FAST: An Eclipse Plug-in for Test-Driven Reuse

Diplom Thesis

by

Monika Krug

presented at

Chair of Software Technology

Professor Colin Atkinson, Ph. D.

Department of Mathematics and Computer Science

University of Mannheim

September 2007

Abstract

FAST: An Eclipse Plug-in for Test-Driven Reuse

The code search engines that have emerged over the last few years, in particular merobase.com, simplify the task of finding software components on the Internet based on their interfaces, e. g. Java classes by their method signatures. However, matching signatures do not ensure that the discovered components do what the developer expects from them, i. e. that they are semantically correct. The goal of this thesis is to develop the FAST (Fully Automated Search and Test) Eclipse plug-in that will support Test-Driven Reuse, also known as Extreme Harvesting. FAST will parse the JUnit test case written by the developer at the beginning of the development cycle and find and download Java classes that fit its syntax, i. e. have the right method names, parameter and return types. The plug-in will then run the JUnit test case on each class that was found to determine which of them really do what the developer needs them to do and which ones only happen to fit syntactically. That way Agile Development and reuse come together.

Content

1 Introduction
1

1.1 Motivation
1

1.2 Task
1

1.3 Structure
1

2 Agile Development
2

2.1 Extreme Programming (XP)
3

2.2 Crystal Family
4

2.3 Dynamic Systems Development Method (DSDM)
5

2.4 Scrum
5

2.5 Pragmatic Programming
6

2.6 Agile Modeling
6

2.7 XBreed
7

2.8 Can Open Source Development Be Agile?
8

2.9 Test-Driven Development (TDD)
10

2.10 JUnit
13

3 Reuse
15

3.1 Recall and Precision
17

3.2 Repositories
18

3.3 Source Code Search Engines
21

4 Test-Driven Reuse
33

4.1 Categorization and Evaluation of Test-Driven Reuse
42

4.2 Integrated IDE Support for Reuse
47

5 The FAST Plug-in
50

5.1 What FAST Does
50

5.2 Overview over the Architecture
53

5.3 The Parser: Determining Interfaces from Test Cases
53

5.4 Interaction with Merobase
58

5.5 Creating a Plug-in
59

5.6 Creating Projects Programmatically
61

5.7 Running the JUnit Test Cases Programmatically
62

5.8 Non-proactiveness of FAST
62

6 Evaluation of the Plug-in
64

6.1 Parser Tests
64

6.2 Complete Tests
73

7 Conclusion
87

7.1 Future Work for the FAST plug-in
88

7.2 Future Work for Component Search Engines
89

1 Introduction

1.1 Motivation

Agile Development and reuse both aim to enhance productivity and code quality, and there is little doubt that they both achieve these goals [54] [14]. So far they have been considered complementary, if not opposite concepts, because the lack of documentation and other non-code artifacts in Agile Development seems to preclude reuse [2]. It would be useful to bring the two together and shorten development time even further, thus saving a lot of money in software production, as the software industry is one of the few that almost exclusively rely on manpower. The higher code quality will save bug-fixing costs. Also in a non-commercial open-source environment, avoiding “reinventing the wheel” [55] will produce higher quality software and save the scarce resource of development time during the free time of the volunteer programmers, therefore resulting in more free software within the same time.

The emergence of code search engines over the past few years has made it easier to find existing software components. Yet still there is little reuse. When the developer does not anticipate the existence of a component, he or she will not bother to start up a code search engine and formulate a query. This would be a distraction from his or her current train of thought or developing activity, therefore no attempt of reuse is made [11] [46] [50]. The correct formulation of the query may be another hurdle [7]. Additionally, when a large number of components fit the query, it can be cumbersome to manually download the components found by the search engine and test them one-by-one to find those that really do what the developer wants and don't only happen to have matching signatures. So what is needed to enable Test-Driven Reuse and thus bring Agile Development and reuse together is integrated support in the development environment [4] [7], here Eclipse, to retrieve components that fit a test case with only a few mouse-clicks, and have those components tested automatically.

1.2 Task

The task was to develop an Eclipse plug-in that would parse a JUnit test case and determine the names, parameter and return types of the methods which the not-yet-developed Java class under test needs to have, formulate a suitable search query and send it to merobase.com, download the classes that are found, generate and adapter class if necessary, compile the downloaded classes and run the JUnit test case on those that compile successfully.

1.3 Structure

As this thesis is about bringing Agile Development and reuse together, it will begin with background information and previous research on Agile Development on the one hand, in particular of course Test-Driven Development, and reuse on the other hand, in particular repositories and code search engines. Then it will explain how the two come together in Test-Driven Reuse, also called Extreme Harvesting. The remainder of this thesis will be about the FAST plug-in, its evaluation and possible future development.

2 Agile Development

Agile or lightweight development methods are mostly management methods for business-to-business software projects which in contrast to the older heavyweight methods are ready to cope with the changing requirements throughout a project. Requirements change in almost all projects over time because the customer is typically not able to express them up front in their entirety in a way correctly understood by the developers. Therefore agile methods are iterative and incremental. They typically emphasize code over other artifacts like design and documentation. They stress continuous testing, usually through test-first development. Agile methods also put an emphasis on communication within the team and with the customer, and on keeping the developers content.

Their inventors put this as “simple design”, “streamlined processes”, and “barely sufficient documentation and methodology” [56] [57] [58].

Not all the agile practices are management methods, some, like refactoring, are practices for the developers themselves with little meaning to the managers.

Methods considered opposite to agile are the waterfall and the V-model as well as the Rational Unified Process (RUP), even though the RUP also suggests iterative and incremental development [59], and can be combined with e. g. Agile Modeling [60].

Agile methods began to rise in the 90s. In 2001 representatives of various agile methods, of Extreme Programming (XP), Scrum, DSDM (Dynamic System Development Method), Adaptive Software Development (ASD), Crystal, Feature-Driven Development and Pragmatic Programming [57], among them Kent Beck, Alistair Cockburn (pronounced “Coburn”), and Martin Fowler, came together and created and signed the Agile Manifesto [61]. It states, among other things, these four values:

· “Individuals and interactions over processes and tools

· Working software over comprehensive documentation

· Customer collaboration over contract negotiation

· Responding to change over following a plan”

Agile development methods are increasing in popularity. A 2005 study [62] showed that 14% of the enterprises in North America and Europe already employ agile software development processes, and another 19% are either interested in or planning to adopt them.

The most popular and well-known agile technique is Extreme Programming (XP). The next sections will outline this and some other agile methods and show that they are all concerned with testing, but none mentions whether or how to employ reuse.

2.1 Extreme Programming (XP)

Kent Beck made Extreme Programming (XP), a technique he developed with Ward Cunningham and Ron Jeffries to rescue the C3 project at Chrysler, popular through his book Extreme Programming Explained: Embrace Change [63] in the year 2000. XP is usually defined through the 13 practices Beck published the year before in the article Embracing change with extreme programming [64] in the magazine Computer. These 13 practices are:

· Planning game

· Small releases

· System Metaphor

· Simple design

· Continuous and automated testing, test-first development

· Refactoring

· Pair programming

· Continuous integration

· Collective code ownership

· On-site costumer

· 40-hour weeks or sustainable pace

· Open workspace

· Just Rules: Change and adapt these rules for the project at hand

In his book [63], Beck only mentions 12 practices: the first 11 of those 13 listed above, plus coding standards (everybody in the team using the same formatting for their source code).

In the paper [64], Beck specifically emphasizes test-first development, saying it is the technique at the heart of XP and part of every programmer’s daily business. Developers' writing their own tests and writing them before they code makes testing far more effective, he continues.

It is generally agreed upon that “test-driven development is one of the most fundamental principles of Extreme Programming, the most widely used agile method”. [2]

There are many success stories by companies that switched to Extreme Programming. Sabre Airline Solutions measured the increase of code quality and the reduction of development time after they adopted XP in 2002 [54]: During the acceptance tests of release 8 of their AirFlite Profit Manager, which was produced with traditional methods, 300 bugs were found during acceptance tests. For release 10, XP was used. Only 10 bugs were found by the customers during the acceptance tests. Even after months of use, only 100 bugs showed up. Their Host Access Tool actually had no single bug, and their Peripheral Manager only 4. Compare table 1.

Product
Lines of Code
Release Date
Bugs

Profit Manager Rel. 10
500,000
Dec. 2003
100

Host Access Tool
15,000
June 2002
0

Peripheral Manager
28,000
Dec. 2002
4

Table 1: based on a table by Sabre [54]: The astonishingly low defect number when using XP

But not only the code quality improved, development time was reduced at the same time: “Programmer productivity jumped 42% [...] after the development team switched to XP halfway through the project.” The improvement is shown in table 2.

Traditional methods (2001)
XP (2002)

Programming Tasks
87
91

Hours
23,531
17,276

Hours/Task
270
190

Table 2: based on a table by Sabre [54]: Productivity increased 42% with XP

Test-first development is at the center of Extreme Programming. Therefore XP is the optimal technique for combining with Test-Driven Reuse, which requires unit tests to be written by the developers before the code. This is why Atkinson and Hummel call Test-Driven Reuse Extreme Harvesting [1] [2] [3].

The lack of documentation may seem to preclude XP-style software from being reused by anyone but the team who developed it, but this is not so. The new software search engines can find components solely based on source code, without requiring additional manual work of putting the components into categories, describing them by keywords, defining facets or any such things that would be quite opposite to XP, as they are not focused on producing high quality code fast.

2.2 Crystal Family

Crystal is not one agile method, it's a family of methods. They are named Crystal Clear, Crystal Yellow, Crystal Orange, Crystal Red, Crystal Maroon, Crystal Blue and Crystal Violet. The darker the color, the more people on the team, approximately doubling for each level. Crystal Clear is for projects of about 6 people, Crystal Yellow for up to 20, Orange for 20 to 40 or 50, and so on. More people on a team require different communication and management techniques, different staff roles, subteaming, more documentation, and so on. [65] [66]

Orthogonal to the colors for size is the system of criticalness. L is for life-critical, e. g. certain software in hospitals, nuclear facilities or airplanes. E is for essential money: Failure of such software could bring down a company. D is for discretionary money, e. g. a payroll system. C is for (loss of) comfort. Projects in the L group require work that is generally not considered very agile, like formal specifications and proving correctness. [65] [66]

Like most other agile methods, Crystal emphasizes communication and aims to reduce non-code work products [67]. Crystal Clear, for smallest teams of about 8 people, has a lot of similarities to XP, but also differences. In [67] Alistair Cockburn (pronounced “Coburn”), the inventor of Crystal, writes that both XP and Crystal Clear require “frequent deliveries, close communications, user on staff, automated regression test suites, attention to team morale, and a strong oral culture”. But Extreme Programming and Crystal Clear are not one and the same, there are differences, too. Cockburn states that they are opposite regarding discipline and tolerance. Cockburn sees XP at the end with the lowest number of written work products and with the strictest standards, while Crystal Clear tolerates variation across people and has fewer rules [67].

Crystal is also test-driven, putting a lot of emphasis on automating tests and using standard automated test suites like JUnit for it [66]. It is not necessarily test-first, though. Cockburn writes in [66], his book about Crystal Clear, that “Crystal Clear does not mandate when the tests get written”. However, he continues to say that with the traditional approach of programmers and testers writing the tests after the code, they usually do not have much energy to write the code, and for that reason the use of test-driven development is spreading to avoid this problem.

Even though writing the unit tests first is not required by Crystal, this technique can easily be added to Crystal projects, as they are using testing frameworks like JUnit already. Crystal projects could therefore also benefit from the FAST plug-in.

2.3 Dynamic Systems Development Method (DSDM)

Dynamic Systems Development Method (DSDM) is one of the early agile methods. The DSDM Consortium was founded in 1994 and published their framework in 1995. It makes money by selling DSDM training. Like other agile methods, DSDM is iterative and incremental to accommodate change, uses prototyping and emphasizes communication.

Additionally so-called timeboxes are one of the central concepts. A timebox is the time allotted for an iteration, but it is not necessary for one timebox to complete before the next one begins. All changes must be reversible. Desired functionality is prioritized according to the MoSCoW method [68]:

· M - MUST have this.

· S - SHOULD have this if at all possible.

· C - COULD have this if it does not affect anything else.

· W - WON'T have this time but WOULD like in the future.

In contrast to some other agile methods like XP, DSDM puts emphasis on modeling, even on meta-modeling.

With DSDM, testing is done all through the project and not conducted as a separate activity in the end [68] like it would be in the waterfall and in the V model.

Writing the tests first is not specifically mentioned. But as testing accompanies the entire development process in DSDM, writing the tests first could certainly be accommodated. So the FAST plug-in could be used with DSDM projects, too.

2.4 Scrum

Scrum existed even earlier than DSDM, being used first in 1993 by Jeff Sutherland at Easel Corp., but it didn't get named and published until OOPSLA 96 by Ken Schwaber. Lots of Extreme Programming concepts and methods are based on Scrum concepts and methods, e. g. on the Scrum meetings.

The word “Scrum” is derived from Rugby. In Rugby, scrum is when – after an interruption – the two teams run forward against each other, each team in one big connected mass, all trying to achieve the same goal: moving the ball with their feet. It is meant to emphasize team work and team spirit. Nonaka and Takeuchi write in “The Knowledge-Creating Company” [56]: “Like rugby, all of us should run together, pass the ball left and right, and reach the goal as a united body.” (page 78) and “in today's fast-paced and fiercely competitive world, this overlapping, rugby-style approach has tremendous merit in terms of speed and flexibility.” (page 93)

Jeff Sutherland writes in his blog entry of 05th July 2007 about the origins of the Scrum method [69] that Scrum is based directly on “The New New Product Development Game”, a paper published by Takeuchi and Nonaka in the Harvard Business Review, and that Kent Beck used this paper in 1995 when he was in the process of putting together XP. He then says that the “first Scrum team starting in 1993 rapidly achieved a hyperproductive state by implementing all of the engineering practices now known as XP, along with some that are not in XP” and that “this forced [...] test first development”.

Like the other agile methods, Scrum is iterative and incremental to be able to adapt to changing requirements. An increment is called a sprint, there is a timebox for each. For every project, there is a product backlog and for each sprint a sprint backlog with the functionality to be implemented. Additionally, there is an impediment list of what keeps developers from implementing that functionality.

During the daily Scrum meeting, the Scrum Master asks each developer three questions: Whether he finished yesterday what he wanted to finish, what task he is going to work on until the next meeting and if there are any problems impeding him [70]. It's the Scrum Master's task to remove impediments for the team. The Scrum Master is not a boss, as the teams are self-organizing.

According to [70] Scrum established itself and became used in thousands of projects within few years.

As cited above, Scrum is closely related to XP and also relies on test-first development. Thus Scrum, just like XP, is an optimal candidate method for starting to employ Test-Driven Reuse.

2.5 Pragmatic Programming

Pragmatic Programming is not so much a management method for software projects as most of the other agile methods. Pragmatic Programming concentrates, as one may guess, on the programmer, on how to write good code and how to make good use of tools. This can be seen from the books in the Pragmatic Programmer Series. E. g. the introductory book The Pragmatic Programmer: From Journeyman to Master [71] is recommended on http://www.pragmaticprogrammer.com/ppbook/ with:

“Read this book, and you'll learn how to:”

· “Write flexible, dynamic and adaptable code.”

· “Avoid programming by coincidence.”

· “Harness the power of basic tools.”

· “Keep formal tools in their place.”

· “Make your developments more precise with automation.”

· ...

But it's not exclusively about coding and tools for coding, but at least a little about management, too, as it also promises to teach how to

· “Build teams of pragmatic programmers.”

Among the things one will learn from the book is how to

· “Test ruthlessly and effectively.”

There are also books like: “Pragmatic Unit Testing In Java With JUnit” [72]. So testing is definitely considered a central issue by the Pragmatic Programmers.

2.6 Agile Modeling

Not all agile methods are only concerned with the processes of programming and testing. There is also Agile Modeling. It is an enhancement for other software processes and can be combined with XP as well as RUP according to [73]. Even though naturally modeling is not as directly connected to testing as programming is, the Agile Modelers are nevertheless concerned with tests:

The Object Primer: Agile Model Driven Development with UML 2 [74] of course describes Agile Modeling, but also the “Full Lifecycle Object Oriented Testing (FLOOT) methodology. [...] The book also shows how to move from your agile models to source code [...] as well as how to succeed at implementation techniques such as refactoring and test-driven development (TDD).”

The related website http://www.agiledata.org/essays/tdd.html#TDDAMDD [75] states in its subsection about the relationship between Agile Modeling and Test-Driven Development: “TDD promotes the development of high-quality code whereas AMDD promotes high-quality communication with your stakeholders and other developers.” and “Both techniques support evolutionary development.” So these are considered complementary techniques to be used together.

http://www.agiledata.org/essays/tdd.html#Misconceptions [75] debunks several myths, among them this one about unit tests supposedly replacing design in Agile Development: “Myth: The unit tests form 100% of your design specification. Reality: [...] the unit test form a fair bit of the design specification, similarly acceptance tests form a fair bit of your requirements specification, but there's more to it than this. [...] agilists do in fact model (and document for that matter), it's just that we're very smart about how we do it.”

2.7 XBreed

There is not heard much about XBreed, now named Agile Enterprise. It deserves to be mentioned though, because it is also concerned with bringing Agile Development and reuse together. However, it is not a method for reusing existing components in an agile project, but about “[d]eveloping reusable software [libraries] in record times” [76]. It is in use since the year 2000 and a combination of Scrum and XP techniques. More details cannot be found on the official website, but they are also not particularly relevant.

2.8 Can Open Source Development Be Agile?

As the FAST plug-in sends its queries to Merobase, a search engine which indexes open source software available on the web and in public CVS and SVN repositories, it's a legitimate question to ask whether volunteer open source development, like that of the Linux, BSD, Mozilla or OpenOffice.org communities, can be considered agile and whether it could benefit from tools for agile reuse like FAST.

In many respects, the question isn't even applicable. Agile methods are mostly management methods for business-to-business software projects. They are meant to deal with the process of changing requirements that come from the fact that the customer company is generally not able to define their requirements completely and precisely in the beginning.

Free/libre and open source software (FLOSS) development is people-to-people software development. The customer is usually the programmer him- or herself. Most people work on projects whose results they intend to use. Therefore they typically have a very good idea of the requirements from the beginning. They will get new ideas about what functionality to add after the first ideas are implemented. But the original requirements rarely change. There are also often no deadlines to meet, so the methods of estimating programming hours required for a task or its importance and prioritizing some functionality over others, dropping the less important ones altogether if they cannot be squeezed in before the deadline, are usually neither needed nor applied in software development by volunteers. Volunteer projects are also distributed, while agile methods emphasize the importance of co-locating programmers to enable communication.

Nevertheless volunteer open source development has a lot in common with Agile Development:

· OS development is highly iterative and incremental. In most open source projects, small changes are being released as stable versions or as unstable testing versions within a very short time period. Software is often published and even widely used well before version 1.0. One example is the open source browser Firefox with already about half a million Google hits for “Firefox 0.8”, as can be seen in table 3.

Search term used for google.de
Number of results

“Firefox 0.1”
24 500

“Firefox 0.2”
550

“Firefox 0.3”
15 600

“Firefox 0.4”
678

“Firefox 0.5”
10 400

“Firefox 0.6”
9 710

“Firefox 0.7”
17 800

“Firefox 0.8”
602 000

“Firefox 0.9”
442 000

“Firefox 1.0”
2 550 000

“Firefox 1.5”
2 910 000

“Firefox 2.0”
3 500 000

Table 3: Number of google.de search results for early and recent Firefox versions, showing that it was already widely in use before version 1.0.

Search engine matches of course do not give direct information about the number of users of a program, but half a million search results do indicate that the program must have reached a certain level of popularity. The number of Firefox users is not known because many do not download their copy from the official site, but from mirror sites or from the software repositories of their Linux or BSD distribution.

· Agile and free / open source projects alike concentrate on creating code and avoid other artifacts like analysis and design documents or other documentation.

· Even though the volunteer projects are distributed, communication is nevertheless important and enabled through mailing lists and IRC channels.

But what about testing? Many testing frameworks, e. g. JUnit, are open source themselves, so it cannot be said that the open source community is not concerned with testing. However, test-first development is rare. Unit-tests may even be missing altogether.

On his website [77] Dan Kegel gives college graduates advice how to get hired as programmers. He recommends getting programming experience and public exposure by joining open source projects. His suggestion is to start by adding unit and regression tests. He states that “nearly all projects need them, but few projects have a good set of them, so your efforts will be greatly appreciated”. So even though open source programmers know about the importance of unit tests, most projects don't have a sufficient number of them and clearly they are typically not writing them ahead of the code.

This may make test-based searches and the FAST tool less interesting to open source programmers. On the other hand, it adds a benefit to creating unit tests before starting to code: the prospect of finding other open source software on-line that already accomplishes the task, and have it tested fully automated with minimal effort. This might encourage open source programmers to adopt test-first development.

So far only volunteer open source projects have been considered. There are of course also commercial open source projects in companies which usually make their money by support contracts for their software or in similar ways. These types of open source projects can use any traditional heavyweight or any agile method just like other software companies. If they employ Test-Driven Development, they are likely the ones who will most benefit from integrated tool support for Test-Driven Reuse like the one the FAST plug-in provides, because they can legally use most of the harvested components, even those with copy-left licenses.

2.9 Test-Driven Development (TDD)

As shown above, agile methods emphasize continuous and automated testing, though not necessarily test-first development. Often Test-Driven Development is used to mean test-first development, especially in the context of Extreme Programming and closely related methods. When working with those techniques that do not require the unit tests to be written before the code the practice of TDD should be easy enough to adopt. Even traditional heavyweight methods could adopt TDD with little effort and benefit from it.

Agilists claim the enhancement of code quality as well as the reduction of programming time for TDD. This is often supported only by testimonials and anecdotes like [66, 7th page of the on-line chapter “The Seven Properties of Running an Agile Project”], which tell the story of an individual who could solve one complicated problem much faster with TDD than without.

It is a core belief of XP that the sum of the time of creating the unit test first and the code to make it pass afterwards is approximately the same as only writing the code without writing a unit test [78]. This comparison is shown in figure 1. The blue sections designate the test-writing phase, the white sections the times when the programmer is writing production code.

[image: image1.png]

But do code quality and productivity really increase with Test-Driven Development in a measurable way? This is hard to tell from real-world examples because projects usually switch from some heavyweight process to an agile method altogether, so one cannot know which percentage of the improvement comes from which of the techniques that were employed, e. g. if the increase in code quality stems from pair programming or from Test-Driven Development. However there have been a couple of studies that specifically compared test-first with test-last development for their code quality and their programming time:

1. Test-Driven Development as a Defect-Reduction Practice [79] discusses the findings of a case study at IBM. Developers switched from test-last to test-first development in real-world projects. A baseline of the average number of defects during functional verification and regression tests when developing with traditional methods was established before. After switching to TDD, the number of defects fell by about 40%. According to the study, the productivity of the developers was neither influenced in a positive nor in a negative way by the change. The researchers add that the test suite produced during the case study while employing TDD will help IBM in the future when the software needs to be enhanced and maintained. Therefore, over a longer period of time, the productivity will probably increase.

2. An Initial Investigation of Test Driven Development in Industry [80] is a study by a university, involving 24 professional pair programmers. They received the same task of programming a small Java program. 6 pairs were told to use TDD, the other 6 pairs were told to work by the waterfall model.

It was found that TDD increased code quality. The code produced by that group passed 18% more test cases that were defined by the research team prior to the study than the code of the other group. They however also found that TDD decreased productivity: The pairs that were employing TDD required 16% more development time. However, they also noted that the developers that were not using TDD did mostly not write any automated test cases at all, even though these were required.

3. Experiment about test-first programming [81] was an experiment at a university with 19 graduate students in a lab course about XP, of which 9 were to use test-last, 10 test-first development. Each of them was to implement the bodies of 30 methods in a graph library. The students had an implementation phase, were then given the predefined acceptance test and then had a rework phase.

The researchers found that both groups needed the same amount of time. The findings about code quality are even worse: After the initial implementation, the test-first group fared significantly lower. After both groups were given the acceptance tests and time for rework, the test-first group was slightly ahead with the number of passing acceptance tests.

4. A Prototype Empirical Evaluation of Test Driven Development [82] was an experiment by a university. The subjects were 14 voluntary professional developers. They received two programming tasks, A, a simple create operation on a database involving little or no business logic, and B, a create operation with some business and data presentation logic. All programmers did both tasks. Half did A test-first and B test-last, the other half did it the other way around.

