1. A RELATIONSHIP is itself an ENTITY that can participate in further RELATIONSHIPS.

2. In natural language the word “relationship” has many meanings. The following are important but logically distinct concepts that “relationship” commonly refers to:

· the kind of relationship (closest to above definition);

· a name given to the kind of relationship (e.g. “Marriage”, “Have-Capability”);

· a particular relationship between particular ENTITIES.

Examples:

· Bill and Hillary Clinton are in a Marriage relationship.

· Einstein was in a Have-Capability relationship with the Activity of developing a general theory of relativity.

Further distinctions can be made reflecting the use of the mathematical concept of a tuple. For example, in mathematics, the set of all tuples related in a certain way is a useful concept (e.g. the set of all married couples).

To conform to common English usage, and to avoid complicating the text of the definitions in the Informal EO, we will use the word “Relationship” fairly loosely, including various of the above meanings.

ROLE: the way in which an ENTITY participates in a RELATIONSHIP.

Examples:

· Vendor is a ROLE played by an ENTITY in a Sale RELATIONSHIP.

Notes:

1. A participating ENTITY is said to be playing the ROLE.

ATTRIBUTE: a RELATIONSHIP between two ENTITIES (referred to as the “attributed” and “value” ENTITIES) with the following property:

· Within the scope of interest of the model, for any particular attributed ENTITY the RELATIONSHIP may exist with only one value ENTITY.

Examples:

· Date of Birth is an ATTRIBUTE associating only one Date with a given Person.

Notes:

· In this definition, RELATIONSHIP refers to the kind of association between two entities, not a particular case of two or more ENTITIES being so-associated.

· From a mathematical perspective, an ATTRIBUTE is a function.

STATE OF AFFAIRS: a situation; the following is necessarily true of a STATE OF AFFAIRS:

· It consists of a set of RELATIONSHIPS between particular ENTITIES;

· e.g. “Harry Brown can lay bricks” (i.e. is in the Have-Capability RELATIONSHIP with the Activity: bricklaying''.)

· It can be said to hold, or be true (and conversely to not hold or to be false).

ACHIEVE: the realisation of a State Of Affairs, i.e. being made true;

4.5.3.2 Actors

Certain ROLES in RELATIONSHIPS are special in that the playing of these ROLES entails doing or cognition. These are called ACTOR ROLES; ENTITIES playing such roles are called ACTORS.

ACTOR ROLE: A kind of ROLE in a RELATIONSHIP whereby the playing of the ROLE entails some notion of doing or cognition.

Notes:

1. Some of the important RELATIONSHIPS in the Enterprise Ontology that have ACTOR ROLES are:
RELATIONSHIPS:
ACTOR ROLES:

Perform-Activity
performer

Have-Capability
haver

Hold-Authority
holder

Delegate

delegator
delegatee

Hold-Purpose
holder

Hold-Assumption
holder

Ownership

owner
2. Users of the ontology who define RELATIONSHIPS should indicate which ROLES are ACTOR ROLES.

ACTOR: an ENTITY that actually plays an ACTOR ROLE in a RELATIONSHIP.

Note:

1. Whether or not a given ENTITY is an ACTOR or not depends upon what RELATIONSHIPS it is participating in at a given point in time. The same ENTITY might be an ACTOR at one time, but not at another time.

POTENTIAL ACTOR: an ENTITY that can play an ACTOR ROLE in a RELATIONSHIP, i.e. an ENTITY for which some notion of doing or cognition is possible.

Notes:

1. An ENTITY is either always a POTENTIAL ACTOR, or never one. It does not depend upon what RELATIONSHIPS it is participating in (unlike ACTOR).

2. The set of POTENTIAL ACTORS currently includes, but is not necessarily limited to the following:

· Person

· Organizational Unit

· Machine

3. If users of the Ontology require other ENTITIES to be ACTORS, they should review the Ontology RELATIONSHIPS using the ACTOR ROLE to ensure the addition is valid for them. If it is, then the new kind of ENTITY must be added to the above list of POTENTIAL ACTORS.

4. A more elaborate classification of POTENTIAL ACTORS might consist of two main types: Natural and Artificial, the latter being synonymous with Machines. Animals, of which Person could be a special type would come under the former category as would Gravity which is rather different, and might be classified separately as In-Animate. Artificial POTENTIAL ACTORS might be further classified, e.g. into physical and conceptual Machines.

5. Some ACTOR ROLES can be played by only some of the above POTENTIAL ACTORS. For example, it may not be allowed for a MACHINE to own something. Where agreement exists, such restrictions may be specified in the Ontology itself; alternatively they may be specified later by individual users.

4.5.3.3 Time

The concept of time is not specific to Enterprises, but is used by them. Rather than to rethink existing work on representing time, we imported terms and definitions from KRSL [Lehrer, 1993], which in turn was based on [Allen, 1984].

An ACTIVITY is performed over a TIME INTERVAL, which is comprised of TIME POINTS. The latter comprise a TIME LINE. We define just these three terms5.We anticipate that additional terms for representing time will be required e.g. a ``before'' relationship for specifying temporal constraints between SUB-ACTIVITIES in a PLAN. They are already formally encoded in Ontolingua and publicly available. An ontology called ``Simple-Time'' from the KSL Library of Ontologies (Farquhar et al., 1995) is imported in the Formal EO.

TIME LINE: an ordered, continuous, infinite sequence of TIME POINTS.

TIME POINT: a particular, instantaneous point in time;

Notes:

1. a TIME POINT can exist independently from knowing where it is on the TIME LINE (e.g. “when the next big earthquake hits California”). You can still talk about it and perhaps constrain it to some extent.

TIME INTERVAL: an interval of time specified as two TIME POINTS and bounds on the distance between the two time points.

Notes:

1. The bounds imply that the interval is in a sense fuzzy; you do not know how long it is or necessarily where on the TIME LINE the TIME POINTS are.

2. The following is a special case of a TIME INTERVAL:

· Always: the interval from infinitely far into the past to infinitely far into the future.

4.5.3.4 Related Terms

· Class (in Object-Oriented systems, e.g.: Ontolingua) &

Concept (in Description Logics): a kind or type of ENTITY

· Instance, Individual: ENTITY

· Relation, Predicate: RELATIONSHIP

· State: STATE OF AFFAIRS

· Slot (in Object-Oriented systems): ATTRIBUTE

· Role (in Description Logics): similar to ATTRIBUTE; Roles in Description Logics may have more than one value.

· Agent: ACTOR

· Function (in mathematics): an ATTRIBUTE is a function, though not all functions need to be ATTRIBUTES.
4.5.4 Terms of Activity, Plan, Capability and Resource
In this section, we present the central concepts of an ACTIVITY, which is something actually done, and an ACTIVITY SPECIFICATION, which is like a recipe describing something to do. Most activity/planning/process ontologies only have a representation for the latter. To allow convenient modeling of process enactment and/or keeping of historical records of past activities, it is helpful to represent instances of the actual doing, i.e. the carrying out of the “recipes”.

We also present various important Relationships between ACTIVITIES and other ENTITIES. Important related concepts are: PLAN, which is an ACTIVITY SPECIFICATION with an INTENDED PURPOSE; CAPABILITY to perform ACTIVITIES, and RESOURCE which is something that can be used or consumed during an ACTIVITY.

4.5.4.1 Activities

ACTIVITY: something done over a particular TIME INTERVAL. The following may pertain to an ACTIVITY:

· has PRE-CONDITION(S)
· has EFFECT(S)
· is performed by one or more DOERS
· is decomposed into more detailed SUB-ACTIVITIES
· entails use and/or consumption of RESOURCES
· has AUTHORITY requirements
· is associated with an [ACTIVITY] OWNER
· has a measured efficiency
Notes

1. An ACTIVITY can have happened in the past, may be happening in the present, and a hypothetical future ACTIVITY may be envisaged.

2. The word “something” in the above definition is deliberately general; we mean to include mental activities, for example.

3. We wish to allow PURPOSE-free ACTIVITY, such as water flowing down a hill. An association between an ACTIVITY and a PURPOSE can be made by matching the INTENDED PURPOSE of a PLAN to the EFFECT(S) of ACTIVITIES specified in the PLAN.

4. ACTIVITIES may be informally classified as “strategic”, “tactical” or “operational” depending on the “level” of an associated PURPOSE as characterised by the HELP ACHIEVE Relationship between PURPOSES.

ACTIVITY SPECIFICATION: a characterisation of something to do; a specification of activity.

Notes:

1. an ACTIVITY SPECIFICATION can be thought of as a constraint functioning as a selector identifying a restricted range of ACTIVITIES in the universe;

2. insofar as an ACTIVITY SPECIFICATION will be built up from various components (statements in some language), each constraining the specification in different ways, an ACTIVITY SPECIFICATION can be thought of a collection of constraints.

3. The language for expressing ACTIVITY SPECIFICATIONS will include statements about how ACTIVITIES are decomposed into SUB-ACTIVITIES, temporal ordering of (SUB-) ACTIVITIES, RESOURCE usage, and much more.

4. An ACTIVITY SPECIFICATION is deliberately intended to include any degree of specification of ACTIVITIES; for example:

· a trivial level of specification: “go to Edinburgh”
· comprehensive and detailed set of instructions involving many ACTIVITIES.

5. An ACTIVITY SPECIFICATION need not be EXECUTABLE; possible reasons are:

· it contains constraints that cannot be met (e.g. regarding RESOURCE usage or timing)
· it is underspecified and/or ambiguous, so the DOER has insufficient information to proceed with execution.

EXECUTE: a Relationship between one or more Potential Actors and an ACTIVITY SPECIFICATION whereby the one or more Potential Actors perform the specified ACTIVITIES.
Notes:

1. Because a PLAN is an ACTIVITY SPECIFICATION, it is also correct to speak of EXECUTION of a PLAN.

2. The EXECUTION of a PLAN should result in the ACHIEVEMENT of its INTENDED PURPOSE.

EXECUTED ACTIVITY SPECIFICATION: a Relationship between an ACTIVITY SPECIFICATION and an ACTIVITY whereby the ACTIVITY is the result of [one] EXECUTION of the ACTIVITY SPECIFICATION.

Notes:

1. An ACTIVITY SPECIFICATION has been executed when all the specified ACTIVITIES have been performed; if the ACTIVITY SPECIFICATION is a PLAN, then execution should result in the ACHIEVEMENT of the PLAN'S INTENDED PURPOSE.

2. This is a one-to-many Relationship because an ACTIVITY SPECIFICATION may in general be executed many times.

T-BEGIN and T-END: the two TIME POINTS that define the TIME INTERVAL over which an ACTIVITY is done.

PRE-CONDITION: a State Of Affairs required being true in order for the ACTIVITY to be performed.

Note:

1. The requirement may be specified to hold immediately before T-BEGIN, immediately before T-END, or throughout the whole TIME INTERVAL.

EFFECT: State Of Affairs that is brought about (i.e. made true) by the ACTIVITY.

Note:

1. The EFFECT may be specified to hold immediately after T-BEGIN, immediately after T-END, or throughout the whole TIME INTERVAL.

For example, ringing a door buzzer has EFFECT of producing noise during but not before or after the TIME INTERVAL of the ACTIVITY.

DOER: the Role of an Actor in a Relationship with an ACTIVITY whereby the Actor performs (all or part of) the ACTIVITY.

Notes:

1. There may be more than one DOER for a given ACTIVITY.

2. Not all ACTIVITIES need have an explicit DOER, e.g. flowing water. In such cases, it may be more natural to think of the DOER as the supplier of force behind an ACTIVITY (e.g. the environment, gravity).

SUB-ACTIVITY: the role of an ACTIVITY in a Relationship with another ACTIVITY such that performance of the first ACTIVITY is considered to be part of the performance of the other ACTIVITY.

Examples:

· performing each of the following SUB-ACTIVITIES may be considered to be part of performing the ACTIVITY “go to Edinburgh”
· go to Heathrow

· fly to Edinburgh airport

· go to Edinburgh city centre

Notes:

1. Typically an ACTIVITY is decomposed into SUB-ACTIVITIES to provide more detail.

2. There is much more structure in an activity decomposition than a simple set of SUB-ACTIVITIES, e.g. temporal constraints may define a partial order.

AUTHORITY: the right of an Actor to EXECUTE an ACTIVITY SPECIFICATION. Informally, this is equivalent to the right to perform one or more ACTIVITIES.

Notes:

1. The holder of AUTHORITY need not have the CAPABILITY to perform the ACTIVITIES.

2. The Actor that has the right to perform the Activity may grant such right to another Actor. This is a kind of DELEGATION.

3. The holder of AUTHORITY may be self-authorised.

4. This definition allows for the case of a MACHINE having AUTHORITY.

5. The idea of CAPABILITY vs AUTHORITY is analogous to that of “can” vs. “may”.

ACTIVITY OWNER: Actor responsible for an ACTIVITY.

Notes:

1. May be identified indirectly via Role (e.g. project manager) or directly as a named PERSON.

2. This will normally be NON-LEGAL OWNERSHIP.

Depending on their requirements, users of the Ontology may find the need to define a variety of specific kind of ACTIVITIES. EVENT is introduced as one kind of ACTIVITY, but no details are given. This allows users of the Ontology to distinguish EVENT from an arbitrary ACTIVITY, while ensuring that it inherits all the properties of ACTIVITY as defined in the Ontology.

EVENT: a kind of ACTIVITY

Notes:

1. Various formalisms for modelling activities distinguish between EVENT and ACTIVITY; the former being is seen as outside the scope of interest of the model apart from its EFFECTS. In particular, the model will not recognise the DOER, the DURATION, or choice or control over its occurrence (e.g. a hurricane which is performed by the “environment”).

2. Another common distinction between EVENT and ACTIVITY is that the former is seen as instantaneous and the latter as having duration. In fact, it is arguable that any event has some duration even if it is not measured, and the duration of ACTIVITY can be made arbitrarily small. Therefore, this is not considered a valid distinction to include in the ontology.

4.5.4.2 Plans

PLAN: an ACTIVITY SPECIFICATION with an INTENDED PURPOSE.

Note:

1. See notes under ACTIVITY SPECIFICATION.

SUB-PLAN: a PLAN whose INTENDED PURPOSE HELPS ACHIEVE the INTENDED PURPOSE of another PLAN.

PLANNING: an ACTIVITY whose INTENDED PURPOSE is to produce a PLAN.

PROCESS SPECIFICATION: a PLAN that is intended to be or is capable of being EXECUTED more than once.

Notes:

1. The term “process” is intentionally not defined, as it means so many things to so many people. The terms in this ontology should be sufficient to define whatever specific notion of “process” is required.

2. Typically, a PROCESS SPECIFICATION will be parameterised to enable reusability in various forms at different times. As such, it may be viewed as a PLAN schema.

4.5.4.3 Capabilities

CAPABILITY: a Relationship between a Potential Actor and an ACTIVITY SPECIFICATION denoting the ability of the Potential Actor to perform the specified ACTIVITIES.

Note:

1. The idea of CAPABILITY vs AUTHORITY is analogous to that of “can” vs. “may”.

SKILL: a CAPABILITY such that:

· the Potential Actor is a PERSON;

· the ability must be practised/demonstrated to some measurable degree.

4.5.4.4 Resources

RESOURCE: the Role of an Entity in a Relationship with an ACTIVITY or ACTIVITY SPECIFICATION whereby the Entity is or can be used or consumed during the performance of the ACTIVITY or the ACTIVITIES as specified in the ACTIVITY SPECIFICATION.

Notes:

1. a RESOURCE may have a quantifiable measure denoting how much is available for use in ACTIVITIES, e.g. amount of fuel, number of typewriters

· If the RESOURCE is used but not consumed, the quantity available will decrease at the beginning and return to the original level at the end of the TIME INTERVAL of the ACTIVITY.

· If the RESOURCE is consumed, the quantity available will decrease over the TIME INTERVAL of the ACTIVITY.

2. a RESOURCE may be shared by more than one ACTIVITY

3. An Entity produced by an ACTIVITY may be viewed as a RESOURCE in that other ACTIVITIES may use/consume it; however, such outputs are not RESOURCES with respect to the producing ACTIVITY.

RESOURCE ALLOCATION: the allocation of RESOURCES to ACTIVITIES.

Notes:

1. RESOURCE ALLOCATION is itself an ACTIVITY, though it may not be necessary to model it explicitly as such. Indeed, the ACTIVITY of RESOURCE ALLOCATION itself may have RESOURCES allocated to it (e.g. personnel);

2. RESOURCE ALLOCATION is the responsibility of OUs;

3. an OU responsible for RESOURCE ALLOCATION may DELEGATE it to another OU. RESOURCE SUBSTITUTE: a RESOURCE that can be used or consumed in an ACTIVITY instead of another RESOURCE.

4.5.4.5 Related Terms

Behaviour: ACTIVITY

Task: ACTIVITY

Action: ACTIVITY

Personal Skill: the degree of SKILL recognised for a PERSON.

Process: see the definition of PROCESS SPECIFICATION.

4.5.5 Terms of Organization
The central concept in this section is that of an ORGANISATIONAL UNIT, the main structural element of an organisation. Complex ORGANISATIONAL STRUCTURE is captured by the various MANAGE relationships between OUs.

4.5.5.1 Legal Entities and Machines

PERSON: a human being

Notes:

1. For the purposes of this Ontology, PERSONS are of interest for their capacity to play various Actor Roles in an enterprise (e.g. perform ACTIVITIES).

2. The concepts of sole trader and a registered business are included here. For most purposes, the law makes no distinction between these things and the PERSON owning/operating them.

MACHINE: a non-human Entity which has the capacity to carry out functions and/or play various roles in an enterprise.

Note:

1. a MACHINE is similar to a PERSON in that many functions and roles may be performed by either. However, it is anticipated that some functions and roles will be exclusive to one or the other. For example, a MACHINE may not be held responsible for anything.

CORPORATION: a group of PERSONS recognised in law as having existence, rights, and duties distinct from those of the individual PERSONS who from time to time comprise the group.

Note:

1. Historically, in law, rights and duties apply to individual humans; rights and duties of groups are inherited from this.

PARTNERSHIP: a group of PERSONS carrying on business in common.

Notes: the following is true in English law, but not necessarily in other legal systems:

1. there is a distinction between PARTNERSHIP and CORPORATION;

2. each PARTNER may have unlimited liability for the debts of the PARTNERSHIP to other LEGAL ENTITIES;

3. the PARTNERSHIP does not have a legal identity separate from its PARTNERS, e.g. if PARTNERSHIP is sued, this means all PARTNERS are sued.

PARTNER: a PERSON who forms part of a PARTNERSHIP.

LEGAL ENTITY: the union of PERSON, CORPORATION, and PARTNERSHIP

Note:

1. For the purposes of the ontology, this is equivalent to the more commonly used definition of a LEGAL ENTITY: “that which can enter into a legal contract”.

4.5.5.2 The Structure of Organisations

ORGANISATIONAL UNIT (OU): an Entity (with a defined identity) for MANAGING the performance of ACTIVITIES to ACHIEVE one or more PURPOSES. An OU may be characterized by:

· the nature of its PURPOSE(S);

· one or more PERSONS working for the OU;

· RESOURCES allocated to the OU;

· other OUs that MANAGE or are MANAGED-BY the OU;

· its ASSETS;

· its STAKEHOLDERS;

· being LEGALLY OWNED;

· its MARKET (if it is a VENDOR).

Notes:

1. The term OU is deliberately defined with no constraint on its size or place within an organization. Furthermore, no special terms for OUs of any particular size are defined (e.g. division, department). This is because no consistent use of such terms can be found across different enterprises or even within a single enterprise over time. Therefore the existence of a very small and simple unit, even corresponding with a single PERSON, or a very large and complex structure (e.g. a multi-national CORPORATION) can equally be represented as an OU. The structure of an OU is represented by the set of as many other OUs and MANAGE-MENT LINKS (see below) as required.

2. The term MANAGEMENT LINK leads to the concept of higher-level and lower-level OUs depending on which MANAGE and which are MANAGED.

3. The terms “enterprise” and “organization” are not defined in the ontology, but a user of the ontology may wish to define one or other of them as a high-level OU, perhaps corresponding with highest OU in the scope of interest.

4. An individual PERSON may correspond to, or belong to, more than one OU, one for each different role or function.

5. An essential PURPOSE of most OUs is to maximise performance against financial and other organizational OBJECTIVES.

MANAGE: the ACTIVITY of assigning PURPOSES and monitoring their ACHIEVEMENT

Notes:

1. This includes RESOURCE ALLOCATION and the power to give AUTHORITY;

2. This includes managing of people (e.g. skill base, career development), and of OUs. This is reflected by the nature of the PURPOSES that are set and monitored, e.g. time horizon, deliverables.

3. This gives rise to an asymmetric Relationship between the managing and managed entities. See MANAGEMENT LINK.

4. Although the visible activity of management in an enterprise may take place between PERSONS (or possibly MACHINES), where the PURPOSE assigned and monitored clearly relates to the activities of the OU, it will frequently be natural to model it as being between the OUs.

DELEGATE: a kind of MANAGING ACTIVITY whereby there is a transfer of something to a (normally lower-level) Actor.

Note:

1. We do not formally characterise DELEGATION, this is left to the users. Details to be considered include what may be delegated (e.g. task, authority, responsibility).

MANAGEMENT LINK: a Relationship whereby one Actor directly MANAGES another Actor.

Notes:

1. The particular arrangement of MANAGEMENT LINKS determines what is commonly referred to as Organisational Structure, Control Structure, or Management Structure.

· Examples of common Organisational Structures are hierarchical (e.g. line management), matrix (for project/program management) and flat
· Co-management is a situation where an OU is MANAGED by more than one OU
2. A single sequence of Actors directly connected via MANAGEMENT LINKS can be thought of as a management chain. More precisely, all management chains have:

· Only one Actor (lowest level) that does not MANAGE another Actor
· Only one Actor (highest level) that is not MANAGED by another Actor
· No branching (i.e. no Actor MANAGES or is MANAGED by more than one other Actor)
3. An OU at the lower end of a Management Chain may correspond directly with one PERSON.

The PURPOSES of such a PERSON may be very similar to the PURPOSES of the OU and therefore the PURPOSES may not need to be separately modelled. Higher up a Management Chain, the PURPOSES of an OU are likely to be dissimilar to the PURPOSES of a PERSON.

4. By virtue of being MANAGED by an OU, an OU may informally be thought of as being “part of” the MANAGING OU.

5. Insofar as a MACHINE can be viewed as a MANAGED and/or MANAGING Entity, it may be considered to be an OU.

LEGAL OWNERSHIP: a Relationship between a LEGAL ENTITY and an Entity whereby the LEGAL ENTITY has certain rights with respect to the Entity.

Note:

· the Entity in such a Relationship will be said to be “LEGALLY OWNED”
NON-LEGALOWNERSHIP: a Relationship between an Actor and an Entity whereby the Actor is recognized within a LEGAL ENTITY as having certain rights with respect to the Entity.

Example:

· the Relationship between an OU and the RESOURCES allocated to it
Note:

1. In the eyes of the law, OWNERSHIP can only be vested in a LEGAL ENTITY. For practical purposes within an organisation, rights of an Actor with respect to an Entity within the organization will be important to model.

OWNERSHIP: the union of LEGAL OWNERSHIP and NON-LEGAL OWNERSHIP.

Notes:

1. This is equivalent to: a Relationship between an Actor and some Entity whereby the Actor has certain rights with respect to the Entity.

2. It is rights that are OWNED, not the Entity itself, e.g. one who leases a car does not own the car, but they have legal rights with respect to it.

OWNER: the Role of the Actor in an OWNERSHIP Relationship

ASSET: an Entity LEGALLY OWNED that has MONETARY VALUE.

Examples:

· MACHINE, equipment, land, building, material,

· idea, design, patent, information.

Notes:

1. “having monetary value” is not the same as “can appear on a balance sheet”;

2. capital asset, fixed asset and liquid asset are specialisations of ASSET but are not central to our concerns. The differences between these are determined by accounting standards;

3. an Entity may be both an ASSET and a RESOURCE but some ASSETS are not RESOURCES and some RESOURCES are not ASSETS.

STAKEHOLDER: a Role of a LEGAL ENTITY or OU in a Relationship with an OU whereby one or more PURPOSES of the OU are included in the scope of interest of the LEGAL ENTITY or OU.

Note:

1. The STAKEHOLDER is usually one of: OWNER, PARTNER, SHAREHOLDER, and EMPLOYEE.

EMPLOYMENT CONTRACT: an agreement [Relationship] between a LEGAL ENTITY in the Role of employer and a PERSON in the Role of employee.

SHARE: a subdivision of the rights of OWNERSHIP of a CORPORATION recognised by law and the CORPORATION.

SHAREHOLDER: a LEGAL ENTITY OWNING one or more SHARES in a CORPORATION.

4.5.5.3 Related terms

Party: LEGAL ENTITY.

Company: roughly synonymous with CORPORATION; the minor legal differences between a Company and CORPORATION are ignored in this ontology.

Registered Business that is not a CORPORATION: encompassed by PERSON.

Sole Trader: encompassed by PERSON.

Business: CORPORATION, or Sole Trader or Registered Business that is not a CORPORATION.

4.5.6 Terms of Strategy
The central concept in this section is PURPOSE which is either something that an Actor has, or is the main reason for executing a PLAN. PURPOSES may be decomposed into higher and lower level PURPOSES via the HELP ACHIEVE relationship. Special kinds of PURPOSE are: MISSION, VISION, GOAL, OBJECTIVE and STRATEGIC PURPOSE. A STRATEGY is a PLAN to achieve a STRATEGIC PURPOSE.

Other important concepts introduced include STRATEGIC PLANNING, STRATEGIC ACTION, DECISION, ASSUMPTION, (CRITICAL) INFLUENCE FACTOR, CRITICAL SUCCESS FACTOR and RISK.

4.5.6.1 Purpose and Strategy

PURPOSE: a Role of a State Of Affairs in one of the following Relationships:

HOLD PURPOSE: a Relationship between an Actor and a State Of Affairs whereby the Actor wants, intends, or is responsible for the full or partial Achievement of the State Of Affairs;

Note:

· The Actor will usually be a PERSON or OU, however MACHINE is not excluded.

Example:

· Some PERSON wants to be in Edinburgh on some date;

INTENDED PURPOSE: a Relationship between an ACTIVITY SPECIFICATION and a State Of Affairs whereby:

· EXECUTION of the ACTIVITY SPECIFICATION will result in fully or partially Achieving the State Of Affairs;

and

· The State Of Affairs entails one or more of the EFFECTS of the ACTIVITY SPECIFICATION whose Achievement is declared to be the primary reason(s) for EXECUTING the ACTIVITY SPECIFICATION.

Notes:

1. An ACTIVITY SPECIFICATION with an INTENDED PURPOSE is by definition a PLAN.

Example:

The PURPOSE of a PLAN is to be in some particular location on some date.

2. A PURPOSE may be effectively decomposed into more detailed PURPOSES via the HELPS ACHIEVE Relationship.

3. A Responsibility may be viewed as a special kind of PURPOSE. Being responsible for implies the PURPOSE is DELEGATED by another Actor. This contrasts with the more general case where an Actor wants or intends a PURPOSE of their own volition.

4. A PURPOSE is characterised by one or more of the following:

· Measurability: extent to which it is possible to objectively determine whether Achievement has occurred.

· Time Horizon e.g. short, medium, or long term.

· Specificity: how detailed the PURPOSE is; related to measurability in that very detailed PURPOSES will tend to be measurable.

· Relative Priority: degree of desirability with respect to some Actor.

PURPOSE-HOLDER: the Role of the Actor in the HOLD PURPOSE Relationship.

Kinds of purposes

We introduce various different kinds or levels of PURPOSE: STRATEGIC PURPOSE, OBJECTIVE, GOAL, MISSION and VISION. We define the first two only, because the rest are used in many different ways. It is up to the Ontology user to specify what these may mean in a given situation.

STRATEGIC PURPOSE: a PURPOSE held by an ACTOR that is declared to be of “strategic” importance.

OBJECTIVE: a PURPOSE with a defined measure.

Note:

1. The idea is that it is possible to detect the Achievement of an OBJECTIVE.

VISION, MISSION and GOAL: kinds of PURPOSES.

Notes:

1. They may or may not be OBJECTIVES.

2. Below we indicate some ways that these terms may be specialised:

· Insofar as the HELPS ACHIEVE Relationship orders PURPOSES, the order will tend to be (from lowest-level): OBJECTIVE, GOAL, MISSION, and VISION.

· With respect to measurability, the order will tend to be (from most measurable): OBJECTIVE, GOAL, MISSION, and VISION.

· With respect to time horizon, the order will tend to be (from shortest time horizon): OBJECTIVE, GOAL, MISSION, and VISION.

HELP ACHIEVE: a Relationship between two States Of Affairs whereby one State Of Affairs contributes to or facilitates the Achievement of the other State Of Affairs.

Notes:

1. The HELP ACHIEVE Relationship is particularly important when the States Of Affairs are PURPOSES. In this case, the HELP ACHIEVE Relationship may define a directed acyclic network of PURPOSES which gives rise to a notion of higher- and lower-level PURPOSES.

2. Users of the Ontology may wish to constrain the meaning of HELPS ACHIEVE more precisely, or even define more than one flavor. It is deliberate that the Ontology permits this while providing a basic structure that can be shared.

STRATEGY: a PLAN to Achieve a STRATEGIC PURPOSE.

STRATEGIC PLANNING: a [PLANNING] ACTIVITY whose INTENDED PURPOSE is to produce a STRATEGY.

STRATEGIC ACTION: a SUB-PLAN of a STRATEGY.

4.5.6.2 Decisions, Factors, Assumptions

DECISION: commitment by an Actor to perform an ACTIVITY.

Note:

1. This is roughly equivalent to the traditional definition: “commitment to a course of action''. The notion of commitment appears synonymous with “intention” as distinct from “want/desire”.

ASSUMPTION: the Role of a State Of Affairs in a Relationship with an Actor whereby the Actor takes the State Of Affairs to be true without knowing whether it is true or not.

Notes:

1. An ASSUMPTION may or may not be critical.

2. ASSUMPTIONS are typically used during PLANNING and may be associated with PLANS.

CRITICAL ASSUMPTION: an ASSUMPTION that is associated with or used in STRATEGIC PLANNING.

NON-CRITICAL ASSUMPTION: an ASSUMPTION that is not associated with or used in STRATEGIC PLANNING.

INFLUENCE FACTOR: a State Of Affairs known to be true which is within the scope of interest of an Actor.

Example:

· current rate of inflation.

CRITICAL INFLUENCE FACTOR: an INFLUENCE FACTOR that is associated with or used in STRATEGIC PLANNING.

NON-CRITICAL INFLUENCE FACTOR: an INFLUENCE FACTOR that is not associated with or used in STRATEGIC PLANNING.

