	UNIT – I

1.0 Introduction
A database-management system (DBMS) is a collection of interrelated data and a set of programs to access those data. The collection of data, usually referred to as the database, contains information relevant to an enterprise. The primary goal of a DBMS is to provide a way to store and retrieve database information that is both convenient and efficient.

Database systems are designed to manage large bodies of information. Management of data involves both defining structures for storage of information and providing mechanisms for the manipulation of information.
In addition, the database system must ensure the safety of the information stored, despite system crashes or attempts at unauthorized access. If data are to be shared among several

users, the system must avoid possible anomalous results.

1.1 Database-System Applications
 Databases are widely used. Here are some representative applications:

• Enterprise Information:

◦ Sales: For customer, product, and purchase information.

◦Accounting: For payments, receipts, account balances, assets and otheraccounting information.

◦ Human resources: For information about employees, salaries, payroll taxes, and benefits, and for generation of paychecks.

◦ Manufacturing: For management of the supply chain and for tracking production of items in factories, inventories of items inwarehouses and stores, and orders for items.

◦ Online retailers: For sales data noted above plus online order tracking, generation of recommendation lists, and maintenance of online product evaluations.
• Banking and Finance

◦ Banking: For customer information, accounts, loans, and banking transactions.

◦ Credit card transactions: For purchases on credit cards and generation of monthly statements.

◦ Finance: For storing information about holdings, sales, and purchases of financial instruments such as stocks and bonds; also for storing real-time market data to enable online trading by customers and automated trading by the firm.

• Universities: For student information, course registrations, and grades (in addition to standard enterprise information such as human resources and accounting).

• Airlines: For reservations and schedule information. Airlines were among the first to use databases in a geographically distributed manner.

• Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances on prepaid calling cards, and storing information about the communication networks.

1.2 Purpose of Database Systems
One way to keep the information on a computer is to store it in operating system files. To allow users to manipulate the information, the system has a number of application programs that manipulate the files. This typical file-processing system is supported by a conventional operating system. The system stores permanent records in various files, and it needs different application programs to extract records from, and add records to, the appropriate files. Keeping organizational information in a file-processing system has a number

of major disadvantages:
Data redundancy and inconsistency: Since different programmers create the files and application programs over a long period, the various files are likely to have different structures and the programs may be written in several programming languages. Moreover, the same information may be duplicated in several places (files). This redundancy leads to higher storage and access cost. In addition, it may lead to data inconsistency; that is, the various copies of the same data may no longer agree.
Difficulty in accessing data: The conventional file-processing environments do not allow needed data to be retrieved in a convenient and efficient manner. More responsive data-retrieval systems are required for general use.
Data isolation: Because data are scattered in various files, and files may be in different formats, writing new application programs to retrieve the appropriate data is difficult.

Integrity problems: The data values stored in the database must satisfy certain types of consistency constraints. Developers enforce these constraints in the system by adding appropriate code in the various application programs. However, when new constraints are added, it is difficult to change the programs to enforce them. The problem is compounded when constraints involve several data items from different files.
Atomicity problems: A computer system, like any other device, is subject to failure. In many applications, it is crucial that, if a failure occurs, the data be restored to the consistent state that existed prior to the failure. It must happen in its entirety or not at all. It is difficult to ensure atomicity in a conventional file-processing system.
Concurrent-access anomalies: For the sake of overall performance of the system and faster response, many systems allow multiple users to update the data simultaneously. Indeed, today, the largest Internet retailers may have millions of accesses per day to their data by shoppers. In such an environment, interaction of concurrent updates is possible and may result in inconsistent data.
Security problems: Not every user of the database system should be able to access all the data.
 But, since application programs are added to the file-processing system in an ad hoc manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems.
1.3 View of Data
A database system is a collection of interrelated data and a set of programs that allow users to access and modify these data. A major purpose of a database system is to provide users with an abstract view of the data. That is, the system hides certain details of how the data are stored and maintained.
1.3.1 Data Abstraction

Since many database-system users are not computer trained, developers hide the complexity from users through several levels of abstraction, to simplify users’ interactions with the system:

• Physical level: The lowest level of abstraction describes how the data are actually stored. The physical level describes complex low-level data structures in detail.

• Logical level: The next-higher level of abstraction describes what data are stored in the database, and what relationships exist among those data. The logical level thus describes the entire database in terms of a small number of relatively simple structures. Although implementation of the simple structures at the logical level may involve complex physical-level structures, the user of the logical level does not need to be aware of this complexity. This is referred to as physical data independence. Database administrators, who must decide what information to keep in the database, use the logical level of abstraction.

• View level: The highest level of abstraction describes only part of the entire database. Even though the logical level uses simpler structures, complexity remains because of the variety of information stored in a large database. Many users of the database system do not need all this information; instead, they need to access only a part of the database. The view level of abstraction exists to simplify their interaction with the system. The system may provide many views for the same database.
[image: image1.png]view level

view 1 view 2 view n

logical
level

[
physical
level

Figure 1.1 The three levels of data abstraction.

1.3.2 Instances and Schemas: Databases change over time as information is inserted and deleted. The collection of information stored in the database at a particular moment is called an instance of the database. The overall design of the database is called the database schema. Schemas are changed infrequently, if at all.

 A database schema corresponds to the variable declarations (along with associated type definitions) in a program. Each variable has a particular value at a given instant. The values of the variables in a program at a point in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of abstraction. The physical schema describes the database design at the physical level, while the logical schema describes the database design at the logical level. A database may also have several schemas at the view level, sometimes called sub schemas, that describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its effect on application programs, since programmers construct applications by using the logical schema. Application programs are said to exhibit physical data independence if they do not depend on the physical schema, and thus need not be rewritten if the physical schema changes.

1.3.3 Data Models: Underlying the structure of a database is the data model: a collection of conceptual tools for describing data, data relationships, data semantics, and consistency constraints. A data model provides a way to describe the design of a database at the physical, logical, and view levels.
Relational Model. The relational model uses a collection of tables to represent both data and the relationships among those data. Each table has multiple columns, and each column has a unique name. Tables are also known as relations. The relational model is an example of a record-based model. Record-based models are so named because the database is structured in

fixed-format records of several types. Each table contains records of a particular type. Each record type defines a fixed number of fields, or attributes. The columns of the table correspond to the attributes of the record type. The relational data model is the most widely used data model, and a vast majority of current database systems are based on the relational model.
Example:
[image: image2.png]Relational Model

iy | iy
o’ | e
5| reching
2% | oy

| Gackseaing

Rovtetl
vl 2415
ousm| 25 |bass
02801 24| 166

Entity-Relationship Model. The entity-relationship (E-R) data model uses a collection of basic objects, called entities, and relationships among these objects. An entity is a “thing” or “object” in the real world that is distinguishable from other objects. The entity-relationship model is widely used in database design.
Example

[image: image3.jpg]Class
Number

Student Enroll Class

• Object-Based Data Model.Object-oriented programming (especially in Java, C++, or C#) has become the dominant software-development methodology. This led to the development of an object-oriented data model that can be seen as extending the E-R model with notions of encapsulation, methods (functions), and object identity. The object-relational data model combines features of the object-oriented data model and relational data model.
Example

[image: image4.jpg]Student

Name
Phone Number
Email Address
Student Number
Average Mark

Is Eligible to Enroll
Provide Seminars Taken

1

lives at

1

Address

Street
City

State

Postal Code
Country

Validate
Output As Label

• Semistructured Data Model. The semi structured data model permits the specification of data where individual data items of the same type may have different sets of attributes. This is in contrast to the data models mentioned earlier, where every data item of a particular type must have the same set of attributes. The Extensible Markup Language (XML) is widely used to

represent semi structured data.
Example
[image: image5.png]name tel ai

i/ s

‘Alan Black

7786 agg@abc.com

1.4 Database Languages
A database system provides a data-definition language to specify the database schema and a data-manipulation language to express database queries and updates. In practice, the data-definition and data-manipulation languages are not two separate languages; instead they simply form parts of a single database language, such as the widely used SQL language.

