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Biomolecular Sequence Alignment and Analysis:
Database Searching, Pairwise Comparisons, and Multiple Sequence Alignment.

Introduction

What can we know about a biological molecule, given its nucleotide or amino acid sequence?  We may be able to learn about it by searching for particular patterns within it that may reflect some function, such as the many motifs ascribed to catalytic activity; we can look at its overall content and composition, such as do several of the gene finding algorithms; we can map its restriction enzyme or protease cut sites; and on and on.  However, what about comparisons with other sequences?  Is this worthwhile?  Yes, naturally it is — inference through homology is fundamental to all the biological sciences.  We can learn a tremendous amount by comparing and aligning your sequence against others.

Furthermore, the power and sensitivity of sequence based computational methods dramatically increase with the addition of more data.  More data yields stronger analyses — if done carefully!  Otherwise, it can confound the issue.  The patterns of conservation become ever clearer by comparing the conserved portions of sequences amongst a larger and larger dataset.  Those areas most resistant to change are most important to the molecule.  The basic assumption is that those portions of sequence of crucial structural and functional value are most constrained against evolutionary change.  They will not tolerate many mutations.  Not that mutation does not occur in these regions, just that most mutation in the area is lethal, so we never see it.  Other areas of sequence are able to drift more readily, being less subject to this evolutionary pressure.  Therefore, sequences end up a mosaic of quickly and slowly changing regions over evolutionary time.

However, in order to learn anything by comparing sequences, we need to know how to compare them.  We can use those constrained portions as ‘anchors’ to create a sequence alignment allowing comparison, but this brings up the alignment problem and ‘similarity.’  It is easy to see that sequences are aligned when they have identical symbols at identical positions, but what happens when symbols are not identical, or the sequences are not the same length.  How can we know when the most similar portions of our sequences are aligned, when is an alignment optimal, and does optimal mean biologically correct?

A ‘brute force,’ naïve approach just won’t work.  Even without considering the introduction of gaps, the computation required to compare all possible alignments between just two sequences requires time proportional to the product of the lengths of the two sequences.  Therefore, if two sequences are approximately the same length (N), this is a N2 problem.  The calculation would have to repeated 2N times to examine the possibility of gaps at each possible position within the sequences, now a N4N problem.  Waterman (1989) pointed out that using this naïve approach to align two sequences, each 300 symbols long, would require1088 comparisons, more than the number of elementary particles estimated to exist in the universe, and clearly impossible to solve!  Part of the solution to this problem is the dynamic programming algorithm, as applied to sequence alignment.  Therefore, we’ll quickly review how dynamic programming can be used to align just two sequences first.

Dynamic programming

Dynamic programming is a widely applied computer science technique, often used in many disciplines whenever optimal substructure solutions can provide an optimal overall solution. I’ll illustrate the technique applied to sequence alignment using an overly simplified gap penalty function.  Matching sequence characters will be worth one point, non-matching symbols will be worth zero points, and the scoring scheme will be penalized by subtracting one point for every gap inserted, unless those gaps are at the beginning or end of the sequence.  In other words, end gaps will not be penalized; therefore, both sequences do not have to begin or end at the same point in the alignment.

This zero penalty end-weighting scheme is the default for most alignment programs, but can often be changed with program options, if desired.  However, the linear gap function described here, and used in my example, is a simpler gap penalty function than normally used in alignment programs.  Usually an ‘affine,’ function (Gotoh, 1982) is used, the standard ‘y = mx + b’ equation for a line that does not cross the X,Y origin, where ‘b,’ the Y intercept, describes how much initial penalty is imposed for creating each new gap:

total penalty = ( [ length of gap ] * [ gap extension penalty ] ) + gap opening penalty

To run most alignment programs with the type of simple linear DNA gap penalty used in my example, you would have to designate a gap ‘creation’ or ‘opening’ penalty of zero, and a gap ‘extension’ penalty of whatever counts in that particular program as an identical base match for DNA sequences.

My example uses two random sequences that fit the TATA promoter region consensus of eukaryotes and of bacteria.  The most conserved bases within the consensus are capitalized by convention.  The eukaryote promoter sequence is along the X-axis, and the bacterial sequence is along the Y-axis in my example.

The solution occurs in two stages.  The first begins very much like dot matrix (dot plot) methods; the second is totally different.  Instead of calculating the ‘score matrix’ on the fly, as is often taught as one proceeds through the graph, I like to completely fill in an original ‘match matrix’ first, and then add points to those positions that produce favorable alignments next.  I also like to illustrate the process working through the cells, in spite of the fact that many authors prefer to work through the edges; they are equivalent.  Points are added based on a “looking-back-over-your-left-shoulder” algorithm rule where the only allowable trace-back is diagonally behind and above.  The illustration is shown on the following page.

a)
First complete a match matrix using one point for matching and zero points for mismatching between bases:

	
	c
	T
	A
	T
	A
	t
	A
	a
	g
	g

	c
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	g
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1

	T
	0
	1
	0
	1
	0
	1
	0
	0
	0
	0

	A
	0
	0
	1
	0
	1
	0
	1
	1
	0
	0

	t
	0
	1
	0
	1
	0
	1
	0
	0
	0
	0

	A
	0
	0
	1
	0
	1
	0
	1
	1
	0
	0

	a
	0
	0
	1
	0
	1
	0
	1
	1
	0
	0

	T
	0
	1
	0
	1
	0
	1
	0
	0
	0
	0


b)
Now add and subtract points based on the best path through the matrix, working diagonally, left to right and top to bottom.  However, when you have to jump a box to make the path, subtract one point per box jumped, except at the beginning or end of the alignment, so that end gaps are not penalized.  Fill in all additions and subtractions, calculate the sums and differences as you go, and keep track of the best paths.  My score matrix is shown with all calculations below:

	
	c
	T
	A
	T
	A
	t
	A
	a
	g
	g

	c
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	g
	0
	0+1=1
	0+0-0
=0
	0+0-0
=0
	0+0-0
=0
	0+0-0
=0
	0+0-0
=0
	0+0-0
=0
	1+0-0
=1
	1+0=1

	T
	0
	1+1-1
=1
	0+1=1
	1+0 or+1-1
=1
	0+0-0
=0
	1+0-0
=1
	0+0-0
=0
	0+0-0
=0
	0+0-0
=0
	0+1=1

	A
	0
	0+0-0
=0
	1+1=2
	0+1=1
	1+1=2
	0+1-1
=0
	1+1=2
	1+1-1
=1
	0+0-0
=0
	0+0-0
=0

	t
	0
	1+0-0
=1
	0+1-1
=0
	1+2=3
	0+1=1
	1+2=3
	0+2-1
=1
	0+2=2
	0+1=1
	0+0-0
=0

	A
	0
	0+0-0
=0
	1+1=2
	0+2-1
=1
	1+3=4
	0+3-1
=2
	1+3=4
	1+3-1
=3
	0+2=2
	0+1=1

	a
	0
	0+0-0
=0
	1+0-0
=1
	0+2=2
	1+3-1
=3
	0+4=4
	1+4-1
=4
	1+4=5
	0+3=3
	0+2=2

	T
	0
	1+0-0
=1
	0+0-0
=0
	1+1=2
	0+2=2
	1+3=4
	0+4=4
	0+4=4
	0+5=5
	0+5-1
=4


c)
Clean up the score matrix next.  I’ll only show the totals in each cell in the matrix shown below.  All paths are highlighted:
	
	c
	T
	A
	T
	A
	t
	A
	a
	g
	g

	c
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	g
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1

	T
	0
	1
	1
	1
	0
	1
	0
	0
	0
	1

	A
	0
	0
	2
	1
	2
	0
	2
	1
	0
	0

	t
	0
	1
	0
	3
	1
	3
	1
	2
	1
	0

	A
	0
	0
	2
	1
	4
	2
	4
	3
	2
	1

	a
	0
	0
	1
	2
	3
	4
	4
	5
	3
	2

	T
	0
	1
	0
	2
	2
	4
	4
	4
	5
	4


d)
Finally, convert the score matrix into a trace-back path graph by picking the bottom-most, furthest right and highest scoring coordinate.  Then choose the trace-back route that got you there, to connect the cells all the way back to the beginning using the same ‘over-your-left-shoulder’ rule.  Only the two best trace-back routes are now highlighted with outline font in the trace-back matrix below:

	
	c
	T
	A
	T
	A
	t
	A
	a
	g
	g

	c
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	g
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1

	T
	0
	1
	1
	1
	0
	1
	0
	0
	0
	1

	A
	0
	0
	2
	1
	2
	0
	2
	1
	0
	0

	t
	0
	1
	0
	3
	1
	3
	1
	2
	1
	0

	A
	0
	0
	2
	1
	4
	2
	4
	3
	2
	1

	a
	0
	0
	1
	2
	3
	4
	4
	5
	3
	2

	T
	0
	1
	0
	2
	2
	4
	4
	4
	5
	4


These two trace-back routes define the following two alignments:

cTATAtAagg         cTATAtAagg

|  |||||     and      |||||

cg.TAtAaT.         .cgTAtAaT.

As we see here, there may be more than one best path through the matrix.  Most software will arbitrarily (based on some internal rule) choose one of these to report as optimal.  Some programs offer a HighRoad/LowRoad option to help explore this solution space.  This time, starting at the top and working down as we did, then tracing back, I found two optimal alignments, each with a final score of 5, using our example’s zero/one scoring scheme.  The score is the highest, bottom-right value in the trace-back path graph, the sum of six matches minus one interior gap in one path, and the sum of five matches minus no interior gaps in the other.  This score is the number optimized by the algorithm, not any type of a similarity or identity percentage!  This first path is the GCG Wisconsin Package (1982-2007) Gap program HighRoad alignment found with this example’s parameter settings (note that GCG uses a score of 10 for a nucleotide base match here, not 1):
GAP of: Euk_Tata.Seq  to: Bact_Tata.Seq

Euk_Tata: A random Eukaryotic promoter TATA Box, center between -36 and -20.

Bact_Tata: A random E. coli RNA polymerase promoter ‘Pribnow’ box -10 region.

         Gap Weight:  0             Average Match: 10.000

      Length Weight: 10          Average Mismatch:  0.000


HighRoad option
LowRoad option

           Quality:  50                  Quality:  50

              Ratio:  6.250                 Ratio:  6.250

 Percent Similarity: 75.000    Percent Similarity: 62.500

             Length:     10                Length:     10

               Gaps:      2                  Gaps:      0

   Percent Identity: 75.000      Percent Identity: 62.500

        1 cTATAtAagg 10               1 cTATAtAagg 10

          |  |||||                         |||||

        1 cg.TAtAaT. 8                1 .cgTAtAaT. 8

The GCG LowRoad alignment is my second, equivalent path.  Notice that even though it has 62.5% identity as opposed to 75% identity in the HighRoad alignment, it has exactly the same score because of the scoring scheme we used!  Another way to explore dynamic programming’s solution space and possibly discover alternative alignments is to reverse the entire process, i.e. reverse each sequences’ orientation.  To recap, and for those people that like mathematics, an optimal pairwise alignment is defined as an arrangement of two sequences, 1 of length i and 2 of length j, such that:

1)
you maximize the number of matching symbols between 1 and 2;

2)
you minimize the number of gaps within 1 and 2; and

3)
you minimize the number of mismatched symbols between 1 and 2.

Therefore, the actual solution can be represented by the following recursion:

                ( Si-1 j-1             or (
                ( max Si-x j-1 + wx-1  or (
Sij = sij + max ( 2 < x < i               (
                ( max Si-1 j-y + wy-1     (
                ( 2 < y < i               (
where
Sij is the score for the alignment ending at i in sequence 1 and j in sequence 2,

sij is the score for aligning i with j,

wx is the score for making a x long gap in sequence 1,

wy is the score for making a y long gap in sequence 2,

allowing gaps to be any length in either sequence.

However, just because dynamic programming guarantees an optimal alignment, it is not necessarily the only optimal alignment.  Furthermore, the optimal alignment is not necessarily the ‘right’ or biologically relevant alignment!  Significance estimators, such as Expectation values and Monte Carlo simulations can give you some handle on this, but always question the results of any computational solution based on what you know about the biology of the system.  The above example illustrates the Needleman and Wunsch (1970) global solution.  Later refinements (Smith and Waterman, 1981) demonstrated how dynamic programming could also be used to find optimal local alignments.  To solve dynamic programming using local alignment (without going into the details) algorithms use the following two tricks:

1)
A match function that assigns mismatches negative numbers further penalizes the scoring scheme.  Therefore, bad paths quickly become very bad.  This leads to a trace-back path matrix with many alternative paths, most of which do not extend the full length of the graph.

2)
The best trace-back within the overall graph is chosen.  This does not have to begin or end at the edges of the matrix — it’s the best segment of alignment.

Scoring matrices

However, what about protein sequences — conservative replacements and similarities, as opposed to identities?  This is certainly an additional complication that would seem important.  Particular amino acids are very much alike, structurally, chemically, and genetically.  How can we take advantage of amino acid similarity of in our alignments?  People have been struggling with this problem since the late 1960’s.

Dayhoff (Schwartz and Dayhoff, 1979) unambiguously aligned closely related protein datasets (no more than 15% difference, and in particular cytochrome c) available at that point in time and noticed that certain residues, if they mutate at all, are prone to change into certain other residues.  As it works out, these propensities for change fell into the same categories that chemists had known for years — those same chemical and structural classes mentioned above — conserved through the evolutionary constraints of natural selection.  Dayhoff’s empirical observation quantified these changes.  Based on the multiple sequence alignments that she created and the empirical amino acid frequencies within those alignments, the assumption that estimated mutation rates in closely related proteins can be extrapolated to more distant relationships, and matrix and logarithmic mathematics, she was able to empirically specify the relative probabilities at which different residues mutated into other residues through evolutionary history, as appropriate within some level of divergence between the sequences considered.  This is the basis of the famous PAM (corrupted acronym of ‘accepted point mutation’) 250 (meaning that the matrix has been multiplied by itself 250 times) log odds matrix.

Since Dayhoff’s time other biomathematicians (eg. Henikoff and Henikoff’s [1992] BLOSUM series of matrices, and the Gonnet et al. matrix [1992]) have created matrices regarded more accurate than Dayhoff’s original, but the concept remains the same.  Plus, Dayhoff’s original PAM 250 matrix remains a classic as historically the most widely used amino acid substitution matrix.  Confusingly these matrices are known variously as symbol comparison, log odds, substitution, or scoring tables or matrices, and they are fundamental to all sequence comparison techniques.
The default amino acid scoring matrix for most protein similarity comparison programs is the BLOSUM62 table (Henikoff and Henikoff, 1992).  The “62” refers to the minimum level of identity within the ungapped sequence blocks that went into the creation of the matrix.  Lower BLOSUM numbers are more appropriate for more divergent datasets.  The BLOSUM62 matrix follows below; values whose magnitude is ( (4 are drawn in shadowed characters to make them easier to recognize.

The BLOSUM62 amino acid scoring matrix.

	
	 A
	 B
	 C
	 D
	 E
	 F
	 G
	 H
	 I
	 K
	 L
	 M
	 N
	 P
	 Q
	 R
	 S
	 T
	 V
	 W
	 X
	 Y
	 Z

	A
	 4
	-2
	 0
	-2
	-1
	-2
	 0
	-2
	-1
	-1
	-1
	-1
	-2
	-1
	-1
	-1
	 1
	 0
	 0
	-3
	-1
	-2
	-1

	B
	-2
	 6
	-3
	 6
	 2
	-3
	-1
	-1
	-3
	-1
	-4
	-3
	 1
	-1
	 0
	-2
	 0
	-1
	-3
	-4
	-1
	-3
	 2

	C
	 0
	-3
	 9
	-3
	-4
	-2
	-3
	-3
	-1
	-3
	-1
	-1
	-3
	-3
	-3
	-3
	-1
	-1
	-1
	-2
	-1
	-2
	-4

	D
	-2
	 6
	-3
	 6
	 2
	-3
	-1
	-1
	-3
	-1
	-4
	-3
	 1
	-1
	 0
	-2
	 0
	-1
	-3
	-4
	-1
	-3
	 2

	E
	-1
	 2
	-4
	 2
	 5
	-3
	-2
	 0
	-3
	 1
	-3
	-2
	 0
	-1
	 2
	 0
	 0
	-1
	-2
	-3
	-1
	-2
	 5

	F
	-2
	-3
	-2
	-3
	-3
	 6
	-3
	-1
	 0
	-3
	 0
	 0
	-3
	-4
	-3
	-3
	-2
	-2
	-1
	 1
	-1
	 3
	-3

	G
	 0
	-1
	-3
	-1
	-2
	-3
	 6
	-2
	-4
	-2
	-4
	-3
	 0
	-2
	-2
	-2
	 0
	-2
	-3
	-2
	-1
	-3
	-2

	H
	-2
	-1
	-3
	-1
	 0
	-1
	-2
	 8
	-3
	-1
	-3
	-2
	 1
	-2
	 0
	 0
	-1
	-2
	-3
	-2
	-1
	 2
	 0

	I
	-1
	-3
	-1
	-3
	-3
	 0
	-4
	-3
	 4
	-3
	 2
	 1
	-3
	-3
	-3
	-3
	-2
	-1
	 3
	-3
	-1
	-1
	-3

	K
	-1
	-1
	-3
	-1
	 1
	-3
	-2
	-1
	-3
	 5
	-2
	-1
	 0
	-1
	 1
	 2
	 0
	-1
	-2
	-3
	-1
	-2
	1

	L
	-1
	-4
	-1
	-4
	-3
	 0
	-4
	-3
	 2
	-2
	 4
	 2
	-3
	-3
	-2
	-2
	-2
	-1
	 1
	-2
	-1
	-1
	-3

	M
	-1
	-3
	-1
	-3
	-2
	 0
	-3
	-2
	 1
	-1
	 2
	 5
	-2
	-2
	 0
	-1
	-1
	-1
	 1
	-1
	-1
	-1
	-2

	N
	-2
	 1
	-3
	 1
	 0
	-3
	 0
	 1
	-3
	 0
	-3
	-2
	 6
	-2
	 0
	 0
	 1
	 0
	-3
	-4
	-1
	-2
	 0

	P
	-1
	-1
	-3
	-1
	-1
	-4
	-2
	-2
	-3
	-1
	-3
	-2
	-2
	 7
	-1
	-2
	-1
	-1
	-2
	-4
	-1
	-3
	-1

	Q
	-1
	 0
	-3
	 0
	 2
	-3
	-2
	 0
	-3
	1
	-2
	 0
	 0
	-1
	 5
	 1
	 0
	-1
	-2
	-2
	-1
	-1
	 2

	R
	-1
	-2
	-3
	-2
	 0
	-3
	-2
	 0
	-3
	2
	-2
	-1
	 0
	-2
	 1
	 5
	-1
	-1
	-3
	-3
	-1
	-2
	 0

	S
	 1
	 0
	-1
	 0
	 0
	-2
	 0
	-1
	-2
	 0
	-2
	-1
	 1
	-1
	 0
	-1
	 4
	 1
	-2
	-3
	-1
	-2
	 0

	T
	 0
	-1
	-1
	-1
	-1
	-2
	-2
	-2
	-1
	-1
	-1
	-1
	 0
	-1
	-1
	-1
	 1
	 5
	 0
	-2
	-1
	-2
	-1

	V
	 0
	-3
	-1
	-3
	-2
	-1
	-3
	-3
	 3
	-2
	 1
	 1
	-3
	-2
	-2
	-3
	-2
	 0
	 4
	-3
	-1
	-1
	-2

	W
	-3
	-4
	-2
	-4
	-3
	 1
	-2
	-2
	-3
	-3
	-2
	-1
	-4
	-4
	-2
	-3
	-3
	-2
	-3
	11
	-1
	 2
	-3

	X
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	-1

	Y
	-2
	-3
	-2
	-3
	-2
	 3
	-3
	 2
	-1
	-2
	-1
	-1
	-2
	-3
	-1
	-2
	-2
	-2
	-1
	 2
	-1
	 7
	-2

	Z
	-1
	 2
	-4
	 2
	 5
	-3
	-2
	 0
	-3
	 1
	-3
	-2
	 0
	-1
	 2
	 0
	 0
	-1
	-2
	-3
	-1
	-2
	 5


Notice that positive identity values range from 4 to 11, and negative values for rare substitutions go as low as -4.  The highest scoring residue is tryptophan with an identity score of 11; cysteine is next with a score of 9; histidine gets 8; both proline and tyrosine get scores of 7.  These residues get the highest scores because of two biological factors: they are very important to the structure and function of proteins so they are the most conserved, and they are the rarest amino acids found in nature.  Also check out the hydrophobic substitution triumvirate — isoleucine, leucine, valine, and to a lesser extent methionine — all easily swap places.  So, rather than using the zero/one match function that we used in the previous dynamic programming example, protein sequence alignments use the match function provided by an amino acid scoring matrix.  The concept of similarity becomes very important with some amino acids being way ‘more similar’ than others!

Database searching

Now that these concepts have been considered we can screen databases to look for sequences to compare ours to.  But what do database searches tell us and what can we gain from them?  Why even bother?  As I stated earlier, inference through homology is a fundamental principle in biology.  When a sequence is found to fall into a preexisting group we can infer function, mechanism, evolution, and possibly even structure based on homology with its neighbors.  Database searches can even provide valuable insights into enzymatic mechanism.  Are there any ‘families’ that your newly discovered sequence falls into?  Even if no similarity can be found, the very fact that your sequence is new and different could be very important.  Granted, it’s going to be a lot more difficult to discover functional and structural data about it, but in the long run its characterization might prove very rewarding.

The searching programs

Database searching programs use elements of all the concepts discussed above; however, classic dynamic programming techniques take far too long when used against most databases with a ‘normal’ computer.  Therefore, the programs use tricks to make things happen faster.  These tricks fall into two main categories, that of hashing and that of approximation.  Hashing is the process of breaking your sequence into small ‘words’ or ‘k-tuples’ of a set size and creating a ‘look-up’ table with those words keyed to numbers.  Then when any of the words match part of an entry in the database, that match is saved.  In general, hashing reduces the complexity of the search problem from N2 for dynamic programming to N, the length of all the sequences in the database.  Approximation techniques are collectively known as ‘heuristics.’  Webster’s defines heuristic as “serving to guide, discover, or reveal; . . . but unproved or incapable of proof.”  In database searching techniques the heuristic usually restricts the necessary search space by calculating some sort of a statistic that allows the program to decide whether further scrutiny of a particular match should be pursued.  This statistic may miss things depending on the parameters set — that’s what makes it heuristic.  The exact implementation varies between the different programs, but the basic ideas follow in all of them.

Two predominant versions exist: the Fast and BLAST programs.  Both return local alignments.  Both are not a single program, but rather a family of programs with implementations designed to compare a sequence to a database in about every which way imaginable.  These include: a DNA sequence against a DNA database (not recommended unless forced to do so because you are dealing with a nontranslated region of the genome), a translated (where the translation is done ‘on-the-fly’ in all six frames) version of a DNA sequence against a translated (‘on-the-fly’) version of the DNA database (only available in BLAST), a translated (‘on-the-fly’) version of a DNA sequence against a protein database, a protein sequence against a translated (‘on-the-fly’) version of the DNA database, or a protein sequence against a protein database.  Many implementations allow the recognition of frame shifts in translated comparisons.

In more detail:

FastA and family, developed at the University of Virginia (Pearson and Lipman, 1988; Pearson, 1998)
1)
Works well for DNA against DNA searches (within limits of possible sensitivity);

2)
Can find only one gapped region of similarity;

3)
Relatively slow, should usually be run in the background;

4)
Does not require specially prepared, preformatted databases.

FastA is an older algorithm than BLAST.  It was the first widely used, powerful sequence database searching program.  Pearson continually refines the algorithm such that it remains a viable alternative to BLAST, especially if one is restricted to searching DNA against DNA without translation.  It is also helpful in situations where BLAST finds no significant alignments; FastA may be more sensitive than BLAST in these situations.

The algorithm:

FastA builds words of a set k-tuple size, by default two for peptides.  It then identifies all exact word matches between the sequence and the database members.  Scores are assigned to each continuous, ungapped, diagonal by adding all of the exact match BLOSUM values.  The ten highest scoring diagonals for each query-database pair are then rescored using BLOSUM similarities as well as identities and ends are trimmed to maximize the score.  The best of each of these is called the Init1 score.

Next the program ‘looks’ around to see if nearby off-diagonal Init1 alignments can be combined by incorporating gaps.  If so, a new score, Initn, is calculated by summing up all the contributing Init1 scores, penalizing gaps with a penalty for each.  The program then constructs an optimal local alignment for all Initn pairs with scores better than some set threshold using a variation of dynamic programming “in a band.”  A sixteen residue band centered at the highest Init1 region is used by default with peptides.  A score is generated from this step known as the opt score.

Then FastA uses a simple linear regression against the natural log of the search set sequence length to calculate a normalized z-score for the sequence pair.  Finally, it compares the distribution of these z-scores to the actual extreme value distribution of the search.  Using this distribution, the program estimates the number of sequences that would be expected to have, purely by chance, a z-score greater than or equal to the z-score obtained in the search.  This is reported as the Expectation value.  Unfortunately, the z-score used in FastA and the  Monte Carlo style Z score discussed below are quite different and can not be directly compared.  If the user requests pairwise alignments in the output, then the program uses full Smith-Waterman local dynamic programming, not ‘restricted to a band,’ to produce its final alignments.

BLAST — Basic Local Alignment Search Tool, developed at NCBI (Altschul et al. 1990 and 1997)

1)
Normally not a good idea to use for DNA against DNA searches (not optimized);

2)
Prefilters repeat and “low complexity” sequence regions by default;

4)
Can find more than one region of gapped similarity;

5)
Very fast heuristic and parallel implementation;

6)
Restricted to precompiled, specially formatted databases;

The algorithm:

After BLAST has sorted its lookup table, it tries to find all double word hits along the same diagonal within some specified distance using what NCBI calls a Discrete Finite Automaton (DFA).  These word hits of size W do not have to be identical; rather, they have to be better than some threshold value T.  To identify these double word hits, the DFA scans through all strings of words (typically W=3 for peptides) that score at least T (usually 11 for peptides).  Each double word hit that passes this step then triggers a process called ungapped extension in both directions, such that each diagonal is extended as far as it can, until the running score starts to drop below a pre-defined value X within a certain range A.  The result of this pass is called a High-Scoring segment Pair or HSP.  Those HSPs that pass this step with a score better than S then begin a gapped extension step utilizing dynamic programming.  Those gapped alignments with Expectation values better than the user specified cutoff are reported.  The extreme value distribution of BLAST Expectation values is pre-computed against each precompiled database — this is one area that speeds up the algorithm considerably.

The math can be generalized thus: for any two sequences of length m and n, local, best alignments are identified as HSPs.  HSPs are stretches of sequence pairs that cannot be further improved by extension or trimming, as described above.  For ungapped alignments, the number of expected HSPs with a score of at least S is given by the formula:  E = Kmnes.  This is called an E-value for the score S.  In a database search n is the size of the database in residues, so N=mn is the search space size.  K and  are be supplied by statistical theory, and, can be calculated by comparison to precomputed, simulated distributions.  These two parameters define the statistical significance of an E-value.  As with FastA the E-value defines the significance of the search.  The smaller the E-value, the more likely it’s significant.

In review, both the FastA and BLAST family of programs base their Expectation “E” values on a more realistic “extreme value distribution,” based on either real or simulated ‘not significantly similar’ database alignments, than most Monte Carlo style Z scores do, since they are often based on the Normal distribution.  Regardless, they parallel Monte Carlo style Z scores fairly well.  The higher the E-value is, the more probable that the observed match is due to chance in a search of the same size database and the lower its Z score will be.  Therefore, the smaller the E-value, i.e. the closer it is to zero, the more significant it is and the higher its Z score will be.  The E-value is the number that really matters.  A value of 0.01 is usually a decent starting point for significance in most typical searches.

Furthermore, all database searching, regardless of the algorithm, is far more sensitive at the amino acid level than at the DNA level.  This is because proteins have twenty match criteria versus DNA’s four and those four DNA bases can only be identical, not similar, to each other; and many DNA base changes (especially third position changes) do not change the encoded protein.  All of these factors drastically increases the ‘noise’ level of a DNA against DNA search, and gives protein searches a much greater ‘look-back’ time, typically at least doubling it.  Therefore, whenever dealing with coding sequence, it is always prudent to search at the protein level.  Even though protein searching is more sensitive, the DNA databases have more data.  This drawback can be overcome with programs that take a protein query and compare it to translated nucleotide databases, or the other way around, but one still needs to know if the translation is ‘real.’  This disadvantage is negligible though and can be investigated after the fact, so the general rule when dealing with coding sequence is to either search protein query against protein database, or DNA query against protein database.

Significance

The discrimination between homology and similarity is particularly misunderstood — there is a huge difference!  Similarity is merely a statistical parameter that describes how much two sequences, or portions of them, are alike according to some set scoring criteria.  It can be normalized to ascertain statistical significance as in database searching methods, but it’s still just a number.  Homology, in contrast and by definition, implies an evolutionary relationship — more than just the fact that all life evolved from the same primordial ‘slime.’  You need to be able to demonstrate some type of evolutionary lineage between the organisms or genes of interest in order to claim homology.  Better yet, demonstrate experimental evidence, structural, morphological, genetic, or fossil, that corroborates your assertion.  There really is no such thing as percent homology; something is either homologous or it’s not.  Walter Fitch (personal communication) explains with the joke, “homology is like pregnancy — you can’t be 45% pregnant, just like something can’t be 45% homologous.  You either are or you are not.”  Do not make the mistake of calling any old sequence similarity homology.  Highly significant similarity can argue for homology, not the other way around.

