Time varying or static cut-offs for credit scorecards
Abstract

This note points out that the ability of credit scorecards to separate Goods from Bads  changes over time. A simple way of dealing with such changes is to adjust the cut off scores being used. These adjustments can be made by using the score to log odds relationship which is regularly monitored. In a case study there are decreases in the costs- in some case considerable decreases-  of using the scorecard by making such adjustments compared with making no adjustments.
Keywords: credit scoring; dynamic cut off adjustments; log odds score relationships 
Introduction

Credit scorecards have been used for the last fifty years in consumer lending to asses the risk of a borrower defaulting in the next year (Anderson 2008, Siddiqi 2005). However the fact that subprime mortgage lending was one of the triggers of the global financial crisis has meant that the way scorecards are developed and used had been under scrutiny in the last few years (Demyanyk, Van Hemert 2008, Thomas 2010).  Traditionally when an application scorecard for new borrowers is developed a cut-off score is also chosen, so that those with scores above the cut off are considered “Good” and would be accepted for a loan while those with scores below the cut off are considered “Bad” and are rejected. Such cut off scores are only infrequently changed and then usually in response to major changes in the type of borrower being targeted for the loan. In the case of behavioural scorecards – those used on existing borrowers – the decision being supported by the scorecard is less obvious. It could be whether to increase the credit limit on a revolving loan or targeting borrowers for cross or up selling. In this context fixed cut off scores again are used where the borrowers with scores above the cut off being considered Good and those below the cut off considered Bad in terms of how they might perform on the extension of the loan.

This paper points out that the transformation of score to default risk (probability of being Bad) changes over time and so it would be more profitable for lenders to keep adjusting the cut-off score to reflect the dynamics. This is not current industry policy (McNab and Wynn 2000, Anderson 2007, Thomas et al 2005) and yet the log odds to score relationship gives a simple mechanism for keeping track of the dynamics of the scorecard. From this one can work out what is the optimal current cut off score in terms of the log odds to score graph.  One could also undertake such updating automatically using the Kalman filtering approach, see Bijak (2010) and Whittaker et al (2007). The point of this note is to show the lender can do the updating suggested hereafter with the tools they already use for monitoring purposes. Using this to determine the ideal cut off score would result in more profitable decisions being made. 

Although we describe the problem in the context of credit scoring, the same decisions occur when scorecards are used in a number of other data mining applications. These include response scorecards in targeting marketing to new customers ( Prinzie and van den Poel 2005); churn scorecards to identify which customers are likely to move to competitors, which is very important in the telecommunications industry, ( Glady et al 2009); offender profiling scorecards to identify whether early release, probation or other forms of offender decisions will lead to early re-offending, ( Petersilia 2009).; and health assessment scorecards which determine whether a particular form of treatment will lead to the patient recovering, ( Arts et al 2005). In all cases one has a scorecard, where decisions are suggested in terms of a score being above or below a given cut off. These systems assume the relationship between score and outcome is stationary, when it is in fact dynamic because of the dependence on economic, commercial, seasonal and operational factors, which change over time. 
In section two we review the relationship between score and log odds  in the credit scoring context. The corresponding graph can be used to describe the current discrimination of the scorecard and hence the total expected costs for using the system with different choice of cut off score. In section three we briefly review the different strategies that could be used for updating cut off scores. In section four we apply these ideas to a case study of a portfolio of credit card accounts from an international bank to see their impact in practice. Finally we draw some conclusions in section 5. 

