1. Implement the following Multidimensional Data Models i.Star Schema ii.Snowflake Schema iii.Fact Constellation

Consider a fully normalized data model. Now think of exactly the opposite, where you fully denormalize your relational data model so that you have only one flat record like a spreadsheet with a very wide row. Now back up from this flat record just a little bit so that you have a data model that is only two levels deep; one big table, and several small tables that the big table points back to. This is a STAR schema.

Thus a true star data model has two attributes, it is always two levels deep, and a true star model always contains only one large table that is the focus of the model. There are of course variations of this concept as SNOWFLAKE and FACT CONSTELLATION.

STAR DESIGN is the out-growth of a special need, the need to analyze large amounts of data in an interactive manner quickly with no opportunity to rely on the existence of canned queries. And for this need, a design theory was eventually constructed. Of course to make a design theory useful is must be implementable in a practical way.

Databases using star designs always get their data from somewhere else. They are a form or reporting database. As such, star schemas are not required to follow normalization rules as we are accustomed to. The presumption is that feeding systems have already applied edits and constraints on the data so the star data repository does not need to.

When you see your star design trying to accommodate other ideas and other purposes that focus on something other than the fact table, you should re-evaluate the direction you are heading in. Star designs are for analyzing the one fact table central to the design of the model, and doing anything else with your star data model reduces its effectiveness as an analytic data store.

Deviations from true star models usually manifest in two ways: 1) the desire to retain the relationships between dimensions in the star model which often take the form of SNOWFLAKING, and 2) the existence of two or more fact tables in the design as FACT CONSTELLATION.

A great way to appreciate the difference between RELATIONAL DESIGN THEORY and STAR DESIGN THEORY is to see an example of how the data models for the same data will differ for the two design strategies.

Remember, both design are valid, each however is attempting to address a different need. The relational data model seeks to model data as it exists in the real world, with important relationships in the data accounted for. The star data model seeks to reincarnate the relational model into a design that makes slicing and dicing one specific subject area easy and fast.

 One of the keys to understanding star models is to look at the practicality of querying the data. In a star model getting the total quantity sold by project is the same as getting the total qty sold by department is the same as getting the total quantity sold by category is the same as ... whereas doing this in the relational model is more complex with each query being potentially very different.

[image: image93.png](¥ Weka Explorer

Prepracess | Classfy | Cluster | Assacate | Select atrbutes | Visualize

) (opentt..) [Open Ofostomins rabvance o sbutee |

Openie T | |
Fier
Discretize -5 10-1-1.0 R frst-ast ety
Curtent reation Selected atrbute
Relaion lsbor-neq-data-ekaikers.nsuper. Atriutes: 17 Name: durstion Type: Nominal
Instances: 57 Sum o weghts: 57 Mising: 1(2%) Distinct: 3 Uricue: 0(0%)
Atriutes o Label Count Weight
1121 10 100]
T | e f L a
3[{(e-LeT o 0.0
o Harre 4[etaT o 0.0
s[(.62T 7 2.0
2[Fwoge-ncreasefist-year o[22 o 0.0 5
3[Cwage-ncrease-second-year 7[@22.4T o 0.0
4 Clwase-ncrease-thic-year 2T n nn]
5 [lcost-of ving-adjstment
& Cherioohons [ctasss cass womy o [visushee Al
7 Clpenson
& Jatandbypay z
5| ahit-dfferental
10| Jeducation-alowance
11 [Jsttutory holdys i
12 [Jvacation
13 [Jlongtern-dsabity-sssstence
16 [Tcontrbution-o-gentaplon ¥ e

Status
o

Figure 1.1 Relational and Star Schema

There are some interesting differences between our relational model and our star model:

1) the relational model shown here is five levels deep whereas the star model shown here is only two.

2) the relational model does not suggest by its design that any of the data it models is special whereas to the star model, the fact table is the centre of the universe.

3) the relational model carefully maps the relationships between tables treating relationships between so-called reference tables as just as important as all other relationships whereas the star model relies on its load processes to load data correctly based on the relationships in the data, but then can (and in this case did) toss all these relationships out of its design because it cares not about them since dealing with them after the data is loaded takes our focus away from the fact data and a star design wants all eyes on the fact data.

4) the relational model is equally adept at answering questions about any of the tables in its model whereas the star model is about slicking and dicing the fact table and little else matters. Indeed, the star model does very poorly in answering questions about its dimensions because its focus is on the fact table.

The table create statements of our fact table and its original relational table.

create table sale

(

 sale_id number not null primary key

 , sale_date date not null

 , qty_sold number not null

 , item_use_id number not null

--

, foreign key (item_use_id) references item_use

)

/

create table sale_fact

(

 sale_id number not null primary key

 , sale_date date not null

 , qty_sold number not null

--

 , dept_id number not null

 , emp_id number not null

 , project_id number not null

 , item_id number not null

 , category_id number not null

--

 , sale_time_id number not null

 , emp_salary_range_id number not null

 , item_price_range_id number not null

--

 , emp_salary_NA number not null

 , item_price_NA number not null

--

, foreign key (dept_id) references dept_dim

, foreign key (emp_id) references emp_dim

, foreign key (project_id) references project_dim

, foreign key (item_id) references item_dim

, foreign key (category_id) references category_dim

, foreign key (sale_time_id) references time_dim

, foreign key (emp_salary_range_id) references emp_salary_range_dim

, foreign key (item_price_range_id) references item_price_range_dim

)

/

1) At the beginning of our fact table, we have the same basic table as we saw in our relational model. SALE_FACT is one-to-one with SALE. One row in SALE_FACT is one row in SALE.
2) We have tossed out SALE.ITEM_USE_ID because the information given by this table has no value in our star design. Instead we flattened the relationships all the way up the relational foreign key chain in our relational model with the ultimate result being that keys in all our reference tables become foreign keys in our fact table. Subsequently we created dimensions in our star model for the data pointed to by each of these foreign keys. The result is that the relationships between dimension tables which roughly speaking are our original relational model reference tables is lost in favour of directly representing these relationships on our fact table.

3) We have added new data in our star design that did not exist in our relational design. More specifically we created a TIME DIMENSION which represents time in our system. Think of it as all the different interesting ways to represent a date. We also took the salary on the emp table and created a bucketing scheme which we then refered to in our fact table. We did the same for item price as well. The result is our EMP_SALARY_RANGE_DIM and ITEM_PRICE_RANGE_DIM. This new data would be accounted for in our load process when our fact table is loaded.

4) We also placed salary from our original emp table and item price from our original item table as NOT AGGREGATABLE (or not summable) metrics on our fact table. Consider for example that if you sum qty_sold from sale_fact for a specific employee, you get the total quantity of items sold for that employee. This is because qty_sold is summable for our fact table. But if you take the sum of emp_salary from sale_fact for a specific employee you do not get the total salary of the employee; you get the employee's salary times however many rows were selected (well more or less assuming the employee's salary does not change over time), a rather meaningless number. You cannot sum emp_salary off the fact table, nor can you sum item_price. This is why they have the _NA suffixes on them.
Relational Model

create table dept

(

 dept_id number not null primary key

 , dept_name varchar2(30) not null unique

)

/

create table emp

(

 emp_id number not null primary key

 , emp_name varchar2(30) not null unique

 , salary number not null

 , dept_id number not null

 , foreign key (dept_id) references dept

)

/

create table project

(

 project_id number not null primary key

 , project_name varchar2(30) not null unique

 , emp_id number not null

 , foreign key (emp_id) references emp

)

/

create table category

(

 category_id number not null primary key

 , category_name varchar2(30) not null unique

)

/

create table item

(

 item_id number not null primary key

 , item_name varchar2(30) not null unique

 , price number not null

 , category_id number not null

 , foreign key (category_id) references category

)

/

create table item_use

(

 item_user_id number not null primary key

 , item_id number not null

 , project_id number not null

 , unique (item_id,project_id)

 , foreign key (item_id) references item

 , foreign key (project_id) references project

)

/

create table sale

(

 sale_id number not null primary key

 , sale_date date not null

 , qty_sold number not null

 , item_use_id number not null

 , foreign key (item_use_id) references item_use

)

/

Star Model
create table dept_dim

(

 dept_id number not null primary key

 , dept_name varchar2(30) not null unique

)

/

create table emp_dim

(

 emp_id number not null primary key

 , emp_name varchar2(30) not null unique

)

/

create table emp_salary_range_dim

(

 emp_salary_range_id number not null primary key

 , range_name varchar2(30) not null unique

 , range_start number not null

 , range_end number not null

)

/

create table item_dim

(

 item_id number not null primary key

 , item_name varchar2(30) not null unique

)

/

create table item_price_range_dim

(

 item_price_range_id number not null primary key

 , range_name varchar2(30) not null unique

 , range_start number not null

 , range_end number not null

)

/

create table project_dim

(

 project_id number not null primary key

 , project_name varchar2(30) not null unique

)

/

create table category_dim

(

 cateogory_id number not null primary key

 , category_name varchar2(30) not null unique

)

/

create table time_dim

(

 time_id number not null primary key

 , day_date date not null unique

 , week_date date not null

)

/

create table sale_fact

(

 sale_id number not null primary key

 , sale_date date not null

 , qty_sold number not null

--

 , dept_id number not null

 , emp_id number not null

 , project_id number not null

 , item_id number not null

 , category_id number not null

--

 , sale_time_id number not null

 , emp_salary_range_id number not null

 , item_price_range_id number not null

--

 , emp_salary_NA number not null

 , item_price_NA number not null

--

, foreign key (dept_id) references dept_dim

, foreign key (emp_id) references emp_dim

, foreign key (project_id) references project_dim

, foreign key (item_id) references item_dim

, foreign key (category_id) references category_dim

, foreign key (sale_time_id) references time_dim

, foreign key (emp_salary_range_id) references emp_salary_range_dim

, foreign key (item_price_range_id) references item_price_range_dim

)

/

Developing a Data Warehouse

The phases of a data warehouse project listed below are similar to those of most database projects, starting with identifying requirements and ending with executing the T-SQL Script to create data warehouse:

1. Identify and collect requirements

2. Design the dimensional model

3. Execute T-SQL queries to create and populate dimension and fact tables

Identify and Collect Requirements

We need to interview the key decision makers to know, what factors define the success in the business? How does management want to analyze their data? What are the most important business questions, which need to be satisfied by this new system?

We also need to work with persons in different departments to know the data and their common relations if any, document their entire requirement which need to be satisfied by this system. Let us first identify the requirement from management about their requirements.

Need to see monthly, quarterly and yearly sales.

Comparison of sales on various time periods.

Comparison of sales of different items.

Need to know which item has more demand on which location?

Need to study trend of sales by branch?

Design the Dimensional Model

We need to design Dimensional Model to suit requirements of users which must address business needs and contains information which can be easily accessible. Design of model should be easily extensible according to future needs. This model design must supports OLAP cubes to provide "instantaneous" query results for analysts.

Dimension: The dimension is a master table composed of individual, non-overlapping data elements. The primary functions of dimensions are to provide filtering, grouping and labelling on your data. Dimension tables contain textual descriptions about the subjects of the business.

Let us identify dimensions related to the above case study :item, branch, location and time.

Measure: A measure represents a column that contains quantifiable data, usually numeric, that can be aggregated. A measure is generally mapped to a column in a fact table.

Let us define the Measures in our case: dollars_sold and units_sold.

Fact Table: Data in fact table are called measures (or dependent attributes), Fact table provides statistics for sales broken down by item, branch, location and time dimensions. Fact table usually contains historical transactional entries of your live system, it is mainly made up of Foreign key column which references to various dimension and numeric measure values on which aggregation will be performed.

Let us identify what attributes should be there in our Fact Sales Table.

Foreign Key Column: time_key,item_key,branch_key,

location_key. Measures: dollars_sold and units-sold.

Design the Relational Database

We have done some basic workout to identify dimensions and measures, now we have to use appropriate schema to relate this dimension and Fact tables.Few popular schemas used to develop dimensional model are as follows:

E.g. Star Schema, Snow Flake Schema, Star Flake Schema, Distributed Star Schema, etc.

Star schema the diagram resembles a star, with points radiating from a center. The center of the star consists of fact table and the points of the star are the dimension tables.

Let us create Our First Star Schema, please refer to the below figure:

[image: image2.png]item

item_key

Sales Fact Table item_name
¥ brand

- -
supplier_type

branch_key -
ocation

branch

location keya, .
branch_key K, location_key

..
oAl ot
branch_type city

country

Figure 1.2 Star Schema

Using the Code

Let us execute our T-SQL Script step by step to create table and populate them with appropriate test values. Follow the given steps to run the query in SSMS (SQL Server Management Studio 2012).

1. Open SQL Server Management Studio

2. Connect Database Engine

3. Open New Query editor

4. Copy paste Scripts given below in various steps in new query editor window one by one

5. To run the given SQL Script, press F5

Step 1 : Create database for your Data Warehouse in SQL Server:

Createdatabase Sales_DW

Go
Use Sales_DW

Go
Step 2 : Create time dimension table in Data Warehouse which will hold time details.

Create table DimTime

(

time_key datetime primary key identity,

day_of_the_week varchar(20),

month varchar(15),

quarter varchar(10),

year varchar(4)

)

go
Fill the time dimension with some sample Values

Step 3 : Create item Dimension table
Create table DimItem

(

item_Key int primary key identity,

item_Name varchar(50),

brand varchar(25),

type varchar(15),

supplier_type varchar(15)

)

Go
Fill the item dimension with sample Values

Step 4 : Create branch Dimension table

Create table DimBranch

(

branch_key int primary key identity,

branch_name varchar(50),

branch_type varchar(15)

)

Go
Fill the branch Dimension with sample Values

Step 5 : Create location Dimension table
Create table DimLocation

(

location_key int primary key identity,

street varchar(100)not null,

city varchar(100),

state varchar(100),

country varchar(100)

)

Go
Fill the Dimension location with sample values

Step 6 : Create Fact table to hold all your transactional entries of sales with appropriate foreign key columns which refer to primary key column of your dimensions; you have to take care while populating your fact table to refer to primary key values of appropriate dimensions.

Create Table FactSales

(

time_key datetime ,

item_key int ,

branch_key int ,

location_key int ,

dollars_sold float,

units_sold flaot

)

Go
Add Relation between Fact table and dimension tables:

-- Add relation between fact table foreign keys to Primary keys of Dimensions
AlTER TABLE FactSales ADD CONSTRAINT _

FK_ time_key FOREIGN KEY (time_key)REFERENCES DimTime(time_key);

AlTER TABLE FactSales ADD CONSTRAINT _

FK_ item_key FOREIGN KEY (item_key)REFERENCES DimItem(item_key);

AlTER TABLE FactSales ADD CONSTRAINT _

FK_ branch_key FOREIGN KEY (branch_key)REFERENCES DimBranch(branch_key);

AlTER TABLE FactSales ADD CONSTRAINT _

FK_ location_key FOREIGN KEY (location_key)REFERENCES DimLocation(location_key);

Go

Populate your Fact table with historical transaction values of sales with proper values of dimension key

values. After executing the above T-SQL script, your

sample data warehouse for sales will be ready, now

you can create OLAP Cube on the basis of this data warehouse.

ii.Snowflake Schema: The main difference between star and snowflake schemas is in the definition of dimension tables.

The single dimension table for Item in the star schema is normalised in the snowflake schema resulting in new Item and Supplier tables. The Item Dimension table now contains the attributes item_key,item_name,brand,type and supplier_key, where supplier_key is linked to the supplier Dimension table containing supplier_key and supplier_type information as shown below.

Similarly the single Dimension table location in the star schema is normalised into two tables location and city.The city_key in the new location table links to the city Dimension as shown below.

[image: image3.png]Sales Fact Table supplier

- Supplier_K«
.

supplier_key”

item_key

branch_key

. .
R » location
el R location_keye.., —"
oo — 7 *& location_key
branch_key N =
branch street
ranch_name I -

branch_type - city
city_key
city
state_or_province
country

Figure 1.3 Snowflake Schema

iii.Fact Constellaion or Galaxy Schema: Sophisticated applications may require multiple Fact tables to share Dimension tables.