So, how do you tell if a similarity, in other words, an alignment discovered by some program, means anything?  Is it statistically significant, is it truly homologous, and even more importantly, does it have anything to do with real biology?  Many programs generate percent similarity scores; however, as seen in the TATA dynamic programming example above, these really don’t mean a whole lot.  Don’t use percent similarities or identities to compare sequences except in the roughest way.  They are not optimized or normalized in any manner.  Quality scores mean a lot more but are difficult to interpret.  At least they take the length of similarity, all of the necessary gaps introduced, and the matching of symbols all into account, but quality scores are only relevant within the context of a particular comparison or search.  The quality ratio is the metric optimized by dynamic programming divided by the length of the shorter sequence.  As such it represents a fairer comparison metric, but it also is relative to the particular scoring matrix and gap penalties used in the procedure.

A traditional way of deciding alignment significance relies on an old statistics trick — Monte Carlo simulations.  This type of significance estimation has implicit statistical problems; however, few practical alternatives exist for just comparing two sequences, and they are fast and easy to perform.  Monte Carlo randomization options in dynamic programming alignment algorithms compare an actual score, in this case the quality score of an alignment, against the distribution of scores of alignments of a randomized sequence.  These options randomize your sequence at least 100 times after the initial alignment and then generate the jumbled alignment scores and a standard deviation based on their distribution.  Comparing the mean of the randomized sequence alignment scores to the original score using a ‘Z score’ calculation can help you decide significance.  An old ‘rule-of-thumb’ is if the actual score is much more than three standard deviations above the mean of the randomized scores, the analysis may be significant; if it is much more than five, than it probably is significant; and if it is above nine, than it definitely is significant.  Many Z scores measure this distance from the mean using a simplistic Monte Carlo model assuming a normal Gaussian distribution, in spite of the fact that ‘sequence-space’ actually follows an ‘extreme value distribution;’ however, this simplistic approximation estimates significance quite well:

Z score =  [ ( actual score ) - ( mean of randomized scores ) ] 
           ( standard deviation of randomized score distribution )

When the two TATA sequences from the previous dynamic programming example are compared to one another using the same scoring parameters as before, but incorporating a Monte Carlo Z score calculation, their similarity is found to be not at all significant.  The mean score based on 100 randomizations was 41.8 +/- a standard deviation of 7.4.  Plugged into the formula:  ( 50 – 41.8 ) / 7.4 = 1.11, i.e. there is no significance to the match in spite of 75% (or 62%) identity!  Composition can make a huge difference — the similarity is merely a reflection of the relative abundance of A’s and T’s in the sequences!

Most modern database similarity searching algorithms, including FastA (Pearson and Lipman, 1988, and Pearson, 1998), BLAST (Altschul, et al., 1990, and Altschul, et al., 1997), Profile (Gribskov, et al., 1987), and HMMer (Eddy, 1998), use a similar approach but base their statistics on the distance of the query matches from the actual, or a simulated, extreme value distribution of the rest of the ‘insignificantly similar,’ members of the database being searched.  For alignments without gaps, the math generalizes such that an Expectation value E relates to a particular score S through the function E = Kmnes (Karlin and Altschul, 1990, and see http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html).  In a database search m is the length of the query and n is the size of the database in residues.  K and  are supplied by statistical theory, dependent on the scoring system and the background amino acid frequencies, and calculated from actual or simulated database alignment distributions.  Expectation values are printed in scientific notation and the smaller the number, i.e. the closer it is to 0, the more significant the match.  Expectation values show us how often we should expect a particular alignment to occur merely by chance alone in a search of that size database.  In other words, it helps to know how strong an alignment can be expected from chance alone, to assess whether it constitutes evidence for homology.  Rough, conservative guidelines to Z scores and Expectation values from a typical protein search follow.

Rough, conservative guidelines to Z scores and Expectation values from a typical protein search.

	~Z score
	~E-value
	Inference

	3
	0.1
	little, if any, evidence for homology, but impossible to disprove!

	5
	10-2
	probably homologous, but may be due to convergent evolution

	10
	10-3
	definitely homologous


Be very careful with any guidelines such as these, though, because they are probabilities, entirely dependent on both the size and content of the database being searched as well as on how often you perform the search!  Think about it — the odds are way different for rolling dice depending on how many dice you roll, whether they are ‘loaded’ or not, and how often you try.

A very powerful empirical method of determining significance is to repeat a database search with the entry in question.  If that entry finds more significant ‘hits’ with the same sorts of sequences as the original search, then the entry in question is undoubtedly homologous to the original entry.  That is, homology is transitive.  If it finds entirely different types of sequences, then it probably is not.  Modular proteins with distinctly separate domains confuse issues considerably, but the principles remain the same, and can be explained through domain swapping and other examples of non-vertical transmission.  And, finally, the ‘gold-standard’ of homology is shared structural folds — if you can demonstrate that two proteins have the same structural fold, then, regardless of similarity, at least that particular domain is homologous between the two.

Dot matrix procedures

Another powerful method that should always be considered in similarity analysis is the dot matrix procedure.  In dot matrix analysis one sequence is plotted on the vertical axis against another on the horizontal axis using a very simple approach; wherever they match according to some scoring criteria that you specify, a dot is generated.  Why use dot matrix analysis?  Dot matrix analysis can point out areas of similarity between two sequences that all other methods might miss.  This is because most other methods align either the overall length of two sequences or just the ‘best’ parts of each to achieve optimal alignments.  Dot matrix methods enable the operator to visualize the entirety of both sequences; if you will, they allow the ‘Gestalt’ of the alignment to be seen.  Because your own mind and eyes are still better than computers at discerning complex visual patterns, especially when more than one pattern is being considered, dot matrix analysis can be extremely powerful.  However, their interpretation is entirely up to the user — you must know what the plots mean and how to successfully filter out extraneous background noise when running them.  Using this method correctly you can identify areas within sequences that happen to have significant matches that no other method would ever notice.  What approaches are used?

a)
To illustrate, I will use a very simple 0, 1 (match, no-match) identity scoring function.  More complex scoring functions such as the BLOSUM62 matrix are always used with real amino acid sequences.  This example is based on an illustration in a dated but very addressable text, Sequence Analysis Primer (Gribskov and Devereux, 1992).  The sequences compared are written out along the x and y axes of a matrix and a dot is placed wherever the two squences’ symbols match:
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Since this is a comparison between two of the same sequences, an intrasequence comparison, the most obvious feature is the main identity diagonal.  Two short perfect palindromes can be seen as crosses directly off the main diagonal; they are “ANA” and “SIS.”  If this were a double-stranded DNA or RNA sequence self comparison, these inverted repeat regions would be indicative of potential cruciform pseudoknots at that point.  Direct internal repeats will show up as parallel diagonals off of the main diagonal.  The biggest asset of dot matrix analysis is it allows you to visualize the entire comparison at once, not concentrating on any one ‘optimal’ region, but rather giving you the ‘Gestalt’ of the whole thing.  You can see the ‘less than best’ comparisons as well as the main one and then ‘zoom-in’ on those regions of interest using more detailed procedures.

b)
Check out the ‘mutated’ intersequence comparison: 
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Here you can easily see the effect of a sequence ‘insertion’ or ‘deletion.’  It is impossible to tell whether the evolutionary event that caused the discrepancy between the two sequences was an insertion or a deletion and hence this phenomena is called an ‘indel.’  A jump or shift in the register of the main diagonal on a dotplot clearly points out the existence of an indel.

c)
Other phenomena that are easy to visualize with dot matrix analysis are duplications and direct repeats.  These are shown in the following example, still using the 0, 1 match function: 
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The ‘duplication’ here is seen as a distinct column of diagonals.  Whenever you see either a row or column of diagonals in a dotplot, you are looking at direct repeats.

d)
Now consider the more complicated mutation in the following comparison: 

	
	S
	E
	Q
	U
	E
	N
	C
	E
	A
	N
	A
	L
	Y
	S
	I
	S
	P
	R
	I
	M
	E
	R

	A
	
	
	
	
	
	
	
	
	•
	
	•
	
	
	
	
	
	
	
	
	
	
	

	N
	
	
	
	
	
	•
	
	
	
	•
	
	
	
	
	
	
	
	
	
	
	•
	

	A
	
	
	
	
	
	
	
	
	•
	
	•
	
	
	
	
	
	
	
	
	
	
	

	L
	
	
	
	
	
	
	
	
	
	
	
	•
	
	
	
	
	
	
	
	
	
	

	Y
	
	
	
	
	
	
	
	
	
	
	
	
	•
	
	
	
	
	
	
	
	•
	

	Z
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	•
	
	
	•
	
	
	•
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	S
	•
	
	
	
	
	
	
	
	
	
	
	
	
	•
	
	•
	
	
	
	
	•
	

	E
	
	•
	
	
	•
	
	
	•
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Q
	
	
	•
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	U
	
	
	
	•
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	•
	
	
	•
	
	
	•
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	N
	
	
	
	
	
	•
	
	
	
	•
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	•
	
	
	
	
	
	
	
	
	•
	
	
	
	
	
	

	E
	
	•
	
	
	•
	
	
	•
	
	
	
	
	
	
	
	
	
	
	•
	
	
	

	S
	•
	
	
	
	
	
	
	
	
	
	
	
	
	•
	
	•
	
	
	
	
	
	


Again, notice the diagonals.  However, they have now been displaced off the center diagonal of the plot, and, in fact, in this example, show the occurrence of a ‘transposition.’  Dot matrix analysis is about the only sensible way to locate such transpositions in sequences.  Inverted repeats still show up as perpendicular lines to the diagonals, they are just now not on the center of the plot.  The ‘deletion’ of ‘PRIMER’ is shown by the lack of a corresponding diagonal.

Reconsider the same plot.  Notice the extraneous dots that neither indicate runs of identity between the two sequences nor inverted repeats.  These merely contribute ‘noise’ to the plot and are due to the ‘random’ occurrence of the letters in the sequences, the composition of the sequences themselves.  How can we ‘clean up’ the plots so that this noise does not detract from our interpretations?  Sequence analysis is all about balancing signal to noise.

Consider the implementation of a filtered windowing approach; a dot will only be placed if some ‘stringency’ is met.  What is meant by this is that if within some defined window size, and when some defined criteria is met, then and only then, will a dot be placed at the middle of that window.  The window is then shifted over one position and the entire process is repeated.  This very successfully rids the plot of unwanted noise and is the default dotplot mechanism for most available programs.  The previous dotplots are actually a special case of a filtered windowing approach, that of using a window and stringency filter both equal to one.  The next case will show how using a stringency of two within a window of size three makes a huge difference.

e)
In the plot below a window of three with a stringency of two was used to considerably improve the signal to noise ratio:
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The only remaining dots indicate the two runs of identity between the two sequences, however, any indication of the palindrome, “ANA” has been lost.  This is because our filtering approach was too stringent to catch such a short element.  In general, you need to make your window about the same size as the element you are attempting to locate.  In the case of our palindrome, “AN” and “NA”’ are the inverted repeat sequences and since our window was set to three, we will not be able to see an element only two letters long.  Had we set our filter to one out of two, then these would still be visible.

The Wisconsin package’s implementation of dot matrix analysis, the paired programs Compare and DotPlot, use a window/stringency method by default.  You need to be very careful with these programs as the default window size and stringency (14 in a window of 21 for nucleic acid sequences) may not be appropriate for the analysis at hand.  Consider the following set of examples from the phenylalanine transfer RNA molecule from yeast, GenBank:K01553.  The sequence and structure are both known for this molecule and this illustration will show how simple dot-matrix procedures can quickly lead to functional and structural insights (even without complex folding algorithms).  This example follows next:

a)
If you run the programs with all their default settings, the dotplot from a comparison of this sequence with itself is quite uninformative, only showing the main identity diagonal:

[image: image1.wmf]
b) However, if you adjust the window size down to find finer features, some elements of symmetry become apparent.  Here I have changed the window size to 7 and the stringency value to 5:

[image: image2.wmf]
Several direct repeats are now obvious as off-diagonal alignment segments that remained obscured in the previous analysis.

(As a general guide to stringency levels, pick whatever window size is most appropriate for the analysis at hand, e.g. about the size of the feature that you are trying to recognize, and then choose a stringency that produces a point file with the number of points found to be of a similar order of magnitude as that of the length of your longest sequence.)

c)
When dealing with RNA/DNA, even more insight can be gained by comparing the reverse, complement of a sequence to itself.  This is easy to do in the GCG command line programs by specifying that you want the program to reverse the specified sequence.  (In this context, the GCG option -Reverse is the reverse, complement of a sequence, not just the reverse since just the reverse is not biologically relevant.)  (In SeqLab use the Edit-Reverse button.)  Compare the following dotplot to the previous ones; here the yeast tRNA sequence is compared to its reverse, complement using the same 5 out of 7 stringency setting:

[image: image3.wmf]
Now the potential for inverted repeats becomes obvious; these are the well characterized stem-loop structures of the tRNA cloverleaf molecular shape.  They appear as clearly delineated diagonals.  These diagonals are now perpendicular to an imaginary main diagonal running opposite to the previous case, since we reversed the orientation of the second sequence.  Take for instance the middle stem; the region of the molecule centered at approximately base number 38 has a clear propensity to base pair with itself without creating a loop since it crosses the main diagonal and then just after a small unpaired gap another stem is formed between the region from about base number 24 through 30 with approximately 46 through 40.

d)
That same region ‘zoomed in on’ has some small direct repeats that can be seen when you use the Compare ‘All’ option on the sequence against itself without reversal:

[image: image4.wmf]
e)
But looking at the same region of the sequence against its reverse-complement shows a wealth of potential stem-loop structure in the transfer RNA (again with the ‘All’ option):

[image: image5.wmf]
f)
The GCG program StemLoop can show some of these match-ups base by base.  Depending on what parameters you use, this is one of them:

     22 GAGCGCCAGACT  G    12, 22

        || | ||||| |   A

     48 CTGGAGGTCTAG  A    3

So, as noted above, the region of K01553 from base position 22 through position 33 base pairs with (think — is quite similar to the reverse-complement of) itself from base position 37 through position 48.  Got it?

g)
This stem probably corresponds to the bottom-most stem representation in the standard model of tRNA.  Here is a view in an orientation that allows you to visualize most of the stem structure of the yeast phenylalanine tRNA model as solved by Sundaralingam et al. (1976) deposited in the 3D PDB under access code 1TRA:


[image: image6.wmf]
h)
In a GCG ‘Squiggle’ plot of this same molecule from the output of MFold, Zuker’s (1989) RNA folding algorithm which uses base pairing energy minimization to find the family of most optimal and suboptimal structures, the most stable structure found is shown to possess a stem at positions 27 to 31 with 39 to 43.  However the region around position 38 is represented as a loop.  Note that the molecule is upside down here as compared to the previous model.  Reality, as modeled above, is seen to lie somewhere in between these two interpretations, but the simple dotplot analysis did quickly provide some valuable insights.
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Multiple sequence dynamic programming

Dynamic programming reduces the pairwise alignment problem’s complexity down to order N2 — the solution of a two-dimensional matrix, and the complexity of the solution is equal to the length of the longest sequence squared.  But how do you work with more than just two sequences at a time?  It becomes a much harder problem.  You could manually align your sequence data with an editor, but some type of an automated solution is desirable, at least as a starting point to manual alignment.  However, solving the dynamic programming algorithm for more than just two sequences rapidly becomes intractable.  Dynamic programming’s complexity, and hence its computational requirements, increases exponentially with the number of sequences in the dataset being compared (complexity=[sequence length]number of sequences), an N-dimensional matrix.  So a three sequence dynamic programming alignment would require the solution of a three-axis matrix, with complexity equal to the length of the longest sequence cubed, and so forth.  You can at least draw a three-dimensional matrix, but more dimensions than that quickly become difficult to even imagine, yet alone visualize!

Several different heuristics have been employed over the years to simplify the complexity of the problem.  One classic program, MSA (Gupta et al. 1995), attempts to globally solve the N-dimensional matrix recursion using a bounding box trick.  However, the algorithm’s complexity precludes its use in most situations, except with very small datasets.  Another way to globally solve the algorithm, and yet reduce its complexity, is to restrict the search space to only the most conserved ‘local’ portions of all the sequences involved.  This approach is used by the program PIMA (Smith and Smith, 1992).

MSA and PIMA are both available through the Internet at several bioinformatics servers (in particular see the Baylor College of Medicine’s Search Launcher at http://searchlauncher.bcm.tmc.edu/), or they can be installed on your own machine.  However, both of these programs have severely restrictive dataset size limitations.  Therefore, most programs use a very different heuristic, and never attempt to globally solve the N-dimensional matrix — they only deal with pairs of sequences at a time!

Heuristic solutions — how the algorithms work

Most implementations of automated multiple alignment do not attempt to globally solve the algorithm; they modify dynamic programming by establishing a pairwise order in which to build the alignment.  This heuristic modification is known as pairwise, progressive dynamic programming.  Originally attributed to Feng and Doolittle (1987), this variation of the dynamic programming algorithm generates a global alignment, but restricts its search space at any one time to a local neighborhood of the full length of only two sequences.  Consider a group of sequences.  First all are compared to each other, pairwise, using some quick variation of standard dynamic programming.  This establishes an order for the set, most to least similar, a ‘guide-tree’ if you will.  Subgroups are clustered together similarly.  The algorithm then takes the top two, most similar sequences, and aligns them.  Then it creates a quasi-consensus of those two and aligns that to the third sequence.  Next it creates the same sort of quasi-consensus of the first three sequences and aligns that to the forth most similar.  The way that the program makes and uses this ‘consensus’ sequence is one of the biggest differences between the various implementations.  This process, all using standard, pairwise dynamic programming, continues until it has worked its way through all of the sequences and/or sets of clusters, to complete the full multiple sequence alignment.

The pairwise, progressive solution is implemented in several programs.  Perhaps the most popular is Higgins’ and Thompson’s ClustalW (1994) and its multi-platform, graphical user interface ClustalX (Thompson, et al., 1997).  This program made the first major advances over the basic Feng and Doolittle algorithm by incorporating variable sequence weighting, dynamically varying gap penalties and substitution matrices, and a neighbor-joining (NJ, Saitou and Nei, 1987) guide-tree.  ClustalX is available for most windowing operating systems — UNIX/Linux, Microsoft (MS) Windows, and Macintosh.  Complete documentation comes with the program and is accessed through a “Help” menu.  The GCG program PileUp implements a similar method, but without the later innovations, and ClustalW is now included in the GCG package as well.

Several more variations on the theme have come along in recent years.  T-Coffee (Tree-based Consistency Objective Function For alignment Evaluation [Notredame, et al., 2000]) was one of the first after ClustalW, and it has gained much favor.  Its biggest innovation is the use of a preprocessed, weighted library of all the pairwise global alignments between the sequences in your dataset plus the ten best local alignments associated with each pair of sequences.  This helps build the NJ guide-tree and the progressive alignment both.  Furthermore, the library is used to assure consistency and help prevent errors, by allowing ‘forward-thinking’ to see whether the overall alignment will be better one way or another after particular segments are aligned one way or another.  Notredame (2006) makes the apt analogy of school schedules — everybody, students, teachers and administrators, with some folk being more important than others, i.e. the weighting factor, puts the schedule they desire in a big pile, i.e. T-Coffee’s library, with the trick being to best fit all the schedules to one academic calendar, so that everybody is happiest, i.e. T-Coffee’s final multiple sequence alignment.  T-Coffee can even tie together multiple methods as external modules, making consistency libraries from the results of each, as long as all the specified methods are installed on your system.  T-Coffee is one of the most accurate multiple sequence alignment methods available because of this consistency based rationale, but it is not the fastest. 

Muscle (Edgar, 2004 and 2006) is another relatively new multiple sequence alignment program.  It is incredibly fast, yet nearly as accurate as T-Coffee with protein data.  Muscle is an iterative method that uses weighted log-expectation profile scoring along with a slew of optimizations.  It proceeds in three stages — draft progressive using k-mer counting, improved progressive using a revised tree from the previous iteration, and refinement by sequential deletion of each tree edge with subsequent profile realignment.  Perhaps the most accurate new multiple sequence alignment program is ProbCons (Do, et al., 2005).  It uses Hidden Markov Model (HMM) techniques and posterior probability matrices that compare random pairwise alignments to expected pairwise alignments.  Probability consistency transformation is used to reestimate the scores, and a guide-tree is then constructed, which is used to compute the alignment, which is then iteratively refined.

Another newer program that I highly recommend, MAFFT (Katoh, et al., 2002 and 2005, http://align.bmr.kyushu-u.ac.jp/mafft/software/), can be run several different ways — a couple of progressive, approximate modes, using a fast Fourier transformation (FFT); a couple of iteratively refined methods that add in weighted-sum-of-pairs (WSP) scoring; and some iterative methods that use the WSP scoring combined with a T-Coffee-like consistency based scoring scheme.  Speed and accuracy are inversely proportional for these from fast and rough, to slow and accurate, respectively.  MAFFT provides command aliases for all of them, from fast to slow — fftns with or without retree, fftnsi with or without maxiterate, and the three combined approaches einsi, linsi, and ginsi.

MAFFT’s fast Fourier transform provide a huge speedup over most previous methods.  Homologous regions are quickly identified by converting amino acid residues to vectors of volume and polarity, thus changing a twenty-character alphabet to six, rather than by using an amino acid similarity matrix.  Similarly, nucleotide bases are converted to vectors of imaginary and complex numbers.  The FFT trick then reduces the complexity of the subsequent comparison to Order N(logN.  FFT identifies potential similarities though, without localizing them; a sliding window step using the BLOSUM62 matrix is used for this.  Then MAFFT constructs a distance matrix, and hence a progressive guide tree, on the number of shared six-tuples from this Fourier transform, rather than on a ranking based on full-length, pairwise sequence similarity.  The user can specify how many times a new guide tree is subsequently recalculated from a previous alignment as many times as desired; the alignment is reconstructed using the Needlman-Wunsch algorithm for each pass.

The iterative refinement modes build on this foundation by adding steps that adjust the alignment back and forth until there is either solely no improvement in the WSP score (or the number of cycles has reached your set limit), or it adds both this WSP score and a T-Coffee-like consistency score between pairwise and multiple alignments to the refinement procedure.  Differences in the iterative methods that combine WSP and consistency scores are based on how the pairwise scores are calculated, globally, locally with affine gap costs, or locally with generalized affine gap costs.  Knowing which to choose, especially if you’re dealing with sequences too diverged for the fast methods to work well, depends on the nature of your data.  MAFFT’s algorithm page (http://align.bmr.kyushu-u.ac.jp/mafft/software/algorithms/algorithms.html) explains where and when each mode is most appropriate.  If you know beforehand that your sequences have full-length, but low, similarity, then the global option is appropriate (ginsi); if your sequences have one similar domain among a bunch of ‘junk,’ then the local affine gap option works best (linsi); whereas if your data is composed of multiple, alignable domains, then the local generalized affine gap scheme is the way to go (einsi).  MAFFT’s capability to handle large datasets and its speed is similar to or greater than Muscle’s in its faster modes; its results and capabilities are similar to T-Coffee in its slow, iteratively refined, optimized modes.

Searching PROSITE

Before aligning a bunch of sequences, it’s a good idea to scan those sequences for features that will help you recognize a good alignment, and the programs that do this type of scan work best before any gaps have been introduced by the alignment process.  This is possible because many, many features have been described and catalogued in biological sequences over the years.  Most of these have recognizable consensus patterns that allow you to screen an unknown sequence for their occurrence.  Check out the following example to help understand how these patterns are developed.  A very simplistic approach is to look at an alignment, see that certain regions are conserved, and create a consensus of that region.  A portion of a multiple sequence alignment of elongation factor Tu/1( from many different organisms illustrates the conservation of the first of several GTP-binding domains in these proteins, that area around position twenty in the alignment below:
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Based on experimental evidence, we know that the indicated region bounded by the glycine and serine above is essential.  So we merely count up the various residues in those locations and assign the most common one to the consensus.  Simple.  But what about the fact that the middle histidine isn’t always a histidine; in this data set, just as often it’s a serine and sometimes it’s an alanine.  Other positions are also seen not be invariant.  And there’s lots of other members of this gene family not being represented here at all.

A consensus isn’t necessarily the biologically ‘correct’ combination.  How do we include this other information?  A simple consensus throws much of it away.  Therefore, we need to adopt some sort of standardized ambiguity notation.  The trick is to define a motif such that it minimizes false positives and maximizes true positives; i.e. it needs to be just discriminatory enough.  The development of the exact motif is largely empirical; a pattern is made, tested against the database, then refined, over and over, although when experimental evidence is available, it is always incorporated.  This approach is known as motif definition and fortunately a scientist in Switzerland, Amos Bairoch, has done it for tons of sequences!

His database of catalogued structural, regulatory, and enzymatic consensus patterns or ‘signatures’ originally named the Prosite Dictionary of Protein Sites and Patterns (1992) and now called the PROSITE Database of protein families and domains contains 1519 documentation entries, 1317 patterns, 792 profiles, and 799 ProRules (Release 20.33, May 20, 2008).  Pattern descriptions for these characteristic local sequence areas are variously and confusingly known as motifs, templates, signatures, patterns, and even fingerprints; don’t let the terminology bewilder you.  They all describe some sort of functional or otherwise constrained consensus region of a sequence alignment allowing for ambiguity (e.g. glycosylation and phosphorylation sites, SH3-binding sites, nuclear localization sequence, and enzymatic active sites).  Motifs may or may not represent sequence homology, and may or may not encompass an entire structural domain, i.e. they do not all signify common origin or known function.  Regardless, PROSITE is one of the quickest and easiest databases to search with a peptide sequence. 

The GCG Motifs program accesses the one-dimensional, ‘regular-expression’ descriptions within PROSITE.  The program can tolerate less than perfect fits with a –MisMatch option, and it displays an abstract with selected references for each motif signature found.  This can often be a tremendous aid in estimating function of an unknown peptide sequence.  It can often lead to immediate answers and routes of investigation.  It should always be utilized — it’s just too fast and simple to ignore.

Extensive abstract and reference lists follow the identified sequence locations for each site.  This information can save anybody a tremendous amount of work!  The sites themselves are shown with their sequence locations below each consensus pattern.  The consensus pattern described above and characteristic of most nucleophosphate binding proteins is called the P-Loop and is defined as (A,G)x4GK(S,T), i.e. either an alanine or a glycine, followed by four of anything, followed by an invariant glycine-lysine pair, followed by either a serine or a threonine.  Exceptions are noted in the documentation.

This particular site has been extensively researched, and many three-dimensional structures are available for it in the PDB structural database.  It always has a beta/alpha/beta/alpha/beta secondary structure conformation, and is a special type of “Rossman Fold” super-secondary motif.  The site is shown to the right on the following page in the guanine nucleotide-binding protein G(I), alpha-1 subunit (adenylate cyclase-inhibiting) from Rattus norvegicus (the common rat), Swiss-Prot GBI1_Rat, courtesy ExPASy’s Swiss-3D Image collection (http://ca.expasy.org/sw3d/):
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Post-translational modification sites commonly found in many proteins, such as glycosylation, phosphorylation, amidation, and myristylation, will only be listed if you specify the –Frequent option.  However, realize that sites may be false positives, especially if you use the –Frequent option.  This is always a danger with simple consensus style searches.  The GCG programs ProfileScan and HmmerPfam use a much more sensitive profile matrix approach to search your sequence with profiles including most of PROSITE and will be discussed further below.

Expectation maximization

Another powerful motif discovery algorithm can be run before actually performing multiple sequence alignment on a dataset.  This algorithm is called Expectation Maximization; it uses Bayesian probabilities and unsupervised learning to find, de novo, unknown conserved motifs among a group of unaligned, ungapped sequences (Bailey and Elkan, 1994).  The motifs do not have to be in congruent order among the different sequences; i.e. it has the power to discover ‘unalignable’ motifs between sequences.  This characteristic differentiates MEME from the other profile building techniques described below.  It is implemented in the Wisconsin Package as the MEME program and it produces output containing a multiple profile file as well as a readable report file.  Its profile output serves as input to MotifSearch (Bailey and Gribskov, 1998).  I would strongly suggest reading the MEME and MotifSearch chapters in the GCG Program Manual (“genmanual” at the command line or http://gcg.scs.fsu.edu/ in any Web browser) — they explain the details of the algorithms way better than I can.

Profile analysis — Weighted Position Specific Site Matrices (PSSM) of multiple sequence alignments

OK, so one-dimensional, regular-expression motifs are one way to ‘capture’ the information of an important portion of an alignment.  However, these types of motifs can’t convey any degree of residue ‘importance.’  For instance, in the GTP-binding P-Loop described above, is it better to have an alanine or a glycine in that first position or doesn’t it matter?  This lack of sense of importance causes a loss of sensitivity.  More ‘robust’ methods can convey the importance of each residue in the region.

Given a multiple sequence alignment, how can we use the extra information contained in it to describe conserved regions in a more robust fashion and to find ever more remotely similar sequences?  How do we search and explore into and past Russell Doolittle’s “Twilight Zone,” i.e. those similarities below ~25% identity, those Z scores below ~4, those BLAST/Fast E-values above ~10-2 or so?  Just because a similarity score between two sequences is quite poor, we do not automatically know that the two structures do not fold in a similar manner or perform a similar function, we have no idea of homology at all!

Obviously much of the information in a multiple sequence alignment is ‘noise’ at this similarity level.  We gain little by searching with the full-length of any of its members.  Too much evolution has happened over its full length — the ‘history’ of most of it has been lost.  However, certain regions of the alignment have been constrained throughout evolutionary history.  They are somehow very ‘important’ to the sequence — functionally, structurally, or whatever — we can use them to find other sequences with similarly constrained regions, if we can somehow ‘capture’ that information with some method more sensitive than simple motifs.