The goal of the experiment was to find out whether productivity would increase with TDD. They found no difference in productivity during the experiment. However, with TDD there were less (unplanned) failures of tests. In the long run this could lead to less time spent on debugging and therefore higher productivity.

5. Towards Empirical Evaluation of Test-Driven Development in a University Environment [83] was a semester-long experiment conducted by a university. The participants were 38 students in their 8th semester of Computer Science. Half were doing their assignments TDD-style, the other half used iterative test-last development, so both groups were working highly iteratively and without up-front design, the only difference was test-first vs. test-last. The groups were carefully chosen to be exactly equal in prior knowledge and skill. Data about what the students were doing (how long they took, how many tests passed) was collected automatically via an Eclipse plug-in.

The researchers did not find substantial differences between the code quality and the time needed for development by the two groups.

6. Test Driven Development and Software Process Improvement in China [84] is research by a university in small Chinese software companies in developing towns (in contrast to developed cities), which typically suffer from inexperience and high personnel turnover, and produce defective software. They assisted two teams to switch from test-last to test-driven (test-first) development and at the same time watched three other teams go on as they were doing before. As the five small companies were working on different industrial projects, the number of defects could not be compared directly (even though the number in the TDD teams was indeed lower), therefore the researchers compared the time needed to fix defects reported by users. While the test-last teams could only fix 73% of their bugs within a day, the TDD teams could fix 97% of theirs on the first day after the report. They also found that TDD quickly improved the overall team performance (in terms of task estimation, progress tracking and discipline) and hold their findings to be applicable to other developing countries in Asia, too.

The results of the six studies are summarized in the table below:

study
code quality
time needed

agile claim
improves
reduces

1.
improved (40% less defects)
no change

2.
improved (18% more tests passed)
increased (by 16%)

3.
no change
no change

4.
improved
no change (time may be saved later)

5.
no change
no change

6.
improved
n/a

Table 4: Does TDD really improve code quality and productivity?

While some studies did not see improvement in code quality, most did measure a significant improvement. None confirmed that time is being saved: One measured an increase of the time needed, one did not consider time, the others did not find an impact on productivity.

However, these were short experiments, not month- or year-long projects (with the exception of the first study cited). Time may not be saved immediately, but the higher quality code resulting from TDD will avoid regressions, bug-searching and bug-fixing when introducing new features months later.

2.10 JUnit

JUnit is the unit-testing framework for Java (Standard Edition, formerly known as J2SE). “the” because it hardly has any competition to be mentioned.

This is what a simple JUnit test case looks like:

package mypackage;

import junit.framework.TestCase;

public class StackTest extends TestCase

{

Stack stack;

public void setUp()

{

stack = new Stack(4 /*initial size*/);

}

public void tearDown()

{

stack = null;

}

public void testPushPop()

{

stack.push(5);

assertEquals(5, stack.pop());

}

public void testPushPop2()

{

stack.push(1);

stack.push(2);

assertEquals(2, stack.pop());

assertEquals(1, stack.pop());

}

}

The test class needs to extend the class junit.framework.TestCase, from which the methods setUp() and tearDown() are inherited. They are called before respectively after each test method. What they are used for should be pretty clear from their names. TestCase extends the class Assert which contains the static assert methods:

· assertEquals

· assertSame

· assertNotSame

· assertTrue

· assertFalse

· assertNull

· assertNotNull

assertSame and assertNotSame take two object arguments: expected and actual. assertTrue and assertFalse take a boolean expression as an argument. assertNull and assertNotNull take an object argument. assertEquals exists in many varieties: For two arguments of char, byte, short, int, long, boolean, String and Object, expected and actual. For three arguments of type float or double: expected, actual and maximum allowed delta.

Additionally, all assert methods exist a second time, with a message parameter of type String as the first argument. [85]

The tests can be run with a text runner or with a visual runner. When all tests pass, there is no output, or a green indication in case of the visual runner. When there is a failure, there is output like: “junit.framework.AssertionFailedError: expected:<2> but was:<5>” plus a stack trace. A visual test runner will show a red indicator.

The JUnit plug-in is also an integral part of the Eclipse IDE. JUnit tests can be run at a few mouse clicks. Figures 2 and 3 show how the results are indicated in Eclipse.

When all tests pass, there is no output besides the green indicator bar.

[image: image2.png]Package Explorer [N LA
Finished after 0,081 seconds & & o8 on @, @, ®

Runs: 6/6 B Errors: 0 B Failures: o [

B T T+]| = Fallure Trace
¢ testHelloworld

i testhello
Etestsay

] testothing

£ testsenseofiife
& testProperty

When any test fails, the expected and actual values as well as the stack trace are shown.

[image: image3.png]Package Explorer [IHES =0
Finished after 0,092 seconds

BErors: 0 B Failures: 1

~ Fi parsertest.StackTest = Failure Trace HE

& testPushPop 31 junit.framework.AssertionFailedError: expected:<2> but was:<5>

3 testpushPop2 at parsertest StackTest testPushPop2(StackTest.java:19)

3 Reuse

This section will first define software reuse and its goals and then discuss why it has so far not materialized significantly. Then two subsections will follow: The first one will be about software repositories, or software libraries as Mili at al. call them [6] as an analogy to traditional paper book libraries, and why they have failed. The second one will be about software search engines or the web as a reuse repository as Atkinson and Hummel put it [3].

While Agile Development is a fairly recent idea, the concept of software reuse has been around for some time. The term software reuse was first used by McIlroy at the famous NATO Software Engineering conference that took place in Garmisch in 1968 [8]. There, he “introduced the vision of composing new software systems from prefabricated parts rather than building them from scratch” [1]. Just like the goals of Agile Development, in particular Test-Driven Development, the goals of software reuse are to enhance the quality of the produced code on the one hand and lower the time needed for development at the other hand [1] [3] [14], thus lowering development costs, as manpower is almost the only resource needed for creating software.

Software reuse need not mean the reuse of source code or of binary components in the process of creating a software system. It can also refer to the reuse of other artifacts. This could be test cases, analysis and design documents, or “a piece of formalized knowledge that can contribute, and be applied, to the software development process” ([7], citing [10]). Reusable artifacts can be product families, design architectures and documentation [7]. McIlroy wrote in [8] that besides requirements, design and source code, also domain knowledge can be considered as reusable.

However, in the majority of papers on reuse, software reuse is used to refer to the reuse of source code and executable code only [8]. The FAST plug-in and the Merobase search engine aim only to reuse source code, but they could be expanded reasonably easily to include Java byte code, C# intermediate code or possibly even some types of directly executable (non-intermediary) code if the signatures of the methods or functions involved can be determined from it. Merobase actually claims to already do this, however during my tests no binary (*.class) files were found.

Increasing the reuse of software has been one of the main objectives of software engineering during the past decades. Modular programming, object-oriented design and programming, components, Aspect-Oriented Development and Product-Line Engineering are reminiscent of this development. However, reuse remains difficult. The main obstacle is the difficulty of finding components suitable for the task at hand. Software search engines have appeared during recent years and their indexes and usefulness has been growing [3]. Software catalogs have proven not be that useful, as – because of the manual work involved with filling and maintaining them – they remained relatively small and the information and components contained in them became outdated quickly. It turned out that software search engines just like other search engines need to automatically index open source software on a regular basis to be sufficiently large, up to date and useful.

Even though the idea of software reuse is not exactly new and has been pursued by developers and researchers alike since 1968 [4], there is general agreement that it has hardly materialized so far. In 1998, Mili at al. wrote [6] that “no solution offers the right combination of efficiency, accuracy, userfriendliness and generality to afford us a breakthrough in the practice of software reuse”. In 1999 the authors of [12] said that software reuse is what is missing to make software development “a fully fledged engineering discipline”. In 2004 Lucrédio et al. agreed with McIlroy's statement that “the software industry is weakly founded and one aspect of this weakness is the absence of a software component sub-industry” [5]. Ye and Fischer stated that “systematic reuse has not yet met its expected success” [4] in 2005. In paper [1] from 2006 Atkinson and Hummel say that even though software reuse has been partially successful in product line engineering [13], “the direct reuse of third party components in the sense envisioned by McIlroy is still the exception rather than the rule.”

Many have ventured to find the reasons for this on-going lack of reuse. In [1], Atkinson and Hummel summarize some of them: McIlroy already wrote in his initial work [8] in 1968 that there are technical problems with setting up and maintaining component repositories. Providing sufficient precision for component searches is another technical problem, mentioned by Mili at al. in [6]. But there are also non-technical issues, stemming from human factors. There may be a certain reluctance among developers to integrate foreign software components into their own work because the adoption or maintenance effort may seem too high or because they fear the quality may be insufficient. This is called the not invented here syndrome. [4] lists cognitive difficulties besides technical and social ones.

The authors of [5] refer to the study [16] that was conducted by the Software Engineering Institute / Carnegie Mellon University between 1999 and 2000 with the goal to find out why component-based software engineering is not in wide use, yet. Several software development organizations were involved in the study and a wide research within the relevant literature up to that time was conducted. The conclusion of the study was that the developers and decision makers in the companies see the following four problems that keep them from adopting reuse, the first one being the most important one:

· “a lack of available components,

· a lack of stable standards for component technology,

· a lack of certified components and

· a lack of an engineering method to consistently produce quality systems from components.”

The perceived lack of available components may really be a difficulty to find components. This underlines the importance of Information Retrieval for software reuse.

In the next section I will explain two basic terms used in connection with reuse, recall and precision. The following two subsections will deal with the research about software repositories and the more current software search engines and their categorization within Information Retrieval. The problematic state of software repositories may well have been the predominant inhibitor for widespread software reuse. Software search engines compare favorably, but they, too, still need improvement for syntactic searches, and automation for semantic checks is required, too.

3.1 Recall and Precision

A query can usually not completely and exactly describe which components from the repository are relevant, i. e. wanted by the searching developer and potential reuser and suited for his or her task. Usually some components will be delivered that are not really relevant, but only similar in some way to the query, and some relevant components from the repository will be missed. To evaluate how good a search facility is one frequently uses two ratios, one being called recall, the other precision.

number of relevant components among the retrieved components

[image: image4.png]prr——
“eionen

<) Search the Web
a) Describe Syntax

S22]

) Match Signatures

&) Compile

recall =

total number of relevant components within the entire repository

number or relevant components among the retrieved components

[image: image5.png]a

b

o

o

o

identty dosiod ntotace.

defing desied samantics as tests

find matching components

fitercuton vald components

establsh accoptabily thiough tests

precision =

total number of retrieved components

Typically, increasing the recall reduces the precision and vice versa. When the query is formulated in a more general way so that more components are included in the result, not all additional results are going to be relevant. To the contrary, the percentage of relevant components usually becomes lower. When the precision is increased to filter out more irrelevant software components, in most cases some relevant components will be filtered out, too, so per definition the recall is lower. This relationship is often shown in recall-precision diagrams with the recall on the x-axis and the precision on the y-axis. This is an example of a recall-precision curve:

[image: image6.png]| B EEES

P N

[———— =

o Tost Cases o Web Search

s=2]

@ Signatures Matching?
7 ~

re

prest

o) Compite

When the underlying repository is small, recall is the main concern, when it is large, precision becomes most important.

3.2 Repositories

Software repositories, or “software libraries” as they are called in [5], [6], [7], [23] and [53] as an analogy to traditional paper book libraries, are storages of software components (e. g. Java classes or web services) with descriptions. These descriptions could be keywords, facets, documentation (like Javadoc) or formal descriptors in WSDL (Web Service Description Language). The maintainers of the repository have to upload the components and update them when they change. They have to add the keywords or separate the aspects of a component into facets. Additionally, in many repositories they have to sort the components into categories. All of this requires a lot of manual labor – too much manual labor. All attempts of software repositories have been unsuccessful so far, either staying really small or becoming filled with dysfunctional software.

According to [1] and [2] (Atkinson and Hummel), the repository problem was first mentioned by Seacord in [15] in 1999. Seacord writes that as of 1999 few or none attempts of setting up and maintaining component repositories were successful and that this is the main impediment to systematic reuse. Atkinson and Hummel came to the same assessment in 2006 [3]. Seacord says that due to the high effort involved in the set up and keeping up-to-date of the repositories a working solution can probably not be expected for a long time.

Atkinson and Hummel mention [3] that the two most well known commercial component marketplaces, Component-Source.com and Flashline.com, have had to merge recently (i. e. in late 2005 or early 2006), then name a recent major failure of implementing the vision of widespread software reuse: the web services brokerage model, embodied in the UDDI (Universal Description, Discovery and Integration; UDDI, SOAP and WDSL are the three core web service standards). UDDI provides a registry to which web service providers can publish their components and from which web service users can retrieve useful services. Initially, UDDI had strong industry support, with SAP, Microsoft and IBM setting up the UBR (Universal Business Registry), a publicly available instance of a UDDI repository. But in early 2006 they shut the UBR down, because it primarily contained unmaintained and unusable material [1] [2] [3], even though with all the investments made one would have expected a large index of services. The UBR is not the only repository with problems: All failed to reach a critical mass of entries and the entries they contain are often out of date, sometimes not even pointing to valid WSDL files, and rarely working. Table 5, from [3], shows this.

 Search Method
API
Claimed number of links to WSDL files
No of actual links to valid WSDL files

UDDI Business Registry
yes
770 (790 [11])
400 (430 [11])

BindingPoint.com
no
3900
1270 (validated)

Webservicelist.com
no
250
unknown

XMethods.com
yes
440
unknown

Salcentral.com
yes
~800
 all (validated)

Table 5: based on table 1 from [3]: Number of WSDL files within reach at various websites (July 2005)

As [3] points out, the path the UBR and other repositories took should not have been surprising: Based on his practical experience at IBM, Poulin predicted in [17] in 1995 a three-phase reuse progression:

1. empty,

2. filled with garbage,

3. too general.

The UBR actually did not even reach the third stage.

Not all computer scientists agree that a low number of components in a repository constitutes a problem. In [5] P. Hall's paper [18] is mentioned, in which Hall expresses doubts about the idea that reuse success requires a big repository. He favors maintaining a few components from a specific application domain over a great number of different components. This would make advanced search mechanisms unnecessary.

The authors of [5] add immediately that Hall is rather alone with this idea: “This statement contradicts several authors, including Victor Basili, an important researcher on the software engineering area: 'Reuse efficiency demands a great catalog of reusable objects' [19]”.

The authors of [5] go on to explain that according to [15], the main reason for repository failure is that they are centralized systems. Centralized repositories do not scale. The excessive control over the stored components is a main problem, and their accessibility is low [15]. Therefore, repositories should be distributed. For large-scale reuse, this is a requirement.

In [4], a paper focused on the non-technical impediments to reuse and on tool support, Ye and Fischer suggest that to overcome the problem of low recall in repositories the repositories must be filled by the reusing developers themselves. Tools should make this easy for the developers and there should be social rewards for adding components to the repository. Ye and Fischer call this a change to a decentralized, evolutionary paradigm. They think that through this process the developers will overcome the not-invented-here syndrome because this “gives them the sense of ownership of the repositories” [4].

The low number of components in the repositories is not the only trouble. Finding what one is looking for among these is difficult, too, and results in little reuse. In [3] Hummel and Atkinson compare commercial component market places to Amazon, because one looks for components in them in a similar way, like browsing a catalog, in a very informal and unpredictable manner. The only search facilities typically provided are simple, text-based searches for keywords in the documentation that was manually added to describe the components.

One idea for enhancing precision is to use formal methods, for example OCL or Z or other types of pre- and postconditions, as descriptions of the components as well as for the query. This, however, is not feasible:

Using formal descriptions only for the query and not supplying same descriptions for the components is not an option: “to find out whether a code unit complies to a given formal description is equivalent to solving the halting problem [20]” [3].

Even when the components are described with formal methods, there are still problems. It is difficult for the potential reuser to formulate queries in a formal language [21]. Proving that the two specifications, that of the component and that of the query, are equivalent, may be hard, i. e. require a lot of computational effort [21]. Therefore, formal methods are only widely used in life-critical systems for air planes, nuclear plants etc., or as it is put in [5], for “application domains such as reactive and real-time systems”. Formal methods certainly would not lie within the typical experience of agile programmers. Most non-agile programmers do not generally use them, either.

McCarey at al. [7] mention a completely different way of component retrieval: Component Retrieval by Example as described in [22]. This requires so-called examplets, small source code snippets that show how certain solutions for programming problems are achieved, plus a free-text description of the programming goal. Setting up such examplets, however, would require similar amounts of work, if not more, as filling a repository with components, categorizing them, adding and giving them keywords or describing their facets manually, so there is nothing to be gained from Component Retrieval by Example with that respect.

All in all one can clearly see that despite all the effort that was put into software repositories, none were particularly successful. The number of components in them remained low or they became filled with unusable components. Repositories require just too much manual work to fill them and to keep them up to date. Therefore the only viable solution is to use automatic indexing of source code or executable code and to use source code search engines, as will be seen in the next section.

3.3 Source Code Search Engines

The last section showed that software repositories that require manual work for setting them up and maintaining them have not been successful and are unlikely to ever be successful. Consequently, the web in combination with public CVS and SVN version control repositories has to be used as the software repository for reuse. In “The Web as a Reuse Repository” [3] Hummel and Atkinson put this as “One of the key obstacles to systematic reuse has traditionally been the set up and maintenance of up-to-date software repositories. However, the rise of the World Wide Web as a general information repository holds the potential to solve this problem and give rise to a truly ubiquitous library of (open source) software components.”

The two most popular general-purpose search engines Google and Yahoo can be used to look for source code by limiting the file type to e. g. “.java” [24]. Google also offers the specialized Google Code Search. Koders, Codase, Krugle and Merobase are search engines specialized on searching for source code with support for the syntax, e. g. restricting a search term to the class name, method names or similar. The source code search engines download publicly available source code and analyze and index it in ways that are only applicable to source code. Among these, only Merobase is sufficiently suitable for the purpose of Test-Driven Reuse, because none of the others combines sufficient syntactic search options (for classes' interfaces) with an API for automating searches and accessing the search engine programmatically. Therefore Merobase is currently the only choice for the FAST plug-in.

Even though such source code search engines were introduced fairly recently, the idea that all manual work in setting up and maintaining software repositories (“software libraries”) must be eschewed was already maintained as early as 1991, when the majority of works on reuse still dealt with classification of components according to “A Survey on Software Components Search and Retrieval” [5]: “The literature of this period has also other approaches for the components classification problem. Authors, such as [those of] [23], argue that the effort needed to manually classify components of a software library is too big, since these tend to grow and become huge. Besides, this process is susceptible to the subjective rationale of the person who is responsible for the task of classifying the components. For instance, in a facet-based scheme, two different people may choose different keywords to describe a component. To overcome this problem, Maarek et al. [23] propose the use of automatic indexing, which consists in automatically extracting, from free-text descriptors, terms or phrases that best describes a component.”

The same survey [5] deals with differences between repositories used internally to a company and public component market places, claiming that in external markets, components are typically reused without changes to their code, i. e. black-box reuse is employed. This needs not be so with the current approach of searching for open source software via search engines. As the source code is available, this constitutes white-box reuse, even though the components come from an external “market”.

The survey [5] goes on with discussing previous research on using controlled vs. uncontrolled vocabulary. When the vocabulary is controlled, i. e. the vocabulary one can choose from to describe components in the repository and to formulate one's query is limited and clearly defined, the likelihood of finding matches is much higher. However, this obviously requires manual work to add the descriptions to the components. Additionally it may be difficult for the potential reuser to formulate the query. When the web is used as a reuse repository, clearly the vocabulary is uncontrolled.

As the main complaint about the component repositories in the previous section was that they contained too few components, one has to ask the question whether the web and public CVS and SVN repositories do contain high numbers of components. This question can clearly be answered with yes: According to mid-2006 research [3] there were already more than 3 million Java classes available on the web, “a number that exceeds previous component repositories by several orders of magnitude” [1]. So with the web as a repository, recall (finding components relevant to the problem at hand) is no more the major problem, instead precision (not retrieving lots of non-relevant components at the same time) and ranking become the main concerns [1]. “In other words, the main challenge today is no longer finding enough candidate components, the problem is identifying which of them does what the user is looking for” [1]. For example when using traditional text-based searches not adapted specifically to source code search (i. e. only able to limit the file type to e. g. “.java”), a search for “Stack” may find all classes that use a stack even though the searcher and potential reuser was most likely really looking for a class that implements a stack.

The research paper [3] Using the Web as a Reuse Repository (2006) specifically analyzed how the number of components findable on the web increased over the last few years. The search engines they used for the evaluation needed an API that allows computation access to their indexes and must accommodate limiting the search results to a given programming language, in this case Java. At the time, only Google, Yahoo and Koders offered these two features. (Google and Yahoo by using the “filetype:” feature.) These were their results:

Month
Google (Web API)
Koders
Yahoo

08/2004
300,000
-
-

01/2005
640,000
-
-

06/2005
950,000 (220,000)
310,000
280,000

08/2005
970,000 (220,000)

1,510,000 (367,000)
330,000
 2,200,000

11/2005
 2,212,000 (190,000)

4,540,000 (410,000)
330,000
 2,200,000

Table 6: based on [3] Table 3: Number of Java files indexed by search engines on the web. “The italicized value in the last row stems from the query “filetype:java” class OR –class.”

As one can see, the number of Java classes available on the web multiplied within a short period of time. There are now millions of Java classes available on-line and therefore the web is a very useful candidate for a reuse repository.

For comparison, some values for the number of indexed Java classes (determined by searching for “public class” and restricting the language to Java) as of September 2007:

Code Search Engine
Number of Java classes indexed

Google Code Search
1,240,000

Koders
698,704

Krugle
3,108,167

Merobase
between 3 and 8 million

Table 7: Number of Java classes indexed by some major search engines

In Knowledge Reuse for Software Reuse [7] McCarey, Cinnéide and Kushmerick name five different component retrieval techniques that were and are used in the past and present:

1. Information Retrieval (IR):
Class or method names, source code comments, and documentation are searched [23]. The query is expressed in a natural language. This makes it easy to formulate a query, but hard to formulate the query in a way to exclude irrelevant components.

2. Descriptive:
Abstract descriptions of the components are searched. This could be sets of keywords or so-called facets. The systems have to be designed carefully up-front and the descriptions typically have to be entered manually.

3. Syntactical:
Signature matching [25] [4]. McCarey et al. consider this to be more formal than IR and descriptive methods, and therefore think it may be difficult to use. I think signature-based queries are easy enough for programmers to formulate. McCarey et al. add that signatures do not guarantee the expected behavior of a component and are of course right on this.

4. Artificial Intelligence (AI):
“AI [26] schemes [...] endeavor to understand both the library components and the reuse query [...] tend to be context and environment aware [...].” [7]

5. Web Technologies:
Only the web is sufficiently scalable and efficient for effective reuse, but there are security and legal concerns [3].

The authors of [7] comment on the different techniques: “The limitations of traditional IR, descriptive, and syntactical approaches have been noted: each of these techniques are unreliable, require up-front planning, and lack context information. More promising are web-based and knowledge-based AI retrieval approaches.” I agree with their assessment on IR and descriptive approaches, however, there is no planning needed for syntactical approaches, and in combination with tests for semantic verification they achieve the highest reliability.

Let's see which of these five categories are relevant for us: We have just let go of the idea of descriptive methods in the previous sections because they require too much manual work for setting up the repositories and maintaining them so that they remain up to date, as numerous unsuccessful examples showed. AI is out of the scope of this thesis. This section deals with method 5, web technologies, i. e. search engines, some of which only provide IR methods (1) for retrieving components, while others provide support for syntactical queries (3).

As mentioned above, IR methods do not make provisions for excluding irrelevant components. This is correct, for example there is no way to distinguish between a Stack and a class that uses a Stack, and that is why syntactic search capabilities are needed for software search engines. We will see which search engines provide those to what extent.

The authors of [7] said that syntactical methods may be too difficult to use for the developers and potential reusers. We will look at the approaches of different search engines and see that they are really fairly easy to use after seeing just one example or reading only a hand full of lines of documentation. Nevertheless, the FAST plug-in lifts the burden of having to create the query from the developers by creating them automatically from the JUnit test cases the developer writes ahead of the code anyway in Test-Driven Development.

The authors additionally say about syntactical methods that matching signatures by themselves do not guarantee that a component behaves as expected. They are, of course, right about this. The main task of the FAST plug-in, besides creating the syntactical query from the test case, is to provide semantic checking by executing the JUnit test case automatically on the components that fit the syntactic query. This is the only practical way to ensure the downloaded classes behave as needed.