The below schema specifies two Fact tables sales , shipping. The sales Fact table is identical to that of star schema.

The shipping table has five Dimensions or keys , item_key,time_key,shipper_key, from_location, to_location and two measures dollars_cost and units_shipped.

The dimension tables for time,item and location are shared between sales and shipping fact tables as shown below.

[image: image4.png]item

Shipping Fact Table
item_key
Sales Fact Table item_name

brand . 5

8 supplier_type shipper_key ..

item_key *°
branch_key . from_location

branch location_key location o Mot
e
branch_key ou location_key _
branch_name street
branch_type lcity _
province_or_state
country shipper
..

shipper_ke;'
shipper_name
*++{ location_key
shipper_type

Figure 1.4 Fact Constellation or Galaxy Schema
2. Perform data Pre-processing using WEKA
1.ADD

1. Start Weka – you get the Weka GUI chooser window.

[image: image1.png]emp

S

Ery=—
@saary
wamsm

i

ik

3 tamam

TR
* pamio O

smp o
Semp e

aagon am
[Beamgy 5

e

ject_dim
Sromen
Erey—

ten
Remezy 8 e
S i

Sane

==

amp_ssy_shge o

By e

s prcs sangs_aim

Dn e ane s

e
g s
S e

tms g

S

Do e
Susiia

st am

Figure 2.1 Weka GUI chooser window
[image: image83.png]'kmeans.c" [dos] 78L, 1: written
[cse11760cse prograns1§ cc kneans.c
means.c: In function ‘main
means.c:17: uarning: return type of ‘main’ is not
[cse1i780cse programs1$ -/a.out

Enter no. of items

Enter n items

Enter no of clusters

1:3 1:4

“int?

2. Click on the Explorer button to get the Weka Knowledge Explorer window.

Figure 2.2 Weka Knowledge Explorer window
[image: image84.png](¥) Weka GUI Chooser.

Program Viualzation Tools Help

yWEKA

Applcations

‘The University

Wakta Envirorment for Knowldge Anslyss
Version 37,4

(01999 - 2011

The Universty of Walkato

Hamiton, New Zesland

3. Click on the “Open File.” button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. Weather.arff). You get the following:

Figure 2.3 Weka Weather.arff File
4.Click on Choose and select filters/unsupervised/attribute/Add.

[image: image85.png]| Weka Explorer

[opentier.] [openime

) [opente] [cemra

Current relation

Relaton: None:
Instances: None

Attributes

Attributes: None.
5um of weights: Hone.

Selected attrbute.
Name: one.
Missing: Hone.

Distnct: Nore

Type: Hone
Unigue: None

o [reer

Status

welcome to the Weka Explorer

Figure 2.4 Weka Filter Selection
5.Then click on the area right of the Choose button. You get the following:

[image: image86.jpg]Weka Explorer

= e

Preprocess | sy | Custer | Assote | Sekctatibutes | Viualee|

e e | e .

=)

Gurent et e~
Relaton: s Atvbutes: S ames outook T o
Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
LU No. Label Count Weight
. L
Tovrest 8 i0
o 5 50
™ e L dow [e
Y S s ey (o) - [zt
I fenperoure
3|ty
4| windy o
b .
e
o Pt

Figure 2.5 Weka Object Editor
Click on More to get more information about these parameters.

6. Click on the Apply button to do the Addition and see how it is Added in the Selected attribute window.

[image: image87.jpg]Weka Explorer
Preprocess | Gasafy | Cster | Assocte | Sect atirbutes | visuaze|
[openfin | [Openw] [Omence | [[Genermwe][o | [Edt.][sawen]
Fiter
e B horly
|| E—
o= Name: outook Type: Nomnal
it Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
5 unspervied e e Cont weght
o) aurbute 3 tamy |5 50
[Zoveresst 4 0
. Slramy 5 50
* Addbpression
® AddD s pay (Nom)
o adduose
* Addvalues
* Center
@ CrangedateFormat
@ Clsssassigner
.
° cony
- © Disaetie
o Frstorder
o InterquartieRange

Figure 2.6 Weka File with added attribute

Try other parameters for the filter and see how the Addition changes. Don’t forget to reload the original (numeric) relation or Undo the Addition before applying another one.

2.Remove

 1. Start Weka – you get the Weka GUI chooser window.

[image: image5.png](¥) Weka GUI Chooser.

Program Viualzation Tools Help

yWEKA

Applcations

‘The University

Wakta Envirorment for Knowldge Anslyss
Version 37,4

(01999 - 2011

The Universty of Walkato

Hamiton, New Zesland

Figure 2.7 Weka GUI chooser window
2. Click on the Explorer button and you get the Weka Knowledge Explorer window. Click on the “Open File.” button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. weather.arff). [image: image6.png]| Weka Explorer

[opentier.] [openime

) [opente] [cemra

Current relation

Relaton: None:
Instances: None

Attributes

Attributes: None.
5um of weights: Hone.

Selected attrbute.
Name: one.
Missing: Hone.

Distnct: Nore

Type: Hone
Unigue: None

o [reer

Status

welcome to the Weka Explorer

Figure 2.8 Weka Knowledge Explorer window
[image: image88.jpg]ek fiters.unsupervised.attribute. Add

About

Aninstance fiter that adds a new atiribute to the dataset.

attributelndex st

o —
strbuteTye | anenestotate
dateFormat | yyyy-MM-ddTHH:mm:ss

nominalLabels

Figure 2.9 Weka Weather.arff File
3. Click on Choose and select filters/unsupervised/attribute/Remove.

[image: image7.jpg]Weka Explorer

= e

Preprocess | sy | Custer | Assote | Sekctatibutes | Viualee|

e e | e .

=)

Gurent et e~
Relaton: s Atvbutes: S ames outook T o
Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
LU No. Label Count Weight
. L
Tovrest 8 i0
o 5 50
™ e L dow [e
Y S s ey (o) - [zt
I fenperoure
3|ty
4| windy o
b .
e
o Pt

Figure 2.10 Weka Filter Selection
4. click on the area right of the Choose button. You get the following
[image: image8.jpg]LA —

Preprocess | sy | Custer | Assote | Sekctatibutes | Veualee|

Normaize
NumericCleaner
NumericToginary
NumericToNominal
NumericTransform
Obfuscate
PartitonedultFiter
PDiscretize
PrincpalComponents
RandomProjection
RandomSubset

RemoveByName
R

tecssssc0c000s0s0000000e

([Copenfes) (CopntRe:] [OpenoBie] [Genmate] [
iter
Festorder
InterquartieRane e
Name: ook Type: Mo
MakeIndicator Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
MathEpresson
i o labe Count weght
MergeTadues [y s 50
NornalTobnary Sfoverst |4 0
NomialTstng Slrany 5 50

Class: play (Nom)

S

i A

Figure 2.11 Weka Filter Selection properties
5. You see here the default parameters of this filter. Enter the Indices of attribute to be remove Click on more to get more information about these parameters.

[image: image9.jpg]ek fiters.unsupervised.attribute Remove:
About

Afilterthat removes a range of atributes from the ataset

atirbutelndces |5

Capabitties

invertSelection [Faise

[| I | B | =

Figure 2.12 Weka Object Editor
6. Click on the Apply button to do the remove.

[image: image10.jpg]‘Weka

reprocess | asaty | Guser | Assoute | Seectatbutes | Viualze|
(openfes] (CopmtR] [(openonie) (Genmatee] [_undo] [Bt] (
Gurentrelaton seectedatobute
Relaton: weather e, fers.n Atvbutes 4 Name: outook Type: Homna
Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
bt No. Label Count Weight
Ao) [Civer) [Creem] T — 50
Slany 5)
2 Jienperatre
5|ty
oy
Class: windy (Nom)
f
T

Figure 2.13 Weka Final File

Try other parameters for the filter and see how the remove changes. Don’t forget to reload the original (numeric) relation or Undo the remove before applying another one.

3. Replace Missing Values

The Pima Indians dataset is a good basis for exploring missing data.Some attributes such as blood pressure (pres) and Body Mass Index (mass) have values of zero, which are impossible. These are examples of corrupt or missing data that must be marked manually.You can mark missing values in Weka using the NumericalCleaner filter.

1. Start Weka – you get the Weka GUI chooser window.

[image: image11.png](¥) Weka GUI Chooser.

Program Viualzation Tools Help

yWEKA

Applcations

‘The University

Wakta Envirorment for Knowldge Anslyss
Version 37,4

(01999 - 2011

The Universty of Walkato

Hamiton, New Zesland

Figure 2.14 Weka GUI chooser window
2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

[image: image12.png]| Weka Explorer

[opentier.] [openime

) [opente] [cemra

Current relation

Relaton: None:
Instances: None

Attributes

Attributes: None.
5um of weights: Hone.

Selected attrbute.
Name: one.
Missing: Hone.

Distnct: Nore

Type: Hone
Unigue: None

o [reer

Status

welcome to the Weka Explorer

Figure 2.15 Weka Knowledge Explorer window
3. Click on the “Open File.” button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. diabetes.arff). You get the following:

[image: image13.png]' Weka Explorer [ESE RS

[[Preprosess | Ciassity | Cluster | Assooiate | Selectatrioutes | visualzs |
[openfie. J[openuRL. | opendB.. | [Generat Eait save.
Filter
| choose |None | Apply |
Current relation Selected aftribute
Relation: pima_diabetes Altributes: 9 Name: preg Type: Numeric
Instances: 768 ‘Sum of weights: 768 Missing: 0 (0%) Distinct: 17 Unique: 2 (0%)
Attriutes Statistic [Value
Winimum 0
Haimum 17
(o J L mone J[e [Patem | Hean 3845
StaDev 337
No. |

Class: class (Nom)]| visuaize Al

Coumaawm
Cooooool
3
B

Figure 2.16 Weka diabetes.arff
4. Click the “Choose” button for the Filter and select NumericalCleaner, it us under unsupervized.attribute.NumericalCleaner.
[image: image14.png]' Weka Explorer [ESE RS

[Preprocess | Grassiy | Gluster | Associat | setecttoutes | viuaie |

[ovenfie. | opemuRL. | [opendB.. || Generate Edit save,
Fitter
Discrelize & [157E308 -min-default-1.79769313486231 57E308 -max 1.7976931 3486231 57E308 -max-default 1.7976931 348623 | _Apply
[Fistorder
g [FixedDictionaryStringToWordVet SEEEEIGILE
L) InterquartileRange Aftributes: 9 Name: mass Type: Numeric
KemelFiter Sumofweights: 768 | | Missing: 0 (0%) Distinct 248 Unique: 76 (10%)

Wakelndicator

B Statstic [value.
[watnErpression | P 5
[MergelnfrequentNominalValues P 671
[MergeManyValues ert Pattern Mean 31993
[MergeTwovalues StaDev 7.884
[NominalToinary |
[NominalTosting
Normalize
[NumericToinary —
[NumericToNominal N | Class: class (Nom)]| visuaize Al
[NumericTransform
[optuscate
[} ParttionedhultFiter
PKIDiscretize

Eilter Removefiter | | Close

1 23 o

Figure 2.17 Weka Select NumericCleaner Data Filter
4. Click on the filter to configure it.

5. Set the attributeIndicies to 6, the index of the mass attribute.
[image: image15.png]O Weka Explorer

weka.gui GenericObjectEditor
Preprocess | | @ Wt
= wekafiters unsupenvised atiribute NumericCleaner
Open . " Eat.] Save.]
Filter
A fierthat cleanses' the numeric data from values fhat are foo vore |
‘small to0 big or very close to a certain value (e s
choose |nu opaniiies | | [[797E913486291STEADE macefaut 17976091 348623 | ooy |
Current relation
Relation: pin afiibutelndices |6 Type: Numeric
Instances: 768 Distinct 248 Unique: 76 (10%)
P doseTo (0.0 [Value
0
closeToDefault | 0.0 67.1
Al 31993
CloseToTolerance | 1.0E-6 ==
No. | [N
10w debug [Faise
200 pf
3
e ceeras [
5 (] in _
[| doNotCheckCapabiliies | False. v)| visuaiize an |
70 p
80 a includeClass [False v
90 d
invertSelection (False v
maxDefault | 17976931348623157E308
maxThreshold | 1.7976931348623157E308
minDefault |-1.7976931348623157E308
TR
minThreshold |-1.7976931348623157E308 Py oot
Status.
Log | x0
@z Open. | [saw. Cancel | -~

\‘L@M\QUL

(
2 © =

Figure 2.18 Weka Select NumericCleaner properties
6. Set minThreshold to 0.1E-8 (close to zero), which is the minimum value allowed for the attribute.

7. Set minDefault to NaN, which is unknown and will replace values below the threshold.
[image: image16.png]O Weka Explorer

[Preprocess | @ weka.gui GenericObjectEditor

weka fiters unsupenised afribute NumericCleaner

Openfile " Edit] Save.]
Filter
A fierthat cleanses' the numeric data from values fhat are foo vore |
small, too big or very close to a cerain value (¢ p g p
Choose | Gepaniiies | | [1P931348623157E308 sloseto 00 loseto-defaut00 -0 Avps |
Current relation
Relation: pir afiibutelndices |6 Type: Numeric
Instances: 768 Distinct 248 Uniaue: 76 (10%)
P doseTo (0.0 [Value
0
closeToDefault | 0.0 67.1
Al 31993
CloseToTolerance | 1.0E-6 ==
No. | [N
10w debug [Faise
200 pf
3
e ceeras [
5 (] in _
[| doNotCheckCapabiliies | False. v)| visuaiize an |
70 b
80 a includeClass [False v
90 o
invertSelection (False v

maxDefault | 1.7976931348623157E308

maxThreshold | 1.7976931348623157E308

minDefault | NaN

minThreshold | 0.1E-8 23 X

J(_ o« J[ocmm | Lo] e
e|o]

open.. | [saw.

(
2 © =

Figure 2.19 Weka configuring NumericCleaner properties
8. Click the “OK” button on the filter configuration.

9. Click the “Apply” button to apply the filter.

Click “mass” in the “attributes” pane and review the details of the “selected attribute”. Notice that the 11 attribute values that were formally set to 0 are not marked as Missing.
[image: image17.png]' Weka Explorer [ESE RS

[Preprocess | Grassiy | Gluster | Associat | setecttoutes | viuaie |

[openfie J [openur. |[openbB. || Generate J (Undo J (Edit J (save.

Filter.

Choose | NumericCleaner -rmin 1.0E-G -ri-default NaN -rmax 1.7976931348623157E308 -max-default 1.79769313486231 57E308 -closeto 0.0 -closeto-default 0.0-cla | Apply |

T selected atriute
Relation: pima_diabetes-weka filters unsupenvised.attrib. Aftributes: 9 Name: mass Type: Numeric
Instances: 768 ‘Sum of weights: 768 Missing: 11 (1%) Distinct 247 ‘Unique: 76 (10%)
—— sttt vaiue
Wi o2
ot 571
[J nene J[men [eatem o Szt
Suder sozs
No T

| Class: class (Nom))| visuaiize an |

62 a2 o

Figure 2.20 Weka Missing Data Marked
In this we marked values below a threshold as missing.

You could just as easily mark them with a specific numerical value. You could also mark values missing between a upper and lower range of values.

Next, let’s look at how we can remove instances with missing values from our dataset.
Remove Missing Data

Now that you know how to mark missing values in your data, you need to learn how to handle them.

A simple way to handle missing data is to remove those instances that have one or more missing values.

You can do this in Weka using the RemoveWithValues filter.

Continuing on from the above to mark missing values, you can remove missing values as follows:

1. Click the “Choose” button for the Filter and select RemoveWithValues, it us under unsupervized.instance.RemoveWithValues.