Enter two-dimensional consensus techniques.  The basic idea is to tabulate how often every possible residue occurs at each position.  You saw this last week with DNA matrix consensus descriptions of promoter, splice site, and terminator regions.  With proteins the information is stored in a matrix twenty residues wide by the length of your pattern.  Does this remind you of anything besides last week’s DNA matrices?  We’re talking about the same concept as an amino acid substitution table or scoring matrix, in other words a very special log-odds PAM style table — this time a matrix custom built based on a specific pattern in a collection of related sequences.  These type of matrices are usually called profiles.

Profile methods enable the researcher to recognize features that may otherwise be invisible to individual sequence members.  Profiles incorporate the full information content of an alignment.  The greatly enhanced information content, over that of individual sequences, or other consensus descriptions, has the potential to find similar domains in sequences that are only distantly related, more so than any other class of search algorithm.  All other methods of describing an alignment such as consensus or pattern description either through away too much information or become too ambiguous.  Profiles achieve additional sensitivity with this two-dimensional weight matrix approach versus a simple one-dimensional string technique.  Even the popular NCBI program PSI-BLAST (Altschul, et al. 1997) uses profiles.  However, the word “profile” is used many different ways in this context!

 ‘Traditional,’ aka ‘evolutionary,’ profiles

One variation on this powerful profile analysis approach (Gribskov, et al., 1987 and 1989 is sometimes known as “evolutionary” profile analysis.  It, and later Hidden Markov Model (HMM) refinements thereof (e.g. Eddy, 1996 and 1998), is great for discovering distantly related proteins and structural motifs.  John Devereux, past president of GCG, wrote an excellent overview essay of the method in the GCG Program Manual; there’s also a great review of HMM profiles there.  It’s worth the time to read these sections at some point (“genmanual” from the command line or the URL http://gcg.scs.fsu.edu/).  The strategy begins with the use traditional translated database searching techniques to find similar protein sequences to your new piece of DNA.  It works best with proteins but can also be used with non-protein-coding DNA given the standard sensitivity caveats.  Then you carefully prepare and refine, as much as possible, (and save!) your multiple sequence alignment of these significantly similar sequences (or regions within those sequences).  And then you generate a profile of that alignment (or domain) — a very sensitive and tremendously powerful probe for further analyses.

A distinct advantage in these further analyses — multiple sequence alignment and database searching — is evolutionary issues are considered by virtue of the profile algorithms.  Evolutionary profiles achieve this because they are a special type of two-dimensional weight matrix in which conserved areas of the alignment receive the most importance and variable regions hardly matter — the more highly conserved a residue is, the greater its position-specific matrix score is!  And these scores are not based merely on the positional frequency of particular residues within the alignment, rather they upscale the BLOSUM62 (Henikoff and Henikoff, 1992) scores (by default, other substitution matrices can be specified) of particular amino acid substitutions based on their conservation in the alignment.  Therefore, the resultant consensus residues are the most evolutionarily conserved, rather than just statistically the most frequent.  Furthermore, the creation of gaps is highly discouraged in conserved areas, yet occurs easily in variable regions in subsequent profile alignments and searches.  This occurs because gaps are penalized more heavily in conserved areas than they are in variable regions.  These two factors are what give these types of profiles so much power.

The Gribskov (1987 and 1989) method is implemented in the Wisconsin Package with a series of five programs:

ProfileMake, creates the profile, and its inherent consensus, from a multiple sequence alignment; ProfileSearch, searches other sequences with a profile; ProfileSegments, aligns the output list of a ProfileSearch; ProfileGap, aligns individual sequences to a profile; and ProfileScan, searches sequences against a validated, ‘motif’ style profile library built by Gribskov and based on the PROSITE Dictionary of Protein Sites and Patterns.  GCG has 629 validated profiles in its ProfileScan library.

The sequences within a profile should be appropriately weighted.  Each sequence, by default, contributes an equal importance, i.e. weight, to the profile.  This may or may not be appropriate for your situation.  Consider a multiple sequence alignment with several very similar sequences and a few more divergent ones.  In this case, the contribution of the more divergent sequences would be ‘lost’ among the overpowering signal of all the similar ones.  It may be appropriate to increase the weight of the more divergent sequences to even out all the sequences’ contribution.  This is often done ‘ad-hoc,’ although a similarity dendrogram, can help.

The process of weighting your sequences appropriately and repeatedly searching the database with your profile and then adjusting the weights and including or excluding subsequent members of the profile is known as “validating” your profile.  If using traditional profile analysis in your own research, following the validation procedures outlined in the GCG Program Manual in the ProfileScan description is prudent.  HMM profiles have made the process considerably easier, as the algorithm automatically calculates appropriate weights when the profile is built.

I created a small profile of just the P-Loop region from that previous elongation factor Tu/1( alignment to help show you how to interpret a profile matrix.  HMM profiles have similar features, so this will help you understand them as well.  The greatest amount of conservation of the P-Loop region is centered about residue position twenty or so in that example.  What happens if I prepare a profile around just this region?  What does it look like?

It’s a big table of numbers that doesn’t make a whole lot of sense on first inspection, but it is a tremendously powerful tool in subsequent analyses.  As described above, other programs can read and interpret this alignment customized scoring matrix to perform very sensitive database searches and further alignments by utilizing the information within the matrix that penalizes misalignments in phylogenetically conserved areas more than in variable regions.

My P-Loop example follows below.  Let’s check it out:

Cons A    B    C    D    E    F    G    H    I    K    L    M    N    P    Q    R    S    T    V    W    Y    Z   Gap  Len

 E   11   20  -11   27   33  -21   16   10   -4   10   -9   -6   16    6   18    0    8   17   -3  -29  -15   26   12   12

 K    0   27  -40   21   22  -47   -6    7  -13  100  -20   13   27    7   27   53   14   13  -13    5  -40   28   12   12

! 11

 P   13    3    4    3    3  -13    9    2    3    3   -2   -1    1   28    4    3   11   20    9  -21  -16    4   12   12

 H   -7   26   -6   26   26   -6  -14   99  -18    6  -12  -19   33   13   46   33  -13   -6  -19   -7   20   33   12   12

 I    3   -7    2   -7   -6   19   -6   -9   43   -7   29   22  -10   -4   -6  -10   -4    6   38  -17    1   -5   12   12

 N   14   73  -19   47   33  -34   27   33  -20   27  -27  -20  100    0   26    7   22   14  -20  -20   -7   27   12   12

 I    1  -10   -1  -10   -8   26   -9  -10   46   -8   34   27  -12   -6   -8  -12   -6    5   40  -12    4   -7   12   12

 V   15    2    7    3    1   -1   20   -9   24   -6   14   11   -3    6   -3  -11    4   10   37  -30   -9   -1   12   12

 V    9   -4    7   -5   -4    5    7   -8   29   -4   20   15   -6    4   -7   -9    0   19   36  -21   -2   -5   12   12

 I    0  -16   16  -16  -16   55  -24  -24  118  -16   63   47  -24  -16  -24  -24   -8   16   87  -39    8  -16   12   12

 G   55   47   16   55   39  -47  118  -16  -24   -8  -39  -24   31   24   16  -24   47   31   16  -79  -55   24   12   12

 H   -6   27   -7   27   27   -8  -13  100  -20    7  -13  -20   34   14   48   34  -13   -7  -20   -7   19   34   12   12

! 21

 V   11  -12   12  -12  -12   13   11  -18   67  -12   48   36  -18    5  -12  -18   -6   12   89  -47   -6  -12   12   12

 D   24   87  -39  118   79  -79   55   31  -16   24  -39  -31   55    8   55    0   16   16  -16  -87  -39   71   12   12

 S    9   12   11   11   11   -8    8   22   -7    5  -10  -10   14   11   11    9   23    4   -6    1   -2    9   12   12

 G   55   47   16   55   39  -47  118  -16  -24   -8  -39  -24   31   24   16  -24   47   31   16  -79  -55   24   12   12

 K    0   27  -40   20   20  -47   -7    7  -14  100  -20   13   27    7   27   55   13   13  -14    8  -40   27   12   12

 S   19   14   30   10   10  -14   27   -9   -2   10  -17  -12   14   19   -5    3   63   24   -2    7  -19    1  100  100

 T   40   20   20   20   20  -30   40  -10   20   20  -10    0   20   30  -10  -10   30  150   20  -60  -30   10  100  100

 T    8   -4   -9   -4    0   13    1   -6   18    0   23   22   -2    2   -4   -9    0   34   18   -6   -2   -1  100  100

 T   19    8   10    8    8  -12   19   -6   16    8    1    4    7   14   -6   -6   13   69   18  -32  -14    3  100  100

 G   40   24   10   28   21  -27   61   -8  -11   -4  -19  -11   16   16    9  -14   26   18    9  -44  -28   13  100  100

! 31

 H   10   11   -1   11   11  -10    1   34   -8    7   -8   -5   13   11   19   18    0    1   -6   -1    0   14  100  100

 L   -4  -20  -27  -20  -13   50  -21  -10   43  -13   62   53  -17  -13   -7  -17  -15   -2   40   13   12   -9  100  100

 *   20    0    0   27   12    3   73   70   65   46   38    0   24   11    5    6   33   85   65    0    0    0

On closer inspection, the matrix begins to make some sense.  Across the top are all possible residues.  The first column is that residue that received the highest score in the program — the consensus.  But notice the interior of the matrix.  Numbers bounce all over the place, from 150 to -87.  What’s that all about?  Well, without going into the mathematics, based on the alignment we fed it and the initial scoring matrix used (by default the BLOSUM62 matrix but you can specify others) the program has scaled those positions which are most important up, and those positions least important down.  For instance the threonine at position 27 in my alignment is the only residue absolutely conserved throughout — it gets the highest score!  The aspartate at position 22 substituted with a tryptophan would never happen, hence the -87 score.  Tryptophan has the highest identity score in the BLOSUM matrix series and the aspartate is conserved at all positions in our alignment that have residues at that position — the negative matrix score of any substitution to tryptophan times the high conservation at that position for aspartate equals the most negative score in the profile.  How about those positions where the conservation is not as striking?  Position 16 is a good one to pick on.  Valine is the assigned consensus residue because it has the highest score, 37, but glycine also occurs several times; therefore, a score of 20.  However, other residues are ranked in the substitution matrices as being quite similar to valine, so isoleucine and leucine also get similar scores, 24 and 14, and alanine occurs some of the time in the alignment so it gets a comparable score, 15.  But realize that all of these numbers are way less than the highest numbers in the matrix — all the values are fairly mediocre at that position, because the position is not well conserved.

OK, but what about the last two columns in the matrix, and the last row?  The last row is the composition of the whole profile.  Our alignment has twenty alanines overall and no cysteines — no big deal.  However, the last two columns are very important!  They relate to gap penalties in any subsequent analysis with this particular profile.  Remember, gaps are more easily introduced into variable regions than conserved regions in profile analysis.  Well, this is where that comes from.  The first column is the gap opening penalty and the second is the gap extension penalty for that particular spot in any subsequent analysis (both as a percentage).  Unlike most other implementations of dynamic programming, the penalties are not constant throughout the length of the profile.  Those regions where conservation is highest, receive 100% of the assigned gap penalty.  Those regions with less conservation, receive less gap penalty.  Here, everywhere else only gets 12% of the assigned gap penalty!

HMMER — Hidden Markov Modeling and profiles

As powerful as Gribskov style evolutionary profiles are, they require a lot of time and skill to prepare and validate, and they are heuristics based.  An excess of subjectivity and a lack of formal statistical rigor also contribute as drawbacks.  In collaboration with the author, Sean Eddy (1996 and 1998), GCG has incorporated the HMMER (pronounced “hammer”) package into the Wisconsin Package.  HMMER uses Hidden Markov Models (HMM), with a formal probabilistic basis and consistent gap insertion theory, to build and manipulate HMM profiles and profile databases, to search sequences against HMM profile databases and visa versa, and to easily create multiple sequence alignments using HMM profiles as a ‘seed.’  Again, GCG has taken the time to write an excellent essay in the Program Manual on HMMER, what Hidden Markov Models are, and how the algorithms work.  I urge you to read it, as well as each individual HMMER program description, at some point.  The ‘take-home’ message is HMM profiles are much easier to build than traditional profiles and they do not need to have nearly as many sequences in their alignments in order to be effective.  Furthermore, they offer a statistical rigor not available in Gribskov profiles, and they have all the sensitivity of any profile technique.  In effect, they are like the ‘old-fashioned’ profiles pumped up on steroids!  Yet, understanding the basis of HMM profile analysis is much easier after you’ve been exposed to the way that traditional Gribskov-style profiles work.

Coding DNA issues

All alignment algorithms, pairwise, multiple, and database similarity searching, are far more sensitive at the amino acid level than at the DNA level.  Twenty match symbols are just much easier to align then only four; the signal to noise ratio is so much better.  And, the concept of similarity applies to amino acids, but generally not to nucleotides.  Furthermore, many DNA base changes (especially third position changes) do not change the encoded protein.  All of these factors drastically increase the ‘noise’ level of DNA; typically giving protein similarity searches a much greater ‘look-back’ time, at least doubling it.  Therefore, database searching and sequence alignment should always be done on a protein level, unless you are dealing with noncoding DNA, or if the sequences are so similar as to not cause any problems.  Therefore, usually, if dealing with coding sequences, translate the DNA to its protein counterpart, before performing multiple sequence alignment.

Even if you are dealing with very similar coding sequences, where the DNA can be directly aligned, it is often best to align the DNA along with its corresponding proteins.  In addition to the much more easily achieved alignment, this also insures that alignment gaps are not placed within codons.  Phylogenetic analysis can then be performed on the DNA rather than on the proteins.  This is especially important when dealing with datasets that are quite similar, since the proteins may not reflect many differences hidden in the DNA.  Furthermore, many people prefer to run phylogenetic analyses on DNA rather than protein regardless of how similar they are — the multiple substitution models have a long and well-accepted history, and yet are far simpler.  In fact, some phylogenetic inference algorithms do not even take advantage of amino acid similarity when dealing with protein sequences; they only count identities, though many others can use PAM style models.  However, the more diverged a dataset becomes, the more random third and eventually first codon positions become, which introduces noise (error) into the analysis.  Therefore, often third positions and sometimes first positions are masked out of datasets.  Just like in most of computational molecular biology, one is always balancing signal against noise.  Too much noise or too little signal, both degrade the analysis to the point of nonsense.

Several scripts and programs, as well as some Web servers, can perform this sort of codon-based alignment, but they can be a bit tricky to run.  Examples include mrtrans (Pearson, 1990) (also available in EMBOSS [Rice, et al., 2000] as tranalign and in BioPerl [Stajich et al., 2000] as aa_to_dna_aln), transAlign (Bininda-Emonds, 2005), RevTrans (Wernersson and Pedersen, 2003), protal2dna (Letondal and Schuerer, [Pasteur Institute and in BioPerl]), and PAL2NAL (Suyama, et al., 2006).  Some multiple sequence alignment editors, including SeaView (Galtier, et al., 1996) and GCG’s SeqLab  (based on Smith’s Genetic Data Environment [GDE], 1994), can also help with this process.  The logic to this paired protein and DNA alignment approach in SeqLab is as follows:

1)
The easy case where you can align the DNA directly.  If the DNA sequences are directly alignable because they are quite similar, then merely create your DNA alignment.  Next use the “Edit” menu “Translate” function and the “align translations” option to create aligned corresponding protein sequences.  Select the region to translate based on the CDS reference in each DNA sequence’s annotation.  Be careful of CDS entries that do not begin at position 1 — the GenBank CDS feature annotation “/codon_start=” identifies which position the translation begins within the first codon listed.  You may also have to trim sequences down to just the relevant gene or exons, especially if they’re genomic.  You’ll have to change their protections with the padlock icon if this is the case.  Group each protein to its corresponding DNA sequence so that subsequent manipulations will keep them together.

2)
The way more difficult case where you need to use the protein sequences to create the alignment because the DNA is not directly alignable.  In this case you need to load the protein sequences first, create their alignment, and then load their corresponding DNA sequences.  You can find the DNA sequence accession codes in the annotation of the protein sequence entries.  Next translate the unaligned DNA sequences into new protein sequences with the Edit-Translate function using the “align translations” option and Group these to their corresponding DNA sequences, just as above.  However, this time the DNA along with their translated sequences are not aligned as a set, just the other protein set is aligned.  Also, Group all of the aligned protein dataset together, separately from the DNA/aligned translation set.  Now comes the manual part; painstakingly rearrange your display to place the DNA, its aligned translation, and the original aligned protein sequence side-by-side, and then manually slide one set to match the other.  Use the “CUT” and “PASTE” buttons to move the sequences around.  When pasting realize that the “Sequence clipboard” contains complete sequence entries, whereas the “Text clipboard” only contains sequence data, amino acid residues, or DNA bases as the case may be.  The translated sequence entries can be “CUT” away after they’re aligned to the rest of the set.  Merge the newly aligned sequences into the existing alignment Group as you go, and then start on the next one.  It sounds difficult, but since you’re matching up two identical protein sequences, the DNA translation and the original aligned protein, it’s really not too bad.  The Group function keeps everything together the way it should be so that you don’t lose your original alignment as you space residues apart to match them up to their respective codons.  Some codons may become spaced apart in this process and will have to be adjusted afterwards.  As usual, save your work often.

Multiple sequence alignment is much more difficult if you are forced to align nucleotides because the region does not code for a protein.  Automated methods may be able to help as a starting point, but they are certainly not guaranteed to come up with a biologically correct alignment.  The resulting alignment will probably have to be extensively edited, if it works at all.  Success will largely depend on the similarity of the nucleotide dataset.

Reliability?

One liability of most global progressive, pairwise methods is they are entirely dependent on the order in which the sequences are aligned.  Fortunately ordering them from most similar to least similar usually makes biological sense and works quite well.  However, most of the techniques are very sensitive to the substitution matrix and gap penalties specified.  Some programs allow ‘fine-tuning’ areas of an alignment by realignment with different scoring matrices and/or gap penalties; this can be extremely helpful.  However, any automated multiple sequence alignment program should be thought of as only a tool to offer a starting alignment that can be improved upon, not the ‘end-all-to-meet-all’ solution, guaranteed to provide the ‘one-true’ answer.  Although, in this post-genomics era, when having to deal with Giga bases of data, it does make sense to start with the ‘best’ solution possible.  This is the premise of using a very accurate multiple sequence alignment package, such as T-Coffee (Notredame, et al., 2000), ProbCons, (Do, et al., 2005), or MAFFT (Katoh, et al., 2002 and 2005).

Regardless of the program used to create an alignment, always use comparative approaches to help assure its reliability.  After the program has offered its best guess, try to improve it further.  Think about it — a sequence alignment is a statement of positional homology — it is a hypothesis of evolutionary history.  It establishes the explicit homologous correspondence of each individual sequence position, each column in the alignment.  Therefore, insure that you prepare a good one — be sure that it makes sense.  Editing alignments to insure that all columns are truly homologous should be encouraged.  Dedicated sequence alignment editing software such as GCG’s SeqLab, Jalview (Clamp, et al., 2004), Se-Al (Rambaut, 1996), and SeaView (Galtier, et al., 1996, http://pbil.univ-lyon1.fr/software/seaview.html), are great for this, but any editor will do, as long as the sequences end up properly formatted afterwards.

Devote considerable time and energy toward developing the best alignment possible.  Use your understanding of the biological system to help guide your judgment.  Look for conserved functional, enzymatic, regulatory, and structural elements and motifs — they should all line up.  Searches of the PROSITE Database of protein families and domains (Bairoch, 1992) for catalogued structural, regulatory, and enzymatic consensus patterns or ‘signatures’ in your dataset can help, as can de novo motif discovery tools like the MEME (Bailey and Elkan, 1994), MotifSearch (Bailey and Gribskov, 1998) program pair.  Look for columns of strongly conserved residues such as tryptophans, cysteines, and histidines; important structural amino acids such as prolines, tyrosines and phenylanines; and conserved isoleucine, leucine, valine substitutions.  Make subjective decisions.  Is it good enough; do things align the way they should?  If, after all else, you decide that you just can’t align some region, or an entire sequence, then get rid of it.  Another alternative is to use the mask available in some editors like SeqLab.  Cutting an entire sequence out of an alignment may leave columns of gaps across the entire alignment that will need to be removed.  Most alignment editors have a function for that.  The extreme amino- and carboxy-termini (5’ and 3’ in DNA) seldom align nicely; they are often jagged and uncertain, and should usually be excluded.  The validity of any subsequent analysis is absolutely dependent upon the quality of your input alignment.

The conservation of co-varying sites in ribosomal and other structural RNA alignments can be very helpful in refining alignments.  That is, as one base in a stem structure changes, the corresponding Watson-Crick paired base will change in a corresponding manner.  This principle has guided the assembly of rRNA structural alignments at the Ribosomal Database Project at Michigan State University (Cole, et al. 2007, http://rdp.cme.msu.edu/) and at the University of Gent, Belgium, at the European Ribosomal RNA database (Wuyts, et al. 2004, http://www.psb.ugent.be/rRNA/).

Be sure an alignment makes biological sense — align things that make sense to align!  Beware of comparing ‘apples and oranges.’  Be particularly suspect of sequence datasets found through text-based database searches such as NCBI’s Entrez, GCG’s LookUp (1982–2007), and the Sequence Retrieval System (SRS, Etzold and Argos, 1993).  For example, don’t try to align receptors and/or activators with their namesake proteins.  Be wary of trying to align genomic sequences with cDNA when working with DNA; the introns will cause all sorts of headaches.  Similarly, aligning mature and precursor proteins, or alternate splicing forms, from the same organism and locus, doesn’t make evolutionary sense, as one is not evolved from the other, rather one is the other.  Watch for redundant sequences; there are tons of them in the databases.  If creating alignments for phylogenetic inference, either make paralogous comparisons (i.e. evolution via gene duplication) to ascertain gene phylogenies within one organism, or orthologous (within one ancestral loci) comparisons to ascertain gene phylogenies between organisms (which should imply organismal phylogenies).  Try not to mix them up without complete data representation. Otherwise, confusion can mislead interpretation, especially if the sequences’ nomenclature is inconsistent.  These are all easy mistakes to make; try your best to avoid them.

Remember the old adage “garbage in — garbage out!”  Some general guidelines to remember (Olsen, 1992) include the following:

•
If the homology of a region is in doubt, then throw it out.

•
Avoid the most diverged parts of molecules; they are the greatest source of systematic error.

•
Do not include sequences that are more diverged than necessary for the analysis at hand.

Complications

Sequence data format is a huge problem in computational molecular biology.  The major databases all have their own distinct format, plus many of the different programs and packages require their own.  Clustal (Higgins, et al., 1992) has a specific format associated with it.  The FastA database similarity-searching package (Pearson and Lipman, 1988) uses a very basic sequence format that many programs recognize.  The National Center for Biotechnology Information (NCBI) uses a library standard called ASN.1 (Abstract Syntax Notation One), plus it provides GenBank flatfile format for all sequence data.  GCG uses three sequence formats — Single Sequence Format (SSF), Multiple Sequence Format (MSF), and SeqLab’s Rich Sequence Format (RSF) that contains both sequence data and annotation.  Two GCG programs, Reformat and SeqConv+, can generate GCG format.  PAUP* (Phylogenetic Analysis Using Parsimony [and other methods, pronounced “pop star”] Swofford, 1989–2007), MrBayes (Ronquist and Huelsenbeck, 2003), and many other phylogenetic analysis packages, have a required format called the NEXUS file.  The PAUP* interface in the GCG Package, PAUPSearch, creates NEXUS format directly from GCG alignments.  Even PHYLIP  (PHYLogeny Inference Package, Felsenstein, 1980-2007) has its own unique data format.  Standards have been argued over for years, such as using XML for everything, but until everybody agrees, which is not likely to happen, it just won’t happen.  Fortunately several freeware programs are available to convert formats back and forth between the required standards, however, it can all get quite confusing.  BioPerl’s SeqIO system (Stajich, 2002) and ReadSeq (Gilbert, 1990–2006) are two very helpful tools for format conversion.  T-Coffee (Notredame, et al., 2000) comes with one built in named “seq_reformat.”  And the SeaView (Galtier, et al., 1996) editor recognizes NEXUS, GCG MSF, Clustal, FastA, and PHYLIP format, plus (I know, not another one!) MASE format.

Alignment gaps are another problem.  Different program suites may use different symbols to represent them.  Most programs use hyphens, “-”; the GCG Package uses periods, “.”, for interior gaps, and tildes, “~”, for placeholder gaps.  Furthermore, not all gaps in sequences should be interpreted as deletions.  Interior gaps are probably okay to represent this way, as regardless of whether a deletion, insertion or a duplication event created the gap, logically they are the same.  These are known as ‘indels.’  However, end gaps should not be represented as indels, because a lack of information before or beyond the length of any given sequence may not be due to a deletion or insertion event.  It may have nothing to do with the particular stretch being analyzed at all.  It just may not have been sequenced!  These gaps are just placeholders for the sequence.  Therefore, it is safest to manually edit an alignment to change leading and trailing gap symbols to “x”’s which mean “unknown amino acid,” or “n”’s which mean “unknown base,” or “?”’s which is supported by many programs, but not all, and means “unknown residue or indel.”  This will assure that incorrect assumptions are not made, though most phylogenetic inference algorithms treat indels and missing data equivalently by default.

Applicability?

Now that some of the principles and problems of multiple sequence alignment have been explored, what’s so great about doing it anyway; why would anyone want to bother?  Multiple sequence alignments are:

•
very useful in the development of PCR primers and hybridization probes;

•
great for producing annotated, publication quality, graphics and illustrations;

•
invaluable in structure/function studies through homology inference;

•
essential for building HMM profiles for remote homology similarity searching and alignment; and

•
required for molecular evolutionary phylogenetic inference programs, e.g. PAUP*, MrBayes, and PHYLIP.

A multiple sequence alignment is invaluable for designing phylogenetic specific probes and primers by allowing you to clearly visualize and localize the most conserved and the most variable regions within an alignment.  Depending on the dataset that you analyze, any level of phylogenetic specificity can be achieved.  Pick areas of high variability in the overall dataset that correspond to areas of high conversation in phylogenetic category subset datasets to differentiate between universal and phylo-specific potential probe sequences.  After localizing general target areas on the sequence, you can then use any of several primer discovery programs, such as GCG’s Prime, or MIT’s Primer3 (Rozen and Skaletsky, 2000), or the commercial Oligo program (National Biosciences, Inc.), to find the best primers within those regions, and to test those potential probes for common PCR conditions and problems.

See my bioinformatics workshop tutorial illustrating this technique using GCG and SeqLab at http://bio.fsu.edu/~stevet/PrimerDesign.pdf, if you are interested.  The technique is illustrated below on the following page where I identify potential primer locations that should differentiate between the major capsid protein genes (L1) of the carcinogenic Human Papillomavirus (HPV) Type 16 strains from other strains most closely related to Type 16.  A phylogram of the HPV type assemblage most closely related to Type16 based on the L1 major capsid protein gene, and the corresponding GCG PlotSimlarity traces is shown.  The ellipses denote potential areas in which to localize PCR primers within the gene that would differentiate the Type 16 clade from it’s closest relatives.  These are areas of high L1 conservation in the Type 16 clade (the red, dashed line) that correspond to areas of much weaker conservation in the other clades (the blue, solid line).  That graphic follows:

[image: image10.wmf]
Graphics prepared from multiple sequence alignments can dramatically illustrate functional and structural conservation.  These can take many forms of all or portions of an alignment — shaded or colored boxes or letters for each residue or base (e.g. BoxShade by Hofmann and Baron at EMBnet.org, and the PostScript output options in GCG’s SeqLab), cartoon representations (e.g. WebLogos [Schneider and Stephens, 19900] and GCG’s SeqLab graphical feature representation), running line graphs of overall similarity (as seen above with GCG’s PlotSimilarity and as displayed by ClustalX and others), overlays of attributes, various consensus representations, etc. — all can be printed with high-resolution equipment, usually in color or gray tones.  These can make a big difference in a poster or manuscript presentation.

The figure below shows a multiple sequence alignment of the most conserved portion of the HMG (high mobility group) DNA-binding domain from several paralogous members of the human HMG-box superfamily.  These proteins all have important regulatory functions, either turning other genes on or off.  See my example Comparative Genetics undergraduate project manuscript that uses a member of this superfamily, the SRY testis-determining factor, at http://bio.fsu.edu/~stevet/CompGen/SRY.manuscript.pdf.  This graphic was prepared as a PostScript file with the “Print” command within GCG’s SeqLab Editor.
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Conserved regions of an alignment are important.  In addition to the conservation of primary sequence, structure and function is also conserved in these crucial regions.  In fact, recognizable structural conservation between true homologues extends way beyond statistically significant sequence similarity.  An oft-cited example is in the serine protease superfamily.  S. griseus protease A demonstrates remarkably little sequence similarity when compared to the rest of the superfamily (Expectation values E()(101.8 in a typical protein database search) yet its three-dimensional structure clearly shows its allegiance to the serine proteases (RMSD of less than 3 Å with most of the family) (Pearson, W.R., personal communication).  These principles are the premise of ‘homology modeling’ and it works remarkably well.  An automated homology modeling tool is even available on the ExPASy server in Switzerland.  Supported by the Swiss Institute of Bioinformatics (SIB) and GlaxoSmithKline, Swiss-Model (http://swissmodel.expasy.org//SWISS-MODEL.html, see Guex, et al. [1999]) dramatically changed the homology modeling process.  It is a relatively painless way to get a theoretical model of a protein structure.  The minimal amount of effort involved makes it an excellent time investment.  Swiss-Model won’t always generate a homology model for your sequence, depending on how similar the closest sequence with an experimentally solved structure is to it; however, it is a very reasonable first approach and will often lead to remarkably accurate representations.  And if it doesn’t work on the first pass, the system offers an advanced interface where you can submit your own alignment of structural homologues against your data.
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I submitted a Giardia lamblia Elongation Factor 1( sequence to Swiss-Model in “First Approach mode.”  The results were e-mailed back to me in less than five minutes.  A RasMac “Strands” cartoon representation (http://www.umass.edu/microbio/rasmol/ [see e.g. Sayle and Milner-White, 1995])  of the Giardia EF-1( homology-based structural model from Swiss-Model superimposed over the eight most similar solved structural templates is shown to the left here.