Interestingly, in the experimental study Reuse-Conducive Development Environments [4] Ye and Fischer found that “[t]he signature-matching mechanism did not play too much of a role in the experiments”, i. e. the test subjects did not rely on it much. However, it has to be noted that this was not Test-Driven Development or reuse. The developers typed in the Javadoc for the method they were about to write and then the IDE (Emacs with Ye and Fischer's plug-in) suggested methods that were similar in some way, measured by a distance between the Javadoc, name and parameters of the method found and the Javadoc the programmer had just written. This feature was used a lot by the subjects of the experiment. Then, when the method signature was typed plus the following { the IDE would suggest methods fitting this signature. This is what Ye and Fischer referred to as “not playing too much of a role”. They also described the reasons: The developers did not look for methods to replace the method they were currently writing, but they were looking for methods that they could employ while writing this method. They also wrote their Javadoc commentaries in a way to include words that described how they wanted to achieve things with the aim of getting the IDE to suggest methods that could do this for them. This is not what is usually written in Javadoc commentaries, these should really describe what the method does and not how it is achieved.

The first web-based approach for reuse was introduced by Seacord, Hissam and Wallnau in 1998. The name of the search engine was Agora [15] [28]. It had its own index of Java applets and ActiveX components. The index was filled by using a general purpose search engine. The project was discontinued, though. The reason was likely the high effort that was required for setting up the index. [3]

Agora evidently only dealt with black-box components, Java applets in byte code form and ActiveX components, which are not open-source either. Current search engines are only concerned with white-box components, i. e. source code. (Merobase claims to find binary components, too, but none showed up during my tests.) In the next paragraphs we will look at the mosts important ones, Google, Google Code Search, Yahoo, Koders, Codase, Krugle and Merobase, what was written about them in early 2006 and how they have advanced now in 2007.

In [2] Hummel and Atkinson stated in mid 2006 that the emergence of commercial code search engine for searching the Internet (rather than individual repositories) was a fairly recent event. They pointed out Google Code Search, Koders.com and Merobase.com. They say that the code search engines have not yet found “the right combination of prescriptiveness, ease of use and performance to become widely used”. At the time, Merobase was the only one that offered interface-based search features. Koders offered text-based searches, Codase offered limited support for syntactic searches, “constrained to method names or parameter types” (which actually already sounds like interface-based searches to me). Krugle.com was not up, yet. All the search engines crawled the web and public CVS and SVN repositories, downloaded the code and indexed it.

The following comparison was made in [3] in January 2006. Afterwards I will look at Koders.com and Codase.com whether they have changed since then and additionally at Krugle.com, a popular new software search engine and compare them to Google Code Search and Merobase.com.

URL
No. of Languages supported
API Supported
Search Methods
Indexed Lines of Code
No. of Java classes

Koders.com
30
RSS
Linguistic
225,816,744
330,000

demo.spars.info [27]
1
no
Linguistic &

Syntactic
n.a.
180,000

Kickjava.com
1
no
Linguistic
20,041,731
105,000

Codase.com
3
no
Linguistic &

Syntactic
250,000,000
95,000

Csourcesearch.net
2
no
Linguistic &

Syntactic
283,119,081
n.a.

Sourcebank.com
8
no
Linguistic
n.a.
> 500

Planetsourcecode.com
11
no
Linguistic
11,276,847
230

Table 8: based on [3] Table 2. Overview of specialized source code search engines (January 2006).

Now let's see how Koders, Codase, and the new software search engines Krugle and Merobase fare today (mid 2007). I also included Google Code Search in the comparison.

koders.com

Number of supported languages: 32, about the same as 1.5 years before.

Index size: 717,762,497 lines of code, about three times as many as 1.5 years before.

Number of Java classes: 698,704 results for “public class”, about doubled within 1.5 years.

Supported search methods:

· cdef:<search term> Search for classes whose name contains <search term>

· mdef:<search term> Search for methods whose name contains <search term>

· idef:<search term> Search for interfaces whose name contains <search term>

· file:<search term> Search for files with names that match the <search term>

· compound search example: Search for classes named tree with a method named insert: cdef:tree mdef:insert

So it is possible to distinguish classes that e. g. use a Stack from those that implement a Stack. There is partial support for searching for a class with a certain interface: It is possible to combine several mdef search terms and find classes which contain methods with all these names. However, there is no possibility to look for actual signatures, i. e. no way to query for a method with a certain name and certain parameter types and a specific return type. Additionally, there is no provision for specifying exact method names, e. g. searching for mdef:push mdef:pop yields results with classes that neither contain a push nor a pop method, but methods pushHandler and popHandler or similar. This may not matter much or even be useful when searching manually, but it causes difficulties with automated searches when test cases are to be executed on the search results automatically.

Tool support: Koders offers a plug-in for Eclipse and a plug-in for Visual Studio.NET. One feature is a simple search field and right-click search capability added to the IDE. But additionally, there is a so-called SmartSearch feature (shown in a video on the website for Visual Studio.NET; it does not mention if this is included in the Eclipse plug-in, too). SmartSearch searches for method definitions in the background. When the developer types in the header of a method, a message appears that so-and-so-many methods with similar names have been found. They can then be opened inside the IDE easily and the developer can copy and paste the source code into the class he or she is working on. The demonstration on the Koders website mentions that the correctness of the copy-and-pasted method will then be verified by unit tests written by the developer beforehand. However, there is no mentioning of automation of those tests. Apparently the developer is to run the unit test manually and if it fails either adapt the source code or copy and paste the next of the search results and then run the unit test again, and so on.

How Koders finds publicly available source code on the web and public CVS and SVN repositories: (quoted from their website) “In order to build out the Koders.com index of Open Source projects, we need to know about the projects in the first place. Some Open Source project sites provide XML feeds of some sort which makes this easy, but other sites aren’t so forthcoming with that information, forcing us to rely on trained dolphins, psychics, and clairvoyance. Oh, and we rely on you, dear koder.” So Koders obtains its information mostly from XML feeds on the one hand and on the other hand from developers that report links and connectors to CVS and SVN repositories on a form on their website.

Update cycle: “We strive to push a new index every 2-3 weeks.” [koders.com – FAQ] This contrasts with the early 2006 paper [3]: “Koders also appears not to have updated its index for many months.”

codase.com

Number of supported languages: 3 (Java, C, C++), the same as 1.5 years before.

Index size: 250 million lines of code, the same as 1.5 years before.

Number of Java classes: Could not be determined, because an error “502 Bad Gateway” was returned all the time.

Supported search methods:

One can select from the following search methods:

· Method Call

· the containing class can be specified

· the parameter type(s) can be specified

· the return type can be specified

· the object name can be specified

· Method Definition

· the containing class can be specified

· the parameter type(s) can be specified

· the return type can be specified

· Class Definition

· superclasses can be specified

· implemented interfaces can be specified

· Class Field

· the containing class / name space can be specified

· the type can be specified

· Variable

· the type can be specified

· the containing method can be specified

· Field Reference

· the type can be specified

· the containing class / name space can be specified

· the object name can be specified

· the containing method name can be specified

· Free Text

· Smart Query

The Smart Query options defines certain notations to e. g. distinguish method definitions from method calls. The website gives the following examples:

· int main(int, char**){}
for method definition by ending with {},

· sort or insert(int)
for method call by ending with (),

· class map
for class definition by starting with class,

· fopen; fread; fclose
for similar code with those method calls

As one can clearly see, the search options are much more advanced and much more appropriate for syntactic searches, which are required as the basis for semantic searches, than those of koders.com.

However, currently no searches seem to be possible. All requests result in the error message “502 Bad Gateway” and “The proxy server received an invalid response from an upstream server” over the period of several days. Additionally, messages from November 2005 are marked with NEW. This may mean that the search engine is not operational anymore.

krugle.com

Number of supported languages: 43

Index size: 2.1 billion lines of code (mentioned by Ken Krugler in his Search: A Powerful Programming Tool talk at LinuxWorld 2007, the slides are available on http://www.linuxworld.com/slideshows/2007/080907-slideshow-Q1.html).

Number of Java classes: 3,108,167 matching files for “public class”.

Ken Krugler claims in his blog entry of the 4th of August 2007 http://blog.krugle.com/?p=257 that the index size of krugle.com is similar to that of Google and that searches for very general queries like “int” yield wrong results on Google and other search engines, because the number of results are only guessed from the first results and the depth of the index the search engine had to go into for retrieving those.

Supported search methods:

One can select from a menu among the following options:

· Any area

· Comments

· Source Code

· Function definition

· Function call

· Class definition

Searching for a <search term> and selecting one of the options results in the following queries (these are shown above the search result):

· comment:<search term>

· code:<search term>

· functiondef:<search term>

· functioncall:<search term>

· classdef:<search term>

One can select “Any area” and then combine several query types, e. g. classdef:Stack functiondef:pop functiondef:push language:java. Therefore the search capabilities are similar to those of Koders.com. It is possible to define and combine class names and method names, but it is not possible to specify method parameter types and return types. For a precise syntactic search, this is insufficient.

Tool support: Krugle offers an Eclipse plug-in. It is a simply search box added to the IDE. The main benefit is that the Java files found with Krugle can then be opened directly with the Eclipse Java editor, which includes syntax highlighting and other useful functionality.

Google Code Search

Number of supported languages: 50

Index size: Not mentioned, but presumably huge; includes compressed files (.tar.gz, .tar.bz2, .tar, and .zip), and CVS and SVN repositories according to their FAQ.

Number of Java classes: 1,190,000 matching files for “public class”.

Supported search methods: There is no support for interface-based searches, not even within the limitations that Koders and Krugle have, i. e. it is not possible to define which string is to be the name of a class or the name of a method, much less define parameter types and return types. Instead, there is extensive support for regular expressions.

· regexp: go{2}gle hello,\ world ^int printk

· "exact string"

· file:regexp – will search only in files and directories matching the regular expression

· package:regexp – Google does not mean Java packages by this. Instead “A package's name is its URL or CVS server information.”

· lang:regexp

· license:regexp

· Prepending a “-” ignores results matching the following criterion.

The support for regular expressions, while certainly appealing to the geek, is not very useful by itself. It does not enable us to easily find classes with certain methods. However, it is possible, though cumbersome, to build queries that achieve this, for example to find implementations of stacks "int pop()" void\ push\(int\ .+\) lang:java can be used. int pop() is quite clear, the next search term may require a little explanation: the regular expression finds methods with the return type void and the parameter int and any variable name. Parentheses and spaces are escaped by a backslash, a period followed by a plus (.+) signifies any character sequence for the variable name. However, this will not find classes when their developer has typed two spaces between return type and method name, when he or she has inserted a space before or after the opening bracket and so on.

Tool support: Google does not offer tools, but the results are accessible via an API (GData/XML feed) and Google encourages people to develop IDE plug-ins that take advantage of Google Code Search. There is an Eclipse plug-in and an IntelliJ IDEA plug-in.

merobase.com

Number of supported languages: “merobase currently focuses on three languages: Java classes, C# classes and web services. However, it can support searches in over forty languages” (quoted from the FAQ on merobase.com).

Index size: There is no number of lines given. The FAQ on merobase.com claims that Merobase has the most comprehensive of all software component indexes for Java, C and C# (the three languages it focuses on). Additionally, Merobase indexes web services and binary components. The total index is claimed to reference close to 10 million components.

Number of Java classes: As Merobase does not support searching for classes without methods, I used this query: ${public $(){}}, which finds all public classes with at least one public parameterless method or constructor. 2,933,090 results were found in 3969 milliseconds. 8,011,883 results were found for the query “lang:java”, i. e. all Java classes and interfaces. The number of Java classes in the index must therefore lie between about 3 and about 8 million. As the number of interfaces is generally low in comparison to the number of classes, I estimate the number of Java classes to be roughly 6 to 7 million.

Supported search methods:

· text

· name

· function abstraction (in query language):
random(float,float):float;
(this and the following examples are given on the website when choosing a particular query option, so it is easy to come up with a correct query)

· object abstraction (in query language):
Customer(
 getAddress():String;
 setAddress(String):void;
)

· function abstraction (in Java/C/C# syntax):
int add(int a, int b) {}

· object abstraction (in Java/C# syntax):
public class Matrix{
 public Matrix add(Matrix m) {}
 public Matrix mult(Matrix m) {}
}

· find web service

· identify containing jar

· find Javadoc

As one can see it is possible and easy to specify the entire interface of a class, not only the names of the methods, but also their parameter types and return types. Only Codase offers similar options, but as mentioned before, that search engine seems to be down. The possibility of exact syntactic searches is a prerequisite for the following semantic checks, i. e. the execution of the test case on the results found. Therefore Merobase is currently the only search engine usable with the FAST plug-in. In the future, as other search engines increase their capabilities for syntactical searches, those search engines can be added to the FAST plug-in.

Tool support: There is an Eclipse plug-in available on merobase.com. It adds a menu point to the context menu so that one can search for the word one has highlighted in the editor on merobase.com. The next tool to come is of course the FAST plug-in. Other diploma and doctoral theses at this chair involve two related plug-ins.

The following table summarizes the results about these five search engines in the same way the early 2006 comparison was done.

URL
No. of Lang-uages
API Supported
Search Methods
Indexed Lines of Code
No. of Java classes

Koders.com
32
RSS
limited syntactic (combining class names and method names)
717,762,497
698,704

Codase.com
3
no
advanced syntactic (including method parameter types and return types, implemented interfaces)
250,000,000
could not be determined (may be out of service)

Krugle.com
43
no
limited syntactic (combining class names and method names)
2,100,000,000
3,108,167

Google Code Search
50
GData / XML Feed
no syntactic search; regexp, file:, package:
not mentioned, but likely very large
1,190,000

Merobase.com
focus on 3
Java API available on request
advanced syntactic (including method parameter types and return types)
not mentioned, but claimed to be the largest
between 3 and 8 million

Table 9: Comparison of several source code search engines as of September 2007, analog to table 2 in paper [3] of January 2006 (shown further above).

There is one disadvantage of the web in comparison to traditional, manually set-up software repositories: It is not clear how to add components to it. This has been tested in [3]. Source code uploaded to a public CVS repository like those on Sourceforge or simply put on a website and linked to should be indexed eventually. This was done in early 2006 with a Java project. Yet after eight weeks Google had not indexed it at all and Yahoo had indexed it briefly, but then removed it. In [3] a possible explanation is given: The general-purpose search engine may concentrate on human-readable material and explicitly avoid including source code in their indexes. Koders had not updated its index for several months at that time. Currently (2007), Koders updates every two weeks according to their FAQ. Merobase, however, does not update frequently: among most search results there were some classes that were not reachable anymore. “These observations make it clear that contributing to the ubiquitous repository World Wide Web in a controlled fashion is not practical at present.” [3]

A different approach, namely peer-to-peer, was also investigated in [3]. Even though P2P is technically very different from the web, it is nevertheless somewhat similar in terms of being used as a software repository: There is no control over who adds what, but there is also no manual work required in adding components and keeping them up to date. Nevertheless, Hummel and Atkinson found in [3] that P2P is not used much for this purpose. They tried it with Gnutella and found only roughly 2,500 Java files on the entire network. The search capabilities are limited to looking for file names, not file contents, so they are not suitable for source code search anyway.

There are some problems yet to be solved with web-based software component search engines where they could learn from traditional repository-based search engines. One is increasing recall (finding more components) when a query does not precisely match a component, but the component would solve the problem at hand anyway. The search engines mentioned can only do this at the most basic text-based level, finding e. g. the method putElement when the searcher is looking for a method called put. However, a developer could be typing in a query for a method named drawCircle because that is what he or she wants to do – draw a circle. He or she would not currently find the method drawOval in java.awt.Graphics.

Ye and Fischer [4] describe the discrepancy this way: “Two types of conceptual gap exist: vocabulary mismatch and abstraction mismatch. The vocabulary mismatch refers to the inherent ambiguity in most natural languages: People use a variety of words to refer to the same concept. The probability that two persons choose the same word to describe a concept is less than 20% ([29], [30]). The abstraction mismatch refers to the difference of abstraction level in requirements and component descriptions. Programmers deal with concrete problems and thus tend to describe their requirements concretely; in contrast, reusable components are often described in abstract concepts because they are designed to be generic so they can be reused in many different situations [31].” Oval is the generic concept, circle the concrete concept in this case.

So how could the search engine guess that drawOval might be the answer to the query drawCircle? The Javadoc comment of drawOval contains the word circle. For example Ye and Fischer [4] use Latent Semantic Analysis (LSA) to calculate a distance between a query and a component description. The method name, method parameters and Javadoc comments are all part of the calculation of a vector for a query or for an existing method.

Actually Ye and Fischer use two types of matching. Their tool called CodeBroker is running in the background in the IDE. When the programmer has finished typing the Javadoc comment for the method he is about to write, suggestions of (possibly) matching existing methods from the repository are shown. When the programmer has added the method signature and typed the {, a second query is sent that looks for methods with the same signature or a matching signature. A signature matches when it has a return type or parameter type that can be casted to the other type, e. g. int to double or a type to a subtype.

Ye and Fischer were only reusing the Java API. This may seem useless at first, but actually programmers do not know the entire API. Even though there is an index of methods, it can be cumbersome to search it and again no attempt of reuse is often made. Two of the test developers in [4] commented on that in the interviews following the experiment: “I would have never looked up the roll function by myself; I would have done a lot of stuff by hand. Just because it showed up in the list, I saw the Calendar provided the roll feature that allowed me to do the task.” and “I did not know the isDigit thing. I would have wasted time to design that thing.”

Ye and Fischer commented that the case of reusing the Java API is special because of the known high quality of the components in the repository, so extrapolating from it to reusing other repositories may be difficult. The classes in the Java API are well documented and highly trusted by developers. Therefore the subjects of the experiment were very motivated to learn how to reuse the components that were suggested by the CodeBroker tool. Additional experiments will be necessary to find out if the test results will hold with repositories that come from less respected sources. [4]

There are different ways of increasing the trust and thus motivating the developers to reuse. One way is to apply unit tests to the downloaded components. This is the path the FAST plug-in takes. Ye and Fischer have considered other solutions: “Our approach to addressing the trust issue is to look at the social context of components [32]: who produces them, who has reused them, and what the people who have reused them say about them.” [4]

One can imagine tagging websites and social bookmarking websites similar to digg.com for open source software components instead of for news, videos and podcasts. The number of people who bookmarked a component could be shown next to the search results or people could give them ratings or add comments about them. People could add tags and these would be considered during searches.

A different idea does not involve human interaction. When indexing the publicly available source code, the search engines could additionally analyze which software reuses which other software, thus adding backlinks and information how often something was reused. The authors of [7] mention the suggestion of a ComponentRank [27] similar to Google's PageRank. If this ComponentRank works the same way as Google's PageRank, this would mean that when a component that already has a high rank reuses another component that reused component's rank increases.

Above, the circle vs. oval example was mentioned for the discrepancy between queries and descriptions. In contrast to Ye and Fischer, who said in [4] that queries and descriptions differ in their level of abstraction, one being concrete and the other being generic, the authors of [5] say that the query and the description differ in that the query describes what is to be done while the description says how it is done. They did not provide examples and I do not agree. Component descriptions, like class and method names or Javadoc, usually also say what is done and do generally not mention how this is achieved.

Nevertheless more research on relaxed searches seems to be necessary, as the current search engines do not support them. The authors of [5] suggest retrieval by reformulation, i. e. that previous queries should be stored and tips for new queries generated from them. They refer to the early works for non-exact matches [88] and [23] and additionally [10] and say that repositories should evolve during usage, analyzing the successful queries and how they differ from the components' descriptions, thus bridging the difference.

On the other hand one can argue that relaxed searches are not needed much anymore. Clearly relaxed searches increase recall, while more formalism and more precise searches increase precision [5]. With literally millions of components available to the search engines, increasing recall may not be necessary anymore. The problem nowadays is precision rather than recall.

There is a different solution for the discrepancy between queries and component descriptions: ontologies. One can avoid the constant risk of misinterpretation by using standard ways of packaging information, or by packaging the information together with their original interpretation, the way the creator meant it to be understood. The latter way is employed by ontologies and could be applied to component searches, too [5] [40]. However, this again would require manual work.

4 Test-Driven Reuse

After Agile Development and reuse have been introduced in the last two chapters, this one will now discuss how Agile Development and reuse can be brought together in Test-Driven Reuse, also known as Extreme Harvesting. As Agile Development and reuse aim for the same goals, increasing code quality and lowering the time needed to produce said quality code, one would think that they come together naturally. But this has not been so.

So far Agile Development and reuse have rarely been considered together. In their mid 2006 paper Supporting Agile Reuse Through Extreme Harvesting [2] Atkinson and Hummel say that at that time there was only one work (besides theirs) with the stated aim of reinforcing reuse in the context of Agile Development, the so-called Agile Reuse approach of McCarey et al. [33], which was published in 2005.

The tool described in [33] and [34] is the RASCAL recommender agent, an Eclipse plug-in which relies on a combination of collaborative and content-based filtering techniques [35]. It proactively suggests method invocations to developers based on the context of what they are working on. It does this by clustering Java objects according to the methods they call. In their talk at the XP 2007 conference in Como Supporting Agile Reuse Through Extreme Harvesting Atkinson and Hummel said it was “useful, but not specific to agile development”. This essentially makes Atkinson and Hummel's Extreme Harvesting the only currently existing approach to Agile Reuse.

Three reasons are named in [2] for the fact that so far there is little reuse in Agile Development:

· the (desired) lack of documentation in Agile Development,

· the different levels of granularity for Agile Development (methods) and reuse (classes) and

· the lack of explicit architecture in Agile Development.

However, that Agile Development and reuse should really go together well has also been recognized in the same paper [2]: “Since they work towards the same goal it is natural to assume that they can easily be used together in everyday development projects.” Then it goes on to say that this, however, is not the case.

The last chapter about software component search engines dealt mostly with syntactic searches. This one will deal with semantic correctness. The semantic correctness of the search results will be verified by executing unit test cases on them. This only makes sense with Test-Driven Development, where the test case is written before the code. Normally the agile programmer writes the unit test case and then goes on to write the class that will make this unit test case pass. With Test-Driven Reuse, instead of then writing the code that fulfills the test case, he or she will search for matching classes. Only if no matches are found, the developer will proceed as before to write the class from scratch.

Why are checks for semantic correctness via test cases so important and why have they not been employed much before? Because so far recall (finding suitable components at all) was the major problem, not precision (weeding out the unsuitable components among the search results). As the section about component repositories showed, they all remained small. Now with the web as a reuse repository, the main concern is precision, not recall, i. e. additional measures are necessary to identify those components that do what the developer is looking for to fulfill the task at hand. “This is where test-driven unit development can make a big contribution.” [1]

Tests are not the only possible way of checking semantic correctness. Actually, tests can't even truly guarantee semantic correctness as they cannot cover all possible inputs, just a reasonable subset of the possibilities. Formal methods for defining pre- and postconditions and for specifying what a method does (without saying how it is done) like Z and OCL come to mind. Attempts with formal methods have been made, [5] refers to [36] as an example of the use of formalism to describe a component's behavior. Formalism can assure that the components that are found fulfill the requirements that were specified in the query.

However, these are not in use much and not very usable. The vast majority of available components lack such formal descriptions and proving that a program is equivalent to such a formal description would be equivalent to solving the halting problem [20]. Even if more programs were annotated with pre- and postconditions, e. g. in OCL: Most programmers are not familiar with such methods and cannot formulate a query in such formal languages. This is especially true for agile programmers who avoid activities deemed unnecessary like complete up-front specifications. Hummel and Atkinson [2] agree that “formal methods (for example based on pre-and post-conditions) have so far proven impractical in mainstream development.”

Therefore, the only viable approach for increasing precision by checking semantics is to define unit tests before searching or coding.

Atkinson and Hummel call the process of Test-Driven Reuse that was described above Extreme Harvesting as an analogy to Extreme Programming: “We use the term 'Extreme Harvesting' to refer to the discovery, selection and reuse of components from a repository or the Internet using the testing artifacts created in test-driven development. The name is intended to convey the idea that extreme harvesting can play a complementary role to extreme programming in Agile Development projects. Essentially, extreme harvesting adds the maxim 'design a little, test a little, harvest a little' to the repertoire of Agile Development techniques. Once the interface and semantics of an artifact have been defined, developers have the option of trying to find an existing implementation rather than developing it from scratch as has hitherto been the case.” [1] The term Extreme Harvesting was introduced in 2004 [24], the year before McCarey at al. introduced the term Agile Reuse for their RASCAL recommendation agent [7] [33] [34].