1.4.1 Data-Manipulation Language: A data-manipulation language (DML) is a language that enables users to access or manipulate data as organized by the appropriate data model. The types of access are:

• Retrieval of information stored in the database

• Insertion of new information into the database

• Deletion of information from the database

• Modification of information stored in the database

There are basically two types:

• Procedural DMLs require a user to specify what data are needed and how to get those data.

• Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what data are needed without specifying how to get those data. Declarative DMLs are usually easier to learn and use than are procedural DMLs. However, since a user does not have to specify how to get the data, the database system has to figure out an efficient means of accessing data.

A query is a statement requesting the retrieval of information. The portion of a DML that involves information retrieval is called a query language. Although technically incorrect, it is common practice to use the terms query language and data-manipulation language synonymously. There are a number of database query languages in use, either commercially or experimentally.

The levels of abstraction that we discussed apply not only to defining or structuring data, but also to manipulating data. At the physical level, we must define algorithms that allow efficient access to data. At higher levels of abstraction, we emphasize ease of use. The goal is to allow humans to interact efficiently with the system.
1.4.2 Data-Definition Language
We specify a database schema by a set of definitions expressed by a special language called a data-definition language (DDL). The DDL is also used to specify additional properties of the data. We specify the storage structure and access methods used by the database system by a set of statements in a special type of DDL called a data storage and definition language. The data values stored in the database must satisfy certain consistency constraints.

• Domain Constraints. A domain of possible values must be associated with every attribute (for example, integer types, character types, date/time types). Declaring an attribute to be of a particular domain acts as a constraint on the values that it can take. Domain constraints are the most elementary form of integrity constraint. They are tested easily by the system whenever a new data item is entered into the database.

• Referential Integrity. There are cases where we wish to ensure that a value that appears in one relation for a given set of attributes also appears in a certain set of attributes in another relation (referential integrity). For example, the department listed for each course must be one that actually exists. More precisely, the dept name value in a course record must appear in the dept name attribute of some record of the department relation. Database modifications can cause violations of referential integrity. When a referential-integrity constraint is violated, the normal procedure is to reject the action that caused the violation.

• Assertions. An assertion is any condition that the database must always satisfy. Domain constraints and referential-integrity constraints are special forms of assertions. However, there are many constraints that we cannot express by using only these special forms. For example, “Every department must have at least five courses offered every semester” must be expressed as an assertion. When an assertion is created, the system tests it for validity. If the assertion is valid, then any future modification to the database is allowed only if it does not cause that assertion to be violated.

• Authorization. We may want to differentiate among the users as far as the type of access they are permitted on various data values in the database. These differentiations are expressed in terms of authorization, the most common being: read authorization, which allows reading, but not modification, of data; insert authorization, which allows insertion of new data, but not modification of existing data; update authorization, which allows modification, but not deletion, of data; and delete authorization, which allows deletion of data. We may assign the user all, none, or a combination of these types of authorization.
1.5 Relational Databases
A relational database is based on the relational model and uses a collection of tables to represent both data and the relationships among those data. It also includes a DML and DDL. Most commercial relational database systems employ the SQL language.
1.5.1 Tables: Each table has multiple columns and each column has a unique name. The below Figure presents a sample relational database comprising two tables: one shows details of university instructors and the other shows details of the various university departments.

The relational model is an example of a record-based model. Record-based models are so named because the database is structured in fixed-format records of several types. Each table contains records of a particular type. Each record type defines a fixed number of fields, or attributes. The columns of the table correspond to the attributes of the record type. It is not hard to see how tables may be stored in files. The relational model hides such low-level implementation details from database developers and users. We also note that it is possible to create schemas in the relational model that have problems such as unnecessarily duplicated information.
[image: image6.emf][image: image7.emf]
1.5.2 Data-Manipulation Language: The SQL query language is nonprocedural. A query takes as input several tables (possibly only one) and always returns a single table. Here is an example of an SQL query that finds the names of all instructors in the History department:
select instructor.name

from instructor

where instructor.dept name = ’History’;
The query specifies that those rows from the table instructor where the dept name is History must be retrieved, and the name attribute of these rows must be displayed.

Queries may involve information from more than one table. For instance, the following query finds the instructor ID and department name of all instructors associated with a department with budget of greater than $95,000.
select instructor.ID, department.dept name

from instructor, department

where instructor.dept name= department.dept name and department.budget > 95000;

1.5.3 Data-Definition Language: SQL provides a rich DDL that allows one to define tables, integrity constraints, assertions, etc. For instance, the following SQL DDL statement defines the department table:
create table department

(dept name char (20),

building char (15),

budget numeric (12,2));
Execution of the above DDL statement creates the department table with three columns: dept name, building, and budget, each of which has a specific data type associated with it.
1.5.4 Database Access from Application Programs: SQL does not support actions such as input from users, output to displays, or communication over the network. Such computations and actions must be written in a host language, such as C, C++, or Java, with embedded SQL queries that access the data in the database. Application programs are programs that are used to interact with the database in this fashion. To access the database, DML statements need to be executed from the host language. There are two ways to do this:
• By providing an application program interface (set of procedures) that can be used to send DML and DDL statements to the database and retrieve the results. The Open Database Connectivity (ODBC) standard for use with the C language is a commonly used application program interface standard. The Java Database Connectivity (JDBC) standard provides corresponding features to the Java language.

• By extending the host language syntax to embed DML calls within the host language program. Usually, a special character prefaces DML calls, and a preprocessor, called the DML pre compiler, converts the DML statements to normal procedure calls in the host language.
1.6 Database Design
Database design mainly involves the design of the database schema. The design of a complete database application environment that meets the needs of the enterprise being modeled requires attention to a broader set of issues.
1.6.1 Design Process: A high-level data model provides the database designer with a conceptual framework in which to specify the data requirements of the database users, and how the database will be structured to fulfill these requirements. The initial phase of database design, then, is to characterize fully the data needs of the prospective database users. The database designer needs to interact extensively with domain experts and users to carry out this task. The outcome of this phase is a specification of user requirements.

Next, the designer chooses a data model, and by applying the concepts of the chosen data model, translates these requirements into a conceptual schema of the database. The schema developed at this conceptual-design phase provides a detailed overview of the enterprise. The designer reviews the schema to confirm that all data requirements are indeed satisfied and are not in conflict with one another. The designer can also examine the design to remove any redundant features.
In terms of the relational model, the conceptual-design process involves decisions on what attributes we want to capture in the database and how to group these attributes to form the various tables. The “what” part is basically a business decision, and we shall not discuss it further in this text. The “how” part is mainly a computer-science problem. There are principally two ways to tackle the problem. The first one is to use the entity-relationship model; the other is to employ a set of algorithms (collectively known as normalization) that takes as input the set of all attributes and generates a set of tables.
A fully developed conceptual schema indicates the functional requirements of the enterprise. In a specification of functional requirements, users describe the kinds of operations (or transactions) that will be performed on the data. Example operations include modifying or updating data, searching for and retrieving specific data, and deleting data. At this stage of conceptual design, the designer can review the schema to ensure it meets functional requirements.

The process of moving from an abstract data model to the implementation of the database proceeds in two final design phases. In the logical-design phase, the designer maps the high-level conceptual schema onto the implementation data model of the database system that will be used. The designer uses the resulting system-specific database schema in the subsequent physical-design phase, in which the physical features of the database are specified. These features include the form of file organization and the internal storage structures.
1.7 Data Storage and Querying
A database system is partitioned into modules that deal with each of the responsibilities of the overall system. The functional components of a database system can be broadly divided into the storage manager and the query processor components.

The storage manager is important because databases typically require a large amount of storage space. Since the main memory of computers cannot store this much information, the information is stored on disks. Data are moved between disk storage and main memory as needed which is managed by storage manager.
The query processor is important because it helps the database system to simplify and facilitate access to data. The query processor allows database users to obtain good performance while being able to work at the view level.
1.7.1 Storage Manager: The storage manager is the component of a database system that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system. The storage manager is responsible for the interaction with the file manager. The raw data are stored on the disk using the file system provided by the operating system. The storage manager translates the various DML statements into low-level file-system commands. Thus, the storage manager is responsible for storing, retrieving, and updating data in the database.
The storage manager components include:

• Authorization and integrity manager, which tests for the satisfaction of integrity constraints and checks the authority of users to access data.