As described above, profiles are a position specific scoring matrix (PSSM) description of an alignment or a portion of an alignment.  In their more powerful form gap insertions are penalized more heavily in conserved areas of the alignment than in variable regions, and the more highly conserved a residue is, the more important it becomes.  Profiles are created from an existing alignment of related sequences, and then they are used to search for remote sequence similarities and/or to build larger multiple sequence alignments.  Profile techniques are tremendously powerful; they can provide the most sensitive, albeit extremely computationally intense, database similarity search possible.

Originally described by Gribskov (1987), and then automated by NCBI’s PSI-BLAST (Altschul, et al., 1997), later refinements have added more statistical rigor (see e.g. Eddy’s Hidden Markov Model profiles [1996 and 1998]).  The original Gribskov style profiles required a lot of time and skill to prepare and validate, and they were heuristics based.  They also suffered from excess subjectivity, and lacked formal statistical rigor.  Eddy’s HMMer (pronounced “hammer”) package uses Hidden Markov modeling, with a formal probabilistic basis and consistent gap insertion theory, to overcome these limitations.  The HMMer package can build and manipulate HMMer profiles and profile databases, search sequences against HMMer profile databases and visa versa, and easily create multiple sequence alignments using HMMer profiles as a ‘seed.’  This ability to easily create larger and larger multiple sequence alignments is incredibly powerful and way faster than starting all over each time you want to add another sequence to an alignment.  HMMer profiles are much easier to build than traditional profiles, and they do not need to have nearly as many sequences in their alignments in order to be effective, yet they have all the sensitivity of any profile technique.  One big difference between HMMer profiles and others is when the profile is built you need to specify the type of eventual alignment it will be used with, rather than when the alignment is built.  The HMMer profile will either be used for global or local alignment, and it will occur multiply or singly on a given sequence.

Furthermore, we use multiple sequence alignments to infer phylogeny.  Based on the assertion of homologous positions in an alignment, many, many different methods can estimate the most reasonable evolutionary tree for that alignment.  A few of the packages that incorporate these methods were mentioned earlier in the complications sections with regard to format issues — PAUP* (Swofford, 1989–2007), MrBayes (Ronquist and Huelsenbeck, 2003), and PHYLIP (Felsenstein, 1980-2007).  This is a huge, complicated, and highly contentious field of study.  (See the Woods Hole Marine Biological Laboratory’s excellent summer short course, the Workshop on Molecular Evolution, at http://workshop.molecularevolution.org/.)  However, always remember that regardless of the algorithm used, any form of parsimony, all of the distance methods, all maximum likelihood techniques, and even all types of Bayesian phylogenetic inference, they all make the absolute validity of your input alignment matrix their first and most critical assumption (but see Lunter, et al., 2005).

Therefore, the accuracy of your multiple sequence alignment is the most important factor in inferring reliable phylogenies; your interpretations are utterly dependent on its quality.  Structural alignments are the ‘gold-standard,’ but the luxury of having homologous solved structures is more often than not unavailable.  Regardless, even with a structural alignment, there’ll often be questionable regions of sequence data within your alignment.  These highly saturated regions have the property known as ‘homoplasy.’  This is a region of a sequence alignment where so many multiple substitutions have occurred at homologous sites that it is impossible to know if those sites are properly aligned, and thus, impossible to ascertain relationships based on those sites. The primary assumption of all phylogenetic inference algorithms is most violated in these regions, and this phenomenon increasingly confounds evolutionary reconstruction as divergence between the members of a dataset increases.  Therefore, only analyze those sequences and those portions or your alignment that assuredly do align.  If any are in doubt, exclude them.  This usually means trimming down, designating and excluding a character set for, or masking at least the alignment’s terminal ends and the interior may require some attention as well.  These decisions are somewhat subjective by nature, experience helps, and some software, such as ASaturA (Van de Peer, et al., 2002) and T-Coffee (Notredame, et al. 2000), has the ability to evaluate the quality of particular regions of your alignment as well.  Biocomputing is always a delicate balance — signal against noise — and sometimes it can be quite the balancing act!

The protein system

I use members of the same dataset throughout this tutorial to make it more interesting and to provide a common focused objective.  It should be somewhat analogous to what you would have to do in an actual laboratory setting, and should provide a framework on which you can build.  In fact, the particular protein I’ve chosen, peach dehydrin, is one Dr. Anand Yadav, of the FVSU Agriculture Research Station, asked me to look into many years ago.  This protein (also known as LEA, late-embryogenesis abundant) is expressed in many plant tissues during seasonal cold acclimatization and other types of drought stress conditions, and may help protect plants against drying by freezing and other forms of desiccation (see for example, among many others http://psi081.ba.ars.usda.gov/BBGD/dehydrins.htm).

Database searching and multiple sequence alignment

A ‘real-life,’ project oriented tutorial.  How and where do we start?

I will use bold type in this tutorial for those commands and keystrokes that you are to type in at your console or for buttons that you are to click in SeqLab.  I also use bold type for section headings.  Screen traces are shown in a “typewriter” style Courier font and “////////////” indicates abridged data.  The arrow symbol, “>“ indicates the system prompt and should not be typed as a part of commands.  Really important statements may be underlined.

SeqLab is a part of the Genetics Computer Group’s (GCG) Wisconsin Package.  The Wisconsin Package only runs on server computers running the UNIX operating system but it can be accessed from any networked terminal.  This comprehensive package of sequence analysis programs is used worldwide, but has recently been ‘retired’ by its controlling company, Accelrys, Inc.  This does mean though, that the license will no longer expire, and can be put on different computers than the one for which it was originally purchased.  However, its retirement also means that it is no longer supported, and this means that as the UNIX operating system is upgraded in time the two will become incompatible.  Truly a shame, as GCG arguably became the global ‘industry-standard’ in sequence analysis software.  The Wisconsin Package provides a comprehensive toolkit of almost 150 integrated DNA and protein analysis programs, from database, pattern, and motif searching; fragment assembly; mapping; and sequence comparison; to gene finding; protein and evolutionary analysis; primer selection; and DNA and RNA secondary structure prediction.  The powerful SeqLab X-windows based Graphical User Interface (GUI) is a ‘front-end’ to the package.  It provides an intuitive alternative to the UNIX command line by allowing menu-driven access to most of GCG’s programs.  SeqLab is based on Steve Smith’s (1994) GDE (the Genetic Data Environment) and makes running the Wisconsin Package much easier by providing a common editing interface from which most programs can be launched and alignments can be manipulated.  This workshop will show you how to use SeqLab to search for similar sequences, investigate pair-wise sequence similarity, and prepare and analyze multiple sequence alignments.  Once you gain an appreciation for SeqLab’s power and ease of use, I don’t think you’ll be satisfied with any other sequence analysis system.

Specialized “X-server” graphics communications software is required to use GCG’s SeqLab interface.  X server emulation software needs to be installed separately on personal style Microsoft Windows/Intel but genuine X-Windowing comes standard with most UNIX/Linux operating systems.  ‘Wintel’ machines are often set up with either XWin32 or eXceed to provide this function.  Macintoshes are different: pre-OS X Machines need X-Windowing emulation software and are often loaded with either MacX or eXodus software; OS X Macs can have true X windowing installed as an optional install from the original OS disk.  The details of X and of connecting to your local GCG server will not be covered in this workshop.  If you are unsure of these procedures ask for assistance in the computer laboratory.  Your bio-computing support personnel are also available for individualized personal help in your own laboratories.  I am also receptive to e-mail consultation, just contact me at stevet@bio.fsu.edu.  A couple of tips at this point should be mentioned though.  X-windows are only active when the mouse cursor is in that window, and always close windows when you are through with them to conserve system memory.  Furthermore, rather than holding mouse buttons down, to activate items, just click on them.  Also buttons are turned on when they are pushed in and shaded.  Finally, do not close windows with the X-server software’s close icon in the upper right- or left-hand window corner, rather, always use GCG’s “Close” or “Cancel” or “OK” button, usually at the bottom of the window.

Log onto your GCG account and launch SeqLab

Each participant in the session should use a different UNIX account. SeqLab behaves best when only one person uses it per UNIX GCG account.  Either login with your existing account and password or use the new one supplied to you at the beginning of the workshop.  Use the appropriate connection commands on the personal computer or terminal that you are sitting at to launch X and log onto the UNIX host computer that runs GCG at your site.  An X-style terminal window should appear on the desktop after a few moments, if it doesn’t, launch one with the appropriate command.  Get assistance from your instructor or systems manager for this step if you are unsure of yourself.  The details of X and of connecting to a GCG server are not covered here, though they are reviewed in the supplement.  There are just too many variations in method for them all to be described.

The Wisconsin Package usually initializes automatically as soon as your terminal window launches.  If your site isn’t configured this way, you may have to source the package (get help) and then issue the command “gcg” (without the quotes) to initialize the software suite.  This initialization process activates all of the programs within the package and displays the current version of both the software and all of its accompanying databases.

Issue the command “seqlab &” (again without the quotes) in your terminal window to fire up the SeqLab interface.  The ampersand, “&,” is not necessary but really helps out by launching SeqLab as a background process so that you can retain control of your initial terminal window.  This should produce two new windows, the first an introduction with an “OK” box; check “OK.”  You should now be in SeqLab’s List mode.

Before beginning any analyses, go to the “Options” menu and select “Preferences . . ..”  A few of the options should be checked there to insure that SeqLab runs its most intuitive manner.  The defaults are usually fine, but I want you to see what’s available to change.  Remember, buttons are turned on when they’re pushed in and shaded.

First notice that there are three different “Preferences” settings that can be changed: “General,” “Output,” and “Fonts;” start with “General.”  The “Working Dir . . .” setting will be the directory from which SeqLab was initially launched.  This is where all SeqLab’s working files will be stored; it can be changed in your accounts if desired, however, it is appropriate to leave it as is for now.  Be sure that the “Start SeqLab in:” choice has “Main List” selected and that “Close the window” is selected under the “After I push the “Run” button:” choice.  Next select the “Output” Preference.  Be sure “Automatically display new output” is selected.  Finally, take a look at the “Fonts” menu.  If you are dealing with very large alignments, then picking a smaller Editor font point size may be desirable in order to see more of your alignment on the screen at once.  Click “OK” to accept any changes.

Find your protein in the database.

Given interest in a particular biological molecular sequence, you can use any of several available text string searching tools to find that entry’s name in a sequence database.  After an entry has been identified, a natural next step is to use a sequence similarity searching program such as FastA and/or BLAST to help prepare a list of sequences to be aligned.  One of the more difficult aspects of multiple alignment analysis is knowing what sequences you should attempt it with.  Any list from any program will need to be restricted to only those sequences that actually should be aligned.  Make sure that the group of sequences that you align are in fact related, that they actually belong to the same gene family, that the alignment will be meaningful.

As mentioned above, the collection of protein sequences used throughout the tutorial will all be plant dehydrins.  We’ll find our initial query sequence with GCG’s LookUp program, a Sequence Retrieval System (SRS) derivative (Etzold and Argos, 1993) and a database similarity search.  But it could as well have been found using Entrez at NCBI, or SRS on the Web, available at all EMBL and many other biocomputing sites around the world (see e.g. http://srs.ebi.ac.uk/).  To use sequence entries in GCG programs from GCG databases we need to know their proper database names or accession codes.  Database text searching programs are often the easiest way to do this.  Here we’ll use GCG’s LookUp program because it creates an output file that can be used as an input list file to other GCG programs.  We’ll use it to find the peach dehydrin protein from the UniProt database.

To start be sure that the “Mode:” “Main List” choice is selected in your main window and then launch “LookUp” through the “Functions” “Database Reference Searching” menu.  In the new “LookUp” window be sure that “Search the chosen sequence libraries” is checked and then select “Uniprot” as the library to search.  Under the main query section of the window, type the word “dehydrin” following the category “Definition” and the word “prunus” in the “Organism” category; next press the “Run” button.  Our query should find the peach dehydrins in the UniProt database, and will provide a reasonable starting dataset for the tutorial.  Your “LookUp” window should look similar to the screen snapshot shown at left on the following page:

[image: image13.wmf]
Note that if we wanted more specific, multiple word search terms, then we would need to use Boolean operator symbols to connect individual query strings, because the databases are indexed using individual words for most fields.  The “Organism” field is an exception; it will accept ‘Genus species’ designations as well as any other single word supported level of taxonomy, e.g. “Magnoliophyta.”  The Boolean operators supported by LookUp are the ampersand, “&”, meaning “AND,” the pipe symbol, “|”, to denote the logical “OR,” and the exclamation point, “!”, to specify “BUT NOT.”  Other LookUp query construction rules are case insensitivity, parenthesis nesting, “*” and “?” wildcard support, and automatic wildcard extension.  To turn off the automatic wildcard extension, follow your term with a pound sign, “#”.
The program will display the results of the search; scroll through the output and then “Close” the window.  My LookUp output file follows below; my version of UniProt had six peach dehydrins.  Yours may have more, since my UniProt is from last summer’s build:

!!SEQUENCE_LIST 1.0

LOOKUP in: uniprot  of: "([SQ-DEF: dehydrin*] & [SQ-ORG: prunus*])"

 6 entries  May 21, 2008 15:02 ..

UNIPROT_TREMBL:Q5QIC0_PRUPE ! ID: 48521301

! DE   Dehydrin 2.

UNIPROT_TREMBL:Q40955_PRUPE ! ID: 1cd11301

! DE   Dehydrin (Fragment).

UNIPROT_TREMBL:Q9LEE1_PRUPE ! ID: 61871401

! DE   Dehydrin-like protein (Fragment).

! GN   Name=dhn1a;

UNIPROT_TREMBL:Q40968_PRUPE ! ID: 76e21401

! DE   Dehydrin.

UNIPROT_TREMBL:Q30E95_PRUPE ! ID: ac651501

! DE   Type II SK2 dehydrin (Fragment).

! GN   Name=dhn3;

UNIPROT_TREMBL:Q4JNX4_PRUDU ! ID: d16b1501

! DE   Dehydrin (Fragment).

Be careful that the sequences in the output from any text searching program are appropriate.  In this case they do all look like real dehydrins, but improper nomenclature and other database inconsistencies can always cause problems.  If you find inappropriate proteins upon reading the output, you can use a text editor to comment out the undesired sequences by placing an exclamation point, “!,” in front of the unwanted lines, or to actually remove them from the output file .  Alternatively you can “CUT” them from the SeqLab Editor display after loading the list.

Select the LookUp output file in the “SeqLab Output Manager.”  This is a very important window and will contain all of the output from your current SeqLab session.  Files may be displayed, printed, saved in other locations or with other names, and deleted from this window.  Press the “Add to Main List” button in the “SeqLab Output Manager” and “Close” the window afterwards.  Go to the “File” menu next and press “Save List.”  Next, be sure that the LookUp output file is selected in the “SeqLab Main Window” and then switch “Mode:” to “Editor.”  This will load the file into the SeqLab Editor and allow us to perform further analyses on those entries.

Notice that all of the sequences now appear in the Editor window with the amino acid residues color-coded.  The nine color groups are based on a UPGMA clustering of the BLOSUM62 amino acid scoring matrix, and approximate physical property categories for the different amino acids.  Expand the window to an appropriate size by ‘grabbing’ the bottom-left corner of its ‘frame’ and ‘pulling’ it out as far as desired.  Use the vertical and horizontal scroll bars to move through the dataset, though here with only six sequences you won’t need to scroll vertically.  Any portion of, or the entire alignment loaded, is now available for analysis by any of the GCG programs.  Your display with the loaded dataset should look similar to the screen snapshot below:

[image: image14.wmf]
Another way to get sequences into SeqLab is to use the “Add sequences from” “Sequence Files. . .” choice under the “File” menu.  GCG format compatible sequences or list files are accessible through this route.  Use SeqLab’s Editor “File” menu “Import” function to directly load GenBank format sequences or ABI binary trace files without the need to reformat.  You can also directly load sequences from the online GCG databases with the “Databases. . .” choice under the “Add sequences” menu if you know their proper identifier name or accession code.  The “Add Sequences” window’s “Filter” box can be confusing.  Use it to specify any path and extension that will find the files you need, but be sure to leave the “*” wild card.  Press the “Filter” button to display all of the files in the specified directory.  Select the file that you want from the “Files” box, and then check the “Add” and then “Close” buttons at the bottom of the window to put the desired file into your current list, if you’re in List Mode, or directly into the Editor, if you’re in “Editor Mode.”

While you have sequences loaded in the Editor explore the interface for a bit.  Each protein sequence is listed by its official UniProt entry name (ID identifier).  The scroll bar at the bottom allows you to move through the sequences linearly; the one at the side allows you to scroll through all of your entries vertically if there’s more than fit in the window.  Quickly double click on various entries’ names (or single click the “INFO” icon with the sequence entry name selected) to see the database reference documentation on them.  (This is the same information that you can get with the GCG command “typedata -ref” at the command line.)  “Close” the “Sequence Information” windows after reading them.  You can also change the sequences’ names and add any documentation that you want in this window.  Change the “Display:” box from “Residue Coloring” to “Feature Coloring” and then “Graphic Features.”  Now the display shows a schematic of the feature information from each entry with colors based on the information from the database Feature Table for the entry.  “Graphic Features” represents features using the same colors but in a ‘cartoon’ fashion.  There’s not much here, since these entries are all from the SPTrEMBL section of UniProt, that is they are preliminary and not annotated nearly as well as SwissProt entries.  Quickly double-click one of the blue-box colored regions of the sequences (or use the “Features” choice under the “Windows” menu).  This will produce a new window that describes the features located at the cursor.  Select the feature to show more details and to select that feature in its entirety.  All the features are fully editable through the “Edit” check box in this panel and new features can be added with several desired shapes and colors through the “Add” check box.

Nearly all GCG programs are accessible through the “Functions” menu.  Select various entry’s names and then go to the “Functions” menu to perform different analyses on them.  You can select sequences in their entirety by clicking on their names or you can select any position(s) within sequences by ‘capturing’ them with the mouse.  You can select a range of sequence names by <shift><clicking> the top-most and bottom-most name desired, or <ctrl><right-click> sequence entry names to select noncontiguous entries.  The “pos:” and “col:” indicators show you where the cursor is located on a sequence without including and with including gaps respectively.  The “1:1” scroll bar near the upper right-hand corner allows you to ‘zoom’ in or out on the sequences; move it to 2:1 and beyond and notice the difference in the display.

It’s probably a good idea to save the sequences in the display at this point and multiple times down the road as you work on a dataset.  Do this occasionally the whole time you’re in SeqLab just in case there’s an interruption of service for any reason.  Go to the “File” menu and choose “Save As.”  Accept the default “.rsf” extension but give it any file name you choose.  RSF (Rich Sequence Format) contains all the aligned sequence data as well as all the reference and feature annotation associated with each entry.  It is “Richer” than most other multiple sequence formats and is SeqLab’s default format.

Traditional database searching: FastA approaches

FastA was the first widely used heuristic, hashing style, symbol matching algorithm used for database searching.  This algorithm (see my introduction, and also the GCG Program Manual with the Help buttons in SeqLab or use the genmanual command for details) is incorporated into GCG’s FastA family of programs (Pearson and Lipman, 1988 and Pearson, 1998).  These programs really ‘eat-up’ cpu time.  In spite of the fast hashing, heuristic style algorithms incorporated, they can take quite a while to search through a whole database like GenBank.  There is no way you want to wait in front of a unusable terminal while the computer cranks away comparing your query to that many sequences; therefore, take advantage of batch and/or background process capabilities.  All of the GCG database searches accept a really handy automatic batch submission option from the command line (-batch), or searches automatically run in the background when submitted from SeqLab.

One of the FastA programs is really powerful: TFastX takes advantage of the sensitivity of a protein query, yet searches nucleic acid databases, and allows for frame shifts due to sequencing errors.  It compares your peptide sequence against all six translations of a DNA database, and allows for the frame changes that minor sequencing mistakes can cause.  These types of errors are especially prevalent in the tags databases (EST’s [expressed sequence tags], HTC [high-throughput cDNA], and GSS’s [genome survey sequences]) — be warned.  This way you can take advantage of DNA databases which do not have corresponding peptide databases, such as the tags databases, and yet still retain the vastly increased sensitivity level of protein searches.  Sometimes sequences found by TFastX won’t show up in any other searches.  This could be valuable information, especially if sometime during your sequence’s evolutionary history it incorporated (was ‘infected’ by) any type of mobile DNA element.  Furthermore, as mentioned in the introduction, if you are forced to search DNA against DNA, because you are dealing with non-protein-coding sequence, then FastA is far more sensitive than BLAST.  Finally, a really nice feature of the GCG FastA family is you can use any valid GCG sequence specification as the database to be searched, whereas BLAST requires preformatted databases.

We’ll use this last advantage today with a new LookUp search list of all the UniProt proteins that come from the same family as peach, Rosaceae.  This will have two benefits: one, it will dramatically speed up the subsequent FastA search, and, two, it will make the search more sensitive, both the result of using a smaller database.  Therefore, just as you did back when we found peach dehydrin, go to the “Functions” “Database Reference Searching” menu and choose “LookUp. . .” to launch the Wisconsin Package’s sequence database annotation searching program (or you can use the “Wiindows” menu to ‘shortcut’ to programs you’ve already used in the current SeqLab session).  However, this time you won’t be looking for any particular protein, rather you’ll be looking for all of the proteins from  Rosaceae.  Specify “UniProt” to “Search the chosen sequence libraries” and type “rosaceae” in the “Organism” category.  Do not use any other restrictions.  Press the “Run” button.  The result file will be a few thousand entries.  That’s great; mine contains 4,363 entries, and I’m using last summer’s version of the UniProt database!  Yours will likely be bigger.  “Close” the LookUp results file, and “Save” the LookUp output file with a name that makes sense to you.  I used “Rosaceae.uniprot.list.”  Then press the “Add to Main List” button in the “SeqLab Output Manager”   “Close” the Output Manager window afterwards.

Select the sequence entry name from a full-length protein in the Editor that you wish to use for this section, I picked “Q40968_PRUPE,” and then go to the “Functions” “Database Sequence Searching “ menu and select “FastA. . .” (not FastA+) to start the FastA program.  If a "Which selection" window pops up asking if you want to use the "selected sequences" or "selected region;" choose "selected sequences" to run the program on the full length of the dehydrin protein.  “Using” all of “uniprot:*” is the default FastA “Search Set. . .” database.  This takes advantage of the great annotation in UniProt, but UniProt is really huge, so the search could take quite a while to run.  We’ll change the search set specification from “uniprot:*” to the LookUp list file we just made, to make the search run more quickly, to exclude sequences we are not interested in, and to increase its sensitivity.  Use the “Search Set” button to select “uniprot:*,” in the ”Build FastA’s Search Set” pop up box, and then press “Remove from Search Set.”  Next, press the “Add Main List Selection. . .” button and then pick your new Rosaceae specific LookUp file in the “List Chooser” window that pops up to identify your new list file.  Press “Add” and then “Close” the “List Chooser” window and the “Build Search Set” windows.  The other parameters in the main FastA window are fine at their default settings, though you may want to decrease the cutoff Expectation value, “List scores until E() reaches,” from its default “10.00” to a more reasonable “1.000” to dramatically reduce the output list size and exclude the most insignificant hits.

Press the “Options. . .” button to check out the optional parameters.  Scroll down the window and notice the “Show sequence alignments in the output file” button.  This toggles the command line option –NoAlign off and on to suppress the pairwise alignment section.  This can be helpful if you’re not interested in the pairwise alignments and want smaller output files.  Some of the other options can be helpful depending on your specific situation, and can be explored in your own research.  Restricting your search by the database sequence length or by date of their deposition in the database may be handy.  The program default “Save and sort by optimized score” option (–OptAll) causes the algorithm to sort its output based on a normalized derivative of the optimum score, the result of the program’s dynamic programming ‘in-a-band’ pass, and is what you want, rather than the initn score, which is the longest combined word score.  “Close” the “Options” window, be sure that the “FastA” program window shows “How:” “Background Job,” and then press the “Run” button.

To check on the job’s progress go to SeqLab’s “Windows” menu and choose “Job Manager.”  Select the “FastA” entry to see its progress (though there is no indication of how much longer the job will take!) and then close the window.  Be sure not to submit the same job multiple times, and if you see that you have accidentally done so, you use the “Job Manager” to “Stop” the given job.  Go on with the rest of the tutorial now rather than waiting for the FastA results.  Depending on your server’s load it could be a while.

BLAST: Internet and local server based similarity searching

As described in the introduction, BLAST (Altschul, et al., 1990 and 1997) is a extremely fast heuristic algorithm for searching sequence databases developed by the National Center for Biotechnology Information (NCBI), a division of the National Library of Medicine (NLM), at the National Institute of Health (NIH), the same people responsible for maintaining GenBank and for providing worldwide access to sequence analysis resources.  The acronym stands for Basic Local Alignment Search Tool. The original BLAST algorithm only looked for ungapped segments; however, the current version (Altschul, et al., 1997) adds a dynamic programming step to produce gapped alignments.  As with the FastA family, BLAST ranks matches statistically and provides Expectation values for each to help evaluate significance.  It is very fast, almost an order of magnitude over traditional sequence similarity database searching such as FastA, yet maintains the sensitivity of older methods for local similarity in protein sequences!  Another advantage of BLAST is it not only shows you the best alignment for each similar sequence found (as in the BestFit type alignments of the FastA family), but it also shows the next best alignments for each up to a certain preset cutoff point.  This combines some of the power of dot-matrix type analyses and the interpretative ease of traditional sequence alignments.  A disadvantage of BLAST is it requires precompiled special databases and will not accept the general type of GCG sequence specification that the FastA programs will (though you can build your own custom BLAST databases with FormatDB+, and if you are feeling bold, go ahead and do that and then run BLAST from the command line to specify your custom database).  You can fine-tune BLAST by altering its operating parameters and taking advantage of the many options available in it.  However, as described in the introduction, BLAST is not the best tool for comparing nucleotide sequences against the nucleotide database without translation, especially with short sequences.  In this situation, with default parameters, it will only find nearly identical DNA sequences, but will not be able to locate sequences that are only somewhat similar.  Using BLAST in this manner, that is a nucleotide query against a nucleotide database, activates BLASTN and is the very worst way to run BLAST.  This is because BLAST is not optimized for this type of search, and DNA just doesn’t have the ‘look-back’ time of protein regardless of what program used.  The sensitivity is just not there.  Therefore, if you are dealing with a non-protein-coding, non-translated locus, and are forced to compare a DNA query against a DNA database without translation, use FastA instead of BLAST; it is the far more appropriate tool.  In addition to this tutorial’s introduction, NCBI’s BLAST Help pages and GCG’s BLAST documentation are both good sources of further information on the BLAST family of programs.

GCG accesses NCBI’s BLAST server with NetBLAST, a client-server system such that NCBI’s database and computers perform the analysis, not your server.  You’ll often have to wait in a queue though, because the NCBI servers get very busy.  It uses the same fast heuristic, statistical hashing algorithm as GCG’s local BLAST program, but runs on a very fast parallel computer system located at NCBI in Bethesda, MD, so that typical searches run in just a couple of minutes, after the waiting queue.  Furthermore, the BLAST servers at NCBI provide the most up to date search available because NCBI updates their sequence databases every night.  However, realize that this program, as with the local version of BLAST, is optimized for protein comparisons, and, unlike other GCG programs, the list generated by NetBLAST is not appropriate as input to other GCG analyses.  NetBLAST returns files in NCBI’s own format, incompatible with GCG (but see GCG’s NetFetch).  For that reason I will be showing local BLAST here, though the same procedures and logic apply to NetBLAST.  GCG’s local BLAST program does produce an output file in valid GCG “list file” format, so that it can be fed directly to other GCG programs.

To launch GCG’s local BLAST program, be sure that your dehydrin sequence entry name is still selected and then pick “Blast. . .” (not Blast+) off of the “Functions” “Database Sequence Searching” menu.  As above, if a "Which selection" window pops up asking if you want to use the "selected sequences" or "selected region," choose "selected sequences."  The program default on the main window is to “Search a protein database” “Search Set. . .” “Using local uniprot” with a protein query.  Since we’re already searching through all of the Rosaceae sequences within UniProt, let’s use a different database.  Therefore, press the “Search Set. . .” button and change the selection to specify “local rs_prot.”  This will launch BLASTP against the local version of the RefSeq protein database, which is quite a bit smaller than the other protein choices, UniProt or GenPept.  As in the FastA programs, decreasing the Expectation cutoff value will decrease the output list size.  Set “Ignore hits that might occur more than how many times by chance alone” from its default “10.0” down to “1.000” as before.  Push the “Options. . .” button to get a chance to review them.  Notice that “Filter input sequences for complex / repeat regions” is turned on by default.  This powerful option causes troublesome repeat and low information portions of the query sequence to be ignored in the search, and should generally be taken advantage of.  This screening of low complexity sequences from your query minimizes search confusion due to random noise.  (Programs that perform this function on protein sequences, Xnu and Seg, are available separately in GCG for prescreening protein sequences prior to other analyses besides BLAST.)  Also notice the “Display alignments from how many sequences” button; this generates the –Align= option, useful for suppressing unneeded segment alignments and reducing the size of the output file.  The standard output file is very long because BLAST in SeqLab automatically aligns the best 250 matches so you may wish to reduce this parameter.  However, beginning and ending attributes are only saved in the BLAST output list file from those segment alignments that you request.  “Close” the “Options” window and then press the “Run” button in BLAST’s main window after assuring that  “How:” shows “Background Job.”  It should finish pretty quickly, though your FastA job will likely still be running.