Atkinson and Hummel describe Extreme Harvesting as a six-step process. What exactly these six steps and their order are varies a little by paper.

In their June 2006 publication Using the Web as a Reuse Repository [3], about which they gave a talk at the International Conference on Software Reuse in Turino, they used the following six steps and graphics:

a) “define syntactic signature of desired component

b) define semantics of desired component in terms of test cases

c) search for candidate components using the APIs of standard web search engines with a search term derived from (a)

d) find source units which have the exact signature defined in (a) or try to create appropriate adapters

e) filter out components which are not valid (i.e. not compilable) source units, if necessary find any other units upon which the matching component relies for execution

f) establish which components are semantically acceptable (or closest to the requirements) by applying the tests defined in (b)”

[image: image7.png]Compare With
Replace With
Restore from Local History.

Properties Alt+Enter

1 Select th arching Merobase
2 Parse this testcase and create the query for Merobase

3 Parse this testcase and send the query to Merobase

4 Parse testcase, send query and download the classes found

5 Parse testcase, send query, download classes and run the test

In their December 2006 working paper Integrating Test-Driven Development and Reuse [1] they describe Extreme Harvesting with the following six steps and accompanying graphics:

a) “identify desired interface

b) define desired semantics as tests

c) find source units which have signatures “matching” the one defined in (a)

d) filter out the components which are not valid (i.e. executable) source units

e) establish which components are semantically acceptable by applying the tests defined in (b)

f) use component in the new application”

[image: image8.png]Problems Javadoc | Declaration Search| Console | Error Log

Test case: StackTest.java
Name of the tested class: Stack
Parse the test case to create a query
3
pop(int;
push(int)void:
)
GI L)
Send the query to Merobase
Results: 30 results found,
[urL [Project

Reslt

X http:/www.ssw.uni-inz ac. at/avaBuch/Muster/Kl 8/util/Stack.jave StackTestProjecto2
X http://neuron-ai.tuke. ski~krankillpraca/java/best Teststack3.ja StackTestProjectod
X http:/www.ssw.uni-inz ac. at/Misc/javaBuch/Muster/K1 8/util/stac StackTestProject22

cvsi/f and sn:/f URLs will be skipped,

Prefix for the Test Project Names: [StackTestProject
Download and compile the selected classes - create project for each |

Run the test case on the selected classes

In their June 2007 publication Supporting Agile Reuse Through Extreme Harvesting [2], about which they gave a talk at the International Conference on Agile Processes in Software Engineering and Extreme Programming in Como, they used these six steps and graphics (the slides for the talk contain version 2 of the six steps as seen above, though):

a) “define semantics of desired component in terms of JUnit test cases

b) derive interface (i.e. the class stub) of desired component from test cases

c) search candidate components in repository using search term derived from (b)

d) find source units which have signatures matching the one defined in (b)

e) filter out components which are not valid (i.e. compilable) source units

f) establish which components are semantically acceptable by applying the tests defined in (a)”

[image: image9.png]fast

ecipse

Eclpse_Packages

parsejunit Search [unittestrunner

hVd hvd
[avaparser_Packages Werobind_Packages [Jonit_Packages

Note that even though version 1 and 3 of the process may appear to be the same at first glance, step a) and b) have been transposed. In the original version, the developer is thought to write the stub, i. e. define the interface of the class (the signatures of its methods) first and write either JUnit or FIT test cases afterwards. In the later version the interface of the class, i. e. its stub, is thought to be derived from the test case. For example from

assertEquals(42, new Calculator().mult(6, 7));

it can be concluded that the Calculator class under development is to have a method named mult with two parameters of type int and the return type int. The same conclusion can be drawn from e. g.

int result = c.mult(1, 1);

with c being a variable of type Calculator. The step from a) to b) can be automated, but manual intervention may be necessary sometimes. Maybe the class is to have methods that are not included in the test case because they are so simple they do not require testing. Also the parameter types or return types that the developers wants the methods to have may be sub- or supertypes of what can be determined from the unit test case. E. g. a list, stack or other collection class may be tested in the unit test case only with for example Strings as parameters, because this is easy and useful enough for the test, but the class the developer wants to either find or program is really to be a collection of any type of object. In cases as this the automatically determined method might be add(String) or insert(String) or push(String) and the developer then needs to modify the automatically created stub's methods to add(Object) and so on.

The FAST plug-in takes an approach very similar to version 3 of the six-step process: The interface is automatically determined from the JUnit test case. However, no stub is created. The method signatures are only kept in an internal data structure. The query for the Merobase search engine is created from it and shown to the developer. He or she can make modifications like the ones described in the last paragraph before sending the query.

The steps c) and d) of version 1 and 3, searching the web for components and then finding those that have matching signatures, are combined into one step, c), in version 2. This makes sense as Merobase provides signature matching mechanisms. There are no separate steps of first finding components that contain the right strings (like Google Code Search would provide) or that contain the right strings as class names or method names (as Koders and Krugle provide) and later determining manually which of these classes actually have the right interface. In [3] Atkinson and Hummel describe these steps as three separate filtering stages: linguistic, syntactic and semantic filtering. The linguistic filtering is a keyword search like that of general-purpose search engines. The next step is signature matching [42]. The third and last filtering step is to check the semantic compliance of the components to the query by sampling their behavior [41].

These three steps in this order are the only practical way to retrieve components from very large repositories like the web, because the costs of applying the filtering steps grows in this order [3]. It would not be possible without supercomputers to apply the semantic checking step to millions of components.

The linguistic (keyword-based) and syntactic (signature-based) filtering both take place inside Merobase. Currently there is no search engine for semantic checking, i. e. executing the tests. This would also put heavy strains on the server. This step is better left to the client side. That is the way it is implemented in the FAST plug-in. The observation that the three filtering steps have to be applied in this order because of the growing cost (needed time) is rather obvious. In conclusion it may never be feasible to apply Test-Driven Development to untyped languages like Python, at least not with a huge repository like the web. The signature matching step could only rule out methods with the wrong number of parameters. This might leave too many components that need to be checked semantically.

The next step within the three versions of the six-step process is always to compile the downloaded classes to filter out invalid components. Of course the compilation is also necessary anyway, as the tests could not be applied otherwise.

The most frequent reason for not being compilable right away – even though the class is valid – is that they rely on other classes inside the same project. These could be looked for and downloaded manually by the developer or automatically by a tool. The process is not straight forward as the referenced class could be in the same package, imported by name or could be from any of the imported packages. The FAST plug-in of course compiles automatically, but cannot find classes that this class relies on, yet. However, one of the other Merobase Eclipse plug-ins under development can do that and the code could probably be integrated into FAST's source code.

Another reason that the compilation fails even though the class is valid could be that the the class this class is referencing is in a jar file that the developers of that project have all added to their build and class paths, for example log4j. As Merobase has a search option for determining the containing jar of a class, this problem may also be solvable in the future.

The downloaded class may compile fine but it might not make the JUnit test case compile if the match is not 100%. For example if the method names match, but the class name doesn't; if there is a mismatch of upper and lower case between method names (or the class name) in the JUnit test case and in the downloaded class (search engines generally ignore case when searching); or if the search engine has provisions for finding similar types, e. g. allowing Integer for int, float for double, or sub- or supertypes for parameter or return types (none of the currently available source code search engines do this, but such relaxed searches might be added in the future to enhance recall). Oce the search engines become very advanced, they might even find “drawOval” when the developer is looking for “drawCircle”. In all these cases an adapter class needs to be created, either manually by the developer or by the tool. As the search engine did the loose matching in the first place, it would make sense that the search engine provides the adapter, too, either in the programming language that was selected or in a language neutral way from which the developer or a tool could generate the needed adapter class.

Of course the class could also simply be not compilable and truly be invalid, but it is rather rare to find an uncompilable class in a public CVS or SVN repository or on the web.

All classes that are not compilable or do not make the JUnit test case compilable for any reason, e. g. the employed tool not supporting automatic generation of adapter classes, will be filtered. Only the successfully compiled classes will go through the semantic checking phase.

The last step is to apply the unit tests to the downloaded class to verify that it does what it is supposed to do and does not only happen to match syntactically. This is the semantic check. (In version 2 this is the second to last step, followed by reuse as the last step. Reuse is implied as a step following f) in version 1 and 3.) The FAST plug-in runs the unit tests automatically, if the developer wishes so.

As we just saw, one main hindrance to reusing classes (or methods) found on the web or in a repository is that – while the provided interface can be determined easily enough – they do not specify the required interfaces. These are implied through the classes they use, but where these classes are to be found, in the same package and directory, imported by name or imported with one of the packages, and when they are imported whether they are in this repository or in an unmentioned jar file, has to be found out in a cumbersome process.

That components should specify their required as well as their provided interfaces has been suggested several times. CORBA [37] is a well-known technology that employs this technique. In [5] another work, [38], is mentioned, which also suggested required and provided interfaces. Additionally, the KobrA method insists that components that are to be reused must specify their required interfaces as well as their provided interfaces as so-called ports [39].

Some computer scientists even use the word interface in that way. Instead of just referring to the methods signatures (plus return types, as these are technically not part of the method signatures themselves), they use the word interface description to mean a description of everything that is required and everything the component does, so-called component contracts [40] (as cited by [5]).

What benefits will Test-Driven Development bring developers? In Integrating Test-Driven Development and Reuse [1] Atkinson and Hummel argue that “Depending on the size and complexity of a system we believe that Extreme Harvesting can save up to two thirds of the overall development effort compared to a build-from-scratch strategy”.

I think this is rather doubtful. For one, it assumes that at least two thirds of any application have been done before. I would guess that many typical applications have a higher percentage of new ideas and new code – that's why they are being programmed in the first place. Another reason for my doubts is that search engines can find reusable classes and methods, but they cannot find, at least not now, solutions that consist of several or many classes. Thirdly, the search engines still have some limitations. Koders' and Krugle's precision are too low, they do not allow specifying the parameter and return types and when searching for and Koders additionally finds e. g. any methods that contain the search term and there is no provision for defining that one wants the method to be named exactly that. Merobase on the other hand does not allow for relaxed searches and therefore may sometimes lack recall. Both low precision and low recall can result in no reuse. A developer will not want to download hundreds of components and compile and test them, even if it is done automatically for him. And if no matching component is found, even though there may exist components that would solve the task at hand, there can be no reuse, either.

The authors of [5], in which different ways of reuse are analyzed, say about Test-Driven Reuse that it “results in high precision, but is restricted to simple components, such as routines or pieces of code”, citing [41]. Additionally “performance is affected, since all components must be executed”.

However, even though in real projects a time saving of two thirds is very doubtful, even a say 10% saving would result in lots of money saved in a software company, because for them time literally is money, as manpower is almost the only resource needed to create software.

Let's go back to the different versions of six steps, a) to f), for Extreme Harvesting or Test-Driven Reuse. In the most current version, the steps of defining the syntax/interface (by writing a stub) and defining the semantics (by writing a unit test) are inversed. The test is written first, the interface is inferred from it. Presumably to make it more test-driven. The FAST plug-in works the same way: It analyzes a JUnit test case and infers the interface of the not-yet-created class from it. But does Test-Driven Development work that way? Typically not. The usual Test-Driven Development cycle, at least in Extreme Programming, is always described as “code a little, test a little”. A full stub is usually assumed to be written first. Then a test case is written for the first method, it fails, the method is implemented, it passes. Refactoring. A test case is added for the second method, it fails (while the old test still passes), the second method is implemented, the second test passes, the first test still passes. Next refactoring. And so on.

Currently the FAST plug-in simply ignores existing stubs. It could be combined with the existing unpublished Merobase Eclipse plug-in that parses stubs and creates queries from those. These queries would be more precise, for example avoiding problems as the one mentioned above with sub- or supertypes for parameter and return types. The developer would need to be able to select a test case and a stub. While the query would be created from the stub instead of from the test case, the test case would still be run automatically and used to determine the semantic correctness of the downloaded classes, i. e. that they do what the developer means them to do.

So defining the syntax, i. e. the interface, first, does not make the process not test-driven at all. This fully falls within the normal test-driven activities.

However, what about defining the tests for the methods one by one? For Test-Driven Reuse, or Extreme Harvesting, it seems to be assumed that all the tests for the class under development are to be written up-front. Atkinson and Hummel write about this issue in [2], distinguishing definitive and speculative harvesting. They state that these approaches occupy opposite ends of a spectrum. The definitive end of the spectrum is constituted by traditional heavyweight processes driven by a rigid up-front design. The existing design strongly defines what the reusable component has to look like. The speculative end of the spectrum is occupied by agile processes with an evolving design. The components that are retrieved for initial queries (generated from initial test cases) will influence the design of the component and system under development. “Practical software reuse activities will usually lie somewhere in between.” [2] They go on to explain these two types of harvesting in more detail.

Definitive Harvesting: In more traditionally managed, heavyweight software development projects the requirements are (thought to be) well understood and the architecture is relatively rigid. The interface and the functionality the components are to have will be fairly fixed and relatively common according to [2]. Test-first development would not mean test-driven design in this context, in contrast to e. g. the way it is meant in Extreme Programming. Developers would program all of the test cases for one class (or possibly all classes) upfront, and only then initialize the harvesting process. If no suitable results are returned, the programmer goes on to implement the required component in the regular way. However, if the search is successful, a lot of time and effort is saved.

Speculative Harvesting: In more agile software development projects, there is little up-front design, the design evolves during programming. Unit tests are essential to this process of evolving design. As neither the interface nor the precise functionality of the class under development is fixed, the developer can let the harvested components influence his or her design decisions. According to [2], this applies mostly to projects in entirely new domains with highly innovative characteristics. Developers would not write test cases for all the methods in a class, but they would write a test, make it pass by implementing the method, add another test, implement another method and so on (Beck's to-do list [63]). So the harvesting process would be initialized after writing the first test for the first method. There might be none, a few, or too many results. If there are none, the developer has to go on developing as usual. If there are a few, he or she can evaluate them to see if they fit the idea of the component under development and can make any further work superfluous. If there are many, which is likely to happen for just one method, it is probably not worth the effort to evaluate them. Instead the developer would go on to implement this method and then write the next test, then trying again whether now a more suitable number of components can be harvested from these two test cases. This may continue, in particular if the first methods and tests were very general and simple, e. g. only getters and setters.

Looking at it from that perspective, one can see that introducing Test-Driven Reuse in heavyweight as well as in agile projects might cause changes:

On the one hand, non-agile developers may start to write unit test cases up front to be able to profit from Test-Driven Reuse. This may be beneficial, because not writing test cases up front often causes not writing test cases at all, as Alistair Cockburn points out in his book about Crystal Clear [66]: “Traditionally, programmers and testers write the tests after the code is written. Also traditionally, they don't have much energy to write tests after they write code. Partially for this reason, more and more developers are adopting test-driven development.” The 2003 investigation of test-driven development in industry [80] found the same: “[...] the programmers which followed a waterfall-like process often did not write the required automated test cases after completing their code, which might be indicative of the tendency among practitioners toward inadequate testing. This observation supports that TDD has the potential of increasing the level of testing in the industry [...]”

However, writing complete unit tests up front may also be cumbersome and not very useful, even a waste of time. It is certainly not the agile or XP way of doing it. Microsoft used to have an explanation of TDD on their website that said to create the test in its completeness in the beginning. MS was widely criticized for it by developers. One can get an idea of the outrage it caused by googling for “test driven development” +Microsoft +wrong. The software development consultant James Shore puts it like this in his blog entry of 19th November 2005 [45]:

“"First I designed my class," [my brother] said, "then I wrote a bunch of tests, then I tried to write my class to pass the tests." (Does this sound familiar? It's the process Microsoft is recommending.) I could see the problem already. "That doesn't sound like TDD to me. [...]" "It was a complete waste of time," he said, frustrated. "I spent days writing the tests when I could have been productively writing code. [...]" I started to explain how TDD really works, but [he] had already decided that TDD was a waste of time. And he was right, in a way. The thing he was doing, that he called TDD, was a waste of time. It decreased his productivity and didn't work. [...] Real TDD is well documented, but I'll describe it anyway. It's a highly-iterative process in which you design, test, and code more or less at the same time. [...]”

On the other hand, the outlook of being able to reuse components instead of having to write them from scratch might cause agile programmers to become less agile, writing several or even all unit tests for a class up-front instead of little-by-little.

Further research will be needed to determine whether these changes in heavyweight or in agile projects would be beneficial or harmful, and if they are indeed somewhat harmful, maybe reducing productivity a little at the times when the attempts of reuse are unsuccessful, whether this disadvantage could be outweighed by the benefits that come from successful reuse.

Atkinson and Hummel also developed a very interesting tool that would accommodate the most agile versions of Test-Driven Development [2]. Only test cases for one or a few methods are needed. The tool calculates a mixture of the classes found as a result of the query. They take the example of a developer in the process of writing a Movie class. He or she starts out with the getTitle method. This would certainly result in a huge number of components returned by the search engine. The tool will then calculate an average search result, a collection of the methods many of the results have in common.

4.1 Categorization and Evaluation of Test-Driven Reuse

Now let's see Test-Driven Reuse / Extreme Harvesting in the context of earlier works, in particular how it can be categorized. In their 1998 survey [6], A. Mili, R. Mili and R. Mittermeir named 6 categories of ways to represent queries:

1. Information retrieval methods: natural language queries

2. Descriptive methods: keywords, facet definitions

3. Operational semantics methods: need sample input and output, interface specification plus an oracle, a probability distribution on its input space; results in great precision, but has problems with recall

4. Denotational semantics methods: signature matching or functional description (with signature matching being the simplest type of functional descriptions)

5. Topological methods: “minimize some measure of distance to the user query”

6. Structural methods: patterns (which will then be instantiated; does not deal with source code)

They suggest that future research in this subject area always categorize their component retrieval method into these six categories and evaluate them according to the criteria (see below) they identified in their survey. So this is what I will do.

Test-driven development is a combination of category 3 and 4:

First, a signature matching step is applied, i. e. category 4. The query to Merobase is formulated in terms of signatures. Mili et al. grouped signature matching and functional descriptions together because they considered signatures to be a subset or special type of functional description, i. e. the easiest version. However, they admit that historically these two methods were developed and researched apart from each other [6]. Below we will see what other problems grouping these two together brings with it when evaluating this method. Anyway, Test-Driven Development only requires signature matching, not complete functional descriptions in terms of pre- and postconditions or formulas, e. g. in Z or OCL, or of state transition models [44].

The second step is checking semantics, i. e. category 3. Mili et al. [6] describe this method as requiring an interface definition, sample input including a probability distribution on the input space, so that input can be selected automatically, and an oracle. They later mention different research that suggest to drop the requirement of the probability distribution on the input space, because “Inputs that occur often in a typical usage are not more likely to discriminate a component than inputs that occur seldom.” [6] They see the user selecting the input as a possible option. There is no explanation what the oracle is supposed to be. They do not seem to think of the oracle as test cases. But I think we can consider a set of unit test cases as a combination of user-selected input and a reasonable oracle.

Mili at al. [6] characterize component retrieval methods according to some features they considered important, and suggest that future research use the same scheme:

· Nature of asset

· Scope of library

· Query representation

· Asset representation

· Storage structure

· Navigation scheme

· Retrieval goal

· Relevance criterion

· Matching criterion

Mili et al. [6] then evaluate the component retrieval methods according to several technical, managerial and human criteria and suggest everybody in the future do the same:

Technical
Managerial
Human

Precision
Recall
Coverage Ratio
Time Complexity
Logical Complexity
Automa tion
Investment Cost
Operating Cost
Pervasive ness
State of Development
Diffi culty of Use
Transparency

Table 10: Technical, managerial and human features of different ways of component retrieval [6]

 Their scale has five steps:

· VL (very low),

· L (low),

· M (medium),

· H (high),

· VH (very high)

We will look at how they characterize and evaluate operational semantic methods and denotational semantics methods, as these are the only two categories of component retrieval methods that are relevant for this thesis.

Characterization of Operational Semantic Methods

Attributes
Characterization

Nature of asset
 Executable components.

Scope of library
 Typically, within product line (application domain)

Query representation
Oracle, and sample input data.

Asset representation
Executable code.

Storage structure
Typically flat.

Navigation scheme
Typically exhaustive.

Retrieval goal
Retrieving all correct components.

Relevance criterion
Correct behavior on sample data.

Matching criterion
Correct behavior on sample data.

Table 11: Characterization of operational semantics, figure 6 in [6]

The component does not really need to be executable, source code is okay, too. The tool needs to have access to a compiler in that case, of course.

Evaluation of Operational Semantics Methods

Technical
Managerial
Human

Precision
Recall
Coverage Ratio
Time Complexity
Logical Complexity
Auto mation
Investment Cost
Operating Cost
Perva siveness
State of Development
Difficulty of Use
Transparency

VH
H
H
M
M
VH
L
M
M
M
L
VH

Table 12: Evaluation of operational semantics methods, figure 7 in [6]

Characterization of Denotational Semantics Methods

Mili et al. mention a stepwise filtering procedure according to [43]:

1. Signature matching.

2. Model checking.

3. Theorem proving.

For this thesis only the signature matching is relevant. The expensive theorem proving is left out. This will result in a different evaluation.

Attributes
Characterization

Nature of asset
Executable components, specification frameworks, proofs.

Scope of library
Typically, within product line (application domain).

Query representation
Signature specification, functional specification.

Asset representation
Signature specification, functional specification.

Storage structure
Typically flat. Some hierarchical; some partitioned.

Navigation scheme
Typically exhaustive. Sometimes selective.

Retrieval goal
Retrieving all correct components.

Relevance criterion
Functional matching: functional equivalence or refinement.

Signature matching: data equivalence or refinement.

Matching criterion
Weak (efficient) version of the relevance criterion.

Table 13: Characterization of denotational semantics, figure 8 in [6]

Evaluation of Denotational Semantics Methods

Technical
Managerial
Human

Precision
Recall
Coverage Ratio
Time Complexity
Logical Complexity
Auto mation
Investment Cost
Operating Cost
Perva siveness
State of Development
Difficulty of Use
Transparency

VH
H
H
VH
VH
M
H
H
L
L
M
M

Table 14: Evaluation of operational denotational methods, figure 9 in [6]

As in this thesis only signature matching is considered for denotational semantic methods (because an operational semantic check via executing unit tests follows), the evaluation changes:

Precision just for matching signatures is not very high, as almost nothing is stated as to what this method does: However, there is the method name that indicates what the method is doing. So precision is probably still high.

Time complexity is low. In contrast to theorem proving, signature matching needs very little time. A little more than just searching for keywords, though.

The logical complexity for exact signature matching is very low. If relaxed signature matching is added, i. e. allowing for sub- or supertypes or other types that can be casted or converted into each other (int to Integer, float to double, char[] to String), and similar method names instead of exact method names, I would estimate the logical complexity to be medium.

The automation potential is high. Signature matching can be done 100% by the search engine.

Investment and operating costs are very low. It is not necessary to add or update descriptions manually, the indexing is done fully automatically.

The pervasiveness, i. e. how widely signature matching is used, is still low, with only Merobase and Codase providing it currently. I expect Krugle and Koders to add it some time relatively soon, and Google Code Search eventually, so that it will be high in the not-too-distant future.

The state of development is very high. (Exact) signature matching does not pose significant difficulties. Also relaxed signature matching would not require additional research, just some work.

Signature matching methods are easy to use for developers when examples are given like on merobase.com. The difficulty of use is low. Not very low, as it requires more than just typing in a few keywords, one does have to follow a certain format.

Technical
Managerial
Human

Precision
Recall
Coverage Ratio
Time Complexity
Logical Complexity
Auto mation
Investment Cost
Operating Cost
Perva siveness
State of Development
Difficulty of Use
Transparency

H
H
H
L
VL
VH
VL
VL
L
VH
L
M

Table 15: Evaluation of operational denotational methods, limited to signature matching only

In this section it was demonstrated how Agile Development and reuse can be brought together in Test-Driven Reuse, even though Agile Development and reuse were previously thought to be opposite concepts, despite their targeting the same goals. The steps of Test-Driven Reuse (or Extreme Harvesting [1] [2] [3]) were introduced and analyzed, as well as categorized and evaluated according to the schemes suggested by Mili et al. [6].

4.2 Integrated IDE Support for Reuse

It is necessary to provide support for reuse integrated in the IDE the developers are using for several reasons:

To encourage reuse, the activities needed for it must not interrupt the normal development process more than necessary. Developers may not even like to switch to a browser, call up a software search engine and type in a query. Especially not if they are not sure if there will be suitable results.