[image: image18.png]Weka Explorer

[Preprocess | Classify [Cluster | Associate [select atrributes | visualize |

| opentie.. | OpentRL.. | [OpenDE.. || Generate.. | undo | [Edit. || save.. |
Filter
v (& weka &}-last M [Apply
I
v & fiters
& Selected attribute
A [AlFitter
[MultiFitter utes: 9 Name: mass Type: Numeric
> (& supervised fights: 768 Missing: 11 (1% Distinct 247 Unique: 76 (10%)
A ¥ (& unsupervised Statistic | Value
1l > (8 awibute Minimum 182
v (& instance Maximum 67.1
[NonSparseTosparse fanammn} Mean 32457
[Randomize : StdDev 6.925
[RemoveDuplicates &
[RemoveFolds N

() RemoveFrequentvalues
[RemoveMisclassified
[RemovePercentage

[RemoveRange

[Resample
[Reservoirsample
[sparseToNonsparse

A

[SubsetBvExnression

emoveWithalue:

¢

v

[Class: class (vom)

) [visualize Al

Fiter. Remove filter | | Close

sz

Figure 2.21 Weka Select RemoveWithValues Data Filter

2. Click on the filter to configure it.

3. Set the attributeIndicies to 6, the index of the mass attribute.

4. Set matchMissingValues to “True”.

[image: image19.png]o @][=]

O Weka Explorer

[Freproess | ¢| © welesuiGeneicObjecttor
Preprocess = —
= wekafiters unsupenised instance RemoveWitnValues
Openfile 1 J (Edit. J [Save.
Fiter
Filters instances according fo the value of an atiibue wore |
jatiacaal o Capabilties | (LApoly]
Current refation
Relation: pin attibuteindex |6 Type: Numeric
Instances: 768| Distinct: 247 Unique: 76 (10%)
Attriutes debug |False [value |
82
doNotCheckCapabiliies [False 671
Al 32457
donfFiterAfierFrstBatch | Faise 6925
No. | [N
10 o invertSelection [Faise
200 pf
30 matchhlissingValues [True
4ds
5 (] in —
modifyHeader [False v visuaize |
7L ps
80 a nominalindices | firstiast
9l]al
splitPoint | 0.0
[open J L sae J [oK
1o s
oz s ot

Figure 2.22 Weka configuring RemoveWithValues Data Filter

5. Click the “OK” button to use the configuration for the filter.

6. Click the “Apply” button to apply the filter.

Click “mass” in the “attributes” section and review the details of the “selected attribute”.

Notice that the 11 attribute values that were marked Missing have been removed from the dataset.
[image: image20.png]' Weka Explorer
[Preprocess | Grassiy | Gluster | Associat | setecttoutes | viuaie |

[opentie J [openuri. | opendB. |[Genemte J (undo J (Edit J (sawe
Fiter
Choose | RemoveithValues -5 0.0-C 6 -L firstlast - Aoy |
Current refation Selected attribute
Relation: pirma_iabetes-weka fiers unsupervised.ativ. Attributes: 9 Name: mass Type: Numeric
Instances: 757 Sum of weights: 757 Hissing: 0 (0%) Distinct: 247 Uniaue: 76 (10%)
Attributes Statitic [Value |
Winimum 82
Waxmum 671
L Al R D =D Wean 32457
StaDev 6925
No. | [Name |

| Class: class (Nom)

)| visuaiize an |

a2

Figure 2.23 Weka Missing Values Removed
Note, undo this operation by clicking the “Undo” button.

Impute Missing Values

Instances with missing values do not have to be removed, you can replace the missing values with some other value.

This is called imputing missing values.

It is common to impute missing values with the mean of the numerical distribution. You can do this easily in Weka using the ReplaceMissingValues filter.

Continuing on from the first recipe above to mark missing values, you can impute the missing values as follows:

1. Click the “Choose” button for the Filter and select ReplaceMissingValues, it us under unsupervized.attribute.ReplaceMissingValues.

[image: image21.png]eoe Weka Explorer
[Preprocess | Classify [Cluster [Associate | select atributes | Visualize |

| opentie.. | OpentRL.. | [OpenDE.. || Generate.. | undo | [Edit. || save.. |
Filter
[Randomsubset I3 _Aply
[Remove
5 Selected attribute
g [RemoveByName
[RemoveType utes: 9 Name: preg T G
7] RemoveUseless ights: 768 Missing: 0 (0% Distinct: 17 Unique: 2 (0%)
A [7] RenameAttribute Statistic | Value
o [RenameNominalValues Minimum 0
[Reorder Maximum 17
ReplaceNi Paten | ||| wean 3.845
[ReplaceMissingWithUserConstal T StdDev 337
[? ReplaceWithMissingValue —
[sortLabels N
[standardize | Class: class (Nom) (7| visualize All |
[sringToNominal
[stringToWordVector 245
[swapValues
[TimeSeriesDelta v
[TimeSeriesTranslate v
[E] Y
> (& instance v
<C u3

A

Filtr. Remove filter | | Close

Figure 2.24 Weka ReplaceMissingValues Data Filter

2. Click the “Apply” button to apply the filter to your dataset.

Click “mass” in the “attributes” section and review the details of the “selected attribute”.

Notice that the 11 attribute values that were marked Missing have been set to the mean value of the distribution.
[image: image22.png]' Weka Explorer
[Preprocess | Grassiy | Gluster | Associat | setecttoutes | viuaie |

[opentie J [oenurL. | openDB. [Geneme. || undo J (Edit.) (Save.
Filter
Choose | ReplaceMissingValues Apply |
Current relation Selected aftribute
Relation: pima_iabetes-weka fters.unsupenised.afiv Attributes: 9 Name: mass Type: Numeric
Instances: 768 Sum of weights: 768 Hissing: 0 (0%) Distinct 248 Uniaue: 76 (10%)
Attriutes Statistic [Value |
Vinimum 182
Maimum 67.1
[m J v [men [pawm tiean ot
StaDev 6675
No. | [Name |

| Class: class (Nom)

)| visuaiize an |

a2

Figure 2.25 Weka Imputed Values

Try other parameters for the filter and see how the replace values changes. Don’t forget to reload the original (numeric) relation or Undo the replaced before applying another one.

4.Standardize

1. Start Weka – you get the Weka GUI chooser window.

[image: image23.png](¥) Weka GUI Chooser.

Program Viualzation Tools Help

yWEKA

Applcations

‘The University

Wakta Envirorment for Knowldge Anslyss
Version 37,4

(01999 - 2011

The Universty of Walkato

Hamiton, New Zesland

Figure 2.26 Weka GUI chooser window
2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

[image: image24.png]| Weka Explorer

[opentier.] [openime

) [opente] [cemra

Current relation

Relaton: None:
Instances: None

Attributes

Attributes: None.
5um of weights: Hone.

Selected attrbute.
Name: one.
Missing: Hone.

Distnct: Nore

Type: Hone
Unigue: None

o [reer

Status

welcome to the Weka Explorer

Figure 2.27 Weka Knowledge Explorer window
3. Click on the “Open File.” button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. weather.arff). You get the following:

[image: image25.jpg]Weka Explorer

= e

Preprocess | sy | Custer | Assote | Sekctatibutes | Viualee|

e e | e .

=)

Gurent et e~
Relaton: s Atvbutes: S ames outook T o
Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
LU No. Label Count Weight
. L
Tovrest 8 i0
o 5 50
™ e L dow [e
Y S s ey (o) - [zt
I fenperoure
3|ty
4| windy o
b .
e
o Pt

Figure 2.28 Weka weather.arff
[image: image26.jpg]B

claton: weather

1: outiook | 2: temperature | 3: humidity [4 windy [5: play|
Nominal | Mumerc | Mumerc | Nomnsl | Nominal

L oy 50 SSOFASE o

2 sy .0 S0.0TRE o

[5 Jovercast 3.0 E.OFALSE yes

[rainy 0 BOFALSE yes

5 any &0 BD.OFALSE yes

6 rany 650 MOTRE o

[7Jovercast 640 S0[TRUE _yes

s Jsumy 74 SSOFASE o

lo sy EX TOFALSE yes

10 rany 7549 BDOFALSE yes

11 oy 7549 TOTRE yes

12 Jovercast 720 S0OTRUE yes

15 Jovercast 510 T50FALSE yes

14 rainy 719 SLOTRUE o

Undo

Figure 2.29 Weka weather.arff in viewer
4. Click on Choose and select filters/unsupervised/attribute/Standardize.

[image: image27.jpg]Weka Explorer

reprocess |

[opente

) [opentrr

] (

OpenDs.

) [ceneate o

Fiter

sssessssssssssssssens

NomericCleaner
NumericToBinary
NumericToNominal
NumericTransform
Obfuscate
PartitonedultFiter
PDiscretize
PrincpalComponents
RandomProjection
RandomSubset
Remove
RemoveByName
RemoveType
Removeliseless
RenameAtrbute
Reorder
ReplaceMissingValues
SortLabels

StringToNorinal
StringTowordvector

utes: None
ights: None

Pattern

Selected attrbute
Name: None
Missing: None

Edt.

Distinct: None

Save.

Apply

Type: None
Unigue: None

< Cmsima)

Figure 2.30 Weka Standardize Filter
Then click on the area right of the Choose button. You get the following:

[image: image28.jpg]weka.
wek fiters unsupervised.attribute. Standardze.
About

Standardizes all numeric atributes in the given datasetto have
zero mean and unitvariance (apartfrom the class attrioute, if
sel).

ignoreClass [False

Copabiities

‘ IE

| v |

Concel

Figure 2.31 About Weka Standardize Filter

You see here the default parameters of this filter. Click on more to get more information about these parameters.

5. Click on the Apply button to do the Standatization. Then select edit tab to view data and see how it standard the values in the data window.

[image: image29.jpg]2]

elation: weather neka. fiters.unsut

rvised. atrbute. Standardize-weka. i

1: outiook | 2: temperature | 3: humidity | 4 windy | 5: play

ot | | | | o
RN T T T S
[y [os7es0n.. 080259 TRE o
5 overcat | 1854730952 0. L PALSE
[oy oSt L300 FASE s
5oy [osi7saer.| . A s
TG L CTRENT LT
T overet L5k Lo e
oz LB PASE e
TR WENT T
0 fany [02170t ST A s
1y 2178301 5 BESRE s
2 overct 923902072, oIS [RE s
15 overcast | 1130393630, 064586 FASE s
oy [0 103, 05087 [RE o
tnio | [Coc)

Figure 2.32 Data after Weka Standardize Filter

Try other parameters for the filter and see how the standardize changes. Don’t forget to reload the original (numeric) relation or Undo the standardize before applying another one.

3. Perform Discritization of data using WEKA
[image: image89.jpg]vt SN ¢

Preproces | sy | Custer | Assodte | Sokctatibutes | Veualee|

[

e | e] s e e |
e
[Choose | dd - unnamed C st =
Curentreiaton seeced atvinte
Reaton: weathe Atviutes: 6 ane: umamed Type: .
Instances: 14 Sum of weights: 14 Missing: 14 (1. Distinct: Unique: 0
A Statistic. Value
. e ean e 2
2 empersiae | re——
3| jhumidity = B
5 ey =
5[CIplay

Remove]

Status

1. Start Weka – you get the Weka GUI chooser window.

Figure 3.1 Weka GUI chooser window
2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

[image: image90.png](¥ Weka Explorer

Prepracess | Classfy | Cluster | Assaciate | Select atributes | Visualize

[

) omentrie) (omnoe] (

oo (

Fiter

Current relation

Relaton: labor-neg-data
Instances: 57

Attributes

Attributes: 17
5um of weights: 57

(

=

J

Selected attrbute.
Name: duration
Missing: 1(2%)

Type: Numeric

Distinct: 3 Uniaue: 0 (0%)

Statistic
Minimum

Ve
1

Maxinum

3

[wageincrease-secand-year

[wage-ncrease third-year

Mean

Stdbev

Jcost-of-iving-adjustment

jworking-hours

Jpension

standby-pay.

jhift-dfferertial

Jeducation-allwance.

statutory-holidays

[vacation

ongterm-disabilty-assistance

Jcontrbution-to-dentabplan

[ctasss cass womy

o [reer

Figure 3.2 Weka Knowledge Explorer
3. on the “Open File.” button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. labor.arff). You get the following:

[image: image91.png](¥ Weka Explorer

Prepracess | Classfy | Cluster | Assaciate | Select atributes | Visualize

T T | T | O | O | B | B

Fiter

[Dwela ~
5 2 fkers

® AlFiter Selected attrbute.
® HulFiter Mtributes: 17 Name: duration Type: umeric
£ supervised Fuelghts: 57 Missing: 1(2%) Distinct; 3 Uniaue: 0 (0%)

& 5 umsupervised statistic valve
5 sttt i 1

add Pattern i B
I

Mean 2161
Stdbev 0.708

AddExpression
AddD

Addoise =
Addvalues

Center

ChangeDateFormat

Classassigner

[ctasss cass womy o [visushee Al

Copy 2

FirstOrder
InterquartieRangs —

Makelndcator —
MathEspression —
Mergetanyvalues v

seeecsssssscssssse

Status
o

Figure 3.3 Weka labor.arff
4. Click on Choose and select filters/unsupervised/attribute/Discretize.

[image: image92.png]+ weka gui GenericObjectEditor

weka.fiters.unsupervised.atirbute Discretize

About

Aninstance fiter that discretizes a range of numeric
attributes in the dataset into nominal attributes.

atirbutelndices

desredWeightOfinstancesperlnterval

Fase

Fase

Fase

Fase

Fase

I,

<

‘

Figure 3.4 Weka Discretize Filter
5. Then click on the area right of the Choose button. You get the following:

Figure 3.5 Weka Discretize Filter properties

You see here the default parameters of this filter. Click on More to get more information about these parameters.

6. Click on the Apply button to do the discretization. Then select one of the original numeric attributes (e.g. temperature) and see how it is discretized in the Selected attribute window.

Figure 3.6 Weka file after Discretize Filter

Try other parameters for the filter and see how the discretization changes. Don’t forget to reload the original (numeric) relation or Undo the discretization before applying another one.

4. Perform data transformation using an ETL tool

Microsoft SQL Server Integration Services (SSIS) is a platform for building high performance data integration solutions, including extraction, transformation, and load (ETL) packages for data warehousing.

SSIS includes graphical tools and wizards for building and debugging packages; tasks for performing workflow functions such as FTP operations, executing SQL statements, and sending e-mail messages; data sources and destinations for extracting and loading data; transformations for cleaning, aggregating, merging, and copying data; a management service, the Integration Services service for administering package execution and storage; and application programming interfaces (APIs) for programming the Integration Services object model.

The package that you create takes data from a flat file, reformats the data, and then inserts the reformatted data into a fact table. SSIS Designer is used to create a simple ETL package that includes looping, configurations, error flow logic and logging.
ETL using SSIS Lookup

LookUp is very useful transformation SSIS component it performs lookup operation by connecting input value with data-table or table dataset columns. It compares source data with existing table dataset and filters matching ones and un-matching ones.

[image: image30.jpg]BRI

Source File DataSource
#LookUP Operation

Master Table

For example let's say you have customer table with columns CusomerID, CustomerName, CustomerAddress,CustomerCityID where CusomerID is a primary key and CustomerCityID foreign key for City Table. And let's say you have a sample source data in this format : "1001 as CustomerID", "Shaam as CustomerName", "R-no 202 - mulund naka as CustomerAddress" & "Mumbai as CustomerCity". Now if you see in the destination Customer Table we have CustomerCityID which is foreign key [Integer value] and here in the source file we have string type value and for proper insert we need its Foreign key value. So to get this foreign key value we need to use #LookUp component which compares source records with City master table to get matching key values and same can be updated to Customer table.

So we will take up a Customer Table with columns : CustomerID, CustomerName, CustomerAmount, CustomerAddress, CustomerCountryID, CustomerISActive. We will also create master table for Country List name it as Country with columns : CountryId, CountryName. We will add up some country names to this master table.

When we load data from source file which contains "Customer Records with country name" before it reaches to destination table (Customer Table) in between we will apply LookUp component to compare source records with existing Country Table and filters matching ones and un-matching ones. On matching key values we will replace with country name and same we will update it to destination table.