CRITICAL SUCCESS FACTOR (CSF): a PURPOSE declared by an Actor to be critical to the success of one or more higher-level PURPOSES.

Notes:

1. The practical significance of this is that CSFs provide the central focus for STRATEGIC PLANNING.

2. It is important to note that the declaration is arbitrary in the sense that there is no set of Attributes that can objectively determine whether a PURPOSE is a CSF or not.

RISK: the Role of a State Of Affairs in a Relationship with an Actor whereby the Actor regards the State Of Affairs as a potential hindrance to the Achievement of one or more PURPOSES.

4.5.6.3 Related Terms

Threat: synonymous with RISK

Programme: synonymous with STRATEGY

Target: synonymous with PURPOSE and GOAL

Measurable Target: synonymous with OBJECTIVE

Contingency Plan: a PLAN which is used when a specified State Of Affairs occurs.

Note:

1. Usually associated with a RISK.

4.5.7 Terms of Marketing
The central concept in this section is the SALE relationship, which is an agreement between a VENDOR and CUSTOMER to exchange a PRODUCT for a SALE PRICE. The MARKET is defined in terms of all SALES and POTENTIAL SALES, and may be subdivided into MARKET SEGMENTS using SEGMENTATION VARIABLES.

Other important concepts related to a MARKET include: BRAND, IMAGE, PROMOTION and COMPETITOR.

4.5.7.1 Sales

SALE: an agreement (Relationship) between two LEGAL ENTITIES to exchange one good, service or quantity of money for another good, service or quantity of money.

Notes:

1. The exchange in a SALE entails transfer of OWNERSHIP.

2. A SALE may have as associated TIME-POINT indicating when the agreement was made.

3. A SALE may be characterised by a number of things, including: sales type, volume, value.

POTENTIAL SALE: a possible future SALE.

FOR SALE: a situation whereby one LEGAL ENTITY offers to enter into a SALE. Associated with every such situation is a PRODUCT (being offered FOR SALE) and an ASKING PRICE.

Notes:

1. The definition for FOR SALE entails a necessary distinction between the seller (VENDOR) and the buyer (POTENTIAL CUSTOMER), in that only the former is offering something.

2. It is correct to say that the PRODUCT (the item being offered for exchange) is FOR SALE.

3. Informally, we may refer to the FOR SALE situation as a Relationship between the various parties and things exchanged.

SALE OFFER: a FOR SALE situation where a particular LEGAL ENTITY is being offered the PRODUCT.

The notions of customer, vendor, product and price are usually associated with sales. They are essentially roles that distinguish between the entities exchanged and the LEGAL ENTITIES involved. This is reflected in the Ontology by formally defining ACTUAL CUSTOMER, VENDOR, PRODUCT, ASKING PRICE, and SALE PRICE as Roles in the SALE and FOR SALE Relationships.

The Ontology caters for exceptional cases, where both things are goods (barter) or both are money (currency exchange). However, in these cases the SALES Relationship is symmetric and there is no obvious way to distinguish between the Roles. Because of this, special care may be required in defining such SALES Relationships.

VENDOR: the Role of the LEGAL ENTITY who

· offers a PRODUCT, FOR SALE for an ASKING PRICE; or

· agrees to exchange a PRODUCT for a SALE PRICE in a SALE.

Note:

1. From the VENDOR's perspective, the exchange is referred to as “selling”.

ACTUAL CUSTOMER: the Role of the LEGAL ENTITY agreeing to exchange a SALE PRICE for a PRODUCT in a SALE.

Note:

1. From the ACTUAL CUSTOMER's perspective, the exchange is referred to as “buying”.

POTENTIAL CUSTOMER: any LEGAL ENTITY who may become an ACTUAL CUSTOMER.

Notes:

1. This definition includes both LEGAL ENTITIES to whom PRODUCTS are offered FOR SALE, and LEGAL ENTITIES who might purchase something which is not but could be FOR SALE.

2. Since any LEGAL ENTITY can potentially participate in a SALE, the set of all LEGAL ENTITIES seems identical to the set of all POTENTIAL CUSTOMERS. Thus, this term may be redundant and unnecessary.

3. Various conditions are possible any of which, singly or in combination, may or may not be true in a particular case:

· the existence of a SALE OFFER of a PRODUCT to a LEGAL ENTITY
· the ability of POTENTIAL CUSTOMERS to afford the ASKING PRICE
· the LEGAL ENTITY having a NEED
· the existence of a PRODUCT having a FEATURE capable of satisfying a NEED
· the existence of a marketing PROMOTION aimed at POTENTIAL CUSTOMERS
CUSTOMER: the union of POTENTIAL CUSTOMER and ACTUAL CUSTOMER. One special kind of CUSTOMER is described below:

RESELLER: CUSTOMER who enters into a SALE agreement for the PURPOSE of making further SALES of the PRODUCT (or a derivative of it).

Note:

1. A RESELLER is a CUSTOMER in one SALE and a VENDOR in another.

PRODUCT: the Role of the good, service, or quantity of money that is:

· offered FOR SALE by a VENDOR or

· agreed to be exchanged by the VENDOR with the ACTUAL CUSTOMER in a SALE

Note:

1. There is possible confusion with the use of the term “product” when referring to something produced/manufactured but which is not sold (i.e. an intermediate product internal to a manufacturing process). It may become necessary to introduce two terms for this, such as “Market Product” and “Manufactured Product”.

ASKING PRICE: the Role of the good, service, or quantity of money being asked for by a VENDOR in exchange for a PRODUCT that is FOR SALE.

SALE PRICE: the Role of the good, service or quantity of money agreed to be exchanged by the ACTUAL CUSTOMER with the VENDOR for the PRODUCT in a SALE.

Note:

1. We specifically chose not to define the price as the “value” of the PRODUCT, because value is relative, the price is the actual thing exchanged (usually money).

4.5.7.2 Market

MARKET: all SALES and POTENTIAL SALES within a scope of interest.

Notes:

1. A MARKET can be characterised by any number of SEGMENTATION VARIABLES.

2. A MARKET may be measured in various ways. For example: the number of SALES, the sum of the SALE PRICE of the SALES, or ratios between one set of SALES and another.

SEGMENTATION VARIABLE: any Attribute determinable from a SALE or POTENTIAL SALE in a MARKET. Examples include:

· PRODUCT: identity, size, shape, colour, sex appeal
· VENDOR: geographical location, size
· CUSTOMER: socio-economic class, age, sex
· SALE: geographical location, TIME POINT of occurrence (e.g. date and time)
MARKET SEGMENT: all SALES and POTENTIAL SALES in a MARKET having defined values of one or more SEGMENTATION VARIABLES.

Examples:

· Geography = Asia;

· Socio-economic class of CUSTOMER = yuppie.

Note:

1. One person's MARKET may be another person's MARKET SEGMENT.

MARKET RESEARCH: An ACTIVITY whose

· PURPOSE is to better understand a MARKET.

· EFFECTS includes the existence of information about a MARKET.

BRAND: a name identifiable by CUSTOMERS associated with one or more PRODUCTS of a VENDOR.

IMAGE: a set of properties that a CUSTOMER believes to be true of a BRAND, PRODUCT or VENDOR.

Example:

· Rolls Royce automobiles are believed by CUSTOMERS to be reliable.

FEATURE: an Attribute of a PRODUCT which may satisfy a NEED of a CUSTOMER.

NEED: a physical, psychological or sociological requirement of a CUSTOMER.

MARKET NEED: an identifiable NEED of CUSTOMERS which is not fully satisfied by PRODUCTS currently FOR SALE.

PROMOTION: an ACTIVITY whose primary PURPOSE is to improve the IMAGE (of a PRODUCT, BRAND and/or VENDOR).

Note:

1. A PROMOTION may have additional PURPOSES, all normally related to the MARKET.

COMPETITOR: a Role of a VENDOR in a Relationship with another VENDOR whereby one offers one or more PRODUCTS FOR SALE that could limit the SALES of one or more PRODUCTS of the other VENDOR.

Note:

1. this competition is a symmetric Relationship, i.e. each VENDOR is a COMPETITOR of the other in the same manner.

4.5.7.3 Related Terms

Bid, Proposal: SALE OFFER

Consideration: SALE PRICE

Reputation: IMAGE

Supplier: VENDOR

Trading Entity: VENDOR

Buyer: the LEGAL ENTITY approving the SALE. In many cases the Buyer will be the ACTUAL CUSTOMER; alternatively, if the ACTUAL CUSTOMER is a high-level OU, the Buyer may be a PERSON or OU within that OU.

Consumer: the LEGAL ENTITY who will use the PRODUCT in a SALE; In many cases, the Consumer will be the ACTUAL CUSTOMER; alternatively, if the ACTUAL CUSTOMER is a high-level OU, the Consumer may be a PERSON or OU within that OU.

Product Substitute: a PRODUCT that may be o.ered by a VENDOR in place of a PRODUCT previously offered. Planning tools may need knowledge of the FEATURES of PRODUCTS to plan or optimize substitution.

Customer Base: A group of existing CUSTOMERS. These may be segmented by geography, demographics, etc. Should be considered as part of MARKET RESEARCH and/or PROMOTIONS.

Other commonly used terms:
· Product Portfolio

· Target Customer

· Target Market Segment
4.5.8 Formalization of Enterprise Ontology
In this section, we explain the motivation of formalizing Enterprise Ontology and its relationship to the informal Enterprise Ontology. See Appendix B for the formal encodings in Ontolingua of all the terms defined in Enterprise Ontology.

In the remainder of this section, we begin by clarifying the role of the formal Enterprise Ontology. Then we describe how the terms in the Meta-Ontology in informal Enterprise Ontology were handled. Of particular importance are ROLES and STATE OF AFFAIRS. Finally some of the main issues during the formalization process are discussed.

4.5.8.1 The Role of Formal Enterprise Ontology
The intended use of an ontology decides its content. The primary motivation for formalizing Enterprise Ontology is to provide a more precise specification of the meaning of the terms with greater consistency and completeness.

Another potential benefit is that automatic translation might be able to use Enterprise Ontology as an interchange format. However in order for the Ontolingua translators to work most effectively, lots of restrictions must be applied when used with axioms. Unless an axiom has an obvious translation into an object-oriented (i.e. frame-based) representation structure, it will not be translated at all.

As a result, current main use of Enterprise Ontology is still limited to improve communication between humans. Axioms are used fairly freely and there are low expectations about translation support. There are no claims about formal rigour or completeness. Some of the terms have weakly specified semantics, with no related axioms. Semantics in these cases is limited to specifying that something is a class, relation or an instance, and what relations it can participate in.

Where axioms are specified to better characterise the semantics, it is not expected that those axioms can be used directly by any theorem prover or automatic language translation software. Users of the formal Enterprise Ontology may add further axioms for greater rigour or completeness depending on their requirements.

4.5.8.2 Meta-Ontology

KIF, on which Ontolingua is based, has a standard meta-ontology, namely: objects, relations and functions. As a result, Ontolingua provides adequate primitives to define the Meta-Ontology of Enterprise Ontology. There was little to be gained by formally defining things like ENTITY and RELATIONSHIP again in formal Enterprise Ontology.

4.5.8.2.1 Entities, Classes and Instances

In informal Enterprise Ontology, to conform to common natural language usage, the distinction between a type of entity and a particular entity of a certain type was intentionally blurred. The majority of terms defined in informal Enterprise Ontology, for example, PERSON, ACTIVITY, PURPOSE, etc, correspond to types of Entities, which in Ontolingua are unary relations called Classes,. Particular entities of a certain type are called Instances in Ontolingua.

Formally, ENTITY in the informal Enterprise Ontology (taken as a type of thing rather than a particular thing of a certain type) is equivalent to the union in classes: Set and Thing defined in Ontolingua.

4.5.8.2.2 Relationships, Attribute and Role

RELATIONSHIP in the informal Enterprise Ontology is also deliberately ambiguously defined, reflecting common usage of the term in natural language. It referred both to the set of tuples constituting a relation and a single tuple. If we restrict such usage to the set of tuples (i.e. the mathematical relation), then RELATIONSHIP is equivalent to a subclass of Relation in Ontolingua that excludes Unary-Relations.

ATTRIBUTE in the informal Enterprise Ontology is roughly equivalent to a Function in Ontolingua. However, it is modeled in Ontolingua as a slot on some class whose slot-cardinality is set to 1. A slot with slot-cardinality set to 1 may not explicitly be a Function in Ontolingua. It corresponds to what has the defining property of a function. In particular, it corresponds to a sub-relation (i.e. a subset of tuples) of the independently defined Binary-Relation used in the slot. That Binary-Relation need not be a Function.
Although in the informal Enterprise Ontology many terms are defined as ROLEs, the concept of a ROLE can not be directly represented in the formal Enterprise Ontology. Instead, a ROLE corresponds to the semantics of an argument in a relation.

A good example is RESOURCE, defined as the ROLE of an ENTITY in a RELATIONSHIP with an ACTIVITY whereby the ENTITY is or can be used or consumed during the ACTIVITY.

It is difficult to represent such ROLE directly in Ontolingua. A different perspective from the informal Enterprise Ontology has to be used. Rather than formalizing the ROLE an entity participates in a relationship, instead the set of all ENTITIES that play in that ROLE is formalized. For RESOURCE and other important ROLEs, this set is formally represented as a Role-Class.

RELATIONSHIP in the definition of RESOURCE is represented as a binary relation called Can-Use-Resource, where the first argument refers to the activity, and the second to the entity. The unary relation Resource represents the class of all entities (i.e. instances) that participate in this relationship with some activity.
Therefore Role-Class is defined as a special kind of Class in Ontolingua. RESOURCE is a simple Role-Class defined as single ROLE. PURPOSE is defined using two ROLEs from different relations.

4.5.8.2.3 State of Affairs
In English, a STATE OF AFFAIRS can be translated to some kind of situation. It is something that can be thought of as holding, or being true (or conversely, as not holding, or as being false). STATE OF AFFAIRS is an important term in Meta-Ontology since it is used to define many other terms, for example, Help-Achieve, Intended-Purpose, Pre-Condition and Effect.
In first-order logic, any STATE OF AFFAIRS can be represented by a syntactically valid sentence, which can be written as
[image: image309.wmf]},

{

3

2

1

S

S

S

q

q

or equivalently as a single sentence using explicit conjunction, written as
[image: image310.wmf]3

2

1

S

S

S

Ù

Ù

. To more rigorously represent a STATE OF AFFAIRS, the syntax of a first-order logic sentence has to be formally specified. There is no need to redefine this from scratch since they are already formally defined in KIF.

However such a definition is too general because it allows sentences to be constructed referring to any relation. A way to restrict the definition is to restrict the set of relations that can be referred to when constructing sentences representing states of affairs. In the formal Enterprise Ontology, this is done by restricting the argument types in certain relations.

A meta-level binary relation: Restricted-Sentence is defined in Ontolingua. Its first argument is a sentence, and its second argument is a set of relational constants. The relation holds if and only if:

1. The first argument is a syntactically valid first-order logic sentence.

2. All relational constants referred to in the first argument are in the set comprising the second argument.

4.5.8.3 Producing Formal Definitions

In general each term in the informal Enterprise Ontology corresponds to a term in the formal Enterprise Ontology, and the definitions are fairly directly captured in the formal language. However, there are exceptions where it was appropriate to change the way terms and concepts were originally defined in the informal Enterprise Ontology. Often, but not always, these changes suggested improvements in the definitions in the original informal Enterprise Ontology.

Including the meta-ontology, there were about one hundred terms in the informal Enterprise Ontology. During the formalization process, most of the changes can be divided into following categories:
· . some terms were not defined at all (nine in all, seven from meta-ontology);

· . some terms were defined from a different perspective (six);

· . about 50 new terms were introduced.

For example, in the Meta-Ontology, ACHIEVE, ENTITY and RELATIONSHIP were not defined at all. ROLE is defined from a different perspective (i.e. Role-Class). And POTENTIAL ACTOR is a new term defined after the formalization process. Below we give details on these issues and give further examples.

4.5.8.3.1 Terms Not Defined

In some cases, a term referred to an important concept where there was no obvious need to define explicitly, or there was no obvious way to do so in a useful manner. Because the concepts are important, they cannot be left out; instead they are implicitly captured in other formal definitions.

For example, ACTIVITY-DECOMPOSITION, while a very important concept, is manifest in the details of how SUB-ACTIVITIES are inter-related, and other constraints that comprise an ACTIVITY SPECIFICATION. Defining something formally corresponding to an ACTIVITY DECOMPOSITION does not seem useful.

A MANAGEMENT LINK is defined to be a relationship between two particular ORGANISATIONAL UNITS. This corresponds to a particular tuple of the Manages relation, and so the concept is captured, but there was no need for MANAGEMENT LINK itself to be defined as a separate term.

Similarly, in an earlier version of the informal Enterprise Ontology, ORGANISATIONAL STRUCTURE was defined to be “the MANAGEMENT LINKS relating a set of OUs” which corresponds to the set of tuples comprising the Manages relation, and thus is also unnecessary to define.
All of the above concepts can be modelled using the formal definitions of related terms, but are not explicitly defined themselves, e.g. a management link can be created by specifying that two OUs stand in the Manages relation.

4.5.8.3.2 Terms Viewed from a New Perspective

In some cases, the perspective from which a definition was given in the informal Enterprise Ontology is difficult to be specified in formal definition. We have mentioned ROLE as an example before.
Consider, also, AUTHORITY, which is defined as “the right of an Actor to EXECUTE an ACTIVITY SPECIFICATION”. It was simpler to model this as a binary relation (Hold-Authority) denoting the fact that an ACTOR has the right to EXECUTE an ACTIVITY SPECIFICATION.

There is no essential change in meaning, just of perspective. It would be possible to model the “right” explicitly to retain the original perspective, but this was not deemed useful.

4.5.8.3.3 New Terms

For reasons below, some terms have to be added to formal Enterprise Ontology during the formalization process.

1. To fill gaps, i.e. things were missing in the Informal EO. For example, ACTIVITY SPECIFICATION is an important concept which requires explicit definition. The underlying concept was clearly evident in the original definition of PLAN: “a specification of one or more ACTIVITIES for some PURPOSE”. With the addition of ACTIVITY SPECIFICATION, this was changed to “an ACTIVITY SPECIFICATION with an INTENDED PURPOSE”. This also has the benefit of reducing the number of undefined words in the definitions.
2. To make explicit some terms which were only implied in informal Enterprise Ontology. An example is a term that was defined as “a Role in a Relationship between an X and a Y whereby ...”. For example, ASSUMPTION is defined as “the Role of a State Of Affairs in a Relationship with an Actor whereby the Actor takes the State Of Affairs to be true without knowing whether it is true or not”. In the informal Enterprise Ontology, it is only implied that the Relationship exists but it is neither named nor defined. These Relationships are formalised as relations. In this case, the Assumed relation was defined and Assumption is a Role-Class formally defined in terms of this relation.
3. To formalise logical connections that were clearly evident, but not precisely characterised in the informal Enterprise Ontology. Following definitions from informal Enterprise Ontology are examples:

· PLANNING: an ACTIVITY whose major EFFECT is to produce a PLAN;

· STRATEGY: a PLAN to ACHIEVE a high-level PURPOSE;

· STRATEGIC PLANNING: an ACTIVITY whose PURPOSE is to produce a STRATEGY.

Problems with these definitions are:

· the idea of a “major EFFECT” is undefined;

· “high-level PURPOSE” has no meaning, though it appears to be a special kind of PURPOSE;

· STRATEGIC PLANNING is not defined in terms of PLANNING;

· the phrase “to produce” is used in the definitions of STRATEGIC PLANNING and PLANNING, but is undefined.

To address this, following alterations are made:

· A new term is introduced: Strategic-Purpose is formally defined as a type of Purpose

· Strategic Planning is formally defined as a type of Planning
· “to produce” is defined as a Relationship called Actual-Output between an Activity and an Entity where by the Entity is an output produced by the Activity
· the idea of a “major EFFECT” is formalized using Intended-Purpose which is linked with Actual-Output in the formal definition of Planning.
After these modifications, the definition can be rewritten as:
PLANNING: an Activity whose Intended-Purpose is to produce a Plan.

STRATEGIC-PURPOSE: a Purpose held by an Actor that is declared to be of “strategic” importance.

STRATEGY: a Plan whose Intended-Purpose is a Strategic-Purpose.

STRATEGIC-PLANNING: a Planning Activity whose Intended-Purpose is to produce an Actual-Output which is a Strategy.

In this example, by introducing two new terms: STRATEGIC-PURPOSE and ACTUAL-OUTPUT, the definitions of PLANNING, STRATEGY and STRATEGIC PLANNING was made more precise. The implicit connections between these terms became more explicit.

4.6 Conclusions

In this chapter we review the origin of Ontology from philosophy and its application in Artificial Intelligence and Information System Science. Then we looked at two particular ontologies developed for different purposes, Bunge-Wand-Weber Ontology (BWW Ontology) and Enterprise Ontology. We present both the informal and formal definition for the list of constructs defined in BWW Ontology. Then we discussed the issues encountered when converting the informal Enterprise Ontology to a formal Enterprise Ontology encoded in Ontolingua, an online Ontology editing tool based on extended KIF, a formal knowledge representation language.
CHAPTER 5 – MAPPING AND PARTITIONING ZACHMAN FRAMEWORK

5.1 Introduction

In this chapter we present our work on mapping and partitioning Zachman Framework that was developed throughout the course of this research. The constructive research approach was adopted in the development process of the mapping result. The objective of constructive research is to produce novel solutions to problems through the construction of models, diagrams, plans, organizations, frameworks, etc. [Kasanen, 1993]. It can be used in the research of software engineering and computer science. The process for conducting constructive research is:

· Identify the problem to be solved.

· Obtain a good understanding of the problem.

· Innovate, i.e., construct a solution idea. This could be a heuristic process. The theoretical justification and testing of the proposed solution has to be done in the later stages of the research.

· Demonstrate that the solution to the identified problem works, i.e. validate the proposed solution. Validation is the hardest part of constructive research in requirement engineering as it ideally requires a case study in an industrial setting.

· Examine the scope of applicability.

The aim of our work in this chapter is to reduce the complexity when using Zachman Framework. Zachman Framework is such a comprehensive framework that it can be used in various fields, for example, software engineering, domain engineering, requirement engineering, etc. We will look at how it can be mapped and partitioned according to phases of Domain Engineering and RE techniques.
5.2 Mapping Phases of Domain Engineering to Zachman Framework
We first present our idea on mapping domain engineering phases to Zachman Framework. Most existing domain engineering methods have similar phases. FODA [Kang, 1990] divided domain analysis process into 3 phases: context analysis, domain modeling and architecture modeling.

When considering these 3 phases in the information system domain, they can be roughly corresponded to the activities for developing artifacts for different rows of Zachman Framework.
5.2.1 Scope/Context Analysis
The Scope/Contextual view is “a bubble chart, which depicts the size, shape, spatial relationships, and basic purpose of the final structure”. [Zachman, 1987] We compare this with FODA’s context analysis, which is “to define the scope of a domain that is likely to yield exploitable domain products”. We found that although FODA focuses more on deciding the boundary of the domain, their definitions are essentially the same. Therefore we map scope/context analysis phase to the first row of the Zachman Framework.

5.2.2 Domain Modelling/Analysis
We compare the product list of the domain modeling phase from FODA with examples of models recommended by Zachman Framework for the second row, the Enterprise/Business Model row. The former includes E-R Diagram, Feature Diagram and Business Process Diagram while the latter are E-R Diagram, Process Flow Diagram, Logistic Network, Organization Chart, Master Schedule and Business Plan. We can see that they are almost identical. Therefore we map the domain modeling phase to the Enterprise/Business Model row.
5.2.3 Domain Design/Architecture Modeling
Finally domain design or architecture modeling is similarly mapped to the third row, system model view, and fourth row, technology model view. The partitioning of Zachman Framework according to domain engineering phases is shown in Figure 10.
5.3 Partitioning Zachman Framework According to RE Techniques
Our second idea is partitioning the top 2 rows of Zachman Framework according to different RE techniques: Goal-oriented RE, Scenario-oriented RE and Viewpoint-based RE.
5.3.1 Goal-Oriented RE

KAOS project defines goals as “a nonoperational objective to be achieved by the composite system”. In the context of information system, “composite system” here refers to an organization where the information system is deployed. The MOTIVATION/why column is comprised of the descriptive representations that depict the motivation/objective of the enterprise. Therefore we can connect goal-oriented RE technique to MOTIVATION/why column. And because requirement engineering (as comparable to context analysis and domain modeling phases in domain engineering) is mapped to the first two rows of Zachman Framework as stated previously, we can map goal-oriented techniques to two cells of Zachman Framework, as shown in Figure 10.
5.3.2 Scenario-Oriented RE

Similarly we compare Zachman’s models of FUNCTION/how column with several interpretations of scenarios ranging from description of a possible set of events that might reasonably take place [Jarke, Bui and Carroll, 1998], a basis for generating use cases, examples of behaviors drawn from use cases, descriptions of system usage to help understand socio-technical systems and experience based narratives for requirements elicitation and validation, we can map scenario-based RE to the Scope and Enterprise Model row of FUNCTION (how) column, as shown in Figure 10.
5.3.3 Viewpoint-Oriented RE
It is difficult to find a formal definition for viewpoint, but the notion of viewpoint can be summaries as entities whose requirements are responsible for, or may constrain, the development of the intended systems. In the context of information system development, viewpoints usually fall into several categories:

· Stakeholders of the intended software, e.g. end-users of the system, managers of organizations where systems are running

· External regulatory bodies

· Other software systems with interface to intended software

[image: image380.jpg]Viewpoint-Oriented RE
Goal-Oriented RE

Scenario Oriented RE Zachman Framework

SCOPE List o Things Important. List of Processes e List of Lacatiors n wich List of Oremnz sicns Tiot T omte Sigpificant List of Business Goals8trat
{CONTESTATy | PtieBosaess Busess Performs the Business Operates Imortanttothe Business tothe Business

Scope
Analysis

Aana

»
Pecple = Msjar Orguni aticns || Tane = Msjor Busine s Evert

e.g Semantic Model

e BusinessPracess Model [o.g. Logistics Notwork e.g. Vibrk Flowbiodel e.g MasterS chechle e.g Busness Plan

ENIERPRISE
MDDEL & =
(CONCEPTUAL)] a Y
Domain | | ¥
Modeling o
B Ext'= Busine s Eatiy Mode = Busiuess Locaic || Peole = Orgaization Uit usi 55 Otcive

Rein= Business Relsfiorship Link - Busice ss Lisia b= Work Product

SYSTEM e.g Logical Data Mpckel e Mpplication Archisctire | e Distrinted Systom e.g Hunen ntorfuce e.g Processing Stuctire ., Busine s Rule Model
MCDEL echiechs" echiectre

(LOGICAT)
Architecu ? ﬁE
ture @: -

Modeling || c.-pusas Nods =15 Function

Proe = fpplhcatonFunction | (Procassor Sivaee 1) Feaule=Role Tine = Sy tszvzrt Frd= Simuchal Asserinn
Designar Reln=D s Reldionstip 10 = User Views Link= Line C haracteristics Wrk= Delveratle SR RSt | M anioadssotion

TECHNOLOGY || &8 PhysicaiData bodel e.g "System Design’ e.g "System Aechitechte” e Prosertation Archiscture | e.g. Conlrol Structire e.g Rile Design

MODEL
- : : ;

Hode = Hardwae Systemn
Ent=SegmentTable/etc e Peale= User

e.g Data Defritin Netwerk Architecte”

e.g Progam" e.g TangDefinticn e.g Rule Specifcation

REPRESEN-
TATIONS
(OUTCE-
CONTEXT)

Sk
Congracter

End= Sub-condicn
arupt
e Cydle M ans =Step

Node = Addresses

Proc= Language Stmt
= Litk =Profocols

FUNCTIONING
ENTERPREE

These coincide with Sowa’s [Sowa and Zachman, 1992] description of the PEOPLE (who) column. Therefore we map viewpoint-oriented RE to the Scope and Enterprise Model row of PEOPLE (who) column, as shown in Figure 5.2.
Figure 5.1 Mapping and Partitioning Zachman Framework
5.4 Related Work
[Villiers, 2001] used Zachman Framework to assess Rational Unified Process (RUP), one of the most famous software development processes model in practical use in industry, which describes a use-case-driven, architecture-centric, and iterative approach to developing quality software on time and within budget. Because RUP is artifact driven, it is possible to map RUP defined artifacts onto Zachman Framework. However there is hardly a precise mapping. Villiers realized the need to “determine a path through the matrix that defines the sequence in which the artifacts are to be produced (or refined)”. However he only roughly defines the path as travel downwards from top to bottom, and from left to right. Organizations considering implementing the RUP can use this analysis to better understand how the deliverables defined by the RUP relate to their information needs.

[Iyer and Gottlieb, 2004] present a Four-Domain Architecture (FDA), which integrates business process, information, knowledge, and elements pertaining to infrastructure and organization. The FDA approach can help guide the development of both the conceptual and emergent architecture. It helps an enterprise in the definition, design, and creation of a set of tools and methods to support frameworks such as the Zachman Framework. The author realize the same problem of Zachman Framework as the artifacts chosen to capture and represent activities within each one of the cells within the Zachman framework are left to the discretion of the enterprise, making it difficult to impose rigor or share knowledge across enterprises. The FDA model proposed helps in the design and building of a tool set and methods to support frameworks such as Zachman’s. Rigor is added to the process by considering both the AID and AIO, and tracking the difference between them over time.

A key benefit of this approach is the ability to assess how a project may impact the emergent architecture via a process. Observing the emergent architecture and evaluating it in light of the project requirements will enable an enterprise to fine tune the impact of the project on the architecture, thus improving the design and facilitating decision making concerning which projects to implement in a constrained environment. In addition, the FDA approach will help enterprises synchronize their business needs and IT capability through conscious changes to the emergent architecture, thereby improving project performance in both the near term and the long term. A separate issue not addressed in this paper is the activity of harvesting architectural assets gleaned from different projects. This knowledge management imperative requires consistency of terminology and notation to create and utilize engagement artifacts.

5.5 Conclusion
In this chapter we present some new insights on Zachman Framework. We mapped and partitioned Zachman Framework according to domain engineering phases and requirement engineering techniques to give a new way of looking at Zachman Framework. This also reduces the complexity when using Zachman Framework.
CHAPTER 6 – DEVELOPING A META-MODEL FOR ZACHMAN FRAMEWORK

6.1 Introduction

To actually use the original version of the Zachman Framework as practical guidance for enterprise system development is very difficult, especially during the requirement engineering phase. We face many difficulties:

· For each cell, the original Zachman Framework only suggested a modeling technique without giving a rigorous meta-model.