The Log odds- score relationship

Most scorecards – application or behavioural – are log odds scores (Thomas 2009) or linear translations of log odds scores. For a borrower with characteristics x, the relationship between the probability of the borrower being Good,  and the score s(x) is 
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that is the log of the odds of being a Good to being a Bad is a linear transformation of the score. This relationship holds if the scorecard is constructed using logistic or linear regression which are the two main methods for scorecard building. One usually chooses the parameter values a and b so the relationship has some obvious properties, for example increasing the score by 20 points would double the Good:Bad odds and a score of 500 corresponds to Good:Bad odds of 10;1. (1) implies the relationship between score and log odds should be a straight line and the corresponding graph of this relationship is used as a way of monitoring the scorecard.  The score range is split into a number of scorebands [si , si+1) and for each such band the log odds of Good to Bad plotted against the lower limit of the band. There is a delay of 12 months, or the duration of the default horizon if different, in undertaking these calculations since one needs to know how many of the ni  in scoreband [si , si+1) 12 months ago will remain Good, gi , or become Bad bi  (
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) during the default horizon. The resultant graph connects the points (si , log(giB /biG )) and the linear regression which best fits all these points provides an estimator of the linear relationship between score and log odds. This is used by lenders to monitor the performance of the scorecard and if the gradient, b, tends to zero so that log odds to score graph flattens, this is taken as a sign the scorecard is “ageing” and is no longer discriminating well.
 

The point of this paper is to emphasise that the changes in this curve over time describe the dynamics of the discrimination of the scorecard and so can also be used to adjust the cut off scores to ensure one is getting the optimal decision given the current state of the scorecard. Changing the cut off is a way of responding to changes in the a intercept coefficient as well as in b the gradient coefficient.
Assume that in period t the log odds score regression line is best represented by the coefficients (at ,bt ) and the cut off score is ct . There are two costs relating to the decisions based on such a scorecard. In an application score L is the loss of profit if a borrower who would have been Good is rejected; D is the debt caused by accepting a borrower who turns out to be Bad and defaults. For behavioural scores one has similar costs attached to the extra amount (either from increased credit limit or from a cross sold product) that one is deciding whether to offer the borrower. Let f(s) bes the distribution of the scores in the portfolio of N borrowers which we assume stays constant over the time period of interest. This is quite a strong assumption but is constantly checked by lenders using stability inices ( Anderson 2007).The Expected Cost over the default period if the scorecard system is described by (at ,bt ,ct) is then
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Since the score range is binned into n bins 
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 one actually calculates the equivalent discrete expected cost, where if the cut off is at si
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where fi  is the fraction of the portfolio with scores in the score band 
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Cut-Off Strategies

There are a number of strategies which a lender can use to choose a suitable cut off over time some of which try to incorporate the dynamics of the score card. The log odds score relationship has built into it a lag of the length of time of the default horizon. One cannot therefore have the optimal cut-off for the future twelve months as one cannot know in advance the dynamics of the scorecard over this period. Moreover changing cut-offs does have a cost both in terms of computer system changes and in errors caused by misunderstandings among  those who operate the system. There is also no point in changing the cutoff if there is little new information available to make such adjustments. So although one could make cut-off changes every month in this paper we only investigate strategies which change the cut-off at most every six months. So consider the following possible strategies.
Static: Choose a suitable cut off initially and keep with that cut off for all subsequent periods.