Step 1
In this step we will go to our SQL management studio and create country master table with columns (CountryID, CountryName) respectively.After that we will some country names to this table.

[image: image31.png]Column Name. Data Type Allow Nulls

W w0

CountryName varchar(50)

[image: image32.png]

Step 2
Here in this step we will create CustomerMaster table with columns : CustomerID, CustomerName, CustomerAmount, CustomerAddress, CustomerCountryID, CustomerISActive respectively in SQL management studio as shown in below image.

[image: image33.png]Column Name

® Customerld
CustomerName
CustomerAmount
CustomerAddress
CustomerCountrylD.

b CustomerlsActive

Data Type
int

varchar(50)
money
varchar(50)

int

[Narcharo)

Allow Nulls

o

Step 3
Let's create our source file here for this example we will use flat file source and add up some dummy data as shown in below image.

[image: image34.png]File Edit Format View Help

| [Scustomer 1D, sCustomerName, SCustoner Amount , SCustomer Address, SO

ntry, scustormer IsActive

1001 ; shaam, 5655 ,Kur Ta Naka, India,y

1002;shiv, 7854, fulund Tink road,isa,y

1003 khadak 5ingh,4569,Kathmandii road,Nepal,N

1004 Robin Gangawane, 3354, makers road,Thailand,y
2ju,1245,MBR City,Dubai,N

1006,A11wyn Borde,wellington street,Australia ,v

Step 4
Open up MSBI studio and create SSIS project. Once done just drag and drop Data Flow task from toolbox and double click on it.

Step 5
Since our source file is Flat File so we will use Flat File Source component if you want you can use different modes like Excel and so on.

For now just drag and drop Flat File Source Component from SSIS toolbox and configure it.

[image: image35.png]D4 sSisLookup - Microsoft Visual Studio
FLE EDT VW PROKCT BULD DEBUG TEAM FORMAT ¢

-0 |8 -2 M9 - ¢ - b St - O - [Develop |

£ Cont o [ep———

DataFiowTask: gy Data Flow Task

Event Handirs

[EXg—

L

[image: image36.png]e

| Configurethe propeties used to connect to and obtain datafrom a tet file

Available External Columns
Name

| SCustomerlD.
SCustomerNiame.
‘SCustomerAmount
‘SCustomerAddress
‘SCustomerCourtry
‘SCustomerksActive:

Extemal Column Output Column
SCustomedd SCustomedD

I SCustomerName I SCustomerName
SCustomerAmount SCustomerAmount
SCustomeraddress SCustomeraddress
SCustomerCountry SCustomerCountry
SCustomedsictive

SCustomerlsActive

Since we are loading from a source file to make sure you have assigned proper data-type to it. To configure it go to Connection Manager -> double on flat file connection -> Advance and assign appropriate data-type as shown in below image.

[image: image37.jpg]Flat File Connection Manager

Misc
Name SCustomerlD
ColumnDelimiter ~ Comma (}

ColumnType Delimited
InputColumnWicth 0

Dstsprecision 0

Dstascale 0

DataType four-byte signed integer D]

OutputColumnWidti 0
TedQualiied True

Step 6
The most important step here we will drag and drop SSIS #LookUP component and attach it with Flat File Source component as shown in below image.

[image: image38.jpg]VNS TREANY = WCHIGENE VIS M
FLE EDIT VEW PROECT BULD DEBUG TEAM

-O B - M| -C | P s

2. ot o (IR @ Poranetes et

DataFionwTask: g Data Flow Task

[EX—

Select #LookUp and right click and configure. Once you right click and edit a modal box will pop up where you will see some menus on left hand side. Select General menu -> Specify how to handle rows that no matching.

This means in-case if rows are not matched due to some reason then what to do. Here we will say redirect rows to no match output means if rows are not matched for some reason then throw it via no match output. As we discussed earlier that #LookUp has got two outputs Matched and No Matched Output so we will throw unmatched rows via No Matched output. So in the drop drown choose "Redirect rows to no match output. This will also help us to identify erros occur during runtime.

Keep cache mode to Full Cache and Connection mode to OLEDB connection. Image representation is given below.

[image: image39.jpg]“This transform enables the performance of simple equi-joins between the input and a reference data set.

Connection
Columns.
Advanced
Error Output

© Partial cache

© No cache
Connection type
G 3

© OLE DB connection manager

Specify how to handle rows with no matching entries

[Redirect rows to no match output

Now from left-hand side menu select Connection to configure with our CountryMaster table. As we discussed earlier since we are doing this because we want CountryID to insert in CustomerMaster Table and in a source file we have countrynames. So we will compare CountryNames of source file with CountryMaster table using #LookUp and we will output only CountryID from that and same we will load it to our destination CustomerMaster Table.

Select Connection menu -> Choose you SQL connection name -> Select CountryTable as shown in below image.

[image: image40.png]Configure the properties used to insert data into a relational database using an OLE DB provider.

Connection Manager

Mappings.
Error Output

Specify an OLE DB connection manager, data source, or 2 data source view, and select the data access mode. f using
the SQL command sccess mode, speciy the SQL command either by typing the query or by using Query Builder. For
fost-load data occess,set the table update options.

‘OLE DB connection manager:

[VsrmnrceTam 7] [t

Data access mode:

e

[Keep identity Table lock
7] Keep nulls Check constraints.
.

Maximum insert commit size: 2147483647

Again from left hand side menu choose columns in that you will find Source column names and countrymaster table columns (right-side). Since we are comparing country name so just drag and drop arrow to countryname from both side (SCustomerCountry -> CountryName) and select output as CountryID as shown in below image.

[image: image41.jpg]“This transform enables the performance of simple equi-joins between the input and a reference data set.

Nanced Available Input Colu.
Error Output L Available Lookup Columns
‘SCustomeriD W Neme rores
‘SCustomerame
‘SCustomermourt
SCustomersddress
‘SCustomerCourty &
SCustomerisActive
Lookup Column Lookup Operation Output Alias
CountryD <add as new column> CountryD

All done now simply click on OK button and save it.

Step 7
For lookup Matched Output -> OLEBB Destination.

and run the project.

[image: image42.png]0 Integration Services Projectl] - Microsoft Visual Studio
File Edit View Project Build Debug Data Format SSIS Tools Window Help

-

Favorites
& Destination Assistant
% Source Assistant

4 Commen
> Agregate
52 Conditonal Spit
Yo Data Conversion
Derived Column
& Lookup
¥ Merge
3/ Merge Join
iy Mltcast
2 OLE 0B Command
£5] Row Court
S Scrpt Component
L& Stowly Changing Dimen.
1 son
¥ Union Al
4 Cther Transforms
g vt
§ Cache Transform
coc spitter
4, Crarscier Map

) Information...

Drag a toolbox item to SSIS
Designer to use it

58] 9 = & -] P [[Development -|| S 5 3¢ BB B <

- Solution Explorer

) FE

DataFlowTask: (33 Data Flow Task

I, Fiat il Source

=3

& o

OLE DB Destination.

& Projectparams
4 [Connection Managers
13 VISHWA-PC ETLdwh.cc|
4. Flat File Connection M|
4 [SSISPackages

Welcome to SQL Server Integration
Services (SSI5),

Samples

My First SIS Solution
This sample serves a5 an introduction.
o the SQL Server Integration Services
development environment.

Control Flow Basics
This sample introduces the
fundamental concepts of the control
flow.

Data Flow Basics
This sample introduces the
fundamental concepts of the data
flow.

Connecton Managers.

1 isHwa-PCETLAwh -] (project) Fiat File Connection Manager

Getting Started (..

1226
02-03-2018 |

[image: image43.png]0 Integration Services Projectl] (Running) - Microsoft Visual Studio.

File Edit View Project Build Debug Data Format SSIS Tools Window Help

Package.dtsx [Design] X

A- @] % aR[9 - | b |[pevelopment

| F Bl

5 -

bou @ a3

5., ControlFow [DataFlow | & Parameters | 5 Event Handers | 3 Package Explorer | Progress

| %3~

) [FE

DataFlowTask: (33 Data Flow Task

Lookup Match Outpt (5.

s

[Fpr—

22 Integration Services Projf
- & Projectparams
4 [Connection Managers
1§ VISHWA-PCETLdw]
4. Flat File Connectior
4 [SSISPackages
A Package.dtsx
2 Miscellaneous

Connecton Managers.

| VISHWA-PC.ETLAwh.

| orofect) Fat Fle Connection Manacer

© Eadoce exccuton conplete it sucess, Ck here (o s 1 desin e, o selecttop Dbugan from the ey mer

e o |2 e

5.Apriori algorithm using WEKA
1.open a NOTEPAD type the following and save it as marketbasketanalysis.arrf ARFF file

@relation marketbasketanalysis

@attribute transaction_id{100,200,300,400}

@attribute item1{0,1}

@attribute item2{0,1}

@attribute item3{0,1}

@attribute item4{0,1}

@attribute item5{0,1}

@data

100,1,1,1,0,0

200,1,1,0,1,1

300,1,0,1,1,0

400,1,0,1,0,0

1. Start Weka – you get the Weka GUI chooser window.

Figure 5.1 Weka GUI chooser window
2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

Figure 5.2 Weka Knowledge Explorer
3. In the preprocess tab click openfile and select the above created marketbasketanalysis.arff file

[image: image44.png]& Weka Explorer =8 B8 5
[Proptosess | Giassiy | Glster | Associste | selectattbutes | Visuaize |
opentie openvrL. | [openve. | [Generte £at J[sae
Fiter
| choose |None ety |
T selected atriute
Relation: marketbasketanalysis Aftributes: 6 Name: transaction_id Type: Nominal
Instances: 4 ‘Sum of weights: 4 Missing: 0 (0%) Distinct: 4 Unique: 4 (100%)
—— No.|Labe Count Weignt
T i o
2 20 i io
C m J[nee J[men J[_Patem 2 ! I
i i o
No
200 femt
30 rem2
10 rems
500 fome =
6 items. | Class: items (Nom)]| visuaiize an |
staus
ok

) -

= EEEEI

i

Figure 5.3 Weka marketbasketanalysis.arff file
5. check the attribute "transaction_id" and click on remove button.

[image: image45.png]& Weka Explorer =8 B8 5
[Proptosess | Giassiy | Glster | Associste | selectattbutes | Visuaize |
[openie. J(openurL.][openoB.][cenerae £at J[sae
Fiter
| choose |None ety |
T selected atriute
Relation: marketbasketanalysis Aftributes: 6 Name: transaction_id Type: Nominal
Instances: 4 ‘Sum of weights: 4 Missing: 0 (0%) Distinct: 4 Unique: 4 (100%)
—— No.|Labe Count Weignt
T i o
2 20 i io
C m J[nee J[men J[_Patem 2 ! I
i i o
No e
20 o1
30 rem2
10 rems
500 fome =
6 items. | Class: items (Nom))| visuaiize Al |
= I I I I
staus
ok

) -

oW [

Figure 5.4 Weka Remove Filter
6. goto associate tab

[image: image46.png]pmr
——

Resultlist right-click for options)

Figure 5.5 Weka Associate tab
7. besides the choose button you can see the apriori with few parameters.click on it

[image: image47.png]© Weka Explorer
Preprocess

Class implementing an Apriori-ype algorithm.

car (False v

Ifenabled class association rules are mined instead of (general) association rules

delta [0.05

doNotCheckCapabilties [False [T

lowerBoundMinSupport 0.1

minbletric |09

numRules |10

outputtemsets (False]

removeAliissingCols | Faise]

significancel evel | 1.0

treatzeroAshiissing (False. [T

upperBoundinsupport | 1.0

Figure 5.6 Weka Apriori parameters
And make the car attribute to true and numRules parameter to 5 to generate 5 rules.

NAME : weka.associations.Apriori : Class implementing an Apriori-type algorithm. Iteratively reduces the minimum support until it finds the required number of rules with the given minimum confidence. The algorithm has an option to mine class association rules. It is adapted as explained in the second reference.

OPTIONS

minMetric -- Minimum metric score. Consider only rules with scores higher than this value.

verbose -- If enabled the algorithm will be run in verbose mode.

numRules -- Number of rules to find.

lowerBoundMinSupport -- Lower bound for minimum support.

classIndex -- Index of the class attribute. If set to -1, the last attribute is taken as class attribute.

outputItemSets -- If enabled the itemsets are output as well.

car -- If enabled class association rules are mined instead of (general) association rules.

doNotCheckCapabilities -- If set, associator capabilities are not checked before associator is built (Use with caution to reduce runtime).

removeAllMissingCols -- Remove columns with all missing values.

significanceLevel -- Significance level. Significance test (confidence metric only).

treatZeroAsMissing -- If enabled, zero (that is, the first value of a nominal) is treated in the same way as a missing value.

delta -- Iteratively decrease support by this factor. Reduces support until min support is reached or required number of rules has been generated.

metricType -- Set the type of metric by which to rank rules. Confidence is the proportion of the examples covered by the premise that are also covered by the consequence (Class association rules can only be mined using confidence). Lift is confidence divided by the proportion of all examples that are covered by the consequence. This is a measure of the importance of the association that is independent of support. Leverage is the proportion of additional examples covered by both the premise and consequence above those expected if the premise and consequence were independent of each other. The total number of examples that this represents is presented in brackets following the leverage. Conviction is another measure of departure from independence. Conviction is given by P(premise)P(!consequence) / P(premise, !consequence).

upperBoundMinSupport -- Upper bound for minimum support. Start iteratively decreasing minimum support from this value.

8. then click on start button now then you will get the generated apriori rules.

[image: image48.png]Preprocess | Classify | Cluster Selectattributes | Visualize

st | swop

Resultlist right-clic...
e

15:34:30 - Apriori

Associator model (full training set)

Minimum support: 0.85 (3 instances)
Minimm metric <confidence>: 0.9
Number of cycles performed: 3
Generated sets of large itemsets:

Size of set of large itemsets L(1): 3

Size of set of large itemsets L(2): 3

Size of set of large itemsets L(3): 1

Best rules found:

icens
icens
icens
icens
icens

Figure 5.7 Weka Generated Apriori Rules
6.Implementation of Apriori algorithm to generate frequent item sets.
C/C++ VERSION

#include<iostream.h>

#include<conio.h>

void main()

{

int i,j,t1,k,l,m,f,f1,f2,f3;

//Initial item-purchase

int a[5][5];

for(i=0;i<5;i++)

{

cout<<"\n Enter items from purchase "<<i+1<<":";

for(j=0;j<5;j++)

{

cin>>a[i][j];

}

}

//Defining minimum level for acceptence

int min;

cout<<"\n Enter minimum acceptance level";

cin>>min;

//Printing initial input

cout<<"\nInitial Input:\n";

cout<<"\nTrasaction\tItems\n";

for(i=0;i<5;i++)

{

cout<<i+1<<":\t";

for(j=0;j<5;j++)

{

cout<<a[i][j]<<"\t";

}

cout<<"\n";

}

cout<<"\nAssume minimum support: "<<min;

//First pass

int l1[5];

for(i=0;i<5;i++)

{

t1=0;

for(j=0;j<5;j++)

{

for(k=0;k<5;k++)

{

if(a[j][k]==i+1)

{

t1++;

}

}

}

l1[i]=t1;

}

//Printing first pass

cout<<"\n\nGenerating C1 from data\n";

for(i=0;i<5;i++)

{

cout<<i+1<<": "<<l1[i]<<"\n";

}

//Second pass

//Counting number of possibilities for pass2

int p2pcount=0;

int p2items[5];

int p2pos=0;

for(i=0;i<5;i++)

{

if(l1[i]>=min)

{

p2pcount++;

p2items[p2pos]=i;

p2pos++;

}

}

//Printing selected items for second pass

cout<<"\nGenerating L1 From C1\n";

for(i=0;i<p2pos;i++)

{

cout<<p2items[i]+1<<"\t"<<l1[p2items[i]]<<"\n";