· Although there are 7 rules in the original Zachman Framework, the specific relationships or dependencies between cells are not clear.
· There is hardly any step by step guidance in Zachman Framework on the sequence of RE activities to create models or artifacts for each cell.
To overcome such difficulties, there have been research efforts from both the research community and the industry trying to refine, extend and improve the original Zachman Framework to make it more conveniently used in RE process. We cover related work and compare with out work in the last section of this chapter.
Although ontology has been widely used in many other computer science field, as far as this research find, despite its great potential, it has not been used to formalize or extend Zachman Framework for Requirement Engineering. In this chapter, we will develop a meta-model for Zachman Framework based on two ontologes, BWW ontology and the Enterprise Ontology. In the next chapter, based on this meta-model, each way of traversing it as a graph is corresponded to a particular requirement elicitation and modeling method.
6.2 Conceptual Modelling at Different Levels
Before developing our meta-model, we first present the hierarchy of our conceptual modeling approach towards Zachman Framework, as illustrated in Figure 6.1.
	[image: image311.jpg]Meta Level

Domain Level
Perform

~Customer, Pay
< Want*

Tedit Car

Trnsaction—
—~~Completed

Pay for Ttem XXX

Instance Level Perform
‘Accomplish

Want*

	Figure 6.1 Conceptual Modeling Hierarchy

The meta level is composed of meta-concepts and meta-relationships, both of which are domain-independent abstractions. Meta-relationships connect meta-concepts semantically. For example, there can be several meta-relationships between meta-concept Actor and meta-concept Activity, e.g. Perform, Capability, Authority, etc. Unlike the KAOS project, in our meta-model, there is no meta-attribute or meta-constraint.

The domain level is composed of domain specific instances of meta-concepts and meta-relationships. For example, in an enterprise domain, a customer is an instance of meta-concept Actor, and make payment is an instance of meta-concept Activity. There can be several relationships between them, e.g. a customer makes a payment or a customer is capable of making a payment or a customer is authorized to make a payment. These are instances of meta-relationships Perform, Capability and Authority respectively.

The instance level is composed of particular instances of domain level concepts and relationships. For example, a customer named Tom makes payment for a book he purchased online using his credit card no XXXX.
To complete a fully instantiated enterprise architecture using Zachman Framework, all domain level models of each cell of Zachman Framework have to be acquired. A prerequisite is to have meta-level model or meta-model for each cell. Because as we covered before, all cells are related to each other, therefore an integrated meta-model should be developed for all the cells in Zachman Framework.
Such meta-model should be comprised of meta-concepts and meta-relationships which can be applied to both general domain or specifically to enterprise domain. There is no need to define meta-concepts and meta-relationships of the meta-model from scratch, because many of them have been defined in either BWW Ontology or Enterprise Ontology. We propose an idea of merging BWW Ontology and Enterprise Ontology to form a meta-model for Zachman Framework.

6.3 Merging BWW Ontology and Enterprise Ontology
The reason we use two ontologies is because neither of them is Ontologically Complete to model all six columns of the Zachman Framework. In other words, they are Ontologically Incomplete when used alone.
For BWW Ontology, first, there is no constructs in BWW Ontology that reflect the difference between “human” thing and “non-human” thing. Everything no matter it’s a “human” thing or “non-human” thing is seen as a “thing”. This will make modeling business process in business environment extremely difficult.
Second, there is no efficient way to represent process using existing BWW constructs. The only way we can see is to aggregate a series of events that happened in different things that may contribute to achieve one single goal. Usually these events are happened in “non-human” thing but triggered by “human” thing.
Third, there is no constructs in BWW Ontology that is capable to model human activity directly. The only way of doing this is by modeling the coupling (interaction) between human and the object he/she is interacting with.

For the Enterprise Ontology, there are problems as well. Although there is Organization Unit to model “group” in terms of organization, there is no efficient way to model a “system” mixed of person, machine and process. The construct System from BWW Ontology is ideal to model such situation.
For above reasons, we will merge two ontologies to complement with each other so that the new ontology after merging is ontologically complete for enterprise environment.

To merge the two ontologies, we first compare the constructs in BWW Ontology in Table 1 with the terms in the Enterprise Ontology in Table 3. Although the two ontologies are at different levels, it can be easily identified that there are five pairs of terms with very similar definitions: Thing/Entity, Property/Attribute, State/State of Affairs, Event/Event and Coupling/Relationship. The rest of the terms are very different between two ontologies. To merge the two ontologies into one meta-model, we merge the five pairs of synonyms. An illustration of all the constructs/terms in both ontologies is shown in Figure 6.2. The synonyms have been connected using lines. We will discuss them in following different sections.

[image: image312.emf]Thing

Property

State

Event

Transformation

History

Coupling

System

System

Environment

Class Kind

Entity

Relationship

Role

Attribute

State of Affairs

Achieve

Actor Role

Actor

Activity

Activity

Specification

Execute

Effect

Authority

Event

Plan

Process

Specification

Capability

Skill

Resource

Potential Actor

Pre-Condition

Person

Machine

Corporation

Partner

Legal Entity

Organizational

Unit

Delegate

Partnership

Resource

Allocation

Sub-Activity

Sub-Plan

Ownership

Owner

Asset

Stakeholder

Employment

Contract

Share

Shareholder

Sale

Sale Offer

Ventor

Reseller

Product

Price

Market

Customer

Market Segment

Brand

Image

Feature

Promotion

Competitor

Need

Purpose

Hold Purpose

Intended Purpose

Strategic Purpose

Objective

Vision

Goal

Help Achieve

Strategy

Strategic Action

Decision

Assumption

Risk

Critical Success

Factor

Influence Factor

Conceivable State

Space

State Law

Lawful State

Space

Event Space

Lawful

Transformation

Lawful Event

Space

System

Composition

System Structure Subsystem

System

Decomposition

Stable State Unstable State

External Event Internal Event

Well-Defined

Event

Poorly Defined

Event

Level Structure

Figure 6.2 Synonyms Mapping in BWW Ontology and Enterprise Ontology
6.3.1 Thing and Entity

In both ontologies, there is only very simple definition. In BWW Ontology, “a thing is the elementary unit in the ontological model. The real world is made up of things.” While in Enterprise Ontology, an ENTITY is “a fundamental thing in the domain being modeled”.

6.3.2 Property and Attribute

The way PROPERTY and ATTRIBUTE that are defined in each ontology is completely different. A PROPERTY in BWW Ontology is modeled via an attribute function that maps the thing into some value. An ATTRIBUTE in Enterprise Ontology is defined as a RELATIONSHIP between two ENTITIES that within the scope of interest of the model, for any particular attributed ENTITY the RELATIONSHIP may exist with only one value ENTITY.

This is to say, PROPERTY in BWW Ontology is defined without referring to any RELATIONSHIP existed while ATTRIBUTE in Enterprise Ontology is defined as a special kind of RELATIONSHIP of which one of the ENTITY in the RELATIONSHIP is out of the scope of interest for modeling purpose.
6.3.3 State and State of Affairs

Similar to PROPERTY and ATTRIBUTE, STATE and STATE OF AFFAIRS are defined completely different in BWW Ontology and Enterprise Ontology. In BWW Ontology, STATE is defined as “the vector of values for all property functions of a thing”. But in Enterprise Ontology, STATE OF AFFAIRS consists of a set of RELATIONSHIPS between particular ENTITES.

Therefore the fundamental difference is that STATE describes one THING while STATE OF AFFAIRS describe several ENTITIES.

However a STATE can be reached by decomposing STATE OF AFFAIRS.

6.3.4 Event

In both ontologies EVENT is defined under the same name. However similar to STATE and STATE OF AFFAIRS, the definition is completely different in two ontologies. In BWW Ontology, EVENT is defined as “a change of state of a thing”. While in Enterprise Ontology, EVENT is “a kind of ACTIVITY” of which only the EFFECT is within the scope of interest for modeling purpose. Since EFFECT is a kind of STATE OF AFFAIRS, EVENT in Enterprise Ontology can be thought of as an ACTIVITY that brings a change of the STATE OF AFFAIRS. And only this STATE OF AFFAIRS is within the scope of interest for modeling purpose. All the other information about this ACTIVITY is out of the scope of interest for modeling purpose. From here we can see the only difference two definitions remain to be “a change of STATE of a thing” versus “a change of STATE OF AFFAIRS of several things”.
We use the definition from Enterprise Ontology for the new merged term EVENT.
6.3.5 Coupling and Relationship

Although the names are different, these two terms are essentially the same. The definition for COUPLING in BWW Ontology is “a thing acts on another thing if its existence affects the history of the other thing. The two things are said to be coupled or interact”. RELATIONSHIP in Enterprise Ontology is defined as the way that two or more ENTITES can be associated with each other.
In Figure 6.3, we use red rectangles to denote five merged constructs/terms.

[image: image313.emf]Transformation

History System

System

Environment

Class Kind

Role

Achieve

Actor Role

Actor

Activity

Activity

Specification

Execute

Effect

Authority

Plan

Process

Specification

Capability

Skill

Resource

Potential Actor

Pre-Condition

Person

Machine

Corporation

Partner

Legal Entity

Organizational

Unit

Delegate

Partnership

Resource

Allocation

Sub-Activity

Sub-Plan

Ownership

Owner

Asset

Stakeholder

Employment

Contract

Share

Shareholder

Sale

Sale Offer

Ventor

Reseller

Product

Price

Market

Customer

Market Segment

Brand

Image

Feature

Promotion

Competitor

Need

Purpose

Hold Purpose

Intended Purpose

Strategic Purpose

Objective

Vision

Goal

Help Achieve

Strategy

Decision

Assumption

Risk

Critical Success

Factor

Influence Factor

Thing/Entity

Property/Attribute

State/State of

Affairs

Event

Coupling/

Relationship

Conceivable State

Space

State Law

Lawful State

Space

Event Space

Lawful

Transformation

Lawful Event

Space

Subsystem

System

Composition

System Structure

System

Decomposition

Stable State Unstable State External Event

Internal Event

Well-Defined

Event

Poorly Defined

Event

Level Structure

Purpose-Holder

Figure 6.3 Merging of Two Ontologies
6.4 Differentiate Meta-Concepts and Meta-Relationships
Before we can discuss Meta-Concepts and Meta-Relationships, we want to trace the origin of Meta. Meta- (from Greek: μετά = "after", "beyond", "with", "adjacent", "self"), is a prefix used in English (and other Greek-owing languages) to indicate a concept which is an abstraction from another concept, used to complete or add to the latter.

In epistemology, the prefix meta is used to mean about its own category. For example, metadata are data about data (who has produced them, when, what format the data are in and so on). Similarly, metamemory in psychology means an individual's knowledge about whether or not they would remember something if they concentrated on recalling it. Furthermore, metaemotion in psychology means an individual's emotion about his/her own basic emotion.
Another, slightly different interpretation of this term is “about” but not “on” (exactly its own category). For example, in linguistics a grammar is considered as being expressed in a metalanguage, or a sort of language for describing another language (and not itself). Also we have such concepts as meta-reasoning and meta-knowledge.

Any subject can be said to have a meta-theory which is the theoretical consideration of its meta-properties, such as its foundations, methods, form and utility.
6.4.1 Meta-Concepts
Many literatures used meta-concept as a term but did not give any formal definition. For example, in KAOS [Dardenne, 1991, 1993], there is no definition at all, but only some examples, e.g. “Agent”, “Action”, “Relationship”, etc. We define meta-concepts are concepts that can be instantiated into concepts at Domain level.
6.4.2 Meta-Relationships
Meta-relationships link meta-concepts. Meta-relationship should be able to instantiate to Relationship at Domain level.
6.4.3 Decide Each Meta-Construct to Be Meta-Concept or Meta-Relationship

After the merging of the two ontologies, the resulted meta-concepts all seem to be equal. However when we look at the definition of terms in Enterprise Ontology, most of them are defined based on terms of meta-ontology and or already defined terms. There are 5 ways of defining new meta-constructs based on terms of meta-ontology and other already defined terms.

First, new meta-construct is defined as “a Relationship between A and B”. This essentially means the new meta-construct is a meta-relationship, not a meta-concept. For example, in Enterprise Ontology, CAPABILITY is defined as “a Relationship between a POTENTIAL ACTOR and an ACTIVITY SPECIFICATION denoting the ability of the Potential Actor to perform the specified ACTIVITIES”. Therefore CAPABILITY is a meta-relationship that links meta-concepts POTENTIAL ACTOR and ACTIVITY SPECIFICATION.
Second, new meta-construct is defined as “a Role of A playing in Relationship B”. In such cases, whether the new meta-construct is meta-concept or meta-relationship depends on A. If A is meta-concept then the new meta-construct is meta-concept. If A is meta-relationship then the new meta-construct is meta-relationship. For example, RESOURCE is defined as “the Role of an Entity in a relationship with an ACTIVITY or ACTIVITY SPECIFICATION whereby …”. Because an Entity is a meta-concept, therefore RESOURCE is a meta-concept, not a meta-relationship. Another example is, ASSUMPTION is defined as “the ROLE of a STATE OF AFFAIRS in a RELATIONSHIP with an ACTOR whereby …”. Because STATE OF AFFAIRS is a meta-relationship, therefore ASSUMPTION is a meta-relationship.

Third, new meta-construct is defined as “a A that …”. In such cases, the new meta-construct is a meta-concept if A is a meta-concept. Otherwise it’s a meta-relationship if A is a meta-relationship. For example, an ACTOR is “an ENTITY that actually plays an ACTOR ROLE in a RELATIONSHIP”. Because ENTITY is meta-concept, therefore ACTOR is a meta-concept.

Fourth, new meta-construct is defined as “a group of As that …”. This is similar to the third case. The new meta-construct is a meta-concept if A is a meta-concept. Otherwise it’s a meta-relationship if A is a meta-relationship.. For example, a CORPORATION is defined as “a group of PERSONS recognized in law as having existence, rights, and duties distinct from those of the individual PERSONS who from time to time comprise the group.” Because PERSON is a meta-concept, therefore a CORPORATION is a meta-concept.

Fifth, new meta-construct is defined as “the union of A and B”. In such case, the new meta-construct is decided jointly by A and B. That is to say, if A and B both are meta-concepts, then the new meta-construct is a meta-concept. If A and B both are meta-relationships, then the new meta-construct is a meta-relationship. For example, OWNERSHIP is defined as “the union of LEGAL OWNERSHIP and NON-LEGAL OWNERSHIP”. Because both LEGAL OWNERSHIP and NON-LEGAL OWNERSHIP are meta-relationships, therefore OWNERSHIP is a meta-relationship.

Based on above rules, we can decide all the meta-constructs to be either meta-concepts or meta-relationships. In Figure 6.4, we use shaded rectangles to differentiate meta-relationships from meta-concepts, which are denoted using blank rectangles.

[image: image314.emf]Transformation

History System

System

Environment

Class Kind

Role

Achieve

Actor Role

Actor

Activity

Activity

Specification

Execute

Effect

Authority

Plan

Process

Specification

Capability

Skill

Resource

Potential Actor

Pre-Condition

Person

Machine

Corporation

Partner

Legal Entity

Organizational

Unit

Delegate

Partnership

Resource

Allocation

Sub-Activity

Sub-Plan

Ownership

Owner

Asset

Stakeholder

Employment

Contract

Share

Shareholder

Sale

Sale Offer

Ventor

Reseller

Product

Price

Market

Customer

Market Segment

Brand

Image

Feature

Promotion

Competitor

Need

Purpose

Hold Purpose

Intended Purpose

Strategic Purpose

Objective

Vision

Goal

Help Achieve

Strategy

Decision

Assumption

Risk

Critical Success

Factor

Influence Factor

Thing/Entity

Property/Attribute

State/State of

Affairs

Event

Coupling/

Relationship

Conceivable State

Space

State Law

Lawful State

Space

Event Space

Lawful

Transformation

Lawful Event

Space

Subsystem

System

Composition

System Structure

System

Decomposition

Stable State Unstable State External Event

Internal Event

Well-Defined

Event

Poorly Defined

Event

Level Structure

Purpose-Holder

Figure 6.4 Meta-Concepts and Meta-Relationships after Merging of Two Ontologies
6.5 Connect Meta-Constructs Semantically

An ontology differentiate from a vocabulary because it not only contains a formal definition of concepts but also a formal representation of the relationships between them. In our merged ontology, these relationships can be derived from the original definitions in BWW Ontology or Enterprise Ontology. In previous section, we have discussed five different relationships between a newly defined meta-construct and previously defined meta-concepts. Please note such relationships between meta-constructs (meta-concepts and meta-relationships) are not meta-relationships.
We use five different connector notations to denote these five different circumstances, as discussed separated below.
· New meta-construct is defined as “a Relationship between A and B”. We use a solid line to connect A and B, and then draw another dotted line from the midpoint of the solid line to the new meta-construct, as illustrated in Figure 15. For example, CAPABILITY is defined as “a Relationship between a POTENTIAL ACTOR and an ACTIVITY SPECIFICATION denoting the ability of the POTENTIAL ACTOR to perform the specified ACTIVITIES”. In this example, we use a dotted line connect CAPABILITY with the midpoint of a solid line, which connect POTENTIAL ACTOR and an ACTIVITY SPECIFICATION, as shown in Figure 6.5.

[image: image315.emf]A B

New Meta-Construct

*

-End1

*

-End2

Figure 6.5 Connectors for New Meta-Construct as a Relationship between A and B
· New meta-construct is defined as “a Role of A playing in relationship with B”. We use a solid line to connect A and B, and then draw another solid line with an arrow pointing from the new meta-construct to the A end of the solid line, as illustrated in Figure 6.6. For example, RESOURCE is defined as “the Role of an ENTITY in a relationship with an ACTIVITY or ACTIVITY SPECIFICATION whereby …”. In this example, we use a solid line connect ENTITY and ACTIVITY SPECIFICATION, then draw another solid line between RESOURCE and the ENTITY end of the solid line, with an arrow pointing from RESOURCE to ENTITY.

[image: image316.emf]A B

End1 End2

New Meta-Construct

Figure 6.6 Connectors for New Meta-Construct as a Role of A Playing in a Relationship with B
· New meta-construct is defined as “a A that …”. We use a solid line connecting the new meta-construct and A, then draw an arrow pointing from the new meta-construct to A, as illustrated in Figure 6.7. For example, an ACTOR is “an ENTITY that actually plays an ACTOR ROLE in a RELATIONSHIP”. So in this example, we draw a solid line connecting ACTOR and ENTITY, and the arrow point from ACTOR to ENTITY.

[image: image317.emf]A

New Meta-Construct

Figure 6.7 Connectors for New Meta-Construct as “a A that”

· New meta-construct is defined as “a group of As that …”. This is similar to the third case. We use a solid line connecting the new meta-construct and A and then at the end of the new meta-concept we draw a circle to denote the meaning of “group”, as illustrated in Figure 6.8. For example, a CORPORATION is defined as “a group of PERSONS recognized in law as having existence, rights, and duties distinct from those of the individual PERSONS who from time to time comprise the group.” So in this example, we draw a solid line connecting CORPORATION and PERSONS, and a circle at the CORPORATION end.

[image: image318.emf]A

New Meta-Construct

Figure 6.8 Connectors for New Meta-Construct as “a A that”
· New meta-construct is defined as “the union of A and B”. We use a fork to union A and B and connect them to the new meta-construct, as illustrated in Figure 6.9. For example, OWNERSHIP is defined as “the union of LEGAL OWNERSHIP and NON-LEGAL OWNERSHIP”. In this example, we use a fork to union LEGAL OWNERSHIP and NON-LEGAL OWNERSHIP, and then connect them to the new meta-cconstruct.

[image: image319.emf]A

New Meta-Construct

B

E

n

d

2 E

n

d

1

E

n

d

3

Figure 6.9 Connectors for New Meta-Construct as “the union of A and B”

After connect all the meta-constructs in Figure 6.4 according to the rules we specified above, we have a connected graph as shown in Figure 6.10.

[image: image320.emf]Purpose

Strategic Purpose

Activity

Activity Specification

Plan

*

*

Event

Process Specification

Actor

Potential Actor

Capability

*

*

Thing/Entity

Resource

*

*

Coupling/Relationship

Property/Attribute

State/State of Affairs

Person

Intended Purpose

*

*

Hold Purpose

*

*

Organization Unit

Actor Role

*

*

Stable State Unstable State

External Event Internal Event

Class (BWW) Kind (BWW)

Well-defined Event Poorly-defined Event

System

History

System Environment

Purpose Holder

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA IsA

IsA

IsA

Authority

*

*

Execute

*

*

T-Begin T-End

Sub-Activity

IsA

Skill

*

*

Strategy

IsA Strategic

IsA

Activity Owner

IsA

Sub-Plan

IsA

Corporation

A Group of

Legal Entity

Partnership

A Group of

Objective

IsA

Goal

IsA

Vision

IsA

Decision

*

*

Time Interval

Time Point

Sequence of

Influence Factor

Critical Success Factor

Assumption

*

*

Risk

*

*

Help Achieve

*

*

Time Line

Pre-Condition Effect

Conceivable State Space

Event Space Transformation

Machine

Partner

IsA

Achieve

Role

*

*

State Law

Lawful State Space

*

*

Lawful Event Space

*

*

Lawful Transformation

*

*

System Composition

System Decomposition

System Structure

Subsystem

Purpose-Holder

*

*

Legal Ownership

*

*

Non-Legal Ownership

*

*

1

-End14 *

1

-End20 *

Ownership

Level Structure

Mission

IsA

Potential Actor

Figure 6.10 Use Connectors to Connect Meta-Constructs Semantically

6.6 Mapping Meta-Constructs to Columns of Zachman Framework
Now we have a graph with semantically connected meta constructs (meta-concepts and meta-relationships). To use it as a meta-model for Zachman Framework, we still need the last step to map meta-constructs to different columns of Zachman Framework.

This is a process involve subjective personal judgment since Zachman and Sowa [Zachman, 1987; Sowa, 1992] didn’t give any formal definition or boundary for the columns.

We have Figure 6.11 after mapping meta-constructs to columns of Zachman Framework.

[image: image321.emf]Purpose

Strategic Purpose

Activity

Activity Specification

Plan

*

*

Event

Process Specification

Actor

Potential Actor

Capability

*

*

Thing/Entity

Resource

*

*

Coupling/Relationship

Property/Attribute

State/State of Affairs

Person

Intended Purpose

*

*

Hold Purpose

*

*

PEOPLE/Who DATA/What TIME/When FUNCTION/How MOTIVATION/Why

Organization Unit

Actor Role

*

*

Stable State Unstable State

External Event Internal Event

Class (BWW) Kind (BWW)

Well-defined Event Poorly-defined Event

System

History

System Environment

Purpose Holder

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

Authority

*

*

Execute

*

*

T-Begin T-End

Sub-Activity

IsA

Skill

* *

Strategy

IsA Strategic

IsA

Activity Owner

IsA

Sub-Plan

IsA

Corporation

A Group of

Legal Entity

Partnership

A Group of

Objective

IsA

Goal

IsA

Vision

IsA

Decision

*

*

Time Interval

Time Point

Sequence of

Influence Factor

Critical Success Factor

Assumption

*

*

Risk

*

*

Help Achieve

*

*

Time Line

Pre-Condition Effect

Conceivable State Space

Event Space Transformation

NETWORK/Where

Machine

Partner

IsA

Achieve

*

*

Role

*

*

State Law

Lawful State Space

*

*

Lawful Event Space

*

*

Lawful Transformation

*

*

System Composition

System Decomposition

System Structure

Subsystem

Purpose-Holder

*

*

Legal Ownership

*

*

Non-Legal Ownership

*

*

1

-End14

*

1

-End20

*

Ownership

Level Structure

Mission

IsA

End1

End2

End1

End2

Figure 6.11 Mapping Meta-Constructs to Columns of Zachman Framework

6.7 Potential Problems with Our Methods for Merging Ontologies
We can not find any previous work on merging ontologies, therefore unavoidably our immature method has many deficiencies. Many of these deficiencies are also commonly claimed to exist in the process of ontological representation analysis of various modeling language using BWW ontology.
6.7.1 Lack of Understandability

Both BWW Ontology and Enterprise Ontology have been specified in formal languages. While such formalisations are beneficial for complete and precise specifications of the models, they are not intuitive specifications. An ontology that is not clear and intuitive can lead to misinterpretations in the process of interpreting, comparing and merging constructs from both ontologies.

6.7.2 Lack of Comparability

Both BWW Ontology and Enterprise Ontology also have textual descriptions of the ontology in “plain English” which often extend the formal specification. However, even if an ontology is specified in an intuitive and understandable language, the actual comparison with another ontology remains a problem. Unless both ontologies are specified in the same specification language, it will be up to the coder to ‘mentally convert’ the two specifications into each other, which adds a subjective element to the analysis. Obviously, the coding of two specifications into each other may result in the loss of relevant specification information and thus potentially diminishes the quality of the input data.

6.7.3 Lack of Guidance

During the whole process, it is typically up to the coder to decide on the procedure of the analysis, i.e., in what sequence will the ontology constructs and terms be analyzed? This lack of procedural clarity may have one consequence that the procedure of the analysis can potentially have an impact on the results of the analysis. Thus, it is possible that the same process of merging by two different analysts may lead to different outcomes.

6.7.4 Lack of Objectivity

The whole merging process is based on the individual interpretations of the involved researcher, which adds significant subjectivity to the results. This concern is conceded also by [Weber, 1996] who contends that “one person’s perception of a mapping between an ontological construct and a grammatical construct might not be the same as another person’s perception”. This problem is further compounded by the fact that, unlike other qualitative research projects, it is very difficult to validate results for both representational analyses and our merging of ontologies.

6.8 Related Work

[Martin and Robertson, 1999] presents a formal specification that structures a framework in Zachman's Enterprise Architecture Framework as a tree of frames. Each frame is the familiar role X interrogative grid. Each cell of the grid contains, recursively, additional frames down to leaves. The formalism also provides mechanisms for connecting framework components down the recursive levels of detail and down the grid categories of roles. While the tree of frames expresses the structure of a framework model, these connections express the framework's meaning. On top of the basic formalism, additional mechanisms facilitate customizing of framework meta-models, viewing frameworks from different perspectives, and imposing constraints on the framework model. The paper also discusses implications of the formalism on the ways in which Zachman Framework models are discovered.

[Kingston and Macintosh, 2000] instantiate each cells of the framework by suggesting various modeling techniques for each cells and illustrated using examples from a medical domain. However, neither did they explicitly mention any relationship existing between those modeling grammars nor did they specify a sequence or process to acquire models using these modeling techniques.

[Pereira and Sousa, 2004] also identified the flexibility of the Zachman Framework as a negative issue. To deal with this they proposed a method which defines the sequence of filling up each cell with a top-down and incremental approach. They particularly defined a new concept called an “anchor cell” which is the cell in the FUNCTION/How column of each row. They claim that all the other cells in the same row have the “anchor cell” as their base. They also present a tool developed for the purpose of supporting the Zachman Framework concepts. Although they developed a sequence to instantiate cells, they did not suggest any meta-model or modeling grammar.
[Fatolahi and Shams, 2006] also claimed three major problems of Zachman Framework when used in practical solutions as lack of a methodology covering all the aspects of the framework, a well-defined repository storing the framework in accordance with the integrity rules and a popular modeling notation for all of its cells. They think selecting a modeling notation is a prerequisite for devising any methodology or implementing any repository for Zachman Framework. Therefore, they focus on solving the last problem with notations in UML and UML Business Profile.
Many commercially available Enterprise Architecture modeling tools have also included a version of the Zachman Framework in their products. Such EA modeling tools as IBM Telelogic Rational System Architect and Sparx Enterprise Architect have adopted and developed extensive modeling notations for each cell. There are also cross-cell linkages between meta-models of different cells. However, due to their commercial nature, the underlying meta-model remains unavailable to the public.
6.9 Conclusions

In this chapter, we first reviewed other research attempt to refine, extend and improve the original Zachman Framework to overcome the deficiencies so that it can be applied in the RE process. Then we looked at the conceptual modeling at different levels, meta level, domain level and instance level. Finally we present our solution to develop a meta-model for Zachman Framework by merging BWW Ontology and Enterprise Ontology, and then map the meta-constructs to columns of Zachman Framework.
CHAPTER 7 – REQUIREMENT ELICITATION AND MODELING BASED ON ONTOLOGICAL META-MODEL

7.1 Introduction

As mentioned in the introduction, a significant portion of the requirements of an enterprise information system acquired during the early stage of RE is the knowledge of the enterprise’s structure, strategies, plans, organizations, people, activities, processes, resources, business rules, external relations etc. Such knowledge is composed of built-in concepts and relationships of enterprise or business domain, which are domain specific instances of the meta-concepts and meta-relationships developed in previous chapter.
We see the requirement acquisition process as a sequence to traverse the meta-model graph to acquire instances of its nodes (meta-concepts and meta-relationships) and edges (links between meta-constructs). Depending on the different situation of system development projects, the processes/sequences are different. For example, an enterprise software development project that is initiated by a new business strategy may need to follow a requirement elicitation process that starts from Goal/Strategy modeling, like the one illustrated in this chapter as an example.
In this chapter we first introduce the background information of our Sir Edward and Company case which is an imaginary timber supply and shipping company used throughout the development of our requirement elicitation process. Then we demonstrate our requirement elicitation process which corresponds to a particular sequence to traverse the meta-model graph. It is suitable for the scenario in which a new e-Commerce strategy is initiated in the company that requires developing an online timber ordering and shipment location tracking application. Finally we briefly review KAOS method which is also based on a conceptual meta-model and some other similar research work.
7.1.1 Introduction to the Sir Edward Kelly and Company Case

The case study we used during the development of our method is an imaginary timber company called Edward Kelly and Company. [Trinder, 2010]

7.1.1.1 Sir Edward Kelly and Company History
Edward Kelly and Company was founded in 1870 in what is now Victoria, Australia. Its early business came from the supply of deck timbers to shipyards commissioned to repair vessels that were sailing to and from England. The company's first wooded property was at Stringybark Creek, and as this timber became exhausted, so more and more was drawn from the hills of the Great Dividing Range. In 1875, as a reward for service to Her Majesty and the Colonies, Edward Kelly was knighted.

Business was good in those early days and Sir Edward Kelly soon took a partner, Constable Fitzpatrick, to help manage the properties and to attend to the legal work of land purchase and sale. Cleared forest land was sold to early settlers, and as their townships grew, so did the demand for timber. These new demands, however, were for species not natural to Australia and Sir Edward Kelly began importing timber from the forests in England, Russia, North America and Scandinavia.

Shipping became so important to the business that Sir Edward took his brother Daniel as a third partner and together they established the Sir Edward Kelly Shipping Company as a separate company. Sadly, in 1880, Sir Edward and his brother Daniel died, and as a mark of respect Constable Fitzpatrick voluntarily wound up the business. Retaining the company name he teamed up with two other traders, Steven Hart and Joseph Byrne, and brought a new and very prosperous business into the twentieth century.