Additionally, support for formulating queries is recommendable. Even though software search engines are easy enough to use for developers, they still require typing in more than only some keywords. One must adhere to certain rules for being able to limit the search scope of a keyword to a method name or specify the interface one is looking for. In particular when it is not sure that there will be usable results, developers will not bother to spend one or a few minutes to get the query right. The IDE should formulate the query for them from the context if possible.

Thirdly, downloading, saving and getting the classes found into the IDE may seem too cumbersome for the programmer, especially if several components have to be compiled and checked.

As a fourth reason, automatic tests needs to be done in the IDE. Developers will not want to run JUnit tests by hand on a large number of components.

There have been several research papers on making reuse easy for the developers and on integrated tool support, one being Knowledge Reuse for Software Reuse by McCarey at al. [7]. They say: “If a developer is to reuse a component, they must be able to locate that component with maximum ease, in minimal time.” McCarey at al. cite Frakes and Fox [11] [46] with the discovery that no attempt of reuse accounted for 24% of failures of software reuse. McCarey at al. say that the existing component search techniques, i. e. library browsing agents [53], web-based search approaches [3], and component ranking tools [27] share the shortcoming that they view reuse as a separate activity from software development, interrupting the work flow of the developer. They say that there needs to be a switch from Development-with-Reuse to Reuse-within-Development, a user-centered approach. An IDE is to provide support for automatically identifying and retrieving relevant reusable components, aiding with understanding and integrating them [7], while at the same time not interfering with the developer's normal programming activities.

Very important are the works by Ye and Fischer, [4] “Reuse-Conducive Development Environments” and [47] “Supporting Reuse by Delivering Task-Relevant and Personalized Information”. The survey [5] called [4] the most advanced work on the subject as of the time of publishing (2004), because it investigates not only technical, but also human aspects related to software reuse. In [4], Ye and Fischer say: “Software developers are unable, or unwilling, to initiate reuse if they do not have sufficient knowledge about the existence of reusable components or do not know how to locate them.” [4] They agree with the no-attempt-of-reuse problem as stated in [7] above and mention the not-invented-here syndrome as a cause, but nevertheless think that developers are very willing to reuse. They cite the empirical studies [51] from 1989, [46] from 1995 and [52] also from 1995 as proof for that willingness, even determination to reuse, once the developers are aware of the existence of the reusable components.

Ye and Fischer [4] identify two different problems that inhibit getting reuse started:

1. The creation and maintenance of the reuse repository, which require a lot of time and money and can be intellectually challenging.

2. Enabling the developers to use components from the reuse repository to build new software.

They continue to discuss the relationship between two issues: The two issues are in deadlock. If the developers are unable or unwilling to reuse components, the investment into the repository cannot be justified. But if there is no repository, there is nothing to reuse. Ye and Fischer [4] suggest two solutions to breaking the deadlock: Either create a good reuse repository first anyway and then enforce reuse top-down through education and organizational changes [48]; or foster a culture of reuse bottom-up by encouraging the developers to reuse components from a still small or not-so-high quality repository, which can however be filled continuously be the developers [49]. This requires “reuse-conducive development environments”, as Ye and Fischer put it.

As the web is an existing reuse repository that requires no investment, encouraging developers to use it is the only remaining issue.

How do the IDE-integrated reuse-supporting tools described in [4] and [7] work?

The one which [4] is about is an Emacs plug-in, the one described in [7] is an Eclipse plug-in. Both target Java developers. Both are proactive.

In [4], developers are expected to type the Javadoc comments before starting to write the method. Once the developer has finished the Javadoc comment, the tool suggests methods in the repository whose distance to the query (typed Javadoc), calculated by LSA (Latent Semantic Analysis), is low. The Javadoc comments and names of the methods in the repository are taken into account.

After the developer has typed the method signature plus the {, the tool searches for matching signatures in the repository. This feature was not used much by the developers, because they were looking for methods to use within the method they are writing, not for methods to replace it. So this process is quite different from Test-Driven Reuse.

Either way, the granularity of reuse is the method, not a class like with the FAST plug-in.

Ye and Fischer emphasized that it is important to reduce intrusiveness. The developers must not be forced to interact with the reuse plug-in. He or she only does so at his or her choice.

Their plug-in is context aware. The information obtained in the current session about ignoring certain components are stored in a so-called discourse model. Additionally, there is the user model, which is persistent. It stores information about which classes and methods the user (i. e. developer and potential reuser) is already aware of. When someone has used a method three times, it is then considered to be well-known and will not be suggested by the tool anymore. Previous programming works of the developers who participated in the experiment were supplied to the tool in advance to be analyzed, so that this feature was already working from the beginning, and its knowledge increased throughout the use.

CodeBroker, the tool described in [7], works from the premises that “Programming tasks, and consequently solutions, are often mirrored inside an organization, across a community, or within a specific domain.” This is used to predict future component reuse [7]. The code the developer is writing is analyzed all the time. After he or she has finished a method call, the next needed method call is guessed and suggested, or several options to choose from.

The granularity of reuse is therefore also the method. And they are not meant to be reused as replacements of the method under development, but to be used in solving the current task at hand.

The software component search engines Krugle and Koders have also recognized the need for integration and provide plug-ins for IDEs. Krugle.com offers a simple Eclipse plug-in. It is basically a search box inside Eclipse, with the difference that Java classes found on Krugle via the plug-in can be opened in the Java editor inside Eclipse without hassle. Koders.com offers plug-ins for Eclipse and Visual Studio.NET. One is a simply search box plus a right-click search. But additionally, there is a proactive SmartSearch feature that searches for method definitions in the background. These are triggered when one finishes typing the signature of a method, similar to Ye and Fischer's Emacs plug-in [4], and is meant for replacement. Unit tests created in advance of writing the method are mentioned in the demo on the website, but they are evidently meant to be executed manually by the developer instead of by the tool.

In the next chapter I will describe my FAST plug-in and how it supports Test-Driven Reuse. I will also explain why I chose not to make it proactive.

5 The FAST Plug-in

The FAST – Fully Automated Search and Test
 – Eclipse plug-in supports developers in applying Test-Driven Reuse (Extreme Harvesting). Eclipse was a natural choice because it is the most widely used Java IDE and because its entire architecture is made up of plug-ins. Eclipse is built to be extended.

5.1 What FAST Does

The plug-in can be installed from inside Eclipse by selecting Software Updates from the Help menu, choosing “Find and Install” and specifying a new remote site as

http://www.javaschubla.de/2007/eclipsefast/

Afterwards, updates will be automatically downloaded for it when one chooses to look for updates instead of selecting to install new plug-ins.

The plug-in contributes a submenu to the context menu (right-click menu, pop-up menu, shown in the screen shot below) of JUnit test cases in the Package Explorer, or more precisely any Java class that ends with the String “Test”. The FAST submenu contains 5 options, numbered 1 to 5. Each option includes the previous ones, i. e. selecting 2 will also execute option 1 first and so on.

[image: image10.png][avaParser_Packages

DerailaST e

parsejunit

@it
1 1 UnexpectedTokenbxception
DerailasT3
Junitparser
T T setShomshon - boolear - void
Vo constructinterface(sourceCoge : String testedType :String] - Set

[unitetnoa

[unitparameter

bulldJavastublsourceCode - String estedType String) String

Selecting the first option will simply open the FAST view, which is the other contribution of the FAST plug-in. (GUI elements added to Eclipse by a plug-in are called contributions. There are also non-graphical contributions.) “Behind the scenes” a variable will be set that stores a reference to the current test case.

Figure 9 shows an overview of what the view looks like in the very end after step 5.

After the FAST view has been opened by selecting option 1 on some JUnit test case and before pressing the button to construct the interface of the tested class from it, the user can specify the name of the tested type – or he/she can leave it at the type that was guessed. If the JUnit test case is for example named StackTest, the plug-in will guess that the class under test is named Stack.

If the user knows he/she will not need to change the name of the tested class, he/she can select option 2 from the submenu right away instead of selecting 1 and then pressing the button for creating the query. Either way, the query will be shown in a text area. Merobase supports Java-style queries and queries in MQL, a query language that is similarly easy. Because the queries in query language are more concise, I chose those. Queries look like this:

Stack(

 pop():int;

 push(int):void;

)

The developer can modify the query any way he/she wants. The plug-in may not have recognized all parameter or return types correctly. There are some limitations to what the JUnit parser can guess. E. g. once calling push("abc") on a stack and later calling push(new Object()) will create two methods named push, one with a String parameter and one with a parameter of type Object. If the developer is aware of this, he/she can avoid it by adding unnecessary casts in the JUnit test, i. e. push((Object) "abc"). Or he/she can simply delete the extra method from the query. Likewise the return type the plug-in has recognized may be incorrect if there are different possibilities. This will be explained in more detail in the section about the parser.

Additionally, the developer might want to add methods which are not in the JUnit test, yet.

[image: image11.png]B Java AST:d =]
{com. merotronics. merobase. ull parser. java.
o g impon{1x0]
[CLASS_DEF[0x0)
o (] MODIFIERS[0x0]
[dass(zx7]
o DENT(0X0]
o (3 [extends, <EXTENDS_CLAUSE>][3x22.
¢] 0BJBLOCK[0x0]
[1, <LCURLY> [4x0]
1 METHOD_DEF{0x0]
o (] MODIFIERS[0x0]
o CITYPEI0XO]
[0 itest, <IDENT > [5x14]
) 1 <LPAREN> 5 x18]
[PARAMETERS[0x0]
) D, <RPAREN> I[5x19]
¢ T, <SLST>116x2]
o (] VARIABLE_DEF(0X0]
D)1, <sEmI> 1I7x30]
9 I BXPRIOXO]
o ([l <METHOD_CALL>[7:

)1, <SEMI>I[7x54]
[11 <RCURLY> [8x2]
[1), <RCURLY > [9x0]
< 1 v

Pressing the next button will send the query to Merobase. Alternatively, if the using developer is reasonably sure the JUnit parser will recognize the method signatures correctly, because he/she took care to avoid anything that could trap it, e. g. by adding above-mentioned unnecessary casts, he/she can select option 3 right away.

The results will be shown in a table. The number of initially found results is displayed above the table. The developer can select and unselect as many as he/she likes for the next step. cvs:// or svn:// URLs may be shown depending on the settings, but they cannot be downloaded, yet, with the plug-in, which is only capable of normal socket communication and download.

In step 4, which is initialized by clicking the appropriate button in the view or the fourth option in the submenu, the classes are being downloaded. A Java project, or more exactly a JUnit project, is created for each., i. e. a project is created, the Java nature is applied to it and the JRE and source folder added to the build path, and finally the junit.jar file is added to its build path, too. A comment is placed into each downloaded file with the download URL and date. The URL will likely be necessary to be able to determine later on if it is legally permissible to use the class in one's project, because many source files on the Internet do not contain a license. A copy of the JUnit test is made and placed into each project. If the downloaded class is in the unnamed package, it is moved into the JUnit test case's package, as otherwise it would not be possible for the JUnit test case to access the class. (Since Java 1.4 it is not possible anymore to import classes from the unnamed package. Before it was specified not to be possible, but the compiler and virtual machine actually did support it.) When the JUnit test case and the downloaded class are not in the same package, which is the case almost 100% of the times when the downloaded class is not in the unnamed package, a package import statement is added to the JUnit test case. If the name of the downloaded class is not as needed, an adapter class will be created. It has the name of the needed class and extends the downloaded class.

Still, using the class may not be possible without manual intervention. The constructor calls may not match the constructor, as these are not part of the query. The downloaded class may rely on other classes in its project on-line. It is not completely trivial to locate these: They could be in the same package, they could be imported fully qualified, they may be in one of the packages that were imported completely. In any case they were imported, they might not be on the same server, but may actually be part of some jar file that all of the developers and users of that project have in their build paths respectively class paths. The plug-in does not attempt to download these referenced classes. The functionally might be added: Merobase has support for determining containing jar files.

The developer can now choose to inspect the downloaded class, for example fixing such compile problems manually, by adding or modifying constructor calls or downloading the referenced classes. He/she could then run the JUnit test case inside that project the usual ways, by selecting Run As ... > JUnit test case from the menu at the top or the context menu of the JUnit test case.

But the developer can also choose the fully automated option: Have all the projects compiled automatically and the test case applied to each. The failing projects and their respective rows in the result table will be removed, so only the successful results are left.

If the JUnit test case had sufficient coverage of possible inputs and outputs, the developer can now be confident that the downloaded class does indeed achieve what he/she wanted the class under development to do.

5.2 Overview over the Architecture

[image: image12.png]search

interface>
SearchEngine

findCiassesOnMerobaselquery - Sting] - ArrayList
downloadClassToMemoryimeroClass : Mero(MLCIass) String

Merobase MerabasestackT estOfflineDummy

ainterface>
Query

builoQuerymethodList et String
buildQuerylclassHame ! String methodist : St - String

e

MeroQuery,

The UML class diagram above shows the package structure of FAST and their dependencies. (Some subpackages and less important dependencies have been left out.) The packages outside are not real packages, they stand for external jar files, in the case of Eclipse_Packages for multiple plug-ins.

There is a sequence diagram which shows the interactions between the most important classes during the five-step process on the accompanying CD. It is too wide to be included here. The classes are: FastView, FastController, JUnitParser, Merobase, JUnitProject and AdapterMaker. FastView and FastController interact with each other all the time, reading and writing information or setting off new actions. The controller relies on the remaining classes to achieve its goals.

5.3 The Parser: Determining Interfaces from Test Cases

To find out the interface of the method under test by the JUnit test case, we need for each method

· the method name

· the types of the method parameters

· the return type

Determining Relevant Method Names

To determine the method names, we first find all method calls in the JUnit test case and then choose which ones have to be considered. A method call is relevant if

· the method is called on a local variable of the tested type

· the method is called on a global variable (member variable) of the tested type

· the method is called on a new instance of the tested type, e. g. new Calculator().add(3, 4)

· the method is called on the class name of the tested type, i. e. the method is static (whether or not a method is static is not part of the query, as the search engine does not distinguish this anyway)

So it is necessary to keep a table of local variables and their types and a table of global variables (variables defined inside that class but outside the methods, i. e. attributes, member variables) and their types, with the global variables only being looked up when there is no local variable of the same name. The table of local variables is somewhat simplified: It does not consider the case of several local variables of the same name with different types (which would be in different scopes). It would be very difficult to implement full awareness of scopes with the simple Java parser and the benefit would be marginal, as very rarely anybody uses variables with the same name and different types within one method, in particular not in a typically relatively short JUnit method.

New instances like “new Calculator()” are no problem, the Java parser will return “LITERAL_NEW” and the first child of this node is the class name. For static method calls, the analysis is obviously trivial.

Determining Parameter Types

When a relevant method call has been found, the parameter types have to be determined. There are several possibilities:

· the parameter is an unsigned literal (the Java parser will determine the type as INT_LITERAL or NUM_INT, STRING_LITERAL etc.)

· the parameter is a negative number literal, e. g. -3 (the Java parser will determine the type as UNARY_MINUS)

· the parameter is a local variable or a global variable (member variable)

· the parameter is a variable with an unary minus

· the parameter is a new instance of some class (the class name might be qualified)

· the parameter could be something that is being casted, so only the type of cast matters, not the type of whatever it is that is being casted

The literals have to be matched from the parser type to the Java types, which is straightforward. Note that number like 3.3 will be recognized as float by the underlying Java parser. To force the correct recognition, the developer would need to type 3.3d.

For negative numbers, the Java parser will return UNARY_MINUS and one has to consider the child's type. This will not only work for negative literals, but also for negative variables, e. g. int a = ...; type.method(-a); However, more complicated calculations do not work, e. g. if the parameter is something like 3600*24 or a-b it cannot determine the type of the result. A more advanced Java parser would be needed for that. Maybe the Eclipse-internal Java parser and compiler have support for this. On the other hand, the problem can be avoided by assigning the result of the expression to a variable and using that variable as the parameter, or the result of the expression could be casted.

The look-up of local and global variables (global variables meaning variables defined inside that class but outside the methods) works just like described above in the section about relevant method names. The same is true for new instances as parameters.

Casts are easy enough, too: When the type of a token (AST) is TYPECAST, the first child of its first child is the name of the type that is being casted to.

Determining Return Types

The most difficult part is to determine the return type. There are four basic scenarios.

1. The method call appears in the context of an assert call, e. g.
assertEquals(42, new Calculator().mult(6, 7)) or assertTrue(stack.isEmpty()).

2. The equals method is called on the return value, maybe inside an assertTrue call: assertTrue(stack.pop().equals("apple"))

3. The return value is assigned to a variable, e. g. int sum = new Calculator().add(3, 4); or message = stack.pop();
(with message being a previously defined local or global variable).

4. The return value of the method is compared in some way, e. g. assertTrue(dice.roll() > 0 && dice.roll() < 7) or
if (someClass.someMethod() == someNumber);

For assertEquals and assertSame the type of the other parameter of the assert call has to be determined in the same way the parameter types were determined above, i. e. they could be literals, negative, new instances, variables or casts. Note that the assertEquals call for floats and doubles has three parameters, the third one being the maximum delta. Currently the plug-in does not yet support the variant of assert calls that takes a message of type String as an additional first parameter. Even though the specification of JUnit requires the expected value to come first, one cannot assume that users know this, they might use assertEquals(new Calculator().mult(6, 7), 42) instead of assertEquals(42, Calculator().mult(6, 7)), so this case has to be considered, too. assertTrue and assertFalse called on the return value of a relevant method guarantees us that this method's return type is boolean. assertNull and assertNotNull do not tell us much, but at least that the return type is not primitive, yet a subtype of Object or Object itself.

For the equals call, the type of the parameter of the equals call is analyzed, as described above. The opposite position, someObject.equals(testedType.someMethod()) is not yet implemented.

Variable definitions and variable assignments are easy to analyze, in the first case the type is found in the same statement in front of the variable, in the second case the type has to be looked up in the tables of local or global variables. There are actually more differences, up to the point of having to be parsed completely differently from each other, even though they appear to be very much alike to the user.

When none of the above cases is present, one looks before and after the call for signs of comparison, e. g. LT for “less than”, GE for “greater or equal” and so on. Then the other participant of the comparison is analyzed in a way almost identical to the parameter type analysis described above.

When the return value is casted before being assigned or when being compared, the information is almost useless. The only thing one can tell from such assignments is whether the return value is primitive or a subtype of Object.

Unavoidable Limitations

In any case, there are some limitations to the correctness of determining the parameter and return types. The JUnit parser does not know about the type hierarchy, with the exception that it knows that Object is the root of the type hierarchy – when a method call only ever appears inside assertNull or assertNotNull or is always casted before being assigned then the plug-in assumes Object as the return type. (By the way, when a return value is always casted to primitive before being assigned, int is guessed as the default primitive type.) So as it does not know the type hierarchy, when there is for example a call stack.push("abc") and a call stack.push(new Object()) the JUnit parser will conclude that there must be two methods with the name push, one with the parameter type String and one with the parameter type Object. One can avoid this by adding unnecessary type casts, i. e. stack.push((Object)"abc"), or the developer also has the chance to edit the query before sending it to Merobase.

When there are two different possible return types, e. g. one assignment of Object o = stack.pop() and one assignment or comparison to String, e. g. assertEquals("abc", stack.pop()), then the JUnit parser will not consider these methods to be different. Methods are compared based on signature only, that is on name and parameter types. Different return types do not make different signatures. But as it does not know that String is a subtype of Object, or even if it knew it could not tell in this example whether the return type is to be Object or String, it will take the first return type it finds.

Dealing with Unknown Return Types

Note that having an assertNotNull or assertNull call on a return value of a method at first is not a problem and will not cause the method's return type to be set to Object without a chance of more precise comparisons later. The list of methods of which it is only known that they must have a subtype of Object as a return type are kept in a separate list. Then there is a list for methods with unknown but primitive type – if the type cannot be determined until the end it will be guessed as int. And then there is a fourth list of methods for which the return type is totally unknown. For example in the case of stack.push(5); stack.push(2); stack.pop(); assertEquals(5, stack.pop()); the pop method is first entered into the list of methods with unknown return types. In the end, the methods from the second and third list are added to the list of methods with known return types. These are actually maintained as Sets. As the comparison of methods is only done by signature, which does not include the return type, methods of which the return type is already known will not be replaced. As a last step the return types for the methods in the list with unknown return types will be set to void and they will be added to the list (Set) of methods with known return types. Again, a wrongful replacement cannot happen because of the implementation of equality between methods and because of the use of Sets.

Parser Package Structure

[image: image13.png]Popup Menu
sample Popup Menu

This template creates a submenu and adds a new actionto s
selected object's popup menu,

Target Object's Class: |org.eclipse. core.resources. File

Name Filter: | plugin.xml

Submenu Name; [New Submenu

Action Label; [New Action

Java Package Name: |fast.popup.actions

Action Class; [NewAction

Action is enabled for:

(® single selection) Multiple selection

The JavaParser, whose package structure is shown in figure 11, relies on the checkstyle project, which is based on the antlr project. This makes using and debugging it very easy, as there is an option to visualize the abstract syntax tree (AST) in a Swing Frame (seen in the screenshot 12). All nodes of an AST have a type (e. g. STRING_LITERAL or METHOD_DEF or RCURLY) and a text (“abc”, “METHOD_DEF” or “{”) and all child nodes of an AST are ASTs themselves.

The parsing takes place in the method
Set<? extends SourceMethod> constructInterface(DetailAST detailAST, String testedType) in DetailAST3.

[image: image14.png]All Extensions
~ <= org.eclipse.ul.popupMent
B FASTE

b [Fully Automated Sea

[¥ 5 Parse testcase, se

a

ontext

[X) 4 Parse testcase, se
[#) 3 Parse this testcas
[¥) 2 Parse this testcas
[¥) 1 Select this testcas
¥ <= org.eclipse.uiviews
[¥) FAST (category)
B FAST (view)

x| G

Edit,

Up.

Down

Extension Element Details

Set the properties of *objectContribution”
id: FASTtestcaseContextMenuc

objectClass*: \ICompilationUnit]
nameFiter; | ¥Test.java

adaptable;

Overview| Dependencies| Runtime | Extensions [Extension Points | Build | MANIFEST.MF|

2

Why does DetailAST2 delegate to DetailAST instead of extending? That using delegation instead of inheritance is a recommended software pattern is not the only reason. The JavaParser's Tools class simply can only construct DetailASTs:

Tools t = new Tools();
DetailAST detailAST = t.parse(sourceCode, showSwingAST);

There is no generic type parameter that would allow the creation of subtypes of DetailAST.

DetailAST2 has all the methods of DetailAST with the exception of equals(AST), which is left out because it could cause problems during comparisons. DetailAST3 adds the methods necessary for finding method names, parameter and return types and so on. They are called recursively, so for many of the methods it only makes sense to call them on DetailAST3s of a specific type, e. g. METHOD_CALL or EXPR.

5.4 Interaction with Merobase

[image: image15.png]edipse

interface>
IFastController

seMestcaseavafile - ICompilationUnit - void
parseTestCaseandCreateQuery) :void
sendQueryTaMeroBased : void
downloadClassesndCreateProjects) : vid
TunTestsWithTestRunnerd : void

FastCantraller

[iunitproject

ainterface>
Fastvien
Fastview
1
actions

Adaptertraker | |

parseunit__1 Search v

[imiestruntar

<interface->

MeroQuery

Teunner| | TestRunlistener2

The interactions with Merobase are done in the package *.search (shown in the UML diagram above) via its experimental API, which is available to researchers. A query can be sent to Merobase like this:

Merosearch ms = new Merosearch(query);

MeroXMLComponent mero = (MeroXMLComponent) ms.getModel();

if (mero == null) return null;

@SuppressWarnings("unchecked")

ArrayList<MeroXMLClass> ret = (ArrayList) mero.getClasses();

return ret;

When the query was faulty, the Merobase server is not reachable or simply 0 results are found, getModel() will return null. Stack traces may be seen on System.err, but no exception is thrown.

The MeroXMLComponent is only the container for the results. One can get the list of MeroXMLClasses from it. The return type of the getClasses method is really ArrayList<MeroXMLClass> as needed, but is specified as ArrayList<SourceClass>. This cannot be fixed easily, as the interface MeroXMLComponent implements, SourceComponent, which incorrectly specifies the return type of that method as ArrayList<SourceClass> instead of ArrayList<? extends SourceClass> as need be. This cannot be changed easily, as it would break other existing code. This is the reason why the unchecked typecast (ArrayList) is inserted.

Of the MeroXMLClasses only the method getLink() is used. There are methods like getSourceCode() and getNameSpace() that would have been useful, but they are not yet implemented and still return null. Therefore the Merobase class also contains supportive methods for downloading classes from Merobase. During the the download process, two lines are added, one contains the download URL and the other one contains the download date.

