	UNIT – III





3. INTRODUCTION TO SCHEMA REFINEMENT
3.1 Problems Caused by Redundancy: Storing the Same information redundantly, that is, in more than one place within a database, can lead to several problems.

Redundant Storage: Some information is stored repeatedly. 

Update Anomalies: If one copy of such repeated data is updated, an inconsistency is created unless all copies are similarly updated.

Insertion Anomalies: It may not be possible to store certain information unless some other, unrelated, information is stored as well.

Deletion Anomalies: It may not be possible to delete certain information without losing some other, unrelated, information as well.

[image: image1.png]SSN narne [lot | rating | hourly-wages | hours_ worked
123-22-3666 | Attishoo | 48 | 8 [ 10 40 ]
231-31-5368 | Sruile 2 [3 10 30
131-24-3650 | Srllethurst | 35 | 5 7 30
434-263751 | Guldu 355 T 32
612-67-4134 | Madayan_| 35 | S 10 40

Figure 2.1

An Instance of the Hourly Emps Relation





In the above example, we can notice redundancy with rating and hourly wages.

3.1.2 Decompositions: Intuitively, redundancy arises when a relational schema forces an association between attributes that is not natural. Functional dependencies can be used to identify such situations and suggest refinements to the schema. The essential idea is that many problems arising from redundancy can be addressed by replacing a bigger relation with a collection of 'smaller' relations which is called decompositions.  
We can decompose Hourly_Emps into two relations:

Hourly_Emps20: (ssn,name, lot, rating,hours_worked)

Wages (rating, hourly_wages)
[image: image2.png]SSN. narne lot | rating [ hours_worked rating | hourly wages
123-22-3666 | Attishoo | 48 | 8 40 - 8 [ 10
231-31-5368 | Sruile 2 [3 30 5 7
131-24-3650 | Srllethurst | 35 | 5 30 Figure 3.3 Wages
733-263751 | Guldu 355 32
612-67-4134 | Madayan | 35 | 8 10

Figure 3.2Hourly Emps20





3.1.3 Problems Related to Decomposition: Unless we are careful~ decornposing a relation scherna can create more problerns than it solves. Two important questions must be asked repeatedly:

1) Do we need to decompose a relation?

When data gets redundancy, then normalization is to be done.  There are several normal forms and the due course of normalization, the relations should be decomposed to avoid redundancy.
2. What problems (if any) does a given decomposition cause?

The two properties of decompositions are of particular interest. The lossless-join property enables us to recover any instance of the decomposed relation from corresponding instances of the smaller relations. 
The dependency-preservation property enables us to enforce any constraint on the original relation by simply enforcing constraints on each of the smaller relations. That is, we need not perform joins of the smaller relations to check whether a constraint on the original relation is violated.

From a performance standpoint, queries over the original relation may require us to join the decomposed relations. In some situations, decomposition could actually improve performance. 
A good database designer should have a firm grasp of normal forms and what problems they alleviate, the technique of decomposition, and potential problems with decompositions. 

3.1.4 FUNCTIONAL DEPENDENCIES: Functional dependency is a relationship that exists when one attribute uniquely determines another attribute. If R is a relation with attributes X and Y, a functional dependency between the attributes is represented as X->Y, which specifies Y is functionally dependent on X.
The determination of functional dependencies is an important part of designing databases in the relational model, and in database normalization and de-normalization.  A classic example of functional dependency is the employee, department model. The following table

[image: image3.png]Employee ID Employee Name | Department ID | Department Name

0001 John Doe 1 Human Resources
0002 Jane Doe 2 Marketing

0003 John Smith 1 Human Resources
0004 Jane Goodall |3 Sales

Figure: 3.4 Employee Department




This case represents an example where multiple functional dependencies are embedded in a single representation of data. Note that because an employee can only be a member of one department, the unique ID of that employee determines the department.

Employee ID → Employee Name

Employee ID → Department ID

In addition to this relationship, the table also has a functional dependency through a non-key attribute   Department ID → Department Name

This example demonstrates that even though there exists a FD Employee ID → Department ID - the employee ID would not be a logical key for determination of the department ID. The process of normalization of the data would recognize all FD's and allow the designer to construct tables and relationships that are more logical based on the data.