To this day the company still trades as timber importers and merchants, and is proud of its historic links with Australia's past. The company seal bears the motto, Such is Life.

7.1.1.2 Description of Business Operation
Sir Edward Kelly and Company use to rely on all manual procedures in the conduct of their business. The company operations consist of buying, shipping and selling timber to the building industry and also to customers requiring a lower quality material, e.g. fencing and packaging. Timber may be sold from stock and the company has yards in both Victoria and New South Wales. The most profitable business, however, comes from timber that is sold forward; that is, before shipment has taken place. This timber, known as floating stock, is delivered to the customer direct from the quay.

Joint managing directors of the company are now Mr Len Possum and his son Colin. They alone are responsible for buying, and spend most of their time negotiating with agents for the supply of timber. When terms have been agreed the agent issues a formal contract and either Len or Colin will sign on behalf of the company. A summary of this contract (Figure 7.1) is prepared for use in the shipping, sales and stock departments.

Every month all outstanding contracts are summarized to produce a Commitment Report. This is distributed to all senior management.

The shipping department is managed by Martin Howard and, under his direction, staff negotiate and liaise with the shipping agents. Each time a ship sails they receive a shipping sheet (Figure 7.3) and bill of lading (Figure 7.2), detailing all timber loaded on board from the shipping agent. For each shipment the department prepares a shipping sheet, copies of which are sent to the stock department and all sales staff. The original is retained on file in the department.

For each shipment and bill of lading the dock superintendent and customs agent prepares an outrun report. He records the condition of the timber and the number of packs and pieces actually received at the docks.

On receipt of the outrun report, the shipping department compares these details with those on the bill of lading and shipping sheet and, if necessary, prepares claims against the timber agent or the shipping agent.

The outrun report is passed to the stock department who keep a record of all timber held at the dock.

Bill of lading documents and shipped contracts are held on file until all claims have been resolved. Old documents are retained indefinitely in the company's archives.

The sales department's first priority is to sell floating stock to customers. Forward sales, as these are called, are confirmed back to the customer in writing and advised to the stock department on the shipping sheet, or contract, against those bills of lading it concerns. Forward sales are always for complete bills of lading.

The stock department notifies the dock superintendents of all forward sales, so that the timber may be released immediately once unloading is complete. The dock superintendent is also advised of the unsold timber to be collected and delivered to Sir Edward Kelly's own yards.

7.1.1.3 Example Documents

Example documents have been obtained from Sir Edward Kelly and Company. These are illustrated as follows:

Contract Summary, Figure 7.1
Bill of Lading, Figure 7.2
Shipping Sheet, Figure 7.3
[image: image322.emf]
Figure 7.1 Contract Summary

[image: image323.emf]
Figure 7.2 Bill of Lading

[image: image324.emf]
Figure 7.3 Shipping Sheet
7.1.1.4 The As-Is Application Architecture

During the 1990s, as computers become widely available to personal use and business use, the management at Sir Edward Kelly and Company decided to embrace the new information revolution by introducing Information Technology into their daily business operation. The first business application implemented in the company is the Accounting System supplied by a package solution software vendor. Later shipping department and dock department separately contracted with external software vendors to develop their own information systems, respectively Order Handling System and Inventory Control System. However as the shipping department always have to compare their shipping sheet and bill of lading with the dock department’s outrun report to prepare claims against the timber agent or the shipping agent if necessary, an interface was developed between two department’s systems. Finally Sales department contracted with external software vendor developed their Customer Information System. In order to directly transfer customer’s payment information from Sales department to Finance department, another interface between Customer Information System and Accounting System was added.
To summarize there are various heterogeneous applications developed under different initiatives in the company at different time. There is Accounting System in Finance department, Customer Information System in Sales department, Order Handling System in Shipping department, and Inventory Control System in Stock department. There are interfaces between Order Handling System and Inventory Control System, and between Customer Information System and Accounting System. The Application Architecture of Sir Edward Kelly and Company is illustrated in Figure 7.4.

[image: image325.emf]Accounting System

Order Handling System

Customer Information System

Inventory Control System

Outrun

Report

Shipping

Sheet

Bill of

Lading

Laptop

Workstations

Workstations

Workstations

Figure 7.4 Application Architecture of Sir Edward Kelly and Company
7.1.1.5 Data Dictionary

Data dictionary entries describe the terms used in above documents.
Table 7.1 Data Dictionary
	BILL OF LADING

	A legal document which records details of timber being shipped. The document is negotiable and may be offered for sale.

	CONDITION

	Known condition of timber after shipment and delivery to yard. May be Split, Dirty, Loose, Wet etc.

	CREDIT BANK
	Bank guaranteeing the transfer of funds from Buyer and Seller.

	CURRENCY RESTRICTIONS
	Fluctuation against the Australian Dollar which would cause the negotiated price to change.

	CUSTOMS AGENT
	Acts to clear documents and timber through customs. Also responsible for examination of timber at time of landing to determine condition.

	DELIVER NOTE EX-STOCK
	Prepared by yard staff when timber is sent by lorry to the customer. Specifies actual lengths and pieces delivered.

	DELIVERY NOTE EX-QUAY
	Prepared by the Dock Superintendent when timber is released to a customer or haulier. Specifies actual lengths and pieces delivered.

	DOCK ORDER
	Authorises the Dock Superintendent to release timber to a customer or haulier for delivery.

	EX-QUAY DATE
	Expected date of collection by customer or haulier.

	EX-QUAY PERIOD
	Number of days that the unloaded timber may be stored at the dock side without being subject to storage charges.

	FREIGHT CHARGE
	Cost of shipment. Usually included in the purchase prices of the timber.

	HAULIER
	Transport company responsible for delivery to Sir Edward Kelly customer. May be the customer's own transport department, S.E.K Transport or independent.

	INSURANCE DETAIL
	States who is responsible for insurance of timber during shipment.

	LANDING RETURN
	Document prepared by yard staff at the time of receiving timber into stock. The number of pieces, by length, are counted and recorded, together with any comments about the condition of the timber.

	LENGTH SPECIFICATION
	Lengths which the cut pieces must not exceed, or fall below.

	OPENING BALANCE
	Lengths, pieces, and volume on delivery.

	OUTRUN REPORT
	Document prepared by Customs Agent and Dock Superintendent. It is the definitive Shipped and Received detail, and may be used to claim against the Timber Agent of Shipper.

	PACKAGING REQUIREMENT
	How the timber is to be bundled and bound for shipping. A packet is the smallest possible unit of sale.

	PACK
	Bound timber held by steel straps. Is approximately 3M3 and the smallest unit of sale.

	PURCHASE PRICE
	Price and currency per cubic metre.

	QUALITY
	Expressed as grades from 1 to 5. Referred to as 3rds or Firsts etc.

	QUAY RATE
	Daily rate for the storage of timber at the dock. Expressed in $ per M3.

	QUAY STOCKS
	Details recorded in Bill's Book. It shows timber lying at the dock and awaiting collection. Its purpose is to avoid timber being forgotten and the unnecessary payment of storage charges.

	SHIPPING ADVICE
	Document prepared by the Shipping Agent, which advises the Sailing Arrival and discharging dates for a particular voyage.

	SHIPPING AGENT
	Arranges shipment of timber from seller to buyer.

	SIZE
	Cross sectional measurement of the timber in millimetres.

	TERMS
	Terms of sale to a Sir Edward Kelly customer. Shows due date and discount for early settlement.

	TIMBER AGENT
	Acts on behalf of the seller and conducts all negotiations.

	TIMBER DESCRIPTION
	Full description of the timber as specified on the contract.

	TIMBER SPECIFICATION
	Consists of size, timber type and quality. This is the description used by customers and S.E.K. staff when describing timber requirements.

	TIMBER TYPE
	Type of timber. For example Hardwood, Softwood, Redwood or White.

	YARD
	Sir Edward Kelly Timber Yard.

	VOLUME
	Cubic volume of timber, expressed in cubic metres (M3). Calculated by summing the number of pieces by length and then multiplies by size.

7.1.1.6 New e-Commerce Strategy
As mentioned in the beginning in this chapter, we will demonstrate a specific way of traversing the meta-model to acquire instances of meta-concepts and meta-relationships. And this specific sequence is developed for a particular scenario that was set in Sir Edward Kelly and Company. In response to the advent of the new Internet era, the management in Sir Edward Kelly and Company decided to initiate a new strategy to embrace the new e-Commerce idea. The plan is to develop a company website with online timber ordering and shipment location tracking functions.
The driving forces for this new strategic initiative are twofold. Firstly the company wants to further improve customer satisfaction not only by the quality of the timber but also for the service the customers received. Customer satisfaction is generally connected to the efficiency of many of the company’s operation and response time. For example, many market research shows that customer satisfaction will be dramatically improved if the order handling time and item delivery time can be reduced. This certainly also applies to timber supply and shipping industry and Sir Edward Kelly and Company. After several brainstorming sessions at the board meeting, the management decided to introduce online timber ordering to customer and backend automatic order handling to improve the efficiency of order handling in order to reduce order handling time.
However the delivery time can not be reduced by simply using online ordering. In fact the company can do little about the delivery time because it is decided by the shipping service they used. However although the delivery time can not be shortened, customer satisfaction can still be improved by letting the customer be able to know where the timbers are at any time they want to know. Therefore the management of Sir Edward Kelly and Company made a decision to incorporate an online shipping tracking function to the new website.
The online ordering function can let customer to order timber online by filling out a form specifying the required type, quality, size and volume of timber needed and the location for delivery. The information is then transferred to the Customer Information System to either match with the customer record which has already store in the system because the customer has ordered from the company before or the new customer record has to be created. Then the total cost is calculated using the price of the type of timber ordered multiply by volume, plus the shipping cost and then passed on to Finance department through the interface between Customer Information System and Accounting System. The customer has to either pay online using credit card, or call the sales department for other payment methods in order to complete the order.
The shipment tracking function can let customer to track the status of the timber they ordered. The status is most concerned with the current location of the timber, it can be in 5 different statuses: order completed, item shipped, item received at dock, item left dock, item delivered, and item returned to timber producer. The last status happens when the timber quality received at dock is inconsistent with the contract signed.
The other driving force for this new e-Commerce strategy is cutting cost, which includes both decreasing human labor cost and administrative cost.
In the next few sections, we demonstrate our requirement elicitation method catering for acquiring requirement for developing the online ordering and shipment tracking function for Sir Edward Kelly and Company website.
7.2 Our Method
Our approach focuses on requirement acquisition methods for enterprise information system. In such context the conceptual meta-model used in KAOS [Lamsweerde, Dardenne, Delcourt and Dubisy, 1991] becomes too general. Many terms used daily in enterprise environment are difficult to be mapped to any abstractions in the conceptual meta-model developed in KAOS, for example, AUTHORITY, RESOURCE, ORGANIZATION UNIT, etc. Therefore we developed our own meta-model by merging BWW Ontology and Enterprise Ontology in previous chapter to be used for such requirement acquisition methods.
Similar to KAOS, we think there are various ways of traversing the conceptual meta-model graph to acquire requirement models. It depends on the situation of the enterprise system development projects to decide which sequence to use.
As mentioned in last section that as a response to the new e-Commerce fervor, management at Sir Edward Kelly and Company decided to develop an online timber ordering and shipment tracking function in the new company website. The requirement elicitation method we propose for this scenario can be described in following eight steps:

1) Acquire High Level Goal/Strategy Tree model – MOTIVATION/Why

2) Extract STATE OF AFFAIRS from the Goal-Strategy Tree model, and build Master Schedule by adding TIME POINT to STATE OF AFFAIRS – TIME/When

3) Draw Organizational Chart – PEOPLE/Who

4) Model Enterprise Data in E-R Diagram at semantic/conceptual level – DATA/What
5) Draw Network Topology Diagram – NETWORK/Where
6) Reduce High Level Goal/Strategy in Goal/Strategy Tree model until Strategy becomes operationalizable, model operationalizable Strategy using Business Process Model – FUNCTION/How

7) Analysis each PROCESS to identify concerned ACTOR and ENTITY, Model the interaction between ACTOR and ENTITY as Scenario/Use Case
8) Use scenario-oriented requirement analysis techniques to continue the requirement acquisition process
In the following sections, we go through the above seven steps illustrating using the Sir Edward Kelly and Company case.
7.2.1 Acquire High Level Goal/Strategy Tree model – MOTIVATION/Why

Because the system development project is initiated as a solution to a new strategy, the requirement elicitation process has to start from the MOTIVATION/Why column of the Zachman Framework. The recommended models for Business Model (second row) of MOTIVATION/Why column in Zachman Framework is Goal/Strategy Tree model. The most important meta-constructs in the MOTIVATION/Why column of the conceptual meta-model we developed in last chapter are PURPOSE, STRATEGY, OBJECTIVE, VISION, GOAL, ASSUMPTION, RISK, etc. Therefore in this step we try to acquire instances of these meta-constructs to build a Goal/Strategy Tree model.
7.2.1.1 Meta-Constructs of MOTIVATION/Why
We first trace back the definitions of above meta-constructs in Enterprise Ontology, as listed below:

PURPOSE: a ROLE of a STATE OF AFFAIRS in one of the following RELATIONSHIPs:

HOLD PURPOSE: a RELATIONSHIP between an ACTOR and a STATE OF AFFAIRS whereby the ACTOR wants, intends, or is responsible for the full or partial Achievement of the STATE OF AFFAIRS;

Note:

· The ACTOR will usually be a PERSON or OU, however MACHINE is not excluded.

Example:

· Some PERSON wants to be in Edinburgh on some date;

INTENDED PURPOSE: a RELATIONSHIP between an ACTIVITY SPECIFICATION and a STATE OF AFFAIRS whereby:

· EXECUTION of the ACTIVITY SPECIFICATION will result in fully or partially Achieving the STATE OF AFFAIRS;

and

· The STATE OF AFFAIRS entails one or more of the EFFECTS of the ACTIVITY SPECIFICATION whose Achievement is declared to be the primary reason(s) for EXECUTING the ACTIVITY SPECIFICATION.

STRATEGY: a PLAN to Achieve a STRATEGIC PURPOSE.

OBJECTIVE: a PURPOSE with a defined measure.

VISION, MISSION and GOAL: kinds of PURPOSES.

ASSUMPTION: the ROLE of a STATE OF AFFAIRS in a RELATIONSHIP with an ACTOR whereby the ACTOR takes the STATE OF AFFAIRS to be true without knowing whether it is true or not.

RISK: the ROLE of a STATE OF AFFAIRS in a RELATIONSHIP with an ACTOR whereby the ACTOR regards the STATE OF AFFAIRS as a potential hindrance to the Achievement of one or more PURPOSES.

Here we can see there is a fundamental difference between STRATEGY and the rest of the meta-constructs.
STRATEGY is a PLAN to ACHIEVE a PURPOSE. OBEJCTIVES, VISIONS, MISSIONS or GOALS are kinds of PURPOSES. Therefore STRATEGY itself is not a PURPUSE, but a high level ACTIVITY SPECIFICATION.

PURPOSES are defined as either a RELATIONSHIP between an ACTOR and a STATE OF AFFAIRS (HOLD PURPOSE) or a RELATIONSHIP between an ACTIVITY SPECIFICATION and a STATE OF AFFAIRS (INTENDED PURPOSE). ASSUMPTION and RISK are both defined as the ROLE of a STATE OF AFFAIRS in a RELATIONSHIP with an ACTOR.
All these meta-constructs except STRATEGY are defined as one of the following:

· a RELATIONSHIP between a STATE OF AFFAIRS and an ACTOR whereby……
· a RELATIONSHIP between a STATE OF AFFAIRS and an ACTIVITY SPECIFICATION whereby……
· the ROLE of a STATE OF AFFAIRS in a RELATIONSHIP with an ACTOR whereby……
In other words, there is always a STATE OF AFFAIRS corresponding to these meta-constructs. This is important for the next step Extract STATE OF AFFAIRS from the Goal-Strategy Tree model.
In Figure 7.5, we single out these meta-constructs that are related to STATE OF AFFAIRS for MOTIVATION/Why column in Zachman Framework from Figure 6.11. To acquire high level Goal/Strategy Tree model, the requirement analysts have to explore the available information to identify and extract the instances of such meta-constructs from these sources to explicitly document them. It is good practice to gather as much relevant information as possible to understand the design implications of goals. These information sources or descriptions may be provided in some company documents in such diverse formats as textual statements, transcripts of interviews, charts, diagrams (e.g. Entity Relationship Diagrams), process descriptions, or even explicitly stated goals (i.e., an organization mission statement or a strategic plan). However the level of detail will vary greatly depending on whether a completely new system is needed or a current system is already in place but in need of modification.

[image: image381.wmf]Figure 7.5 Meta-Constructs related to MOTIVATION/Why

7.2.1.2 Acquire Goal/Strategy Model for Sir Edward Kelly Company Case
In Sir Edward Kelly and Company case, to understand the strategies and goals of the company, we hold interviews with the management Mr Len Possum and Mr Martin Howard. Below is one of the interview transcript with them.

Author: Why does Sir Edward Kelly and Company decided to launch website and online ordering and item tracking?
Mr Len Possum: This is part of our strategy to improve our sales income cash flow by 20%. By offering online credit card payment method, we can achieve far better results than our “receive payment within 3 days after delivery”.
To identify goals from a piece of information like this short interview transcript, there are two methods.

The easier way is to search for the keywords of the meta-constructs in the MOTIVATION/Why column of the conceptual meta-model, e.g. PURPOSE, STRATEGY, OBJECTIVE, VISION, GOAL, ASSUMPTION, RISK, etc. They can be translated directly to the instances of these meta-constructs. For example, in the above interview transcript we find the keyword strategy mentioned in Mr Len Possum’s answer to author’s question. It actually refers offering online credit card payment method. Therefore we can model Online Payment by Credit Card as an instance of meta-construct STRATEGY.
However sometimes goals/strategies in natural language description can be more subtle. In fact, all action words are possible candidates for goals in the proposed system. Therefore the other method identifies goals by searching for action keywords which point to some state that is, or can be, achieved within the system once the action is completed. Because in order to operationalize goals for specification, analysts must be able to reason about any preconditions and postconditions on the goals and the corresponding system operations, therefore the identified goals are worded to emphasize the state that is true, or the condition that holds true, when the goal is realized. Such state is actually the instances of STATE OF AFFAIRS. For example, in the above interview transcript we find key action words achieve. It associates with the states of receive payment within 3 days after delivery, which is an instance of STATE OF AFFAIRS.
Although the first step of goal/strategy identification is placed prior to discussion of the second step of drawing organization chart in our methodology, stakeholders must often be identified before any goals can be specified. Analysts must understand who the stakeholders are before they can even begin to develop an understanding of the goals. However in this thesis, it is assumed that the analysts already possess an understanding of general stakeholders for the system prior to goal identification.
Now we can write down a list of goals and strategies in natural language. The second step is transforming the list into a Goal-Strategy Tree model. Goal-Strategy Tree model is mentioned in [Sowa, 1992] as a hypothetical End-Means Model, where “ends are objectives (or goals) and means are strategies (or methods). In our methodology, all kinds of PURPOSES, which can be the instances of any meta-constructs including OBEJCTIVE, VISION, MISSION or GOAL, are modeled as objective node which is drawn as a rectangle in the Goal-Strategy Tree model. All kinds of PLANS, which include STRATEGY, are modeled as Strategy node which is drawn as a circle in the Goal-Strategy Tree model.
Now we can draw the Goal-Strategy Tree model for Sir Edward Kelly and Company case as illustrated in Figure 7.6.

[image: image326.emf]OBJECTIVE 1

Increase Profit

Help

Achieve

STRATEGY 1.2

Improve Sales

Income Cash Flow

by 20%

OBJECTIVE 1.2

Receive Payment within 3 days

after Delivery

STRATEGY 1.1

Reach 80% Market

Share of Australia

OBJECTIVE 1.1

Improve Customer

Satisfaction

STRATEGY 1.3

Cut Down 10% Total

Cost

STRATEGY

1.2.1

On-line

Payment by

Credit Card

Figure 7.6 Sample Business Plan Model (Enterprise Model of MOTIVATION/Why column of Zachman Framework)
We present two other examples to demonstrate the techniques for identifying and extracting goals from textual descriptions of the desired system by looking for statements which guide decisions and action words.

Example 1: An external policy for an Air Force Base career training system (Career Track Training System, see Anton, 1996). is that the Congress has mandated that government acquisition professionals in the Department of Defense (DoD) must improve their acquisition skills so that they may spend tax payers' money allocated for weapons systems more effectively and efficiently. A DoD-wide program that includes positions and qualifying training was established to provide career tracks for these acquisition professionals.

This is a prescriptive organizational/policy level description of the desired system which delineates the objectives of the organization. By examining each statement and searching for action keywords which point to some state that is, or can be, achieved within the system once the action is completed, several goals become evident from the description: Skills Improved, Position training provided, Qualifying training provided, Career tracks provided, and Tax payer money spent efficiently.

Example 2: The training acquisition process designed for an employee enrolling in a training course for the same Career Track Training System is that the TSD (Training System Director) uses the information in the database to arrange and coordinate training, to track progress of professionals endeavoring to improve their qualifications, and to ensure that TS professionals meet the APDP requirements of their respective positions.

Several action words (verbs) may be found in Example 2: arrange, coordinate, track, improve, and ensure. These action words serve as indicators for the goals: Training coordinated, Progress tracked, and Qualifications improved.

Goals are thus identified using inquiry-driven and traditional action word location techniques. These techniques are not limited simply to the initial goal identification phase; they may be applied throughout the analysis effort.
Now we have successfully created models of the top two cells of MOTIVATION/Why column, which are lists of Business Goals/Strategies, and Business Plan (Goal-Strategy Tree model) for Sir Edward Kelly and Company.
7.2.2 Extract STATE OF AFFAIRS from the Goal-Strategy Tree model, and build Master Schedule by adding TIME POINT to STATE OF AFFAIRS – TIME/When

After acquired the Goal/Strategy model of MOTIVATION/Why column of Zachman Framework, now we move on to TIME/When column. The recommended models for Business Model (second row) of TIME/When column in Zachman Framework is Master Schedule model. The most important meta-constructs in the TIME/When column of the conceptual meta-model we developed in last chapter are STATE OF AFFAIRS, TIME POINT, TIME LINE, TIME INTERVAL, T-BEGIN, T-END, PRE-CONDITION, EFFECT, STATBLE STATE, UNSTABLE STATE, EVENT, EVENT SPACE, TRANSFORMATION, STATE LAW, LAWFUL TRANSFORMATION, EXTERNAL EVENT, INTERNAL EVENT, WELL-DEFINED EVENT AND POORLY-DEFINED EVENT etc.
7.2.2.1 Meta-Constructs of TIME/When
In Figure 7.7, we single out these meta-constructs in TIME/When column from Figure 6.11. To build Master Schedule model, the requirement analysts have to look at the Goal/Strategy Tree model and try to identify and extract the instances of such meta-constructs in the TIME/When column and explicitly fit them into Master Schedule model.
In Enterprise Ontology, we have the definitions of related meta-constructs given below:
· STRATEGY is defined as a PLAN to Achieve a STRATEGIC PURPOSE.

· PLAN is defined as an ACTIVITY SPECIFICATION with an INTENDED PURPOSE.

· INTENDED PURPOSE is a Relationship between an ACTIVITY SPECIFICATION and a STATE OF AFFAIRS where EXECUTION of the ACTIVITY SPECIFICATION will result in fully or partially ACHIEVING the STATE OF AFFAIRS.

· STRATEGIC PURPOSE is a PURPOSE of “strategic” importance.
· T-BEGIN and T-END are the two TIME POINTS that define the TIME INTERVAL over which an ACTIVITY is done.

· PRE-CONDITION is a STATE OF AFFAIRS required to be true in order for the ACTIVITY to be performed. The requirement may be specified to hold immediately before T-BEGIN, immediately before T-END, or throughout the whole TIME-INTERVAL.

· EFFECT is a STATE OF AFFAIRS that is brought about (i.e. made true) by the ACTIVITY. The EFFECT may be specified to hold immediately after T-BEGIN, immediately after T-END, or throughout the whole TIME INTERVAL.

[image: image327.emf]Event

State/State of Affairs

TIME/When

Stable State Unstable State

External Event Internal Event

Well-defined Event Poorly-defined Event

History

T-Begin T-End

Time Interval

Time Point

Time Line

Pre-Condition Effect

Event Space

Transformation

Lawful Transformation

*

*

State Law

Figure 7.7 Meta-Constructs related to TIME/When
By semantically connecting above definitions, we can derive that:

· A STRATEGY is an ACTIVITY SPECIFICATION to fully or partially ACHIEVE a STATE OF AFFAIRS that is at STRATEGIC level. We use S, A and T to denote STRATEGY, ACTIVITY SPECIFICATION and STATE OF AFFAIRS. Then we have S = {A, T}.

· A STRATEGIC PURPOSE is a STATE OF AFFAIRS that the corresponding STRATEGY tries to achieve. In other words, a STRATEGIC PURPOSE is the EFFECT of the corresponding STRATEGY.

According to previous step, all PURPOSES (including STRATEGIC PURPOSE, OBEJCTIVE, VISION, MISSION or GOAL) are modeled as Objective nodes (square) in Goal/Strategy Tree Model, while all ACTIVITY SPECIFICATIONS (including PLANS and STRATEGIES) are modeled as Strategy nodes (circle) in Goal/Strategy Tree Model. All PURPOSES in the model are corresponding to a set of STATE OF AFFAIRS.
7.2.2.2 Build Master Schedule for Sir Edward Kelly Company Case
The Master Schedule model is composed of important events taking place at specific time point and activities going on at time intervals in the enterprise. Here time is abstracted out of the real world to design the event-to-event relationships that establish the performance criteria at quantitative levels for enterprise resources. For example, from Event 1, product announcement at time t
[image: image328.wmf]0

, until Event 2, first customer ship at time t
[image: image329.wmf]1

, there is a duration (t
[image: image330.wmf]1

 - t
[image: image331.wmf]0

). The length of the duration establishes the external commitments of the enterprise as well as the resource levels required to meet the commitments. In general, the shorter the duration, the more resource required to meet the commitments. The longer the duration, the less resource required to meet the commitments.
In the meta-model, we have meta-construct STATE/STATE OF AFFAIRS which is merged from both onotogies. As we discussed in Chapter 6, STATE from BWW Ontology and STATE OF AFFAIRS from Enterprise Ontology are defined very differently in each. STATE describes one THING while STATE OF AFFAIRS describes a set of RELATIONSHIPS between particular ENTITES. At the initial stage of requirement acquisition, most of the situation involves more than one THING/ENTITY, therefore STATE OF AFFAIRS is more appropriate during the initial stage of requirement acquisition.
Now we can start to extract STATE OF AFFAIRS from Goal/Strategy Tree model developed in the previous step and associate it with the TIME POINT it is scheduled to take place to draw the Master Schedule model. We first draw a coordinate system with one dimension being TIME LINE. Then we extract all the Objective nodes from the Goal/Strategy model as all the important STATE OF AFFAIRS in this enterprise. Then according to the TIME POINT that these STATE OF AFFAIRS supposed to take place, we can create the Master Schedule for Sir Edward Kelly and Company case, as shown in Figure 7.8.

[image: image332.emf]SOA 1

Improve

Cash Flow

SOA1.1

Receive

Payment

within 3

days after

Delivery

SOA1.3

Loan from

Bank

SOA1.2

Buy Office

and

Leased

Equipmen

t as

Capital

TIME LINE

SOA2

Improve

Customer

Satisfaction

SOA2.1

Set Up

Truck

Transportati

on

Department

SOA2.2

Sign a

Contract

with a

Truck

Company

TIME POINT

TIME INTERVAL

Figure 7.8 Master Schedule (Enterprise Model of TIME/When column of Zachman Framework)
7.2.3 Draw Organizational Chart – PEOPLE/Who

After acquired the Goal/Strategy model of MOTIVATION/Why column and Master Schedule model of TIME/When column of Zachman Framework, now we move on to PEOPLE/Who column. It is useful to abstract the concept of people out of the real-world enterprise because of the significance of the people-to-people relationships in the enterprise. The organization design should take into consideration of the structure of the authority and responsibility.

The recommended models for Business Model (second row) of PEOPLE/Who column in Zachman Framework is Organizational Chart model. The most important meta-constructs in the PEOPLE/Who column of the conceptual meta-model we developed in last chapter are ACTOR, POTENTIAL ACTOR, ACTOR ROLES, ACTIVITY OWNER, CAPABILITY, AUTHORITY, SKILL, PERSON, MACHINE, CORPORATION, LEGAL ENTITY, PARTNER, PARTNERSHIP, ORGANIZATIONAL UNIT, MANAGE, DELEGATE, MANAGEMENT LINK, LEGAL OWNERSHIP, NON-LEGAL OWNERSHIP, OWNERSHIP, OWNER, STAKEHOLDER etc.

7.2.3.1 Meta-Constructs of PEOPLE/Who
In Figure 7.9, we single out these meta-constructs in TIME/When column from Figure 6.11. To build Organizational Chart model, the requirement analysts have to explore the available information to identify and extract the instances of such meta-constructs from these sources to explicitly document them.
In the first step, we have acquired a list of goals. As goals can be seen as instances of the meta-constructs PURPOSES, they can be divided as either INTENDED PURPOSE or HOLD PURPOSE. As a PURPOSE-HOLDER is the Role of the Actor in the HOLD PURPOSE Relationship, by analyzing all the goals that are instances of HOLD PURPOSE, we can identify the ACTOR in this relationship, which is the PURPOSE-HOLDER.
In this way, we can build a list of ACTORS from the list of goals. To model these ACTORS separately, we need to put them in Organization Chart. Our Organization Chart is a diagram composed of ORGANIZATION UNIT and ACTOR which shows the structure of an organization and the relationships and relative ranks of its parts and positions/jobs. Similar diagram with slightly different notations has been commonly used for modeling such information throughout all industries for a long time.