Additionally, there is a method in the MeroQuery class for constructing the Merobase query from the method list that was returned by the JUnit parser in the previous step.

MerobaseStackTestOfflineDummy is for testing, in particular when one is off-line or needs predefined results. It simulates Merobase, more precisely how it responded to a query of "$(push(int):void;pop():int;)" on 22nd June 2007 (some very long files were shortened). The list of results contains a good mixture of failing and passing classes.

5.5 Creating a Plug-in

The standard Eclipse installation for Eclipse 3.2 includes everything needed for plug-in development. (When installing Eclipse 3.3 one has to choose Eclipse Classic or Eclipse for RCP/Plug-in Developers or install the PDE plug-ins later.) When creating a new project, one simply chooses Plug-in project instead of Java project. When one clicks on the plugin.xml file inside the project a specialized editor with multiple tabs and many options for creating things semi-automatically is opened. On the Overview tab there are also options for launching a separate Eclipse instance with the plug-in under development loaded – actually with all plug-ins loaded that are currently being developed in the development workspace. To exclude some plug-ins under development, one closes their projects.

[image: image16.png]JunitProject

projectiiame :String
project : [Project
[vaProject - Uavaproject

[lunitProjectiprojecthiame - string)
exists) boolean

createlUnitProjecty - void

created Project

createfavaProjecty : JavaProject
addUnitard : void

waitforindexert - void

getSrcRoldert : IPackageFragmentRoot
buildg - void

build(monitor IProgresshioniton : void
findProblemMariersd : Marker]
existsProblemd - boolean

deleteq - void

findTypeifulliame :string) : Type

Actions (new menu points in context or other menus) and views are so-called extensions. When one clicks on the Extensions tab in the plugin.xml viewer and presses the Add button, there is an option to have some of the most common extensions automatically generated by Extension Wizards. But beware of this trap in Eclipse 3.2 when having the wizard create a Popup Menu (context menu):

By default, the field Name filter is filled with plugin.xml. As an unsuspecting newbie to plug-in development one will likely leave this setting, especially as the wizard does not allow it to be empty. However, this will cause this pop-up menu to apply exclusively to files with the name plugin.xml, it will not show up for any other files. Type an asterisk (*) into this field. Additionally you will want to change the target object's class to org.eclipse.jdt.core.ICompilationUnit. If left to IFile, it would only work in the Navigator (in the Resource Perspective). ICompilationUnit is a Java class in the Package Explorer (in the Java Perspective).

The FAST plug-in uses *Test.java as a file name filter. It contributes an extension to the popupMenus extension points, which contains five actions, and it provides one extension to the views extension point. A screen shot with the Extensions tab of the plugin.xml editor open is shown below.

[image: image17.png]100

o o
@ =

9% UOISIOdIJ

20 30 40 50 BO 70 80 S0 100
Recall %

10

To deploy, one creates a Feature Project, adds the plug-in to it, sets a license (deploying without license is not possible) and the URL of the update site where it is to be published (so that updates can be found by the plug-in automatically), then creates an Update Site Project and adds the feature to it.

The following UML class diagram shows the contents of the *.eclipse package, which contains all Eclipse-specific code of FAST, while the other packages could be used independently of Eclipse. Some less important classes are left out, like the Activator and the Options. Classes outside the *.eclipse package are shown if the FastController calls methods in them to fulfill its duties.

5.6 Creating Projects Programmatically

The JUnitProject class, depicted in the UML class diagram above, assists with creating JUnit projects, compiling (building) them and determining whether there are compile errors or not, as well as with deleting projects and with finding a class of a given fully-qualified name within the project (this last feature is needed for executing the tests).

The creation of a JUnit Project begins with

IWorkspace workspace = ResourcesPlugin.getWorkspace();
IWorkspaceRoot workspaceRoot = workspace.getRoot();

From there one goes on to create the project, make it into a Java project by adding the Java nature to it and adding the JRE to the classpath, creating the “src” folder and adding it to the build path, then finding the junit.jar from the org.junit plug-in and adding it to the build path as well.

Then a file is created for the downloaded class in the right folder matching its package. Two lines of comments for the download URL and the download date have already been added by the Merobase class during the download.

Adding a class to a project works like this:

IFolder srcFolder = project.getFolder("src");
IPackageFragmentRoot root =
 javaProject.getPackageFragmentRoot(srcFolder);
IPackageFragment defaultPackage =
 root.createPackageFragment("", false, null);
ICompilationUnit newJavaClass =
 defaultPackage.createCompilationUnit(fileName, sourceCode,
 true, null);

(The boolean parameters are for force, the null values are for progress monitors. "" signifies the default package, otherwise the fully qualified name of the package would be supplied.)

A copy of the JUnit test case is placed in the newly created test project, also into the folder corresponding to its package. A package import statement is added to the JUnit test case so that it can access the downloaded class:

testCaseCopy.createImport(importString, null/*sibling*/, null);

(testCaseCopy is an ICompilationUnit, i. e. a Java file. The last null parameter is a progress monitor.)

If the downloaded class is in the unnamed package, it is moved into the JUnit test case's package, because otherwise it would not be possible to import or access the class. The package statement is added in a similar way as the import statements shown above.

If the downloaded class is not named like the class under development which is referred to in the JUnit test case, for example the developer called the not-yet-developed class IntStack but the downloaded class is only called Stack, an adapter class is created by the class AdapterMaker. The adapter class has the needed name, e. g. IntStack, and extends the downloaded class, e. g. Stack. Package and import statements are added as necessary. In the future, the adapter classes will be more advanced, in particular adding constructors as needed, which will greatly increase recall without reducing precision.

5.7 Running the JUnit Test Cases Programmatically

My first idea was to create launch configurations to run the JUnit test cases. The ID strings needed to run them are in an internal Eclipse package. It is okay to ignore that something is in an internal package, one just cannot complain that those things change completely in the next Eclipse version. However, it turned out that apparently these ID strings are internal for a good reason. Running just one JUnit test case was fine. One can register a TestRunListener to be notified when any JUnit test case starts, succeeds, fails or completes. However, for the plug-in, many JUnit test cases need to be run automatically. There is no way to run them synchronously, that is wait for one of them to complete its test run and only start the next one when the first one is finished. The TestRunListener cannot be told to listen for the events from one particular test run. It will always listen for any and all tests running at the same time. Therefore, the reported results are unusable when there is more than one JUnit test run started in close succession.

Instead, I used the SocketTestRunner from the Appendix of the book “Contributing to Eclipse: Principles, Patterns and Plug-Ins” [86] by Erich Gamma and Kent Beck. It was published under the Common Public License 1.0 on the Addison Wesley website and modified by Raoul from http://www.theyellowmarker.org to work with Eclipse 3 and published in his blog on 21st May 2007 [87]. The TestRunner starts another JVM and loads and runs the SocketTestRunner in it.

5.8 Non-proactiveness of FAST

Other researchers (chapter 4) suggested that tools and plug-ins for reuse must be proactive, running in the background all the time making suggestions for reuse to the developers without being asked, based on the context. One of the plug-ins provided by Koders.com works this way, too.

I think, however, that this would neither be necessary nor suitable for FAST or similar tools that support Test-Driven Reuse. The proactive tools analyze what the programmer is typing, the Javadoc comments or the method signature, and suggest methods similar to those comments or the signature. This is completely different from what FAST does. After the developer has finished writing a JUnit test case, he or she just makes a few clicks to have FAST look for matching classes on the Internet. There is no need for FAST to detect when a JUnit test case might be finished or start searching in the background once the first test method is done. If the developer wants to search already at that time, he or she will do so. If he or she wants to add another test method first, no execution time and bandwidth should be wasted for unnecessarily downloading possibly huge numbers of matching classes.

Additionally, the developer may want to make changes, like when the name of the class under test does not match the name of the JUnit test without Test in the end or when the needed methods were not recognized correctly. Proactiveness would prohibit this.

Moreover, making downloading and especially running the test cases automatic is certainly not what the developer wants. Running such things in the background all the time would use up lots of CPU cycles and slow down his or her machine significantly. However, there is research going on about running the tests on the server side [Oliver Hummel, Dissertation on “Semantic Component Retrieval”, to be published 2008]. This could make proactiveness feasible.

6 Evaluation of the Plug-in

In the first section I will evaluate the parsing component for extracting the required interface (method signatures) of the class under test from the JUnit test. In the second section I will evaluate the entire search process.

6.1 Parser Tests

The parser tests only check if the JUnit parser correctly determines the method names, parameter types and return types from a given JUnit test case and the name of the class under test.

Many of them are included as code in the tests.* packages. There are also supportive methods for creating the source code of a complete JUnit test case from source code of one test method, and for comparing two sets of methods including the equality of the return types, because methods are considered equal depending only on their name and parameter types, i. e. even if their return types are different.

Finding Relevant Methods

There are several cases in which a method name needs to be included in the query:

· It follows the name of the tested class (i. e. the method is static).

· It follows a local or global variable of the tested type.

· It follows a new instance of the tested type.

The test case that covers all four cases looks like this:

import junit.framework.TestCase;

public class HelloTest extends TestCase

{

 Hello globalVar = new Hello();

 public void testFindMethods()

 {

 Hello localVar = new Hello();

 assertTrue(Hello.world1());

 assertNull(new Hello().world2());

 globalVar.world3(42);

 int i = localVar.world4();

 }

}

This is the generated query:

Hello(

 world1():boolean;

 world4():int;

 world2():Object;

 world3(int):void;

)

All four methods were recognized.

Determining Parameter Types

Parameters to relevant method types can be literals of primitive types and Strings, number literals with an unary minus, the null literal, local or global variables of primitive, non-primitive or parameterized types, local or global variables with an unary minus, any kind of cast expression, new instances of some class with or without type parameter or new one- or more-dimensional arrays. They could also be more complicated expressions like a+b with a and b being of some primitive type or strings, or the return value of some other method or an expression involving these. Types may be fully qualified (“dotted”). Most of these cases are supported well, some have minor quirks, some will be added later and some will never work, but can be avoided.

Literals work well, but note what happens with double literals:

 public void testLiteralParameters()

 {

 Hello hello = new Hello();

 hello.intMethod(1); hello.longMethod(123L);

 hello.notDoubleMethod(1.0); // note!

 hello.floatMethod(1.0f); hello.doubleMethod(1.0d);

 hello.booleanMethod(true); hello.charMethod('a');

 hello.stringMethod("abc");

 hello.nullMethod(null);

 hello.severalMethod(2, 3f, 4d, 'c');

 }

generates:

Hello(

 intMethod(int):void;

 longMethod(long):void;

 notDoubleMethod(float):void; // note!

 floatMethod(float):void;

 doubleMethod(double):void;

 booleanMethod(boolean):void;

 charMethod(char):void;

 stringMethod(String):void;

 nullMethod(Object):void;

 severalMethod(int,float,double,char):void;

)

Numbers like 1.0 are interpreted as float by the underlying Java parser, adding a 'd' to the double literal can fix this. null is taken to mean that the parameter type is to be Object. Casting null to the actual type or assigning it to a variable of the actual type can be used to avoid this. All the other types cause no problems, and having more than one parameter is not a problem, either.

Negative literals work well, too, but pay attention to negative char literals:

 public void testNegativeLiteralParameters()

 {

 Hello hello = new Hello();

 hello.intMethod(-1); hello.longMethod(-123L);

 hello.notDoubleMethod(-1.0);

 hello.floatMethod(-1.0f); hello.doubleMethod(-1.0d);

 hello.negCharMethod(-'a'); // note!

 }

generates:

Hello(

 intMethod(int):void;

 longMethod(long):void;

 notDoubleMethod(float):void;

 floatMethod(float):void;

 doubleMethod(double):void;

 negCharMethod(char):void; // note!

)

That -'a' is interpreted as a char is actually incorrect. It has the type int. The JUnit parser simply interprets the types of expressions with an unary minus as being of the same type as the original expression (literal or variable). As negative char literals are extremely rarely used, it is not worth the effort fixing this.

New instances work without problems:

 public void testNewParameters()

 {

 Hello hello = new Hello();

 hello.objectMethod(new Object());

 hello.stringMethod2(new String("xyz"));

 hello.frameMethod(new Frame());

 hello.jFrameMethod(new javax.swing.JFrame());

 }

generates:

Hello(

 objectMethod(Object):void;

 stringMethod2(String):void;

 frameMethod(Frame):void;

 jFrameMethod(JFrame):void;

)

It even works with fully qualified class names.

There are some difficulties with overloaded methods:

 public void testMultiType()

 {

 Hello hello = new Hello();

 hello.multiMethod(2);

 hello.multiMethod("abc");

 hello.multiMethod(null);

 String s = "abc";

 Object o = new Object();

 hello.multiMethod2(s);

 hello.multiMethod2(o);

 hello.multiMethod3(new Integer(5));

 hello.multiMethod3(new Long(5L));

 }

generates:

Hello(

 multiMethod(int):void;

 multiMethod(String):void;

 multiMethod(Object):void;

 multiMethod2(String):void;

 multiMethod2(Object):void;

 multiMethod3(Integer):void;

 multiMethod3(Long):void;

)

With multiMethod, it is clear that there must be at least two methods, one with an integer parameter. But the type of the second one is unclear, it could be String or Object, or there could even be all three methods. (With autoboxing, i. e. automatically wrapping int to Integer, there need really only be one multiMethod, the one with Object as the parameter type.) There is no way to determine this automatically from the test case. This requires user intervention. With multiMethod2, there could be one method with the parameter type Object, or both methods could be wanted. With multiMethod3, two methods, with type Integer respectively Long, could be wanted, or one with the parameter type Object. All of these possibilities are not solvable automatically even if the type hierarchy were known to the parser, they all require the user to solve this. He or she could add casts to the wanted type, assign the parameters to a variable of the wanted type first and use that one as the parameter, or simply fix the query after it is created and before it is sent to Merobase.

Variables, local as well as global, are not problematic, not even if an unary minus is added to them (then they have the same few problems as literals with an unary minus):

 int globin = 4;

 public void testVariableParameters()

 {

 Hello hello = new Hello();

 double loco = 3;

 short s = 2;

 String w = "abc";

 Object o = new Object();

 javax.swing.JFrame frame = new javax.swing.JFrame();

 hello.varMethodGlob(globin);

 hello.varMethodGlobNeg(-globin);

 hello.varMethodLoco(loco);

 hello.varMethodShort(s);

 hello.varMethodShortNeg(-s); // same problem as above

 hello.varMethodString(w);

 hello.varMethodObject(o);

 hello.varMethodDotted(frame);

 }

generates:

Hello(

 varMethodGlob(int):void;

 varMethodGlobNeg(int):void;

 varMethodLoco(double):void;

 varMethodShort(short):void;

 varMethodShortNeg(short):void; // same problem as above

 varMethodString(String):void;

 varMethodObject(Object):void;

 varMethodDotted(JFrame):void;

)

Again, the negative char really requires an int parameter. The same is true for negative shorts and bytes. See the discussion above for literals. Other than that, there are no problems. Local and global, primitive and non-primitive including fully-qualified types are recognized correctly. When there are problems with recognizing more complex parameters correctly, assign them to a variable first and use that variable as the parameter.

One-dimensional arrays work well, more-dimensional arrays do not work at all, yet.

 public void testArray()

 {

 Hello hello = new Hello();

 int[] array1 = new int[10];

 hello.array1(array1);

 Object[] array2 = new Object[10];

 hello.array2(array2);

 java.lang.Object[] array3 = new Object[10];

 hello.array3(array3);

 double[][] array4 = new double[10][10];

 hello.array4(array4);

 hello.arrayNew(new int[] {1, 2, 3});

 }

generates:

Hello(

 array1(int[]):void;

 array2(Object[]):void;

 array3(Object[]):void;

 array4([[]):void;

 arrayNew(int[]):void;

)

Primitive and non-primitive, qualified and unqualified array types work well, as long as they are one-dimensional. New array instances, work, too. Arrays of two or more dimensions do not work at all, yet. There are no other options besides fixing the query manually until this is resolved.

Of parameterized types only the unparameterized type is recognized:

 public void testTypeParameter()

 {

 Hello hello = new Hello();

 ArrayList<Integer> list = new ArrayList<Integer>();

 hello.list(list);

 hello.list2(new ArrayList<Integer>());

 }

generates:

Hello(

 list(ArrayList):void;

 list2(ArrayList):void;

)

This can be added to the parser. Until then changing the query manually is the only solution.

Casting works without problems as long as the cast type is not fully qualified:

 public void testCast()

 {

 Hello hello = new Hello();

 hello.intCastMethod((int) 2.7);

 hello.shortCastMethod((short) 'a');

 String s = "abc";

 hello.objectCastMethod((Object) s);

 Object o = s;

 hello.stringCastMethod((String) o);

 hello.componentCastMethod(
 (java.awt.Component) new java.awt.Frame()); // problem

 java.awt.Component c = new java.awt.Frame();

 hello.componentCastMethod2(c);

 }

generates:

Hello(

 intCastMethod(int):void;

 shortCastMethod(short):void;

 objectCastMethod(Object):void;

 stringCastMethod(String):void;

 componentCastMethod(.):void; // problem

 componentCastMethod2(Component):void;

)

Primitive and non-primitive up and down casting works well, except when the cast type is fully qualified. This can be solved in future versions of FAST. Until then, import the type so that it can be used without qualification or assign the affected value to a variable of that type instead.

Casting can be used to coax the parser into recognizing parameter types as wanted, e. g. casting a String to Object when one only wants one method with that name and it is to have type Object, or casting null to the wanted type for the opposite reason, avoiding the generation of methodName(Object) as part of the query.

Expressions more complex than an unary minus are not and will not be supported as parameters:

 public void testExpression() {

 new Hello().testExpr(2+3);

 }

If such an expression is used anywhere, an exception is thrown and no query is generated at all. The error log will show “UnexpectedTokenException: parameter type is neither literal nor variable nor new nor cast”. There is no plan to add the functionality that the JUnit parser can figure out which parameter type a method like m(2+3/4-'c') is to have. This would be difficult and of little use, as it is rarely used and can be easily avoided. Assign the result to a variable instead and use that variable as a parameter, or cast the result to the type it has anyway. The plug-in will however be changed to not abort at the UnexpectedTokenException, but go on and parse the rest of the JUnit test case anyway, maybe displaying a warning message that the parameter type of this method could not be determined.

Determining Return Types

Determining the return types is the most difficult part. There are several ways of determining the return type of the methods in question.

· An assertion is made about it.

· It is assigned to a variable.

· It is never used and thus assumed to be void.

· It is compared with equals to something else.

· It is compared with <, >, ==, !=, <=, >= to something else.

· It is assigned or compared (including assertions), but casted before, so no information is delivered except whether it is primitive or non-primitive.

There are several assertion types: assertEquals with two parameters (the first being the expected, the second the actual value) for String, Object and primitive types, except for float and double, in which case it has three parameters, the third one being the maximum delta. assertTrue and assertFalse which guarantee the one parameter to be of type boolean and assertNull and assertNotNull which only yield the information that the parameter is non-primitive. Additionally each assert method of junit.framework.Assert exists a second time with an additional message parameter. This is the test method covering most of these possibilities:

 public void testReturnAssert()

 {

 Hello h = new Hello();

 assertEquals(-3, h.meth1());

 assertEquals(3.0, h.meth2(), 0.01); // float

 assertEquals(3.0d, h.meth3(), 0.01);

 assertEquals('m', h.meth4());

 assertEquals("abc", h.meth5());

 assertEquals(new Object(), h.meth6());

 assertEquals(new javax.swing.JFrame(), h.meth7());

 short s = 3;

 assertEquals(s, h.meth8());

 assertTrue(h.meth9());

 assertNull(h.meth10());

 assertEquals("abc", h.meth10());

 assertNull(h.meth7());

 assertEquals(h.meth11(), 3);

 assertEquals(h.meth12(), 3.0f, 0.01);

 assertEquals("message", 3, h.meth13()); // problem

 assertEquals((char) s, h.meth14());

 assertNotNull(h.meth15());

 }

generates:

Hello(

 meth1():int;

 meth2():float;

 meth3():double;

 meth4():char;

 meth5():String;

 meth7():JFrame;

 meth8():short;

 meth9():boolean;

 meth10():String;

 meth11():int;

 meth12():float;

 meth13():String; // problem

 meth14():char;

 meth6():Object;

)

Most assertions that compare the return value to a literal, variables, new instances and cast expression work well, including those with an unary minus. Just as with parameters, literals like 3.0 are considered to be float rather than double by the underlying Java parser. Fully qualified class names do not cause a problem, nor is it a problem when the user switches the expected and actual value around, taking the return value of the method under consideration as the first parameter instead of the second. Double and float assertions with the third parameter (the delta) work, too, as do assertTrue and assertFalse. assertNull and assertNotNull are only taken to mean that the return type is to be Object when there is no other information available (meth15), either before (meth7) or after (meth10) the null or notNull assertion. The variation of the assert methods that takes an additional message as the first argument is not supported, yet.

When the return value is assigned to a local or global variable (without being casted first), there are no difficulties in determining the return type:

 int globReturn;

 public void testAssignReturn()

 {

 globReturn = new Hello().metho1();

 double d = new Hello().metho2();

 String s;

 s = new Hello().metho3();

 }

generates:

Hello(

 metho1():int;

 metho2():double;

 metho3():String;

)

Note that for the parser a variable definition and immediate initialization and an assignment to a previously defined variable are completely different.

Methods are considered void if their return value is not used. Comparison with equals works well, but only one way, and comparisons with operators work, too:

 public void testReturn2()

 {

 Hello h = new Hello();

 h.voidMethod();

 assertTrue(h.stringMethod().equals(""));

 assertTrue("".equals(h.stringMethod2())); // problem

 if (h.intMethod() < 2 && h.doubleMethod() != 0.0d) {}

 }

generates:

Hello(

 stringMethod():String;

 intMethod():int;

 doubleMethod():double;

 voidMethod():void;

 stringMethod2():void; // problem

)

When a comparison via <, >, <=, >=, == or != is done, the type of the other operand, be it literal or variable, is assumed to be the return type of the method. This can sometimes be wrong, e. g. the user could have written h.doubleMethod() != 0 and the method would therefore have been considered to be of return type int by the JUnit parser. Obviously the user can easily avoid these problems if he or she is aware of them. Comparisons with equals work, too, but only as testedType.method().equals(other), not yet as other.equals(testedType.method());

When there are multiple possibilities for the return type, the parser uses the first one, unless that one is Object:

 public void testMultiReturn()

 {

 Hello h = new Hello();

 Component c = null; Frame f = new Frame();

 assertEquals(c, h.m1());

 assertEquals(f, h.m1());

 assertEquals(f, h.m2());

 assertEquals(c, h.m2());

 assertEquals("abc", h.m3());

 assertEquals(new Object(), h.m3());

 assertEquals(new Object(), h.m4());

 assertEquals("abc", h.m4());

 Component c2 = h.m5();

 Frame f2 = h.m5();

 }

generates:

Hello(

 m1():Component;

 m2():Frame;

 m3():String;

 m4():String;

 m5():Component;

)

Probably m1 and m2 both return Frame objects, but as m1 is first compared to a variable of type Component, it is considered to have this return type. Anyway, the method could be meant to have return type Component. The user has to decide. m4 shows an exception: When the return type first can only be figured out to be Object, the parser waits until the end whether there will be more information. The parser does not know the type hierarchy, except that Object is the root of it. All of this is not only true if it happens inside assert calls, but also with assignments and with other comparisons.

When the return value is casted before it is used in an assertion, comparison or assignment, nothing can be known about it, except whether it is of a primitive or non-primitive type. However, when later or earlier more information is available about the return type, that information will be used to determine it.

 public void testReturnCast()

 {

 assertEquals(3, (short) new Hello().someMethod());

 Frame f = (Frame) new Hello().someMethod2();

 assertTrue((float) new Hello().someMethod3() > 3.0f);

 double d = new Hello().someMethod3();

 }

generates:

Hello(

 someMethod3():double;

 someMethod2():Object;

 someMethod():int;

)

About someMethod's return type it is only known that it is primitive. Of all such methods it is guessed that they return an integer. This guess is as good as any. Likewise methods like someMethod2 are guessed to have the return type Object, as nothing else can be known about them. About someMethod3 we learn later that it has the return type double, so double is used instead of the previously guessed int.

Actually, the plug-in uses $ (for “any”) as the class name instead of “Hello”, which was not relevant for this section, but will be for the next one.