[image: image4.png]A[B[C[D]

al | bl | d | dl |
al [ bl | d | d2
al [ b2 [c2|dl
a2 | bl [ 3] el

Figure3.5 An Instance that Satisfies 48 — C




Figure 3.5 illustrates the meaning of the FD AB ( C by showing an instance that satisfies this dependency. The first two tuples show that an FD is not the same as a key constraint: Although the FD is not violated, AB is clearly not a key for the relation. The third and fourth tuples illustrate that if two tuples differ in either the A field or the B field, they can differ in the C field without violating the FD. On the other hand, if we add a tuple (a1, b1, c2, d1) to the instance shown in this figure, the resulting instance would violate the FD; to see this violation, compare the first tuple in the figure with the new tuple.
3.2 REASONING ABOUT FDS
3.2.1 Closure of a Set of FDs: The set of all FDs implied by a given set F of FDs is called the closure of F, denoted as F+. An important question is how we can infer, or compute, the closure of a given set of FDs. The following three rules, called Armstrong's Axioms, can be applied repeatedly to infer all FDs implied by a set  of FDs. We use X, Y, and Z to denote setsof attributes over a relation schema R:
[image: image5.png]m  Reflexivity: If X 2 Y, then X — V.
= Augnl.entation: If )( — Y, then XZ — Y for any Z

m  Transitivity: If)(— Yand ¥  Z then X — 7.





It is convenient to use additional rules while reasoning about F+:
[image: image6.png]¢ Union: If X — Yand X — Z then X — YZ.

«  Decomposition: If X — YZ, then X — y'and X — Z




Trivial Functional dependency:  Consider a relation schema ABC with FDs A (B and B (C. In a trivial FD, the right side contains only attributes that also appear on the left side; such dependencies always hold due to reflexivity. Using reflexivity, we can generate all trivial dependencies, which are of the form:
[image: image7.png]X —» Y, where YC X, X C ABC, and YC ABC.




From transitivity we get A ( C. From augmentation we get the nontrivial dependencies:

[image: image8.png]AC — BC. AB — AC. AB — (B




3.2.2 Attribute Closure: 
After finding a set of functional dependencies that are hold on a relation, the next step is to find the Super key for that relation (table). The set of identified functional dependencies play a vital role in finding the key for the relation. We can decide whether an attribute (or set of attributes) of any table is a key for that table or not by identifying the attribute or set of attributes’ closure. If A is an attribute, (or set of attributes) then its attribute closure is denoted as A+.

Algorithm:

The following algorithm will help us in finding the closure of an attribute;
	result := A;
while (changes to result) do
for each functional dependency B → C in F do
begin
if B ⊆ result then result := result ∪ C;
end


Let us discuss this algorithm with an example;

Assume a relation schema R = (A, B, C) with the set of functional dependencies F = {A → B, B → C}. Now, we can find the attribute closure of attribute A as follows;

Step 1: We start with the attribute in question as the initial result. Hence, result = A.

Step 2: Take the first FD A → B. Its left hand side (i.e, A) is in the result, hence the right hand side can be included with the result. This lead to result = AB.

Step 3: Take the second FD B → C. Its left hand side (i.e, B) is in the result (or subset of result), hence the right hand side can be included with the result. Now, result = ABC.

We have no more attributes. Hence the algorithm exits. As the result, A+ includes all the attributes of relation R. now we would say A+ is ABC. And, A is one of the keys of the relation R.

Example:

Question: Consider a relation R with the schema R(A, B, C, D, E, F) with a set of functional dependencies F as follows;

{AB → C, BC → AD, D → E, CF → B}

Find the super key for this relation.

Solution:

Finding (AB)+

First, let us find (AB)+ , the closure of attribute set AB (We do not need to test all the attributes individually. Instead we can try with those attributes that are on the left hand side of any FD.)

·         result = AB

·         As AD determines C, C can be included with the result. Hence, result = AB U C = ABC.

·         According to second FD BC → AD, the attributes B and C together can identify both A and D. Hence, result = ABC U AD = ABCD

·         If you know D, you will know E according to third FD D → E. so, result = ABCD U E = ABCDE.

·         F cannot be identified by any of these FDs. And our result can include ABCDE attributes only.

Hence, the solution is AB is not the key for R. The reason is, the closure of AB, i.e., (AB)+ does not include all the attributes of R in the result.

Finding (ABF)+

Then what would be the key for R?. As I told you initially, we can try all the left hand side attributes (because they are the determiners), or some of their combination. From the above example, we would get an idea to include F as one of the key attribute. So, let us try to find (ABF)+ , the closure of attribute set ABF.