[image: image333.emf]Actor

Potential Actor

Capability

Person

PEOPLE/Who

Organization Unit

Authority

Activity Owner

Corporation

Legal Entity

Partnership

Partner

Legal Ownership

Non-Legal Ownership

Ownership

Activity

Thing/Entity

Execute

Activity Specification

Skill

Manage

Delegate

Stakeholder

Figure 7.9 Meta-Constructs related to PEOPLE/Who
7.2.3.2 Draw Organizational Chart for Sir Edward Kelly Company Case
Most commonly an organization chart is composed of instances of ORGANIZATION UNIT and ACTORS from the meta-model. Some extensions to organizational chart may also add instances of CAPABILITY, AUTHORITY, SKILL and STAKEHOLDER to the diagram. PERSON, CORPORATION, PARTNER, PARTNERSHIP are rarely modeled in organization chart for information system purpose. PERSON is modeled using ACTOR instead. CORPORATION is often out of the scope. And PARTNER and PARTNERSHIP are mostly irrelevant to the daily operation.
Now from the introduction text of Sir Edward Kelly and Company case, we can draw an Organizational Chart as illustrate in Figure 7.10.
As we mentioned in the definition of MANAGEMENT LINKS in Enterprise Ontology, an Organizational Unit at the lower end of a Management Chain may correspond directly with one PERSON. Therefore it is required that at the leaf level the node should be ACTORS, e.g. Customer, Sales Clerk and Accountant, etc, so that they are available to be used for later steps.
Note that in the Sir Edward Kelly and Company case, because of the new e-Commerce strategy, a change in the Organizational Chart is required. A new online payment processing OU need to be added to the company. It is illustrated by a shaded rectangle in Figure 7.10.

[image: image334.emf]Managing Directors

Mr Len Possum and Colin

Possum

Secretary

Accounting Shipping Sales Stock

Online Payment

Processor

Accoutants

Auditor

Mr Martin Howard

Staff

Stock

Superintendent

Customs Agent

Figure 7.10 Organizational Chart (Enterprise Model of PEOPLE/Who column of Zachman Framework)
7.2.4 Map Network Topology Diagram – NETWORK/Where
After acquired models of MOTIVATION/Why, TIME/When and PEOPLE/Who column of Zachman Framework, we move on to NETWORK/Where column. In the original paper of Zachman Framework (Zachman, 1987), the description about models in NETWORK/Where column is very short and vague. Also there is a dramatic change of the model content from the Business Model (second row) to the System Model (third row). For Business Model it “would perceive the nodes to be business units, an aggregation of business resources (people, facilities, responsibilities, etc.) at some geographical location. The lines would represent logistics connections or flows, probably including communications linkages, but even more basically would represent the distribution structure or logistics network along which communications take place.” While for the System Model it “would perceive the node to be some I/S function, like a processor, storage unit, or access point. This would be a conceptual representation, independent of specific technology which would be introduced in the builder’s cell. The line, from a designer’s standpoint, would be a communication line at the conceptual level, such as a leased line, dial-up service, Royal Mail, etc. This cell would serve the purpose of making the “distributed systems” decisions, that is, specifying where the I/S facilities would be installed, which of them would be connected, and by what type of connection.”

7.2.4.1 Meta-Constructs of NETWORK/Where

The most important meta-constructs in the NETWORK/Where column of the conceptual meta-model we developed in last chapter are MACHINE, System, System Composition, System Environment, System Structure, Subsystem etc.

In Figure 7.11, we single out these meta-constructs in TIME/When column from Figure 6.11. We can see that apart from MACHINE, all the other meta-constructs come from BWW Ontology, e.g. System, System Composition, System Environment, System Structure, Subsystem etc.
To build Network Topology Diagram, the requirement analysts have to explore the available technical architecture documents to identify both physical locations of the business, for example, offices and warehouses etc and logical locations of components of information systems, for example, data centers, servers, storages, wireless access point, etc.

[image: image335.emf]System

System Environment

NETWORK/Where

Machine

System Composition

System Structure

Subsystem

Figure 7.11 Meta-Constructs related to NETWORK/Where

7.2.4.2 Map Network Topology Diagram for Sir Edward Kelly Company Case

From the introduction text of Sir Edward Kelly and Company case, we can find out that the company operates at head office, one yard in Victoria and the other yard in New South Wales.
We assume that apart from Inventory Control System is deployed in the yard in New South Wales, all the other systems, e.g. Customer Information System, Order Handling System and Accounting System are deployed on the servers hosted in the office. Therefore the Network Topology Diagram for Business Model of NETWORK/Where can be illustrated as in Figure 7.12.

[image: image336.emf]Ethernet

Accounting System

Hub

Wireless Access Point

Head Office

Router

Order Handling System

PC

Dock Superintendent

Fax

Printer

Telephone

Yard (Victoria)

Yard (New South Wales)

Cell Phone

Modem

Dock Superintendent

Inventory Control System

Laptop

Customer Information System

PDA

Figure 7.12 Network Topology Diagram (Enterprise Model of NETWORK/Where column of Zachman Framework)
7.2.5 Semantic/Conceptual Level Data Modelling – DATA/What

After acquired models of MOTIVATION/Why, TIME/When, PEOPLE/Who and NETWORK/Where column of Zachman Framework, we move on to DATA/What column. There is abundant literature in both academic and industry on data modeling. [Zachman, 1987] suggested that the description model be “entity-relationship-entity”. Although he didn’t explicitly refer to [Chen, 1976]’s Entity-Relationship Model, the example he gave clearly showed that it was the same as Chen’s ER model. The most important meta-constructs in the TIME/When column of the conceptual meta-model we developed in last chapter are Thing/ENTITY, Class, Kind, Coupling/RELATIONSHIP, Property/ATTRIBUTE etc.
7.2.5.1 Meta-Constructs of DATA/What
In Figure 7.13, we single out these meta-constructs in DATA/What column from Figure 6.11.

[image: image337.emf]Thing/Entity

Coupling/Relationship

Property/Attribute

DATA/What

Class (BWW) Kind (BWW)

*

*

Role

*

*

Figure 7.13 Meta-Constructs related to DATA/What

7.2.5.2 Entity-Relationship Modelling for Sir Edward Kelly Company Case
There is not a well formalized and fully guaranteed approach to producing an ER model from a textual description of the data requirements. There are, however, a number of general guidelines as follows:

a) Identify Potential instances of Thing/ENTITY: This involves scanning the text and picking out all those items that may suggest themselves as potential instances of Thing/ENTITY. Usually tangible things, such as students, are entities are the best candidates for instances of Thing/ENTITY.

b) Identify instances of Property/ATTRIBUTE: Given the list of possible instances of Thing/ENTITY identified in step a above, scan the text and pick out all the possible instances of Property/ATTRIBUTE that belong to the candidate instances of Thing/ENTITY.

c) Choose Identifiers: Having identified a list of candidate instances of Property/ATTRIBUTE for a particular instance of Thing/ENTITY, examine them and choose one that seems a suitable key identifier for the Thing/ENTITY.

d) Draw Initial ER Diagram: Given the information from the above steps, draw out an initial ER diagram. Represent the instances of Thing/ENTITY in rectangles.

e) Add Relationship Information: Referring to the text description, analyze Coupling/RELATIONSHIP between each Thing/ENTITY on the draft ER diagram from step d above.
f) Add Degree Information: From the text information, identify any additional information concerning the degree of Coupling/RELATIONSHIP between each Thing/ENTITY. Add this information to the draft ER diagram.
g) Add Participation Information: From the text information, identify any additional information concerning the participation of Thing/ENTITY in the Coupling/RELATIONSHIP identified. Add this information to the developing ER diagram.

h) Redraw the ER Diagram: At this stage, take the time to carefully redraw the ER diagram neatly, reviewing each Thing/ENTITY, Property/ATTRIBUTE and Coupling/RELATIONSHIP as you do so.

It is important to remember that developing an ER model is an iterative process. It is unlikely that you will obtain an ideal ER model in a single pass through the process described in steps a through h above. As the model develops you may find it appropriate to make assumptions, which would subsequently need to be clarified with the user or other expert in the relevant business domain.
In the Sir Edward Kelly and Company case, after scanning the textual description of the case, we can write down the following list of instances of Thing/ENTITY and associated Property/ATTRIBUTE. The names of Thing/ENTITY and Property/ATTRIBUTE are chosen from the problem domain, so it is simple to relate the following descriptions back to the data requirements description.

PurchaseContract (ContractNo, ContractDate, ShippingDate, Description,Lengths, UnitPrice, CurrencyRestrictions)

ContractItem (ContractNo, BillOfLadingNo, ShipmentDate, Shipment, Comments)

ShippingSheet (ShippingSheetNo, ContractNo, Vessel, ShippingAgent, CustomsAgent, TotalVolume, DateShipped, Dock, ExQuayPeriod, PortOfShipment, FreightCharge, Insurance, ExchangeRate, DateArrived, Berth, ExQuayRate)

ShippingItem (ShippingSheetNo, BillOfLadingNo, Size, Quality, Type, NumPacks, NumPieces, Volume, Destination, Haulier, OrderNo, DateInStock/Invoiced)

BillOfLading (BillOfLadingNo, ContractNo, LoadingDate, Description, Size, Quality, L51, L47, L45, L42, L39, L36, L33, L30, L27, L24, L21, L18, NumPieces, TotalLength, Volume)

OutturnReport (BillOfLadingNo, NumPacks, NumPieces, Condition)

StockSheet (BillOfLadingNo, ContractNo, ShippingSheetNo, Stowage, Cost, Condition, Size, Quality, Type, Vessel)

StockItem (BillOfLadingNo, ReferenceNo, Date, L51, L47, L45, L42, L39, L36, L33, L30, L27, L24, L21, L18, NumPieces, NumPacks, Volume, Balance)

Then by adding instances of Coupling/RELATIONSHIP between instances of Thing/ENTITY, and the degree of Coupling/RELATIONSHIP, Figure 7.13 below shows the ER model capturing instances of Thing/ENTITY, instances of Coupling/RELATIONSHIP and the degree of instances of Coupling/RELATIONSHIP.
[image: image338.png]Purchase OnContract —{" Contract
Contract | ltem
ShippedAs
Shipping InShipment | Shipping
Sheet] ltem
Bilon
Bill of ReportOn Outrun
Lading Report
StoredAs
Stock Records 1 Stock
Sheet S ltem

Figure 7.14 Entity-Relationship Diagram (with degree but not participation of Coupling/RELATIONSHIP)

Finally by adding the additional information concerning participation in instances of Coupling/RELATIONSHIP, Figure 7.14 shows the complete ER model of the Sir Edward Kelly timber handling side of the business.
The key parts of the conceptual data modeling process are to identify the Thing/ENTITY correctly, together with their Property/ATTRIBUTE, and the Coupling/RELATIONSHIP between them. The degree and participation conditions of the Coupling/RELATIONSHIP are also important.

[image: image339.emf]
Figure 7.15 Entity-Relationship Diagram (Enterprise Model of DATA/What column of Zachman Framework)
The layout of the diagram and the names that are chosen for the Thing/ENTITY, Property/ATTRIBUTE and Coupling/RELATIONSHIP are not so important. The aim in deciding on names is to be as unambiguous as possible.

An additional rule is that if the data can be modeled as PERSON, ORGANIZATION UNIT or ACTOR, then it should be first considered to be modeled in previous step.

7.2.6 Reduce Goal/Strategy Tree model to “operationalizable” Business Process Model – FUNCTION/How

Now we have acquired and modeled requirements of four columns, MOTIVATION/Why, TIME/When, PEOPLE/Who, NETWORK/Where and DATA/What after 5 steps. One of the most important and well researched columns, the FUNCTION/How column has not been instantiated yet. The major task in this column is process modeling. [Zachman, 1987] only briefly mentioned that an example model for Enterprise Model (second row) of FUNCTION/How column “might be a functional flow diagram in which “process” would be a business process (not an information systems process) and inputs and outputs would be business resources such as people, cash, material, product, etc”. After more than two decades, today process modeling has become a rather independent research topic. There are both research initiative in academia and heavy investment in the industry.
7.2.6.1 Meta-Constructs of FUNCTION/How
In the meta-model we developed, the most important meta-construct that corresponds to the FUNCTION/How column is ACTIVITY, ACTIVITY SPECIFICATION, SUB-ACTIVITY, PLAN, SUB-PLAN, PROCESS SPECIFICATION, EXECUTE and ACHIEVE. In Figure 7.15, we single out these meta-constructs in FUNCTION/How column from Figure 6.11. Also we can see the connection to PEOPLE/Who column through POTENTIAL ACTOR. There is also connection to MOTIVATION/Why column through STRATEGY.

[image: image340.emf]Activity

Activity Specification

Process Specification

FUNCTION/How

IsA

Execute

*

*

Sub-Activity

IsA

Sub-Plan

Achieve

Plan

Potential Actor

Strategy

Figure 7.16 Meta-Constructs related to FUNCTION/How
The link from STRATEGY in MOTIVATION/Why column to PLAN in FUNCTION/How column is crucial in understanding the reduction of Goal/Strategy model to Business Process model. Goal reduction can be seen as a process of goal refinement to reduce a goal into several alternative combinations of sub-goals. It corresponds to the classical problem reduction operator in problem solving [Nilsson, 1971].
In the second step of Build Master Schedule for TIME/When column, we have deducted that: A STRATEGY is an ACTIVITY SPECIFICATION to fully or partially ACHIEVE a STATE OF AFFAIRS that is at STRATEGIC level, while a “normal” ACTIVITY SPECIFICATION is to fully or partially ACHIEVE a STATE OF AFFAIRS that is at “normal” level. Now what about an “Operationalizable” ACTIVITY SPECIFICATION? It should correspond to an “Operationalizable” STATE OF AFFAIRS. Then what is an “Operationalizable” STATE OF AFFAIRS? We will demonstrate below.
7.2.6.2 Goal/Strategy Tree model Reduction
To build Business Process model, we develop an innovative method that acquires ACTIVITY SPECIFICATION from reducing STRATEGY or other types of high level PURPOSE which have been elicited in Step 1.
There are two ways to reduce a STRATEGY.
The first way to reduce a STRATEGY is to decompose the corresponding STATE OF AFFAIRS into a set of STATE OF AFFAIRS with AND relationships. For example, in Sir Edward Kelly and Company case, the management came up with a plan to cut down 10% total costs. This is a STATE OF AFFAIRS need to be reached by the TIME POINT specified. It can be the logical conjunction of cut down a few different categories of cost. For example, suppose there are only two types of cost involved, human labor cost and administrative cost. And they each count for 66.66% and 33.33% of the total cost. Then cut down 5% human labor cost and 20% administrative cost can cause the total cost to be cut down 10%. Both cut down 5% human labor cost and cut down 20% administrative cost are two STATE OF AFFAIRS. Therefore cut down 10% total cost can be decomposed into two STATE OF AFFAIRS: cut down 5% human labor cost and cut down 20% administrative cost. It can be denoted as S = S
[image: image341.wmf]1

 ^ S
[image: image342.wmf]2

. This means the corresponding STRATEGY “the plan to cut down 10% total cost”, which as we analyzed before, is the ACTIVITY SPECIFICATION to fully or partially ACHIEVE a STATE OF AFFAIRS, can be decomposed accordingly, as illustrated in Figure 7.16.

[image: image343.emf]OBJECTIVE

Cut down

10% total

cost

Help

Achiev

e

OBJECTIVE

Cut down 5%

human labor

cost

OBJECTIVE

Cut down 20%

administrative

cost

Help

Achiev

e

STRATEGY

Cut down

10% total

cost

STRATEGY

Cut down

20%

administrative

cost

STRATEGY

Cut down 5%

human labor

cost

Figure 7.17 Strategy Reduction through Decomposition of corresponding State of Affairs
Sometimes a STATE OF AFFAIRS can not or is difficult to be further decomposed. That means it can not be rewritten to a logical conjunction of several STATE OF AFFAIRS. For example, a STRATEGIC GOAL to reach 80% of market share. In such case, the other way to decompose a STRATEGY is to look directly at the STRATEGY, which as we analyzed before, is the ACTIVITY SPECIFICATION to fully or partially ACHIEVE a STATE OF AFFAIRS, and try to find alternative ACTIVITY SPECIFICATIONs which in effect achieve the same result. For example, a STRATEGIC GOAL to reach 80% of market share can be achieved by improving customer satisfaction and developing new sales strategy to reach new customers, as illustrated in Figure 7.6.

[image: image344.emf]Help

Achiev

e

STRATEGY

 Reach 80%

market share

STRATEGY

Develop new

sales strategy to

reach new

customers

STRATEGY

Improve

customer

satisfaction

Figure 7.18 Strategy Reduction
7.2.6.3 Reduce to “Operationalizable” Business Process Model
Such reduction process is not infinitive. There is some point that the reduction process can not continue any more, because the STRATEGY has been reduced to a “Operationalizable” ACTIVITY SPECIFICATION, as we mentioned before when observing the connection between meta-construct STRATEGY in MOTIVATION/Why column and PLAN in FUNCTION/How column. There is no clear definition to differentiate between STRATEGY and ACTIVITY SPECIFICATION in Enterprise Ontology. A STRATEGY is simply defined as an ACTIVITY SPECIFICATION to achieve a STRATEGIC PURPOSE.
However, in real life project like in the Sir Edward Kelly and Company case, we observed several distinctly different characters between a “Non-Operationalizable” STRATEGY and an “Operationalizable” ACTIVITY SPECIFICATION.
Firstly, a “Non-Operationalizable” STRATEGY normally involves more than one DOER while an “Operationalizable” ACTIVITY SPECIFICATION is normally EXCUTED by one DOER. (Here to conform to the original Enterprise Ontology definition we intentionally avoid distinguishing between types of DOER, which is frequently called a role and a particular DOER of a certain type. We use the word DOER for both, relying on context to resolve potential ambiguity.)

Secondly, a “Non-Operationalizable” STRATEGY is normally done over a longer TIME INTERVAL than an “Operationalizable” ACTIVITY SPECIFICATION. A “Non-Operationalizable” STRATEGY normally requires at least months or even years to fully accomplish while an “Operationalizable” ACTIVITY SPECIFICATION last for a few hours or days.
Finally and most importantly, a “Non-Operationalizable” STRATEGY’s INTENDED STRATEGIC PURPOSE is normally a complex STATE OF AFFAIRS while an “Operationalizable” ACTIVITY SPECIFICATION’s INTEND PURPOSE is actually a STATE of a THING/ENTITY.
STATE OF AFFAIRS and STATE of a THING/ENTITY are defined separately in Enterprise Ontology and BWW Ontology.
· STATE OF AFFAIRS in the Enterprise Ontology is a situation that consists a set of RELATIONSHIPS between particular ENTITIES and it can be said to hold, or be true (and conversely to not hold or to be false). In first-order logic, any STATE OF AFFAIRS can be formally represented by a syntactically valid sentence, or formula (i.e. S1^S2^S3). Strictly speaking, to formally represent a STATE OF AFFAIRS, is to formally specify the syntax of a first-order logic sentence. Fortunately, this is already formalized in KIF, so there was no need to re-define this from scratch.

· STATE of a THING in the BWW Ontology is the vector of values for all attribute functions of the thing.
When a Strategy is reduced to be Operationalizable, the STATE OF AFFAIRS which it will achieve actually becomes a STATE of one single THING/ENTITY instead of a STATE OF AFFAIRS of several ENTITIES. The STRATEGY now is a “detailed” ACTIVITY SPECIFICATION that is clearly specified, as how to be EXCUTED by a DOER. It usually can be seen as a sequence of actions performed on ENTITY by DOER.
[Opdahl, Henderson-Sellers, 2002] think in the BWW-model, a change is propagated between things through a BWW-coupled event, i.e., when an event in one BWW-thing changes a binding mutual property and causes an event in another BWW-thing.
We think from the perspective of BWW Ontology, the above situation can be explained as there exist two things that are coupled with a binding mutual property. One of them is the DOER and the other is the ENTITY. There are a sequence of events that changed the states of both the DOER and the ENTITY. These events particularly change the mutual property of two coupled things.
Figure 7.18 shows the complete Goal/Strategy Tree model for Sir Edward Kelly and Company Case which has been reduced to Business Process level. For example, “STRATEGY 1.1.1.1 Online Form Take Customer Details” fit the three characteristics of Operationalizable strategy. Firstly there is only 1 DOER which is the online customer. Secondly it takes only a few minutes if not more than half an hour. Finally the INTEND PURPOSE of this “strategy” is “get customer details” which only concerns one THING/Entity which is Therefore it can be modeled as an ACTIVITY SPECIFICATION.

[image: image345.emf]OBJECTIVE 1

Increase Profit

Help

Achiev

e

STRATEGY

1.2

Sales Income

Cash Flow

20% Faster

OBJECTIVE 1.2

Receive Payment

within 3 days after

Delivery

STRATEGY

1.2.1

On-line

Payment by

Credit Card

STRATEGY

1.1

Reach 80%

Market Share

of Australia

OBJECTIVE 1.1

Improve Customer

Satisfaction

STRATEGY

1.3

Cut Down

10% Total

Cost

Help

Achiev

e

STRATEGY

1.3.1

Cut Down 5%

Human Labor

Cost

Help

Achiev

e

STRATEGY

1.3.2

Cut Down

20%

Administrative

Cost

STRATEGY

1.1.1

Provide Online

Timber

Ordering

Help

Achiev

e

STRATEGY

1.1.2

Provide Online

Shipment

Tracking

STRATEGY

1.1.1.1

Online Form

Take

Customer

Details

Help

Achiev

e

Figure 7.19 Goal/Strategy Reduction until Strategy become Operationalizable
7.2.7 Analyse each ACTIVITY SPECIFICATION to identify concerned DOER and ENTITY, decide whether ENTITY is within the boundary of target system
After reducing Goal/Strategy Tree model to Business Process Model for modeling FUNCTION/How column, now we have acquired models of all the six columns of Zachman Framework at Enterprise Model level.
However what is missing from Zachman and Sowa’s work [Zachman, 1987; Sowa, 1992] is that although they did mention that there exist strong links between each column at all levels, they did not explore and reveal it, especially at the meta-model level. We look at the connections between meta-constructs in different columns to try to create explicit links between columns FUNCTION/How, DATA/What and PEOPLE/Who.
7.2.7.1 Connections between Meta-Constructs of FUNCTION/How, DATA/What and PEOPLE/Who
Since our focus now is how to further break down information from “operationizable” business process level to scenarios, we look at the links between columns of FUNCTION/How, DATA/What and PEOPLE/Who through meta-constructs ACTIVITY, ACTIVITY SPECIFICATION, Thing/ENTITY and ACTOR. We separate the part that associated with these four meta-constructs in Figure 6.11 into Figure 7.20.

[image: image346.emf]Activity

Activity Specification

Actor

Thing/Entity

Capability Authority Decision

Doer

Execute

Resource

Figure 7.20 Link through Meta-Constructs of FUNCTION/How, DATA/What and PEOPLE/Who

From above figure we can see that FUNCTION/How and PEOPLE/Who is connected through DOER playing the role of ACTOR in doing the ACTIVITY. However the relationship between ACTOR and ACTIVITY SPECIFICATION is not that simple. In our meta-model, there exist three types of meta-relationship between and ACTIVITY SPECIFICATION. They are AUTHORITY, CAPABILITY and EXECUTE.
For example, in our Edward Kelly and Company case, for the ACTIVITY SPECIFICATION “Signing Buying Contract”, the managing directors Len and Colin have the AUTHORITY to EXECUTE this ACTIVITY SPECIFICATION. And for the ACTIVITY SPECIFICATION “Preparing Outrun Report”, only the dock superintendent has the CAPABILITY to EXECUTE it.
The various relationships between ACTIVITY and Thing/ENTITY (not as DOER) are not discussed in detail in Enterprise Ontology. RESOURCE is the only meta-concept that is defined as the Role of an Entity in a Relationship with an ACTIVITY or ACTIVITY SPECIFICATION. An ACTIVITY often entails use or consumption of RESOURCES. However more commonly Thing/ENTITY is the outcome of the ACTIVITY, for example, Contract Summary is the outcome the ACTIVITY “Managing Director Signs Buying Contract”. Outrun Report isan outcome of the ACTIVITY “Dock Superintendent Prepares Outrun Report”. Online Payment is an outcome of the ACTIVITY “Customer Pays for Timber Using Credit Card”.
7.2.7.2 Analyse each ACTIVITY SPECIFICATION to identify concerned DOER and ENTITY, decide whether ENTITY is within the boundary of target system

We illustrate the whole process using examples from Sir Edward Kelly and Company Case.

First we analyze which ACTOR identified from Step 3 are actually DOER in the ACTIVITY SPECIFICATION acquired from reduction in Step 6. This means the ACTOR EXECUTE the ACTIVITY SPECIFICATION. For example, ACTOR “Customer” performed the ACTIVITY SPECIFICATION “Pay for Timber Online Using Credit Card”.
The second step is to find out which ENTITIES from Step 5 are involved in the ACTIVITY SPECIFICATION. This is much more difficult and often contrary to the intuition of the analyst.
In our example, there are several ENTITIES relevant with the ACTIVITY SPECIFICATION “Customer Pay for Timber Online Using Credit Card” may have already been modeled in Step 4 in the Entity-Relationship Diagram, e.g. credit card, payment, order, etc. One may think “Credit Card” should be modeled as the ENTITY that was directly performed on by the DOER “Customer”. However the properties or states of credit card remain unchanged during this ACTIVITY. Therefore there is no interaction between customer and credit card. The ENTITY that should be modeled here is “Online Payment”.
Finally ENTITIES are analyzed to see if they are within the boundary of the system. For how to define the boundary of system, please refer to section 4.4 and [Wand and Weber, 1990, 1993, 1995].
· If ENTITIES are outside the boundary of the system, then the ACTIVITY SPECIFICATION is a material process instead of an information process. A material processes relates human tasks that are rooted in the physical world. Such tasks include, moving, storing, transforming, measuring, and assembling physical objects, e.g. unloading timber from the ship into a warehouse. An information process usually is needed to reflect any such changes that need to be recorded in our information system, e.g. update Inventory Item in either a paper based inventory catalogue or a warehouse information system. If such an information process has not been identified yet, it needs to be added to the list of ACTIVITY SPECIFICATION.
· If ENTITIES are within the boundary of the system, then the ACTIVITY SPECIFICATION is an interaction taking place between ACTOR and the system; a use case or scenario should be developed in the next step. In our Sir Edward Kelly and Company Case, ACTIVITY SPECIFICATION “Customer Pay for Timber Online Using Credit Card” is analyzed to have DOER “Customer” and ENTITY “Online Payment”. Obviously “Online Payment” lies in the boundary of the online shopping system. Therefore “Customer Pay for Timber Online Using Credit Card” is identified as a Use Case to be modeled for the system.
The example of Step 6 “Reducing Goal-Strategy Tree Model” and Step 6 “Analyze Activity Specification to identify DOER and ENTITY” is integrated and illustrated in Figure 7.21.

[image: image347.emf]ACTIVITY

SPECIFICATION

Customer Pay for

Timber Online

Using Credit Card

ENTITY:

Online Payment

Online Shopping System

DOER: Customer

STRATEGY

1.1.1.2

Customer Pay

for Timber

Online Using

Credit Card

STRATEGY

1.1.1

Provide Online

Timber

Ordering

STRATEGY

1.1.2

Provide Online

Shipment

Tracking

STRATEGY

1.1.1.1

Online Form

Take

Customer

Details

Help

Achiev

e

Figure 7.21 Analyze ACTIVITY SPECIFICATION to identify DOER and ENTITY

7.2.8 Model the interaction between ACTOR and ENTITY as Scenario/Use Case, use scenario-oriented requirement analysis techniques to continue the requirement elicitation process

In the last step – step 7, we have identified concerned ACTOR/DOER and Thing/ENTITY for ACTIVITY SPECIFICATION which was elicited in step 6. We also analyzed whether concerned Thing/ENTITY is within the boundary of the system or not. Now we have all the perquisite information for scenario analysis. From here we can use various existing scenario-oriented RE techniques [Potts et al, 1994, 1995, 1999; Sutcliffe et al, 1998A, 1998B, 1998C] to continue the requirement elicitation process.
7.3 Related Work
7.3.1 KAOS Project

KAOS stands for Knowledge Acquisition in autOmated Specification [Lamsweerde, Dardenne, Delcourt and Dubisy, 1991]. The driving forces of this project are the reuse of domain knowledge and the application of machine learning technology. Two learning strategies have been adapted to the context of requirement acquisition: learning-by-instruction, where the learner conducts the acquisition process by using meta-knowledge about the kind of knowledge to be acquired, and learning-by-analogy, where the learner retrieves knowledge about some “similar” system to map it to the system being learned. [Dardenne, Lamsweerde and Fickas, 1993]
The overall approach taken in KAOS has three components: a conceptual model for acquiring and structuring requirements models with an associated acquisition language; a set of strategies for elaborating requirements models in this framework; and an automated assistant to provide guidance in the acquisition process according to such strategies.

The conceptual model provides a number of abstractions in terms of which requirements models have to be acquired; it is thus a meta-model. It is aimed at being sufficiently rich to allow both functional and non-functional requirements for any kind of composite system to be captured in a precise and natural way. Work on knowledge representation has already been shown to be highly relevant in this context. For example, RML [Greenspan, Borgida and Mylopoulos, 1986, 1994] proposes abstractions such as the “entity”, “activity” and “assertion” concepts together with the “subclass specialization” link type. It was felt, however, that a richer set of abstractions is needed if one wants to also capture objectives of the system under consideration, constraints that make such objectives operational, agents like human beings or programs that control the system’s behavior according to such constraints, events that cause the application of actions on entities, and so forth. Also, other structuring link types are needed beside subclass specialization, like refinement links between objectives or between constraints, assignment links between agents and constraints, and so forth. The meta-model for requirements acquisition can be represented as a conceptual graph where nodes represent abstractions and edges represent structuring links. Figure 7.22 illustrates a portion of this graph.
[image: image348.emf]
Figure 7.22 A Portion of the KAOS Conceptual Meta-Model
An acquisition strategy in this framework defines a well-justified composition of steps for acquiring components of the requirements model as instances of meta-model components. In other words, a strategy corresponds to a specific way of traversing the meta-model graph to acquire instances of its various nodes and links. For example, the meta-model can be traversed backwards from the objectives to be fulfilled by the composite system or backwards from the agents available in the system and their respective views, or backwards from client-supplied scenarios for combining actions. Each step in a strategy is itself composed from finer steps like, for example, question-answering, input validation against known properties of meta-model components, application of tactics to select preferred alternatives for the various And/Or meta-relationship instances that arise during acquisition, deductive inference based on property inheritance through specialization links, analogical inference based on knowledge about similar systems, or conflict resolution between multiple views of human agents involved.