6.2 Complete Tests

Complete tests evaluate the entire plug-in as well as the underlying software component search engine Merobase. They involve parsing a JUnit test case and generating the query, finding classes on Merobase and downloading them, then testing those that compile successfully.

I tested the plug-in with some of the examples from [1], [3] and one from [4]. Many of them are commonly used in the reuse literature. To get more precise results than just how many classes were found that passed, it is necessary to change the setting to show “server problems” (typically the file has been moved or deleted, sometimes the server is not reachable), “cvs/svn skipped” (the plug-in cannot yet download files from CVS and SVN servers), “compilation problems” (see some of the typical problems below) or “failed” instead of deleting the rows in the result table and the corresponding projects in the workspace. Currently there is no options page, yet, for changing these settings at runtime, so modifying them still requires recompiling.

Note that the number of results returned by the current version of the Merobase API is limited to 30 and that only the method signatures are used for the query, not the class name, unless specified otherwise.

Greatest Common Divisor

To implement Euklid's Algorithm for determining the greatest common divisor of two natural or integer numbers is often the task of programming classes, but it can also be part of real programs, e. g. as a supportive method in a class that deals with fractions.

public class GcdTest extends TestCase

{

 public void testGcd()

 {

 assertEquals(1, Gcd.gcd(1, 3));

 assertEquals(1, Gcd.gcd(4, 7));

 assertEquals(2, Gcd.gcd(14, 22));

 assertEquals(3, Gcd.gcd(15, 18));

 assertEquals(6, Gcd.gcd(12, 18));

 assertEquals(4, Gcd.gcd(400, 404));

 assertEquals(8, Gcd.gcd(8, 16));

 }

}

generated query:

$(

 gcd(int,int):int;

)

30 found: 7 server problems 2 cvs/svn 12 passed 9 compilation problems

Typical compilation problems: The gcd method in the downloaded class was not static, the case did not match (GCD instead of gcd), the gcd method was private or package-private and could therefore not be inherited by the adapter class, the downloaded class referenced other classes, the class with the gcd method did not have a default constructor.

Fibonacci

Calculating the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ...) recursively and iteratively is a common task of programming classes and rarely the part of real programs. There are variations to the indexing of the numbers, some starting the sequence with index 0, others with 1, others even with -1.

public class FibonacciTest extends TestCase

{

 public void testFibonacci()

 {

 assertEquals(1, Fibonacci.fibonacci(1));

 assertEquals(1, Fibonacci.fibonacci(2));

 assertEquals(2, Fibonacci.fibonacci(3));

 assertEquals(3, Fibonacci.fibonacci(4));

 assertEquals(5, Fibonacci.fibonacci(5));

 assertEquals(8, Fibonacci.fibonacci(6));

 assertEquals(13, Fibonacci.fibonacci(7));

 }

}

generated query:

$(

 fibonacci(int):int;

)

30 found: 2 server problems 3 cvs/svn 4 passed 7 failed 13 compilation problems 1 illegal name

The failing ones usually assume fib(0) = 1, fib(1) = 1, fib(2) = 2, i. e. start with the index 0 instead of 1. One Java file name contained a “-”, which caused Eclipse to throw an exception. Two “compilation problems” were really downloaded “page moved” HTML pages. The other compilation problems were typical: The classes referenced other classes that were not downloaded, the method was named Fibonacci instead of fibonacci, the fibonacci method was private, or the fibonacci method was not static.

Leap Year Test

The first idea was that the isLeapYear method might be part of a general Date class.

public class DateTest extends TestCase

{

 public void testLeapYear()

 {

 Date d = new Date(1980, 9, 3);

 assertTrue(d.isLeapYear());

 Date d = new Date(1987, 9, 3);

 assertFalse(d.isLeapYear());

 Date d = new Date(1900, 9, 3);

 assertFalse(d.isLeapYear());

 Date d = new Date(2000, 9, 3);

 assertTrue(d.isLeapYear());

 }

}

generated query:

$(

 isLeapYear():boolean;

)

This did not work out, none of the search results passed the test:

30 found: 5 server problems 6 cvs/svn 7 failed 12 compilation problems

Compilation problems occurred when the downloaded class named “Date” did not have a constructor with three parameters, or when the downloaded class was not named “Date”, as the generated adapter class does not provide for constructors. Failures occurred when the three parameters did mean year, month and day, but in a different order.

So the next idea was to have a Year class with the constructor only taking the four-digit year as the input.

public class YearTest extends TestCase

{

 public void testLeapYear()

 {

 Year d;

 d = new Year(1980);

 assertTrue(d.isLeapYear());

 d = new Year(1987);

 assertFalse(d.isLeapYear());

 d = new Year(1900);

 assertFalse(d.isLeapYear());

 d = new Year(2000);

 assertTrue(d.isLeapYear());

 }

}

The query remains the same, as the constructor is not part of it. This worked much better.

30 found: 5 server problems 6 cvs/svn 4 passed 15 compilation problems

Most of the downloaded classes suffered from compilation problems simply because they were not named Year and the generated adapter classes cannot deal with constructors yet. Some were referring to classes that were not downloaded, some did not have a constructor with one int as a parameter (instead the method took the parameter), and, which is very rare, one had a real compile error all by itself, using “==” where “=” should have been used. One of the downloaded classes was abstract, and the extending adapter class naturally did not implement the abstract method.

Sorting Integers

Implementing sorting algorithms is often a part of academic examples, as real projects simply use the sorting methods supplied by the Java API.

public class SortTest extends TestCase

{

 public void testSort()

 {

 int[] array = new int[] { 3, 2, 1 };

 Sort.sort(array);

 assertTrue(array[0] < array[1] && array[1] < array[2]);

 }

}

generated query:

$(

 sort(int[]):void;

)

30 found: 5 server problems 11 cvs/svn 1 passed 13 compilation problems

The compilation problem was usually that a specific sorting class (e. g. BubbleSort, QuickSort) extended some more general or abstract sorting class or implemented a Sort interface which was not downloaded. In some cases the sort method was not static.

Summing up an Array of Numbers

public class SumArrayTest extends TestCase

{

 public void testSum()

 {

 int[] array = new int[]{1, 2, 3};

 int sum = SumArray.sumArray(array);

 assertEquals(6, sum);

 }

}

generated query:

$(

 sumArray(int[]):int;

)

30 found: 7 server problems 23 compilation problems

Two types of problems were common among the compilation problems: One was that the parameter for sumArray was often of type int[][] rather than int[]. That these non-matching signatures were found is a limitation of the search engine. The other type of problem was that the method was often not public nor protected.

Palindrome Check

Palindromes are strings that are the same when read forward and backward.

public class PalindromTest extends TestCase

{

 public void testPal()

 {

 String s = "abcba";

 assertTrue(Palindrom.isPalindrom(s));

 }

}

generated query:

$(

 isPalindrom(String):boolean;

)

9 found: 1 passed 8 compilation problems

One frequent problem was that the method was not static, so I tried again with

new Palindrom().isPalindrom(s)

The query stays the same.

9 found: 4 passed 5 compilation problems

The remaining compilation problems were that classes were referenced that were not downloaded.

Stack

I made two different tests with a Stack, one with a default constructor and one with a constructor expecting an int for the initial capacity. The query is the same, as the constructor cannot be included in MQL-style queries. See “Future Work” for a discussion.

With initial capacity:

public class StackTest extends TestCase

{

 Stack stack;

 public void setUp()

 {

 stack = new Stack(5); // initial capacity

 }

 public void testPushPop()

 {

 stack.push(3);

 stack.push(4);

 stack.pop();

 assertEquals(3, stack.pop());

 }

}

generated query:

$(

 pop():int;

 push(int):void;

)

30 found: 2 cvs/svn 3 passed 1 failed 24 compilation problems

The failing one not only had a push and a pop method but was actually named Stack, but was not a stack at all. It was a synchronized storage for exactly one element.

Compilation problems: There is no constructor with int parameter, there is a constructor with int parameter, but the class is not named “Stack” and the adapter does not have the required constructor, another type StackTest is in the downloaded Java file, a class or interface of the name Stack is in the downloaded Java file, but it is not the type containing the implemented push and pop method, the methods are named Push and Pop instead of push and pop, the type with the push and pop method is an interface and not a class, or a class is referenced, usually extended, that was not included in the download.

Without initial capacity:

public class Stack2Test extends TestCase

{

 Stack stack;

 public void setUp()

 {

 stack = new Stack();

 }

 public void testPushPop()

 {

 stack.push(3);

 stack.push(4);

 stack.pop();

 assertEquals(3, stack.pop());

 }

}

The query remains the same.

30 found: 2 cvs/svn 10 passed 18 compilation problems

The compilation problems are mostly the same, only the ones concerning the constructor are different, of course.

Customer

Customer is a class that is more likely to appear in real-life software development. There is not much to test, a customer just has a name, ID and birth date.

public class CustomerTest extends TestCase

{

 public void test()

 {

 Customer c = new Customer();

 c.setName("Hans Mayer");

 assertEquals("Hans Mayer", c.getName());

 c.setId(123);

 assertEquals(123, c.getId());

 c.setBirthday(new Date(1980, 10, 4));

 assertEquals(new Date(1980, 10, 4), c.getBirthday());

 }

}

generated query:

$(

 getName():String;

 getId():int;

 getBirthday():Date;

 setName(String):void;

 setId(int):void;

 setBirthday(Date):void;

)

5 were found, but as they all were in CVS/SVN repositories, they could not be downloaded and tested automatically. They are pretty certain to pass, as only getters and setters are tested.

Mortgage

public class MortgageTest extends TestCase

{

 public void test()

 {

 double monthly = Mortgage.calculateMortgage(4.5d, 12, 250000);

 assertEquals(2250.02d, monthly, 0.005d);

 // ... more tests of the same type ...

 }

}

generated query:

$(

 calculateMortgage(double,int,int):double;

)

0 found. With different queries one class with a calculateMortgage() method with no parameters was found. It reads the three input values from three GUI elements. The programmer was probably not using Test-Driven Development, as this design is not easily testable. This shows another connection of Test-Driven Development and reuse: Using Test-Driven Design makes classes and methods more reusable, too.

IsDigit

An isDigit method is mentioned as being reused in [4].

public class DigitTest extends TestCase

{

 public void test()

 {

 assertTrue(Digit.isDigit('2'));

 assertFalse(Digit.isDigit('a'));

 }

}

generated query:

$(

 isDigit(char):boolean;

)

30 found: 4 cvs/svn 2 passed 24 compilation problems

Typical compilation problems: isDigit was often not visible, the case was wrong (isdigit), or the constructor was private, therefore the class could not be subclassed by the generated adapter class.

A failure occurred for one class after the compilation problems were fixed, because it was implemented incorrectly, not including '0' and '9' as digits.

Matrix

public class MatrixTest extends TestCase

{

 public void testMatrix()

 {

 Matrix m = new Matrix(2, 3);

 m.set(0, 0, 5); m.set(0, 1, 7); m.set(0, 2, 8);

 m.set(1, 0, 2); m.set(1, 1, 3); m.set(1, 2, 1);

 Matrix m2 = m.add(m);

 Matrix res = new Matrix(2, 3);

 m.set(0, 0, 10); m.set(0, 1, 14); m.set(0, 2, 16);

 m.set(1, 0, 4); m.set(1, 1, 6); m.set(1, 2, 2);

 assertEquals(res, m2);

 }

}

generated query:

$(

 add(Matrix):Matrix;

 set(int,int,int):void;

)

3 found: 2 server problems 1 cvs/svn, so it could not be tested

CreditCardValidator

I did not have a valid, but non-existing credit card number available, so this is really only a test for the syntax.

public class CreditCardValidatorTest extends TestCase

{

 public void testCreditCard()

 {

 CreditCardValidator ccv = new CreditCardValidator();

 assertFalse(ccv.isValid("1234567890123456"));

 }

}

generated query:

$(

 isValid(String):boolean;

)

30 results with an isValid(String) method were found, but none had anything to do with CreditCards. After manually editing the query to use CreditCardValidator as class name instead of $ (for any), one result was found, on a SVN server, so it could not be tested, but is likely to work due to the name. I also tried CreditCard as a class name, one result was found and it passed. Passing only means that the above credit card number is not valid, but due to the name it is pretty likely to be working.

Deck of Cards

In [3], a class Deck is suggested with the methods shuffle():void and deal():Card. As this involves a second class, Card, it will not work unless the Card class is included in the same file as the Deck class (the Deck class can be named differently, but the Card class cannot), as the FAST plug-in cannot download referenced classes, yet. Additionally, it is hard to come up with a way of testing methods like “shuffle” and “deal”. One could only test that after shuffling each card still exists exactly once in the deck and after dealing several times no card is dealt twice and the size of the deck is reduced by one card each time. So this is only a test for the syntactical correctness, with no real semantic test, i. e. no assertions.

public class DeckTest extends TestCase

{

 Deck d;

 @Override public void setUp()

 {

 d = new Deck();

 }

 public void testShuffle()

 {

 d.shuffle();

 }

 public void testDeal()

 {

 Card c = d.deal();

 }

}

generated query:

$(

 deal():Card;

 shuffle():void;

)

30 found: 3 server problems 3 cvs/svn 2 passed 22 compilation problems

The compilation problems were as expected predominantly “Card cannot be resolved”. In two cases, however, the downloaded class only lacked a default constructor.

Prime Numbers

public class PrimeTest extends TestCase

{

 public void testPrime()

 {

 assertTrue(Prime.isPrime(2));

 assertFalse(Prime.isPrime(4));

 // ... more ...

 }

}

generated query:

$(

 isPrime(int):boolean;

)

30 found: 5 server problems 6 cvs/svn 3 passed 1 failed 15 compilation problems

The failing one did not implement the prime number algorithm incorrectly, but it had a mistake in a caching mechanism that lead to NullPointerExceptions.

The compilation problems are as usual: isPrime not being static, the downloaded class only having a non-default constructor so the generated adapter class is not compiling, isPrime not being visible, and imported classes (often “ConsoleReader”) not having been downloaded.

Using “new Prime(2).isPrime()” etc. yields the same query and this result:

24 found: 5 server problems 5 cvs/svn 0 passed 3 failed 11 compilation problems

The 3 failed ones actually contain an error, they all consider 2 to be not prime.

The compilation problems are as usual, in particular when the class is not named Prime the generated adapter class does not deal with the constructor. Besides that, referenced classes are missing, isprime is spelled all lower case and so on.

MD5Sum

public class MD5Test extends TestCase

{

 public void testMD5()

 {

 assertEquals("d41d8cd98f00b204e9800998ecf8427e",
 MD5.md5sum(""));

 }

}

generated query:

$(

 md5sum(String):String;

)

24 found: 23 cvs/svn 1 compilation problem: The method is not visible and needed classes are missing.

BinaryTree

public class BinaryTreeTest extends TestCase

{

 public void testBinaryTree()

 {

 BinaryTree bt = new BinaryTree(3, (BinaryTree)null,
 (BinaryTree)null);

 BinaryTree parent = new BinaryTree(2, bt, (BinaryTree) null);

 assertEquals(2, parent.getHeight());

 }

}

generated query:

$(

 getHeight():int;

)

A first attempt yields 30 results of which 29 are not Trees. This is because the search query only contained the getHeight method. Therefore I edited the query to use BinaryTree instead of $ (= any) as the class name, and the result changed to:

6 found: 5 compilation problems, 1 server problem

The compilation problems were due to the fact that all the BinaryTrees downloaded extended or implemented some classes respectively interfaces that were not downloaded from the server.

Financial Calculator

This real-world test was supplied by Amr Elssamadisy.

public class FinancialCalculatorTest extends TestCase

{
 public void testMonthlyPayment()

 {
 FinancialCalculator.setPaymentsPerYear(12);
 FinancialCalculator.setNumPayments(360);
 FinancialCalculator.setInterest(10.0);
 FinancialCalculator.setPresentValue(14000.0);
 FinancialCalculator.setFutureValue(0.0);
 assertEquals(-122.86, FinancialCalculator.getPayment(),0.001);
 }

}

generated query:

$(

 setPaymentsPerYear(int):void;

 setNumPayments(int):void;

 setInterest(float):void;

 setPresentValue(float):void;

 setFutureValue(float):void;

 getPayment():float;

)

0 results were found. There actually appears to be no class on the Internet with these six methods. Only two similar Java classes were found, or more precisely their Javadoc, via traditional text-based search queries to general-purpose search engines:

· a class named FinancialCalculator [89] with these methods (a few have been left out):

· double[] getAccumulatedPayment()

· double getAccumulatedPayment(int m)

· static double getCompoundedInterestRate(double apr, int m)

· double getFutureValue()

· double getInterestRate()

· double getPayment()

· double getPeriod()

· int getPrecision()

· double getPresentValue()

· double[] getResidualValue()

· double getResidualValue(int m)

· void setFutureValue(double fv)

· void setInterestRate(double i)

· void setPayment(double pmt)

· void setPeriod(double n)

· void setPrecision(int precision)

· void setPresentValue(double pv)

· a class named TVMu [90] with the following methods (some have been left out):

· void computeFutureValue()

· void computeInterestRate()

· void computeNumberOfPeriods()

· void computePayment()

· void computePresentValue()

· AmortizationSchedule getAmortizationSchedule()

· int getCompoundingPerYear()

· BigDecimal getEffectiveRate()

· boolean getEnterRateAsPercent()

· BigDecimal getFutureValue()

· BigDecimal getInterestRate()

· BigDecimal getNumberOfPeriods()

· BigDecimal getPayment()

· int getPaymentsPerYear()

· BigDecimal getPresentValue()

· BigDecimal getRateEstimate()

· boolean getRoundUp()

· int getScale()

· BigDecimal getYears()

· boolean isPayAtEnd()

· void setCompoundingPerYear(int compoundingPerYear)

· void setEnterRateAsPercent(boolean enterRateAsPercent)

· void setFutureValue(BigDecimal futureValue)

· void setInterestRate(BigDecimal interestRate)

· void setLocale(Locale locale)

· void setNumberOfPeriods(BigDecimal numberOfPeriods)

· void setPayAtEnd(boolean payAtEnd)

· void setPayment(BigDecimal payment)

· void setPaymentsPerYear(int paymentsPerYear)

· void setPresentValue(BigDecimal presentValue)

· void setRateEstimate(BigDecimal rateEstimate)

· void setRoundUp(boolean roundUp)

· void setScale(int scale)

· void setYears(BigDecimal years)

This example shows that interface-based searches may not be very successful with more than a few signatures. However, the problem also stems from vocabulary mismatch and will be reduced with relaxed searches.

Summary

It is worth noting that among the 30 results found there were several duplicates every time.

Summary of the results:

test
total (max. 30)
excluded (server/file not reachable or cvs/svn)
passed
failed
compilation problems

GCD
30
9
12
0
9

Fibonacci
30
5 + 1 illegal file
4
7
13

Leapyear with three-parameter constructor
30
11
0
7
12

Leapyear with one-parameter constructor
30
11
4
0
15

Sort
30
16
1
0
13

Sum of an array
30
7
0
0
23

Palindrome static
9
0
1
0
8

Palindrome non-static
9
0
4
0
5

Stack with initial size as parameter to the constructor
30
2
3
1
24

Stack without initial size
30
2
10
0
18

Customer
5
5
0
0
0

Mortgage
0
0
0
0
0

isDigit
30
4
2
0
24

Matrix
3
3
0
0
0

CreditCardValidator
(class name added to query)
1
0
1
0
0

Deck of Cards
30
6
2
0
22

Prime numbers
30
11
3
1
15

MD5sum
24
23
0
0
1

BinaryTree
6
1
0
0
5

FinancialCalculator
0
0
0
0
0

Table 16: Summary of the test results

The generated queries were accurate. In most cases, accepting Java classes of any name with the appropriate methods was successful and even prevented an unnecessary reduction of recall, but in two cases the $ (for any class name) had to be replaced with the actual class name, because the method names were too general (getHeight for BinaryTree, isValid for CreditCardValidator).

Failures are rare and compilation problems are common. Some of the compilation problems can be remedied in future versions of the FAST plug-in.

7 Conclusion

Parsing the JUnit test cases and creating the query from them works well in most typical cases. The user is mostly free to choose from passing in literals or new instances directly or using variables as intermediaries, using simple or fully qualified type names, using assertEquals(expected, actual) or (incorrectly) assertEquals(actual, expected) or assertTrue(actual.equals(expected)). Some unsupported features, like recognizing parameterized types and assert calls with a message parameter, can be added. Other problems, like generating overloaded method for each different parameter type, are intrinsic. The user can however avoid these problems by using casts or assigning parameters or return values to variables of the desired type. In the case of different possibilities for a return type, he or she just has to make sure the desired possibility comes first within the test case.

The entire plug-in is easy to use and integrate in the Test-Driven Development process. The developer does not need to interrupt his or her developing, start up a browser, go to a software component search engine, formulate a query and inspect the results manually, save them to the workspace and run the JUnit tests on them individually. The automatic downloading and testing and the general ease of use greatly increases the probability that the developer will make attempts of reuse.

In most cases at least one working solution was found by the plug-in on Merobase. The most frequent problems, i. e. not being able to download classes from CVS and SVN servers, not taking constructors into consideration and not generating them for the adapter classes and missing referenced classes are all solvable without too much difficulty in future versions of the FAST plug-in. Others are not as easy to solve, e. g. if something is to be a parameter to the method itself or to the constructor (new Prime(int).isPrime() vs. new Prime().isPrime(int)): a test case / a query cannot find both versions.

Currently, the plug-in is likely to be most useful in case of relatively common and “small” problems in the sense that only few classes are involved in the solution, preferably only one. However, once the functionality of finding and downloading referenced classes is implemented, FAST has the potential of finding complex solutions consisting of multiple classes for the task at hand.

Because of the current development state of all software component search engines, for a query to be successful, there should not be too much variation in the vocabulary and the way the methods can be structured (in terms of parameters and return types) for the plug-in to be applicable. When there is so much variety that it is unlikely that the developer will choose the same interface as other developers before him, a more general, text-based rather than interface-based component search is needed, because otherwise the recall will be 0. Solving the problem of vocabulary mismatch and similar issues is a task for the server side, i. e. the search engines, not this or other tools integrated in the IDEs.

When the problem of vocabulary mismatch is solved, i. e. components with similar instead of identical interfaces can be found and a suitable adapter is supplied, Test-Driven Reuse can revolutionize the way software is developed.

7.1 Future Work for the FAST plug-in

Currently only method signatures, but not constructors are taken into account. The JUnit parser needs to be enhanced to recognize needed constructors. Then, two solutions are possible. One would be to include the constructor(s) in the query. However, MQL, the Merobase Query Language, does not support constructors. A change to the Java query syntax would be needed, which would not be a major problem. The other solution would be to generate the needed constructors in the adapter class. If no constructor with the same number and types of parameters exists in the downloaded class, the value(s) for the parameters would need to be guessed, e. g. public IntStack(){super(5 /*initialCapacity */);}. This works well with parameters like an initial capacity of a stack where any positive integer will do. But it would probably not work well in most cases where the chosen number is more significant. Additionally, for object parameters, typically only null could be passed in, unless the class happens to have a default constructor. null, however, is often an illegal argument for methods and especially for constructors. So the first solution, switching to the Java query syntax and including the needed constructors in the query, is more promising. The needed constructors would have to be included in the adapter classes anyway, calling the equivalent super constructor, as the adapter class extends the downloaded class. This would increase recall, which is currently inhibited by the adapters' only having the default constructor.

The biggest problem, besides missing constructors in adapter classes, is that the downloaded classes are referencing classes that are not in the JRE or JUnit, i. e. mostly classes that are part of the same project or are inside a jar that the developers and users of the project have on their build and class paths. The FAST plug-in should be enhanced to look for these referenced classes. First in the same directory on the server from which the class was downloaded. If it was imported by fully-qualified name, in the directory that matches the package structure on that server. If packages are fully imported by import package.*; then all those directories corresponding to these packages have to be tried. If none of this works, the jar file needs to be found. Merobase offers the functionality of finding the jar file containing a particular class, so that problem is solvable, too.

The time for trying to download a class needs to be limited severely. Currently, the plug-in retries the default time in case the server on which the Java class should be cannot be reached or the file is not there anymore. This is not practical. One or two connection attempts should be enough. That process should be put into the background as an Eclipse Job, so that he developer can continue other work in the meantime.

Downloading should be able from cvs:// and svn:// URLs, too. It will not be necessary for FAST to implement this functionality, as the Merobase API has a “.getSource()” method. It is not implemented, yet, but when it is, it will work for all kinds of URLs.