·         result = ABF

·         from the above example, we could say (AB)+ = ABCDE

·         we know C and F, then according to CF → B, we would deduce the result as ABCDEF, which includes all the attributes from R.

Hence, the solution is ABF is one of the key for R. because, (ABF)+ includes all the attributes of R.

3.3 NORMAL FORMS
Given a relation schema, we need to decide whether it is a good design or we need to decompose it into smaller relations. Such a decision must be guided by an understanding of what problems, if any, arise from the current schema.

To provide such guidance, several normal forms have been proposed. If a relation schema is in one of these normal forms, we know that certain kinds of problems cannot arise. The normal forms based on FDs are first normal forrn (1NF), second normal forM (2NF) , third norrnalform(3NF), and Boyce-Codd normal form (BCNF). These forms have increasingly restrictive requirements: Every relation in BCNF is also in 3NF, every relation in 3NF is also in 2NF, and every relation in 2NF is in 1NF.
3.3.1 Normalization of Database: Database Normalisation is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step process that puts data into tabular form by removing duplicated data from the relation tables.

Normalization is used for mainly two purpose,

· Eliminating reduntant(useless) data.

· Ensuring data dependencies make sense i.e data is logically stored.

3.3.2 Problem Without Normalization: Without Normalization, it becomes difficult to handle and update the database, without facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if Database is not Normalized. To understand these anomalies let us take an example of Student table.
[image: image9.png]401

402

403

404

S_Name
Adam
Alex
Stuart

Adam

S_Address
Noida
Panipat
Jammu

Noida

Figure 3.6 Student table

Subject_opted
Bio

Maths.

Maths.

Physics




· Updation Anamoly : To update address of a student who occurs twice or more than twice in a table, we will have to update S_Address column in all the rows, else data will become inconsistent.

· Insertion Anamoly : Suppose for a new admission, we have a Student id(S_id), name and address of a student but if student has not opted for any subjects yet then we have to insert NULL there, leading to Insertion Anamoly.

· Deletion Anamoly : If (S_id) 401 has only one subject and temporarily he drops it, when we delete that row, entire student record will be deleted along with it.

3.3.3 Normalization Rule: Normalization rule are divided into following normal form.

1. First Normal Form

2. Second Normal Form

3. Third Normal Form

4. BCNF

5. Multivalve dependency (4NF, 5NF)
First Normal Form(1NF): As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values. It should hold only atomic values.

Example: Suppose a company wants to store the names and contact details of its employees. It creates a table that looks like this: [image: image10.png]Student

Adam

Alex

Stuart

Age
15
14

17
Figure 3.7: Student table

Subject
Biology, Maths
Maths.

Maths




In First Normal Form, any row must not have a column in which more than one value is saved, like separated with commas. Rather than that, we must separate such data into multiple rows i.e the value should be automic in row and column intersection.  Using the First Normal Form, data redundancy increases, as there will be many columns with same data in multiple rows but each row as a whole will be unique.
[image: image11.png]Student

Adam

Adam

Alex

Stuart

Age
15
15
14

17

Figure 3.8 Student table in INF

Subject
Biology
Maths.
Maths.

Maths




Second Normal Form (2NF): As per the Second Normal Form there must not be any partial dependency of any column on primary key. It means that for a table that has concatenated primary key, each column in the table that is not part of the primary key must depend upon the entire concatenated key for its existence. If any column depends only on one part of the concatenated key, then the table fails Second normal form.

[image: image12.png]Case 1: Anotin KEY

Figure Partial Dependencies




In example of First Normal Form there are two rows for Adam, to include multiple subjects that he has opted for. While this is searchable, and follows First normal form, it is an inefficient use of space. Also in the above Table in First Normal Form, while the candidate key is {Student, Subject}, Age of Student only depends on Student column, which is incorrect as per Second Normal Form. To achieve second normal form, it would be helpful to split out the subjects into an independent table, and match them up using the student names as foreign keys.