}

//Joining items

int l2[5][3];

int l2t1; //will hold first item for join

int l2t2; //will hold second item for join

int l2pos1=0; //position pointer in l2 array

int l2ocount=0; //product join occruance counter

int l2jcount=0; //join counter

for(i=0;i<p2pcount;i++)

{

for(j=i+1;j<p2pcount;j++)

{

l2t1=p2items[i]+1;

l2t2=p2items[j]+1;

if(l2t1==l2t2)

{

//it is self join

continue;

}

//join the elements

l2[l2pos1][0]=l2t1;

l2[l2pos1][1]=l2t2;

l2jcount++;

//count occurances

l2ocount=0; //reset counter

for(k=0;k<5;k++)

{

f1=f2=0; //resetting flag

//scan a purcahse

for(l=0;l<5;l++)

{

if(l2t1==a[k][l])

{

//one of the element found

f1=1;

}

if(l2t2==a[k][l])

{

//second elements also found

f2=1;

}

}

//one purchase scanned

if(f1==1&&f2==1) //both items are present in purchase

{

l2ocount++;

}

}

//assign count

l2[l2pos1][2]=l2ocount;

l2pos1++;

}

}

//Printing second pass

cout<<"\n\nGenerating L2\n";

for(i=0;i<l2jcount;i++)

{

for(j=0;j<3;j++)

{

cout<<l2[i][j]<<"\t";

}

cout<<"\n";

}

//Third pass

int p3pcount=0;

int p3items[5]={-1,-1,-1,-1,-1};

int p3pos=0;

for(i=0;i<5;i++)

{

if(l2[i][2]>=min)

{

f=0;

for(j=0;j<5;j++)

{

if(p3items[j]==l2[i][0])

{

f=1;

}

}

if(f!=1)

{

p3items[p3pos]=l2[i][0];

p3pos++;

p3pcount++;

}

f=0;

for(j=0;j<5;j++)

{

if(p3items[j]==l2[i][1])

{

f=1;

}

}

if(f!=1)

{

p3items[p3pos]=l2[i][1];

p3pos++;

p3pcount++;

}

}

}

//Joining

int l3[5][4];

int l3ocount=0; //occurance counter

int l3jcount=0; //join counter

for(i=0;i<p3pcount;i++)

{

for(j=i+1;j<p3pcount;j++)

{

for(k=j+1;k<p3pcount;k++)

{

l3[i][0]=p3items[i];

l3[i][1]=p3items[j];

l3[i][2]=p3items[k];

l3jcount++;

//count occurances

l3ocount=0; //reset counter

for(k=0;k<5;k++)

{

f1=f2=f3=0; //resetting flag

//scan a purcahse

for(l=0;l<5;l++)

{

if(l3[i][0]==a[k][l])

{

//one of the element found

f1=1;

}

if(l3[i][1]==a[k][l])

{

//second elements also found

f2=1;

}

if(l3[i][2]==a[k][l])

{

//third element also found

f3=1;

}

}

//one purchase scanned

if(f1==1&&f2==1&&f3==1) //all items are present in purchase

{

l3ocount++;

}

}

//assign count

l3[i][3]=l3ocount;

}

}

}

//Printing second pass

cout<<"\n\nGenerating L3\n";

for(i=0;i<l3jcount;i++)

{

for(j=0;j<4;j++)

{

cout<<l3[i][j]<<"\t";

}

cout<<"\n";

}

//Ending

getch();

}

/* Output

 Enter items from purchase 1:1

5

2

0

0

 Enter items from purchase 2:2

3

4

1

0

 Enter items from purchase 3:3

4

0

0

0

 Enter items from purchase 4:2

1

3

0

0

 Enter items from purchase 5:1

2

3

0

0

 Enter minimum acceptance level3

Initial Input:

Trasaction Items

1: 1 5 2 0 0

2: 2 3 4 1 0

3: 3 4 0 0 0

4: 2 1 3 0 0

5: 1 2 3 0 0

Assume minimum support: 3

Generating C1 from data

1: 4

2: 4

3: 4

4: 2

5: 1

Generating L1 From C1

1 4

2 4

3 4

Generating L2

1 2 4

1 3 3

2 3 3

Generating L3

1 2 3 3

*/

JAVA VERSION

SQL Queries for database:

CREATE TABLE apriori(transaction_id int, object int);

INSERT INTO apriori VALUES(1, 1);

INSERT INTO apriori VALUES(1, 3);

INSERT INTO apriori VALUES(1, 4);

INSERT INTO apriori VALUES(2, 2);

INSERT INTO apriori VALUES(2, 3);

INSERT INTO apriori VALUES(2, 5);

INSERT INTO apriori VALUES(3, 1);

INSERT INTO apriori VALUES(3, 2);

INSERT INTO apriori VALUES(3, 3);

INSERT INTO apriori VALUES(3, 5);

INSERT INTO apriori VALUES(4, 2);

INSERT INTO apriori VALUES(4, 5);

*/

import java.util.*;

import java.sql.*;

class Tuple {

Set<Integer> itemset;

int support;

Tuple() {

itemset = new HashSet<>();

support = -1;

}

Tuple(Set<Integer> s) {

itemset = s;

support = -1;

}

Tuple(Set<Integer> s, int i) {

itemset = s;

support = i;

}

}

class Apriori {

static Set<Tuple> c;

static Set<Tuple> l;

static int d[][];

static int min_support;

public static void main(String args[]) throws Exception {

getDatabase();

c = new HashSet<>();

l = new HashSet<>();

Scanner scan = new Scanner(System.in);

int i, j, m, n;

System.out.println("Enter the minimum support (as an integer value):");

min_support = scan.nextInt();

Set<Integer> candidate_set = new HashSet<>();

for(i=0 ; i < d.length ; i++) {

System.out.println("Transaction Number: " + (i+1) + ":");

for(j=0 ; j < d[i].length ; j++) {

System.out.print("Item number " + (j+1) + " = ");

System.out.println(d[i][j]);

candidate_set.add(d[i][j]);

}

}

Iterator<Integer> iterator = candidate_set.iterator();

while(iterator.hasNext()) {

Set<Integer> s = new HashSet<>();

s.add(iterator.next());

Tuple t = new Tuple(s, count(s));

c.add(t);

}

prune();

generateFrequentItemsets();

}

static int count(Set<Integer> s) {

int i, j, k;

int support = 0;

int count;

boolean containsElement;

for(i=0 ; i < d.length ; i++) {

count = 0;

Iterator<Integer> iterator = s.iterator();

while(iterator.hasNext()) {

int element = iterator.next();

containsElement = false;

for(k=0 ; k < d[i].length ; k++) {

if(element == d[i][k]) {

containsElement = true;

count++;

break;

}

}

if(!containsElement) {

break;

}

}

if(count == s.size()) {

support++;

}

}

return support;

}

static void prune() {

l.clear();

Iterator<Tuple> iterator = c.iterator();

while(iterator.hasNext()) {

Tuple t = iterator.next();

if(t.support >= min_support) {

l.add(t);

}

}

System.out.println("-+- L -+-");

for(Tuple t : l) {

System.out.println(t.itemset + " : " + t.support);

}

}

static void generateFrequentItemsets() {

boolean toBeContinued = true;

int element = 0;

int size = 1;

Set<Set> candidate_set = new HashSet<>();

while(toBeContinued) {

candidate_set.clear();

c.clear();

Iterator<Tuple> iterator = l.iterator();

while(iterator.hasNext()) {

Tuple t1 = iterator.next();

Set<Integer> temp = t1.itemset;

Iterator<Tuple> it2 = l.iterator();

while(it2.hasNext()) {

Tuple t2 = it2.next();

Iterator<Integer> it3 = t2.itemset.iterator();

while(it3.hasNext()) {

try {

element = it3.next();

} catch(ConcurrentModificationException e) {

// Sometimes this Exception gets thrown, so simply break in that case.

break;

}

temp.add(element);

if(temp.size() != size) {

Integer[] int_arr = temp.toArray(new Integer[0]);

Set<Integer> temp2 = new HashSet<>();

for(Integer x : int_arr) {

temp2.add(x);

}

candidate_set.add(temp2);

temp.remove(element);

}

}

}

}

Iterator<Set> candidate_set_iterator = candidate_set.iterator();

while(candidate_set_iterator.hasNext()) {

Set s = candidate_set_iterator.next();

// These lines cause warnings, as the candidate_set Set stores a raw set.

c.add(new Tuple(s, count(s)));

}

prune();

if(l.size() <= 1) {

toBeContinued = false;

}

size++;

}

System.out.println("\n=+= FINAL LIST =+=");

for(Tuple t : l) {

System.out.println(t.itemset + " : " + t.support);

}

}

static void getDatabase() throws Exception {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection("jdbc:odbc:DWM");

Statement s = con.createStatement();

ResultSet rs = s.executeQuery("SELECT * FROM apriori;");

Map<Integer, List <Integer>> m = new HashMap<>();

List<Integer> temp;

while(rs.next()) {

int list_no = Integer.parseInt(rs.getString(1));

int object = Integer.parseInt(rs.getString(2));

temp = m.get(list_no);

if(temp == null) {

temp = new LinkedList<>();

}

temp.add(object);

m.put(list_no, temp);

}

Set<Integer> keyset = m.keySet();

d = new int[keyset.size()][];

Iterator<Integer> iterator = keyset.iterator();

int count = 0;

while(iterator.hasNext()) {

temp = m.get(iterator.next());

Integer[] int_arr = temp.toArray(new Integer[0]);

d[count] = new int[int_arr.length];

for(int i=0 ; i < d[count].length ; i++) {

d[count][i] = int_arr[i].intValue();

}

count++;

}

}

}

/*

OUTPUT:

Enter the minimum support :2
Transaction Number: 1:

Item number 1 = 1

Item number 2 = 3

Item number 3 = 4

Transaction Number: 2:

Item number 1 = 2

Item number 2 = 3

Item number 3 = 5

Transaction Number: 3:

Item number 1 = 1

Item number 2 = 2

Item number 3 = 3

Item number 4 = 5

Transaction Number: 4:

Item number 1 = 2

Item number 2 = 5

-+- L -+-

[1] : 2

[3] : 3

[2] : 3

[5] : 3

-+- L -+-

[2, 3] : 2

[3, 5] : 2

[1, 3] : 2

[2, 5] : 3

-+- L -+-

[2, 3, 5] : 2

=+= FINAL LIST =+=

[2, 3, 5] : 2

*/
7. Classification algorithms using WEKA(i.Decision Tree Induction ii.KNN)
i.Decision Tree Induction

This experiment illustrates the use of C4.5 (J48) classifier in WEKA. The sample data set used, unless otherwise indicated, is the bank data available in comma-separated format (bank-data.csv).

This assumes that appropriate data preprocessing has been perfromed. In this case ID field has been removed. Since C4.5 algorithm can handle numeric attributes, there is no need to discretize any of the attributes. For the our purpose , however, the "Children" attribute has been converted into a categorical attribute with values "YES" or "NO".

WEKA has implementations of numerous classification and prediction algorithms. The basic ideas behind using all of these are similar. In this we will use the modifiedversion of the bank data to classify new instances using the C4.5 algorithm (note that the C4.5 is implemented in WEKA by the classifier class: weka.classifiers.trees.J48).

The modified (and smaller) version of the bank data can be found in the file "bank.arff" and the new unclassified instances are in the file "bank-new.arff".

As usual, we begin by loading the data into WEKA, as seen in below Figure :

[image: image49.png]- Weka Explorer

Preprocess | lssfy | Cster | Associate | Select trbues | Vs |

S| o R | NS

e

Instances: 300 Attributes: 9 Missing: 0 (0%) Distinct: S0 Unique: 0 (0%)
i
oo <]

Status
o

Figure 7.1 Weka bankdata.arff

Next, we select the "Classify" tab and click the "Choose" button to select the J48 classifier, as depicted in Figures . Note that J48 (implementation of C4.5 algorithm) does not require discretization of numeric attributes, in contrast to the ID3 algorithm from which C4.5 has evolved.

[image: image50.png]Preprocess Classify | Cluster | Associate | Select attributes | Visualize

Classfer

Gose_fzerm

Test options
 Use training set

 suppled test set

& Cross-validation Folds

© percentagesplt -

More options.

e

10
&

Classfier output

(Nom) pep

start

Stop

Result s (right-cckfor options)

Status

o

Log

- °

 Figure 7.2 Weka Classify tab
[image: image51.png]Proprocess Classfy | custer | Assodte | slect atrbates | iaze |
Chsstir

[weka

L [& 2 dassfiers

bayes \ output
functions
ey

meta

misc
5 Citrees

#0Tres
Deckionstump
18
8
wr
P
RendomForest
Rendomree.
REPTree
UserClassfier

.
.
.
.
.
.
.
.
.
-

Figure 7.3 Weka Classify Rules Selection

Now, we can specify the various parameters. These can be specified by clicking in the text box to the right of the "Choose" button. In this example we accept the default values. The default version does perform some pruning (using the subtree raising approach), but does not perform error pruning. The selected parameters are depicted in Figure below .

[image: image52.png]Wel

Explorer

Proprocess Classfy | custer | Assodte | slect atrbates | viuae |

Classfer

Chose

weka.gui.GenericObjectEditor

Test options
i weka.classifiers.trees. 148

© Use training set

About

{ it Class for generating a pruned or unpruned 4.

& Cross-validation Folds

© percentagesplt e

More options

confdencefactor [0.25

(Nom) pep debug [False

Start mintumOb]

Result s (ight-clckfor options)

numFalds

reducedErrorPruning

savelnstanceData

seed

subtresRasing

unpruned

uselaplace

Open,

Figure 7.4 Weka Classify Parameters Selection

Under the "Test options" in the main panel we select 10-fold cross-validation as our evaluation approach. Since we do not have separate evaluation data set, this is necessary to get a reasonable idea of accuracy of the generated model. We now click "Start" to generate the model.

[image: image53.png]Preprocess Classify | Cluster | Associate | Select attributes | Visualize

Classfier

e [si8-cozs e

Test options
© Use training set

 supplied test set

& Cross-validation

Folds [10
© percentagesplit % [50

More options.

(Nom) pep bt

Stop

start

Result s (right-cckfor options)

Classfer output

Summary

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Root nean syuared error
Relative absolute error

Root relative syuared error
Total Muber of Instances

Detailed Accuracy By Class

TP Rate P Rate Precision
0.53 0.185 0.712
0.815 0.454 0.673

Confusion Matrix

s b classified as
74 641 a=vEs
301321 b=m

Recall

206
E%

76.2791 %
96.6145 %
300

Fleasure
0.612
0.737

Class
s
m

68.6667
313333 %

Lel

e

 Figure 7.5 Weka Classified Rules1

We can view this information in a separate window by right clicking the last result set (inside the "Result list" panel on the left) and selecting "View in separate window" from the pop-up menu. These steps and the resulting window containing the classification results are depicted in the below Figures .