The automatic running of the JUnit test cases needs enhancement. The most important one is the implementation of a security manager that prohibits the downloaded classes from writing, modifying and deleting files, making network connections or any other things that could be harmful. The limitations to the downloaded classes have to be similar to the limitations posed on applets. During the tests, no bad thing ever happened, but once automated Test-Driven Reuse gets into wide use, malevolent persons are likely to make harmful Java classes available on the web that pose as something useful in the hope they will eventually be retrieved and run automatically by an unsuspecting victim. The other change that needs to be made to the JUnit test runner is to limit the time for execution. In particular, Java classes that wait for some sort of input from System.in will “hang” forever if the JUnit test case did not anticipate this and this one class will then break the entire process. Additionally, the test running should also be made into Jobs and put into the Eclipse Job queue.

Originally, the plug-in was meant to be able to parse FIT test cases, too. This functionality, left out due to lack of time, should be added eventually.

The JUnit parser needs to be modified to be able to deal with multidimensional arrays and assert calls that have a message as the first parameter. Additionally, currently the parser cannot deal completely with generic parameter and return types, recognizing only the non-parameterized portion of it.

Some enhancements are needed for the user interface:

· There should be buttons in or behind each row of the result table for executing that particular test (so the result will be shown in the table) or deleting that project. The methods necessary for this exist in the FastController and FastView class, but some may need to be made public.

· Currently the options for showing projects with compile errors as yellow in the result table vs. deleting these rows and projects and so on (for server problems, failing tests, how to deal with cvs/svn URLs) can only be set in the source code and recompiling is necessary. A preferences page needs to be added.

· The automatically created test projects (StackTestProject01 and so on) should be put into one Eclipse Working Set so that the workspace does not get so cluttered (suggested by one of the testers).

Some changes to FAST may be needed to make it usable in a work environment. It may be necessary to specify ports or a proxy server so that it can get through the company's (or university's) firewall.

FAST should also be enhanced to be able to deal with downloaded *.class files. Merobase claims to find binary components, too. During the current tests no binary component was returned, but if any are found in the future, FAST should be able to cope with this. The comments about download URL and date could not be added to the downloaded file, but would have to go into a separate file. The download would be different, and different Eclipse methods would be needed for placing the downloaded file into the context of an Eclipse project. Changing the package, if needed, may be difficult or impossible. However, classes without any package statement are likely of little interest, because they cannot be part of a real project.

When FAST is able to cope with *.class files, it can also be used in a commercial or non-commercial closed-source context. Additionally it could be used with a company-internal component search engine. Companies often don't make source code available to other departments via repositories because of the – very realistic – fear of industrial theft. Therefore knowledge transfer is impeded within large software companies. A company-internal software search engine for binary components together with the FAST plug-in could overcome this problem.

7.2 Future Work for Component Search Engines

The generated adapter classes currently only serve to solve the problem of mismatching class names. One could imagine relaxed searches that allow downloaded classes with method names and signatures that are only similar and not exactly the same as those of the query, e. g. a method being called “pushObject” instead of “push”, a parameter being of type “char[]” instead of “String”, parameters being in a different order or even finding “drawOval” when looking for “drawCircle” (see the discussion about abstraction mismatch in the chapter about reuse). The adapter class would then also have to forward those method calls to the appropriate method. The actual forwarding call is not hard; however, the work of matching method signatures of the query to method signatures of the classes found would be duplicated: It took already place inside the search engine. Therefore the search engine should provide the information needed: It should either generate the language-specific adapter or it should offer a table of which methods it considers to be matching in a language-independent way as part of the search results. Currently, Merobase does not offer relaxed searches, but when they are implemented, also implementing this would be very useful.

Some minor discrepancies in the method names are already possible now, namely in case, e. g. a search for pop() also finds Pop(). It is hardly worth the effort to generate an adapter to accommodate cases like these, as someone who does not even know the basic naming conventions of Java probably does not create a high-quality class. However, there are cases where the naming conventions are less clear – do you write HTMLParser or HtmlParser? The latter is recommended, but the first variant is used in some major software. Once the relaxed matching and server-side adapter generation described in the previous paragraph are in existence, this problem will be solved, too.

List of Figures

Figure 1: Comparison of the times needed for test-last and test-first development, according to XP. Blue indicates the testing phase.
10

Figure 2: How a successful JUnit test case is indicated in the JUnit Eclipse plug-in. The indicator bar at the top right is green.
14

Figure 3: How a failing JUnit test case is indicated in the JUnit Eclipse plug-in. The indicator bar at the top right is red.
14

Figure 4: [4] Figure 10: Recall-Precision Diagram
17

Figure 5: [3] Figure 1, A schematic process overview over Extreme Harvesting (Test-Driven Reuse)
35

Figure 6: [1] Figure 1, A schematic process overview over Extreme Harvesting (Test-Driven Reuse)
36

Figure 7: [2] Figure 1, A schematic process overview over Extreme Harvesting (Test-Driven Reuse)
37

Figure 8: The FAST submenu
50

Figure 9: The complete FAST view after finishing step 5
51

Figure 10: Package diagram of FAST; the packages outside are pseudo packages, symbolizing external jars
53

Figure 11: Structure of the *.parsejunit package
56

Figure 12: Swing visualization of a DetailAST
57

Figure 13: Structure of the *.search package
58

Figure 14: Wizard for creating extensions to the popup extension point
59

Figure 15: Extensions tab of the plugin.xml editor. There is one pop-up menu with five actions and one view, the target class of the pop-up menu is set to ICompilationUnit and the file name filter is set to *Test.java.
60

Figure 16: UML class diagram of the *.eclipse package and the classes it relies on
60

Figure 17: Class diagram of the JUnitProject class
61

List of Tables

Table 1: based on a table by Sabre [54]: The astonishingly low defect number when using XP
3

Table 2: based on a table by Sabre [54]: Productivity increased 42% with XP
4

Table 3: Number of google.de search results for early and recent Firefox versions, showing that it was already widely in use before version 1.0.
8

Table 4: Does TDD really improve code quality and productivity?
12

Table 5: based on table 1 from [3]: Number of WSDL files within reach at various websites (July 2005)
18

Table 6: based on [3] Table 3: Number of Java files indexed by search engines on the web. “The italicized value in the last row stems from the query “filetype:java” class OR –class.”
22

Table 7: Number of Java classes indexed by some major search engines
22

Table 8: based on [3] Table 2. Overview of specialized source code search engines (January 2006).
25

Table 9: Comparison of several source code search engines as of September 2007, analog to table 2 in paper [3] of January 2006 (shown further above).
30

Table 10: Technical, managerial and human features of different ways of component retrieval [6]
43

Table 11: Characterization of operational semantics, figure 6 in [6]
43

Table 12: Evaluation of operational semantics methods, figure 7 in [6]
44

Table 13: Characterization of denotational semantics, figure 8 in [6]
44

Table 14: Evaluation of operational denotational methods, figure 9 in [6]
45

Table 15: Evaluation of operational denotational methods, limited to signature matching only
45

Table 16: Summary of the test results
86

Sources

[1] C. Atkinson and O. Hummel. Integrating Test-Driven Development and Reuse, Working Paper, Chair of Software Engineering, University of Mannheim (December 2006)

[2] O. Hummel and C. Atkinson. Supporting Agile Reuse Through Extreme Harvesting, in: Proceedings of the International Conference on Agile Processes in Software Engineering and Extreme Programming (XP), Como (June 2007)

[3] O. Hummel and C. Atkinson. Using the Web as a Reuse Repository, in: Proceedings of the International Conference on Software Reuse (ICSR), Turino, Italy (June 2006)

[4] Y. Ye and G. Fischer. Reuse-Conducive Development Environments, in: International Journal of Automated Software Engineering, 12(2), pages 199-235 (2005)

[5] D. Lucrédio, A. F. do Prado, E. S. de Almeida. A Survey on Software Components Search and Retrieval, in: Proceedings of the 30th EUROMICRO Conference, pages 152-159 (2004)

[6] A. Mili, R. Mili and R. Mittermeir. A survey of software reuse libraries, in: Annals of Software Engineering 5, pages 349–414 (1998)

[7] F. McCarey, M. Ó Cinnéide and N. Kushmerick. Knowledge Reuse for Software Reuse, in: Proceedings of the 17th International Conference on Software Engineering and Knowledge Engineering (July 2005)

[8] M. D. McIlroy. Mass produced software components, in: NATO Software Engineering Conference, volume 1, pages 138-150, Germany (October 1968)

[9] C. W. Krueger. Software reuse. ACM Computing Survey, 24(2): pages 131-183 (1992)

[10] L. Dusink and J. van Katwijk. Reuse dimensions, in: Symposium on Software Reusability, pages 137-149, Seattle, Washington, United States (1995)

[11] W. Frakes and B. Nejmeh. Software reuse through information retrieval, in: SIGIR Forum, 21(1-2): pages 30-36 (1987)

[12] A. Mili, S. Yacoub, E. Addy, H. Mili. Toward an engineering discipline of software reuse, in: IEEE Software, Vol. 16, No. 5 (1999)

[13] P. Clemens, L. Northrop. Software Product Lines: Practices and Patterns. Addison-Wesley, New York (2002)

[14] V. Basili, L. Briand, W. Melo. How Reuse Influences Productivity in Object-Oriented Systems, in: Communications of the ACM, 39(10): pages 104-116 (1996)

[15] R. Seacord. Software Engineering Component Repositories, Proceedings of the International Conference of Software Engineering, Los Angeles, USA (1999)

[16] L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord, and K. Wallnau. Volume i - market assessment of component-based software engineering, in: Technical report, CMU/SEI - Carnegie Mellon University/Software Engineering Institute (2000).

[17] J. Poulin. Populating Software Repositories: Incentives and Domain-Specific Software, in: Journal of Systems and Software, Vol. 30 (1995)

[18] P. Hall. Architecture-driven component reuse, in: Information and Software Technology, 41(14): pages 963–948 (1999)

[19] G. Caldiera and V. R. Basili. Identifying and qualifying reusable software components, in: IEEE Computer, 24(2): pages 61–71 (1991)

[20] B. Edmonds, J. Bryson. The Insufficiency of Formal Design Methods - the necessity of an experimental approach for the understanding and control of complex MAS, in: Proceedings of the 3rd International Joint Conference on Autonomous Agents & Multi Agent Systems, New York (2004)

[21] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and research directions, in: IEEE Transactions on Software Engineering, 21(6): pages 528–562 (1995)

[22] M. Grabert and D. Bridge. Case-based reuse of software examplets, in: Journal of Universal Computer Science, 9, pages 627-640 (2003)

[23] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An information retrieval approach for automatically constructing software libraries, in: IEEE Transactions on Software Engineering, 17(8) (1991)

[24] O. Hummel, C. Atkinson. Extreme Harvesting: Test-driven Discovery and Reuse of Software Components, in: Proceedings of the International Conference on Information Reuse and Integration, Las Vegas (2004)

[25] Luqi and Jiang Guo. Toward automated retrieval for a software component repository, in: IEEE Conference and Workshop on Engineering of Computer-based Systems, pages 99-105, USA (1999)

[26] John McCarthy. Programs with Common Sense, in: Teddington Conference on the Mechanizafion of Thought Processes., pages 77-84 (November 1960)

[27] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, S. Kusumoto. Ranking Significance of Software Components Based on Use Relations, in: IEEE Transactions on Software Eng., Vol. 31, No. 3 (2005)

[28] R. C. Seacord, S. A. Hissam, and K. C. Wallnau. Agora: A search engine for software components. Technical report, CMU/SEI - Carnegie Mellon University/Software Engineering Institute (1998)

[29] G. Furnas, T. Landauer, L. Gornez S. Dumais. The Vocabulary Problem in Human-System Communication, in: Communications of the ACM, 30(11): pages 964-971 (1987)

[30] D. Harman. Overview of the Third REtrieval Conference (TREC-3), in: The Third REtrieval Conference. National Institute of Standards and Technology Special Publication, pp. 1-19. (1995)

[31] Y. Ye. Supporting Component-Based Software Development with Active Component Repository Systems. Ph.D. Dissertation, Department of Computer Science, University of Colorado, Boulder, CO, available at http://www.cs.colorado.edu/~yunwen/thesis/ (2001)

[32] J. Brown, P. Duguid. The Social Life of Information. Boston, MA: Harvard Business School Press (2000)

[33] F. McCarey, M. Ó Cinnéide, N. Kushmeric. RASCAL: A Recommender Agent for Agile Reuse, in: Artificial Intelligence Review, Vol. 24, No. 3-4, Kluwer (2005)

[34] F. McCarey, M. Ó Cinnéide, N. Kushmeric. An Eclipse Plugin to Support Agile Reuse, in: Proceedings of the 6th International Conference on Extreme Programming and Agile Processes, Sheffield (2005)

[35] R. Baeza-Yates, B. Ribeiro-Neto. Modern Information Retrieval, Addison-Wesley (1999)

[36] H. Zhuge. A problem-oriented and rule-based component repository, in: The Journal of Systems and Software, 50, pages 201-208 (2000)

[37] OMG. Corba components. Technical report, Object Management Group (2002)

[38] J. Grundy. Storage and retrieval of software components using aspects, in: 2000 Australasian Computer Science Conference, pages 95–103, Canberra, Australia, IEEE/CS Press (2000)

[39] C. Atkinson, J. Bayer, O. Laitenberger, J. Zettel. Component-Based Software Engineering: The KobrA Approach, in: 3rd International Workshop on Component-based Software Engineering, Limerick, Ireland (2000)

[40] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison Wesley (1999)

[41] A. Podgurski and L. Pierce. Retrieving reusable software by sampling behavior, in: ACM Transactions on Software Engineering and Methodology, 2(3): pages 286–303 (1993)

[42] A. Zaremski, J. Wing. Signature Matching: A Tool for Using Software Libraries, in: ACM Transactions on Software Engineering and Methodology, Vol. 4, No. 2 (1995)

[43] B. Fischer, M. Kievernagel and G. Snelting, Deduction-Based Software Component Retrieval, in: Proceedings of the IJCAI Workshop on Reuse of Proofs, Plans and Programs, German Research Center for Artificial Intelligence, Saarbrücken, Germany, pages 6–10 (1995)

[44] C.S. Chou, J.Y. Chen and C.G. Chung. A Behavior-Based Classification and Retrieval Technique for Object-Oriented Specification Reuse, in: Software – Practice and Experience 26, 7, pages 815–832 (1996)

[45] J. Shore. Microsoft Gets TDD Completely Wrong http://www.jamesshore.com/Blog/Microsoft-Gets-TDD-Completely-Wrong.html (published 19th November 2005, accessed 7th September 2007)

[46] W. Frakes and C. Fox. Sixteen questions about software reuse, in: Communications of the ACM, 38(6): pages 75ff. (1995)

[47] Y. Ye and G. Fischer. Supporting Reuse by Delivering Task-Relevant and Personalized Information, in: ICSE 2002 - 24th International Conference on Software Engineering, pages 513–523, Orlando, Florida, USA (2002)

[48] D. Fafchamps. Organizational Factors and Reuse, in: IEEE Software, 11(5): 31-41 (1994)

[49] S. Henninger. An Evolutionary Approach to Constructing Effective Software Reuse Repositories. ACM Transactions on Software Engineering and Methodology, 6(2): 111-140 (1997)

[50] W. Frakes, C. Fox. Quality Improvement Using a Software Reuse Failure Modes Model, in: IEEE Transactions on Software Engineering, 22(4): pages 274-279. (1996)

[51] B. Lange, T. Moher. Some Strategies of Reuse in an Object-oriented Programming Environment, in: Proceedings of Human Factors in Computing Systems, Austin, TX, pages 69-73. (1989)

[52] S. Isoda. Experiences of a Software Reuse Project, in: Journal of Systems and Software, 30: pages 171-186 (1995)

[53] C. Drummond, D., R. Holte. A learning agent that assists the browsing of software libraries, in: IEEE Transactions on Software Engineering, 26(12): pages 1179-1196 (2000)

[54] Computerworld: Sabre takes extreme measures, http://www.computerworld.com/developmenttopics/development/story/0,10801,91646,00.html (published 29th March 2004, accessed 7th September 2007)

[55] http://en.wikipedia.org/wiki/Not_Invented_Here (page accessed on 7th September 2007)

[56] Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge-Creating Company: How Japanese Companies Create the Dynamics. Oxford University Press. New York (1995)

[57] Kent Beck et al., the Agile Alliance. The Agile Manifesto. http://agilemanifesto.org/ (published 2001, accessed 7th September 2007)

[58] Jim Highsmith, Alistair Cockburn (“Coburn”). Agile Software Development: The Business of Innovation, in: Computer (September 2001)

[59] IBM. Rational Unified Process. http://www-306.ibm.com/software/awdtools/rup/ (page accessed on 7th September 2007)

[60] Scott W. Ambler. Agile Model Driven Development (AMDD): The Key to Scaling Agile Software Development. http://www.agilemodeling.com/essays/amdd.htm (page accessed on 7th September 2007, page last updated on 3rd March 2007)

[61] Jim Highsmith, for the Agile Alliance. History: The Agile Manifesto. http://agilemanifesto.org/history.html (published 2001, accessed 7th September 2007)

[62] Carey Schwaber for Forrester Research. Corporate IT Leads The Second Wave Of Agile Adoption, http://www.forrester.com/Research/Document/Excerpt/0,7211,38334,00.html (published on 30th November 2005, accessed 7th September 2007)

[63] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Professional. Addison Wesley Longman. Reading, MA (2000)

[64] Kent Beck. Embracing change with extreme programming, in: Computer (October 1999)

[65] Alistair Cockburn (“Coburn”). Agile Software Development. Addison-Wesley Professional (2001)

[66] Alistair Cockburn (“Coburn”). Crystal Clear. A Human-Powered Methodology for Small Teams. Addison-Wesley Professional (2004)

Especially “Crystal Clear Applied: The Seven Properties of Running an Agile Project”, an on-line chapter from “Crystal Clear. A Human-Powered ...” http://www.informit.com/articles/article.aspx?p=345009&rl=1

[67] Alistair Cockburn (“Coburn”). Just-in-time methodology construction: humans and technology. http://alistair.cockburn.us/index.php/Just-in-time_methodology_construction (published 2000, accessed 7th September 2007))

[68] DSDM Consortium. http://www.dsdm.org , in particular Official DSDM Overview Presentation http://www.dsdm.org/knowledgebase/download/100/official_dsdm_overview_presentation_pdf.pdf (updated January 2007, accessed 7th September 2007)

[69] Jeff Sutherland. Origins of Scrum. http://jeffsutherland.com/scrum/ Blog post of 5th July 05, 2007

[70] http://scrum-master.de/content/view/60/31/ (page accessed 7th September 2007)

[71] Andrew Hunt, David Thomas. The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley (October 1999)

[72] Andrew Hunt, David Thomas. Pragmatic Unit Testing In Java With JUnit. Pragmatic Programmers (September 2004)

[73] Scott W. Ambler. An Introduction to Agile Modeling. http://www.agilemodeling.com/essays/introductionToAM.htm (page accessed on 7th September 2007, page last updated on 17th March 2007)

[74] Scott W. Ambler. The Object Primer. Agile Model-Driven Developement with UML 2.0. Cambridge University Press (3rd edition: May 2004; “The Object Primer” published first in 1995)

[75] Scott W. Ambler. Introduction to Test Driven Design (TDD). http://www.agiledata.org/essays/tdd.html (page accessed on 7th September 2007, page last updated on 31st March 2007)

[76] http://www.xbreed.net (page accessed 7th September 2007)

[77] Dan Kegel. How To Get Hired -- What CS Students Need to Know. http://kegel.com/academy/getting-hired.html (page accessed 7th September 2007, page last changed 15th January 2006)

[78] Don Wells. Code the Unit Test First http://www.extremeprogramming.org/rules/testfirst.html (Copyright 2000, page accessed 7th September 2007)

[79] L. Williams, E. M. Maximilien, and M. Vouk. Test-Driven Development as a Defect-Reduction Practice, in: IEEE, International Symposium on Software Reliability Engineering, Denver, CO (2003)

[80] Laurie Williams, Boby George. An initial investigation of test driven development in industry, in: Symposium on Applied Computing, Proceedings of the 2003 ACM symposium on Applied computing, Pages: 1135 - 1139 (2003)

[81] M. Müller, Oll. Hagner, Karlsruhe University. Experiment about test-first programming, in: IEE Proceedings – Software, Volume: 149, Issue 5, pages 131- 136 (Oct 2002)

[82] A. Geras, M. Smith, J. Miller; Department of Electrics & Computer Engineering, Calgary University, Alta., Canada. A prototype empirical evaluation of test driven development, in: Proceedings of the 10th International Symposium on Software Metrics, pages: 405- 416 (2004)

[83] M. Pancur, M. Ciglaric, M. Trampus, and T. Vidmar, Faculty of Computer & Information Science, Ljubljana University, Slovenia. Towards empirical evaluation of test-driven development in a university environment, in: The IEEE Region 8 EUROCON 2003. Computer as a Tool. Volume 2, pages: 83- 86 (2003)

[84] Kim Man Lui and Keith C.C. Chan, Department of Computing The Hong Kong Polytechnic University, Hung Hom, Hong Kong. Test Driven Development and Software Process Improvement in China, in: Extreme Programming and Agile Processes in Software Engineering, Springer Berlin / Heidelberg (2004)

[85] JUnit API for junit.framework.Assert http://junit.sourceforge.net/javadoc/junit/framework/Assert.html (accessed 15th January 2007)

[86] Erich Gamma, Kent Beck. Contributing to Eclipse: Principles, Patterns and Plug-Ins. Addison Wesley (2004)

[87] Raoul. Bug Fix for “Contributing to Eclipse”. http://www.theyellowmarker.org (published 21st May 2007, accessed 14th June 2007)

[88] R. Prieto-Díaz. Implementing Faceted Classification for Software Reuse, in: Communications of the ACM, 34(5) (1991)

[89] FinancialCalculator Javadoc (page accessed 25th September 2007) http://software.topcoder.com/catalog/javadoc/3312997/3312998/com/topcoder/finance/calc/FinancialCalculator.html

[90] TVMu Javadoc (page accessed 25th September 2007) http://www.getobjects.com/Components/Finance/TVM/com/cedarspring/tvm/TVMu.html

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mannheim, den

�

Figure � SEQ "Image" *Arabic �1�: Comparison of the times needed for test-last and test-first development, according to XP. Blue indicates the testing phase.

�

Figure � SEQ "Image" *Arabic �2�: How a successful JUnit test case is indicated in the JUnit Eclipse plug-in. The indicator bar at the top right is green.

�

Figure � SEQ "Image" *Arabic �3�: How a failing JUnit test case is indicated in the JUnit Eclipse plug-in. The indicator bar at the top right is red.

�

Figure � SEQ "Image" *Arabic �5�: [3] Figure 1, A schematic process overview over Extreme Harvesting (Test-Driven Reuse)

�

Figure � SEQ "Image" *Arabic �6�: [1] Figure 1, A schematic process overview over Extreme Harvesting (Test-Driven Reuse)

�

Figure � SEQ "Image" *Arabic �7�: [2] Figure 1, A schematic process overview over Extreme Harvesting (Test-Driven Reuse)

�

Figure � SEQ "Image" *Arabic �8�: The FAST submenu

�

Figure � SEQ "Image" *Arabic �9�: The complete FAST view after finishing step 5

�

Figure � SEQ "Image" *Arabic �10�: Package diagram of FAST; the packages outside are pseudo packages, symbolizing external jars

�

Figure � SEQ "Image" *Arabic �11�: Structure of the *.parsejunit package

�

Figure � SEQ "Image" *Arabic �12�: Swing visualization of a DetailAST

�

Figure � SEQ "Image" *Arabic �13�: Structure of the *.search package

�

Figure � SEQ "Image" *Arabic �14�: Wizard for creating extensions to the popup extension point

�

Figure � SEQ "Image" *Arabic �15�: Extensions tab of the plugin.xml editor. There is one pop-up menu with five actions and one view, the target class of the pop-up menu is set to ICompilationUnit and the file name filter is set to *Test.java.

�

Figure � SEQ "Image" *Arabic �16�: UML class diagram of the *.eclipse package and the classes it relies on

�

Figure � SEQ "Image" *Arabic �17�: Class diagram of the JUnitProject class

�

Figure � SEQ "Image" *Arabic �4�: [4] Figure 10: Recall-Precision Diagram

�	see explanation for the inexact estimate in the section about Merobase

�	The name “FAST – Fully Automated Search and Test” was suggested on 03 July 2007 by Peter J. Kranz – Absurd Mind in the channel #java.de on the IRC server irc.freenode.net.