[image: image13.png]Student | Age Student | subject
Adam 15 Adam Biology
Alex 14 e Maths
Swat |17 Alex Maths
Stuart Maths

Figure3.9 New Student Table New Subject Table introduced for 2NF




In Student Table the candidate key will be Student column, because all other column i.e Age is dependent on it.  In Subject Table the candidate key will be {Student, Subject} column. Now, both the above tables qualifies for Second Normal Form and will never suffer from Update Anomalies. Although there are a few complex cases in which table in Second Normal Form suffers Update Anomalies, and to handle those scenarios Third Normal Form is there.
Third Normal Form (3NF): Let R be a relation schema, F be the set of FDs given to hold over R, X be a subset of the attributes of R, and A be an attribute of R. R is in third normal form if, for every FD X -+ A in F, one of the following statements is true:

• A E X; that is, it is a trivial FD, or

• X is a super key, or

• A is part of some key for R.

[image: image14.png]Ausibute A Case 1: A notin KEY

( Awibwesx ) Case2 Aisin KEY

Transitive Dependencies




Third Normal form applies that every non-prime attribute of table must be dependent on primary key, or we can say that, there should not be the case that a non-prime attribute is determined by another non-prime attribute. So this transitive functional dependency should be removed from the table and also the table must be in Second Normal form. For example, consider a table with following fields.
[image: image15.png]Student_Detail Table :

Student_id

Student_name DoB

Street

city ‘ state ‘ zip

Figure 3.10 Student_Detail table Not in 3NF





In this table Student_id is Primary key, but street, city and state depends upon Zip. The dependency between zip and other fields is called transitive dependency. Hence to apply 3NF, we need to move the street, city and state to new table, with Zip as primary key.

[image: image16.png]New Student_Detail Table :

Student_id ’ Student_name ‘ DoB zip
Address Table :
zip ‘ Street city state

Figure 3.10 Table in 3NF





The advantage of removing transitive dependency is,

· Amount of data duplication is reduced.

· Data integrity achieved.
Boyce and Codd Normal Form (BCNF): Let R be a relation scherna, R be the set ofFD’s given to hold over R.  X  be a subset of the attributes of R, and A be an attribute of R.  R is in Boyce-Codd normal form if, for everyFD X ( A in F, one of the follo\ving statements is

true:

• A E X; that is, it is a trivial FD, or

• X is a superkey.

Boyce and Codd Normal Form is a higher version of the Third Normal form. This form deals with certain type of anamoly that is not handled by 3NF. A 3NF table which does not have multiple overlapping candidate keys is said to be in BCNF. For a table to be in BCNF, following conditions must be satisfied:

· R must be in 3rd Normal Form

· and, for each functional dependency ( X -> Y ), X should be a super Key.
A relation is said to undergo BCNF normal form if it is in 3rd normal form and if the following systems are noticed.  
· The relation will have multiple composite keys

· Further the composite keys will have common attribute

· And the key of first composite key is functionally dependent on key of other composite key.

For example 
[image: image17.png]Stu_name Major Staff marks
Raju Physics Prof.John | 80
Raju Computers David 97

& Physics Prof. John 7
Hari Computers David 86
Srinu Physics Prof. John 72

Figure 3.11 Student_Major table NOT in BCNF





In the above example the two composite keys are

1. Stu_name and Major

2. Stu_name and Staff

[image: image18.png]{

Stu_name

Major

Staff

marks

Stu_name and Major acts as Composit Key 1

¥

b

Stu_name

Major

Staff

marks

Stu_name and Staff acts as Composit Key 2





Further we can notice that stu_name is the common attribute in both the keys.

Also it is noticed that there is functional dependency between Major and Staff. Whenever the major subject is Physics, it is dealt by staff Prof. John, Computers is dealt by Mr. David. So if many students takes major subject as Physics, in the corresponding column Prof. John will be repeatedly occurs and the same in the case of Computers.  The redundancy can be avoided by applying the BCNF normalization techniques.
[image: image19.png]Stu_name Major marks Major staff
Raju Physics 80 Prof. lohn
Raju Computers 97 Computers David
G Physics 77

Hari Computers 86

Srinu Physics 72

Figure 3.12 Table Student and

Table Major after BCNF normalization





The relation is decomposed into two sub relations Student and Major tables with columns 

Student{stu_name, Major, marks}  and Major{Major, staff}

Multi valued Dependency: The multivalued dependency X ((  Y holds in a relation R if for each value of X, there exists a definite set of values of Y. whenever we have two tuples of R that agree in all the attributes of X, then we can swap their Y components and get two new tuples that are also in R.
Formal definition of Multi valued dependency: 