The acquisition assistant is aimed at providing automated support in following one acquisition strategy or another. It is built around two repositories: a requirements database and a requirements knowledge base. Both are structured according to the meta-model components. The requirements database maintains the requirements model built gradually during acquisition; the latter can be analyzed using query facilities similar to those provided by project database systems. The requirements knowledge base contains two kinds of knowledge. Domain-level knowledge concerns concepts and requirements typically found in the application domain considered. Such knowledge is organised into specialization hierarchies; requirements fragments for a particular class of systems known to the assistant (e.g., library management, airline reservation, telephone network) are thereby inherited from more general applications (e.g., resource management, transportation, communication) and from more general tasks (e.g., transaction processing, history tracking, and device control). Besides, meta-level knowledge concerns properties of the abstractions found in the meta-model (e.g., “a constraint that can be temporarily violated needs to be restored by some appropriate action”) and ways of conducting specific acquisition strategies. The latter aspect includes tactics that can be used within strategies (e.g., “prefer those alternative refinements of objectives which split responsibility among fewer agents”).
7.3.2 Other Related Work
Apart from KAOS project, we would like to mention other research works that try to model requirement using a similar approach.
RML (Requirements Modelling Language [Greenspan, 1984, 1994]) is a formal object-oriented framework with formal semantics and a fixed ontology consisting of three metaclasses: Entity, Activity and Assertion. RML views a model as consisting of objects of various levels: individuals or tokens, grouped into classes, which are in turn instances of metaclasses. Entities describe static properties of relevant domain objects. Activities describe dynamic features and behaviors. Assertions constrain states and behaviors formally by specifying invariants on entities and pre-/postconditions on activities. Classes are structured in terms of a multiple specialization/generalization hierarchy. A formal semantics is given for RML by defining a mapping from RML descriptions into a set of assertions in First Order Predicate Calculus [Greenspan, 1986].

Compared with our method, RML has a poorer meta-model. The ontology used is fixed and rather flat (trilogy Entity/Activity/Assertion), although extensible ontologies can be useful to address domain-specific notions or to capture generic properties at the meta-level. Our meta-model based on two merged ontology includes many meta-constructs that are not made explicit in RML. Besides RML is a formal framework without a process to guide the acquisition of RML models while our approach incorporates such aspects through acquisition strategies.
Telos [Mylopoulos, 1990] is an object-oriented language generalizing RML by providing the ontological extensibility which was missing to RML. The ontological extensibility is the ability to define (i) an unbounded linear hierarchy of meta-levels and (ii) a uniform representation of entities (named individuals), relationships between entities (named attributes) and assertions (a particular kind of attributes) by means of KB propositions, allows one to capture the semantics of one level at upper meta-levels inside Telos itself.

Telos is intended to support software engineers in the development of information systems throughout the software life cycle. Therefore it allows one to capture knowledge about a variety of worlds related to information systems: (i) the subject world characterizes the application domain; (ii) the system world specifies what the information system does at different levels (functional and non-functional requirements, conceptual design, implementation); (iii) the usage world describes the environments within which the system is embedded, in particular the end-users and the interfaces supported by the system; (iv) the development world addresses the development process dimension (methodologies, record of design decisions, ...).

Telos also includes an explicit representation of time by means of time intervals (i) to fix the validity period of knowledge, (ii) to record the belief time of knowledge, i.e. the period of time during which the KB system believes that knowledge is valid), and (iii) to support temporal reasoning through the 13 temporal relationships defined by [Alle83] (equals, meets, before, overlap, during, starts, ends and the inverse of the last six ones).
Compared with our method, Telos is similar in that it also has a hierarchy of metaclasses, simple classes and tokens, which correspond to the meta level, domain level and instance level of our Conceptual Modeling Hierarchy. However there are two fundamental differences. Firstly although Telos is claimed to be a language intended to support the development of information systems, the metaclasses it provides is very elementary. Even with the possibility of model extension through metaclasses, it requires a lot of effort to define metaclasses that can be used directly for instantiation. Secondly Telos is basically a requirement specification language, which is used when requirements have already been acquired. It does not give any guidance on how to elicit requirements.
[Opdahl and Henderson-Sellers, 2002] describe the correspondence between use cases and BWW dynamic constructs as follows: an instance of a use case represents the performance of a sequence of actions, and each of these actions is an ontological event that changes the state of the system or subsystem. A sequence of these events constitutes a BWW process. In UML, each use case instance represents a BWW process in the proposed system thing and a use case “represents a group of such BWW-processes”. The instantiation of a use case changes the state of the system from one stable state to another. The specification of a use case explains the lawful transformations that may occur during the execution of the process. Thus they find that the UML use case construct has a solid correspondence with BWW dynamic constructs.

However, as [Irwin and Turk, 2005] pointed out, the UML meta-model defines a use case as a thing rather than as a behavioral property (transformation law) of a system thing. Figure 7.8 shows a subset of the UML 2.0 meta-model relevant to our discussion. A use case is defined as a subclass of Classifier, and a classifier is an element that has behavioral and structural features and that may participate in relationships. The fact that the use case is defined as a kind of thing with structural and behavioral features, rather than as a behavioral feature of a system thing, may be ontologically incorrect.
[image: image349.emf]
Figure 7.23 Part of the UML Meta-Model
CHAPTER 8 – VALIDATION
8.1 Introduction
There are three traditional research paradigms: mathematical, scientific, and engineering. In mathematics, research is derived from constructing concepts, often in the form of formal proofs and reflexive induction and reasoning. In social science, research assumes an experimental or empirical term. The paradigm adopted in this dissertation is the engineering approach, which typically involves studying a problem, proposing solutions, and validating the solution on real problems. The case of Sir Edward Kelly and Company presented in last chapter is formative, serving as the driven force for the evolution of the methods, while simultaneously partly achieves the purpose of validation.
However a different approach or perspective other than the formative validation is needed to validate the meta-model developed in Chapter 6 and the requirement elicitation method proposed in Chapter 7 from a different angle.

Of course formal methods are always the most thorough and sound evaluation methods in most software engineering phases. However in the environment of business and enterprise, time and cost are two factors too important to be neglected in order to achieve the effectiveness of validation. The validation method for evaluating an innovative methodology in RE is of no exception.

In this chapter, once again we draw inspiration from other field in Computer Science to solve the problem. This time we look at usability domain in Human-Computer Interaction (HCI). HCI is the study of interaction between people (users) and computers. It is often regarded as the intersection of computer science, behavioral sciences, design and several other fields of study. The Association for Computing Machinery (ACM) defines HCI as “a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them.”
We borrow the evaluation methods developed in HCI as an expert-based method for evaluating the usability of software. Unlike formal experiments, we acknowledge that such validation do not have a well-understood theoretical basis from which one can draw strong conclusions. However, it is widely understood in the requirement engineering domain, especially those involves large-scale enterprise system and architecture, that real-life case studies are difficult if not impossible to be organized and conducted in a similar scale. [Wohlin, 2000].
8.2 Expert Feedback

The overall objective of expert feedback is to investigate the amount of help that our methodology can offer in a real industrial setting. It can be divided into three stages of work.
First, we design a questionnaire which motivate and encourage the interviewees to apply their knowledge and experiences to give opinions on each specific part of our whole methodology.

Then, we send out the questionnaire to enterprise architects and wait to collect when they finish completing the questionnaire.

Finally, we analyze the results collected from the questionnaire and produce various data analyze results to reflect the achievement and disadvantage of our meta-model and RE methodology.
The 16 interviewees we select to send out questionnaire are from either academia or IT industry. The makeup is 2 PhD students in Information Systems, 4 Academics (including one who also lead EA team in consulting company), 5 IT consultants working for consulting companies (including one who is also academics), 6 IT professionals working for non-consulting companies, among whom 5 work in software development, 1 works in IT support, as illustrated in Figure 8.1. All interviewees have at least 3 years of experiences of requirement elicitation.

[image: image350.emf]PhD Students

Academics

IT Consultants

IT Professionals (Development)

IT Professionals (Support)

Figure 8.1 Percentage of Interviewee
8.3 Questionnaire

Our questionnaire is designed to obtain feedback from people with extensive experience in Requirement Elicitation and Enterprise Architecture Modeling directly on each specific part or procedure of our whole methodology. The questionnaire is demonstrated in Appendix A.
8.4 Result Analyse of Enterprise Architects’ Feedback
We analyze the results of the feedback by looking at the makeup of the answer of each question and then summarize the explanation that the interviewees have given.
8.4.1 First Part of Questionnaire
All 16 interviewee have completed the 10 questions of the first part of the questionnaire. However as explanations are not mandatory, not all the questions have been answered with explanations to why a particular option is chosen.
1. In general do you find the whole methodology of our requirement elicitation process based on the meta-model for Zachman Framework developed from merging two different ontologies useful?

A. Very useful
B. With some improvement can be useful
C. Interesting idea but not very useful
D. Not useful at all

[image: image351.emf]Very useful

With some improvement can be

useful

Interesting idea but not very useful

Not useful at all

Figure 8.2 Question 1
Out of the 16 answers, 10 chose A, 4 chose B, 1 chose C and only 1 chose D. From this result we can see that most IT professionals think our methodology is useful.
Some of the interviewees raised the concern about the validity of bringing together three potentially different semantic structures, BWW Ontology, Enterprise Architecture and Zachman Framework, given that Zachman Framework was never originally conceived around a formal ontology. They remarked: “From the good work demonstrated here the fit seems to be restricted to 2 or 3 of the dimensions represented by the Zachman framework. This is probably because you are focusing of Requirements Elicitation and not on the Enterprise Architecture modeling aspects of the problem.”
Our response to these opinions is that this PhD work starts as a highly experimental broad attempt to tackle the big problem in IS and RE. During the lengthy research work, the author did raise the question about the potential problem of bringing together concepts several different areas across IS and CS, however after comparing all the candidate ontologies, BWW Onotology and Enterprise Ontology was chosen because they are the most complete and have already been widely used ontology in IS and Enterprise domain and their ontological constructs fits well with the Goal-Strategy Reduction process, which is a crucial part of the whole methodology. Although at the end, BWW Ontology and Enterprise Ontology proved to be not rich enough to cover the entire Zachman Framework, the author hold the belief that even though Zachman Framework was not conceived around a formal ontology, it is possible and should be formalized using ontology.
2. In general what do you think about the meta-model we developed from merging two ontologies?

A. Very useful and the merging process is technically sound
B. Essential for the RE methodology but the merging process needs to improve
C. Essential for the RE methodology but the two candidate ontologies are problematic

D. The whole idea of developing meta-model is problematic

[image: image352.emf]Very useful and the merging process is technically

sound

Essential for the RE methodology but the merging

process needs to improve

Essential for the RE methodology but the two

candidate ontologies are problematic

The whole idea of developing meta-model is

problematic

Figure 8.3 Question 2
Out of the 16 answers, 8 chose A, 4 chose B, 3 chose C and 1 chose D. The 4 people who chose B gave explanations as:
· There is too much subjective element in the merging process

Among the 3 people who chose C, the explanations can be summarized as below:

The meta-model derived seems mainly concerned with eliciting requirements for a single application development solution. From an Enterprise perspective there are a number of dimensions missing mainly due to the tools and techniques associated with each cell in the Zachman Framework and therefore the mapping applied through the ontology.
An example has been given in the data modeling aspects of the problem. Within the Zachman Framework between the Enterprise model and Architecture model associated with the data dimension there is a requirement at the Enterprise level to create a semantic model i.e. a meta-data model for the organization which means that the ontology has to have a way of describing an ontology which is only partially covered in 7.2.5.2 where it has gone straight to the ER model. It is very difficult to define data semantics and its associated enterprise meaning for and organization by following a single system RE thread.

Also mentioned is that there is not enough justification on why these two particular ontologies are chosen. One interviewee suggests that BWW Ontology should be replaced by a better alternative high level ontology.
The 1 person who chose D did not give any explanation.

Here we can see that although most IT professionals agree on the necessity of merging two ontologies for the purpose of developing RE methodology, there seems to be a major concern about the ontologies chosen.

Our response is similar to our response to the previous question. BWW Ontology and Enterprise Ontology is chosen at the time after comparing with other popular ontologies used in IS and Enterprise domain. However new theories and ontologies in these fields develop really fast, in the future work, a reevaluation work will be done and possibly new ontology will be chosen and merged.
3. What do you think about the RE process’s 1st step: Acquire High Level Goal/Strategy Tree model – MOTIVATION/Why?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem

[image: image353.emf]Very Good Good

Satisfactory Has serious problem

Figure 8.4 Question 3
Out of the 16 answers, 8 chose A, 5 chose B, 3 chose C and 0 chose D. Among the 8 people who chose B or C, the explanations can be summarized as:

· Not all the meta-constructs related to MOTIVATION/Why column have been utilized during the process of instantiating meta-constructs to acquire requirements.
· There is too much subjective element in the process of analyzing the relationship between meta-constructs related to MOTIVATION/Why column.
· Goal-Strategy tree is not well explained.
Our responses are:

· During this PhD study only part of the meta-constructs related to MOTIVATION/Why column have been utilized in step 1 as an example to demonstrate the feasibility of the whole methodology. However in the future work, we plan to apply more meta-constructs.

· The relationships between meta-constructs related to MOTIVATION/Why column are not analyzed according to their specification in the formalized ontology. However in the future work, we plan to analyze the relationship between meta-constructs based on their formalized meaning.
· Goal-Strategy Tree is explained in [Sowa, 1992]
4. What do you think about the RE process’s 2nd step: Extract STATE OF AFFAIRS from the Goal-Strategy Tree model, and build Master Schedule by adding TIME POINT to STATE OF AFFAIRS – TIME/When?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem

[image: image354.emf]Very Good Good

Satisfactory Has serious problem

Figure 8.5 Question 4
Out of the 16 answers, 7 chose A, 5 chose B, 4 chose C and 0 chose D. Among the 9 people who chose B or C, the explanations can be summarized as:

· The process of analyzing the relationship between meta-constructs related to MOTIVATION/Why column and TIME/When is lack of objective justification.
· Master Schedule diagram is not well explained

Our responses are:

· In this study, the relationships between meta-constructs are not analyzed according to their specification in the formalized ontology. However we plan to analyze the relationship between meta-constructs related to MOTIVATION/Why column and TIME/When according to their formal specification in the future work.

· Master Schedule diagram is explained in [Zachman, 1987]

5. What do you think about the RE process’s 3rd step: Draw Organizational Chart PEOPLE/Who?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem

[image: image355.emf]Very Good Good

Satisfactory Has serious problem

Figure 8.6 Question 5
Out of the 16 answers, 9 chose A, 6 chose B, 1 chose C and 0 chose D. Among the 7 people who chose B or C, the explanations can be summarized as:

· Not all the meta-constructs related to PEOPLE/Who column have been utilized during the process of instantiating meta-constructs to acquire requirements.

Our responses are:

· In this study, only part of the meta-constructs related to PEOPLE/Who column have been utilized in step 3 to demonstrate the feasibility of the whole methodology. However in the future work, we plan to use more meta-constructs in PEOPLE/Who column.

6. What do you think about the RE process’s 4th step: Map Network Topology Diagram – NETWORK/Where?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem

[image: image356.emf]Very Good Good

Satisfactory Has serious problem

Figure 8.7 Question 6
Out of the 16 answers, 5 chose A, 5 chose B, 5 chose C and 1 chose D. Among the 10 people who chose B and C, the explanations can be summarized as:

· It is useful at the systems level but harder to see how it would fit at enterprise level
· The interconnection between the meta-constructs are not clear
The 1 person who chose D given explanations as:
· There is no link to other steps
Our responses are:

· In the original paper, NETWORK/Where column at enterprise level is concerned about “models of business as related to the connectivity characteristics of the business. The “nodes” are perceived to be business units, an aggregation of business resources (people, facilities, responsibilities, etc.) at some geographical location. The “lines” represent logistics connections or flows, probably including communications linkages, but even more basically would represent the distribution structure or logistics network along which communications take place.”
· Although currently it seems that there is no obvious link to other steps, the information collected regarding NETWORK/Where could be useful in the later stage, for example, during the technical architecture analysis phase.

7. What do you think about the RE process’s 5th step: Semantic/Conceptual Level Data Modeling – DATA/What?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem

[image: image357.emf]Very Good Good

Satisfactory Has serious problem

Figure 8.8 Question 7
Out of the 16 answers, 10 chose A, 3 chose B, 3 chose C and 0 chose D. Among the 6 people who chose B or C, the explanations can be summarized as:

· The Semantic Data Model is missing from the Sir Edward Kelly case
· The usefulness of the meta-constructs related to DATA/What (Figure 7.13) is not demonstrated
· Can not see any innovation from traditional Data Modeling techniques
Our responses are:

· In the Sir Edward Kelly case, the circumstance is that the new e-Commerce strategy triggered a need for a new system. Therefore a single system RE process is used instead of RE for the whole enterprise, which is domain engineering. In such case it is a perfectly valid decision to go straight to ER modeling.
· Although currently it seems that there is no obvious link to other steps, the information collected regarding NETWORK/Where could be useful in the later stage, for example, during the technical architecture analysis phase.

8. What do you think about the RE process’s 6th step: Reduce Goal/Strategy Tree model to “operationalizable” Business Process Model – FUNCTION/How?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem

[image: image358.emf]Very Good Good

Satisfactory Has serious problem

Figure 8.9 Question 8
Out of the 16 answers, 10 chose A, 5 chose B, 1 chose C and 0 chose D. Among the 5 people who chose B and C, the explanations can be summarized as:

· Seems to be a good fit here between the RE process and the result obtained by using the framework
· It will be better to have a working example
9. What do you think about the RE process’s 7th step: Analyze each ACTIVITY SPECIFICATION to identify concerned DOER and ENTITY, decide whether ENTITY is within the boundary of target system?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem

[image: image359.emf]Very Good Good

Satisfactory Has serious problem

Figure 8.10 Question 9
Out of the 16 answers, 8 chose A, 6 chose B, 1 chose C and 1 chose D. Among the 6 people who chose B and C, the explanations can be summarized as:

· Seems to be a good fit here between the RE process and the result obtained by using the framework
· It will be better to have a working example

· It is unclear how to define the border of the system

The 1 person who chose D given explanations as:

· The whole reduction process is too subjective, without enough evidence to support

Our responses are:

· In [Wand and Weber, 1990, 1993, 1995] describe a way of using BWW Ontology to determine the borders of system.
· We believe that in the research field of Requirement Engineering, most methods contain subjective element. However what is important is that it can be verified by pragmatic approaches later in the research.
10. How much percentage have you been able to work your example case through our RE methodology?

A. >90%

B. 70% - 90%

C. 50% - 70%

D. 30% - 50%

E. <30%

[image: image360.emf]>90% 70% - 90%

50% - 70% 30% - 50%

<30%

Figure 8.11 Question 10
· Out of the 15 answers, 2 chose A, 5 chose B, 4 chose C, 3 chose D and 1 chose E.
A few interviewees, especially those working on large complex system projects for consulting companies, claim that it would be far too difficult to take the complexity of the systems they deal with and apply this process.
8.4.2 Second Part of Questionnaire
There are totally 10 people answered the second part of the questionnaire.
11. Do you think it is necessary to have a requirement elicitation method specifically for Enterprise Information System (EIS)?

A. Yes, because EIS is special.
B. Not necessarily, but will be good to have one

C. Unnecessary, the requirement elicitation method developed for general purpose is effective enough, e.g. KAOS

D. None of the above

[image: image361.emf]Yes, because EIS is special

Not necessarily, but will be good to have one

Unnecessary, the requirement elicitation method developed

for general purpose is effective enough, e.g. KAOS

None of the above

Figure 8.12 Question 11
Out of the 10 answers, 8 chose A, 1 chose B, 0 chose C and 1 chose D. The 1 person who chose B didn’t give any explanation. The 1 person who chose D gives explanation as “EIS is not special it is just RE on a larger scale and therefore requires an extra set of dimension e.g. those outlined in the Zachman Framework.”
Our response to this opinion is that it is exactly that extra set of dimension e.g. those outlined in the Zachman Framework makes EIS special and requires a more specialized methodology.
12. What do you think about the idea of basing the RE method on Zachman Framework for Enterprise Information System?

A. Innovative and technically sound

B. Innovative but needs some improvement

C. Innovative but technically problematic
D. Not innovative

E. Has serious problem

[image: image362.emf]Innovative and technically sound

Innovative but needs some improvement

Innovative but technically problematic

Not innovative

Has serious problem

Figure 8.13 Question 12
Out of the 10 answers, 6 chose A, 2 chose B, 1 chose C, 1 chose D and 0 chose E.
The 1 person who chose C gave the explanation as “The problem here relates to the ability of the two merged ontologies to deal with the semantic concepts that are implicit by not explicit or formal in the structure of the Zachman Framework. I suspect this is because the Zachman Framework was originally conceived as a guide to the types of questions and artifacts you should answer/produce and not a formal ontological structure that implies a formal linkage between the tools and techniques associated with each cell and their neighbours.”

Our response to such opinion is that although Zachman Framework was originally conceived as a two dimension matrix guide, it does not imply that it is impossible to develop a formal meta-model which links between cells and further to external tools and techniques. And ontology seems to be the right technique for doing this.
The 1 person who chose D mentioned the paper [Villiers, 2001] which is covered in section 5.4. However what Villiers did in his paper was a very vague mapping between Zachman Framework and Rational Unified Process. The paper did not develop any meta-model for Zachman Framework, nor did it specify a step by step requirement elicitation method.
13. Do you think it is necessary to develop a meta-model for Zachman Framework for the purpose of developing a requirement elicitation method?

A. Definitely necessary
B. Necessary
C. Not necessary, but will be good to have

D. Not necessary at all

[image: image363.emf]Definitely necessary

Necessary

Not necessary, but will be good to have

Not necessary at all

Figure 8.14 Question 13
Out of the 10 answers, 7 chose A, 2 chose B, 0 chose C and 1 chose D. The 1 person who chose D gave the explanation as “The question is do you think that the Zachman Framework is necessary for the delivery of EIS? I personally am not convinced that it is. Zachman is for EA and not EIS. These are different things and should not be confused. They require a different set of ontological structures.”
While we agree above opinion to some extent, we also think that most new EIS developed today is heavily connected or even relied on old EIS. In such situation, all aspects of the new EIS, e.g. functionality, data requirement, interfaces, security, logical and physical distribution are inseparable from old EIS and hence from EA and all the dimensions of Zachman Framework. Many complex EIS development project can not achieve success without a thorough review of current EA landscape in the enterprise. And this is where Zachman Framework comes in to serve this purpose.
14. What do you think about the idea of using ontology for the purpose of developing meta-model for Zachman Framework?

A. Innovative and technically sound

B. Innovative but needs some improvement

C. Innovative but technically problematic

D. Not innovative

E. Has serious problem

[image: image364.emf]Innovative and technically sound

Innovative but needs some improvement

Innovative but technically problematic

Not innovative

Has serious problem

Figure 8.15 Question 14
Out of the 10 answers, 8 chose A, 1 chose B, 1 chose C, 0 chose D and 0 chose E. The 1 person who chose C gave the explanation as “The technical limitations here I suspect are related to the lack of formality around the Zachman Framework.”
We agree that Zachman Framework was not conceived with any formal definitions. However we believe that it is possible to formalize to some extent by developing a meta-model for each cell of Zachman Framework. And ontology is the best tool to do this job so far.

15. What do you think about the 3 levels of conceptual modeling (Meta Level, Domain Level, and Instance Level)?

A. Innovative and technically sound

B. Innovative but needs some improvement

C. Innovative but technically problematic

D. Not innovative

E. Has serious problem

[image: image365.emf]Innovative and technically sound

Innovative but needs some improvement

Innovative but technically problematic

Not innovative

Has serious problem

Figure 8.16 Question 15
Out of the 10 answers, 4 chose A, 1 chose B, 0 chose C, 4 chose D and 1 chose E. Among the 4 people who chose D mentioned KAOS project [Lamsweerde, Dardenne, Delcourt and Dubisy, 1991] which is covered in section 7.3.1. This confirms that the 3 levels of conceptual modeling are well accepted as a valid technique in RE and it is first developed by KAOS. However what is achieved in this research is to develop a meta-model that is derived from ontologies, therefore has a more rigorous definition.
The 1 person who chose E gave explanations as “The top level is fine. The domain level would be defining a model for all similar systems in the same domain. An example would be that we use at Lloyds use a banking reference model. The instance level is not relating to specific people and data as you suggest but a particular system. For example, we instantiate the banking reference model for Lloyds in the UK.”

Here we partially agree with above opinion. We agree on that at the instance level, the instance level is not relating to specific people and data. However it is not necessarily about a particular system. It can be any models related to a particular enterprise, for example, business process model, data model or organization chart which may have nothing to do with a particular system.
16. What do you think about the idea of traversing the meta-model to acquire instantiation of meta-concepts as requirement models?

A. Innovative and technically sound

B. Innovative but needs some improvement

C. Innovative but technically problematic

D. Not innovative

E. Has serious problem

[image: image366.emf]Innovative and technically sound

Innovative but needs some improvement

Innovative but technically problematic

Not innovative

Has serious problem

Figure 8.17 Question 16
Out of the 10 answers, 4 chose A, 1 chose B, 0 chose C, 4 chose D and 1 chose E. Among the 4 people who chose D mentioned KAOS project [Lamsweerde, Dardenne, Delcourt and Dubisy, 1991] which is covered in section 7.3.1. Our response to this claim is the same as question 15.
The 1 person who chose E also chose E in previous question. The explanation is given as “See above”. We can only assume that the implication is that since the 3 levels of conceptual modeling has serious problem, the idea of traversing the meta-model to acquire instantiation of meta-concepts as requirement models will also has serious problem as consequences. We can see from the explanation for previous question that the suggestion is that 3 levels of conceptual modeling should be used in a group of similar systems in the same domain, in other words, a domain engineering project instead of a single system development project. Therefore here the argument lies at whether the whole set of methodology is used to deal with a single system development project or a domain engineering project. In this research work, the aim is to develop a RE method for a single system. Domain Engineering techniques are not considered and hence reuse is not a focus in this research.
17. What do you think about Enterprise Ontology (developed in Edinburgh University)?

A. Very useful
B. Useful
C. Not very useful
D. Not useful at all

[image: image367.emf]Very useful Useful

Not very useful Not useful at all

Figure 8.18 Question 17
Out of the 10 answers, 7 chose A, 2 chose B, 1 chose C and 0 chose D. The 1 person who chose C gave the explanation as “Both models have serious limitations when applied to Enterprise Architecture and are missing a significant number of key concepts.”
We agree with above statement and in our future work will try to find an alternative ontology which may have a better coverage for concepts in all the cells of Zachman Framework.
18. What do you think about Bunge-Wand-Weber Ontology?

A. Very useful
B. Useful
C. Not very useful
D. Not useful at all

[image: image368.emf]Very useful Useful

Not very useful Not useful at all

Figure 8.19 Question 18
Out of the 10 answers, 5 chose A, 2 chose B, 3 chose C and 0 chose D. Among the 3 people who chose C, the explanations can be summarized as:

· Many meta-constructs derived from BWW Ontology was left unused in the RE methodology
· BWW Ontology can not be well integrated with Enterprise Ontology
· BWW Ontology has serious limitations when applied to Enterprise Architecture and is missing a significant number of key concepts.

Our response to the first point is:
· We acknowledge that many meta-constructs derived from BWW Ontology are left unused in the requirement elicitation process. There is a lot of debate about whether all the constructs in BWW Ontology are useful and mandatory when applied to evaluate conceptual modeling grammars. When being ontologically mapped to the constructs of a few modeling notations, several researchers claim that a significant portion of BWW constructs do not correspond to any constructs in many modeling grammars. [Bodart, 2001; Evermann, 2005; Green, 2000, 2005; Herrera, 2005] Despite of this, BWW Ontology has been widely accepted as a benchmark ontology for evaluating the effectiveness of a modeling notation or grammar. Therefore at the current stage, we use BWW ontology but in the future work, we are open to any alternative ontologies if they are proved to be better suited for this purpose than BWW Ontology.
· We agree with the other 2 points that BWW Ontology can not be well integrated with Enterprise Ontology and has serious limitations when applied to Enterprise Architecture because of the missing a significant number of key concepts as our research results shown.

19. What do you think about the idea of merging above two ontologies?

A. Innovative and technically sound

B. Innovative but technically problematic

C. Not innovative

D. Has serious problems

[image: image369.emf]Innovative and technically sound

Innovative but technically problematic

Not innovative

Has serious problems

Figure 8.20 Question 19
Out of the 10 answers, 8 chose A, 1 chose B, 0 chose C, and 1 chose D. The 1 person who chose D gave explanations as “The problem here relates to the ability of the two merged ontologies to deal with the semantic concepts that are implicit by not explicit or formal in the structure of the Zachman Framework. I suspect this is because the Zachman Framework was originally conceived as a guide to the types of questions and artifacts you should answer/produce and not a formal ontological structure that implies a formal linkage between the tools and techniques associated with each cell and their neighbours.”
Our response to this is the same as question 14.
20. What do you think about the merging process of the two ontologies? (Section 6.3)

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems

[image: image370.emf]Innovative and technically sound

Good with a few minor problems

Satisfactory with some problems

Has serious problems

Figure 8.21 Question 20
Out of the 10 answers, 4 chose A, 4 chose B, 2 chose C, 0 chose D and 0 chose E. Among the 5 people who chose B and C, the explanations are given as below.
· The merging process is lack of theoretical support
· The decision of synonyms is not objective
Our responses is:

· Theories about merging ontologies can be found many literatures, to give a few examples, e.g. [Hitzler, et. al, 2005], [Sowa, 2009].
21. What do you think about the set of rules we developed for differentiating Meta-Concept and Meta-Relationship (Section 6.4.3)?

A. Innovative and technically sound

B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems

[image: image371.emf]Innovative and technically sound

Good with a few minor problems

Satisfactory with some problems

Has serious problems

Figure 8.22 Question 21
Out of the 10 answers, 7 chose A, 2 chose B, 1 chose C and 0 chose D. Among the 3 people who chose B or C, the explanations are given as below.
· It will be better if the meta-constructs have been formally defined first
In our future work, we will try to apply the formally specified version of both ontologies.
22. What do you think about the potential problems listed in section 6.7?