[image: image54.png]Wel

Explorer

Proprocess Classfy | Custer | Assodte | slect atrbates| Viuale |

Classfer

chosse [148-co.25-m2

Test options Classtier output

€ Use training set

(ol Correctly Classified Instances 206
@ Cross-vaidation Folds [10 Incorrectly Classified Instances E%
P o ||| xappa starisric 0.3576
Mean absolute error 0.37
More options. Root nean syuared error 0.4816
Relative absolute error 76.2791 %
o) pep | | Root relative squared error 96.6145 %
— || Total muber of Instances 300

start

Result s (ight-clckfor options)

View in i window

Save result buffer

Load model
Save model

Visualize lassfier erors
Visualize tree
Visusls margin curve

Status
o

Detailed Accuracy By Class

TP Rate

Visualize treshold curve
Visualize cost curve

Rate Precision Recall F-lleasure

lLes 0712 0.5 0.612
lasa 0.673 0.815 0737

atrix

classified as
- vEs
-m

68.6667
313333 %

Log

 Figure 7.6 Weka Classified Rules2

[image: image55.png]Test mode: 10-fold cross-validation

Classifier model (full training set]

348 pruned tree

children = YES
incoue <- 30099.3
0 (50.0/15.0)

| married = ¥ES
income <= 13106.6: N0 (9.0/2.0)
income > 13106.6

| mortgage = YES: YES (12.0/3.0)

| uortgage = MO

|| income <= l8323: YES (3.0/3.0)
|| income > 18523: WO (10.0/3.0)
| married = NO: WO (22.0/6.0)

income > 30099.3: YES (59.0/7.0)

children = MO

arried = YES
mortgage = YES

region = TNHER_CITY

| income <= 33547.8: YES (12.0/3.0)
| income > 33547.8: WO (4.0)
region = RURAL: HO (3.0/1.0)

region = TOW: HO (9.0/2.0)

region = SUBURBAN: HO (4.0/1.0)
mortgage = NO: WD (57.0/3.0)

arried = N0

mortgage = YES

| age <= 39

|1 age <= 28: WO (4.0)

|1 age > 283 YES (5.0/1.0)

| age > 33: WO (1L.0)

mortgage = ND: YES (20.0/1.0)

Muber of Leaves : 17

Size of the tree £

Figure 7.7 Weka Classified Rules3

Note that the classification accuracy of our model is only about 69%. This may indicate that we may need to do more work (either in preprocessing or in selecting the correct parameters for classification), before building another model.

WEKA also let's us view a graphical rendition of the classification tree. This can be done by right clicking the last result set (as before) and selecting "Visualize tree" from the pop-up menu. The tree for this example is depicted in the below Figure . Note that by resizing the window and selecting various menu items from inside the tree view (using the right mouse button), we can adjust the tree view to make it more readable.

[image: image56.png]Weka Classifier Tree Visualizer

Tree View

0 - trees.J48 (bank)

<= 30068.3> 300683

= Nu\

=ves

=ves

=ves

= INNER_CITYS RURAL = TOWN= SUBLRBAN

M R e
(---

o

=ves

 Figure 7.8 Weka Classified tree view
ii.KNN

In k-NN classification, the output is a class membership. An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor.

k-NN is a type of instance-based learning, or lazy learning, where the function is only approximated locally and all computation is deferred until classification. The k-NN algorithm is among the simplest of all machine learning algorithms.

Both for classification and regression, it can be useful to assign weight to the contributions of the neighbors, so that the nearer neighbors contribute more to the average than the more distant ones. For example, a common weighting scheme consists in giving each neighbor a weight of 1/d, where d is the distance to the neighbor.

The neighbors are taken from a set of objects for which the class (for k-NN classification) or the object property value (for k-NN regression) is known. This can be thought of as the training set for the algorithm, though no explicit training step is required.

In weka it's called IBk (instance-bases learning with parameter k) and it's in the lazy class folder. KNN is the K parameter. IBk's KNN parameter specifies the number of nearest neighbors to use when classifying a test instance, and the outcome is determined by majority vote.

Weka's IBk implementation has the “cross-validation” option that can help by choosing the best value automatically Weka uses cross-validation to select the best value for KNN (which is the same as k).
Class weka.classifiers.IBk

java.lang.Object

 |

 +----weka.classifiers.Classifier
 |

 +----weka.classifiers.DistributionClassifier
 |

 +----weka.classifiers.IBk

public class IBk extends DistributionClassifier implements OptionHandler, UpdateableClassifier, WeightedInstancesHandler
Valid options are:

-K num
Set the number of nearest neighbors to use in prediction (default 1)

-W num
Set a fixed window size for incremental train/testing. As new training instances are added, oldest instances are removed to maintain the number of training instances at this size. (default no window)

-D
Neighbors will be weighted by the inverse of their distance when voting. (default equal weighting)

-F
Neighbors will be weighted by their similarity when voting. (default equal weighting)

-X
Selects the number of neighbors to use by hold-one-out cross validation, with an upper limit given by the -K option.

-S
When k is selected by cross-validation for numeric class attributes, minimize mean-squared error. (default mean absolute error)

NAME : weka.classifiers.lazy.IBk : K-nearest neighbours classifier. Can select appropriate value of K based on cross-validation. Can also do distance weighting.

OPTIONS

numDecimalPlaces -- The number of decimal places to be used for the output of numbers in the model.

batchSize -- The preferred number of instances to process if batch prediction is being performed. More or fewer instances may be provided, but this gives implementations a chance to specify a preferred batch size.

KNN -- The number of neighbours to use.

distanceWeighting -- Gets the distance weighting method used.

nearestNeighbourSearchAlgorithm -- The nearest neighbour search algorithm to use (Default: weka.core.neighboursearch.LinearNNSearch).

debug -- If set to true, classifier may output additional info to the console.

windowSize -- Gets the maximum number of instances allowed in the training pool. The addition of new instances above this value will result in old instances being removed. A value of 0 signifies no limit to the number of training instances.

doNotCheckCapabilities -- If set, classifier capabilities are not checked before classifier is built (Use with caution to reduce runtime).

meanSquared -- Whether the mean squared error is used rather than mean absolute error when doing cross-validation for regression problems.

crossValidate -- Whether hold-one-out cross-validation will be used to select the best k value between 1 and the value specified as the KNN parameter.

Nearest Neighbor : Nearest Neighbor (also known as Collaborative Filtering or Instance-based Learning) is a useful data mining technique that allows you to use your past data instances, with known output values, to predict an unknown output value of a new data instance.

So, at this point, this description should sound similar to both regression and classification. How is this different from those two? Well, first off, remember that regression can only be used for numerical outputs. That differentiates it from Nearest Neighbor immediately.

Classification, uses every data instance to create a tree, which we would traverse to find our answer. This can be a serious problem with some data. Think about a company like Amazon and the common "Customers who purchased X also purchased Y" feature.

If Amazon were to create a classification tree, how many branches and nodes could it have? There are maybe a few hundred thousand products. How big would that tree be? How accurate do you think a tree that big would be? Even if you got to a single branch, you might be shocked to learn that it only has three products. Amazon's page likes to have 12 products on it to recommend to you. It's a bad data mining model for this data.

You'll find that Nearest Neighbor fixes all those problems in a very efficient manner, especially in the example used above for Amazon. It's not limited to any number of comparisons. It's as scalable for a 20-customer database as it is for a 20 million-customer database, and you can define the number of results you want to find. Seems like a great technique! It really is — and probably will be the most useful for anyone reading this who has an e-commerce store.

Math behind Nearest Neighbor : You will see that the math behind the Nearest Neighbor technique is a lot like the math involved with the clustering technique. Taking the unknown data point, the distance between the unknown data point and every known data point needs to be computed. Finding the distance is really quite trivial with a spreadsheet, and a high-powered computer can zip through these calculations nearly instantly. The easiest and most common distance calculation is the "Normalized Euclidian Distance." It sounds much more complicated than it really is.

Let's take a look at an example in action and try to figure out what Customer No. 5 is likely to purchase.
Listing 1. Nearest Neighbor math

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
	Customer Age Income Purchased Product

 1 45 46k Book

 2 39 100k TV

 3 35 38k DVD

 4 69 150k Car Cover

 5 58 51k ???

Step 1: Apply Distance Formula

Step 2: Calculate the Score

Customer Score Purchased Product

 1 .385 Book

 2 .710 TV

 3 .686 DVD

 4 .941 Car Cover

 5 0.0 ???

	
	

To answer the question "What is Customer No. 5 most likely to buy?" based on the Nearest Neighbor algorithm we ran through above, the answer would be a book. This is because the distance between Customer No. 5 and Customer No. 1 is less (far less, actually) than the distance between Customer No. 5 and any other customer. Based on this model, we say that the customer most like Customer No. 5 can predict the behavior of Customer No. 5.

However, the positives of Nearest Neighbor don't end there. The Nearest Neighbor algorithm can be expanded beyond the closest match to include any number of closest matches. These are termed "N-Nearest Neighbors" (for example, 3-Nearest Neighbors).

Using the above example, if we want to know the two most likely products to be purchased by Customer No. 5, we would conclude that they are books and a DVD. Using the Amazon example from above, if they wanted to know the 12 products most likely to be purchased by a customer, they would want to run a 12-Nearest Neighbor algorithm (though Amazon actually runs something more complicated than just a simple 12-Nearest Neighbor algorithm).

Further, the algorithm shouldn't be constrained to predicting a product to be purchased. It can also be used to predict a Yes/No output value. Considering the above example, if we changed the last column to the following (from customers 1-4), "Yes,No,Yes,No," a 1-Nearest Neighbor model would predict Customer No. 5 to say "Yes" and a 2-Nearest Neighbor would predict a "Yes" (both customer nos. 1 and 3 say "Yes"), and a 3-Nearest Neighbor model would say "Yes." (Customer nos. 1 and 3 say "Yes," customer No. 2 says "No," so the average value of these is "Yes.")

The final question to consider is "How many neighbors should we use in our model?". You'll find that experimentation will be needed to determine the best number of neighbors to use. Also, if you are trying to predict the output of a column with a 0 or 1 value, you'd obviously want to select an odd number of neighbors, in order to break ties.

Data set for WEKA : The data set we'll use is our fictional BMW dealership and the promotional campaign to sell a two-year extended warranty to past customers. There are 4,500 data points from past sales of extended warranties. The attributes in the data set are Income Bracket [0=$0-$30k, 1=$31k-$40k, 2=$41k-$60k, 3=$61k-$75k, 4=$76k-$100k, 5=$101k-$150k, 6=$151k-$500k, 7=$501k+], the year/month their first BMW was bought, the year/month the most recent BMW was bought, and whether they responded to the extended warranty offer in the past.
Listing 2. Nearest Neighbor WEKA data

	1

2

3

4

5

6

7

8

9

10
	@attribute IncomeBracket {0,1,2,3,4,5,6,7}

@attribute FirstPurchase numeric

@attribute LastPurchase numeric

@attribute responded {1,0}

@data

4,200210,200601,0

5,200301,200601,1

...

Nearest Neighbor in WEKA : Load the data file bmw-training.arff into WEKA using the same steps we've used to this point in the Preprocess tab. Your screen should look like below Figure after loading in the data.

[image: image57.jpg]

Figure 7.9 BMW Nearest Neighbor data in WEKA

Like we did with the regression and classification model in the previous articles, we should next select the Classify tab. On this tab, we should select lazy, then select IBk (the IB stands for Instance-Based, and the k allows us to specify the number of neighbors to examine).

[image: image58.jpg]Wel |

 [roptocess] Oty | htr [st st s v

st

(i1 1 970-A vk b matench A Gt s ™

e
O

© Supphed test set E
B o [am—
[|

[——

el 1 ik for tiors)

Clstr ot

8

Figure 7.10 BMW Nearest Neighbor algorithm

At this point, we are ready to create our model in WEKA. Ensure that Use training set is selected so we use the data set we just loaded to create our model. Click Start and let WEKA run. Below Figure shows a screenshot, and Listing contains the output from this model.

[image: image59.jpg]st oo

Corceceiy Classitied Tnseances 2563
Incorzectiy Classicied Tnstances 597

Kapn statisic .77
Hewn sbsolute eccox 01325
Roor. sean squazed eczor o267
Roo celative squssed exzor silesz
Total aber of Tnseances 00

Detasied Accuracy By Class =ee

oo oos o4l
Helmced avp. e a0l

Contusion Hacex

1 %1 wel
s a0

o W

o

0.7667 5
wam

om0
e oo

Figure 7.11 BMW Nearest Neighbor model
Listing . Output of IBk calculations

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
	=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 2663 88.7667 %

Incorrectly Classified Instances 337 11.2333 %

Kappa statistic 0.7748

Mean absolute error 0.1326

Root mean squared error 0.2573

Relative absolute error 26.522 %

Root relative squared error 51.462 %

Total Number of Instances 3000

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.95 0.177 0.847 0.95 0.896 0.972 1

 0.823 0.05 0.941 0.823 0.878 0.972 0

Weighted Avg. 0.888 0.114 0.893 0.888 0.887 0.972

=== Confusion Matrix ===

 a b <-- classified as

 1449 76 | a = 1

 261 1214 | b = 0

How does this compare with our results when we used classification to create a model? Well, this model using Nearest Neighbor has an 89-percent accuracy rating, while the previous model only had a 59-percent accuracy rating, so that's definitely a good start. Nearly a 90-percent accuracy rating would be very acceptable. Let's take this a step further and interpret the results in terms of false positives and false negatives, so you can see how the results from WEKA apply in a real business sense.

The results of the model say we have 76 false positives (2.5 percent), and we have 261 false negatives (8.7 percent). Remember a false positive, in this example, means that our model predicted the customer would buy an extended warranty and actually didn't, and a false negative means that our model predicted they wouldn't buy an extended warranty, and they actually did.

Let's estimate that the flier the dealership sends out cost $3 each and that the extended warranty brings in $400 profit for the dealer. This model from a cost/benefit perspective to the dealership would be $400 - (2.5% * $3) - (8.7% * 400) = $365. So, the model looks rather profitable for the dealership. Compare that to the classification model, which had a cost/benefit of only $400 - (17.2% * $3) - (23.7% * $400) = $304, and you can see that using the right model offered a 20-percent increase in potential revenue for the dealership.

As an exercise for yourself, play with the number of nearest neighbors in the model (you do this by right-clicking on the text "IBk -K 1...." and you see a list of parameters). You can change the "KNN" (K-nearest neighbors) to be anything you want. You'll see in this example, that the accuracy of the model actually decreases with the inclusion of additional neighbors.

Some final take-aways from this model: The power of Nearest Neighbor becomes obvious when we talk about data sets like Amazon. With its 20 million users, the algorithm is very accurate, since there are likely many potential customers in Amazon's database with similar buying habits to you.

Thus, the nearest neighbor to yourself is likely very similar. This creates an accurate and effective model. Contrarily, the model breaks down quickly and becomes inaccurate when you have few data points for comparison. In the early stages of an online e-commerce store for example, when there are only 50 customers, a product recommendation feature will likely not be accurate at all, as the nearest neighbor may in fact be very distant from yourself.

The final challenge with the Nearest Neighbor technique is that it has the potential to be a computing-expensive algorithm. In Amazon's case, with 20 million customers, each customer must be calculated against the other 20 million customers to find the nearest neighbors.

First, if your business has 20 million customers, that's not technically a problem because you're likely rolling in money. Second, these types of computations are ideal for the cloud in that they can offloaded to dozens of computers to be run simultaneously, with a final comparison done at the end. (Google's MapReduce for example.)

Third, in practice, it wouldn't be necessary to compare every customer in Amazon's database to myself if I'm only purchasing a book. The assumption can be made that I can be compared to only other bookbuyers to find the best match, narrowing the potential neighbors to a fraction of the entire database.

Remember: Data mining models aren't always simple input-output mechanisms — the data must be examined to determine the right model to choose, the input can be managed to reduce computing time, and the output must be analyzed and accurate before you are ready to put a stamp of approval on the entire thing.