[image: image20.png]Let R be a relational schema and let & C Rand 8 C R (subsets). The multivalued dependency

a»p
(which can be read as & multidetermines ) holds on R if, in any legal relation r(R),

7 such that

for all pairs of tuples ¢, and ¢, in 7 such that £ [a] = #;[a]. there exist tuples ¢ and ¢ in

= 4ol

tifo] =tz[o] = t;
tl8) =13
(R~ fl =t:[R—§]
4[] = (6]
t4[R—p|=t[R-§]
In more simple words the above condition can be expressed as follows: if we denote by (z, ¥, 2) the tuple having
values for a, 8, R — a — B collectively equal to @, y, 2, correspondingly,
then whenever the tuples (a, b, ) and (a, d, ) existin 7. the tuples (a, b, €) and (a, d, ¢) should also exist in -





Consider this example of a relation of university courses, the books recommended for the course, and the lecturers who will be teaching the course:
[image: image21.png]University courses
Course| Book | Lecturer
AHA | Silberschatz | John D
AHA | Nederpelt | John D
AHA | Silberschatz | William M
AHA | Nederpelt | William M
AHA | Siberschatz | Christian G
AHA | Nederpelt | Christian G
0SO | Siberschatz | John D

0SO | Siberschatz | William M
Figure 3.13 University Courses with Multi valued dependency




Because the lecturers attached to the course and the books attached to the course are independent of each other, this database design has a multivalued dependency; if we were to add a new book to the AHA course, we would have to add one record for each of the lecturers on that course, and vice versa. Put formally, there are two multivalued dependencies in this relation: {course} ({\displaystyle \twoheadrightarrow }( {book} and equivalently {course} ({\displaystyle \twoheadrightarrow }({lecturer}. Databases with multivalued dependencies thus exhibit redundancy. In database normalization, fourth normal form requires that either every multivalued dependency X ({\displaystyle \twoheadrightarrow }( ->- <<<<Y is trivial or for every nontrivial multivalued dependency {\displaystyle \twoheadrightarrow } X ({\displaystyle \twoheadrightarrow }( Y, X is a super key. A multivalued dependency {\displaystyle \twoheadrightarrow } X ({\displaystyle \twoheadrightarrow }(Y is trivial if Y is a subset of X, or if  X U Y is the whole set of attributes of the relation.

3.4 PROPERTIES OF DECOMPOSITIONS
3.4.1 Lossless-Join Decomposition: Let R be a relation schema and let F be a, set of FDs over R. A decomposition of R into two schemas with attribute sets X and Y is said to be a lossless-join decomposition with respect to F if, for every instance T of R that satisfies the dependencies in F,  π x(r)  x  π y(r) = T. In other words, we can recover the original relation from the decomposed relations.
[image: image22.png][(s[rn]
e —— ST [ pI[ell
P[]  [S1FP] 0] &
ST[pl [ s [pl & [pl| a3
s2 [p2 | a2 52 | p2 51| pI| a3
o] &3 3 [l 3 [ pl| el
Instance 7 wsp(r) wsp(r) s wpp(r)

Figure 3.14 Instances Illustrating Lossy Decompositions




3.4.2 Dependency Preservation: A decomposition of a relation R into R1, R2, R3, …, Rn is dependency preserving decomposition with respect to the set of Functional Dependencies F that hold on R only if the following is hold;

(F1 U F2 U F3 U … U Fn)+ = F+

where,

F1, F2, F3, …, Fn – Sets of Functional dependencies of relations R1, R2, R3, …, Rn.

(F1 U F2 U F3 U … U Fn)+ - Closure of Union of all sets of functional dependencies.

F+ - Closure of set of functional dependency F of R.

If the closure of set of functional dependencies of individual relations R1, R2, R3, …, Rn are equal to the set of functional dependencies of the main relation R (before decomposition), then we would say the decomposition D is lossless dependency preserving decomposition.
Few key points:
· We would like to check easily that updates to the database do not result in illegal relations being created.

· It would be nice if our design allowed us to check updates without having to compute natural joins.

· We can permit a non-dependency preserving decomposition if the database is static. That is, if there is no new insertion or update in the future.

Example:

Assume R(A, B, C, D) with FDs A→B, B→C, C→D.

Let us decompose R into R1 and R2 as follows;

R1(A, B, C)

R2(C, D)

The FDs A→B, and B→C are hold in R1.