A. These problems do exist but do not affect the credibility of the meta-model developed

B. These problems exist and seriously affect the credibility of the meta-model developed

C. None of the above

[image: image372.emf]These problems do exist but do not affect the

credibility of the meta-model developed

These problems exist and seriously affect the

credibility of the meta-model developed

None of the above

Figure 8.23 Question 22
Out of the 10 answers, 8 chose A, 2 chose B and 0 chose C. The 2 people who chose B gave explanations as “Problems exist and a suitable process of merging ontological structure with differing formal languages was solved many years ago through the notional view of harmonizing programming land structure through denotation semantics and action semantics.”
We are currently unaware of this process and will incorporate it into our future work.
23. What do you think about the theoretical foundation of Goal Reduction?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems

[image: image373.emf]Technically sound

Good with a few minor problems

Satisfactory with some problems

Has serious problems

Figure 8.24 Question 23
Out of the 9 answers, 9 chose A, 0 chose B, 0 chose C and 0 chose D. This reflects the wide acceptance of the idea of Goal Reduction as an effective technique in the early stage of RE not only in academia but also in IT industry.
24. What do you think the procedure of identifying concerned DOER of each ACTIVITY SPECIFICATION?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems

[image: image374.emf]Technically sound

Good with a few minor problems

Satisfactory with some problems

Has serious problems

Figure 8.25 Question 24
Out of the 9 answers, 7 chose A, 1 chose B, 1 chose C and 0 chose D. Among the 3 people who chose B or C, the explanations can be summarized as below.
· Different analysts may identify different DOER, the methodology did not specify how to reconcile the results.
Our response is:

· We believe that if the previous steps are well carried out, the DOER of a particular ACTIVITY SPECIFICATION should be rather straightforward to be identified unambiguously. However if it does happen that different analysts identify different DOERs for a particular ACTIVITY SPECIFICATION, the only way to reconcile the results are to have the analysts to discuss face to face in a workshop, and trying to convince each other.
25. What do you think the procedure of identifying concerned ENTITIES of each ACTIVITY SPECIFICATION?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems

[image: image375.emf]Technically sound

Good with a few minor problems

Satisfactory with some problems

Has serious problems

Figure 8.26 Question 25
Out of the 9 answers, 6 chose A, 2 chose B, 1 chose C and 0 chose D. The 3 people who chose B or C gave the explanations as summarized below:
· There should be more examples
· Different analysts may identify different ENTITIES, the methodology did not specify how to reconcile the results
Our responses are:

· In the future, we will try to cooperate with partners from industry in order to apply our methodology into real projects. After that we will be able to produce more examples.
· The key for deciding whether a noun that appears in the description of an activity should be modeled as ENTITY or not is to see whether the STATE of it change during the activity or not. We suggest during this step, the business analysts should communicate well through meetings or workshops to exchange ideas and finally reconcile their modeling results.
26. What do you think about the analysis after deciding that ENTITIES are outside the boundary of the system?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems

[image: image376.emf]Technically sound

Good with a few minor problems

Satisfactory with some problems

Has serious problems

Figure 8.27 Question 26
Out of the 9 answers, 7 chose A, 2 chose B, 0 chose C and 0 chose D. The 2 people who chose B gave the explanations as summarized below.
· There should be more examples

· It is unclear how to define the border of the system

Our responses are:

· In the future, we will try to cooperate with partners from industry in order to apply our methodology into real projects. After that we will be able to produce more examples.
· In [Wand and Weber, 1990, 1993, 1995] describe a way of using BWW Ontology to determine the borders of system.

27. What do you think about the analysis after deciding that ENTITIES are within the boundary of the system?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems

[image: image377.emf]Technically sound

Good with a few minor problems

Satisfactory with some problems

Has serious problems

Figure 8.28 Question 27
Out of the 9 answers, 7 chose A, 2 chose B, 0 chose C and 0 chose D. The 2 people who chose B gave the explanations as summarized below.
· There should be more examples

· It is unclear how to define the border of the system

Our responses are the same as previous question.
28. What do you think about using various existing scenario-oriented RE techniques after step 7?

A. Technically sound
B. Good with a few minor problems
C. Not the right stage to use scenario-oriented RE techniques yet

D. Has serious problem

[image: image378.emf]Technically sound

Good with a few minor problems

Not the right stage to use scenario-oriented RE

techniques yet

Has serious problems

Figure 8.29 Question 28
Out of the 9 answers, 8 chose A, 0 chose B, 1 chose C and 0 chose D. The 1 person who chose C didn’t give any explanations.
8.5 Conclusions
In the last section, we complete the result analysis of the expert feedback on our methodology. The results show that on all questions, the majority of experts chose option A, which is designed to be an option that either proves the validity or confirm the usefulness of a particular part of the methodology.
However there are a few questions with relatively lower percentage of positive answer. We have summarized below several areas that the experts have suggested to improve.
· The possibility of incorporating Domain Engineering theory and techniques into the work. The justification for this is that some columns of Zachman Framework seem to be only meaningful and useful when considered from the perspective of developing a group of similar systems, DATA/What, NETWORK/Where, STRATEGY/Why, etc.
· The ontology merging process needs to improve. Especially a better technique for identifying synonyms and merging them need to be developed. One potential area and techniques we may look at in the future is Action Semantics [Mosses, 1996].
· Both BWW Ontology and Enterprise Ontology should be reevaluated to see if they can be replaced by better alternatives. To find an alternative for BWW Ontology, we can look at Cyc [Lenat, 2006], Basic Form Ontology (BFO) [Smith, 2004] and General Form Ontology (GFO) [Herre, 2006].
· Once the merged ontology is acquired, the techniques for differentiating meta-relationships from meta-concepts and for mapping to different columns of Zachman Framework need to improve. The techniques used in the current methodology lack enough theoretical support.

· The last step of the RE process needs more examples to demonstrate how DOER and ENTITY can be identified from ACTIVITY SPECIFICATION.

CHAPTER 9 – CONCLUSION AND FUTURE WORK
9.1 Introduction

In previous chapters, we first looked at the challenges that are faced in requirement engineering for enterprise information system, following by a thorough review of three different research fields, Requirement Engineering, Enterprise Information Systems and Ontology. Then we developed our own meta-model for Zachman Framework, a popular Enterprise Architecture Framework, by merging BWW Ontology and Enterprise Ontology. Based on the meta-model, we gave an example of a particular sequence to acquire the instances of the meta-models, which itself is a requirement acquisition process catering for a particular enterprise information system development situation.
9.2 Summary of Contributions

The major contributions of this work are:
· Expose the gap in current research in Requirement Engineering and Information Studies, that although enterprise information system distinguish itself from other types of software by embedding the domain knowledge of the enterprise’s structure, strategies, plans, organizations, people, activities, processes, resources, products, business rules, external relations etc in the requirements, there is not enough research been done in looking into Requirement Engineering for Enterprise Information System.
· Comprehensively review and bring together theory and techniques from three different research areas: Requirement Engineering, Enterprise Information System and Enterprise Architecture, Ontology.
· Develop a meta-model for Zachman Framework from merging BWW Ontology and Enterprise Ontology by merging the synonyms of two ontologies and then differentiating meta-relationships from meta-concepts. Because both ontologies have been formally specified, the semantics of each construct in the meta-model are well defined.
· Develop a requirement acquisition methodology that specialize the generalized RE methodology by utilizing specialist meta-models for specific types of system. A well-defined sequence is illustrated to traverse the meta-model of Zachman Framework, which in theory is a graph, to acquire instances of the meta-concepts and meta-relationships. The whole methodology is demonstrated using a case study of a timber company.
· The meta-model and the requirement acquisition methodology are validated using the expert feedbacks validation methods and results are analyzed to generate conclusions and areas need to further improve.
9.3 Limitation of Our Method

The main limitations of this work are:

· The meta-model is constructed mostly by merging the synonyms in two ontologies, however there is no objective review or validation of the merging process.
· The two ontologies chosen to be merged to form the meta-model are missing a significant number of key concepts in Zachman Framework and Enterprise Architecture in general.
· Many of the steps of the RE methodology do not utilize all the meta-constructs that correspond the specific column of Zachman Framework. Only some of the meta-constructs are used.

· There is no empirical application of the meta-model and the RE methodology. Due to the scale of the methodology, it is difficult to find a real life project to test the methodology as a whole. The other reason is that most enterprises are reluctant to use a new RE method because of the risk associated, especially if it has not been widely used in the industry yet.

· Currently there is no tool support for the requirement acquisition method with built-in meta-model.
9.4 Future Work

In the future we will work mainly on addressing the weaknesses of the work done up to now. This will include below tasks:
· Refine and extend the meta-model by analyzing the feedback of business analysts who have applied our requirement acquisition methodology in their real projects. After being applied in real project, feedback can be gathered from business analysts on each particular meta-concept or meta-relationship in the meta-model. Some of them may prove to be not useful which can be deleted from meta-model, while new meta-concepts or meta-relationships may need to be added to the meta-model.
· Reevaluate the choice of merging BWW Ontology and Enterprise Ontology to form the meta-model. Look for alternative ontologies which may achieve better results. To find an alternative ontology for BWW Ontology, we need to look for a high level ontology with potential to integrate with an Enterprise Ontology.
· Validate the meta-model and requirement acquisition process in a real enterprise IS environment: a sizeable enterprise with complex IT requirement.
· Build a support tool for requirement acquisition process by allowing instantiating built-in meta-model to acquire each type of models. The tool will have an integrated meta-model, a diagram drawing tool and a central storage for all the diagrams and information for properties. The predefined shape in the diagram drawing tool is the meta-concept and meta-relationship in the meta-model that are associated with this particular type of diagram.
· Extend the meta-model to include domain specific knowledge, e.g. banking, telecom, manufacture, etc. Currently the meta-model is a generic model that can be applied across different industry. However in each specific industry, there are distinctive concepts that are used in the daily business operation. As a result, such concepts also frequently appear in requirement specification documents that are particular to this industry. We believe by formally define and incorporate such concepts into our meta-model, it will significant reduce the misunderstanding that happen during the RE process.
· Develop new sequences of traversing the meta-model to create more specific requirement acquisition methods for different situations. Currently only one sequence of traversing the meta-model is developed as an example. In the future, more sequences can be developed to be used in different system development situation, e.g. an organization change may trigger a system development project. In that case, the RE process will start from PEOPLE/Who column of Zachman Framework.
APPENDIX A: QUESTIONNAIRE FOR EVALUATING RE METHOD FOR INFORMATION SYSTEMS
Please choose the answers that are most close to what you think for below 10 key questions, and give your reasons.
1. In general do you find the whole methodology of our requirement elicitation process based on the meta-model for Zachman Framework developed from merging two different ontologies useful?

A. Very useful
B. With some improvement can be useful
C. Interesting idea but not very useful
D. Not useful at all
Please give your explanations here__
2. In general what do you think about the meta-model we developed from merging two ontologies?

A. Very useful and the merging process is technically sound
B. Essential for the RE methodology but the merging process needs to improve
C. Essential for the RE methodology but the two candidate ontologies are problematic

D. The whole idea of developing meta-model is problematic
Please give your explanations here__
3. What do you think about the RE process’s 1st step: Acquire High Level Goal/Strategy Tree model – MOTIVATION/Why?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem
Please give your explanations here__
4. What do you think about the RE process’s 2nd step: Extract STATE OF AFFAIRS from the Goal-Strategy Tree model, and build Master Schedule by adding TIME POINT to STATE OF AFFAIRS – TIME/When?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem
Please give your explanations here__
5. What do you think about the RE process’s 3rd step: Draw Organizational Chart – PEOPLE/Who?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem
Please give your explanations here__
6. What do you think about the RE process’s 4th step: Map Network Topology Diagram – NETWORK/Where?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem
Please give your explanations here__
7. What do you think about the RE process’s 5th step: Semantic/Conceptual Level Data Modeling – DATA/What?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem
Please give your explanations here__
8. What do you think about the RE process’s 6th step: Reduce Goal/Strategy Tree model to “operationalizable” Business Process Model – FUNCTION/How?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem
Please give your explanations here__
9. What do you think about the RE process’s 7th step: Analyze each ACTIVITY SPECIFICATION to identify concerned DOER and ENTITY, decide whether ENTITY is within the boundary of target system?

A. Very good
B. Good
C. Satisfactory

D. Has serious problem
Please give your explanations here__
10. Did you finish work your example through our process?

A. Yes
B. No
We may want to do a follow up interview with you, please tell us whether you want to participate?

Yes

No

Please answer the additional questions below if you are interested. Thank you.
11. Do you think it is necessary to have a requirement elicitation method specifically for Enterprise Information System (EIS)?

A. Yes, because EIS is special.
B. Not necessarily, but will be good to have one

C. Unnecessary, the requirement elicitation method developed for general purpose is effective enough, e.g. KAOS.

D. None of the above
Please give your explanations here__
12. What do you think about the idea of basing the RE method on Zachman Framework for Enterprise Information System?

A. Innovative and technically sound

B. Innovative but needs some improvement

C. Innovative but technically problematic

D. Not innovative

E. Has serious problem
Please give your explanations here__
13. Do you think it is necessary to develop a meta-model for Zachman Framework for the purpose of developing a requirement elicitation method?

A. Definitely necessary
B. Necessary
C. Not necessary, but will be good to have

D. Not necessary at all
Please give your explanations here__
14. What do you think about the idea of using ontology for the purpose of developing meta-model for Zachman Framework?

A. Innovative and technically sound

B. Innovative but needs some improvement

C. Innovative but technically problematic

D. Not innovative

E. Has serious problem
Please give your explanations here__
15. What do you think about the 3 levels of conceptual modeling (Meta Level, Domain Level, and Instance Level)?

A. Innovative and technically sound

B. Innovative but needs some improvement

C. Innovative but technically problematic

D. Not innovative

E. Has serious problem
Please give your explanations here__
16. What do you think about the idea of traversing the meta-model to acquire instantiation of meta-concepts as requirement models?

A. Innovative and technically sound

B. Innovative but needs some improvement

C. Innovative but technically problematic

D. Not innovative

E. Has serious problem
Please give your explanations here__
17. What do you think about Enterprise Ontology (developed in Edinburgh University)?

A. Very useful
B. Useful
C. Not very useful
D. Not useful at all

Please give your explanations here__
18. What do you think about Bunge-Wand-Weber Ontology?

A. Very useful
B. Useful
C. Not very useful
D. Not useful at all

Please give your explanations here__
19. What do you think about the idea of merging above two ontologies?

A. Innovative and technically sound

B. Innovative but technically problematic

C. Not innovative

D. Has serious problems
Please give your explanations here__
20. What do you think about the merging process of the two ontologies? (Section 6.3)

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems
Please give your explanations here__
21. What do you think about the set of rules we developed for differentiating Meta-Concept and Meta-Relationship (Section 6.4.3)?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems
Please give your explanations here__
22. What do you think about the potential problems listed in section 6.7?

A. These problems do exist but do not affect the credibility of the meta-model developed

B. These problems exist and seriously affect the credibility of the meta-model developed

C. Other
Please give your explanations here__
23. What do you think about the theoretical foundation of Goal Reduction?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems
Please give your explanations here__

24. What do you think the procedure of identifying concerned DOER of each ACTIVITY SPECIFICATION?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems
Please give your explanations here__

25. What do you think the procedure of identifying concerned ENTITIES of each ACTIVITY SPECIFICATION?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems
Please give your explanations here__

26. What do you think about the analysis after deciding that ENTITIES are outside the boundary of the system?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems
Please give your explanations here__

27. What do you think about the analysis after deciding that ENTITIES are within the boundary of the system?

A. Technically sound
B. Good with a few minor problems
C. Satisfactory with some problems

D. Has serious problems
Please give your explanations here__

28. What do you think about using various existing scenario-oriented RE techniques after step 7?

A. Technically sound
B. Good with a few minor problems
C. Not the right stage to use scenario-oriented RE techniques yet

D. Has serious problem
Please give your explanations here__
BIBLIOGRAPHY
Abrial, J. 1996, The B-Book: Assigning Programs to Meanings, Cambridge University Press.

Alford, M. W., 1977, “A Requirements Engineering Methodology for Real-Time Processing Requirements”, IEEE Transactions on Software Engineering, Vol. 3, No.1, pp. 60-69.
Allen, J. F., 1984, “Towards A General Theory of Action and Time”, Artificial Intelligence, Vol. 23, pp. 123-154.
Anton, A. I., 1996, “Goal-Based Requirements Analysis”, Proceedings of the 2nd International Conference on Requirements Engineering, Colorado Springs, CO, April 15-18, 1996, pp. 136-144.

Anton, A. I., and Potts, C., 1998, “The Use of Goals to Surface Requirements for Evolving Systems”, Proceedings of 20th International Conference on Software Engineering, Kyoto, Japan, April 19-25, pp. 157-166.
Anton, A., Earp, J. and Reese, A., 2002, “Analyzing Website Privacy Requirements Using a Privacy Goal Taxonomy”, Proceedings of the 10th Anniversary IEEE Joint International Conference on Requirements Engineering (RE’02), Essen, Germany, September 1-3, pp. 22-31.
Bickerton, M. J. and Siddiqi, J., 1993, “The Classification of Requirements Engineering Methods”, Proceedings of IEEE International Symposium on Requirements Engineering (RE'93), San Diego, CA, USA, January 4-6, pp. 182-186.
Blaha, M. and Premerlani, W., 1998, Object-Oriented Modeling and Design for Database Applications, Upper Saddle River: Prentice Hall.
Bjørner, D. and Jones, C. B., 1978, “The Vienna Development Method: The Meta-Language”, Lecture Notes in Computer Science 61.
Bodart, F., Patel, A., Simand, M. and Weber, R., 2001, “Should Optional Properties be Used in Conceptual Modelling? A Theory and Three Empirical Tests”, Information Systems Research, Vol. 12, No. 4, pp. 384-405.
Boehm, B. W., Bose, P., Horowitz, E. and Lee, M. J., 1995, “Software Requirements Negotiation and Renegotiation Aids: A Theory-W Based Spiral Approach”, Proceedings of 17th International Conference on Software Engineering, Seattle, WA, April 23-30, 1995, pp. 243-253.
Booch, G., Jacobson, I. and Rumbaugh, J., 2000, “OMG Unified Modeling Language Specification”, Version 1.3 First Edition: March 2000.

Bunge, M. Treatise on Basic Philosophy. Vol. 3, Ontology I: The Furniture of the World, Readel, Boston, MA, 1977.

Bunge, M. Treatise on Basic Philosophy. Vol. 4, Ontology II: A World of Systems, Readel, Boston, MA, 1979.

Burton-Jones, A. and Weber, R., 1999, “Understanding Relationships with Attributes in Entity-Relationship Diagrams”. Proceedings of the 20th International Conference on Information Systems, Charlotte, NC, December 13-15, 1999, pp. 214-228.
Burton-Jones, A. and Meso, P., 2002, “How Good Are These UML Diagrams? An Empirical Test of the Wand and Weber Good Decomposition Model”, Proceedings of the 23rd International Conference on Information Systems, Barcelona, Spain, December 15-18, 2002, pp. 101-114.
Carvalho, J. A., 2000, “Information System? Which One Do you Mean?”, Proceedings of the IFIP TC8/WG8.1 International Conference on Information System Concepts: An Integrated Discipline Emerging, Leiden, Netherlands, September 20-22, pp. 259-277.

Chan, W., Anderson, R. J., Beame, P., Burns, S., Modugno, F., Notkin, D. and Reese, J. D., 1998, “Model Checking Large Software Specifications”. IEEE Transactions on Software Engineering, Vol. 24, No. 7, pp. 498–520.
Chen, P. P. S., 1976, “The Entity-Relationship Model - Toward a Unified View of Data”, ACM Transactions on Database Systems, Vol. 1, No. 1, 1976, pp. 9-36.
Chen, Z., 2011, “Questionnaire for evaluating a RE Method for Information Systems”.

Dardenne, A., Fickas, S. and Lamsweerde, A., 1991, “Goal-directed Concept Acquisition in Requirement Elicitation”, Proceedings of the 6th International Workshop on Software Specification and Design, Como, Italy, October 25-26, 1991, pp. 14-21.
Dardenne, A., Lamsweerde, A. and Fickas, S., 1993, “Goal-directed Requirement Acquisition”, Science of Computer Programming, Vol. 20, pp. 3-50.

Darimont, R. and Lamsweerde, V., 1996, “Formal Refinement Patterns for Goal-Driven Requirements Elaboration”, Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineering, San Francisco, CA, October 16-18, 1996, pp. 179-190.
Davis, A. M., 1990, “Software Requirements - Analysis and Specification”, Prentice Hall.
Davis, A. M., 1992, “Operational Prototyping: A New Development Approach”, IEEE Software, Vol. 9, No. 5, pp.70 – 78.

Davies, I., Green, P., Milton, S. and Rosemann, M., 2002, “Facilitating an Ontological Foundation of Information Systems with Meta Models”, Proceedings of the 13th Australasian Conference on Information Systems, Melbourne, Australia, December 4-6, 2002, pp. 937-947.
Davies, I., Green, P., Milton, S. and Roseman, M., 2003, “Using Meta Models for the Comparison of Ontologies”, Proceedings of 8th CAiSE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in Systems Analysis and Design (EMMSAD’03), Velden, Austria, June 16-17, 2003.
Degen, W., Heller, B., Herre, H., and Smith, B., 2001, “GOL: Towards an Axiomatized Upper Level Ontology”, Proceedings of 2nd International Conference on Formal Ontologies in Information Systems, Ogunquit, ME, October 17-19, 2001, pp. 34-46.
Easterbrook, S. and Chechik, M., 2001, “A Framework for Multi-Valued Reasoning over Inconsistent Viewpoints”, Proceedings of the 23th International Conference on Software Engineering, Toronto, Canada, May 12-19, 2001, pp. 411–420.

Evermann, J. and Wand, Y., 2001, “Towards Ontologically Based Semantics for UML Constructs”. Proceedings of the 20th International Conference on Conceptual Modeling(ER2001), Yokohama, Japan, November 27-30, 2001, pp. 354-467.
Evermann, J. and Wand, Y., 2005A, “Toward Formalizing Domain Modelling Semantics in Language Syntax”, IEEE Transactions on Software Engineering, Vol. 31, No. 1, pp. 21-37.
Evermann, J. and Wand, Y., 2005B, “Towards a Cognitive Foundation for Knowledge Representation”, Information Systems Journal, Vol. 15, No. 2, pp. 147-178.
Fadel, F., Fox, M. and Gruninger, M., 1994, “A Generic Enterprise Resource Ontology”, in Proceedings of the 3rd Workshop on Enabling Technologies: Infrastructures for Collaborative Enterprise, Morgantown, WV, April, pp. 117-128.
Fatolahi, A. and Shams, F., 2006, “An Investigation into Applying UML to the Zachman Framework”, Information System Frontiers, pp. 133-143.
Feather, M., Fickas, S., Lamsweerde, A. V. and Ponsard, C., 1998, “Reconciling System Requirements and Runtime Behaviour”, Proceedings of 9th International Workshop on Software Specification and Design, Ise-Shima, Japan, April 16-18, 1998, pp. 50-59.
Fettke, P. and Loos, P., 2003, “Ontological Evaluation of Reference Models Using the Bunge-Wand-Weber Model”, Proceedings of the 9th Americas Conference on Information Systems, Tampa, FL, pp. 2944-2955.
Finkelstein, A., Kramer, J. and Goedicke, M., 1990, “Viewpoint Oriented Software Development”, Proceedings of 3rd International Workshop on Software Engineering and its Applications, Toulouse, France, December 1990, pp. 337-351.

Finkelsetin, A., Kramer, J., Nuseibeh, B., Finkelstein, L. and Goedicke, M., 1992, “Viewpoints: A Framework for Integrating Multiple Perspectives in System Development”, International Journal of Software Engineering and Knowledge Engineering, Vol. 2, No. 1, pp. 31-58.
Fox, M., 1992, “The TOVE Project: Towards a Common-Sense Model of the Enterprise”, Proceedings of the 5th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, pp. 25-34.
Fox, M., Barbuceanu, M., Gruninger, M. and Lin, J., 1998, “An Organization Ontology for Enterprise Modelling”, Simulating Organizations: Computational Models of Institutions and Groups, pp. 131-152.
Genesereth, R., Fikes, E., 1992, “Knowledge Interchange Format, Version 3.0 Reference Manual”, Technical Report Logic-92-1, Computer Science Department, Stanford University.
Goguen, J. A. and Linde, C., 1993, “Techniques for Requirements Elicitation”, Proceedings of the 1st IEEE International Symposium on Requirements Engineering, San Diego, CA, January 4-6, 1993, pp. 152-164.
Gotel, O. and Finkelstein, A., 1994, “An Analysis of the Requirements Traceability Problem”, Proceedings of the 1st IEEE International Conference on Requirements Engineering, Colorado Springs, CO, April 18-21, 1994.
Green, P. F., 1997, “Use of Information Systems Analysis and Design (ISAD) Grammars in Combination in Upper CASE Tools - An Ontological Evaluation”, Proceedings of the 2nd CaiSE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in Systems Analysis and Design (EMMSAD’97, in conjunction with CAiSE’97), Barcelona, Spain, June 16-17, 1997
Green, P. F. and Rosemann, M., 2000, “Integrated Process Modelling: An Ontological Evaluation”, Information Systems, Vol. 25, No. 2, pp. 73-87.
Green, P. F. and Rosemann, M., 2002, “Perceived Ontological Weaknesses of Process Modeling Techniques: Further Evidence”, Proceedings of the 10th European Conference on Information Systems, Gdańsk, Poland, June 6-8, 2002.
Green, P. F., Rosemann, M. and Indulska, M., 2005, “Ontological Evaluation of Enterprise Systems Interoperability Using ebXML”, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 5, pp. 713-725.
Green, P. F., Rosemann, M., Indulska, M. and Recker, J., 2006, “Improving Representational Analysis: An Example from the Enterprise Systems Interoperability Domain”, 17th Australasian Conference on Information Systems, Adelaide, Australia, December 6-8, 2006.
Greenspan, S., Mylopoulos, J. and Borgida, A., 1982, “Capturing More World Knowledge in the Requirements Specification”, in Proceedings of the 6th International Conference on Software Engineering, Tokyo, Japan, 1982, pp. 225-234.
Greenspan, S., 1984, “Requirements Modelling: A Knowledge Representation Approach to Software Requirements Definition”, PhD thesis, Dept. of Computer Science, University of Toronto, 1984.

Greenspan, S., and Borgida, A. and Mylopoulos, J., 1986, “A Requirement Modeling Language and its Logic”, in Information Systems, Vol. 11, No. 1, pp. 9-23.
Greenspan, S., Mylopoulos, J. and Borgida, A., 1994, “On Formal Requirements Modeling Languages: RML Revisited”, in Proceedings of the 16th International Conference on Software Engineering, Sorrento, Italy, 1994, pp. 135-147.

Gross, D. and Yu, E., 2001, “From Non-Functional Requirements to Design through Patterns”, Requirements Engineering, Vol. 6, No. 1, pp. 18-36.
Gruber, T., 1993, “A Translation Approach to Portable Ontology Specifications”, Knowledge Acquisition (5:2), pp. 199-220.
Gruninger, M. and Fox, M., 1994, “An Activity Ontology for Enterprise Modeling”. Submitted to AAAI-94.
Gruninger, M. and Lee, J., 2002, “Ontology applications and design”, Communications of the ACM, Vol. 45, pp. 39–41.
Guizzardi, G., Herre, H., and Wagner, G., 2002, “Towards Ontological Foundations for UML Conceptual Models”, 1st International Conference on Ontologies, Databases and Application of Semantics (ODBASE'02), Irvine, CA, October 19-31, 2002.
Hammer, M. and McLeod, D., 1981, “Database Description with SDM: A Semantic Database Model”, ACM Transactions on Database Systems, Vol. 6, pp. 351-386.
Harel, D., 1987, “Statecharts: a Visual Formalism for Complex Systems”, Science of Computer Programming, Vol. 8, No. 3, pp. 231-274.
Henderson-Sellers, B., Simons, A. J. H. and Younessi, H., 1998, “The OPEN Toolbox of Techniques”, Addison-Wesley, UK.
Henderson-Sellers, B., Atkinson, C. and Firesmith, D. G., 1999, “Viewing the OML as a Variant of the UML”, Proceedings of the 2nd International Conference on the UML’99, Fort Collins, CO, October 28-30.

Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, F. and Michalek, H., 2006, “General Formal Ontology (GFO): A Foundational Ontology Integrating Objects and Processes [Version 1.0]”, Philosophy, Vol. 19, No. 8.
Herrera, S., Pallioto, D., Tkachuk, G. and Luna, P., 2005, “Ontological Modelling of Information Systems from Bunge’s Contributions”, Proceedings of the PHISE Workshop, Porto, Portugal.
Hitzler, P., Krotzsch, M., Ehrig, M. and Sure, Y., 2005, “What Is Ontology Merging?”, American Association for Artificial Intelligence.
Hoare, C. A. R., 1985, “Communicating Sequential Processes”, Communications of the ACM, Vol. 21, pp. 666-677.

Holloway, C. M., 1997, “Why Engineers Should Consider Formal Methods”, Proceedings of the 16th Digital Avionics Systems Conference, October 27-30, 1997,

Holtzblatt, K. and Jones, S., 1993, “Contextual Inquiry: A Participatory Technique for System Design”, Participatory Design: Principles and Practice, Lawrence Erlbaum, Hillsdale, NJ, pp.180-193.
Irwin, G. and Turk, D., 2005, “An Ontological Analysis of Use Case Modelling Grammar”, Journal of the Association for Information Systems, Vol.6, No. 1, pp.1-36.
Iyer, B. and Gottlieb, R., 2004, “The Four-Domain Architecture: An Approach to Support Enterprise Architecture Design”, IBM Systems Journal, Vol, 43, No 3, pp: 587-597.
Jarke, M. and Bui, X.T. and Carroll, J.M., 1998, “Scenario Management: An Interdisciplinary Approach,” Requirements Engineering, Vol. 3, pp. 155-173.

Jones, G.W., 1990, Software Engineering, Wiley.

Kalnins, A. and Vitolins, V., 2003, “Modeling Business”, The Knowledge Engineering Review, Vol. 18, No. 1, pp. 1-31.
Kasanen E., Lukka K. & Siitonen A., 1993, “The Constructive Approach in Management Accounting Research”, Journal of Management Accounting Research, No. 5, pp.243-264.
Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S., 1990, “Feature-Oriented Domain Analysis (FODA) Feasibility Study”, Technical Report, CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

Keen, C. and Lakos, C., 1996, “An Analysis of the Design Constructs Required in Process Modelling”. Proceedings of the International Conference on Software Engineering: Education and Practice (SE: EP '96), Dunedin, New Zealand, January, 1996.

Kim, H. and Fox, M., 1995, “An Ontology of Quality for Enterprise Modeling”, in Proceedings of 4th Workshop on Enabling Technologies: Infrastructures for Collaborative Enterprises, Berkeley Springs, WV, April 20-22, pp. 105-116.
Kingston, J. and Macintosh, A., 2000, “Knowledge Management Through Multi-Perspective Modelling: Representing and Distributing Organizational Memory”, Knowledge-Based Systems, Vol. 13, pp. 121-131.
Kotonya, G. and Sommerville, I., 1992, “Viewpoints for Requirements Definition”, Software Engineering Journal. Vol. 7, No. 6, pp. 375-387.
Kotonya, G. and Sommerville, I., 1996, “Requirements Engineering with Viewpoints”, Software Engineering Journal. Vol. 11, No. 1, pp. 5-18.
Lamsweerde, A. V., Dardenne, A. Delcourt, B. and Dubisy, F., “The KAOS Project: Knowledge Acquisition in Automated Specification of Software”, Proceedings AAAI Spring Symposium Series, Track: “Design of Composite Systems”, Stanford University, March 1991, pp. 59-62.
Lamsweerde, A. V., Darimont. R. and Letier, E., 1998A, “Managing Conflicts in Goal-Driven Requirements Engineering”, IEEE Transaction on Software Engineering, Vol. 24, No. 11, pp. 908-926.
Lamsweerde, A. V. and Willemet, L., 1998B, “Inferring Declarative Requirements Specifications from Operational Scenarios”, IEEE Transaction on Software Engineering, Vol. 24, No. 12, pp. 1089-1114.