• Transaction manager, which ensures that the database remains in a consistent (correct) state despite system failures, and that concurrent transaction executions proceed without conflicting.

• File manager, which manages the allocation of space on disk storage and the data structures used to represent information stored on disk.

• Buffer manager, which is responsible for fetching data from disk storage into main memory, and deciding what data to cache in main memory. The buffer manager is a critical part of the database system, since it enables the database to handle data sizes that are much larger than the size of main memory. The storage manager implements several data structures as part of the physical system implementation:

• Data files, which store the database itself.

• Data dictionary, which stores metadata about the structure of the database, in particular the schema of the database.

• Indices, which can provide fast access to data items.
1.7.2 The Query Processor: The query processor components include:
• DDL interpreter, which interprets DDL statements and records the definitions in the data dictionary.

• DML compiler, which translates DML statements in a query language into an evaluation plan consisting of low-level instructions that the query evaluation engine understands.
A query can usually be translated into any of a number of alternative evaluation plans that all give the same result.
· The DML compiler also performs query optimization; that is, it picks the lowest cost evaluation plan from among the alternatives.

• Query evaluation engine, which executes low-level instructions generated by the DML compiler.
1.8 Transaction Management
Often, several operations on the database form a single logical unit of work. An example is a funds transfer. The fund transfer between two customers should be done either correctly or it should be in original state. This all-or-none requirement is called atomicity. That is, the value of the sum of the balances of A and B must be preserved. This correctness requirement is called consistency. Finally, after the successful execution of a funds transfer, the new values of the balances of accounts A and B must persist, despite the possibility of system failure. This persistence requirement is called durability.

A transaction is a collection of operations that performs a single logical function in a database application. Each transaction is a unit of both atomicity and consistency. Thus, we require that transactions do not violate any database consistency constraints.
Ensuring the atomicity and durability properties is the responsibility of the database system itself—specifically, of the recovery manager. If we are to ensure the atomicity property, a failed transaction must have no effect on the state of the database. Thus, the database must be restored to the state in which it was before the transaction in question started executing. The database system must therefore perform failure recovery, that is, detect system failures and restore the database to the state that existed prior to the occurrence of the failure.

It is the responsibility of the concurrency-control manager to control the interaction among the concurrent transactions, to ensure the consistency of the database. The transaction manager consists of the concurrency-control manager and the recovery manager.

1.9 Database Architecture
The architecture of a database system is greatly influenced by the underlying computer system on which the database system runs. Database systems can be centralized, or client-server, where one server machine executes work on behalf of multiple client machines. Database systems can also be designed to exploit parallel computer architectures. Distributed databases span multiple geographically separated machines. Most users of a database system today are not present at the site of the database system, but connect to it through a network. We can therefore differentiate between client machines, on which remote database users work, and server machines, on which the database system runs.
Database applications are usually partitioned into two or three parts, as in Figure 1.6. In a two-tier architecture, the application resides at the client machine, where it invokes database system functionality at the server machine through query language statements. Application program interface standards like ODBC and JDBC are used for interaction between the client and the server. In contrast, in a three-tier architecture, the client machine acts as merely a front end and does not contain any direct database calls. Instead, the client end communicates with an application server, usually through a forms interface. The application server in turn communicates with a database system to access data. The business logic of the application, which says what actions to carry out under what conditions, is embedded in the application server, instead of being distributed across multiple clients. Three-tier applications are more appropriate for large applications, and for applications that run on the World Wide Web.
[image: image8.emf]
[image: image9.emf]
1.10 Database Users and Administrators
A primary goal of a database system is to retrieve information from and store new information into the database. People who work with a database can be categorized as database users or database administrators.
1.10.1 Database Users and User Interfaces
There are four different types of database-system users, differentiated by the way they expect to interact with the system. Different types of user interfaces have been designed for the different types of users.

• Naıve users are unsophisticated users who interact with the system by invoking one of the application programs that have been written previously.
For example, a clerk in the university who needs to add a new instructor to department A invokes a program called new hire. This program asks the clerk for the name of the new instructor, her new ID, the name of the department (that is, A), and the salary. The typical user interface for naıve users is a forms interface, where the user can fill in appropriate fields of the form.

• Application programmers are computer professionals who write application programs. Application programmers can choose from many tools to develop user interfaces. Rapid application development (RAD) tools are tools that enable an application programmer to construct forms and reportswith minimal programming effort.

• Sophisticated users interact with the system without writing programs. Instead, they form their requests either using a database query language or by using tools such as data analysis software. Analysts who submit queries to explore data in the database fall in this category.

• Specialized users are sophisticated users who write specialized database applications that do not fit into the traditional data-processing framework. Among these applications are computer-aided design systems, knowledgebase and expert systems, systems that store data with complex data types, and environment-modeling systems.
1.10.2 Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data and the programs that access those data. A person who has such central control over the system is called a database administrator (DBA). The functions of a DBA include:
• Schema definition. The DBA creates the original database schema by executing a set of data definition statements in the DDL.
• Storage structure and access-method definition.

• Schema and physical-organization modification. TheDBAcarries out changes to the schema and physical organization to reflect the changing needs of the organization, or to alter the physical organization to improve performance
• Granting of authorization for data access. By granting different types of authorization, the database administrator can regulate which parts of the database various users can access. The authorization information is kept in a special system structure that the database system consults whenever someone attempts to access the data in the system.
• Routine maintenance. Examples of the database administrator’s routine maintenance activities are:

◦ Periodically backing up the database, either onto tapes or onto remote servers, to prevent loss of data in case of disasters such as flooding.

◦ Ensuring that enough free disk space is available for normal operations, and upgrading disk space as required.

◦ Monitoring jobs running on the database and ensuring that performance is not degraded by very expensive tasks submitted by some users.
1.11 History of Database Systems
1950s and early 1960s:

–Data processing using magnetic tapes for storage

 Tapes provide only sequential access

–Punched cards for input

Late 1960s and 1970s:

–Hard disks allow direct access to data

–Network and hierarchical data models in widespread use

–Ted Codd defines the relational data model. Won the ACM Turing Award for this work

-IBM Research begins System R prototype

-UC Berkeley begins Ingres prototype

–High-performance (for the era) transaction processing

1980s:

–Research relational prototypes evolve into commercial systems

-SQL becomes industry standard

–Parallel and distributed database systems

–Object-oriented database systems

1990s:

–Large decision support and data-mining applications

–Large multi-terabyte data warehouses

–Emergence of Web commerce

2000s:

–XML and XQuery standards

–Automated database administration

–Increasing use of highly parallel database systems

–Web-scale distributed data storage systems
1.12 Introduction to Database Design
The Entity Relation (ER) data 'model allows us to describe the data involved in a real-world enterprise in terms of objects and their relationships and is widely used to develop an initial data base. It provides useful concepts that allow us to move from an informal description of what users want from their database to a more detailed, precise description that can be implemented in a DBMS.
We note that many variations of ER diagrams are in use and no widely accepted standards prevail.

1.12.1 DATABASE DESIGN AND ER DIAGRAMS: The database design process can be divided into six steps. The ER model is most relevant to the first three steps.
1. Requirements Analysis: The very first step in designing a database application is to understand what data is to be stored in the database, what applications must be built on top of it, and what operations are most frequent and subject to performance requirements. In other words, we must find out what the users want from the database. This is usually an informal process that involves discussions with user groups, a study of the current operating environment and how it is expected to change, analysis of any available documentation on existing applications that are expected to be replaced or complemented by the database, and so on. Some automated tools have been developed to support organizing and presenting information.
2. Conceptual Database Design: The information gathered in the requirements analysis step is used to develop a high-level description of the data to be stored in the database, along with the constraints known to hold over this data. This step is often carried out using the ER model. The ER model is one of several high-level,or semantic, data models used in database design. The goal is to create a simple description of the data that closely matches how users and developers think of the data. This facilitates discussion among all the people involved in the design process, even those who have no technical background. At the same time, the initial design must be sufficiently precise to enable a straightforward translation into a data model supported by a commercial database system.