The FD C→D holds in R2.

 All the functional dependencies hold here. Hence, this decomposition is dependency preserving. 

3.5 SCHEMA REFINEMENT IN DATABASE DESIGN
Database designers typically use a conceptual design methodology, such as ER design, to arrive at an initial database design. Given this, the approach redundancy can be eliminated and normaliazation can be attained with schema refinement by decomposition of relation.

3.5.1 Constraints on an Entity Set:  Consider the Hourly_Emp relation again. The constraint that attribute ssn is a key can be expressed as FD
{ssn} ( {ssn, name, lot, rating, hourly_wages, hours_worked }

For clarity, we write this FD as S(SNLRWH, using a single letter to denote each attribute. In addition, the constraint that the hourly_wages attribute is determined by the rating attribute is an FD:  R(W
This leads to redundant storage of rating wagge associations.  It cannot be expressed in terms of ER model.  Only FDs that determine all attributes of a relation (key constraints) can be expressed in the ER model.  Therefore, we could not detect it when we considered Hourly_Employees as an entity set during ER modeling.

To avoid the problem we can introduce an entity set called Wage_Table(with attributes rating and hourly_wage) and a relationship set Has_Wages associating Hourly_Employees and Wage_Table. 
3.5.2 Constraints on a Relationship Set: Suppose that we have entity sets Parts, Suppliers and Departments, as well as a relationship set Contracts that involves all of them.   We refer to the schema for contracts as CQPSD. A contract with contract id C specifies that a supplier S will supply some quantity Q of a part.  P to a department D.  
We assume a policy that a department purchases at most one part from any given supplier.  Therefore, if there are several contracts between the same supplier and department, we know that the same part must be involved in all of them.  This constraint is an FD, DS -> P.

Again we have redundancy and its associated problems.  We can address this situation by decomposing Contracts into two relations with attributes CQSD and SDP.  Intuitively, the relation SDP records the part supplied to a department by a supplier, and the relation CQSD records additional information about a contract.  It is unlikely that we would arrive at such a design solely through ER modeling.   Since it is hard to formulate an entity or relationship that corresponds naturally to CQSD.

3.5.3 Identifying Attributes of Entities:  This example illustrates how a careful examination of FDs can lead to a better understanding of the entities and relationships underlying the relational tables; in particular, it shows that attributes can easily be associated with the 'wrong' entity set during ER design. The ER diagram in Figure 19.11 shows a relationship set called Works_In that is similar to the Works_ln relationship set but with an additional key constraint indicating that an employee can work in at most one department. 
[image: image23.emf]
Using the key constraint, we can translate this ER diagram into two relations:

Workers(ssn, name, lot, did, since)

Departments( did, dname, budget)

The entity set Employees and the relationship set Works_in are mapped to a single relation, Workers.  
Now suppose employees are assigned parking lots based on their department, and that all employees in a given department are assigned to the same lot. This constraint is not expressible with respect to the ER, diagrarm of Figure 19.11.  It is another example of an FD: did (lot. The redundancy in this design can be eliminated by decomposing the Workers relation into two relations:
Workers2( ssn, name, did, since)

Dept_Lots(did, lot)
The new design can be as follows.

[image: image24.emf]
3.5.4 Identifying Entity Sets: Consider a variant of the Reserves schema used earlier. Let Reserves contain attributes S, B, and D as before, indicating that sailor S has a reservation for boat B on day D. In addition, let there be an attribute G denoting the credit card to which the reservation is charged.  We use this example to illustrate how FD information can be used to refine an ER design. In particular, we discuss how FD information can help decide whether a concept should be modeled as an entity or as an attribute.

Suppose every sailor uses a unique credit card for reservations. This constraint is  expressed by the FD S(C. This constraint indicates that, in relation Reserves, we store the credit card number for a sailor as often as we have reservations for that sailor, and we have redundancy and potential update anomalies.   A solution is to decompose Reserves into two relations with attributes SBD and SC. intuitively, one holds information about reservations, and the other holds information about credit cards.

It is instructive to think about an ER design that would lead to these relations. One approach is to introduce an entity set called Credit_Cards, with the sale attribute cardno, and a relationship set Has_Card associating Sailors and Credit_Cards. By noting that each credit card belongs to a single sailor, we can map Has_Card and Credit_Cards to a single relation with attributes SC. We would probably not model credit card numbers as entities if our main interest in card numbers is to indicate how a reservation is to be paid for; it suffices to use an attribute to model card numbers in this situation.