This is what many lenders do and it means that if the system starts in state (a0 ,b0 , c0 ) at any subsequent period t the system will be in state 
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Annual Updates: Choose a suitable cut off initially and then update the cut off every subsequent 12 months in the light of the default rate in the previous 12 months. 
This means that the state at period t is 
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 where  [x] is the integer part of x, i.e  the cut off c is chosen in periods 0,12, 24 etc and used for the next 12 periods. We choose the cut off at time t that minimises the cost given the (at-12 , bt-12) which is the latest values one is able to calculate given a default horizon of 12 months, i.e. 
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Semi-annual updates: Choose a suitable cut off initially and then update the cut off for the first time after 12 months but thereafter every 6 months.
The default horizon is again 12 months and so we need 12 months of data before we can make the  first estimate (a0 , b0) and hence calculate the first change in the cut off value for the first update. Thereafter we update the (a, b) every six months so there is overlap in the data used in the different updates but the updates are occurring more frequently. This means the state in period t is 
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for the first 12 months. Thereafter we choose the cut offs so the state is
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One could cut down on the time lags involved in this approach by having a shorter default horizon, so that one defines a Bad,  B6  to be a borrower who defaults in the next six months and a Good, G6  to be a borrower who has not defaulted in that time period. If one built a log odds scorecard using this definition then one would have 
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Assuming the default rate in different time periods was constant and independent of the maturity of the loan one could recover the original probabilities of being Good and defaulting (being Bad)  over a 12 month horizon by 
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This is a strong assumption but would be reasonable for a portfolio where  the rate of new loans entering the portfolio is of the same order as those which are leaving the portfolio. Using a six month time horizon allows one to update the results more frequently but does not have so good estimates of the Bad and Good rates. Although the true state of the scorecard at time t is (at ,bt ,ct) and so the true expected costs is given by (2) or (3), we can approximate the costs by
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Since it only takes 6 month data to estimate dt and et.
At time t we could choose the cut off ct dependent on dt-6 et-6  by
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This suggests two more ways of defining cut offs dynamically, which are the 6 month equivalents of the last two rules above. 
Annual updates using six monthly log odds to score relationship

Choose a suitable initial cut off and then update this cut off every subsequent 12 months in the light of the annual default rate based on a six monthly default scorecard. This means the estimates use data over the previous six months rather than the previous 12 months but here the cut off score is not updated every six months. So the state of the scorecard at time t  is 
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where the cut off at months 12, 24 etc minimises the approximate costs based on the six month default rates as in (4), namely
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We can also update the cut off score every 6 months based on the six month default rate.
Semi Annual Updates using six monthly log odds to score relationship

Again choose a suitable initial cut-off and then update the cut off every six months using the default rate estimated using the last six months as the default horizon. So at time t the state of the system is  
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 where the cut off at months 6,12,18 etc is given by
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There is nothing special about 6 months and so the same approach could be used using default horizons of 3,4,8,9 months. In all cases it is a trade off between the immediacy of the decision against the accuracy of the default rate.
We have explained these adjustments in terms of updating the cut off but one could get exactly the same adjustments by keeping the cut off fixed and adjusting the intercept parameter, a, in the log odds score relationship. So instead of moving the cut off from c to 
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 when the log odds score parameters are (a, b) one could keep the cut off as c and move the score log odds parameters to 
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. This follows since with parameters (a, b) and cut off 
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but this is the same as accepting a borrower if 
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i.e. one has parameters (a+b(
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-c), b) and cut off c. The reason we do not use this approach is that we would need to adjust the score distribution from f(s) to f(s+a+b(
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-c)) to allow for this deliberate translation in the score. Thus it is easier to work with a stationary score distribution and think of the adjustments being in the cut off and not in the score log odds intercept. 

Case Study
We compare the five approaches to dealing with the dynamics of a scorecard by adjusting the cut off score using data on a credit card population supplied by an international bank. The data is the behavioural scores of a portfolio of over 100,000 accounts over a 36 month period together with their default status throughout that period. The cost of the errors are chosen so that D=200L since the one off debt D will be considerably more than the extra profit obtained over a twelve month period by increasing the credit limit of an existing customer who is considered to remain Good. 

[image: image29.png]Slope

0025
002
0015
0m
0005

\,\

10 15

TiraPeriod



         [image: image30.png]P

2

15

10

Jdeoseay|





Figure 1a: Dynamics of slope, b                    Figure 1b: Dynamics of intercept, a

The actual values of a and b in the log odds score relationship were calculated for each month and the results obtained over the first 24 months- January 2002 to December 2003- since we need a further 12 months of data to obtain the parameters for any month. Figures 1a and 1b display the movement of the parameters a – the intercept- and b – the gradient- of the log odds to score curve  over these 24 consecutive months.