8. Implement the following classification algorithms
 i.Decision Tree Induction ii.KNN
i.)Decision Tree Induction

import java.io.*;

class DecisionTree {

 /* ------------------------------- */

 /* */

 /* FIELDS */

 /* */

 /* ------------------------------- */

 /* NESTED CLASS */

 private class BinTree {

/* FIELDS */

private int nodeID;

private String questOrAns = null;

private BinTree yesBranch = null;

private BinTree noBranch = null;

/* CONSTRUCTOR */
 public BinTree(int newNodeID, String newQuestAns) {

 nodeID = newNodeID;

 questOrAns = newQuestAns;

 }

}

 /* OTHER FIELDS */

 static BufferedReader keyboardInput = new

 BufferedReader(new InputStreamReader(System.in));

 BinTree rootNode = null;

 /* ------------------------------------ */

 /* */

 /* CONSTRUCTORS */

 /* */

 /* ------------------------------------ */

 /* Default Constructor */

 public DecisionTree() {

}

 /* --- */

 /* */

 /* TREE BUILDING METHODS */

 /* */

 /* --- */

 /* CREATE ROOT NODE */

 public void createRoot(int newNodeID, String newQuestAns) {

rootNode = new BinTree(newNodeID,newQuestAns);

System.out.println("Created root node " + newNodeID);

}

 /* ADD YES NODE */

 public void addYesNode(int existingNodeID, int newNodeID, String newQuestAns) {

// If no root node do nothing

if (rootNode == null) {

 System.out.println("ERROR: No root node!");

 return;

 }

// Search tree

if (searchTreeAndAddYesNode(rootNode,existingNodeID,newNodeID,newQuestAns)) {

 System.out.println("Added node " + newNodeID +

" onto \"yes\" branch of node " + existingNodeID);

 }

else System.out.println("Node " + existingNodeID + " not found");

}

 /* SEARCH TREE AND ADD YES NODE */

 private boolean searchTreeAndAddYesNode(BinTree currentNode,

int existingNodeID, int newNodeID, String newQuestAns) {

if (currentNode.nodeID == existingNodeID) {

 // Found node

 if (currentNode.yesBranch == null) currentNode.yesBranch = new

BinTree(newNodeID,newQuestAns);

 else {

 System.out.println("WARNING: Overwriting previous node " +

"(id = " + currentNode.yesBranch.nodeID +

") linked to yes branch of node " +

existingNodeID);

currentNode.yesBranch = new BinTree(newNodeID,newQuestAns);

}

 return(true);

 }

else {

 // Try yes branch if it exists

 if (currentNode.yesBranch != null) {

 if (searchTreeAndAddYesNode(currentNode.yesBranch,

existingNodeID,newNodeID,newQuestAns)) {

 return(true);

 }

else {

 // Try no branch if it exists

 if (currentNode.noBranch != null) {

return(searchTreeAndAddYesNode(currentNode.noBranch,

existingNodeID,newNodeID,newQuestAns));

}

 else return(false);
// Not found here

 }

}

 return(false);

// Not found here

 }

}

 /* ADD NO NODE */

 public void addNoNode(int existingNodeID, int newNodeID, String newQuestAns) {

// If no root node do nothing

if (rootNode == null) {

 System.out.println("ERROR: No root node!");

 return;

 }

// Search tree

if (searchTreeAndAddNoNode(rootNode,existingNodeID,newNodeID,newQuestAns)) {

 System.out.println("Added node " + newNodeID +

" onto \"no\" branch of node " + existingNodeID);

 }

else System.out.println("Node " + existingNodeID + " not found");

}

 /* SEARCH TREE AND ADD NO NODE */

 private boolean searchTreeAndAddNoNode(BinTree currentNode,

int existingNodeID, int newNodeID, String newQuestAns) {

if (currentNode.nodeID == existingNodeID) {

 // Found node

 if (currentNode.noBranch == null) currentNode.noBranch = new

BinTree(newNodeID,newQuestAns);

 else {

 System.out.println("WARNING: Overwriting previous node " +

"(id = " + currentNode.noBranch.nodeID +

") linked to yes branch of node " +

existingNodeID);

currentNode.noBranch = new BinTree(newNodeID,newQuestAns);

}

 return(true);

 }

else {

 // Try yes branch if it exists

 if (currentNode.yesBranch != null) {

 if (searchTreeAndAddNoNode(currentNode.yesBranch,

existingNodeID,newNodeID,newQuestAns)) {

 return(true);

 }

else {

 // Try no branch if it exists

 if (currentNode.noBranch != null) {

return(searchTreeAndAddNoNode(currentNode.noBranch,

existingNodeID,newNodeID,newQuestAns));

}

 else return(false);
// Not found here

 }

 }

 else return(false);
// Not found here

 }

}

 /* --- */

 /* */

 /* TREE QUERY METHODS */

 /* */

 /* --- */

 public void queryBinTree() throws IOException {

 queryBinTree(rootNode);

 }

 private void queryBinTree(BinTree currentNode) throws IOException {

 // Test for leaf node (answer) and missing branches

 if (currentNode.yesBranch==null) {

 if (currentNode.noBranch==null) System.out.println(currentNode.questOrAns);

 else System.out.println("Error: Missing \"Yes\" branch at \"" +

currentNode.questOrAns + "\" question");

 return;

 }

 if (currentNode.noBranch==null) {

 System.out.println("Error: Missing \"No\" branch at \"" +

currentNode.questOrAns + "\" question");

 return;

 }

 // Question

 askQuestion(currentNode);

 }

 private void askQuestion(BinTree currentNode) throws IOException {

 System.out.println(currentNode.questOrAns + " (enter \"Yes\" or \"No\")");

 String answer = keyboardInput.readLine();

 if (answer.equals("Yes")) queryBinTree(currentNode.yesBranch);

 else {

 if (answer.equals("No")) queryBinTree(currentNode.noBranch);

 else {

 System.out.println("ERROR: Must answer \"Yes\" or \"No\"");

 askQuestion(currentNode);

 }

 }

 }

 /* --- */

 /* */

 /* TREE OUTPUT METHODS */

 /* */

 /* --- */

 /* OUTPUT BIN TREE */

 public void outputBinTree() {

 outputBinTree("1",rootNode);

 }

 private void outputBinTree(String tag, BinTree currentNode) {

 // Check for empty node

 if (currentNode == null) return;

 // Output

 System.out.println("[" + tag + "] nodeID = " + currentNode.nodeID +

", question/answer = " + currentNode.questOrAns);

 // Go down yes branch

 outputBinTree(tag + ".1",currentNode.yesBranch);

 // Go down no branch

 outputBinTree(tag + ".2",currentNode.noBranch);

}

 }

class DecisionTreeApp {

 /* ------------------------------- */

 /* */

 /* FIELDS */

 /* */

 /* ------------------------------- */

 static BufferedReader keyboardInput = new

 BufferedReader(new InputStreamReader(System.in));

 static DecisionTree newTree;

 /* --------------------------------- */

 /* */

 /* METHODS */

 /* */

 /* --------------------------------- */

 /* MAIN */

 public static void main(String[] args) throws IOException {

 // Create instance of class DecisionTree

 newTree = new DecisionTree();

 // Generate tree

 generateTree();

 // Output tree

 System.out.println("\nOUTPUT DECISION TREE");

 System.out.println("====================");

 newTree.outputBinTree();

 // Query tree

 queryTree();

 }

 /* GENERATE TREE */

 static void generateTree() {

 System.out.println("\nGENERATE DECISION TREE");

 System.out.println("======================");

 newTree.createRoot(1,"Does animal eat meat?");

 newTree.addYesNode(1,2,"Does animal have stripes?");

 newTree.addNoNode(1,3,"Does animal have stripes?");

 newTree.addYesNode(2,4,"Animal is a Tiger");

 newTree.addNoNode(2,5,"Animal is a Leopard");

 newTree.addYesNode(3,6,"Animal is a Zebra");

 newTree.addNoNode(3,7,"Animal is a Horse");

 }

 /* QUERY TREE */

 static void queryTree() throws IOException {

 System.out.println("\nQUERY DECISION TREE");

 System.out.println("===================");

 newTree.queryBinTree();

 // Option to exit

 optionToExit();

 }

 /* OPTION TO EXIT PROGRAM */

 static void optionToExit() throws IOException {

 System.out.println("Exit? (enter \"Yes\" or \"No\")");

 String answer = keyboardInput.readLine();

 if (answer.equals("Yes")) return;

 else {

 if (answer.equals("No")) queryTree();

 else {

 System.out.println("ERROR: Must answer \"Yes\" or \"No\"");

 optionToExit();

 }

 }

 }

 }

Output:

GENERATE DECISION TREE

======================

Created root node 1

Added node 2 onto "yes" branch of node 1

Added node 3 onto "no" branch of node 1

Added node 4 onto "yes" branch of node 2

Added node 5 onto "no" branch of node 2

Added node 6 onto "yes" branch of node 3

Added node 7 onto "no" branch of node 3

OUTPUT DECISION TREE

====================

[1] nodeID = 1, question/answer = Does animal eat meat?

[1.1] nodeID = 2, question/answer = Does animal have stripes?

[1.1.1] nodeID = 4, question/answer = Animal is a Tiger

[1.1.2] nodeID = 5, question/answer = Animal is a Leopard

[1.2] nodeID = 3, question/answer = Does animal have stripes?

[1.2.1] nodeID = 6, question/answer = Animal is a Zebra

[1.2.2] nodeID = 7, question/answer = Animal is a Horse

QUERY DECISION TREE

===================

Does animal eat meat? (enter "Yes" or "No")

Yes

Does animal have stripes? (enter "Yes" or "No")

Yes

Animal is a Tiger

Exit? (enter "Yes" or "No")

No

QUERY DECISION TREE

===================

Does animal eat meat? (enter "Yes" or "No")

No

Does animal have stripes? (enter "Yes" or "No")

No

Animal is a Horse

Exit? (enter "Yes" or "No")

Yes

ii.)K-nearest Neighbour(KNN):
Image you have a blog which contains a lot of nice articles. You put ads at the top of each article and hope to gain some revenue. After a while and from your report, you see that some posts generate revenue and some do not. Assuming that whether an article generates revenue or not depends on how many pictures and text paragraphs in it.

Given the dataset:

[image: image60.png]Label

Zz2zzZz<<<<

of Pictures
10
12
9

0
1
3

of Paragraph
2
3
2
10
9
11

we can plot them in the figure below.

[image: image61.png]#of Paragraphs

16

12

Whether ads make money or not

0 4 8 12

#0f Piotures

16

How K-Nearest Neighbors (KNN) algorithm works?
If we want to know whether the new article can generate revenue, we can 1) computer the distances between the new article and each of the 6 existing articles, 2) sort the distances in descending order, 3) take the majority vote of k. This is the basic idea of KNN.

Now let's guess a new article, which contains 13 pictures and 1 paragraph, can make revenue or not. By visualizing this point in the figure, we can guess it will make profit. But we will do it in Java.

Java Solution
kNN is also provided by Weka as a class "IBk". IBk implements kNN. It uses normalized distances for all attributes so that attributes on different scales have the same impact on the distance function. It may return more than k neighbors if there are ties in the distance. Neighbors are voted to form the final classification.

First prepare your data by creating a txt file "ads.txt":

@relation ads
@attribute pictures numeric

@attribute paragraphs numeric

@attribute profit {Y,N}

@data

10,2,Y

12,3,Y

9,2,Y

0,10,N

1,9,N

3,11,N

10,2,Y

12,3,Y
Java source code
	import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import weka.classifiers.Classifier;
import weka.classifiers.lazy.IBk;
import weka.core.Instance;
import weka.core.Instances;

public class KNN {

public static BufferedReader readDataFile(String filename) {

BufferedReader inputReader = null;

try {

inputReader = new BufferedReader(new FileReader(filename));

} catch (FileNotFoundException ex) {

System.err.println("File not found: " + filename);

}

return inputReader;

}

public static void main(String[] args) throws Exception {

BufferedReader datafile = readDataFile("ads.txt");

Instances data = new Instances(datafile);

data.setClassIndex(data.numAttributes() - 1);

//do not use first and second

Instance first = data.instance(0);

Instance second = data.instance(1);

data.delete(0);

data.delete(1);

Classifier ibk = new IBk();

ibk.buildClassifier(data);

double class1 = ibk.classifyInstance(first);

double class2 = ibk.classifyInstance(second);

System.out.println("first: " + class1 + "\nsecond: " + class2);

}
}

Output:

First:0.0
Second:1.0

9. Implement the following clustering algorithms
 i.K-means ii.K-mediods
i)One -Dimension

#include<stdio.h>

int mod(int k)

{

if(k>0) return k;

else return -k;

}

int small(int b[],int n)

{

 int m,pos,r=0; m=b[0];

for(pos=0;pos<n;pos++)

{

if(m>b[pos]) { m=b[pos];

 r=pos;

}

}

 return r;

}

void main()

{

int n,j,s=0;

int x=0,y=0,z=0;

int obj[20],c[20][20],mean[20],a[20];

int i,nc,k,m,min,count;

printf("\n\n Enter no. of items");

scanf("%d",&n);

printf("\n Enter items");

for(i=0;i<n;i++)

scanf("%d",&obj[i]);

printf("\n Enter no of clusters");

scanf("%d",&nc);

for(i=0;i<nc;i++)

for(j=0;j<n;j++)

{

c[i][j]=0; a[i]=0; }

for(i=0;i<nc;i++)

{

c[i][0]=obj[i];

mean[i]=obj[i];

}

for(i=0;i<nc;i++)

for(j=0;j<n;j++)

 if(c[i][j]>0)

printf(" I:%d",c[i][j]);

j=nc;

for(i=1;i<n;i++)

{

if(j<n)

{

for(k=0;k<nc;k++)

a[k]=mod(obj[j]-mean[k]);

min=small(a,nc);

c[min][i]=obj[j];

for(k=0;k<nc;k++)

{

s=0;count=0;

for(m=0;m<n;m++)

{

if(c[k][m]>0)

{

 s=s+c[k][m];

count++;

}

}

mean[k]=s/count;

}

for(k=0;k<nc;k++)

printf("\n mean values..%d\t",mean[k]);

printf("\n");

 j++;

}}

for(i=0;i<nc;i++)

{

 printf("\n");

for(j=0;j<n;j++)

{

if(c[i][j]>0)

printf("%d\t",c[i][j]);

}}}

Output:

ii)Two –Dimension

#include<stdio.h>

#include<math.h>

double distance(int a[][2],double b[][2],int j,int k)

{

double n=0,x1,y1,total;

int x,y;

x=a[j][0]-b[k][0];

y=a[j][1]-b[k][1];

x1=x*x;

y1=y*y;

total=x1+y1;

n=sqrt(total);

return n;

}

int small(double b[],int n)

{

int pos,r=0;double m=b[0];

for(pos=0;pos<n;pos++)

{

if(m>b[pos])

{

m=b[pos];

r=pos;

}

}

return r;

}

void main()

{

int n,j,s=0;

 int x=0,y=0,z=0;

int x1,y1;

int obj[20][2],c[20][20][2];

double mean[20][2];

double a[20];

int i,nc,k,m,min,count;

printf("\n\n Enter no. of items");

scanf("%d",&n);

printf("\n Enter n items");

for(i=0;i<n;i++)

for(k=0;k<2;k++)

scanf("%d",&obj[i][k]);

printf("\n Enter no of clusters");

scanf("%d",&nc);

for(i=0;i<nc;i++)

for(j=0;j<n;j++)

{

 for(k=0;k<2;k++)

c[i][j][k]=0; a[i]=0;

}

for(i=0;i<nc;i++)

{

j=0;

for(k=0;k<2;k++)

{

c[i][j][k]=obj[i][k];

mean[i][k]=obj[i][k];

}

}

for(i=0;i<nc;i++)

{

printf("\nI%d:",i);

for(j=0;j<n;j++)

for(k=0;k<2;k++)

if(c[i][j][k]>0)

printf("%d ",c[i][j][k]);

printf("\n");

}

for(i=0;i<nc;i++)

{

for(k=0;k<2;k++)

printf("\n mean values...%lf ",mean[i][k]);

printf("\n");

}

j=nc;

for(i=1;i<n;i++)

{

if(j<n)

{

for(k=0;k<nc;k++)

a[k]=distance(obj,mean,j,k);

min=small(a,nc);

c[min][i][0]=obj[j][0];

c[min][i][1]=obj[j][1];

for(m=0;m<n;m++)

{

 x1=0;y1=0;count=0;

for(k=0;k<nc;k++)

{

if(c[m][k][0]>0||c[m][k][1]>0)

{

x1=x1+c[m][k][0];

y1=y1+c[m][k][1];

count++;

}

}

if(count>0)

{

mean[k][0]=x1/count;

mean[k][1]=y1/count;

}

}

j++;

}

}

for(i=0;i<nc;i++)

{

for(j=0;j<n;j++)

for(k=0;k<2;k++)

printf("%d ",c[i][j][k]);

printf("\n");

}

printf("final kmean values are....\n");

for(i=0;i<nc;i++)

printf("%lf....%lf\n",mean[i][0],mean[i][1]);

}

Output:

[image: image62.png]"kmeans2.c" [dos] 117L, 2291C written

[cse117dcse progransi§ cc kmeans2.c -1n

means2.c: In function ‘main’:

means2.ci297 warning: return type of ‘main’ is not
[cse11760cse programs1$ -/a.out

Enter no. of items

Enter n items

1
5

Enter no of clusters

10:3 4

mean values...3.000000

nean values...4.008000
45 6

inal knean values are

-600800. . . .4. 000000

[cse11780¢5¢ prograns 1§

“int?