A second approach is to make cardno an attribute of Sailors. But this approach is not very natural- sailor may have several cards, and we are not interested in all of them. Our interest is in the one card that is used to pay for reservations, which is best modeled as an attribute of the relationship Iteserves.  A helpful way to think about the design problem in this example is that we first make cardno an attribute of Reserves and then refine the resulting tables by taking into account the FD information.  
3.6 Other kinds of dependencies: FDs are probably the most common and important kind of  constraint from the point of database design.  However, there are several other kinds of dependencies.

In particular, there is a well developed theory of database design using multi valued dependencies.  By taking such dependencies into account, we can identify potential redundancy problems that cannot be detected using FDs alone.

3.6.1 Multivalued Dependencies: Suppose that we have a relation with attributes course, teacher, and book, which we denote as CTB. The meaning of a tuple is that teacher T can teach course C, and book B is a reccnnmended text for the course. There are no FDs; the key is CTB. However, the recommended texts for a course are independent of the instructor. The instance shown in Figure 19.13 illustrates this situation.

[image: image25.emf]
Note three points here:

1. The relation schema CTB is in BCNF; therefore we would not consider decomposing it further if we looked only at the FDs that hold over (CTB).

2. There is redundancy. The fact that Green can teach Physics101 is recorded once per recommended text for the course. Sirnilarly, the fact that Optics is a text for Physics101 is recorded once per potential teacher.

3. The redundancy can be eliminated by decomposing CTB into CT and CB

The redundancy in this example is due to the constraint that the texts for a course are independent of the instructors, which cannot be expressed in terms of FDs.
This constraint is an example of a  multivalued dependency.  Ideally, we should model this situation using two binary relationship sets, Instructors with attributes CT and Text with attributes CB. Because these are two essentially independent relationships, modeling them with a single ternary relationship set with attributes CTB is inappropriate.

 Let R be a relation schema and let X and Y be subsets of the attributes of R.  Intuitively, the multivalued dependency X((Y is said to hold over R if, in every legal instance r of R, each X value is associated with a set of Y values and this set is independent of the values in the other attributes.

Formally, if the MVD X ((Y holds over R and Z = R - XY, the following must be true for every legal instance r of R
If t1 E r, t2 E r and tl.X == t2.X, then there must be some t3 E r such that tl.XY = t3.XY and t2.Z = t3.Z
Figure 19.14 illustrates this definition. If we are given the first two tuples and told that the MVD X ((Y holds over this relation, we can infer that the relation instance must also contain the third tuple. Indeed, by interchanging the roles of the first two tuples treating the first tuple as t2 and the second tuple as t1--we can deduce that the tuple t4 must also be in the relation instance.
[image: image26.png]Xlvlz
[a [b | a|— tupletr
[a [® [ tuple 2
a | b [ |—tuplety
o | by a | —tuple ™

Figure 19.14 Illustration of MVD Definition




[image: image27.png]*+  MVD Complementation: If X —— Y, then X —=— R~ XY.
+  MVD .Augmentation: If X »— Yand W2 Z then WX —— YZ

*  MVD Transitivity: If X —=— Yand Y —— Z then X —=— (Z—=Y).

As an exanlple of the use of these rules. since we have C'—— T over CTB,
MVD complelnentation allows us to infer that C —— OTB — CT as well. that
1s, C—— B. The remaining two rules relate FDs and MVDs:

+ Replication: If X — Y, then X =— Y.

+  Coalescence: If X »— Yand there is a ¥ such that W' n I is elapty.
W7 and Y2 Z then X — Z