3. Logical Database Design: We must choose a DBMS to implement our database design, and convert the conceptual database design into a database schema in the data model of the chosen DBMS. We will consider only relational DBMSs, and therefore, the task in the logical design step is to convert an ER schema into a relational database schema. Sometimes called the logical schema, in the relational data model.

1.12.2 Beyond ER Design: The ER diagram is just an approximate description of the data, constructed through a subjective evaluation of the information collected during requirements analysis. A more careful analysis can often refine the logical schema obtained at the end of Step 3. Once we have a good logical schema, we must consider performance criteria and design the physical schema. Finally, we must address security issues and ensure that users are able to access the data they need.
4. Schema Refinement: The fourth step is database design is to analyze the collection of relations in our relational database schema to identify potential problems, and to refine it. In contrast to the requirements analysis and conceptual design steps, which are essentially subjective, schema refinement can be guided by some elegant and powerful theory.

5. Physical Database Design: In this step, we consider typical expected workloads that our database must support and further refine the database design to ensure that it meets desired performance criteria. This step may simply involve building indexes on some tables and clustering some tables, or it may involve a substantial redesign of parts of the database schema obtained from the earlier design steps.

6. Application and Security Design: Any software project that involves a DBMS must consider aspects of the application that go beyond the database itself. Design methodologies like UML try to address the complete software design and development cycle. Briefly, we must identify the entities (e.g., users, user groups, departments) and processes involved in the application. We must describe the role of each entity in every process that is reflected in some application task, as part of a complete workflow for that task.
1.12.2 ENTITIES, ATTRIBUTES, AND ENTITY SETS

Entity: An entity is an object in the real world that is distinguishable from other objects. Examples include the following: The toy department, the manager of the toy department, the home address of the man.

Entity Set: It is often useful to identify a collection of similar entities. Such a collection is called an entity set. Note that entity sets need not be disjoint; the collection of toy department employees and the collection of appliance department employees may both contain employee John Doe.
Attributes: An entity is described using a set of attributes. All entities in a given entity set have the same attributes; this is what we mean by similar. Our choice of attributes reflects the level of detail at which we wish to represent information about entities. For example, the Employees entity set could use name, social security number (ssn), and parking lot (lot) as attributes.
Attribute domain: For each attribute associated with an entity set, we must identify a domain of possible values. For example, the domain associated with the attribute name of Employees might be the set of 20-character strings. As another example, if the company rates employees on a scale of 1 to 10 and stores ratings in a field called rating, the associated domain consists of integers 1 through 10.
[image: image10.png]Figure 21 The Employees Entity Set

1.12.3 RELATIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more entities. For example, we may have the relationship that Mr. Venkatesh works in the pharmacy department. As with entities, we may wish to collect a set of similar relationships into a relationship set. A relationship set can be thought of as a set of n-tuples:
[image: image11.emf]
Each n-tuple denotes a relationship involving n entities ei through en, where entity ei is in entity set Ei . In Figure 2.2 we show the relationship set Works_In, in which each relationship indicates a department in which an employee works. Note that several relationship sets might involve the same entity sets. For example, we could also have a Manages relationship set involving Employees and Departments.
[image: image12.emf]
A relationship can also have descriptive attributes. Descriptive attributes are used to record information about the relationship, rather than about any one of the participating entities. Example ‘since’ is descriptive attribute on relations works_in
An instance of a relationship set is a set of relationships. Intuitively, an instance can be thought of as a 'snapshot' of the relationship set at some instant in time. An instance of the works_ln relationship set is shown in Figure 2.3.
Each Employees entity is denoted by its ssn, and each Departments entity is denoted by its did, for simplicity. The since value is shown beside each relationship. (The 'many-to-many' and 'total participation' is shown)
[image: image13.png]/i

worxs & smanamTs
Sazyto Moy Tou paricipation

Figure 23 A Tastance of the Works Ia Relstionship Set

As another example of an ER diagram, suppose that each department has offices in several locations and we want to record the locations at which each employee works. This relationship is ternary because we must record an association between an employee, a department, and a location. The ER diagram for this variant of Works_In, which we call Works.ln2, is shown in Figure 2.4.
[image: image14.emf]
Unary relation: If the entiry relates to itself with different roles, then it is called unary relation. In the blow example, employee acts as supervisor who instructs the other employees subordinators.
[image: image15.png]sipanisor

L=
< Repots To

Unary relation

1.13 ADDITIONAL FEATURES OF THE ER MODEL

1.13.1 Key Constraints: Consider the Works-In relationship shown in Figure 2.2. An employee can work in several departments, and a department can have several employees, as illustrated in the Works_In instance shown in Figure 2.3. Employee 231-31-5368 worked in Department 51 since 3/3/93 and in Department 56 since 2/2/92. Department 51 has two employees.

Now consider another relationship set called Manages between the Employees and Departments entity sets such that each department has at most one manager, although a single employee is allowed to manage more than one department.

The restriction that each department has at most one manager is an example of a key constraint, and it implies that each Departments entity appears in at most one 1Jlanages relationship in any allowable instance of Manages.

This restriction is indicated in the ER diagram of Figure 2.6 by using an arrow from Departments to Manages. Intuitively, the arrow states that given a Departments entity, we can uniquely determine the Manages relationship in which it appears.
[image: image16.png]R N
(= D7 C= D (e R
o el - /

~.

b .
Employees Manages) "‘@

Figure 2.6 - Key constraints

1.13.2 Key Constraints for Ternary Relationships

We can extend this convention-and the underlying key constraint concept-to relationship sets involving three or more entity sets: If an entity set E has a key constraint in a relationship set R, each entity in an instance of E appears in at most one relationship in (a corresponding instance of) R. To indicate a key constraint on entity set E in relationship set R, we draw an arrow from E

to R.
In Figure 2.8, we show a ternary relationship with key constraints. An instance of the Works_In3 relationship set is shown in Figure 2.9. Note that each department can be associated with several employees and locations and each location can be associated with several departments and employees; however, each employee is associated with a single department and location.
[image: image17.png]DEPARTMENTS

ALTETETIN
[m13is] @
L2308

minese,

EMpLOvEES WORKS_IN3
Key constraint

Figure 29 An Instance of Works_In3

[image: image18.png]DEPARTMENTS

EMpLOvEES WORKS_IN3
Key constraint

Figure 29 An Instance of Works_In3

[image: image19.png]Empioyess Works_In3 Departments:

ure 2.8 A Termary Relationship Set with Key Constraints

[image: image20.png]JAETETETI
[Bisise]e-—
L2308
i e

EMpLOvEES WORKS_IN3

ey constraint

Figure 29 An Instance of Works_In3

1.13.3 Weak Entities: An entity set without a key is called weak entity set. A weak entity set is always dependent on strong entity set for Key.

We assumed that the attributes associated with an entity set include a key. This assumption does not always hold. For example, suppose that employees can purchase insurance policies to cover their dependents. We wish to record information about policies, including who is covered by each policy, but this information is really our only interest in the dependents of an employee. If an employee quits, any policy owned by the employee is terminated and we want to delete all the relevant policy and dependent information from the database.
We might choose to identify a dependent by name alone in this situation, since it is reasonable to expect that the dependents of a given employee have different names. Thus the attributes of the Dependents entity set might be pname and age. The attribute pname does not identify a dependent uniquely. Recall that the key for Employees is ssn; thus we might have two employees called Smethurst and each might have a son called Joe.
Dependents is an example of a weak entity set. A weak entity can be identified uniquely only by considering some of its attributes in conjunction with the primary key of another entity, which is called the identifying owner.