Read on through the rest of the tutorial at this point, though your BLAST run may be done before your FastA run.  If you end up waiting to finish the tutorial later on, then “Exit” SeqLab and save your RSF and list files, and then log off the GCG server and the computer lab workstation.  When you return to SeqLab your results will be waiting for you and you can complete the tutorial.  When the BLAST and FastA search results are ready, again use the “Output Manager” (always available under SeqLab’s “Windows” menu) to display and save your BLAST and FastA output files with appropriate names, and then use the “Add to Main List” button to get the results in a convenient place.

What Next?  Comparisons, interpretations, and further analyses

I’ll show my abridged database search output files next.  Naturally, the topmost ‘hits’ will be dehydrin proteins; it’s the ones below the expected hits that may prove interesting for this section of the tutorial.  Those results follow below, starting with BLAST.  Especially pay attention to BLAST’s E-value scores in its output file.  As explained in the Introduction, these are the likelihoods (Expectations) that the observed matches could be due to chance — the smaller the E number, the more significant the match.  They are much easier to interpret than the information theory bits score in the adjacent column.  Here’s my greatly abridged BLAST output from the search of RefSeqProt:

!!SEQUENCE_LIST 1.0

BLASTP 2.2.10 [Oct-19-2004]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, 

Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), 

"Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs",  Nucleic Acids Res. 25:3389-3402.

Query= /panfs/storage.local/genacc/home/stevet/.seqlab-

submit/input_77.rsf{Q40968_PRUPE}

         (468 letters)

Database: rs_prot 

           3,648,590 sequences; 1,291,050,995 total letters

Searching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 . . . . . . . . .done

                                                      Score    E

 Sequences producing significant alignments:          (bits)  Value ..

rs_prot:NP_190666  Begin: 36 End: 191 

!LTI30/XERO2 (LOW TEMPERATURE-INDUCED 30) [Arab...           75   9e-12

rs_prot:NP_001067844  Begin: 98 End: 170 

!Os11g0454300 [Oryza sativa (japonica cultiv...              63   3e-08

rs_prot:NP_001067841  Begin: 71 End: 149 

!Os11g0453900 [Oryza sativa (japonica cultiv...              59   5e-07

rs_prot:NP_850947  Begin: 141 End: 243 

!ERD10/LTI45 (EARLY RESPONSIVE TO DEHYDRATION 1...           55   7e-06

rs_prot:NP_850947  Begin: 140 End: 243 

!ERD10/LTI45 (EARLY RESPONSIVE TO DEHYDRATION 1...       

rs_prot:NP_850947  Begin: 142 End: 243 

!ERD10/LTI45 (EARLY RESPONSIVE TO DEHYDRATION 1...       

rs_prot:NP_564114  Begin: 140 End: 242 

!ERD10/LTI45 (EARLY RESPONSIVE TO DEHYDRATION 1...           55   7e-06

rs_prot:NP_564114  Begin: 139 End: 242 

!ERD10/LTI45 (EARLY RESPONSIVE TO DEHYDRATION 1...       

rs_prot:NP_564114  Begin: 141 End: 242 

!ERD10/LTI45 (EARLY RESPONSIVE TO DEHYDRATION 1...       

rs_prot:NP_001067838  Begin: 245 End: 323 

!Os11g0451700 [Oryza sativa (japonica cultiv...              53   4e-05

rs_prot:NP_001043995  Begin: 163 End: 224 

!Os01g0702500 [Oryza sativa (japonica cultiv...              52   6e-05

rs_prot:NP_001043995  Begin: 176 End: 227 

!Os01g0702500 [Oryza sativa (japonica cultiv...          

rs_prot:NP_173468  Begin: 134 End: 247 

!COR47 (cold regulated 47) [Arabidopsis thaliana].           51   1e-04

rs_prot:NP_173468  Begin: 133 End: 247 

!COR47 (cold regulated 47) [Arabidopsis thaliana].       

rs_prot:NP_173468  Begin: 135 End: 247 

!COR47 (cold regulated 47) [Arabidopsis thaliana].       

rs_prot:NP_179744  Begin: 124 End: 184 

!dehydrin family protein [Arabidopsis thaliana].             50   2e-04

rs_prot:NP_179744  Begin: 140 End: 181 

!dehydrin family protein [Arabidopsis thaliana].         

rs_prot:NP_201441  Begin: 125 End: 184 

!RAB18 (RESPONSIVE TO ABA 18) [Arabidopsis thal...           50   3e-04

rs_prot:NP_001032162  Begin: 124 End: 183 

!RAB18 (RESPONSIVE TO ABA 18) [Arabidopsis t...              50   3e-04

rs_prot:NP_001067843  Begin: 88 End: 162 

!Os11g0454200 [Oryza sativa (japonica cultiv...              48   9e-04

rs_prot:NP_001067842  Begin: 86 End: 162 

!Os11g0454000 [Oryza sativa (japonica cultiv...              48   9e-04

rs_prot:NP_190667  Begin: 71 End: 126 

!dehydrin, putative [Arabidopsis thaliana].                  48   0.001

rs_prot:NP_001047689  Begin: 195 End: 267 

!Os02g0669100 [Oryza sativa (japonica cultiv...              43   0.028

rs_prot:NP_001047689  Begin: 195 End: 270 

!Os02g0669100 [Oryza sativa (japonica cultiv...          

rs_prot:NP_001047689  Begin: 193 End: 270 

!Os02g0669100 [Oryza sativa (japonica cultiv...          

rs_prot:NP_195554  Begin: 109 End: 158 

!dehydrin, putative [Arabidopsis thaliana].                  40   0.31 

rs_prot:NP_177745  Begin: 114 End: 170 

!ERD14 (EARLY RESPONSE TO DEHYDRATION 14) [Arab...           39   0.53 

rs_prot:NP_177745  Begin: 111 End: 170 

!ERD14 (EARLY RESPONSE TO DEHYDRATION 14) [Arab...       

rs_prot:NP_177745  Begin: 111 End: 170 

!ERD14 (EARLY RESPONSE TO DEHYDRATION 14) [Arab...       

\\End of List

>rs_prot:NP_190666 LTI30/XERO2 (LOW TEMPERATURE-INDUCED 30) [Arabidopsis thaliana].

          Length = 193

 Score = 74.7 bits (182), Expect = 9e-12

 Identities = 57/194 (29%), Positives = 82/194 (42%), Gaps = 38/194 (19%)

Query: 142 HHEKKGIIGQVKDKLPGGQKDDQYCRDTHPXXXXXXXXXXXXXEDHEKKGIIGQVKDKLP 201

           HHEKKG+  +V ++LPG                            HEKKG+  +V ++LP

Sbjct: 36  HHEKKGMTEKVMEQLPGHH-----------------GATGTGGVHHEKKGMTEKVMEQLP 78

Query: 202 GGQKDDQYCRDTHPXXXXXXXXXXXXXEHQEKKGIIGQVKDKLPGGQKDDQYSHDTHPXX 261

           G     Q   +T                H EKK +  +V +KLPG        H +H   

Sbjct: 79  GHHGSHQTGTNT------TYGTTNTGGVHHEKKSVTEKVMEKLPG-------HHGSHQTG 125

Query: 262 XXXXXXXXXXXXXREKKGIIDQVKDKLPGGQKDDHYSHDTHPTTGAFGGAGYTRDDTREK 321

                         EKKGI +++K++LPG     H +H T  TT ++G  G       E 

Sbjct: 126 TNTAYGTNTNVVHHEKKGIAEKIKEQLPG----HHGTHKTGTTT-SYGNTGVVH---HEN 177

Query: 322 KGIIDQVKDKLPGG 335

           K  +D++K+KLPGG

Sbjct: 178 KSTMDKIKEKLPGG 191

///////////////////////////////////////////////////////////////////////////

The output is a perfectly suitable GCG list file, complete with beginning and ending attributes for those alignments specified, and complementary strand attributes when necessary if using DNA.  The pair-wise alignments requested are illustrated with X’s replacing those ‘low-complexity’ characters that were screened out, with identity positions highlighted by amino acid single letter symbols, and with similarity positions identified by plus signs.  Notice all the low complexity regions in dehydrin!  BLAST can even find more than one segment of alignment on the same sequence entry.  This can be particularly helpful in those cases where the database entry is from genomic DNA and has several dispersed exons each with separate homologies to your query.

You will often be able to see somewhat of a demarcation where the Expectation values drop off between the significant hits and background noise, sometimes they’ll even help discriminate between orthologues, paralogues, domain-only hits, and random noise.  With dehydrin though, at least in my version of RefSeq proteins, this is not obvious, and there is a steady increase in E-values with all hits belonging to plant stress-related proteins.

Next I’ll show my abridged example FastA search output file of peach dehydrin against the UniProt Rosaceae LookUp list.  You can see the E-value brackets that I mention above somewhat better here.  Most likely those scores better than 10-100 are true dehydrins, and those significant scores around 10-10 are other stress-related proteins with homologous domains, and the rest are anybodies’ guess.

This search was much more sensitive than the BLAST search, since there are so many fewer Rosaceae sequences in UniProt than there are  total sequences in RefSeqProt..

!!SEQUENCE_LIST 1.0

(Peptide) FASTA of: input_80.rsf{q40968_prupe}  from: 1 to: 468  June 2, 2008 20:58

Description:  Q40968 prunus persica (peach). dehydrin. 10/2006

Accession/ID: Q40968

====================General comments====================

ID   Q40968_PRUPE            Unreviewed;       468 AA.

 TO: @/panfs/storage.local/genacc/home/stevet/tutorials/FVSU/Rosaceae.uniprot.list  Se

quences:      4,363  Symbols:     1,079,314  Word Size: 2

 Databases searched:

   UNIPROT, Release 11.1, Released on 12Jun2007, Formatted on 22Jun2007

 Scoring matrix: GenRunData:blosum50.cmp

 Variable pamfactor used

 Gap creation penalty: 12  Gap extension penalty: 2

Histogram Key:

 Each histogram symbol represents 7 search set sequences

 Each inset symbol represents 1 search set sequences

 z-scores computed from opt scores

z-score obs    exp

        (=)    (*)

< 20      4      0:=

  22      0      0:

  24      0      0:

  26      0      0:

  28      0      1:*

  30      4      6:*

  32     13     23:== *

  34    105     63:========*======

  36    154    129:==================*===

  38    265    213:==============================*=======

  40    294    297:==========================================*

  42    384    363:===================================================*===

  44    277    401:========================================                 *

  46    380    408:=======================================================   *

  48    261    391:======================================                 *

  50    411    357:==================================================*========

  52    384    314:============================================*==========

  54    301    268:======================================*====

  56    232    224:===============================*==

  58    180    184:==========================*

  60    142    149:=====================*

  62    124    119:================*=

  64    124     95:=============*====

  66     75     75:==========*

  68     54     59:========*

  70     33     46:===== *

  72     23     36:==== *

  74     23     28:===*

  76     12     22:== *

  78     14     17:==*

  80     13     13:=*

  82     17     10:=*=

  84      8      8:=*

  86      5      6:*

  88      2      5:*

  90      2      4:*

  92      7      3:*         :==*====

  94      5      2:*         :=*===

  96      0      2:*         : *

  98      6      1:*         :*=====

 100      3      1:*         :*==

 102      1      1:*         :*

 104      1      1:*         :*

 106      2      0:=         *==

 108      2      0:=         *==

 110      3      0:=         *===

 112      0      0:          *

 114      0      0:          *

 116      0      0:          *

 118      0      0:          *

>120     13      0:==        *=============

Joining threshold: 37, opt. threshold: 25, opt. width:  16, reg.-scaled

The best scores are:                    init1 initn   opt    z-sc E(4347)..

UNIPROT_TREMBL:Q40968_PRUPE    Begin: 1  End: 468

! Q40968 prunus persica (peach). dehy... 3299  3299  3299  3893.2  2.1e-211

UNIPROT_TREMBL:Q9LEE1_PRUPE    Begin: 1  End: 457

! Q9lee1 prunus persica (peach). dehy... 3134  3134  3134  3698.9  1.4e-200

UNIPROT_TREMBL:Q4JNX4_PRUDU    Begin: 1  End: 270

! Q4jnx4 prunus dulcis (almond) (prun... 1826  1826  1826  2160.4  6.9e-115

UNIPROT_TREMBL:Q40955_PRUPE    Begin: 4  End: 268

! Q40955 prunus persica (peach). dehy... 1812  1812  1814  2146.3  4.2e-114

UNIPROT_TREMBL:A1XSX2_MALDO    Begin: 1  End: 229

! A1xsx2 malus domestica (apple) (mal...  267   440   467   559.7   1e-25

UNIPROT_TREMBL:Q9LUX4_PYRPY    Begin: 1  End: 100

! Q9lux4 pyrus pyrifolia (japanese pe...  117   199   258   318.2  2.8e-12

UNIPROT_TREMBL:Q5QIC0_PRUPE    Begin: 7  End: 200

! Q5qic0 prunus persica (peach). dehy...  111   230   210   257.5  6.7e-09

UNIPROT_TREMBL:Q30E95_PRUPE    Begin: 82  End: 225

! Q30e95 prunus persica (peach). type...   85   155   211   257.5  6.8e-09

UNIPROT_TREMBL:Q9SW89_PRUDU    Begin: 7  End: 200

! Q9sw89 prunus dulcis (almond) (prun...  111   225   208   255.2  9.1e-09

UNIPROT_TREMBL:Q9SDS0_PRUDU    Begin: 7  End: 97

! Q9sds0 prunus dulcis (almond) (prun...   85   152   164   206.4  4.8e-06

UNIPROT_TREMBL:Q93WZ6_PRUPE    Begin: 3  End: 191

! Q93wz6 prunus persica (peach). absc...   64   108   115   145.8   0.011

UNIPROT_TREMBL:O50000_PRUAR    Begin: 7  End: 182

! O50000 prunus armeniaca (apricot). ...   64   109   113   143.3   0.016

UNIPROT_TREMBL:Q5KTE4_PYRPY    Begin: 167  End: 261

! Q5kte4 pyrus pyrifolia (japanese pe...   52    52    98   121.4    0.26

UNIPROT_TREMBL:Q6YNS1_PRUAV    Begin: 107  End: 158

! Q6yns1 prunus avium (cherry). putat...   62    84    85   111.0    0.98

\\End of List

input_80.rsf{q40968_prupe}

UNIPROT_TREMBL:Q40968_PRUPE

ID   Q40968_PRUPE            Unreviewed;       468 AA.

AC   Q40968;

DT   01-NOV-1996, integrated into UniProtKB/TrEMBL.

DT   01-NOV-1996, sequence version 1.

DT   31-OCT-2006, entry version 30.

DE   Dehydrin. . . . 

SCORES   Init1: 3299  Initn: 3299  Opt: 3299  z-score: 3893.2 E(): 2.1e-211

>>UNIPROT_TREMBL:Q40968_PRUPE                             (468 aa)

 initn: 3299 init1: 3299 opt: 3299 Z-score: 3893.2 expect(): 2.1e-211

Smith-Waterman score: 3299;   100.0% identity in 468 aa overlap

 (1-468:1-468)

                     10        20        30        40        50        60

input_80.rsf MAHFGSTPEPTKTDEYGNPVHHTTTGTGRTDEFGNPVQHGVADTGYGTGAGYGTHTKPGV

             ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Q40968_PRUPE MAHFGSTPEPTKTDEYGNPVHHTTTGTGRTDEFGNPVQHGVADTGYGTGAGYGTHTKPGV

                     10        20        30        40        50        60

                     70        80        90       100       110       120

input_80.rsf VEHHGRPAVLHSKDDQYSRDTQTTTGGYGGDGYTGGEHQEKKGLLGQLQDKLPGGNKDGQ

             ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Q40968_PRUPE VEHHGRPAVLHSKDDQYSRDTQTTTGGYGGDGYTGGEHQEKKGLLGQLQDKLPGGNKDGQ

                     70        80        90       100       110       120

                    130       140       150       160       170       180

input_80.rsf YSHDTQTTTGAYGGAGYTGGEHHEKKGIIGQVKDKLPGGQKDDQYCRDTHPTTGAYGGAG

             ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Q40968_PRUPE YSHDTQTTTGAYGGAGYTGGEHHEKKGIIGQVKDKLPGGQKDDQYCRDTHPTTGAYGGAG

                    130       140       150       160       170       180

                    190       200       210       220       230       240

input_80.rsf YTGGEDHEKKGIIGQVKDKLPGGQKDDQYCRDTHPTTGAYGGAGYTGGEHQEKKGIIGQV

             ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Q40968_PRUPE YTGGEDHEKKGIIGQVKDKLPGGQKDDQYCRDTHPTTGAYGGAGYTGGEHQEKKGIIGQV

                    190       200       210       220       230       240

                    250       260       270       280       290       300

input_80.rsf KDKLPGGQKDDQYSHDTHPTTGAYGGGGYTGDDTREKKGIIDQVKDKLPGGQKDDHYSHD

             ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Q40968_PRUPE KDKLPGGQKDDQYSHDTHPTTGAYGGGGYTGDDTREKKGIIDQVKDKLPGGQKDDHYSHD

                    250       260       270       280       290       300

                    310       320       330       340       350       360

input_76.rsf THPTTGAFGGAGYTRDDTREKKGIIDQVKDKLPGGRQDDHYSHETHPTTGAYGGAGYTGD

             ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Q40968_PRUPE THPTTGAFGGAGYTRDDTREKKGIIDQVKDKLPGGRQDDHYSHETHPTTGAYGGAGYTGD

                    310       320       330       340       350       360

                    370       380       390       400       410       420

input_76.rsf DTREKKGVVEKVKEKLPGGQNVHPTTGPYGGGGAAGIGETRERKGVGEKVEEKLPGGHKD

             ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Q40968_PRUPE DTREKKGVVEKVKEKLPGGQNVHPTTGPYGGGGAAGIGETRERKGVGEKVEEKLPGGHKD

                    370       380       390       400       410       420

///////////////////////////////////////////////////////////////////////////

The FastA output file is also an acceptable GCG list file with database sequence begin and end attributes that can serve as input to other GCG programs.  These may include strand attributes denoted with “! vs rev query“ where necessary when using DNA, to designate the reverse complement DNA strand.  The file shows a histogram of the actual extreme value score distribution from the search, then a sorted list of the top scores and finally, if alignments are not suppressed with the –NoAlign option, a specified number, or the default forty, BestFit style alignments from the score list.  These pairwise alignments show gaps as hyphens, “-,“ identities as colons, “:,” and conservative replacement positions as periods, “..”  Forward slashes, “/,” indicate frame shifts on DNA strands in translated searches, and numbering coordinates can be used to go back to the original nucleotide entry to ascertain translated areas that may correspond to exons of genomic sequence.

The histogram of the score distribution can be helpful to get a feeling for the statistical significance of the search and in ascertaining whether you ran your search list large enough.  For the search statistics to be valid, the expected extreme value distribution, as indicated by the line of asterisks, should approximate the actual distribution, as shown by the equal signs.  Normally you want your list size big enough to include some of the population of random low scores to help you ascertain the significance of the alignments; the default FastA Expectation cutoff of 10.0 assures this.  The inset shows a zoom-in blowup of the highly significant score end of the graph — these are the best alignments found by the program, not the worst!  The histogram can be suppressed with the –NoHistogram option if desired.

Notice that the entries are sorted by a “z” score parameter.  This z-score is based on a normalization of the opt scores and their distribution from the rest of the database.  It is different than the more traditional Monte Carlo style normal distribution Z score that I described in the introduction.  Here it is calculated from a simple linear regression against the natural log of the search set sequence length.  (See William R. Pearson, Protein Science 4; 1145-1160 [1995] for an explanation of how this z-score is calculated.)  Both help describe the statistical significance of an alignment.

As in BLAST reports, the Expectation function, E(), is by far the most important column.  It works the same as in BLAST — here it describes the number of search set sequences that would be needed to obtain a z-score greater than or equal to the z-score obtained in any particular search purely by chance.  In other words, just like BLAST E-values, the smaller the number, the better.  As a conservative rule-of-thumb, for a search against a protein database of around 100,000 sequences, as long as optimization is not turned off, E-values of much less than 0.01 are probably homologous, and scores from 0.01 to 1 may be homologous, whereas scores between 1 to 10 are only perhaps homologous, although these guidelines can be skewed by compositional biases. Furthermore, Expectation values have to be considered in light of each search performed, completely dependent on the size and content of the database being searched, and on how often you are performing that search.

Similarity Searching to Decrease (or Increase) Dataset Size.

Before leaving database similarity searching I want to discuss some practical issues.  As just seen, a logical step in preparing a multiple sequence alignment is to run a similarity search to add those most similar sequences from the database to your dataset.  An advantage to running similarity searches within the context of GCG is the results are immediately available for further analyses without the need for any sequence downloading or reformatting because of the GCG list file format and the fact that all of the databases are mounted locally.  In your own research settings, and depending on the type of questions that you are asking, you may want to create very large alignments by screening all available databases for sequences of significant similarity to your query.  So let’s talk about just how big you can go.

The Wisconsin Package’s restrictions, excluding the “+” programs, allow individual sequences to be a maximum of 350 Kb in length, though SeqLab can display longer sequences.  You may want to load a longer sequence into SeqLab if you are working on the genome scale, and want to extract sub-ranges from that entry.  The MSF file format can hold up to 500 sequences; RSF can hold much more, only limited by system memory.  This allows programs such as HmmerAlign (described later) to produce multiple sequence alignment output larger than 500 sequences.  PileUp, GCG’s ‘classic’ progressive multiple alignment program, can handle a sequence alignment up to 7,000 characters long, including gaps.  It’s input sequences are restricted to a length of 5,000 characters by default.  The 'overall surface-of-comparison' is restricted to 2,250,000 with the default PileUp program, a bit more than all the residues or bases plus all the gaps in the alignment.  Alternative executables are provided with the Package for allowing 10,000, 15,000, and 20,000 character input with the commands “pileup_10000,” “pileup_15000,” and “pileup_20000” respectively.  ClustalX and programs exterior to GCG can deal with even bigger datasets.  Take home message: You can make really huge alignments if you care to; it's all up to what you really need to do to answer the biological questions that you are asking.

But what about the opposite situation, when you have too many homologues?  FastA style database similarity searching is great for this type of a data mining function.  It  can be very helpful for sorting any collection of GCG sequence specifications into order of alignment significance.  This data mining function allows you to easily screen undesired sequences from the bottom of any list or combinations of lists.  But, be warned, on some systems and some versions of GCG, you can not run FastA on too small of a dataset without causing core dumps!  A trick is to add another small database to your search set.  This provides the necessary background randomization to allow proper normalization.  You can also force it to work with very small datasets by turning optimization off (-NOOPTall).  Another point to remember is you can not use any of the BLAST programs to search against any sequence set that has not been preformatted into a BLAST compatible database.  Because of this, BLAST is not an appropriate program to use for this type of list file sorting, data mining function, unless you take the extra step to prepare your own custom BLAST databases.  However, the FastA family of programs support all GCG sequence specifications, so it works great for this purpose.
Interpreting database search results — what is significant?  Beyond mere Expectations . . .

It’s easy to know that your sequence aligns well with itself and with other close homologues; we know these alignments are significant.  They don’t cause anybody any problems; they’re obvious.  Therefore, for the remainder of this section we’ll use sequences where the similarity isn’t so obvious.  Find interesting sequences from your searches that are not recognizably dehydrins, and that have ‘barely decent’ Expectation scores.  We’re interested here in how some of the not so similar, as Russell Doolittle calls them ‘twilight zone,’ sequences, align, and the significance of those alignments.  Therefore, choose two completely different, ‘twilight zone’ entries, one each, from each of your program runs, BLAST and FastA.  This may be a little hard to do with dehydrin since it belongs to a pretty big gene family, and it’s likely your searches just barely got beyond true homologues with our E-value cutoff of 1.00, but do what you can.  Try to avoid using obvious homologues based on their definition title unless absolutely necessary, and try for different types of proteins from each of the searches.  There are no ‘correct’ answers here; we just want to see some interesting comparisons.  Barring all else, just pick the bottommost entry from each search, but that’s kind of boring.  Write down your choices.  We will experiment with various methods for analyzing the significance of these sequences’ similarity.  My lowest scoring BLAST search ‘twilight zone’ sequence is some sort of a stress-related protein according to its description, but the poorer scoring FastA hits don’t state what they are.  The relevant lines showing my two choices from those searches follow.

From the BLASTP search of RefSeqProt I chose that lowest scoring entry mentioned above.  It’s from Arabidopsis and has a quite mediocre E-value, 5.3 x 10-1:

rs_prot:NP_177745  Begin: 114 End: 170 

!ERD14 (EARLY RESPONSE TO DEHYDRATION 14) [Arab...           39   0.53

And from the FastA output I chose an apricot sequence with a somewhat better score, 1.6 x 10-2:

UNIPROT_TREMBL:O50000_PRUAR    Begin: 7  End: 182

! O50000 prunus armeniaca (apricot). ...   64   109   113   143.3   0.016

Load both of the similarity search output files into SeqLab by going to the “File” “Add sequences from” “Main List. . .” menu.  Pick both of your search output files by <shift><clicking> them and then press the “Add” button in the “List Chooser.”  You should get a “Reloading Same Sequence” box because you found the same sequences as you the ones in the initial LookUp list and that you used as a query and because BLAST may have found more than one segment of similarity per sequence in its search— press “Overwrite old with new” so that you only have one copy of each sequence in the editor.  You’ll also get a “List file attributes set” box where you’ll be asked to either “Modify the sequences” or “Ignore all attributes,” if you’re loading the results of a similarity search.  This prompt requires some thought.  The answer will depend on the type of alignment you are creating and the biological questions that you asking.  In many cases, especially if you are asking phylogenetic questions, then you will not want to modify the sequences.  Load their full length to maximize available signal.  However, if dealing with extremely diverse sequences and/or just domains of sequences, then trimming the sequences down to those most conserved portions identified by the search algorithm can be very helpful.  Press “Ignore all attributes” at this point, although realize that often you will want to “Modify the sequences” in order to trim them off to just those portions identified by the search program as being similar.  “Close” the “List Chooser” after adding the two search output files.  They will be added to the bottom of the present dataset loaded in the SeqLab Editor.  Be you’re your display is set to “1:1” and “Residue Coloring” and then find the two new entries that you chose above (or use the “Edit” menu “Select by Name” function).  Next, quickly double-click on the entry’s names that you chose, or use the “INFO” icon with the sequence’s name selected to read about each.  Now would also be a great time to again save your RSF file, and we’re ready for some in-depth analyses.  “Overwrite” in the “File exists” box if you’ve used the same name for this file earlier.  I suggest that you do this, as RSF files are quite large and there’s no need to save all the various versions of the data.

If the sequences came from a nucleic acid database, an additional step would be necessary to compare them against protein queries.  The protein coding regions in them that correspond to the regions discovered by the search algorithm would need to be translated.  The easiest way to do this is to use the sequence’s CDS (coding sequence) feature annotation, if it has any and it makes sense.  Double-click anywhere within the sequence to launch the “Sequence Features” window, and switch the features being displayed from “Show:”  “Features at the cursor” to “All features in current sequence.”  This will allow you to scroll through the entire sequence’s feature list and select any that are relevant.  Often with genomic DNA you’ll have to choose every CDS of each exon associated with the particular gene that was found to be similar to your query.  (Do not select “mRNA” or “exon” features — UTR’s and/or splicing variants may mess you up.)  Be wary of translations that do not begin at position one.  These are flagged in the entry’s Features annotation with “/codon_start=2” or “3” and are often seen in cases where the actual CDS begins before the sequence begins and ends after the sequence ends: “CDS        <1 . . >418.”  Go to the “Edit” menu and “Select Range. . .;” only that region that you want to translate by providing the correct beginning and ending numbers and then pressing “Select” and “Close” in turn.  Next return to the “Edit” menu and select “Translate. . .;” specify “Selected regions” if asked.  Press “OK” in the next window to translate (and concatenate all of the exons if you’re dealing with that situation) the selected CDS region.

However, if a nucleotide database entry is not annotated with CDS feature data, as is the case in most of the tags databases, then you have to translate the entry using some other criteria.  TBLASTN and TFastX outputs should list beginning and ending attributes in the list portion of the file (unless suppressed) and they will indicate whether the similarity was found on the forward or reverse strand.  One way to translate just the desired region is to select the DNA sequence and then click the “PROTECT” icon.  Next push all the buttons on in the “Protections” window to allow all modifications and click “OK.”  You can then use the “Edit” “Select Range. . .” function to select the downstream, 3’, region first that needs to be trimmed away.  Select the region one base further than the area identified by the search algorithm all the way to end of the molecule; press “Select” and then “Close.”  Next you can use the “CUT” icon to trim that portion away; being sure to specify “Selected regions” when prompted, not “Selected sequences.”  You can then repeat this procedure on the upstream, 5’, region that is not similar to your query to trim it away too.  Next, if the sequence similarity was found on the reverse strand you’ll need to use the “Edit” “Reverse. . .” menu and specify “Reverse and Complement.”  And finally, go to the “Edit” “Translate. . .” button and translate the “First” frame of the sequence by pressing the “OK” button.  This will produce a translation of only that segment that the search algorithm identified.

GCG’s implementation of the dot plot: Compare and DotPlot

Dot matrix analysis is one of the few ways to identify other elements beyond what dynamic programming algorithms show to be similar between two sequences.  GCG implements dot matrix methods with two programs.  Compare generates the data that serves as input to DotPlot, which actually draws the matrix.  You’ll compare your dehydrin query sequence to both ‘twilight zone,’ near neighbors (as described above) using these methods next.