The behavioural score range was split into 40 bins so that each bin included approximately 2.5% of the population averaged over the whole sample period. This meant there were 41 cut offs to choose from where cut off 1 meant that everyone was considered Good and given a credit limit rise and cut off 41 meant that everyone was considered Bad and no one was given a credit limit rise. Using L=5, D=1000, N=1,000,000 with the values 
(a1 ,b1) = (-1.4715,0.02609), (a7 , b7)=(1.0973,0.0168),  (a13, b13)=(2.1602,0.0238), 
(a19, b19)=(2.8014,0.011), (a25, b25)=(3.1424,0.0103) from Figure 1, 
we use (3) to calculate the expected cost E(a,b,c) over the next 12 months if cut off level c is used. This allows us to identify what are the cut offs one should use at the different times and what is the resultant costs under different cut-off strategies.
Table 1: E(a,b,c) for periods 1,7,13,19 and 25
	Cut-off
	Period 1
	Period 7
	Period 13
	Period 19
	Period 25

	1
	7,861,951 
	6,193,498 
	6,454,088  
	5,349,327 
	4,387,965 

	6
	5,448,252 
	4,975,775 
	4,460,874 
	4,359,857 
	3,783,498 

	11
	4,510,589 
	4,409,598 
	4,019,28 
	4,079,441 
	3,679,209 

	12
	4,271,805 
	4,260,808 
	3,981,914 
	4,048,005 
	3,679,871 

	13
	4,098,705 
	4,169,657 
	3,968,162 
	4,033,726 
	3,687,539 

	14
	3,905,506 
	4,083,313 
	3,951,977 
	4,026,095 
	3,702,972

	15
	3,757,191 
	4,004,249 
	3,947,727 
	4,025,992 
	3,720,851 

	16
	3,682,155 
	3,972,238 
	3,948,721 
	4,031,897 
	3,753,989 

	17
	3,581,885 
	3,921,611 
	3,955,804 
	4,042,164 
	3,779,143

	18
	3,536,428 
	3,896,076 
	3,969,148 
	4,056,591 
	3,807,130 

	19
	3,494,406 
	3,873,497 
	3,993,970 
	4,080,302 
	3,848,001 

	20
	3,468,292 
	3,860,861 
	4,022,883 
	4,112,226 
	3,899,112 

	21
	3,460,587 
	3,857,500 
	4,043,349 
	4,134,518 
	3,931,425 

	22
	3,456,001 
	3,857,485 
	4,075,847 
	4,170,379 
	3,983,829 

	23
	3,461,890 
	3,863,122 
	4,117,620 
	4,221,935 
	4,046,638 

	24
	3,474,058 
	3,868,054 
	4,153,680 
	4,252,402 
	4,087,501 

	25
	3,493,905 
	3,886,617 
	4,222,719 
	4,318,315 
	4,171,034 

	26
	3,504,712 
	3,892,438 
	4,241,375 
	4,333,284 
	4,195,985 

	31
	3,852,208 
	4,075,261 
	4,566,397 
	4,613,116 
	4,507,927 

	36
	4,018,425 
	4,199,617 
	4,903,369 
	4,919,700 
	4,916,162 

	41
	4,960,690 
	4,969,032 
	4,967,729 
	4,973,253 
	4,978,060 

	Min
	3,456,001 
	3,857,485 
	3,947,727 
	4,025,992 
	3,679,209 


Looking at Table 1, where we have left out some of the irrelevant cut off points, we can see the minimum cost cut offs are cut off 22 in period 1, cut off 22 in period 7, cut off 15 in period 13, cut off 15 in period 19 and cut off 11 in period 25. What we assume is that the first 12 months of data was used to build the scorecard and we calculate the total cost of a cut off strategy over the 24 months from period 13 to period 36. 