The following restrictions must hold:

· The owner entity set and the weak entity set must participate in a one to many relationship set (one owner entity is associated with one or more weak entities, but each weak entity has a single owner). This relationship set is called the identifying relationship set of the weak entity set.

· The weak entity set must have total participation in the identifying relationship set.
[image: image21.png]Enployees

Dependens

Figure 2.11 A Weak Entity Set

1.13.4 Class Hierarchies

· Sometimes it is natural to classify the entities in an entity set into subclasses. For example, we might want to talk about an Hourly-Emps entity set and a Contract_Emps entity set to distinguish the basis on which they are paid. We might have attributes hours_worked and hourly_wage defined for Hourly_Emps and an attribute contractid defined for Contract_Emps.

· We want the semantics that every entity in one of these sets is also an Employees entity and, as such, must have all the attributes of Employees defined. Therefore, the attributes defined for an Hourly_Emps entity are the attributes for Employees plus Hourly employees. We say that the attributes for the entity set Employees are inherited by the entity set Hourly_Emps and that Hourly-Emps ISA (read is a) Employees. In addition-and in contrast to class hierarchies in programming languages.

· A query that asks for all Employees entities must consider all Hourly_Emps and Contract_Emps entities as well. Figure 2.12 illustrates,the class hierarchy.
· In terms of Employee (Super Class) it is called Generalization and in terms of Hourly Employees and Contract employees (Sub classes), it is called Specialization.
[image: image22.png]o
.s& ——
e

e | [,

Figure 212 Class Hierarchy

We can specify two kinds of constraints with respect to ISA hierarchies, namely, overlap and covering constraints. Overlap constraints determine whether two subclasses are allowed to contain the same entity. For example, can Attishoo be both an Hourly_Emps entity and a ContractEmps entity? Intuitively, no. Can he be both a ContractEmps entity and a Senior-Emps entity? Intuitively, yes. We denote this by writing 'ContractEmps OVERLAPS Senior-Emps.'

In the absence of such a statement, we assume by default that entity sets are constrained to have no overlap.
Covering constraints determine whether the entities in the subclasses collectively

include all entities in the superclass.
There are two basic reasons for identifying subclasses (by specialization or generalization) :

1. We might want to add descriptive attributes that make sense only for the entities in a subclass. For example, hourly_wages does not make sense for a ContracLEmps entity, whose pay is determined by an individual contract.

2. We might want to identify the set of entities that participate in some relationship.

For example, we might wish to define the Manages relationship so that the participating entity sets are Senior-Emps and Departments, to ensure that only senior employees can be managers.

1.13.5 Aggregation: As defined thus far, a relationship set is an association between entity sets. Sometimes, we have to model a relationship between a collection of entities and relationships. Suppose that we have an entity set called Projects and that each Projects entity is sponsored by one or more departments. The Sponsors relationship set captures this information. A department that sponsors a project might assign employees to monitor the sponsorship. Intuitively, Monitors

should be a relationship set that associates a Sponsors relationship (rather than a Projects or Departments entity) with an Employees entity. However, we have defined relationships to associate two or more entities.
To define a relationship set such as Monitors, we introduce a new feature of the ER model, called aggregation. Aggregation allows us to indicate that a relationship set (identified through a dashed box) participates in another relationship set. This is illustrated in Figure 2.13, with a dashed box around Sponsors (and its participating entity sets) used to denote aggregation.
[image: image23.png]Figure 213 Aggregation

1.14 CONCEPTUAL DESIGN WITH THE ER MODEL
Developing an ER diagram presents several choices, including the following:
· Should a concept be modeled as an entity or an attribute?

· Should a concept be modeled as an entity or a relationship?

· What are the relationship sets and their participating entity sets? Should we use binary or ternary relationships?
· Should we use aggregation?
1.14.1 Entity versus Attribute: While identifying the attributes of an entity set, it is sometimes not clear whether a property should be modeled as an attribute or as an entity set (and related to the first entity set using a relationship set). For example, consider adding address information to the Employees entity set. One option is to use an attribute address. This option is appropriate if we need to record only one address per employee, and it suffices to think of an address as a string. An alternative is to create an entity set called Addresses and to record associations between employees and addresses using a relationship (say, Has_Address). This more complex alternative is necessary in two situations:

• We have to record more than one address for an employee.

• We want to capture the structure of an address in our ER diagram. For example, we might break down an address into city, state, country, and Zip code, in addition to a string for street information. By representing an address as an entity with these attributes.
[image: image24.png]Works_In4

.

Attributes on relatins ship - from, to

Employees !

o <\ name > ‘___“—‘” T
ssn T //(lot w
< [>
]

Departments

The above diagram in which the attributes on relation is depicted in the form of entity in the below figure

[image: image25.png]/\\

name

=TT

"“—l

Employees

Works_In4

b

Departments

Duration

oo

Attributes as Entity

1.14.2 Entity versus Relationship: Consider the relationship set called Manages, suppose that each department manager is given a discretionary budget (dbudget) , as shown in Figure 2.16
[image: image26.png]— ~— - . ™
o (\ name / y /‘—’ dname)
(/ ssn >\\T;I ///;Jt*\\> \‘ / / - id ™ i -
S~ S \ / S~ ?
\\\ | // \ . }
S /\Q ~
o . “ ; =
: Employees |- ——< Menages2 /5<—— Departments %
I h |

Figure 2.16 Entity vs Relationship

We can address these by introducing a new entity set called Managers (which can be placed below Employees in an ISA hierarchy, to show that every manager is also an employee). The attributes since and dbudget now describe a manager entity, as intended. As a variation, while every manager has a budget, each manager may have a different starting date (as manager) for each department. In this case dbudget is an attribute of Managers, but since is an attribute of the relationship set between managers and departments.
1.14.3 Binary versus Ternary Relationships: Consider the ER diagram shown in Figure 2.17. It models a situation in which an employee can own several policies, each policy can be owned by several employees, and each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

· A policy cannot be owned jointly by two or more employees.

· Every policy must be owned by some employee.

· Dependents is a weak entity set, and each dependent entity is uniquely identified by taking pname in conjunction with the policyid of a policy entity (which, intuitively, covers the given dependent).
The first requirement suggests that we impose a key constraint on Policies with respect to Covers, but this constraint has the unintended side effect that a policy can cover only one dependent. The second requirement suggests that we impose a total participation constraint on Policies. This solution is acceptable if each policy covers at least one dependent. The third requirement forces us to introduce an identifying relationship that is binary (in our version of ER diagrams, although there are versions in which this is not the case).
[image: image27.png]T T

Q name
P

(_ssn.

D
_\

Policies

-

Figure 2.17 Policies as Entity Set (Ternary Relation)

The above diagram which is in Ternary relation can be depicted in binary relation from as shown below.
[image: image28.png](-

-

_ssn.

D
_\

T T

Q name
T

Employses

W C

/ ~

7\
UrCh&SGI’

Beneficiary

Policies

— D
policyid) (cost
T —

Figure 2.18: Policies revisited

1.14.4 Aggregation versus Ternary Relationships: The choice between using aggregation or a ternary relationship is mainly determined by the existence of a relationship that relates a relationship set to an entity set (or second relationship set). The choice may also be guided by certain integrity constraints that we want to express.
For example, consider the ER diagram shown in Figure 2.13. According to this diagram, a project can be sponsored by any number of departments, a department can sponsor one or more projects, and each sponsorship is monitored by one or more employees. If we don't need to record the until attribute of Monitors, then we might reasonably use a ternary relationship, say, Sponsors2, as shown in Figure 2.19.
Consider the constraint that each sponsorship (of a project by a department) be monitored by at most one employee. VVe cannot express this constraint in terms of the Sponsors2 relationship set. On the other hand, we can easily express the cOnstraint by drawing an arrow from the aggregated relationship Sponsors to the relationship Monitors in Figure 2.13. Thus, the presence of such a constraint serves &s another reason for using aggregation rather than a

ternary relationship set.
[image: image29.png]Figure 213 Aggregation

[image: image30.png]Figure 2.19 Using ternary relation insted of aggregation

1.15 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES

The process of conceptual design consists of more than just describing small fragments of the application in terms of ER diagrams. For a large enterprise, the design may require the efforts of more than one designer and span data and application code used by a number of user groups. Using a high-level, semantic data model, such as ER diagrams, for conceptual design in such an environment offers the additional advantage that the high-level design can be diagrammatically represented and easily understood by the many people who must provide input to the design process.
An important aspect of the design process is the methodology used to structure the development of the overall design and ensure that the design takes into account all user requirements and is consistent. Generating a single set of global requirements is a difficult task, but it allows the conceptual design phase to proceed with the development of a logical schema that spans all the data and applications throughout the enterprise.