You’ll run the programs twice, comparing your dehydrin query sequence to the two interesting database sequences found by BLAST and FastA.  Start the process by selecting your original dehydrin query sequence and each new entry that you chose above, two at a time per program run, in the SeqLab main Editor display.  “CUT” and “PASTE” (the ‘pasted’ entry will go right below any other sequence entry name that you have selected) your sequences to move them side-by-side on top of one another so that you can easily select both at the same time (or use <ctrl><right-click> to select non-adjacent entries).  In general, put the longer sequence along the horizontal axis of a dot plot by having it first in the SeqLab display.  Dot plots just look better that way, though it is not necessary.  Next go to the “Functions” menu and select “Pairwise Comparison” “Compare. . .“ to produce a Compare program window.  Notice that “DotPlot. . .” is checked by default so that the output from Compare will automatically be passed to DotPlot.  The graphic will be drawn after the “Run” button is pushed.  This will run the program at the GCG protein stringency default of 10 points within a window of 30 residues.  That means wherever the average of BLOSUM62 match scores within the window is equal to or exceeds 10, a point is drawn at the middle of the window, then the window is slid over one position at which point the process is repeated.

As in all windowing algorithms, you want to use a window size approximately the same size as the feature that you’re trying to recognize.  You can leave the window at its default setting of 30 for these runs, unless one of your sequences is so short that size of window would cover most of the sequence, in which case you should reduce the window size appropriately.  To create the cleanest looking dot plot, rerun the program increasing the stringency of the comparisons until the number of points generated (seen in both the “.pnt” file and in the graphic) is of the same order of magnitude as the length of the longest sequence being compared.  This and changing the window size is done through the “Options” menu.  Subsequent runs after the first can be launched from the “Windows” menu ‘shortcut’ listing.  My first example from the BLAST search of RefSeqProt, compares the peach dehydrin to the Arabidopsis Early Response to Dehydration protein 14.  I found the default stringency of 10 points within a window of 30 residues resulted in 752 points — close enough to the longer sequence’s length to produce a nice, clean dot plot, with little confusing noise.  The dot plot graphic is shown below.

[image: image15.wmf]
Sometimes interpreting a dot plot can be quite an accomplishment itself — just remember that all diagonals are regions of similarity between the two sequences, and any diagonal off the main center line indicates regions that do not correspond in linear placement between the two sequences yet are still similar.  So, in this dot plot there are two regions of clear direct repeats that occur between the second half of the Arabidopsis sequence and the last four fifths of the peach dehydrin sequence.  Do you think this is significant?  There are also a few other regions that stand out, notably a strong diagonal between Arabidopsis 70 to 180 and peach 65 to 160 including some gaps, and a smaller one between Arabidopsis coordinates 30 to 60 and peach 305 to 335, or thereabouts.

My second example, the apricot sequence against the peach dehydrin, looks somewhat similar, but is a lot noisier, almost 2,500 points.  I could rerun the program setting the stringency a bit higher to reduce the noise level, but the ‘story remains the same’ — there’s a whole slew of direct repeats in these sequences, and several of them are nested, overlapping repeats!  These are the ‘blobs’ of diagonals where one repeat starts before the previous one finishes.  If you do mess with the parameters, it’s easy to reset them with the “GCG Defaults” button.  My second dot plot example follows below.  It still shows direct repeats along most of the length of peach dehydrin, as well as along most of the length of the apricot sequence.  Do you think any of them are significant?

[image: image16.wmf]
Columns or rows of multiple diagonals always mean direct repeat sequences in dot plots.  Dot matrix techniques are about the best available for recognizing repeats in biological sequences.  Do your dot plots show similar direct repeats?  Do any of your comparisons show surprising similarities where you wouldn’t have expected them based on Expectation scores?  These type of observations point out the critical need to go beyond just one type of analysis and investigate any particular question in several different manners.  When running your dot plots, take notes of those particular regions in the proteins that have the longest running similarity or that look the most interesting.  Don’t worry about being too accurate with these coordinates, just get them within about 25 residues or so, but we will need these numbers in the next section.  Get at least the one best region from each of your ‘interesting’ comparisons.  Because these sequences have such long regions of direct repeats you may want to choose a range over the entire region of repeats.  For instance, in my second example direct repeats occur all over the entire length of both sequences, so I’ll test the whole lengths of both of them.  In the first example though, I would want to make three separate analyses, those that test the direct repeat regions, and those that test those two regions that I noted above as being potentially interesting.

The pairwise dynamic programming alignment algorithms.  Use the right one for the right job —
GCG’s Gap, BestFit, and FrameAlign.

You need to understand the difference between these algorithms!  Gap is a ‘global’ alignment scheme ala Needleman and Wunsch, and BestFit is a Smith and Waterman ‘local’ algorithm, both between two sequences of the same type, whereas FrameAlign can be global or local depending on the options that you set, but it always aligns DNA to protein.  Using one versus the other implies that you are looking for distinctly different relationships.  Know what they mean.  If you already know that the full length of two sequences of the same type are pretty close, that they probably belong to the same family, then Gap is the program for you.  It will align the full length of both sequences.  If you only suspect an area of one is similar to an area of another, then you should use BestFit.  To force BestFit to be even more local, you can specify a more stringent alternative symbol comparison table, such as the PAM30 or BLOSUM90 matrices.  If you suspect that a DNA sequencing error is affecting the alignment, then FrameAlign is the program to use.  All three programs can generate ‘gapped’ output files in standard sequence formats as an option; this can be handy as direct input to other GCG routines — particularly multiple sequence analysis programs.

BestFit and Gap both allow you to estimate significance with a Monte Carlo –Randomizations=100 option, as described in the Introduction.  Let’s use it with BestFit to illustrate some of the previous comparisons.  Before beginning though, study your dot plot notes from before.  This approach works best when applied to local areas where you already know some similarity exists and you wish to further test that similarity, otherwise you are just throwing noise into the analysis.  Therefore, restrict the next set of analyses to those regions of similarity identified by the dot plots.  However, remember that dot plots show us all the regions that are similar, whereas dynamic programming only gives us one optimal solution.

Unfortunately SeqLab’s Editor will not allow us to choose two different ranges on two different sequences.  Some things are still simpler from the command line!  In lieu of switching to the command line, you could create new spaces to hold duplicate sequence data through the “File” “New Sequence. . .” “Protein” menu.  But you would have to repeat the procedure for each pair-wise comparison, and you would need to rename the newly created sequences through the “INFO” icon so that you could recognize what they are.  Then you would need to copy and paste all of the desired subsequences into the new spots.  The “Text clipboard” holds portions of a sequence, rather than an entire entry including its references.  After creating all the new subsequences, then you could use the “Functions” “Pairwise Comparison” “BestFit. . .” “Options” button to take advantage of “Generate statistics from randomized alignments” changing the “Number of randomizations” up to “100.”  What a complicated pain!  We’ll do if from the command line instead.

Therefore, temporarily switch to your ssh terminal window by clicking in it.  You may have to minimize your SeqLab window, but don’t exit SeqLab at this point.  We’ll be using it more after this portion of the tutorial.  We’ll use the terminal window to manually launch the BestFit program and –Randomizations option.  We’ll need to specify the required sequence entries that you identified above, along with each respective region from the dot plots.  The region constraints are supplied with –Begin1, –Begin2, –End1, and –End2 options.  I’ll provide sample command lines here for two of my comparisons; they’re quite straightforward.  Use my examples to come up with your own commands.  Specify output file names that make sense to you.  My examples follow; first I’ll show the full-length comparison of the peach dehydrin against the apricot sequence, both from UniProt.  This one could be done from SeqLab, but go ahead and use the command line.  Notice how the GCG logical database names are used to specify where to find the sequence entries, uniprot here, and rs_prot below:

> bestfit uniprot:q40968_prupe uniprot:O50000_pruar -random=100
And next the comparison of those ‘longish’ regions between the peach dehydrin and Arabidopsis sequence.  This one would be difficult from SeqLab, and would require the copy and paste operations described above:

> bestfit uniprot:q40968_prupe -begin1=65 -end1=160 rs_prot:np_177745
 -begin2=70 -end2=180 -random=100

If we had needed to specify sequences from our RSF file, for instance, if the sequences didn’t exist in the GCG databases, then you would need to pay particular attention to the peculiar sequence specification required for RSF files — you would need to use both the RSF file name and a set of braces with your sequence’s name inside.  There are always spaces between each parameter, and GCG logical name database specifications are case insensitive, but file names are case sensitive.  Press <enter/return> to accept the rest of the program defaults when you run the commands.  Do this with at least your top two choices so that you end up with a minimum of two BestFit output files that align the ‘best’ portions of the peach dehydrins with those ‘best’ portions of your two ‘interesting’ comparisons.

My first output file, the best fit portions from the entire length of peach dehydrin against the entire length of the apricot sequence, is shown below.  Notice the 37% similarity is spread over most of the length analyzed.  This is great, and usually a sign of significance.  However, notice the original quality and randomized quality are pretty much the same.  The Z score calculates to only be 0.2; therefore, the interpretation is that the similarity is entirely insignificant, and that its FastA Expectation value of  1.6 x 10-2 is somewhat misleading.

 BESTFIT of: q40968_prupe  check: 5693  from: 1  to: 468

ID   Q40968_PRUPE            Unreviewed;       468 AA.

AC   Q40968;

DT   01-NOV-1996, integrated into UniProtKB/TrEMBL.

DT   01-NOV-1996, sequence version 1.

DT   31-OCT-2006, entry version 30.

DE   Dehydrin. . . . 

 to: O50000_PRUAR  check: 107  from: 1  to: 200

ID   O50000_PRUAR            Unreviewed;       200 AA.

AC   O50000;

DT   01-JUN-1998, integrated into UniProtKB/TrEMBL.

DT   01-JUN-1998, sequence version 1.

DT   03-APR-2007, entry version 25.

DE   Abscisic stress ripening protein homolog. . . . 

 Symbol comparison table: /opt/Bio/GCG/share/matrix/blosum62.cmp

 CompCheck: 1102

         Gap Weight:      8      Average Match:  2.778

      Length Weight:      2   Average Mismatch: -2.248

            Quality:     72             Length:    187

              Ratio:  0.419               Gaps:      9

 Percent Similarity: 37.267   Percent Identity: 29.814

 Average quality based on 100 randomizations: 69.7 +/- 11.0

        Match display thresholds for the alignment(s):

                    | = IDENTITY

                    : =   2

                    . =   1

 q40968_prupe x O50000_PRUAR June 3, 2008 23:39  ..

                  .         .         .         .         .

      63 HHGRPAVLHSKDDQYSRDTQ..TTTGGYGGDGYTGGEHQEKKGLLGQLQD 110

         |||     | ||:    :|     .|||  :| ||  :    |  |    

       7 HHG..LFHHHKDEDRPIETSDYPQSGGYSDEGRTGSGYGGGGGGYGGGGG 54

                  .         .         .         .         .

     111 KLPGGNKDGQ...YSHDTQTTTGAYGGAGY.......TGGEHHEKK..GI 148

            ||   |    || : .  .|  || ||        || : |    | 

      55 YGDGGGGYGDNTAYSGEGRPGSGYGGGGGYGESADYSDGGRYKETAAYGT 104

                  .         .         .         .         .

     149 IGQVKDKLPGGQKDDQYCRDTHPTTGAYGGAG.YTGGEDHEKKGIIGQVK 197

          |  . .:   ..:  :    | .      || :   | || |      |

     105 TGTNESEIDYKKEEKHHKHLEHLSEPGAAAAGVFALHEKHESK......K 148

                  .         .         .       

     198 DKLPGGQKDDQYCRDTHPTTGAYGGAGYTGGEHQEKK 234

         |  |          :      | |  |:   || |||

     149 D..P.EHAHKHKIEEEIAAAAAVGSGGFAFHEHHEKK 182

Notice that much of the similarity between these sequences is in regions that have a lot of Histidines and Glycines.  As I said earlier, repeat, low-complexity regions have the potential to skew the results of search algorithms, and therefore, the discrepancy between the FastA E-value and this Monte Carlo style Z score is not all that surprising.  The significance of the alignment is just not there.  Often a seemingly decent alignment will not be significant upon further inspection — do not blindly accept the output of any computer program!  Always investigate further for similarities can be strictly artifactual.  Comparisons can turn out to be entirely insignificant in spite of what seems to be, upon first inspection, a very good alignment and a pretty high percent identity.  A Monte Carlo style Z-test below around 3.5, near the bottom of Doolittle’s “Twilight Zone,” will often suggest that the similarity is not at all significant, that it is merely the result of compositional bias.  As mentioned previously, the programs Xnu and Seg are available in the Wisconsin Package outside of BLAST for pre-filtering your sequences.  This is particularly prudent in situations with molecules like these stress proteins where you know that a lot of repeat and/or low complexity sequence composition has the potential to confound search algorithms.

The next one compares the peach dehydrin against the Arabidopsis stress-related protein.  However, here I’ll restrict the analysis to just one of those regions that I identified from the previous dot plot, residues 65 through 160 of the peach protein, against residues 70 through 180 of the Arabidopsis protein.  The results of this BestFit analysis follow below; they are decidedly different than the previous one:

 BESTFIT of: q40968_prupe  check: 5693  from: 65  to: 160

ID   Q40968_PRUPE            Unreviewed;       468 AA.

AC   Q40968;

DT   01-NOV-1996, integrated into UniProtKB/TrEMBL.

DT   01-NOV-1996, sequence version 1.

DT   31-OCT-2006, entry version 30.

DE   Dehydrin. . . . 

 to: np_177745  check: 1092  from: 70  to: 180

LOCUS       NP_177745                185 aa            linear   PLN 20-APR-2007

DEFINITION  ERD14 (EARLY RESPONSE TO DEHYDRATION 14) [Arabidopsis thaliana].

ACCESSION   NP_177745

VERSION     NP_177745.1  GI:15222983

DBSOURCE    REFSEQ: accession NM_106267.3

KEYWORDS    . . . . 

 Symbol comparison table: /opt/Bio/GCG/share/matrix/blosum62.cmp

 CompCheck: 1102

         Gap Weight:      8      Average Match:  2.778

      Length Weight:      2   Average Mismatch: -2.248

            Quality:     85             Length:     64

              Ratio:  1.417               Gaps:      2

 Percent Similarity: 51.724   Percent Identity: 41.379

 Average quality based on 100 randomizations: 26.4 +/- 4.6

        Match display thresholds for the alignment(s):

                    | = IDENTITY

                    : =   2

                    . =   1

 q40968_prupe x np_177745  June 4, 2008 00:09  ..

                  .         .         .         .         .

      97 EHQEKKGLLGQLQDKLPGGNKDGQYSHDTQTTTGAYGGAGYTGGEHH..E 144

         . :|||| : .|.:||||  |      |      |         | |  |

     111 KEEEKKGFMEKLKEKLPGHKK....PEDGSAVAAAPVVVPPPVEEAHPVE 156

                  .    

     145 KKGIIGQVKDKLPG 158

         ||||: .:|:||||

     157 KKGILEKIKEKLPG 170

Here the Z score for this domain turns out to be quite significant, 12.7, in spite of its relatively mediocre percent similarity, 52%, its disappointing BLAST E-value, 5.3 x 10-1, and its short homology ‘patch.’  This clearly shows how percent identities and/or similarities can be misleading.  Both sequences share this homologous domain, and most likely those domains share a common function.

As mentioned earlier, if you suspect a frame shift sequencing error in a DNA sequence being considered, a very powerful pairwise alignment program, FrameAlign, is available, but we will not be running it here.  This program uses dynamic programming to align a protein to a DNA sequence with the allowance of frame shifts.  Frame shift errors will appear in the pair output alignment as gaps that are not multiples of three.  However, it does not support the Randomizations option.

Multiple sequence alignment and analysis

Next let’s switch tracks.  Rather than investigating pairwise comparisons anymore, let’s move on to analyzing more than two sequences at a time.  As mentioned in the introduction, one of the harder aspects of multiple sequence alignment is knowing just what to align.  In these days of huge genome projects and massive databases, one important slant to that is a data mining question, that is, figuring out just which sequences to align from a huge number available that are all homologous to your query.  So often it depends on the type of scientific question that you are asking in your research.  Are you interested in predicting the structure or the function of your ‘pet’ molecule; how about in ascertaining the evolution of a paralogous gene family within a species as the result of gene duplications; what about the evolution of several species based on an analysis of the orthologues present in several different species?  Clearly the dataset to be used is directly molded by the question that you ask.

This may be a logical break point between sessions.  If you wish to finish up for the day, correctly leave SeqLab and pick up the tutorial at this point when you return.  To do this bring SeqLab back into the foreground and exit it with the “File” menu “Exit” choice.  Save your RSF file and any changes in your list with appropriate responses.  Accept the suggested changes and designate names that make sense to you; SeqLab will close.  Log out of the current UNIX session on the GCG host that you were connected to and then log out of the workstation that you are sitting at.  Otherwise, just keep on working through the tutorial.  To get back into SeqLab afterwards, just repeat the ssh connection procedure (and GCG initialization steps, if necessary) and SeqLab command used at eh beginning of the tutorial.

Similarity search results are loaded into the Editor in order of similarity to your query, from most similar to least similar.  Both of our searches used Expectation cutoffs of 1.0; therefore, the bottom of each list contains sequences insignificantly similar to your query.  Furthermore, we want to deal with a dataset that we can easily align and analyze in a reasonable amount of time.  Therefore, we need to get rid of many of the entries from our RSF file.  Preferably you would do this in some rational way related to your objectives.  For instance if you want to eventually know the evolution of a particular gene family, then you should probably look at all the paralogues within one particular species.  Whereas, if you are interested in the phylogeny of many different organisms, then you should try to cull out the one, same orthologue across each species.  As mentioned earlier, often Expectation values can help you make these decisions, with all the orthologues having the smallest E values, the paralogues belonging in the next bracket of E values, and perhaps sequences that only share a similar domain having another bracket of E values.

Therefore, temporarily switch to your terminal window behind your SeqLab session and then take a look at your search output files.  Remember, do this with the command “more filename.”  Try to find an area in it where the Expectation scores markedly increase, yet we don’t want to restrict our analyses to just the very closest homologues.  In my FastA search the jump from 10-6 to 10-2 would be an excellent cutoff:

UNIPROT_TREMBL:Q9SDS0_PRUDU    Begin: 7  End: 97

! Q9sds0 prunus dulcis (almond) (prun...   85   152   164   206.4  4.8e-06
( here!
UNIPROT_TREMBL:Q93WZ6_PRUPE    Begin: 3  End: 191

! Q93wz6 prunus persica (peach). absc...   64   108   115   145.8   0.011

Find a comparable cutoff in your BLAST search of RefSeqProt, though it’ll be a bit more difficult and somewhat arbitrary here, because the scores don’t fall off as quickly due to the size of the database:

rs_prot:NP_190667  Begin: 71 End: 126 

!dehydrin, putative [Arabidopsis thaliana].                  48   0.001

( here!
rs_prot:NP_001047689  Begin: 195 End: 267 

!Os02g0669100 [Oryza sativa (japonica cultiv...              43   0.028

rs_prot:NP_001047689  Begin: 195 End: 270 

Return to your SeqLab Editor display, and select, and then use the “CUT” button, to get rid of those sequences that you’ve decided to exclude from the analysis, i.e. all sequences with a score worse than the cutoff you’ve decided upon for each search.  This should include those “twilight-zone” sequences that we analyzed earlier with the dot plot and Monte Carlo procedures.  You can use the “Edit” menu “Select by Name. . .” function to find entries, if they’re not obvious.  “Close” the “Select by Name” window after pressing the “Select” button.  You can select a range of entries by selecting one, and then scrolling to the point in the dataset at the bottom of the desired range, and then pressing the <shift> key and mouse <click> combination on that bottom-most entry.  Pressing “CUT” will now delete the entire range of sequences that you had selected.  See how many entries you have left after this step — for the sake of practicality we want a final dataset with fifty or less entries.  If you still have way more that that, indiscriminately “CUT” more entries from the bottom of each search set until you have a manageable number.  Quickly double click on some of the entries’ names left to see the database reference descriptions for them (or click on the “INFO” button).  Save your RSF file again after doing this trimming.  The graphic below shows my Editor display after trimming down my dataset to the desired size:

[image: image17.wmf]
MEME

As mentioned in the Introduction, MEME is used to discover unrecognized patterns in an unaligned dataset.  To run MEME select all of the sequences in the Editor window using the “Edit” menu “Select All” button, and then launch “MEME. . .” off of the “Functions” “Multiple Comparisons” menu.  A "Which selection" window may pop up asking if you want to use the "Selected sequences" or "Selected region;" choose "Selected sequences" to run the program on the full length of all the sequences.  In most cases the default parameters will work fine, but the algorithm can be sped up at the cost of sensitivity by decreasing the number of motifs to be found, by restricting the number of motifs found to exactly one in each sequence, and/or by decreasing the allowable motif window size.  Again, I suggest reading the relevant GCG Program Manual chapters.  Press the “Run” button to execute the program.  MEME will take a while to process your sequences.  Do not wait for it to finish.  Go on with the rest of the tutorial and then return to this section when it does finish, so that you can do the work in the next two paragraphs.

MEME output consists of two files; a “.meme” readable text file and a “.prf” multiple profile text file.  MotifSearch will scan any dataset specified with the multiple profile file that MEME produces.  It is very helpful to scan the original ‘training’ dataset with these new profiles.  This will annotate those regions that MEME discovered in your SeqLab Editor RSF file.  After alignment the MEME motifs that are alignable will all line up.  Go to the “Database Sequence Searching” menu and select “MotifSearch. . ..”  Specify your “query profile(s),” the one you just made with MEME, and change the “Search set” to “Remove from Search Set” “uniprot:*” and “Add Main List Selection. . .” the RSF dataset that you now have loaded in the Editor.  “Close” the “Build MotifSearch’s Search Set” window.  Be sure to activate “Save motif features to the RSF file,” the –RSF option.  Press “Run.”  The output will quickly return with the “.rsf” file on top.  Don’t bother trying to read it; it isn’t very interesting to (it’s SeqLab’s RSF “Rich Text Format”); just “Close” it.  It contains the feature data discovered by MEME in your dataset.  The “.ms” file contains the readable results of the search in list file format with Expectation value statistics and the number of motif hits for each fit.  After the list file portion a “Position diagram” schematically describes the hits in each sequence.  Use the Output Manager “Display” button to take and look and then “Close” the “.ms” file.

Use the Output Manager to merge the new “motifsearch.rsf” feature file with the existing data already in the open SeqLab Editor.  This will add the newly discovered MEME feature annotation created when you activated the MotifSearch –RSF option.  The location of each motif will now be included in the Editor sequence display.  To do this, use the extremely important “Add to Editor” Output Manager function.  Specify “Overwrite old with new” in the next window when prompted to merge the new feature information with the existing dataset. “Delete from disk“ the “motifsearch.rsf” file and then “Close” the “Output Manager” after loading your new RSF file.  Change “Display:” to “Graphic Features” and check out the additional annotation.  The figure below illustrates my unaligned dataset example using “Graphic Features” display at a “4:1” zoom ratio:

[image: image18.wmf]
A ‘quick and dirty’ PROSITE scan — GCG’s Motifs search

Before aligning these sequences let’s look over them for consensus patterns from PROSITE.  This does not work very well with sequences that have gaps in them, because if the gaps occur within a motif it will not be recognized, so it needs to be run before alignment.  Start the Motifs program by making sure that all of the protein entries’ names in SeqLab are still selected, and then going to the “Functions” “Protein Analysis” menu and picking “Motifs. . ..”  The "Motifs" program window will be displayed.  Check the “Save results as features in file motifs.rsf” button in the “Motifs” program window (the –RSF option).  This file will contain annotation discovered by the program, and we’ll use it below.  None of the other options are required for this run, so press the “Run” button.  After a few moments you should get output.  “Close” first file displayed, “motifs.rsf,” and use the “Output Manager” to display the file with the “.motifs” extension instead.  Carefully look over the text file that is displayed.  Notice the sites in your Motifs output file that have been characterized and the extensive bibliography associated with them.  Motifs discovers dehydrin signatures in the sequences and nothing else.  An abridged version of my Motifs output file follows:

 MOTIFS from: @/panfs/storage.local/genacc/home/stevet/.seqlab-submit/motifs_87.list

 Mismatches: 0                June 4, 2008 13:51  ..

input_87.rsf{NP_001067844}  Check: 4559  Length: 172   ! Os11g0454300 [Oryza sativa (j

aponica cultivar-group)].

______________________________________________________________________________

Dehydrin_1            S4(S,D)(D,E)x(D,E)(G,V,E)x{1,7}(G,E)x{0,2}(K,R)4

                               S{4}(S)(E)x(D)(G)x(G)x(K,R){4}

            86: RSGSS                 SSSSSEDDGMGGRRKK                 GIKEK

************************

* Dehydrins signatures *

************************

A number of proteins are  produced  by  plants  that  experience water-stress.

Water-stress takes place  when  the  water  available to a plant falls below a

critical level.  The plant hormone abscisic acid (ABA) appears to modulate the

response of plant to water-stress. Proteins  that  are expressed during water-

stress are  called dehydrins [1,2] or LEA group 2 proteins [3].  The  proteins

that belong to this family are listed below.

 - Arabidopsis thaliana XERO 1, XERO 2 (LTI30), RAB18, ERD10 (LTI45) ERD14 and

   COR47.

 - Barley dehydrins B8, B9, B17, and B18.

 - Cotton LEA protein D-11.

 - Craterostigma plantagineum dessication-related proteins A and B.

 - Maize dehydrin M3 (RAB-17).

 - Pea dehydrins DHN1, DHN2, and DHN3.

 - Radish LEA protein.

 - Rice proteins RAB 16B, 16C, 16D, RAB21, and RAB25.

 - Tomato TAS14.

 - Wheat dehydrin RAB 15 and cold-shock protein cor410, cs66 and cs120.

Dehydrins share  a  number of  structural features. One  of  the  most notable

features is the presence, in  their  central  region,  of a continuous  run of

five to nine serines followed by a cluster of  charged residues. Such a region

has been  found  in  all  known dehydrins so  far  with  the  exception of pea

dehydrins. A second  conserved  feature is  the  presence  of  two copies of a

lysine-rich octapeptide; the  first copy  is  located just after  the  cluster

of charged residues  that  follows  the poly-serine region and the second copy

is found at the C-terminal extremity. We have have derived  signature patterns

for both regions.

-Consensus pattern: S(4)-[SD]-[DE]-x-[DE]-[GVE]-x(1,7)-[GE]-x(0,2)-[KR](4)

-Sequences known to belong to this class detected by the pattern: ALL,  except

 for pea dehydrins, Arabidopsis COR47 and XERO2 and wheat cold-shock proteins.

-Other sequence(s) detected in Swiss-Prot: NONE.

-Consensus pattern: [KR]-[LIM]-K-[DE]-K-[LIM]-P-G

-Sequences known to belong to this class detected by the pattern: ALL.

-Other sequence(s) detected in Swiss-Prot: NONE.

-Last update: April 2006 / Pattern revised.

[ 1] Close T.J., Kortt A.A., Chandler P.M.

     "A cDNA-based comparison of dehydration-induced proteins (dehydrins)

     in barley and corn."

     Plant Mol. Biol. 13:95-108(1989).

     PubMed=2562763

[ 2] Robertson M., Chandler P.M.

     Plant Mol. Biol. 19:1031-1044(1992).

[ 3] Dure L. III, Crouch M., Harada J., Ho T.-H. D., Mundy J., Quatrano R.,

     Thomas T., Sung Z.R.

     Plant Mol. Biol. 12:475-486(1989).

+------------------------------------------------------------------------+

PROSITE is copyright.   It  is  produced  by  the  Swiss  Institute   of

Bioinformatics (SIB). There are no restrictions on its use by non-profit

institutions as long as its  content is in no way modified. Usage by and

for commercial  entities requires a license agreement.   For information

about  the  licensing  scheme   send  an  email to license@isb-sib.ch or

see: http://www.expasy.org/prosite/prosite_license.htm.

+------------------------------------------------------------------------+

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Dehydrin_2            (K,R)(L,I,M)K(D,E)K(L,I,M)PG

                            (K)(I)K(E)K(L)PG

           106: KGIKE           KIKEKLPG           GNKGE

                            (K)(I)K(E)K(L)PG

           163: KGIMD           KIKEKLPG           QH   

Find reference above under sequence: input_87.rsf{NP_001067844}, pattern: Dehydrin_1.

///////////////////////////////////////////////////////////////////////////////////

“Close” the “Motifs” output window when you’ve looked it over and then load the “motifs.rsf” file into SeqLab.  This will add the feature annotation created with the –RSF option.  The location of the PROSITE signatures can now be included in the Editor sequence display.  Use the “SeqLab Output Manager” again to do this.  Select the file “motifs.rsf,” then press the “Add to Editor” button and specify “Overwrite old with new” to take the new RSF feature file and merge it with the RSF file in the open Editor.  “Delete from disk“ the “motifs.rsf” file after adding it to the Editor, and then Close” the “Output Manager.”  Look at your display using “Features Coloring” or “Graphic Features” to display the new annotation and see if you can recognize the differences.  Quickly <double-click> on one of the new areas or use the “Windows” menu “Features” button to read about the added annotation.  My dataset example is illustrated below using “Features Coloring” and a “1:1” zoom factor, now annotated with its original database features, its MEME motifs, and its new Motifs PROSITE patterns:

[image: image19.wmf]
It would now be a good idea to again save your RSF file!