Ii A program to implement k-mediod algorithm

#include<stdio.h>

#include<math.h>

int distance(int [],int []);

int i,j,n,nc=3;

void main()

{

int j,count,t;

int obj[10][2],c[10][10][2],mean[10][2],c1[10][10][2];

int i,k,m,cost=0,cost1;

printf("\n enter the no. of items:");

scanf("%d",&n);

printf("\n enter the items(%d)",n);

for(i=0;i<n;i++)

for(j=0;j<2;j++)

scanf("%d",&obj[i][j]);

for(i=0;i<nc;i++)

for(j=0;j<n;j++)

for(k=0;k<2;k++)

{

c[i][j][k]=0;

c1[i][j][k]=0;

}

printf("\n enter center points");

for(i=0;i<nc;i++)

for(j=0;j<2;j++)

{

scanf("%d",&mean[i][j]);

c[i][0][j]=mean[i][j];

}

j=0;

for(i=1;i<=n;i++)

{

if(j<n)

{

if(distance(obj[j],mean[0])<distance(obj[j],mean[1]))

if(distance(obj[j],mean[0])<distance(obj[j],mean[2]))

for(k=0;k<2;k++)

{

 c[0][i][k]=obj[j][k];

 cost=cost+distance(obj[j],mean[0]);

}

if(distance(obj[j],mean[1])<distance(obj[j],mean[0]))

if(distance(obj[j],mean[1])<distance(obj[j],mean[2]))

for(k=0;k<2;k++)

{

 c[1][i][k]=obj[j][k];

 cost=cost+distance(obj[j],mean[1]);

}

if(distance(obj[j],mean[2])<distance(obj[j],mean[0]))

if(distance(obj[j],mean[2])<distance(obj[j],mean[1]))

for(k=0;k<2;k++)

{

 c[2][i][k]=obj[j][k];

 cost=cost+distance(obj[j],mean[2]);

}

j++;

}

}

printf("\n enter the next center points:");

for(i=0;i<nc;i++)

for(j=0;j<2;j++)

{

scanf("%d",&mean[i][j]);

c1[i][0][j]=mean[i][j];

}

j=0;

for(i=1;i<=n;i++)

{

if(j<n)

{

 if(distance(obj[j],mean[0])<distance(obj[j],mean[1]))

 if(distance(obj[j],mean[0])<distance(obj[j],mean[2]))

 for(k=0;k<2;k++)

{

c1[0][i][k]=obj[j][k];

cost1=cost1+distance(obj[j],mean[0]);

}

if(distance(obj[j],mean[1])<distance(obj[j],mean[0]))

if(distance(obj[j],mean[1])<distance(obj[j],mean[2]))

for(k=0;k<2;k++)

{

c1[1][i][k]=obj[j][k];

cost1=cost1+distance(obj[j],mean[1]);

}

if(distance(obj[j],mean[2])<distance(obj[j],mean[0]))

if(distance(obj[j],mean[2])<distance(obj[j],mean[1]))

for(k=0;k<2;k++)

{

c[2][i][k]=obj[j][k];

cost1=cost1+distance(obj[j],mean[2]);

}

 j++;

}

}

if(cost<cost1)

{

for(i=0;i<nc;i++)

{

printf("\n");

for(j=0;j<n;j++)

for(k=0;k<2;k++)

{

 if(c[i][j][k]>0)

printf("%d\t",c[i][j][k]);

}

}

}

else

{

for(i=0;i<nc;i++)

{

printf("\n");

for(j=0;j<n;j++)

for(k=0;k<2;k++)

{

if(c1[i][j][k]>0)

printf("%d\t",c1[i][j][k]);

}

}

}

}

 int distance(int obj[],int mean[])

{

 int x1,x2,y1,y2,dist;

 x1=obj[0];

 x2=mean[0];

 y1=obj[1];

 y2=mean[1];

dist=(sqrt(pow((x1-x2),2)+pow((y1-y2),2)));

 return dist;

 }

Output:

[image: image63.png][cse11?BBcse programsl3 cc kmediod.c —1m
mediod.c:_In function ‘main’:
mediod.c:?: warning? return type of ’main’ is not
[cse117BAcse programs1$./a.out

enter the no. of items:2

enter the items(2>3 4

enter center points2

enter the next center points:3

e

Lesel17@Bcse prograns 16

“int?

10.A small case study involving all stages of KDD. (Datasets are available online like UCI Repository etc.)
CASE STUDY - KDD PROCESS

DEFINITION: KDD Process is the process of using data mining methods (algorithms) to extract (identify) what is deemed knowledge according to the specifications of measures and thresholds, along with any required preprocessing, subsampling, and transformation.
KDD:

· In a multistep process many decisions are made by the user (domain expert):
· Iterative and interactive – loops between any two steps are possible
· Usually the most focus is on the DM step, but other steps are of considerable importance for the successful application of KDD in practice
GOALS:
· Verification of user’s hypothesis (this against the EDA principle…)
· Autonomous discovery of new patterns and models
· Prediction of future behavior of some entities
· Description of interesting patterns and models
STEPS OF DM:

1. Domain understanding and goal setting

2. Creating a target data set

3. Data cleaning and pre-processing
4. Data reduction and projection

5. Data mining

· Choosing the data mining task

· Choosing the data mining algorithm(s)

· Use of data mining algorithms

6. Interpretation of mined patterns

7. Utilization of discovered knowledge
[image: image64.jpg]Interpretation/
evaluaﬂon

20"/-
Data mining ' Knowledge

Transformation - /
i Transformed Patterns and models
Preprocessing pi

-] Preprocessed
- data

Data
Target data

Data sources

Figure 10.1 KDD PROCESS model
1) Domain analysis
· Development of domain understanding
· Discovery of relevant prior knowledge
· Definition of the goal of the knowledge discovery

2) Data selection

· Selection and integration of the target data from possibly many different and heterogeneous sources
· Interesting data may exist, e.g., in relational databases, document collections, e-mails, photographs, video clips, process database, customer transaction database, web logs etc.
· Focus on the correct subset of variables and data samples
· E.g., customer behavior in a certain country, relationship between items purchased and customer income and age
3) Data cleaning and preprocessing

· Dirty data can confuse the mining procedures and lead to unreliable and invalid outputs
· Complex analysis and mining on a huge amount of data may take a very long time
· Preprocessing and cleaning should improve the quality of data and mining results by enhancing the actual mining process
· The actions to be taken includes
· Removal of noise or outliers

· Collecting necessary information to model or account for noise

· Using prior domain knowledge to remove the inconsistencies and duplicates from the data

· Choice or usage of strategies for handling missing data fields
4) Data reduction and projection

· Data transformation techniques
· Smoothing (binning, clustering, regression etc.)
· Aggregation (use of summary operations (e.g., averaging) on data)
· Generalization (primitive data objects can be replaced by higher-level concepts)
· Normalization (min-max-scaling, z-score)
· Feature construction from the existing attributes (PCA, MDS)
· Data reduction techniques are applied to produce reduced representation of the data (smaller volume that closely maintains the integrity of the original data)
· Aggregation
· Dimension reduction (Attribute subset selection, PCA, MDS,…)
· Compression (e.g., wavelets, PCA, clustering,…)
· Numerosity reduction
· parametric models: regression and log-linear models
· non-parametric models: histograms, clustering, sampling…
· Discretization (e.g., binning, histograms,cluster analysis,…)
· Concept hierarchy generation (numeric value of ”age” to a higher level concept ”young, middle-aged, senior”)
 .5) Choice of data mining task

· Define the task for data mining
· Exploration/summarization
· Summarizing statistics (mean, median, mode, std,..)
· Class/concept description
· Explorative data analysis
· Graphical techniques, low-dimensional plots,…
· Predictive
· Classification or regression
· Descriptive
· Cluster analysis, dependency modelling, change and outlier detection
6) Choosing the DM algorithm(s)

· Select the most appropriate methods to be used for the model and pattern search
· Matching the chosen method with the overall goal of the KDD process (necessites communication between the end user and method specialists)
· Note that this step requires understanding in many fields, such as computer science, statistics, machine learning, optimization, etc.
7) Use of data mining algorithms

· Application of the chosen DM algorithms to the target data set
· Search for the patterns and models of interest in a particular representational form or a set of such representations
· Classification rules or trees, regression models, clusters, mixture models…
· Should be relatively automatic
· Generally DM involves:
· Establish the structural form (model/pattern) one is interested
· Estimate the parameters from the available data
· Interprete the fitted models
8) Interpretation/evaluation
· The mined patterns and models are interpreted
· The results should be presented in understandable form
· Visualization techniques are important for making the results useful – mathematical models or text type descriptions may be difficult for domain experts
· Possible return to any of the previous step
11. Using COGNOS IMPROMPTU 7 to Generate Report
Start Impromptu :You can start Impromptu by double-clicking the Impromptu icon on your desktop, or by clicking the Start button. You see the Welcome dialog box when you start Impromptu.
[image: image65.png]Cognos* Impromptu EP

Toaaud Tos

(LT r— o

Select a Catalog: To use Impromptu to create or open reports for your business, you must select an existing catalog. Catalogs are usually created by an administrator. You can open a different catalog at any time during your Impromptu session, but you can only open one catalog at a time.
Open the Great Outdoors Sales Data Catalog (Great Outdoors Sales Data.cat). You get this catalog when you do a typical installation of Impromptu.
 Try This... To open the Great Outdoors Sales Data catalog
1. If you have just started Impromptu, click Close to close the Welcome dialog box.
2. If you do not have the Great Outdoors Sales Data catalog open, from the Catalog menu, click Open to show the Open Catalog dialog box.

[image: image66.png]P e —

e s el Do CAT- ‘Avalable catalogs are
Indicated by
this icon.

o ——
N o —

covrns

3. Locate and double-click the Great Outdoors Sales Data catalog.

4. If the Cognos Common Logon dialog box appears, click Cancel.

5. In the Catalog Logon dialog box, click OK to accept your catalog User Class and open the catalog.

[image: image67.png]==

‘e diaog box e
denifes the catalog
[e——— You open.

When working with the Great Outdoors Sales Data catalog, your user class is User if you have the User version of Impromptu, and Creator if you have the Administrator version of Impromptu. Tip: Check the message in the status line. When it says "Sales data for The Great Outdoors Co.," this catalog is open. Note: If a Catalog Upgrade dialog box appears, select Upgrade this catalog and click OK to close the dialog box.
Open an Existing Report

In this, you are the Sales Manager for a camping equipment company called the Great Outdoors. You are completing your annual performance reviews for your sales staff, and you need a report detailing all the sales made by each sales representative. You’ll need to open a report you’ve already created called Sales Totals for Representative that shows all the sales each representative made.

Open the Report You can open an Impromptu report by

• using the Welcome dialog box when you start Impromptu

• clicking the Open button on the toolbar

• clicking the Open command from the File menu.

 Try This... To open an existing report 1. From the File menu, click Open. If the Reports folder isn’t open, double-click the Reports folder to open it.

[image: image68.png]Eul

[E=o— "]

fam—

ey

2. Locate and double-click the SalesRep Sales Totals report. Impromptu prompts you to select one or more sales representatives.

[image: image69.png]

Do not click OK yet. Note: If a Report Upgrade dialog box appears, select Upgrade this report and click OK to close the dialog box. Respond to a Prompt Your report may prompt you for information before retrieving the data. Your response to a prompt determines what is included in the report. The prompt acts as a filter for the data so that only the information you require appears in the report. One or more prompt dialog boxes may appear when you open a report. Each prompt dialog box further refines the data you will see in your report. You may be prompted to select one or more values from a list, or you may be required to type in a value.For example, this report requires you to select a sales representative from a list. You can select one or more values from the Prompts dialog box. Try This... To respond to a prompt
 1. Click OK to accept Bill Gibbons and to open the report.

[image: image70.png]Sales Totals for Representative...

Bill Gibbons prrspsoor ot

Sales by Customer

You can see the details of Bill Gibbons’ sales this year, including sales by customer and maximum and minimum sales. You can use this report during your performance review of Bill Gibbons.

2. From the Report menu, click Prompt to show the Prompts dialog box.

[image: image71.png]

3. Click Bill Smertal, and Ctrl+click Charles Loo Nam, then click OK to show the Sales Totals for Representative report for Bill Smertal and Charles Loo Nam.

[image: image72.png]Sales Totals for Representative...

Bill Smertal frmetonetont e
= Soes by ot

Click to switch to the Sales Totals reportfor Charles Loo Nam.

Print Your Report Impromptu lets you print your report. To print a report 1. From the File menu, click Print. 2. In the Print dialog box, select the appropriate print settings, and then click OK to send the report to the printer. 3. From the File menu, click Close to close the report.
Create a List Report Using the Report Wizard

Using Impromptu’s Report Wizard is an easy way to create simple reports. For example, you buy several GO Sport Line products, and the policy is to sell the products from that manufacturer at cost plus 50%. When you review the product cost and product price for the GO Small Waist Pack, the product margin seems low. You can make a report that lists the cost, price, and margin information for the GO Sport Line products to check their margins. You can use this information to help you decide whether to raise the prices on GO Sport Line products to keep the margins in line with the policy.

Try This... To create a list report using the Report Wizard

1. Click the New button to show the Report Wizard. Note: Do not click New from the File menu. This will open the New dialog box instead of the Report Wizard.

[image: image73.png]

2. Type GO Product Margins, and click Next to show the list/crosstab choice page. For more information on crosstab reports
[image: image74.png]

3. Click List Report and then click Next to show the data item selection page

[image: image75.png][S —
Pt

= e e |

Select the Data On the data item selection page you select data for your report. Each data item is presented as a column in your report.

 Try This... To select data for your list report

1. Double-click the Products folder to open it.

2. Double-click the Product Line data item to add it to the Report Columns box.

3. Double-click the Product data item to add it.

4. Double-click the Price and Cost folder to open it and then double-click these data items: • Product Cost • Product Price • Product % Margin

[image: image76.png]Gonao]

5. Click the Next button to group the report data.

[image: image77.png]

6. Click the check box beside Product Line. By grouping Product Line, Impromptu sorts the information in the product line, removing any duplicate values. Note: Ensure the Automatically Generate Totals check box is selected. When you select Automatically Generate Totals, the Wizard adds the totals for the numeric columns in the report to the overall list footer. If the report is grouped, the Wizard also adds footers at each change in the value of the grouped data item and inserts totals for the group in the group footers.

 7. Click the Next button to show the filter page.

[image: image78.png]

Filter the Data On the filter page

1. To create a filter to look at all products with margins less than or equal to 50%, double-click Product % Margin in the Available Components box.

[image: image79.png]St g b, o, e e i v

pr— P o
P o RIS 1l

2. Double-click <=.

[image: image80.png]St b, o ke e i o e
pr—

3. Double-click number, type 50 in the Enter Value dialog box, and then click OK.

[image: image81.png]

4. Click Finish to retrieve the data and show the report.

[image: image82.png]GO Product Marginy

Frodr e Frodi[Frod Con [FrodotPree [P 5 e
T T E| g
fack o ke o)
50 St i Pack e o
= o
oo oo o T E| e
150 S e B3 E = E
B T G
s Exooren [orer? 7 by
lo0 Cootse 3 s

You can now see all the information you need to compare the product margins, and you can focus the report further to see only the margins on GO products.

5. From the File menu, click Save As.

6. Type GO Product Margins Tutorial in the File Name box and click Save

IV/IV II SEM B.E CSE DATA MINING LAB MANUAL
Page 160