An alternative approach is to develop separate conceptual schema for different user groups and then integrate these conceptual schemas. To integrate multiple conceptual schemas, we must establish correspondences between entities, relationships, and attributes, and we must resolve numerous kinds of conflicts. Schema integration is also increasing in importance as users demand access to heterogeneous data sources, often maintained by different organizations.
THE RELATIONAL MODEL
Codd proposed the relational data model in 1970. At that time, most database systems were based on one of two older data models (the hierarchical model and the network model); the relational model revolutionized the database field and largely supplanted these earlier models.
The relational model is very simple and elegant: a database is a collection of one or more relations, where each relation is a table with rows and columns. This simple tabular representation enables even novice users to understand the contents of a database, and it permits the use of simple, high-level languages to query the data. The major advantages of the relational model over the older data models are its simple data representation and the ease with which even complex queries can be expressed.

The Data Definition Language (DDL) features of SQL, the standard language for creating, manipulating, and querying data in a relational DBMS.
1.16 INTRODUCTION TO THE RELATIONAL MODEL
The main construct for representing data in the relational model is a relation. A relation consists of a relation schema and a relation instance. The relation instance is a table, and the relation schema describes the column heads for the table.

Example:

Students(sid: string, name: string, login: string, age: integer, gpa: real)

This says, for instance, that the field named sid has a domain named string. The set of values associated with domain string is the set of all character strings.
An instance of the Students relation appears in Figure 3.1.
[image: image31.png]Figure 3.1

FIELDS (ATTR[EUTES COLUMNS)

50000 | Dave | dave@es 10 33 |
53666 Jones | jones@es R
53688 | Smith | smithee 18] 32
53650 Smith | smith@math 0] 38
53831 | Madayan | madayan@lmusic | 11 | 18
53832 | Guldu_| ewldv@music 2] 2

‘An Instance S1 of the Students Relation

A relation schema specifies the domain of each field or column in the relation instance. These domain constraints in the schema specify an important condition that we want each instance of the relation to satisfy: The values that appear in a column must be drawn from the domain associated with that column. Thus, the domain of a field is essentially the type of that field, in programming language terms, and restricts the values that can appear in the field.
More formally, let R(f1:D1, ... , fn:Dn) be a relation schema, and for each fi,1< =i<= n, let Dami be the set of values associated with the domain named Di. .An instance of R that satisfies the domain constraints in the schema is a set of tuples with n fields:
{ (fi : di , ,fn: dn) I dl E Daml ... ,dn E Damn}
Domain constraints are so fundamental in the relational model that we henceforth consider only relation instances that satisfy them; therefore, relation instance means relation instance that satisfies the domain constraints in the relation schema. The degree, also called arity, of a relation is the number of fields.
1.16.1 Creating and Modifying Relations Using SQL

The subset of SQL that supports the creation, deletion, and modification of tables is called the Data Definition Language (DDL).
The CREATE TABLE statement is used to define a new table. To create the Students relation, we can use the following statement:
[image: image32.png]CREATE TABLE Students (sid CHAR(20)|.
name CHAR(30).
login CHAR(Q0).
age INTEGER.
gpa REAL)

Tuples are inserted ,using the INSERT command. We can insert a single tuple into the Students table as follows:
[image: image33.png]INSERT
INTO Students (sid, name, login. age. gpa)
VALUES (53688. ‘Smith’, 'smith@ee’. 18, 3.2)

We can delete tuples using the DELETE command. We can delete all Students tuples with name equal to Smith using the command:
[image: image34.png]DELETE
FROM Students S
WHERE $.name = 'Smith’

We can modify the column values in an existing row using the UPDATE command. For example, we can increment the age and decrement the gpa of the student with sid 53688:
[image: image35.png]UPDATE Students S
SET Sage= Sage+ 1 S.gpa= Sgpa- 1
WHERE S.sid = 53688

1.17 INTEGRITY CONSTRAINTS OVER RELATIONS
An integrity constraint (Ie) is a condition specified on a database schema and restricts the data that can be stored in an instance of the database. If a database instance satisfies all the integrity constraints specified on the database schema, it is a legal instance. A DBMS enforces integrity constraints, in that it permits only legal instances to be stored in the database.
Integrity constraints are specified and enforced at different times:
1. When the DBA or end user defines a database schema, he or she specifies the integrity constraints, that must hold on any instance of this database.

2. When a database application is run, the DBMS checks for violations and disallows changes to the data that violate the specified ICs.
1.17.1 Key Constraints

A key constraint is a statement that a certain minimal subset of the fields of a relation is a unique identifier for a tuple. A set of fields that uniquely identifies a tuple according to a key constraint is called a candidate key for the relation; we often abbreviate this to just key. In the case of the Students relation, the (set of fields containing just the) sid field is a candidate key. Let us take a closer look at the above definition of a (candidate) key. There are two parts to the definition:

1. Two distinct tuples in a legal instance (an instance that satisfies all ICs, including the key constraint) cannot have identical values in all the fields of a key.
2. No subset of the set of fields in a key is a unique identifier for a tuple.

A relation may have several candidate keys. For example, the login and agefields of the Students relation may, taken together, also identify students uniquely. That is, {login, age} is also a key.
Out of all the available candidate keys, a database designer can identify a primary key. Intuitively, a tuple can be referred to from elsewhere in the database by storing the values of its primary key fields. For example, we can refer to a Students tuple by storing its sid value.
1.17.2 Specifying Key Constraints in SQL
In SQL, we can declare that a subset of the columns of a table constitute a key by using the UNIQUE constraint. At most one of these candidate keys can be declared to be a primary key, using the PRIMARY KEY constraint.
[image: image36.png]CREATE TABLE Students (sid ~ CHAR(20) .
name CHAR(30) .

login CHAR(0) .
age INTEGER.
gpa REAL

UNIQUE (name. age).
CONSTRAINT StudentsKey PRIMARY KEY (sid))

This definition says that sid is the primary key and the combination of name and age is also a key. The definition of the primary key also illustrates how we can name a constraint by preceding it with CONSTRAINT constraint-name. If the constraint is violated, the constraint name is returned and can be used to identify the error.
1.17.3 Foreign Key Constraints

Sometimes the information stored in a relation is linked to the information stored in another relation. If one of the relations is modified, the other must be checked, and perhaps modified, to keep the data consistent. An IC involving both relations must be specified if a DBMS is to make such checks. The most common IC involving two relations is a foreign key constraint.
Specifying Foreign Key Constraints in SQL

Let us define Enrolled(studid: string, cid: string, grade: string)

[image: image37.png]CREATE TABLE Enrolled (studid CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (studid. cid).
FOREIGN KEY (studid) REFERENCES Students)

The foreign key constraint states that every studid value in Enrolled must also appear in Students, that is, studid in Enrolled is a foreign key referencing Students. Specifically, every studid value in Enrolled must appear as the value in the primary key field, sid, of Students. Incidentally, the primary key constraint for Enrolled states that a student has exactly one grade for each course he or she is enrolled in. If we want to record more than one grade per student per course, we should change the primary key constraint.
1.17.4 General Constraints:
Domain, primary key, and foreign key constraints are considered to be a fundamental part of the relational data model and are given special attention in most commercial systems. Sometimes, however, it is necessary to specify more general constraints.