Performing the alignment — ‘classic’ Feng and Doolittle — the PileUp program

Next, we need to align our protein sequences.  We’ll see how the relatively crude pairwise, progressive GCG PileUp program can be used within the context of SeqLab to effectively create and refine a multiple sequence alignment.  Again be sure all of the entries in the Editor window are selected, then go to the “Functions” menu and select “Multiple comparison.”  Click on “PileUp. . .” to align the entries.  A "Which selection" window may pop up asking if you want to use the "Selected sequences" or "Selected region;" choose "Selected sequences" to run the program on the full length of all the sequences.  A new window will appear with the parameters for running PileUp.  Often you’ll accept all of the program defaults on a first run by pressing the “Run” button; however, here I am going to change the scoring matrix for the alignment from the default BLOSUM62 to the alternate BLOSUM30 matrix.

Depending on the level of divergence in a data set, better multiple sequence alignments can often be generated with alternate scoring matrices (the –Matrix command line option) and/or different gap penalties.  Beginning with GCG version 9.0, the BLOSUM62 (Henikoff and Henikoff, 1992) matrix file, “blosum62.cmp,” is used as the default symbol comparison table in most programs.  Appropriate gap creation and extension penalties are coded directly into the matrix, though they can be adjusted within the program if desired.  GCG formerly used a normalized Dayhoff PAM 250 table (Schwartz and Dayhoff, 1979).  The BLOSUM series are more robust at handling a wider range of sequence divergence than the PAM tables ever were — the BLOSUM30 table being most appropriate for the most divergent datasets.  Since these sequences have a relatively wide range of similarities, we’ll use the BLOSUM30 matrix.  While I’m discussing options I should remind you that GCG also provides ClustalW+ in the Wisconsin Package as an alternative pairwise, progressive multiple alignment program.  It is especially helpful in those situations too large and/or too complicated for PileUp.

To specify the BLOSUM30 matrix click on the “Options” button and select the check button next to the “Scoring Matrix. . .” box in the “Pileup Options” window, also click the box itself.  This will launch a “Chooser for Scoring Matrix” window from which you can select the BLOSUM30 matrix file, “blosum30.cmp.”  <Double-click> the matrix’s name to see what it looks like; click “OK” to close both windows.  Scroll through the rest of “PileUp Options” window to see all those available.  “Close” it when finished.  Be sure that the “How:” box says “Background Job” and press then “Run” in the “PileUp” window to launch the program.

The program will first compare every sequence with every other one.  This is the pairwise nature of the program, and then it will progressively merge them into an alignment in the order of determined similarity, from most to least similar.  The window will go away and then, after a few moments, depending on the complexity of the alignment and the load on the server, new output windows will automatically display.  The top window will be the Multiple Sequence Format (MSF) output from your PileUp run.  Notice the BLOSUM30 matrix specification and the default gap introduction and extension penalties associated with that matrix, 15 and 5 respectively.  As mentioned above, in most cases the default gap penalties will work fine with their respective matrices, though they can be changed if desired.  In fact, we’ll do just that below to improve regions within the alignment, where it is absolutely required.

Scroll through your alignment to check it out and then “Close” the window afterwards.  My much abridged output file example follows below.  Notice the interleaved character of the sequences, yet they all have unique identities, addressable through their MSF filename together with their own name in braces, {name}:

!!AA_MULTIPLE_ALIGNMENT 1.0

PileUp of: @/panfs/storage.local/genacc/home/stevet/.seqlab-submit/pileup_88.list

 Symbol comparison table: /opt/Bio/GCG/share/matrix/blosum30.cmp  CompCheck: 8599

                   GapWeight: 15

             GapLengthWeight: 5 

 pileup_88.msf  MSF: 539  Type: P  June 4, 2008 14:28  Check: 4276 ..

 Name: q30e95_prupe     Len:   539  Check: 5538  Weight:  1.00

 Name: q9sds0_prudu     Len:   539  Check: 5247  Weight:  1.00

 Name: np_850947        Len:   539  Check: 5083  Weight:  1.00

 Name: np_564114        Len:   539  Check: 5252  Weight:  1.00

 Name: np_173468        Len:   539  Check: 3354  Weight:  1.00

 Name: np_001067843     Len:   539  Check: 2587  Weight:  1.00

 Name: np_001067842     Len:   539  Check: 4074  Weight:  1.00

 Name: np_001067844     Len:   539  Check: 1258  Weight:  1.00

 Name: np_001067841     Len:   539  Check:  311  Weight:  1.00

 Name: np_001067838     Len:   539  Check:  626  Weight:  1.00

 Name: np_001032162     Len:   539  Check: 2638  Weight:  1.00

 Name: np_201441        Len:   539  Check: 2960  Weight:  1.00

 Name: np_190667        Len:   539  Check: 6773  Weight:  1.00

 Name: q5qic0_prupe     Len:   539  Check: 1411  Weight:  1.00

 Name: q9sw89_prudu     Len:   539  Check:  909  Weight:  1.00

 Name: q9lux4_pyrpy     Len:   539  Check: 2205  Weight:  1.00

 Name: np_001043995     Len:   539  Check: 8074  Weight:  1.00

 Name: np_179744        Len:   539  Check: 5372  Weight:  1.00

 Name: q9lee1_prupe     Len:   539  Check: 6913  Weight:  1.00

 Name: q40968_prupe     Len:   539  Check: 1525  Weight:  1.00

 Name: q40955_prupe     Len:   539  Check: 4152  Weight:  1.00

 Name: q4jnx4_prudu     Len:   539  Check: 8978  Weight:  1.00

 Name: a1xsx2_maldo     Len:   539  Check: 2214  Weight:  1.00

 Name: np_190666        Len:   539  Check: 6822  Weight:  1.00

////////////////////////////////////////////////////////////////////
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q30e95_prupe  VSDHEAPHPH HHEPESYKVE QEEDKEKKHG SLLEKLHRSD SSSSSSSDEE 

q9sds0_prudu  ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ 

   np_850947  EENKPSLLDK LHRSNSSSSS SSDEEGEDGE KKKKEKKKKI VEGDHVKTVE 

   np_564114  EENKPSLLDK LHRSNSSSSS VS.KKGEDGE KKKKEKKKKI VEGDHVKTVE 

   np_173468  EENKPSVIEK LHRSNSSSSS SSDEEGE... .EKKEKKKKI VEG......E 

np_001067843  NYQGQHGYGA DRVDVYGNPV GAGQYGG... .......GAT APGGGHGAM. 

np_001067842  NYQGQHGYGA DRVDVYGNPV .AGQYGG... .......GAT APGGGHGVM. 

np_001067844  EHQGQHGHVT SRVDEYGNPV GTGAGHGQMG TAGMGTHGTT GGMGTHGTTG 

np_001067841  ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~ME YQGQHGGHAS SRADEHGNPA 

np_001067838  GHTAGYGTTG AHHGAGGLGT RHMAGHGATT TPDTMAYGTT GTGAPHGATA 

np_001032162  GNPMGGGGYG TGGGGGATGG QGYGTGGQGY GSGGQGYGTG GQGYGTGTGT 

   np_201441  GNPMGGGGYG TGGGGGATGG QGYGTGGQGY GSGGQGYGTG GQGYGTGTGT 

   np_190667  ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~M ESYQNQSGAQ QTHQQLDQFG 

q5qic0_prupe  KQYGATPTDE YGNPIRRTDE YGNPLGHHTT TTGTTAATTG AGGYDPHDFA 

q9sw89_prudu  KQYGATPTDE YGNPIRRTDE YGNPLGHHTT TTGTTAATTG AGGYXPHDFA 

q9lux4_pyrpy  ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ 

np_001043995  ESAVMSGAAA AAVAPGGEAY TRDG.....G GVVPPAGEKT FAYEGTVSAA 

   np_179744  GNPMYLTGVV SSTPQHKEST TSDIAEHPTS TVGETHPAAA PAGAGAATAA 

q9lee1_prupe  GYGGDGYTGG EHQEKKGLLG QLQDKLPGGN KDGQYSHDTQ TTTGAYGGAG 

q40968_prupe  GYGGDGYTGG EHQEKKGLLG QLQDKLPGGN KDGQYSHDTQ TTTGAYGGAG 

q40955_prupe  ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ 

q4jnx4_prudu  GYGGDGYTGG EHQEKKGLLG QLQDKLPGGN QDGQYSHDTQ TTTGAYGGAG 

a1xsx2_maldo  GLGGRRKKGL KEKIKEKLPG .......GGN KDDQYSGGTQ TTTPYGGGTT 

   np_190666  GHHGATGTGG VHHEKKGMTE KVMEQLPG.. ....HHGSHQ TGTNTTYGTT 

              201                                                250

q30e95_prupe  EGEGGEKKKK KKEKKGLKEK ICGDHDQKVE DTAVPVEKIY EEPTHEEKKE 

q9sds0_prudu  ~~~~~~~~~~ ~~~~~~~~~K ICGDHDQKVE DTAVPVEKIY EEPTLEEEKE 

   np_850947  EENQGVMDRI KEKFP.LGEK PGGDDVPVVT TMPAP..HSV EDHKPE...E 

   np_564114  EENQGVMDRI KEKFP.LGEK PGGDDVPVVT TMPAP..HSV EDHKPE...E 

   np_173468  EDKKGLVEKI KEKLPGHHDK TAEDDVPVST TIPVPVSESV VEHDHP...E 

np_001067843  GMGGHAGAGA .GGQFQ.PAR EDHKTGGILH RSGSSSSSSS SEDDGMGGRR 

np_001067842  GMGGHH.AGA .GGQFQ.PVK EEHKTGGILH RSGSSSSSSS SEDDGMGGRR 

np_001067844  GMGTHGTTGT GGGQFQ.PMR EEHKTGGVLQ RSG.SSSSSS SEDDGMGGRR 

np_001067841  VTTGNAPTGM GAGHIQEPAR EDKKTDGVLR RSGSSSSSSS SEDDGMGGRR 

np_001067838  GTGAYPHAG. ..GQFQ.PAR EEHKTGGILR RSGSSSSSSS SEDDGMGGRR 

np_001032162  EGFGTGGGAR HHGQEQLHKE SGGGLGGMLH RSG.SGSSSS S.DDGQGGRR 

   np_201441  EGFGTGGGAR HHGQEQLHKE SGGGLGGMLH RSG.SGSSSS SEDDGQGGRR 

   np_190667  NPFPATTGAY GTAGGAPAVA EGGGLSGMLH RSG.SSSSSS SEDDGLGGRR 

q5qic0_prupe  ATTVAGQGQG VHGHDYDRKG HHGVTGAVLH RSG.SSSSSS SEDDGLGGRR 

q9sw89_prudu  ATTAAGQGQG VHGHDYDRKE HHGVTGAVLH RSG.SSSSSS SEDDGLGGSR 

q9lux4_pyrpy  ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~KIPGTGGGR 

np_001043995  GVTGAS.GQL QPTTREEGHT TLGETLRRSG KSS.SSSSSS SEDDGQGGRR 

   np_179744  TATGVSAGTG ATTTGQQHHG SLEEHLRRSG ....SSSSSS SEDDGQGGRR 

q9lee1_prupe  YTGGEHHEKK GVIGQVKDKL PGGQKDDQYC RDTHPTTGAY GGAGYTGGED 

q40968_prupe  YTGGEHHEKK GIIGQVKDKL PGGQKDDQYC RDTHPTTGAY GGAGYTGGED 

q40955_prupe  ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ 

q4jnx4_prudu  YTGGEHPEKK GIIGQVKDKL PGGQKDDEYC RDTHPTTGAY GGTGYTGGEH 

a1xsx2_maldo  YKVGEQRQEK ........LP GGGNKDDQYS GGTQTTTPYG CGTTYKVGEQ 

   np_190666  NTGGVHHEKK SVTEKVMEKL PGHH...... .GSHQTGTNT AYGTNTNVVH 
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q30e95_prupe  EEKKGFLEKI KEKLPGQQ.K KPEEIPASYD DQQCHAQHAE PAEPAGVGCE 

q9sds0_prudu  EEKKGFLEKI KGKLPGQQ.K KTEEIPASYD DQQCHDQHAE PAEPAVVGCE 

   np_850947  EEKKGFMDKI KEKLPG.HSK KPEDSQVVNT TPLVETATPI .......ADI 

   np_564114  EEKKGFMDKI KEKLPG.HSK KPEDSQVVNT TPLVETATPI .......ADI 

   np_173468  EEKKGLVEKI KEKLPGHHDE KAEDSPAVTS TPLVVTEHPV EPTTELPVEH 

np_001067843  ..KKGIKEKI KEKLPGGNKG NNHQQQQMM. .G....NTGG AYGQQGHAGM 

np_001067842  ..KKGIKEKI KEKLPGGNKG NNQQQQQMM. .G....NTGG AYGQQGHAGM 

np_001067844  ..KKGIKEKI KEKLPGGNKG ...EQQHAM. .G....GTGG AYGQQGHGTG 

np_001067841  ..KKGIKEKI KEKLPGGNKG NNQQQQQEHT TT....TTGG AYGPQGHDTK 

np_001067838  ..KKGIKEKI KEKLPGGNKG GQQQPTATAA TG....GYGA GTGHTAAAGT 

np_001032162  ..KKGITQKI KEKLPGHHDQ SG.QAQAM.. .G....GMGS GYDAGGYGGE 

   np_201441  ..KKGITQKI KEKLPGHHDQ SG.QAQAM.. .G....GMGS GYDAGGYGGE 

   np_190667  RKKKGITEKI KEKLPGHHD. SN.KTSSL.. .G....STTT AYDTGTV... 

q5qic0_prupe  K.KKGLKEKV KEKLPG.... .......G.. .T....KTDT TYGGTGTTGQ 

q9sw89_prudu  K.KKGLKEKI KKKLPG.... .......G.. .T....KTDT TYGGTGTTGQ 

q9lux4_pyrpy  R.DDDPYSTN AQTGTG.... .......M.. .T....GTGY GTTDAPYTGG 

np_001043995  K.KKSIKEKI KEKLPGSHKQ EE.QKQAGHT AP....AAGT GTGTGTHAAG 

   np_179744  ..KKSIKEKI KEKFGSGKHK DE.Q...... TP....ATAT TTGPAT.TDQ 

q9lee1_prupe  HEKKGIIGQV KDKLPGGQKD DQYCRDTHPT TG....AYG. ..GAGYTGGE 

q40968_prupe  HEKKGIIGQV KDKLPGGQKD DQYCRDTHPT TG....AYG. ..GAGYTGGE 

q40955_prupe  ~~~~~~~~~~ ~~~~NSARED DQYCRDTHPT TG....AYG. ..RAGYTGGE 

q4jnx4_prudu  HEKKGVIGQV KDKLPGGQKD DQYCRDTHPT TG....AYG. ..GAGYTGGE 

a1xsx2_maldo  HQEKGTTDKI KEKLPGGNRD DQYSHDTSTT AA....AYG. ..GTGRT.GE 

   np_190666  HEKKGIAEKI KEQLPGH... ....HGTHKT .G....TTT. ..SYGNTGVV 

/////////////////////////////////////////////////////////////////////

Return to the listing of sequence names near the top of the file.  This listing contains an important number called the checksum.  All GCG sequence programs use this number as a unique identifier to recognize corrupted sequences.  There is a checksum line for the whole alignment as well as individual checksum lines for each member of the alignment.  If any two of the checksum numbers are the same, then those sequences are identical.  If they are, an editor can be used to place an exclamation point, “!,” at the start of the checksum line in which the duplicate sequence occurs.  Exclamation points are interpreted by GCG as remark delineators; therefore, the duplicate sequence will be ignored in subsequent programs.  Or the sequence could be “CUT” from the alignment with the SeqLab Editor.  Another important number on the individual checksum lines is the “Weight” designation.  It determines how much importance each sequence contributes to a Gribskov style profile made of the alignment.  Sometimes it is worthwhile to adjust these values so that the contribution of a collection of very similar sequences does not overwhelm the signal from a few more divergent sequences.  In the SeqLab interface the “Sequence Info . . .” window can be used to accomplish this, or you can use a simple text editor.  However, we will not be bothering with it here, as we will be building a HMM profile from our alignment, and they appropriately weight their member sequences automatically.

Scroll through the alignment and then “Close” its window.  Again use the “Output Manager” to “Add to Editor” and “Overwrite old with new,” to take your new MSF output and merge it with the old RSF file in the open Editor.  This will keep the feature annotation intact, yet renumber all of its reference locations based on the inclusion of gaps in the alignment.  “Close” the “Output Manager” after loading your new alignment.  The next window will contain PileUp’s cluster dendrogram, in my dehydrin example, the graphic below on the following page:

[image: image20.wmf]image20.wmf


PileUp automatically creates this dendrogram of the similarity clustering relationships between the sequences.  As previously mentioned, it can be helpful for adjusting sequence Weight values, which even out each sequences’ contribution to a profile.  The lengths of the vertical lines are proportional to the differences in similarity between the sequences.  However, realize that the dendrogram is not an evolutionary tree, and it should never be presented as one.  No phylogenetic inference optimality criteria algorithm, such as maximum likelihood, least-squares fit, or parsimony, nor any molecular substitution, multiple-hit correction models, such as Jukes-Cantor, Kimura, or any other subset of the GTR (General Time Reversible) model, nor any site rate heterogeneity models such as a Gamma correction, are used in its construction.  (It is roughly an uncorrected UPGMA tree, prone to all the same errors seen in UPGMA.  Therefore, if the rates of evolution for each lineage were exactly the same, and there was no saturation of residue positions, then it could represent a ‘true’ phylogenetic tree, but this is seldom the case in nature.)  PileUp’s dendrogram merely indicates the relative similarity of the sequences based on the scoring matrix used, by default the BLOSUM62 but the BLOSUM30 in our runs, and, therefore, the clustering order used to create the alignment.

If desired, you can directly print from any SeqLab graphics Figure windows to PostScript files by picking “Print . . .” “Encapsulated PostScript File” “Output Device:”  Name the output file anything you want; click “Proceed” to create an EPSF output in your current directory.  To actually print this file you may need to transfer it to a local machine attached to a PostScript compatible printer, unless you have access to one of the HPC’s system printers.  (All Macintosh compatible laser printers run PostScript by default.  Carefully check any laser printer connected to a ‘Wintel’ system to be sure that it is PostScript compatible.)  “Close” the dendrogram window.

Many residues now align by color.  My Editor display looks like the graphic on the following page after loading the MSF file using “Residue Coloring” and a “1:1” zoom ratio:

[image: image21.wmf]
Notice the nice columns of color representing columns of aligned residues.  Change the “Display:” box from “Residue Coloring” to “Graphic Features.”  Now the display shows a schematic of the feature information from each entry, as well as all of the motifs discovered by the programs Motifs and MotifSearch.  Mine looks like the following, at a “4:1” zoom.  Check out how well the features line up, but note the problem downstream:

[image: image22.wmf]
Remember, quickly <double-clicking> on any of the color coded feature regions in the Editor display will produce a “Features” window where more information is available about that particular feature by selecting the Feature entry in the new window.  Clicking once in the colored region and then using the “Features” option from the “Windows” menu will also produce the “Features” window.  Now would also be another good time to save your work as an updated RSF file!  Use the same name as before and “Overwrite” the previous file; there’s no need to save multiple versions of the RSF file.

Visualizing conservation in multiple sequence alignments

The most conserved portions of an alignment are those most resistant to evolutionary change, often due to some type of structural and/or functional constraint.  You can use the graphics program PlotSimilarity to easily visualize the positional conservation of a multiple sequence alignment.  The program draws a graph of the running average similarity along a group of aligned sequences (or of a profile with the –Profile command line option).  The PlotSimilarity peaks of a protein alignment represent the most conserved areas of the alignment, but even more so, those areas most resistant to evolutionary change due to the algorithm’s use of the BLOSUM matrix in its calculations.  PlotSimilarity is also a nice way to see those areas of an alignment that may need improving by pointing out the most variable regions.  Furthermore, PlotSimilarity can be helpful for ascertaining alignment quality by noting changes in the overall average alignment similarity and in those regions of conservation within the alignment, as it is adjusted and refined.

Be sure all of your sequence entry names are still selected, and then go to the “Functions” menu and under the “Multiple comparison” section choose “PlotSimilarity . . .”  I recommend changing some of the program defaults so choose “Options” in the program window.  Check “Save SeqLab colormask to” and “Scale the plot between:” the “minimum and maximum values calculated from the alignment.”  The first option’s output file will be used in the next step.  The second specification launches the program’s command line –Expand option.  This blows up the plot, scaling it between the maximum and minimum similarity values observed, so that the entire graph is used, rather than just the portion of the Y-axis that your alignment happens to occupy.  The Y-axis of the resulting plot uses the similarity values from whichever scoring matrix you used to create your alignment unless you specify an alternative.  The default matrix, BLOSUM62, begins its identity value at 4 and ranges up to 11; mismatches go as low as -4.  “Close” the “Options” window; notice that the “Command Line:” box now reflects your updated options.  Click the “Run” box to launch the program.  The output will quickly return.  “Close” the “plotsimilarity.cmask” window and the “Output Manager” and then take a look at the similarity plot.  The graphic from my dehydrin example follows below:
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The dehydrin example only shows much sequence similarity within two defined regions.  These are the strong peaks seen centered around positions 260 and 320.  They most likely correspond to the dehydrin motifs we discovered earlier.  The ordinate scale is dependent on the scoring matrix used by the program that created the alignment, here the BLOSUM30 table, which ranges in score from -7 to +20.  The dashed line across the middle shows the average similarity value for the entire alignment, here about 0.22.  Make a PostScript file of this plot, if desired.  As before, to print a SeqLab graphics Figure to a PostScript file: select “Print . . .” off the Figure window, choose “Output Device:” “[Encapsulated] PostScript File,” and click “Proceed,” to create EPSF output.  Regardless of whether you print this plot or not, take notes of where the similarity significantly falls off within and at the beginning and end of the alignment.  In my example above, this is the first 220 residues or so, the region between the two peaks, which is about 275 to 300, and about residue 325 to the end.  “Close” the PlotSimilarity window after noting where these deepest valleys, the least similar regions of the alignment, lay.

Now go to the “File” menu and click on “Open Color Mask Files.”  This will produce another window from which you should select your new “plotsimilarity.cmask” file; click on “Add” and “Close” the window.  This will produce a gray scale overlay on your sequences that describes their regional similarity where darker gray corresponds to higher similarity values.  My example alignment, using a zoom factor of 4 to 1, looks like the screenshot below.  Notice the strong conservation peaks around 260 and 320 mentioned above:

[image: image24.wmf]
Improving alignments within SeqLab

The beauty of this representation is you can now easily select those regions of low similarity and try to improve their alignment automatically.  This is possible because of PileUp’s incredibly effective –InSitu command line option that can realign regions within an alignment.  GCG’s implementation of Clustal, ClustalW+, does not offer this sort of regional realignment.  Therefore, even if you chose to use ClustalW+, or any of the other multiple sequence alignment programs available outside of GCG, either because the dataset is so large and/or complicated that PileUp can’t do the alignment, or just because you think PileUp sucks, you may want to take advantage of subsequent rounds of –InSitu PileUp to further improve the resultant alignment.

Be sure that all of your sequences are selected and that you are at a “1:1” zoom factor so that you can see individual residues, and then scroll to the carboxy end.  It’s best to start at the carboxy termini in this process so that the positions of the low similarity regions do not become skewed away from their color mask as you proceed through the procedure.  Now select a region of low similarity across the complete sequence set, that is, the low similarity region of all of the entries.  This can be done using the mouse if it’s all on the screen in front of you, which is not the case in my example.  Therefore, use the “Edit” “Select Range” function (determine the positions by placing your cursor at the beginning and end of the range to be selected and noting the column number in the lower left-hand of the Editor display).  Once all of your sequences and the region that you wish to improve are selected, go to the “Functions” menu and again select “Multiple comparison.”  Click on “PileUp . . .” to realign all of the sequences within that region.  (The “Windows” menu also contains a ‘shortcut’ listing of all of the programs that you have used in the current session; you can launch any of them from there as well.)  You will be asked whether you want to use the “Selected sequences” or “Selected region;” it is very important to specify “Selected region.”  This will produce a new window with the parameters for running PileUp.  Next, be sure to click on “Options . . .” to change the way that PileUp will perform the alignment.  In the “Options” window check the gap creation and extension boxes and change their respective values to much less than the default.  Changing them to about a third the default value works pretty well for a start, so for the BLOSUM30 matrix change the values to “5” and “2” respectively.  Most importantly, check “Realign a portion of an existing alignment;” this calls up the command line –InSitu option.  Otherwise only that portion of your alignment selected will be retained in the output.  Furthermore, we really don’t need another similarity dendrogram, so uncheck the “Plot dendrogram” box.  “Close” the window and notice the new options in the PileUp “Command Line:”  “Run” the program to improve your alignment.

The window will go away and your results will return very quickly since you are only realigning a portion of the alignment; new output windows will automatically display.  The top window will be the MSF output from your PileUp run.  Notice the BLOSUM30 matrix specified (others available through the options menu) and the lowered gap introduction and extension penalties of 5 and 2.  Scroll through your alignment to check it out and then “Close” the window.  The next window will be the “Output Manager.”  Just like before, click on “Add to Editor,” and then specify “Overwrite old with new” in the new “Reloading Same Sequences” window to merge the new alignment with the old one and retain all feature annotation.  This feature information may help guide your alignment efforts in subsequent steps.  “Close” the “Output Manager” window after loading your new alignment.

Your alignment should now be a bit better within the specified region.  Repeat this process in all areas of low similarity, again, working from the carboxy termini toward the amino end.  Notice that the program retains all the options you last specified, so you don’t need to respecify them.  You can also save these run parameters so that they will come up in subsequent sessions by clicking on the “Save Settings” box in any of the program run windows.  You may want to go to the “File” menu periodically to save your work using the “Save as . . .” function in case of a computer or network problem.  It’s also probably a good idea to reperform the PlotSimilarity and color mask procedure after going through the entire alignment to see how things have improved after you’ve finished the various –InSitu PileUps.

If you discover areas that you can’t improve through this automated procedure, then try to improve them manually.  This is definitely a problem in the dehydrin dataset due to the repeated domain structure of the sequences.  I manually arranged the carboxy-end domains to all line up, after I couldn’t get PileUp to do it.  Note these ‘problem’ areas and then switch back and forth between “Residue Coloring,” “Feature Coloring,” and “Color Mask.” This will ease manual alignment by allowing your eyes to work with columns of color.  The “GROUP” function can help manual alignment because it allows you to manipulate ‘families’ of sequences as a whole — any change in one will be propagated throughout them all.  To “GROUP” sequences, select those that you want to behave collectively and then click on the “GROUP” icon right above your alignment.  You can have as many groups as you want.  The space bar will introduce a gap into the sequence and the delete key will take a gap away.  However, you can’t delete or change a sequence residue without changing that sequence’s (or the entire alignment’s) “Protections.”  A very powerful manual alignment function can be thought of as the ‘abacus’ function.  To take advantage of this function select the region that you want to slide and then press the shift key as you move the region with the right or left arrow key.  You can slide residues greater distances by prefacing the command keystrokes with the number of spaces that you want them to slide.

Make subjective decisions regarding your alignment.  Is it good enough; do things line up the way that they should?  If, after all else, you decide that you just can’t align some region, or an entire sequence, then perhaps get rid of it with the “CUT” function.  The mask function that I describe later is a good alternative to cutting regions out of your alignment.  Cutting out an entire sequence may leave columns of gaps in your alignment.  If this happens to you, then reselect all of your sequences and go to the “Edit” menu and select “Remove Gaps . . .” “Columns of gaps.”

Notice the extreme amino and carboxy ends of the alignment.  Amino and carboxy termini seldom align properly and are often jagged and uncertain.  This is fairly common in multiple sequence alignments and many subsequent analyses should probably not include these regions.  If loading sequences from a database search, allowing SeqLab to trim the ends automatically based on beginning and ending constraints considerably improves this situation.  Overall, things to look for include columns of strongly conserved residues such as tryptophans, cysteines, and histidines, important structural amino acids such as prolines, tyrosines and phenylanines, and conserved isoleucine, leucine, valine substitutions; make sure they all align.

After you have finished tweaking, evaluating, and readjusting your alignment to make it as ‘satisfying’ as possible, change back to “Feature Coloring” “Display.”  Those features that are annotated should now align perfectly.  This is another way to assure that your alignment is as biologically ‘correct’ as possible.  Everything you do from this point on, and especially later if you use alignments to ascertain molecular phylogenies, is absolutely dependent on the quality of the alignment!  You need a very clean, unambiguous alignment that you can have a very high confidence in — truly a biologically meaningful alignment.  Each column of symbols must actually contain homologous characters.

Several other alignment editors are available for cleaning up multiple sequence alignments, my second favorite is SeaView (Galtier, et al., 1996).  However, I think that you will find SeqLab quite satisfying, and only using a GCG compatible editor assures that the format will not be corrupted.  If you do make any changes to a GCG sequence data file with a non-GCG compatible editor, you may have to reformat the alignment afterwards.  However, reformatting GCG MSF or RSF files requires a couple of tricks.  If this step is not done exactly correct, you will get very weird results.  If you do need to do this for any reason, you must use the appropriate Reformat option (either -MSF or –RSF respectively) and you must specify all the sequences within the file using the brace specifier, i.e. “{*},” for example:

>  reformat -msf your_favorite.msf{*}

You should never need to do this, unless for some reason you decide to edit an alignment with a non-GCG compliant editor; however, it may prove necessary in some situations.  After reformatting, the new MSF or RSF file will follow GCG convention, with updated format, numbering, and checksums.

Profile techniques

You can find remote similarities that all other search algorithms will miss using profile analysis properly.  As described in the introduction, it is extremely powerful.  The searches require some work to setup and run — a meaningful multiple sequence alignment must be assembled and refined, the profile has to be built, and the searches themselves take a very long time to run (they are incredibly CPU intensive; submit them as early as possible and either use SeqLab’s background submission or the command line –Batch option) — they are well worth the bother.