Lamsweerde, A. V. and Letier, E., 2000, “Handling Obstacles in Goal-Oriented Requirements Engineering”, IEEE Transaction on Software Engineering, Vol. 26, No. 10, pp. 978-1005.
Lamsweerde, A. V., 2000, “Requirement Engineering in the Year 00: A Research Perspective”, Proceedings of 22nd International Conference on Software Engineering, Limerick, Ireland, pp. 5-19.
Lamsweerde, A. V., 2003, “From System Goals to Software Architecture”, Formal Methods for Software Architectures, LNCS 2804, Springer-Verlag, pp. 25-43.
Lamsweerde, A. V., 2004A, “Elaborating Security Requirements by Construction of Intentional Anti-Models”, Proceedings of the 26th International Conference on Software Engineering, Edinburgh, Scotland, May 23-28, 2004, pp. 148-157.
Lamsweerde, A. V., 2004B, “Goal-Oriented Requirements Engineering: A Roundtrip from Research to Practice”, Proceedings of 12th IEEE International Requirements Engineering Conference, Kyoto, Japan, September 6-10, 2004, pp. 4-7.
Lehrer, N., 1993, “Knowledge Representation Specification Language”, Technical Report, DARPA/Rome Laboratory Planning and Scheduling Initiative.
Leist, S. and Zellner, G., 2006, “Evaluation of Current Architecture Frameworks”, Proceedings of 21st Annual ACM Symposium on Applied Computing (SAC’06), Dijon, France, April, 23-27, 2006, pp. 1546-1553.

Lenat, D., 2006, “Hal's Legacy: 2001's Computer as Dream and Reality. From 2001 to 2001: Common Sense and the Mind of HAL”, Cycorp, Inc.., September 26, 2006.
Letier, E. and Lamsweerde, A. V., 2002A, “Agent-Based Tactics for Goal-Oriented Requirements Elaboration”, Proceedings of 24th International Conference on Software Engineering, Orlando, FL, May 19-25, 2002, pp. 83-93.
Letier, E. & Lamsweerde, A. V., 2002B, “Deriving Operational Software Specifications from System Goals”, Proceedings of 10th ACM SIGSOFT Symposium on Foundations of Software Engineering, Charleston, SC, November 18-22, 2002, pp. 119-128.
Letier, E. & Lamsweerde, A. V., 2004, “Reasoning about Partial Goal Satisfaction for Requirements and Design Engineering”, Proceedings of 12th ACM SIGSOFT Symposium on Foundations of Software Engineering, Newport Beach, CA, October 31-November 6, 2004, pp. 53-62.
Lin, J. Fox, M. and Bilgic, T., 1996, “A Requirement Ontology for Engineering Design”, Concurrent Engineering, (4:3), pp. 279-291.
Liu, L., Yu, E. S. K. and Mylopoulos, J., 2003, “Security and Privacy Requirements Analysis within a Social Setting”, Proceedings of the 11th IEEE International Conference on Requirements Engineering, Monterey Bay, CA, September 8-12, 2003, pp. 151-161.
Maiden, N. and Rugg, G., 1996, “ACRE: Selecting Methods for Requirements Acquisition”, Software Engineering Journal, Vol. 11, No. 3, pp.183-192.

Martin, R. and Robertson, E., 1999, “Formalization of Multi-level Zachman Frameworks”, Technical Report No. 522.
Massonet, P. and Lamsweerde, A. V., 1997, “Analogical Reuse of Requirements Frameworks”, Proceedings of the 3rd IEEE International Symposium on Requirements Engineering, Annapolis, MD, January 5-8, pp. 26-37.
Milner, R., 1980, “A Calculus of Communicating Systems”, Lecture Notes in Computer Science, Vol. 92.
Milton, S., Kazmierczak, E., and Keen, C., 2001, “An Ontological Study of Data Modelling Languages using Chisholm’s Ontology”, Proceedings of 11th European-Japanese Conference Information Modelling and Knowledge Bases, Maribor, pp. 21-32.
Milton, S., Kazmierczak, E., and Keen, C., 2002, “Comparing Data Modeling Frameworks Using Chisholm’s Ontology”, Proceedings of 6th European Conference on Information Systems, Aix-en-Provence, June, 1998, pp. 260-272.
Mosses, P., 1996, “Theory and Practice of Action Semantics”, Mathematical Foundations of Computer Science, Vol. 1113, pp. 37-61.
Mullery, G. P., 1979, “CORE - A Method for Controlled Requirements Specification”, Proceedings of the 4th International Conference on Software Engineering, Munich, Germany, September 17-19, 1979, pp. 126-135.

Mylopoulos, J., Borgida, A., Jarke, M. and Koubarakis, M., 1990, “Telos: Representing Knowledge about Information Systems”, ACM Transactions on Information Systems (TOIS), Vol. 8, No. 4, October, 1990, pp. 325-362.

Nilsson, N. J., 1971, “Problem-Solving Methods in AI”, McGraw-Hill.

Noran, O., 2003, “An Analysis of the Zachman Framework for Enterprise Architecture from the GERAM Perspective”, Annual Reviews in Control, Vol. 27, pp. 163–183.
Noy, N. F. & Hafner, C. D., 1997, “The State of the Art in Ontology Design: A Survey and Comparative Review”, American Association for Artificial Intelligence.
Nuseibeh, B. and Easterbrook, S., 2000, “Requirements Engineering: A Roadmap”, Proceedings of the Conference on The Future of Software Engineering, Limerick, Ireland, pp. 35-46.
Opdahl, A. L., Henderson-Sellers, B. and Barbier, F., 1995, “Ontological Analysis of Whole-Part Relationships in OO-Models”, Information and Software Technology, Vol. 43, pp. 387-389.
Opdahl, A. L. and Henderson-Sellers, B., 2001, “Grounding the OWL Metamodel in Ontology”, Journal of Systems and Software, Vol. 57, No. 2, pp. 119-143.

Opdahl, A. L. and Henderson-Sellers, B., 2002, “Ontological Evaluation of the UML Using the Bunge-Wand-Weber Model”, Journal of Software and Systems Modeling, Vol. 1, No. 1, pp. 43–67.

Orr, K., 1981, Structured Requirements Definition, Topeka, Kansas, 1981.
Parsons, J. and Wand, Y., 1997A, “Choosing Classes in Conceptual Modelling”, Communications of the ACM, Vol. 40, No. 6, pp. 63–69.
Parsons, J. and Wand, Y., 1997B, “Using Objects for Systems Analysis”, Communications of the ACM, Vol. 40, No. 12, pp. 104–110.
Pereira, C. and Sousa, P., 2004, “A Method to Define an Enterprise Architecture using the Zachman Framework”, in Proceedings of 19th Annual ACM Symposium on Applied Computing, Session: Organizational Engineering (OE), Nicosia, Cyprus, March 14-17, pp. 1366-1371.

Petri, C. A. and Reisig, W., 2008, “Petri net”, Scholarpedia, Vol. 3, No. 4, pp. 6477.
Pnueli, A., 1981, “The Temporal Semantics of Concurrent Programs”, Theoretical Computer Science, Vol. 13, No. 1, pp. 45-60.
Potts, C., Takahashi, K. and Anton, A. I., 1994, “Inquiry-Based Requirements Analysis”, IEEE Software, Vol. 11, No. 2, pp. 21-32.

Potts, C., Takahashi, K., Smith, J. and Ota, K., 1995, “An Evaluation of Inquiry-Based Requirements Analysis for an Internet Service”, Proceedings of 2nd IEEE International Symposium on Requirements Engineering (RE'95), York, England, March 27-29, 1995, pp. 27-34.
Potts, C. 1995, “Using Schematic Scenarios to Understand User Needs”, Proceedings of 1st Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, Ann Arbor, MI, pp. 247 - 256.

Potts, C, 1999, “ScenIC: Strategy for Inquiry-Driven Requirements Determination”, Proceedings of the 4th IEEE International Symposium on Requirements Engineering, Limerick, Ireland, Jun 7-11, 1999, pp. 58-65.
Recker, J., Indulska, M., Roseman, M. and Green, P., 2005, “Do Process Modelling Techniques Get Better? A Comparative Ontological Analysis of BPMN”, Proceedings of the 16th Australasian Conference on Information Systems, Sydney, Australia, Nov 29- Dec 2, 2005.
Rolland, C., Souveyet, C. and Achour, C. B., 1998, “Guiding Goal Modeling Using Scenarios”, IEEE Transactions on Software Engineering, Vol. 24, No. 12, pp. 1055-1071.
Rosemann, M. and Green, P., 2002, “Developing a Meta Model for the Bunge-Wand-Weber Ontological Constructs”, Information Systems, Vol. 27, No. 2, pp. 75-91.
Rosemann, M., Green, P. and Indulska, M., 2004, “A Reference Methodology for Conducting Ontological Analyses”, Proceedings of the 23rd International Conference on Conceptual Modeling (ER2004), Shanghai, China, November 27-30, 2004, pp. 110-121.
Ross, D. T., and Schoman, K.E., 1977A, “Structured Analysis for Requirements Definition”, IEEE Transactions on Software Engineering, Vol. 3, No. 1, pp. 6-15.
Ross, D. T., 1977B, “Structured Analysis: A Language for Communicating Ideas”, IEEE Transactions on Software Engineering, Vol. 3, No. 1, pp. 16-34.
Ross, D. T., 1985, “Applications and extensions of SADT”, Computer, Vol. 18, No. 4, pp. 25-34.
Schekkerman, J., 2003, “Be Enterprising: Facts and Figures about EA”, (Available from www.enterprise-architecture.info)
Shanks, G., Tansley, E. and Weber, R., 2003, “Using Ontology to Validate Conceptual Models”, Communications of the ACM, Vol. 46, No. 10, pp. 85-89.
Shaw, M. L. G. and Gaines, B. R., 1996, “Requirements Acquisition”, Software Engineering Journal, Vol. 11, No. 3, pp. 149-165.

Scheer, A., 2000, “ARIS Architecture and Reference Models for Business Process Management”, Business Process Management – Models, Techniques, and Empirical Studies, LNCS 1806, Berlin et al., pp. 366-379.
Smith, B. and Welty, C., 2001, “Ontology: Towards a New Synthesis”, Proceedings of 2nd International Conference on Formal Ontology in Information Systems (FOIS), Ogunquit, ME, USA, October 17-19, 2001, pp. 3-9.

Smith, B. and Grenon, P., 2004, “The Cornucopia of Formal-Ontological Relations”, Dialectica, Vol. 58, No. 3, pp. 279-296.

Sommerville, I. and Sawyer, P., 1997, Requirements Engineering: A Good Practice Guide, New York, Wiley.

Sowa, J. and Zachman, J., 1992, “Extending and Formalizing the Framework for Information Systems Architecture”, IBM Systems Journal, Vol. 31, No. 3, pp. 590-616.

Sowa, J., 2009, “Building, Sharing, and Merging Ontologies”, http://www.jfsowa.com/ontology/ontoshar.htm
Spivey, J. M., 1992, The Z Notation: A Reference Manual (2nd Edition), Prentice Hall.
Sreemani, T. and Atlee, J. M., “Feasibility of Model Checking Software Requirements”, Proceedings of 11th International Conference on Computer Assurance, Gaithersburg, MD, June 17-21, 1996, pp. 77-88.
Sutcliffe, A. and Ryan, M., 1998A, “Experience with SCRAM, a Scenario Requirements Analysis Method”, in Proceedings of the 3rd International Conference on Requirements Engineering, Colorado Springs, CO, April 6-10, 1998, pp. 164-171.
Sutcliffe, A., 1998B, “Scenario-based Requirement Analysis”, Requirements Engineering, Vol. 3, No. 1, pp. 48-65.

Sutcliffe, A., Maiden, N., Minocha, S. and Manuel, D., 1998C, “Supporting Scenario-based Requirements Engineering”, IEEE Transaction on Software Engineering Vol. 24, No. 12, pp. 1072-1088.

Sutcliffe, A., 2003, “Scenario-based Requirement Engineering”, in Proceedings of the 11th IEEE International Conference on Requirements Engineering (RE’03), Monterey Bay, California, USA, September 8-12, pp. 320-330.
Tang, A., Han, J. and Chen, P., 2004, “A Comparative Analysis of Architecture Frameworks”, in Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04),
Tham, D., Fox, M. and Gruninger, M., 1994, “A Cost Ontology for Enterprise Modeling”, in Proceedings of the 3rd Workshop on Enabling Technologies: Infrastructures for Collaborative Enterprise, Morgantown, WV, April, pp. 197-210.
Trinder, P., 2010, “Course Notes: Topic 1: Introduction to Information Systems”, http://www.macs.hw.ac.uk/~trinder/DbInfSystems/1-IntroToInfSys.pdf
Urbaczewski, L. and Mrdalj, S., 2006, “A Comparison of Enterprise Architecture Frameworks”, Issues in Information Systems, Vol. 7, No. 2, pp. 18-23.
Ushold, M. and Gruninger, M., 1996, “Ontologies: Principles, Methods and Applications”, The Knowledge Engineering Review, Vol. 11, No. 2, pp. 93-136.
Uschold, M., 1996, “Converting an Informal Ontology into Ontolingua: Some Experiences”, Workshop on Ontological Engineering, Budapest, Hungary, 1996, pp. 1-17.
Uschold, M., King, M., Moralee, S., and Zorgios, Y., “The Enterprise Ontology”, The Knowledge Engineering Review (12:1), 1998, pp. 31-89.
Villiers, D. J., 2001, “Using the Zachman Framework to Assess the Rational Unified Process”, The Rational Edge.

Wand, Y., Storey, V. and Weber, R., 1999, “An Ontological Analysis of the Relationship Construct in Conceptual Modelling”, ACM Transactions on Database Systems (TODS), Vol. 24, No. 4, pp. 494-528.
Wand, Y. and Weber, R., 1990, “An Ontological Model of an Information System”, IEEE Transactions on Software Engineering, Vol. 16, No. 11, pp. 1281-1291.
Wand, Y. and Weber, R., 1993, “On the Ontological Expressiveness of Information Systems Analysis and Design Grammars”, Journal of Information Systems, Vol. 3, No. 4, pp. 217–237.

Wand, Y. and Weber, R., 1995, “On the Deep Structure of Information Systems”, Information Systems Journal, Vol. 5, No. 5, pp. 203-223.

Weber, R. and Zhang, Y., 1996, “An Analytical Evaluation of NIAM’s Grammar for Conceptual Schema Diagrams”, Information Systems Journal, Vol. 6, No. 2, pp. 147-170.
Welty, C. and Guarino, N, 2001, “Supporting Ontological Analysis of Taxonomic Relationships”, Data & Knowledge Engineering, Vol. 39, No. 1, pp. 51-74.

Whitman, L. Ramachandran, K and Ketkar, V., 2001, “A Taxonomy of A Living Model of the Enterprise”, Proceedings of the 33rd Conference on Winter Simulation, Vol. 2, pp. 848-855.

Wohlin, C., Runeson, P., Ohlsson, M. C., Regnell, B. and Wesslen, A., 2000, “Experimentation in Software Engineering: An Introduction”, Kluwer Academic Publishers
Yu, E. S. K., 1993, “Modelling Organisations for Information Systems Requirements Engineering”, Proceedings of the 1st IEEE International Symposium on Requirements Engineering, San Diego, CA, January 4-6, 1993, pp. 34-41.

Zachman, J., 1987, “A Framework for Information Systems Architecture”, IBM Systems Journal, Vol. 26, No. 3, pp. 276-295.
Zave, P., 1997, “Classification of Research Efforts in Requirements Engineering”, A CM Computing Surveys, Vol. 29, No. 4, pp. 315-321.
http://www.zachmaninternational.com/
http://www.eil.utoronto.ca/enterprise-modelling/TOVE/
http://www.aiai.ed.ac.uk/project/enterprise/
http://www.ksl.stanford.edu/software/ontolingua/
http://www.opengroup.org/togaf/
http://www.telelogic.com/products/systemarchitect/
http://www.sparxsystems.com/products/mdg/tech/zachman/

� EMBED Visio.Drawing.11 ���

iii

[image: image382.wmf]Purpose

Strategic Purpose

Activity Specification

Actor

State

/

State of Affairs

Intended Purpose

Hold Purpose

MOTIVATION

/

Why

Strategy

Objective

Goal

Vision

Influence Factor

Critical Success Factor

Help Achieve

E

n

d

8

E

n

d

7

E

n

d

9

Risk

Assumption

Plan

_1341321829.unknown

_1342441635.unknown

_1355660372.vsd
System

Actor

Potential Actor

Capability

Person

PEOPLE/Who

Organization Unit

Activity Specification

Skill

Authority

Activity Owner

Corporation

Legal Entity

Partnership

Partner

Legal Ownership

Non-Legal Ownership

Ownership

Activity

Thing/Entity

Execute

Manage

Delegate

Stakeholder

_1364903644

_1365004777

_1365006125

_1365076400

_1365077045

_1365077121

_1365077757

_1365076422

_1365069689

_1365070947

_1365069434

_1365005698

_1365005732

_1365004876

_1365002973

_1365003033

_1365003205

_1365003004

_1365000213

_1365002951

_1364997659

_1356088580.vsd

Title

Ethernet

_1360072701

_1360666609

_1360667633

_1360673018

_1360673428

_1360672857

_1360667185

_1360666250

_1356342859.vsd
Activity

Activity Specification

Actor

Thing/Entity

Capability

Authority

Decision

Doer

Execute

Resource

_1356707973.vsd
Chapter 1: Introduction

Chapter 2: Requirement Engineering

Chapter 3: Enterprise Architecture

Chapter 4: Ontology

Chapter 5: Mapping and Partitioning Zachman Framework

Chapter 6: Developing A Meta-Model for Zachman Framework

Chapter 7: Requirement Elicitation and Modelling Based on Meta-Model

Chapter 9: Conclusion and Future Work

Chapter 8: Validation

_1356342827.vsd
Title

STRATEGY 1.1.1.2
Customer Pay for Timber Online Using Credit Card

STRATEGY 1.1.1
Provide Online Timber Ordering

STRATEGY 1.1.2
Provide Online Shipment Tracking

STRATEGY 1.1.1.1
Online Form Take Customer Details

Help Achieve

ACTIVITY SPECIFICATION
Customer Pay for Timber Online Using Credit Card

ENTITY:
Online Payment

Online Shopping System

DOER: Customer

_1355661264.vsd
System

System

System Environment

NETWORK/Where

Machine

System Composition

System Structure

Subsystem

_1355672727.vsd
System

Thing/Entity

Coupling/Relationship

Property/Attribute

DATA/What

Class (BWW)

Kind (BWW)

*

*

Role

*

*

_1355660589.vsd
Name
Title

Name
Title

Name
Title

Name
Title

Managing Directors
Mr Len Possum and Colin Possum

Secretary

Accounting

Shipping

Sales

Stock

Online Payment Processor

Accoutants

Auditor

Mr Martin Howard

Staff

Stock Superintendent

Customs Agent

_1343469446.vsd
A

B

End1

End2

New Meta-Construct

_1353673667.vsd
A

New Meta-Construct

_1355086541.vsd
OBJECTIVE 1
Increase Profit

Help Achieve

STRATEGY 1.2
Improve Sales Income Cash Flow by 20%

OBJECTIVE 1.2
Receive Payment within 3 days after Delivery

STRATEGY 1.1
Reach 80% Market Share of Australia

OBJECTIVE 1.1
Improve Customer Satisfaction

STRATEGY 1.3
Cut Down 10% Total Cost

STRATEGY 1.2.1
On-line Payment by Credit Card

_1355485483.vsd
Help Achieve

STRATEGY
 Reach 80% market share

STRATEGY
Develop new sales strategy to reach new customers

STRATEGY
Improve customer satisfaction

_1355660196.vsd
System

Event

State/State of Affairs

TIME/When

Stable State

Unstable State

External Event

Internal Event

Well-defined Event

Poorly-defined Event

History

T-Begin

T-End

Time Interval

Time Point

Time Line

Pre-Condition

Effect

Event Space

Transformation

Lawful Transformation

*

*

State Law

_1355475692.vsd
System

Activity

Activity Specification

Process Specification

FUNCTION/How

IsA

Execute

*

*

Sub-Activity

IsA

Sub-Plan

Achieve

Plan

Potential Actor

Strategy

_1354453250.vsd
SOA 1
Improve Cash Flow

SOA1.1
Receive Payment within 3 days after Delivery

SOA1.3
Loan from Bank

SOA1.2
Buy Office and Leased Equipment as Capital

TIME LINE

SOA2
Improve Customer Satisfaction

SOA2.1
Set Up Truck Transportation Department

SOA2.2
Sign a Contract with a Truck Company

TIME POINT

TIME INTERVAL

_1355083538.vsd
OBJECTIVE
Cut down 10% total cost

Help Achieve

OBJECTIVE
Cut down 5% human labor cost

OBJECTIVE
Cut down 20% administrative cost

STRATEGY
Cut down 10% total cost

Help Achieve

STRATEGY
Cut down 20% administrative cost

STRATEGY
Cut down 5% human labor cost

_1355083923.vsd
OBJECTIVE 1
Increase Profit

Help Achieve

STRATEGY 1.2
Sales Income Cash Flow 20% Faster

OBJECTIVE 1.2
Receive Payment within 3 days after Delivery

STRATEGY 1.2.1
On-line Payment by Credit Card

Help Achieve

STRATEGY 1.1
Reach 80% Market Share of Australia

STRATEGY 1.3
Cut Down 10% Total Cost

STRATEGY 1.3.1
Cut Down 5% Human Labor Cost

Help Achieve

OBJECTIVE 1.1
Improve Customer Satisfaction

STRATEGY 1.3.2
Cut Down 20% Administrative Cost

STRATEGY 1.1.1
Provide Online Timber Ordering

Help Achieve

STRATEGY 1.1.2
Provide Online Shipment Tracking

Help Achieve

STRATEGY 1.1.1.1
Online Form Take Customer Details

_1354286548.vsd
Servers

Laptop

Workstations

Accounting System

Order Handling System

Customer Information System

Inventory Control System

Outrun Report

 Shipping Sheet

Bill of Lading

_1343552000.vsd
Conceivable State Space

State Law

Lawful State Space

Event Space

Transformation

History

Lawful Transformation

System

System Environment

Class

Kind

Lawful Event Space

Subsystem

Role

System Composition

System Structure

Achieve

Actor Role

Actor

Activity

Activity Specification

Execute

Effect

Authority

Plan

Process Specification

Capability

Skill

Resource

Potential Actor

Pre-Condition

System Decomposition

Stable State

Unstable State

External Event

Internal Event

Person

Machine

Corporation

Partner

Legal Entity

Organizational Unit

Thing/Entity

Delegate

Property/Attribute

State/State of Affairs

Event

Partnership

Sub-Activity

Sub-Plan

Ownership

Resource
Allocation

Owner

Asset

Stakeholder

Employment Contract

Share

Shareholder

Coupling/Relationship

Well-Defined Event

Poorly Defined Event

Level Structure

Sale

Sale Offer

Ventor

Reseller

Product

Price

Market

Customer

Market Segment

Brand

Image

Feature

Promotion

Competitor

Need

Purpose

Hold Purpose

Intended Purpose

Strategic Purpose

Objective

Vision

Influence Factor

Critical Success Factor

Goal

Help Achieve

Strategy

Risk

Decision

Assumption

Purpose-Holder

_1346002355.vsd
Purpose

Static Structure

Static Structure

Static Structure

Strategic Purpose

Activity

Activity Specification

Plan

*

*

Event

Process Specification

Actor

Potential Actor

Capability

*

*

Thing/Entity

Resource

*

*

Coupling/Relationship

Property/Attribute

State/State of Affairs

Person

Intended Purpose

*

*

Hold Purpose

*

*

Static Structure

Static Structure

Organization Unit

Actor Role

*

*

Stable State

Unstable State

External Event

Internal Event

Class (BWW)

Kind (BWW)

Well-defined Event

Poorly-defined Event

Static Structure

System

History

System Environment

Purpose Holder

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

IsA

Authority

*

*

Execute

*

*

T-Begin

T-End

Sub-Activity

IsA

Skill

*

*

Strategy

IsA Strategic

IsA

Activity Owner

IsA

Sub-Plan

IsA

Corporation

A Group of

Legal Entity

Partnership

A Group of

Objective

IsA

Goal

IsA

Vision

IsA

Decision

*

*

Time Interval

Time Point

Sequence of

Influence Factor

Critical Success Factor

Assumption

*

*

Risk

*

*

Help Achieve

*

*

Time Line

Pre-Condition

Effect

Conceivable State Space

Event Space

Transformation

Machine

Partner

IsA

Achieve

Role

*

*

State Law

Lawful State Space

*

*

Lawful Event Space

*

*

Lawful Transformation

*

*

System Composition

System Decomposition

System Structure

Subsystem

Purpose-Holder

*

*

Legal Ownership

*

*

Non-Legal Ownership

*

*

1

-End14

*

1

-End20

*

Ownership

Level Structure

Static Structure

Mission

IsA

Potential Actor

_1353415583.vsd
System

Purpose

Strategic Purpose

Activity Specification

Actor

State/State of Affairs

Intended Purpose

Hold Purpose

MOTIVATION/Why

Strategy

Objective

Goal

Vision

Influence Factor

Critical Success Factor

Help Achieve

End8

End7

End9

Risk

Assumption

Plan

_1343470157.vsd
A

New Meta-Construct

_1343490034.vsd
A

B

New Meta-Construct

End2

End1

End3

_1342441783.unknown

_1343212558.vsd
Conceivable State Space

State Law

Lawful State Space

Event Space

Transformation

History

Lawful Transformation

System

System Environment

Class

Kind

Lawful Event Space

Subsystem

Role

System Composition

System Structure

Achieve

Actor Role

Actor

Activity

Activity Specification

Execute

Effect

Authority

Plan

Process Specification

Capability

Skill

Resource

Potential Actor

Pre-Condition

System Decomposition

Stable State

Unstable State

External Event

Internal Event

Person

Machine

Corporation

Partner

Legal Entity

Organizational Unit

Thing/Entity

Delegate

Property/Attribute

State/State of Affairs

Event

Partnership

Sub-Activity

Sub-Plan

Ownership

Resource
Allocation

Owner

Asset

Stakeholder

Employment Contract

Share

Shareholder

Coupling/Relationship

Well-Defined Event

Poorly Defined Event

Level Structure

Sale

Sale Offer

Ventor

Reseller

Product

Price

Market

Customer

Market Segment

Brand

Image

Feature

Promotion

Competitor

Need

Purpose

Hold Purpose

Intended Purpose

Strategic Purpose

Objective

Vision

Influence Factor

Critical Success Factor

Goal

Help Achieve

Strategy

Risk

Decision

Assumption

Purpose-Holder

_1343467962.vsd
A

B

New Meta-Construct

*

-End1

*

-End2

_1342527385.unknown

_1342441692.unknown

_1342441750.unknown

_1342361170.unknown

_1342366331.unknown

_1342428915.unknown

_1342431496.unknown

_1342432414.unknown

_1342432898.unknown

_1342440315.unknown

_1342440428.unknown

_1342432674.unknown

_1342432723.unknown

_1342432863.unknown

_1342432481.unknown

_1342432047.unknown

_1342432119.unknown

_1342431558.unknown

_1342429751.unknown

_1342429844.unknown

_1342430883.unknown

_1342429775.unknown

_1342429021.unknown

_1342429589.unknown

_1342428945.unknown

_1342428480.unknown

_1342428573.unknown

_1342428620.unknown

_1342428504.unknown

_1342367053.unknown

_1342367392.unknown

_1342366466.unknown

_1342363851.unknown

_1342365699.unknown

_1342366282.unknown

_1342366043.unknown

_1342366223.unknown

_1342364276.unknown

_1342365636.unknown

_1342365354.unknown

_1342365394.unknown

_1342365202.unknown

_1342363960.unknown

_1342361296.unknown

_1342362093.unknown

_1342362186.unknown

_1342361680.unknown

_1342361216.unknown

_1342361264.unknown

_1342341707.unknown

_1342342756.unknown

_1342360893.unknown

_1342360972.unknown

_1342361061.unknown

_1342361005.unknown

_1342360935.unknown

_1342360768.unknown

_1342342914.unknown

_1342344215.unknown

_1342342823.unknown

_1342342866.unknown

_1342342693.unknown

_1342342710.unknown

_1342342670.unknown

_1341329153.unknown

_1342340273.unknown

_1342340994.unknown

_1341329266.unknown

_1342340063.unknown

_1341323175.unknown

_1341328448.unknown

_1341317749.unknown

_1341320840.unknown

_1341320942.unknown

_1341321316.unknown

_1341320906.unknown

_1341317963.unknown

_1341318126.unknown

_1341318193.unknown

_1341318220.unknown

_1341318151.unknown

_1341318054.unknown

_1341318101.unknown

_1341317767.unknown

_1332683390.unknown

_1341317670.unknown

_1341317713.unknown

_1332683482.unknown

_1341317503.unknown

_1341317315.unknown

_1332683449.unknown

_1326197415.unknown

_1332683162.unknown

_1332683195.unknown

_1329581390.vsd
Thing

Property

State

Event

Transformation

History

Coupling

System

System Environment

Class

Kind

Entity

Relationship

Role

Attribute

State of Affairs

Achieve

Actor Role

Actor

Activity

Activity Specification

Execute

Effect

Authority

Event

Plan

Process Specification

Capability

Skill

Resource

Potential Actor

Pre-Condition

Person

Machine

Corporation

Partner

Legal Entity

Organizational Unit

Delegate

Partnership

Resource
Allocation

Sub-Activity

Sub-Plan

Ownership

Owner

Asset

Stakeholder

Employment Contract

Share

Shareholder

Sale

Sale Offer

Ventor

Reseller

Product

Price

Market

Customer

Market Segment

Brand

Image

Feature

Promotion

Competitor

Need

Purpose

Hold Purpose

Intended Purpose

Strategic Purpose

Objective

Vision

Goal

Help Achieve

Strategy

Strategic Action

Decision

Assumption

Risk

Critical Success Factor

Influence Factor

Conceivable State Space

State Law

Lawful State Space

Event Space

Lawful Transformation

Lawful Event Space

System Composition

System Structure

Subsystem

System Decomposition

Stable State

Unstable State

External Event

Internal Event

Well-Defined Event

Poorly Defined Event

Level Structure

_1326190756.unknown