For example, we may require that student ages be within a certain range of values; given such an IC specification, the DBMS rejects inserts and updates that violate the constraint. This is very useful in preventing data entry errors. If we specify that all students must be at least 16 years old, we use general constraints.
Current relational database systems support such general constraints in the form of table constraints and assertions. Table constraints are associated with a single table and checked whenever that table is modified. In contrast, assertions involve several tables and are checked whenever any of these tables is modified. Both table constraints and assertions can use the full power of SQL queries to specify the desired restriction.
1.17.5 ENFORCING INTEGRITY CONSTRAINTS: ICs are specified when a relation is created and enforced when a relation is modified. The impact of domain, PRIMARY KEY, and UNIQUE constraints is straightforward: If an insert, delete, or update command causes a violation, it is rejected. Every potential violation is generally checked at the end of each SQL statement execution, although it can be deferred until the end of the transaction executing the statement.
The following insertion fails as the sid is declared PRIMARY KEY and it will not accept nulls
[image: image38.png]INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (null, 'Mike'. ‘mike@ec’, 17.3.4)

This update violates the primary key constraint because there is already a tuple with sid 50000.
[image: image39.png]UPDATE Students S
SET S.sid = 50000
WHERE S.sid = 53688

[image: image40.png]CREATE TABLE Enrolled (studid CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (studid, dd).
FOREIGN KEY (studid) REFERENCES Students
ON DELETE CASCADE
ON UPDATE NO ACTION)

The options are specified as part of the foreign key declaration. The default option is NO ACTION, which means that the action (DELETE or UPDATE) is to be rejected, Thus, the ON UPDATE clause in our example could be omitted, with the same effect. The CASCADE keyword says that, if a Students row is deleted, all Enrolled rows that refer to it are to be deleted as well. If the UPDATE clause specified CASCADE, and the sid column of a Students row is updated, this update is also carried out in each Enrolled row that refers to the updated Students row.
The correct solution in this example is to also delete all enrollment tuples for the deleted student (that is, CASCADE) or to reject the update.
1.17.6 Transactions and Constraints: A program that runs against a database is called a transaction, and it can contain several statements (queries, inserts, updates, etc.) that access the database. If (the execution of) a statement in a transaction violates an integrity constraint, should the DBMS detect this right away or should all constraints be checked together just before the transaction completes. By default, a constraint is checked at the end of every SQL statement that could lead to a violation, and if there is a violation, the statement is rejected.

SQL allows a constraint to be in DEFERRED or IMMEDIATE mode.
Example:

SET CONSTRAINT ConstntintFoo DEFERRED

A constraint in deferred mode is checked at commit time
1.18 QUERYING RELATIONAL DATA
A relational database query (query, for short) is a question about the data, and the answer consists of a new relation containing the result. A query language is a specialized language for writing queries.

SQL is the most popular commercial query language for a relational DBMS. We now present some SQL examples that illustrate how easily relations can be queried. Consider the instance of the Students relation to retrieve rows corresponding to students who are younger than 18 with the following SQL query:
[image: image41.png]SELECT ©

FROM Students S
WHERE S.age < 18

We can compute the names and logins of students who are younger than 18 with the following query:
[image: image42.png]SELECT S.name. S.login
FROM Students S
WHERE S.age < 18

We can also combine information in the Students and Enrolled relations. If we want to obtain the names of all students who obtained an A and the id of the course in which they got an A, we could write the following query:
[image: image43.png]SELECT S.name. E.cid
FROM Students S. Enrolled E
WHERE ~ $.sid = E.studid AND E grade = 'A’

1.19 LOGICAL DATABASE DESIGN: ER TO RELATIONAL
The ER model is convenient for representing an initial, high-level database design. Given an ER diagram describing a database, a standard approach is taken to generating a relational database schema that closely approximates the ER design. Following describes translate an ER diagram into a collection of tables with associated constraints, that is, a relational database schema.
1.19.1 Entity Sets to Tables

An entity set is mapped to a relation in a straightforward way: Each attribute of the entity set becomes an attribute of the table. Note that we know both the domain of each attribute and the (primary) key of an entity set. Consider the Employees entity set with attributes ssn, name, and lot shown in Figure 3.8. A possible instance of the Employees entity set, containing three
[image: image44.png]e

et
Figure 3.8 The Employees Entity S¢

Erwores

Employees entities, is shown in Figure 3.9 in a tabular format.
[image: image45.png]Issn name lot |
123-22-3666 | Attishoo 48
231-31-5368 | Smiley 2
131-24-3650 | Smethurst | 35

Figure 3.9 An Instance of the Employees Entity Set

The following SQL statement captures the preceding information, including the

domain constraints and key information:
[image: image46.png]CREATE TABLE Employees (ssn CHAR(11).
name CHAR(G0).
Tot INTEGER.
PRIMARY KEY (ssn))

1.19.2 Relationship Sets (without Constraints) to Tables

A relationship set, like an entity set, is mapped to a relation in the relational model. To represent a relationship, we must be able to identify each participating entity and give values to the descriptive attributes of the relationship. Thus, the attributes of the relation include:

• The primary key attributes of each participating entity set, as foreign key fields.

• The descriptive attributes of the relationship set.

The set of non descriptive attributes is a super key for the relation. If there are no key constraints, this set of attributes is a candidate key.

Consider the Works_In2 relationship set shown in Figure 3.10. Each department has offices in several locations and we want to record the locations at which each employee works.

[image: image47.png]Vios_n2

S — —
(atoess | tocatons ..mw
S —

Figure 3.10 A Ternary Relationship Set

All the available information about the Works-ln2 table is captured by the following SQL definition:

[image: image48.png]CREATE TABLE Wo)

sAn2 (ssn CHAR(11).
did INTEGER.
address CHAR(20),
since DATE.
PRIVARY KEY (8sn. did, address),
FOREIGN KEY (ssn) REFERENCES Employees.
FOREIGN KEY (address) REFERENCES Locations.
FOREIGN KEY (did) REFERENCES Departments)

Note that the address, did. and ssn fields cannot take on null values. Because these fields are part of the primary key for Works_In2, a NOT NULL constraint is implicit for each of these fields. This constraint ensures that these fields uniquely identify a department, an employee, and a location in each tuple of WorksJn. We can also specify that a particular action is desired when a referenced Employees, Departments, or Locations tuple is deleted.
Finally, consider the Reports_To relationship set shown in Figure 3.11. The Figure
[image: image49.png]P sbrsnae

Reparts To

Figure 3,11 The Reports. To Relationship Set

role indicators supervisor and subordinate are used to create meaningful field names in the CREATE statement for the Reports. To table:

[image: image50.png]CREATE TABLE Reports_To (
supervisor..ssn CHAR(11),
subordinate...ssn CHAR(11),
PRIMARY KEY (supervisor ssn, subordinate ssn),
FOREIGN KEY (supervisor..ssn) REFERENCES Employees (ssn).
FOREIGN KEY (subordinate...ssn) REFERENCES Employees(ssn))

Observe that we need to explicitly name the referenced field of Employees because the field name differs from the name(s) of the referring field(s).
1.19.3 Translating Relationship Sets with Key Constraints: If a relationship set involves n entity sets and some of them are linked via arrows in the ER diagram, the key for anyone of these m entity sets constitutes a key for the relation to which the relationship set is mapped. Hence we have ‘m’ candidate keys, and one of these should be designated as the primary key.
[image: image51.png]Figure 3.12 Key Constraint on Manages

Consider the relationship set Manages shown in Figure 3.12. The table corresponding to Manages has the attributes ssn, did, since. However, because each department has at most one manager, no two tuples can have the same did value but differ on the ssn value. A consequence of this observation is that did is itself a key for Manages; indeed, the set did, ssn is not a key (because it is not minimal). The Manages relation can be defined using the following SQL statement:

[image: image52.png]CREATE TABLE Manages (ssn CHAR(11),
did INTEGER.
since DATE.
PRIVARY KEY (did).
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

The following SQL statement, defining a DeptMgr relation that captures the information in both Departments and Manages, illustrates the second approach to translating relationship sets with key constraints. Note that ssn can take on null values.
[image: image53.png]CREATE TABLE DepLMer (did INTEGER.
dname CHAR(20).

budget REAL.
ssn CHAR(11).
since DATE.