Under the static cut off one would choose cut off level 22, which is optimal in period 1, i.e. for the first 12 months data which is what we assume is being used to build the scorecard, and apply that over the whole period from month 13 onwards. So the total cost over the 24 months from period 13 would be 4,075,847+3,983,829=8,059,676.
 If one  used the annual updates, one would choose level 22 again in month 13 (since it minimised the cost in month1) and level 15 in month 25 (the minimal cost cut off for month 13), This gives a total cost of  4,075,847+3,720,851=7,796,698, which is a 4% saving compared with the static strategy. 

In the case of semi annual updates, one would again choose level 22 at month 13 (the optimal in month 1), level 22 at month 19 (the optimal in month 7), level 15 in month 25 (optimal in level 13) and 15 again in month 31 (optimal in level in 19). So the way the values have come out, this leads to the same policy as the annual updates in this case. Of course this will not be the case in general.
Table 2: 
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 for periods t=1,7,13,19 and 25.
	Cut-off
	Period 1
	Period7
	Period 13
	Period 19
	Period 25

	1
	9,987,670. 
	6,379,231.584 
	7,143,452.116 
	6,109,816.305 
	5,214,064.901 

	6
	5,389,415. 
	4,530,076.816 
	3,968,990.791 
	4,361,854.489 
	4,312,084.140 

	11
	4,093,156. 
	3,873,844.468 
	3,492,037.022 
	3,926,616.055 
	4,055,255.683 

	12
	3,794,528. 
	3,716,328.801 
	3,462,833.418 
	3,876,783.130 
	4,024,421.695 

	13
	3,587,346. 
	3,624,127.252 
	3,455,343.454 
	3,853,046.176 
	4,009,564.390 

	14
	3,366,263. 
	3,541,249.495 
	3,454,079.746 
	3,838,488.864 
	4,001,589.843 

	15
	3,205,317 
	3,470,535.642 
	3,461,537.838 
	3,834,678.068 
	4,001,730.557 

	16
	3,128,071 
	3,444,110.111 
	3,476,873.240 
	3,838,728.986 
	4,009,572.422 

	17
	3,031,754
	3,407,097.792 
	3,500,643.533 
	3,849,165.880 
	4,019,335.280 

	18
	2,992,983 
	3,392,653.694 
	3,531,447.702 
	3,865,418.055 
	4,033,519.669 

	19
	2,963,637 
	3,385,961.332 
	3,580,354.817 
	3,893,128.032 
	4,057,394.549 

	20
	2,953,575 
	3,390,382.554 
	3,631,964.582 
	3,931,143.733 
	4,090,312.499 

	21
	2,955,512 
	3,397,669.530 
	3,666,586.301 
	3,957,904.209 
	4,112,309.706 

	26
	3,083,766. 
	3,503,092.669 
	3,971,635.777 
	4,198,446.445 
	4,310,574.955 

	31
	3,593,989. 
	3,804,277.236 
	4,427,756.390 
	4,536,789.237 
	4,567,506.275 

	36
	3,813,360 
	3,981,980.096 
	4,880,341.756 
	4,905,426.643 
	4,919,211.790 

	41
	4,950,061 
	4,968,103.842 
	4,964,282.739 
	4,969,450.918 
	4,973,929.675 

	Min
	2,953,575 
	3,385,961.332 
	3,454,079.746 
	3,834,678.068 
	4,001,589.843 


For the other two strategies one needs to use the approximation (6) of the annual costs 
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 based on a 6 month default horizon scorecard. The values of  
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for the actual values of (dt, et) in periods t=1,7,13,19,and 25 are given in Table 2. From this we can see that the minimum cost cut offs one will choose are as follows: Period 1, cut off 20; period 7, cut off 19; period 13, cut off 14; period 19, cut off 15; period 25 cut off 14. We can then use these cut offs to calculate the two final cut off policies. The annual updating based on this 6 month horizon scorecard would choose cut off 19 at period 13 (optimal cut off for period 7) and cut off 15 in period 25 (optimal cut off in period 19). The semi annual updates based on the six month horizon scorecard move more frequently and choose cut off 19 at period 13, cut off 14 at period 19 (optimal for period 13) cut off 15 at period 25 (optimal for period 19) and finally cut off 14 at period 31 (optimal for period 25). E(a, b, c) is the annual cost of using that cut off for a whole year and though we can use this for the first strategy we cannot use it for the semi annual updates. We approximate the costs by taking the six monthly cost in any period to be half the annual cost beginning in that period with the relevant cut off. 