3.6.2 Fourth Normal Form: 
Fourth Normal form is a direct generalization of BCNF. Let R be a relation schema, X and Y be nonempty subsets of the attributes of R, and F' be a set of dependencies that includes both FDs and MVDs. R is said to be in fourth normal form (4NF), if, for every MVD   X((Y  that holds over R, one of the following statements is true:
[image: image28.emf]
In reading this definition, it is important to understand that the definition of a key has not changed, the key must uniquely determine all attributes through FDs alone. X ((Y is a trivial MVD if Y [image: image29.emf] X  [image: image30.emf]  R or XY= R; such that MVD always hold.
The relation CTB is not in 4NF because C (( T is a nontrivial MVD and C is not a key. We can eliminate the resulting redundancy by decomposing CTB into CT and CB; each of these relations is then in 4NF.
To use MVD information fully, we must understand the theory of MVDs. However, the following result due to Date and Fagin identifies conditions-detected using only FD information!~-under which we can safely ignore MVD information.
Using MVD information in addition to the FD infornlation will not reveal any  redundancy. Therefore, if these conditions hold, we do not even need to identify all MVDs.  If a relation schema is in BCNF, and at least one of its keys consists of a single attribute, it is also in 4NF.
An im.portant assumption is implicit in any application of the preceding result: The set of FDs identified thus far is 'indeed the set of all FDs that hold over the relation. This assulllption is important because the result relies on the relation being in BCNF, which in turn depends on the set of FDs that hold over the relation.
We illustrate this point using an example. Consider a relation schema ABCD and suppose that the FD A ( BCD and the MVD B ((C are given. Considering only these dependencies, this relation schema appears to be a counter example to the result. The relation has a simple key, appears to be in BCNF, and yet is not in 4NF because B(( C: causes a violation of the 4NF conditions.  Let us take a closer look.

[image: image31.png]Figure 19.15 Three Tuples fom a Legal Instance of ABCD




Figure 19.15 shows three tuples from an instance of ABCD that satisfies the given MVD B(( C.  From the definition of an MVD given tuples t1 and t2 it follows that tuple t3 must also be included in the instance. Consider tuples t2 and t3, from the given FD A(,BCD and the fact that these tuples have the same A value we can deduce that C1 = C2. Therefore we see that the FD B(C must hold over ABCD whenever the FD A (BCD and the MVD B((C hold. If B( C holds, the relation ABCD is not in BCNF (unless additional FDs make B a key)
3.6.3 Join Dependencies:  A join dependency is a further generalization of MVDs. A join dependency (JD) [image: image32.emf] {R1… Rn} is said to hold over a relation R if R1…. Rn is a lossless-join decomposition of R.

An MVD X((Y over a relation R can be expressed as the join dependency [image: image33.emf] {XY, X(R)(Y)}. As an example, in the GTB relation, the MVD C(( T can be expressed as the join dependency [image: image34.emf]{CT, CB}.  Unlike FDs and MVDs, there is no set of sound and complete inference rules for IDs.
3.6.4 Fifth Normal Form: A relation schema R is said to be in fifth normal form (5NF) if, for every FD [image: image35.emf]{R1 , ... , Rn} that holds over R, one of the following statements is true:

• Ri == R, for same i, or

• The lD is implied by the set of those FDs over R in ·which the left side is

a key for R.
The second condition deserves same explanation, since we have not presented inference rules for FDs and FDs taken together. Intuitively, we must be able to show that the decomposition of R into {R , ...  Rn} is lossless-join whenever the key dependencies hold. JD t><J {R I , .. , , Rn } is a trivial JD if Rj = R for Same i; such a JD always holds.  The following result, also due to Date and Fagin, identifies conditions. Again, detected using only FD information---under -which we can safely ignore JD information:
If a relation schema is in 3NF and each of its keys consists of a single attribute, it is also in 5NF.

The conditions identified in this result are sufficient for a relation to be in 5NF but not necessary. The result can be very useful in practice because it allows us to conclude that a relation is in 5NF 'Without ever ' identifying the MVDs and JDs that may hold over the relation.
3.6.5 Inclusion Dependencies: Inclusion dependencies are very intuitive and quite common. However, they typically have little influence on database design (beyond the ER design stage).

A foreign key constraint is an example of an inclusion dependency; the referring column(s) in one relation must be contained in the primary key column(s) of the referenced relation.
The main point to bear in mind is that we should not split groups of attributes that participate in an inclusion dependency. 
[image: image36.emf]
UNIT-III


Introduction to Schema Refinement - Problems Caused by redundancy, Decompositions - Problem related to decomposition, Functional Dependencies - Reasoning about FDS, Normal Forms - FIRST, SECOND, THIRD Normal forms - BCNF - Properties of Decompositions - Loss less join Decomposition, Dependency preserving Decomposition, Schema Refinement in Data base Design - Multi valued Dependencies - FOURTH Normal Form, Join Dependencies, FIFTH Normal form, Inclusion Dependencies.

















Department of CSE, GPCET | 90 