PRIMARY KEY (did).
FOREIGN KEY (ssn) REFERENCES Employees)

1.19.4 Translating Relationship Sets with Participation Constraints: Consider the ER diagram in Figure 3.13, which shows two relationship sets, Manages and "Works_In. Every department is required to have a manager, due to the participation constraint, and at most one manager, due to the key constraint. The following SQL statement reflects the second translation approach discussed in Section 3.5.3, and uses the key constraint:
[image: image54.png]Figure 3.13 Manages and WorksJn

[image: image55.png]CREATE TABLE Dept_Mgr (did INTEGER.
dname CHAR(0).

budget REAL.
ssn CHAR(11) NOT NULL.
since DATE.

PRIMARY KEY (did).
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE N0 ACTION)

It also captures the participation constraint that every department must have a manager: Because ssn cannot take on null values, each tuple of DeptMgr identifies a tuple in Employees (who is the manager). The NO ACTION specification, which is the default and need not be explicitly specified, ensures that an Employees tuple cannot be deleted while it is pointed to by a Dept-Mgr tuple. If we wish to delete such an Employees tuple, we must first change the DeptMgr tuple to have a new employee as manager.
1.19.5 Translating Weak Entity Sets: A weak entity set always participates in a one-to-many binary relationship and has a key constraint and total participation. The second translation approach discussed in Section 3.5.3 is ideal in this case, but we must take into account that the weak entity has only a partial key. Also, when an owner entity is deleted, we want all owned weak entities to be deleted.

Consider the Dependents weak entity set shown in Figure 3.14, with partial key pname. A Dependents entity can be identified uniquely only if we take the key of the owning Employees entity and the pname of the Dependents entity, and the Dependents entity must be deleted if the owning Employees entity is deleted.
[image: image56.png]Oependerts

Figure 3.14 The Dependents Weak Entity Set

We can capture the desired semantics with the following definition of the Dep_Policy relation:
[image: image57.png]CREATE TABLE Dep_Policy (pname CHAR(20).
age INTEGER.
cost REAL.
ssn CHAR(11).
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE CASCADE)

Observe that the primary key is (pname, ssn) , since Dependents is a weak entity. We have to ensure that every Dependents entity is associated with an Employees entity (the owner), as per the total participation constraint on Dependents. That is, ssn cannot be null. This is ensured because SSN is part of the primary key. The CASCADE option ensures that information about an employee's policy and dependents is deleted if the corresponding Employees tuple is deleted.
1.19.6 Translating Class Hierarchies: We present the two basic approaches to handling ISA hierarchies by applying them to the ER diagram shown in Figure 3.15:
1. We can map each of the entity sets Employees, Hourly_Emps, and ContractEmps to a distinct relation. The relation for Hourly_Emps includes the hourly_wages and hours_worked attributes of Hourly_Emps. It also contains the key attributes of the superclass (ssn, in this example), which serve as the primary key for Hourly_Emps, as well as a foreign key referencing the superclass. (Employees). For each Hourly_Emps entity, the value of the name and lot attributes are stored in the corresponding row of the superclass (Employees). Note that if the superclass tuple is deleted, the delete must be cascaded to Hourly_emp.
2. Alternatively, we can create just two relations, corresponding to Hourly_Emps and ContractEmps. The relation for Hourlyemps includes all the attributes of Hourly_Emps as well as all the attributes of Employees (i.e., ssn, name, lot, hourly_wages, hours_worked).
The first approach is general and always applicable. Queries in which we want to examine all employees and do not care about the attributes specific to the subclasses are handled easily using the Employees relation. However, queries in which we want to examine, say, hourly employees, may require us to combine Hourly_Emps (or ContractEmps, as the case may be) with Employees to retrieve name and lot.
The second approach is not applicable if we have employees who are neither hourly employees nor contract employees, since there is no way to store such employees. Also, if an employee is both an Hourly-.Emps and a ContractEmps entity, then the name and lot: values are stored twice. This duplication can lead to some of the anomalies. A query that needs to examine all employees must now examine two relations. On the other hand, a query that needs to examine only hourly employees can now do so by examining just one relation. The choice between these approaches clearly depends on the semantics of the data and the frequency of common operations.
In general, overlap and covering constraints can be expressed in SQL only by using assertions.
1.20 INTRODUCTION TO VIEWS

A view is a table whose rows is not explicitly stored in the database but are computed as needed from a view definition. Consider the Students and Enrolled relations. Suppose we are often interested in finding the names and student identifiers of students who got a grade of B in some course, together with the course identifier. We can define a view for this purpose. Using SQL notation:
[image: image58.png]CREATE VIEW B-Studeats (name, sid. course)
AS SELECT S sname, §.sid, E.cid
ROM Students S, Earolled E
WHERE S.sid = E.studid AND E.grade

The view B-Students has three fields called name, sid, and course with the same domains as the fields sname and sid in Students and cid in Enrolled. (If the optional arguments name, sid, and course are omitted from the CREATE VIEW statement, the column names sname, sid, and cid are inherited.)
1.20.1 Views, Data Independence, Security:
The physical schema for a relational database describes how the relations in the conceptual

schema are stored, in terms of the file organizations and indexes used. The conceptual schema is the collection of schemas of the relations stored in the database. While some relations in the conceptual schema can also be exposed to applications, that is, be part of the extermal schema of the database, additional relations in the external schema can be defined using the view mechanism.

The view mechanism thus provides the support for logical data independence in the relational model. That is, it can be used to define relations in the external schema that mask changes in the conceptual schema of the database from applications.

Views are also valuable in the context of security: We can define views that give a group of users access to just the information they are allowed to see. For example, we can define a view that allows students to see the other students.
1.20.2 Updates on Views: Views can be updated similar to base table. The SQL-92 standard allows updates to be specified only on views that are defined on a single base table using just selection and projection, with no use of aggregate operations. Such views are called updatable views. An update on such a restricted view can always be implemented by updating the underlying base table in an unambiguous way. Consider the following view:
[image: image59.png](CREATE VEW GoodStudents (sid. gpa)
45 SELECT S.sid. S.gpa
FROM Students §
WEERE S.gpa> 3.0

An important observation is that an INSERT or UPDATE may change the underlying base table so that the resulting (i.e., inserted or modified) row is not in the view. The SQL default action is to allow this insertion, but we can disallow it by adding the clause WITH CHECK OPTION to the definition of the view. In this case, only rows that will actually appear in the view are permissible insertions.
1.20.3 DESTROYING/ALTERING TABLES AND VIEWS

If we decide that we no longer need a base table and want to destroy it, we can use the DROP TABLE command. For example, DROP TABLE Students RESTRICT destroys the Students table unless some view or integrity constraint refers to Students; if so, the command fails. If the keyword RESTRICT is replaced by CASCADE, Students is dropped and any referencing views or integrity constraints are (recursively) dropped as well; one of these two keywords must always be specified. A view can be dropped using the DROP VIEW command, which is just like DROP TABLE.

ALTER TABLE modifies the structure of an existing table. To add a column called maiden-name to Students, for example, we would use the following command:
UNIT-I

Introduction-Database System Applications, Purpose of Database Systems, View of Data - Data Abstraction, Instances and Schemas, Data Models, Database Languages - DDL, DML, Database Architecture, Database Users and Administrators, History of Data base Systems.

Introduction to Data base design , ER diagrams, Beyond ER Design, Entities, Attributes and Entity sets, Relationships and Relationship sets, Additional features of ER Model, Conceptual Design with the ER Model, Conceptual Design for Large enterprises.

Relational Model: Introduction to the Relational Model - Integrity Constraints over Relations, Enforcing Integrity constraints, Querying relational data, Logical data base Design, Introduction to Views Destroying/ altering Tables and Views.

Department of CSE, GPCET | 2