These calculations can be repeated using other ratios of D to L, keeping  L=5 and N=1,000,000  and the values of ai and bi being those in Figure 1. Table 3 shows the results as D/L varies from 20 to 300 – where the 200 ratio case is the one we have just considered. The cut-off row reports the cut offs in operation in each of the four six month periods under the relevant strategy. The improvement in the costs compared to the static case varies from under 1% to over 33% and in only one case – semi annual revision with D/L=300—is the resultant cost worse than the static strategy. 
The improvement compared with the static case increases as D/L decreases because the optimal cut offs are lower and so the accepted portfolio is increasing. This makes sense in that adjusting the cut off is more important when one is taking riskier borrowers at the margin. 

For this case study it also seems the case that using the 6 month default horizon scorecard gives lower costs than using the 12 month default horizon scorecard. However that depends on the data and in other cases the more accurate but less current 12 month horizon scorecard may be better. What is clear though is that using time varying cut off adjustments can give lower costs over the two years compared with not adjusting the cut off.
Table 3: Comparing costs of different strategies for different D/L ratios
	Strategy
	D/L
	300
	250
	200
	150
	100
	50
	20

	Static
	Year 1
	4,685,070
	4,443,084
	4,075,848
	3,632,437
	3,009,372
	2,182,049
	975,156

	
	Year 2
	4,649,192
	4,388,146
	3,983,829
	3,488,293
	2,790,599
	1,828,384
	743,959

	
	Total
	9,334,262
	8,831,230
	8,059,677
	7,120,730
	5,799,971
	4,010,433
	1,719,115

	
	cut-offs
	28,28,28,28
	25,25,25,25
	22,22,22,22,
	19,19,19,19
	15,15,15,15
	10,10,10,10
	4,4,4,4

	Annual updates
	Year 1
	4,685,070
	4,443,084 
	4,075,848
	3,632,437
	3,009,372
	2,182,049
	975,156

	
	Year 2
	4,583,913
	4,207,709
	3,720,851
	3,083,695
	2,170,601
	1,114,991
	438,797

	
	Total
	9,268,983
	8,650,793
	7,796,699
	6,716,132
	5,179,973
	3,297,040
	1,413,953

	
	cut-offs
	28,28,24,24
	25,25,19,19
	22,22,15,15
	19,19,11,11
	15,15,5,5
	10,10,2,2
	4,4,1,1

	Semi Annual updates
	Year 1
	4,771,688
	4,511,240
	4.075,848
	3,608,102
	2,908,020
	1,816,094
	836,549

	
	Year 2
	4,598,230
	4,207,709
	3,720,851
	3,057,883
	2,142.271
	1,114,991
	438,797

	
	Total
	9.369,918
	8,719,049
	7,796,699
	6,665,985
	5,050,291
	2,932,085
	1,275,346

	
	cut-offs
	28,33,24,26
	25,27,19,19
	22,22,15,15
	19,17,11,9
	15,12,5,3
	10,4,2,2
	4,2,1,1

	Annual updates: 6 month default horizon
	Year 1
	4,671,584
	4,389,648
	3,993,971
	3,505,077
	2,879,999
	1,704,989
	697,942

	
	Year 2
	4,575,527
	4,207,709
	3,720,851
	3,083,695
	2,207,388
	1,114,991
	438,797

	
	Total
	9,247,111
	8,597,357
	7,714,822
	6,588,772
	5,087,387
	2,819,980
	1,136,739

	
	cut-offs
	27,27,23,23,
	23,23,19,19
	19,19,15,15
	16,16,11,11
	12,12,6,6
	5,5,2,2
	2,2,1,1

	Semi Annual updates: 6 month default horizon
	Year 1
	4,694,316
	4,391,006
	3,972,974
	3,466,359
	2,784,826
	1,600.365
	697,942

	
	Year 2
	4,598,230
	4,207,709
	3,711,912
	3,074,237
	2,260,664
	1,114,991
	438,797

	
	Total
	9,292,546
	8,598,715
	7,684,886
	6,540,496
	4,945,480
	2,725,356
	1,136,739

	
	cut-offs
	27,19,23,26
	23,16,19,19
	19,14,15,14
	16,11,11,10
	12,6,6,3
	5,2,2,2
	2,2,1,1

	Maximum Cost benefit compared with static strategy
	0.93% 
	        2.65% 
	        4.65% 
	        8.14% 
	      14.73% 
	      32.04% 
	      33.88% 


E(a,b,c) are the expected  costs and one might want to consider how large is the likely variation around these costs compared with the savings identified above by using time varying cut offs.. We are grateful to a referee for suggesting a simple approximation for such variations. Let 
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 of the population in it. Then Xj the number of defaults in that scoreband has a Binomial distribution 
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where the last inequality follows if one reasonably assumes pj>0.5 for any scoreband one accepts. So Var(Ci) is bounded below by (D2/2)(expected number of observed defaults) and if the population is large enough will be close to this lower bound. So the standard deviation of the cost is then close to 
[image: image39.wmf](observed number of defaults)/2
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. In this population the default rate is around 2.88% so in the population of N=1,000,000 , the observed number of defaults is around 28,800 and an approximation for the standard deviation is 120D. In the case when D=300L and L=5, this is approximately £180,000 while the expected annual cost is around £4,500,000 per year  so the standard deviation is around 4% of the average annual cost. Thus the improvement in savings is not even one standard deviation in this case. However in the case when D=20L=100, a standard deviation in costs is about £12,000 or 2% of the average annual cost of £600,000 and yet the savings by using the time varying cutoffs are over 30% of the annual costs. So in that case there is no question there will be savings no matter what the variation in the costs.

Conclusions
The aim of this note is to demonstrate that one can improve the usage of scorecards in the credit scoring context by recognising that their relationship between the score and  the odds of a borrower being good will change over time. One can use the parameters of the log odds score relationship, which is monitored by most lenders to check how the scorecard is performing, as a way of improving the decisions made by the scorecard by regularly updating the cut offs used. Lenders do adjust their cut offs but normally in the light of policy decisions or because they believe the scorecard is being used on a new population. We are advocating that they should adjust the cut offs regularly to deal with the dynamics of the scorecard irrespective of any changes in policy or populations. A similar outcome can be obtained by keeping the cut off fixed but adjusting the intercept of the log odds score relationship. We have not used this approach here because the analysis is easier to understand if we keep the scorecard distribution the same over time. If the objective was scorecard calibration as for example in Basel Accord applications rather than making operational accept/reject decisions it would be more appropriate to change the “a” value rather than the cut-off.

The case study showed that whichever way one chose to update the cut off there was usually a significant savings in costs compared with the current policy of not changing the cut off. This case study used data from 2002-2005. Given the dramatic changes that occurred in default rates over the period 2007-2010 one would expect these approaches to be even more effective on that data. In fact , several lenders who used scorecards for Basel Accord purposes were reduced to the equivalent of annual updating because they  had to make such adjustments when they tried to validate their scorecard each year. Recognising this in advance and having an automatic proactive approach would avoid such remedial action. The success of the adjustment strategies based on the six month scorecards in this paper also suggests that in rapidly deteriorating ( or improving) economic circumstances approaches such as those- which can react more quickly- might prove the most competitive. 
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