Traditional evolutionary profiles ala Gribskov are created with the GCG program ProfileMake.  They are often based on the longest, most conserved, overall sequence length available, such that jagged ends are excluded.  Another effective strategy is to develop multiple shorter profiles centered about the similarity peaks of an alignment.  These most likely correspond to functional or structural domains.  ProfileSearch can scan any GCG protein sequence specification you want with those profiles.  ProfileSegments makes local or global, pairwise or multiple alignments of that output.  ProfileSearch estimates a realistic Z score based on the number of standard deviations from the rest of the ‘insignificant’ matches found.  We will not be running Gribskov style profile analysis today.  It is fairly time consuming, and has largely been supplanted by HMM profiles.  However, understanding the way it works lays the foundation for using and understanding HMM profiles.

Hidden Markov models and profiles

As with Gribskov style profiles, HMM profiles are built from a set of prealigned sequences.  It’s just not as important that the alignment be as comprehensive and perfect.  To build a HMM profile of an alignment in SeqLab, select all of the sequences, then go to the “Functions” “HMMER” menu and pick “HmmerBuild. . .”  Accept the default “create a new HMM” and specify some “Internal name for profile HMM.”  Do not restrict the HMM profile to a limited region of the alignment.  It’s not that this won’t work; it just makes a subsequent step in HMMerAlign somewhat complicated.  Also specify the “Type of HMM to be Built” — “multiple global” is the default; “single global” may be more appropriate, depending on your system.  This is a big difference between HmmerBuild and other profile building programs; when the profile is built you need to specify the type of eventual alignment it will be used with, rather than when the alignment is run.  The HMM profile will either be used for global or local alignment, and it will occur multiply or singly on a given sequence.  Weighting is also handled differently in HMMer than it is with Gribskov profiles.  To use a custom weighting scheme, e.g. if you’ve modified your RSF file weight values for ProfileBuild, you can tell HmmerBuild not to use one of its built-in weighting schemes with the –Weighting=N option.  Otherwise HmmerBuild’s internal weighing algorithm will calculate the best weights for you automatically based on the sequences’ similarities using a cluster analysis approach.  It again becomes important to understand the types of biological questions that you are asking to rationally set many of the program parameters.

Notice HmmerCalibrate is checked by default.  The completion of HmmerBuild automatically launches a calibration procedure that increases the speed and accuracy of subsequent analyses with the resultant HMM profile.  The other HmmerBuild options can be explored, but read the Program Manual first.  For now accept the default HmmerBuild optional parameters and press “Run.”  It’ll take a couple of minutes to build a HMM profile.  The output is an ASCII text profile representation of a statistical model, a Hidden Markov Model, of the consensus of a sequence family, deduced from a multiple sequence alignment.  As with Gribskov profiles, the full information content of the alignment, including the importance of the conserved portions and the extent and level of variability is used in its construction.  A utility program, HmmerConvert, can change HMM profiles into Gribskov profiles, however information is lost in the process, so it is not recommended.  You can use HMM profiles the same as Gribskov profiles: as either a search probe for extremely sensitive database searching or as a template upon which to build ever-larger multiple sequence alignments.

To use a HMM profile as a search probe go to the “Functions” menu and pick “HMMER” “HmmerSearch. . .”  Specify the new HMM profile by clicking “Profile HMM to use as query. . .” and using the “File Chooser” window to select the HMM profile that you just created in the step above.  Change the “Sequence search set. . .” from uniprot:* to that LookUp list file of all Rosaceae (do this as you’ve done before in previous searches with the “Sequence search set” button and subsequent menus).  HmmerSearch has similar cutoff parameters as other GCG database searches, that is, you can restrict the size of the output based on significance scores, and you can limit the number of pairwise alignments displayed.  HmmerSearch is quite slow because it is a full dynamic programming implementation, the HMM profile against a sequence set, without any heuristics.  Thererfore, definitely run it in the background when using SeqLab or, if at a terminal session, use the –Batch command line option.  If your server has multiple processors, HmmerSearch supports the multithreading –Processors=x option to speed things up.  “Run” the program when you’ve got the options set the way you want them.  Do not wait for the program to finish, go on with the rest of the tutorial, and then return to this point when it does finish.

The output is huge but very informative.  Everything is based on Expectation values.  Often a very clear demarcation can be seen in the E values from profile searches.  In my case it is between the various dehydrins and other stress-related proteins.  The top portion is a modified GCG list file of the most similar sequences found up to your specified Expectation cutoff based on all domains.  The second section shows all the pairwise alignments and finally a score distribution is plotted.  Since it is a GCG list file, other GCG programs, and in particular HmmerAlign, can read it.

HmmerAlign can be an incredible help to people working with very large multiple alignments, and for adding newly found sequences to an existing alignment regardless of size.  It takes a specified profile, in this case a HMM profile, and aligns a specified set of sequences to it, to produce a multiple sequence alignment based on that profile.  HmmerAlign can take any GCG sequence specification as input.  It is much faster to create very large multiple alignments this way, versus any progressive technique, on a large dataset.  The rationale being — take the time to make a good small, ‘seed’ alignment and HMM profile, then use that to build up the original alignment larger and larger.  The alignment procedure used by HmmerAlign is a full-blown, recursive, dynamic programming implementation, the profile’s matrix against every sequence individually, until an entire alignment is built.  Profile alignments can be ‘gappier’ than other alignments.  The conserved portions of the profile do not allow the corresponding portion of alignment to gap; yet gaps are easily put in the less conserved regions of the alignment.  ‘Gap clustering’ occurs much more often with profile analyses than other methods.  This is because of profile analysis’ variable gap penalties where conserved areas are not allowed to gap and variable regions are.

HmmerAlign can also use its profile to align one multiple alignment to another and produce a merged result of the two.  Using the original alignment that you made the profile with, against another sequence set is very fast; it is the –MapAlignment=some.rsf{*} option and provides an exact, non-heuristic alignment.  A heuristic (optimality is not guaranteed) solution is provided if you use “another alignment” (the –Heuristic=some.msf{*} option).

Launch HmmerAlign off the “Functions” “HMMER” menu by picking “HmmerAlign. . .”  Specify the HMMER profile you just built with the “profile HMM to use . . .” button, and pick the sequences that you want to align to the profile with the “Sequences to align . . .” button.  In this case let’s use one of those ‘interesting’ sequences that we analyzed with DotPlot but previously excluded from our datsed based on its low similarity to our query (or if your HmmerSearch is done, use one of the hits from there).  Try to pick one that turned out to be significantly similar, in spite of its low E-value.  I’ll use “rs_prot:np_177745.”  Use the “Add Database Sequences. . .” button and “Database Browser” window to specify your chosen sequence and “Add” it to your “Search Set.”  Press the “Options” button next and choose “Combine output alignment and . . .” “Original HMM alignment” and then press the “select alignment. . .” button.  Use the next window to “Add Main List Selection. . .” specifying the RSF file you are currently working on.  Close the “Build HmmerAlign’s Search Set” window and the “HmmerAlign Options” window and then press “Run” in the main program window.

To get your desired sequence’s database annotation into SeqLab you should load it first directly from the GCG database with the “Add Sequences From” “Databases” “File” menu, specifying the proper sequence specification, e.g. “rs_prot:np_177745.”  Next, use the “Output Manager” “Add to Editor” button to merge your new MSF file with the new HMMer aligned sequence onto the existing dataset in SeqLab with the “Overwrite old with new” function.  Check out the resulting alignment.  It is usually remarkably good.  Lower case letter denote positions that do not agree with the HMM, upper case letters fit the HMM.  I’ve loaded the results of my HmmerAlign run of  “rs_prot:np_177745” against my example dehydrin HMM profile and its associated alignment in the next screen snapshot.  The graphic from my example follows on the next page below:
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HmmerPfam

As with Motifs and MotifSearch, HmmerPfam can help build up the annotation of an RSF file.  This program scans sequences against a library of HMMER profiles, by default the Pfam library (A database of protein domain family alignments and HMMs ( 1996-2000 The Pfam Consortium).  Select all of your protein sequences and launch the program through the “Functions” “HMMER” “HmmerPfam. . .” menu.  “Save the best scoring profile HMMs as an RSF file” and give an appropriate name.  You can check out the options if desired; you may want to reduce the Expectation cutoff values.  “Run” the program.  When it’s finished (It can take quite a while to run — don’t wait for it to finish.) add it’s RSF output file to the Editor display as before with the “Output Manager”’s “Add to Editor” and “Overwrite old with new” functions.  The output “.hmmerpfam” file lists Pfam domain matches ranked by Expectation values, and with the –RSF option the program also writes the domain identifications and Expectation values as features in an RSF file.  The screen snapshot below shows my sample alignment but now including additional HmmerPfam annotation using “Graphic Features” “Display:” mode at a 4:1 zoom ratio.  If desired, you can click on each of the new HMMerPfam feature  annotation and change them from “Solid” to “X-hash” or “Empty” “Fill:” with the “Features Editor” so that you can see through the “Graphic Features” HmmerPfam annotation to the features behind.  This process is shown below for one of my HMMerPfam features:
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Consensus and Masking Issue — GCG’s Mask operation.

Consensus methods are another powerful way to visualize similarity within an alignment besides GCG’s PlotSimilarity program.  The SeqLab “Edit” menu allows you to easily create several types of consensus representations.  To create a standard protein sequence consensus select all your sequences and use the “Edit” “Consensus . . .” menu and specify “Consensus type:” “Protein Sequence.”  When making a normal sequence consensus of a protein alignment you can generate figures with black highly similar residues, gray intermediate similarities, and white non-similar amino acids.  This is a nice way to prepare alignment figures for publication.  The default mode is to create an identity consensus at the 2/3’rds plurality level (“Percent required for majority”) with a threshold of 5 (“Minimum score that represents a match”).  Try different lower plurality and threshold values as well as different scoring comparison matrices to see the difference that it can make in the appearance of your alignment.  Be sure that “Shade based on similarity to consensus” is checked to generate a color mask overlay on the display to help in the visualization process.  The graphic below illustrates that region in the middle of my example where the two conservation peaks occur using the BLOSUM30 matrix, a “Percent required for majority” (plurality) of 33%, and a “Minimum score that represents a match” (threshold) cutoff value of 4:
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When you’ve found a plurality combination that you like, an available option is to go to the “File” “Print. . .” command and change the “Output Format:” to “PostScript” in order to prepare a PostScript file of your SeqLab display. Whatever color scheme that is being displayed by the Editor at the time will be captured by the PostScript file.  Play around with the other parameters — notice that as you change the font size the number of pages to be printed varies.  In the “Print Alignment” menu specify “Destination. . . File” and give it an appropriate filename and then click “OK.”  This command will produce a PostScript language graphics file in the directory that you launched SeqLab from and is a great way to prepare presentations of your research.  This PostScript file can be sent to a color PostScript printer, or a black and white laser printer that will simulate the colors with gray tones, or it can be imported into a PostScript savvy graphics program for further manipulation.  Unfortunately, if it’s longer than one page, the ‘raw’ PostScript format is so different from standard Encapsulated PostScript that you may have to use a different UNIX print queue.  Discuss these matters with your system administrator.  It may require some variation of the following type of command:

> lpr -PPostScript_que seqlab_alignment.ps

In addition to standard consensus sequences using various similarity schemes, SeqLab also allows you to create consensus “Masks” that screen specified areas of your alignment from further analyses by specifying 0 or 1 weights for each column.  A SeqLab Mask allows the user to differentially weight different parts of their alignment to reflect their confidence in it.  It can be a handy trick with some data sets, especially those with both highly conserved and highly variable regions.  Masks can be modified by hand or they can be created manually through the “New Sequences” menu.  They can have position values all the way up to 9, though I doubt anyone would want any column of an alignment to be nine times as important as some other column.  Masking is especially helpful for phylogenetic analysis by excluding those less reliable columns in your alignment where you are not confident in the positional homology without actually getting rid of the data.

Once a Mask has been created in SeqLab, most of the programs available through the “Functions” menu will use that Mask, if the Mask is selected along with the desired sequences, to weight the columns of the alignment data matrix appropriately.  This only occurs through the “Functions” menu.

To create a Mask style sequence consensus select all your sequences and then use the “Edit” “Consensus . . .” menu and specify “Consensus type:” “Mask Sequence.”  As above, the default mode uses an identity consensus at the 2/3’rds plurality level with a threshold of 5.  However, these are very high values for phylogenetic analysis and would likely not leave much phylogenetically informative data.  Therefore, again experiment with different lower pluralities, threshold values, and scoring comparison matrices.  Be sure that “Shade based on similarity to consensus” is still checked.  The following screen snapshot illustrates roughly the same region as above, but using a weight Mask generated from the BLOSUM30 matrix, a plurality of 15%, and a threshold of 4, rather than the protein consensus sequence:
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The areas that are excluded by the Mask are those of very low similarity where the extreme homoplasy of the region leaves way too much doubt in the validity of the alignment within them.  

SeqLab Editor On-Screen Annotation.

Something that you may want to do to your alignment after you’ve gotten it all cleaned up is add text annotation to the display.  Changing the entries’ names for presentation purpose might also be helpful.  Both are easy to do in the SeqLab Editor.  Double-click on an entry’s name to get its “Sequence Information” window and directly edit the name there.  Selecting the entry name and then pressing the “INFO” icon does the same thing.  To put text lines directly into your display go to the SeqLab “File” menu “New sequence . . .” entry and select the “Text” button to the “What type of sequence?” question.  This will put a “NewText” line at the bottom of the Editor display that you can directly type annotation into.  You can also add customized “Graphic Features” and “Features Coloring” annotation with the “Windows” “Features” window.  Select a desired region across an alignment and launch the “Features” window.  Press “Add” to get a “Feature Editor” window where you can designate the feature’s “Shape:” “Color:” and “Fill:” as well as give the region a “Keyword:” and “Comments:.”  Warning: You can add feature annotation to a region across an entire alignment, but you can not delete or edit the annotation from the whole region collectively afterwards.  You can only edit or delete feature annotation from an RSF file with the SeqLab Editor one sequence feature at a time!

Multiple Alignment Format and Phylogenetics.

As mentioned previously, multiple sequence alignment is a necessary prerequisite for biological sequence based phylogenetic inference, and phylogenetic inference guides our understanding of molecular evolution.  The famous Darwinian evolutionist Theodosius Dobzhansky summed it up succinctly in 1973, provided as an inscription on the inner cover of the classic organic evolution text Evolution: “Nothing in biology makes sense except in the light of evolution” (Dobzhansky, et al., 1977).  These words ring true.  To me, evolution provides the single, unifying, cohesive force that can explain all life.  It is to the life sciences what the long sought holy grail of the unified field theory is to astrophysics.

GCG’s Interface to PAUP* —

Multiple alignment format issues and conversion to two well accepted phylogenetic formats.

GCG implements David Swofford’s PAUP* (usually pronounced ‘pop star’) phylogenetic analysis package (Swofford, 1989–2008) with the paired programs PAUPSearch and PAUPDisplay.  These interface programs provide an easy to use access to much of PAUP* within GCG.  However, their use for evolutionary inference will not be covered here.  For serious phylogenetic analysis you may want to consider running PAUP* exterior to GCG by getting the latest version directly from Sinauer Associates, the publishing company that distributes the software (http://www.sinauer.com/), and installing it on your own machine.  The version of PAUP*, included in GCG version 9.1 through 11.1, either run in native mode or through the PAUPSearch and PAUPDisplay programs, is an old 4.0.0d55 version.  If you do not have access to the latest and greatest version of PAUP*, which contains many bugs fixes and enhancements since 4.0.0d55, then using it within GCG is a legal alternative.  Use the following command in a terminal window to read the license agreement with GCG, if you’re curious:

>  typedata paup-license.txt

The PAUP package was originally written to only perform parsimony analysis with either DNA sequences or morphological character data using a Macintosh.  It latest incarnation, version 4.0+, changed the package’s name by adding the asterisk which means “and other methods” referring to the incorporation of the minimum evolution distance method and the maximum likelihood method to the package.  It was also expanded into a “portable” package capable of being run on many different platforms using a command line interface in addition to its original Mac graphical user interface.  PAUP* is weak at dealing with protein sequences as it does not incorporate any protein models of evolution other than a crude like/not-like model.  However, more sophisticated protein models can be used by embedding the necessary commands and matrices in the NEXUS file used as input to the package.  Though, as I discussed previously, many people prefer to perform evolutionary inference with DNA sequences anyway.  Furthermore, PAUP*’s DNA models are some of the most sophisticated available in any molecular phylogenetic inference software, and I, therefore, heartily recommend using it for DNA datasets.

NEXUS Format.

Within the context of GCG, NEXUS format files are most easily and reliably built from alignments with GCG’s own interface to the PAUP* package.  PAUPSearch within SeqLab can be used to generate NEXUS format files which can then be fed directly to any version of PAUP*.

Begin the NEXUS conversion process by selecting all relevant sequences, and any desired weight Masks, in the “Main Window” display.  Select “PAUPSearch. . .” from the “Functions” “Evolution” menu to launch the dialogue box.  To only generate a NEXUS file, run PAUPSearch in its fastest mode without actually performing a search.  Accept the default “Tree Optimality Criterion” “maximum parsimony” and the “heuristic tree search (fast)” “Method for Obtaining Best Tree(s).”  Be sure that the “perform bootstrap replications. . .” button is not pressed and then launch the “Options” menu by pressing the appropriate button.  In the “PAUPSearch Options” menu check in the top box to save the PAUPscript file.  This is not required for running the programs but since we are just generating NEXUS format, it is essential.  You can change or leave the file name as you wish.  The PAUPscript output file results from the automatic conversion of the alignment to NEXUS format and contains all the PAUP commands as well as ther alignment.  (If needed, the PAUPlog file keeps track of all that happened during the program run and is a good place to look for any error messages.  It is, therefore, a handy file to save to avoid otherwise frustrating troubleshooting.)  Uncheck the next box, “Perform the analysis.”  This makes the program do the conversion to generate the NEXUS script but prevents it from performing the heuristic search for the best tree (equivalent to the command line option –NoRun).  Scroll down through the options menu, leaving the rest of the options at their default settings, but do check them out.  “Close” the options menu.  Normally PAUPSearch and PAUPDisplay are linked to each other when you run them from the SeqLab interface, but since PAUPSearch won’t be producing a tree, PAUPDisplay won’t run.  Be sure that “How:” “Background Job” is specified on the main PAUPSearch menu and then press “Run” there.  After a moment the output PAUPscript file will be displayed.  Here’s my abridged dehydrin protein example:

#NEXUS

[! Aligned sequences from GCG file(s) '@/panfs/storage.local/genacc/home/stevet/.seqla

b-submit/paupsearch_105.list' ]

[Length: 315  Type: P  June 5, 2008 19:09]

[ Name: NP_177745        Len:   315  Check: 3090  Weight:  1.00]

[ Name: Q30E95_PRUPE     Len:   315  Check: 5919  Weight:  1.00]

[ Name: Q9SDS0_PRUDU     Len:   158  Check: 8398  Weight:  1.00]

[ Name: NP_850947        Len:   315  Check:  982  Weight:  1.00]

[ Name: NP_564114        Len:   315  Check: 1057  Weight:  1.00]

[ Name: NP_173468        Len:   315  Check: 2863  Weight:  1.00]

[ Name: NP_001067843     Len:   315  Check: 7903  Weight:  1.00]

[ Name: NP_001067842     Len:   315  Check: 8401  Weight:  1.00]

[ Name: NP_001067844     Len:   315  Check:  371  Weight:  1.00]

[ Name: NP_001067841     Len:   315  Check: 7869  Weight:  1.00]

[ Name: NP_001067838     Len:   315  Check: 9920  Weight:  1.00]

[ Name: NP_001032162     Len:   315  Check: 2995  Weight:  1.00]

[ Name: NP_201441        Len:   315  Check: 3501  Weight:  1.00]

[ Name: NP_190667        Len:   315  Check: 7841  Weight:  1.00]

[ Name: Q5QIC0_PRUPE     Len:   315  Check: 7118  Weight:  1.00]

[ Name: Q9SW89_PRUDU     Len:   315  Check: 7581  Weight:  1.00]

[ Name: Q9LUX4_PYRPY     Len:   158  Check: 3684  Weight:  1.00]

[ Name: NP_001043995     Len:   315  Check: 4692  Weight:  1.00]

[ Name: NP_179744        Len:   315  Check: 5786  Weight:  1.00]

[ Name: Q9LEE1_PRUPE     Len:   302  Check: 7105  Weight:  1.00]

[ Name: Q40968_PRUPE     Len:   315  Check:  529  Weight:  1.00]

[ Name: Q40955_PRUPE     Len:   100  Check: 8366  Weight:  1.00]

[ Name: Q4JNX4_PRUDU     Len:   315  Check:   67  Weight:  1.00]

[ Name: A1XSX2_MALDO     Len:   315  Check: 6775  Weight:  1.00]

[ Name: NP_190666        Len:   315  Check: 5534  Weight:  1.00]

begin data;

     dimensions ntax=25 nchar=315;

     format datatype=protein interleave gap=.;

     matrix

[               1                                                   50]

     NP_177745  MAEeIKNV.. PEQEVPKVAT EESSA..... .......... .....EVTDR 

  Q30E95_PRUPE  NKSqDRGY.. GKAGEYEEGS GARAAEC... .......... ....GEIKDR 

  Q9SDS0_PRUDU  KICGDHDQED TAVPE..... .......... .......... ..KEEEKKGF 

     NP_850947  MAEeYKNT.. PEQETPKVAT EESSA..... .......... ....PEIKER 

     NP_564114  MAEeYKNT.. PEQETPKVAT EESSA..... .......... ....PEIKER 

     NP_173468  MAEeYKNN.. PEHETPTVAT EESPATT... .......... ....TEVTDR 

  NP_001067843  MDN.YQGQH. ........GY GA.DRVDVYG NPGGQYGG.. ..G....... 

  NP_001067842  MEN.YQGQH. ........GY GA.DRVDVYG NP.GQYGG.. ..G....... 

  NP_001067844  ME..HQGQH. ........GH VT.SRVDEYG NPGGAGHGQG MGG....... 

  NP_001067841  ME..YQGQHG ........GH AS.SRADEHG NPV....... .......... 

  NP_001067838  MAHfQGQQHG PAARVDEYGN PVAAGHGITG TQAAGGYGAG QPAFGGATDA 

  NP_001032162  MAS.YQNRPG ..QATDEYGN PIQQQYDEYG NPGGGYGTGG TGGYGT.... 

     NP_201441  MAS.YQNRPG ..QATDEYGN PIQQQYDEYG NPGGGYGTGG TGGYGT.... 

     NP_190667  MES.YQNQSG ........AQ QTHQQLDQFG NPP....... .......... 

  Q5QIC0_PRUPE  MAS.YEKQYG ..TPTDEYGN PIRRT.DEYG NPGHTTTTGT TGGYDP.... 

  Q9SW89_PRUDU  MAS.YEKQYG ..TPTDEYGN PIRRT.DEYG NPGHTTTTGT TGGYXP.... 

  Q9LUX4_PYRPY  KIPGTGGGDD .......... .......... .......... ..NAQTGTGM 

  NP_001043995  MAEhATGV.. G......HPY PRVDQYG... .......... ....NPVPPV 

     NP_179744  MAD.LRDEKG PIHLTDTQGN PIVDLTDEHG NPYTGVVSSP ESSDIA.... 

  Q9LEE1_PRUPE  KTDEYGNPVH HTTT...... .......... .G.TGRTDEF GNPVQHGATG 

  Q40968_PRUPE  MAH.FGST.. EPTKTDEYGN PVHHTTT... .......... ....G.TGRT 

  Q40955_PRUPE  NSAREDDQYC RDTHPT.... TGAYGR..AG YTG.GEHQEK KGIIGQVKDK 

  Q4JNX4_PRUDU  MAH.FGST.. EPTKTDEYGN PVHHTTT... .......... ....G.TGRT 

  A1XSX2_MALDO  MSN.YGNT.. AEKTTDEYGN PTYNGSA... .......... ....G.ADRT 

     NP_190666  MNS.HQNQ.. GVQK...... ......K... .......... ....G.ITEK 

/////////////////////////////////////////////////////////////////////////////

[               201                                                250]

     NP_177745  EEEKKGFMEK LKEKLPGH.. KKPEDGSAVA AAPVVPP... ......PV.A 

  Q30E95_PRUPE  EEEKKGFLEK IKEKLPG.QQ KKPEEIPASY DDQCHAQHAE PAEPAGVG.C 

  Q9SDS0_PRUDU  .......... .......... .......... .......... .......... 

     NP_850947  EEEKKGFMDK IKEKLPG.HS KKPEDSQVVN TTPVETATPI .......A.D 

     NP_564114  EEEKKGFMDK IKEKLPG.HS KKPEDSQVVN TTPVETATPI .......A.D 

     NP_173468  EEEKKGLVEK IKEKLPGHHD EKAEDSPAVT STPVVTEHPV EPTTELPV.E 

  NP_001067843  R..KKGIKEK IKEKLPGGNK GNNHQQQQ.. MMGTGGAYGQ QGHAGMTGGG 

  NP_001067842  R..KKGIKEK IKEKLPGGNK GNNQQQQQ.. MMGTGGAYGQ QGHAGMTGGG 

  NP_001067844  R..KKGIKEK IKEKLPGGNK G...EQQH.. AMGTGGAYGQ QGHGTGMTGT 

  NP_001067841  R..KKGIKEK IKEKLPGGNK GNNQQQQQEH TTTTGGAYGP QGHDTKIAGD 

  NP_001067838  GRRKKGIKEK IKEKLPGGNK GGQQQPTATA ATGYGAGTGH TAAAG.TTTQ 

  NP_001032162  RR.KKGITQK IKEKLPGHHD QSGQAQA... M....GGMGS GYDAGGYG.G 

     NP_201441  RR.KKGITQK IKEKLPGHHD QSGQAQA... M....GGMGS GYDAGGYG.G 

     NP_190667  RRKKKGITEK IKEKLPGHHD SNKTSSLGST T....TA... ....YDTG.T 

  Q5QIC0_PRUPE  RK.KKGLKEK VKEKLPGG.. .......... .....TKTDT TYGGTGTT.G 

  Q9SW89_PRUDU  RK.KKGLKEK IKKKLPGG.. .......... .....TKTDT TYGGTGTT.G 

  Q9LUX4_PYRPY  .......... .......... .......... .......... .......... 

  NP_001043995  RRKKKSIKEK IKEKLPGSHK QEEQKQAGHT A....PAAGT GTGTGTHA.A 

     NP_179744  RR.KKSIKEK IKEKFGSGKH KDEQTPATAT T....TG... ....PATT.D 

  Q9LEE1_PRUPE  KLPGGQKDDQ YCRDTHPT.. ..TGAYGG.. AGYTG.GEHQ EKKGIIGQVK 

  Q40968_PRUPE  DHEKKGIIGQ VKDKLPGGQK DDQYCRDTHP T....TGAYG G..AGYTG.G 

  Q40955_PRUPE  .......... .......... .......... .......... .......... 

  Q4JNX4_PRUDU  HHEKKGVIGQ VKDKLPGGQK DDQYCRDTHP T....TGAYG G..AGYTG.G 

  A1XSX2_MALDO  QHQEKGTTDK IKEKLPGGNR DDQYSHDTST T....AAAYG G..TGRT..G 

     NP_190666  HHEKKGIAEK IKEQLPGHHG THKT...GTT T....SY... ....GNTG.V 
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     NP_177745  HPVEKKGILE KIKEKLPG.. .......... .......... YHKTTEEE.. 

  Q30E95_PRUPE  EPKEKKGILE KIKEKIPG.. .......... .......... YHKTEEKEAI 

  Q9SDS0_PRUDU  .......... .......... .......... .......... .......... 

     NP_850947  IPEEKKGFMD KIKEKLPG.. .......... .......... YHKTTEEE.. 

     NP_564114  IPEEKKGFMD KIKEKLPG.. .......... .......... YHKTTEEE.. 

     NP_173468  HPEEKKGILE KIKEKLPG.. .......... .......... YHKTTEEV.. 

  NP_001067843  NAGEKKGFMD KIKEKLPG.. .......... .......... .......... 

  NP_001067842  NTGEKKGFMD KIKEKLPG.. .......... .......... .......... 

  NP_001067844  DTGEKKGIMD KIKEKLPG.. .......... .......... .......... 

  NP_001067841  AGGEKKGIVD KIKEKLPG.. .......... .......... .......... 

  NP_001067838  PTHEKKGMME KIKEKLPGGG .......... .......... .......... 

  NP_001032162  EHHEKKGMMD KIKEKLPGGG .......... .......... .......... 

     NP_201441  EHHEKKGMMD KIKEKLPGGG .......... .......... .......... 

     NP_190667  VHHEKKGMME KIKEKLPG.G .......... .......... .......... 

  Q5QIC0_PRUPE  QHHQEKGTMD KIKEKLPGTG HRADDPYPSQ ttTTTPYGGA YTEEHEKKGI 

  Q9SW89_PRUDU  QHHQEKGTMD KIKEKLPGTG HRADDPYPSQ ttTTTPYGGA YTEEHEKKGI 

  Q9LUX4_PYRPY  .......... .......... .......... .......... .......... 

  NP_001043995  GKHEKKGIVE KIKEKLPGHG .......... .......... .......... 

     NP_179744  QPHEKKGILE KIKDKLPGHH .......... .......... .......... 

  Q9LEE1_PRUPE  DKLPG..GQK DDQYCHDthT TGAYGGGYTG DTEKKGIGQV KDKLPgGQDH 

  Q40968_PRUPE  EHQEKKGIIG QVKDKLPG.. GQKDDQYSHD thTTGAYGGG YTDDTEKKGI 

  Q40955_PRUPE  .......... .......... .......... .......... .......... 

  Q4JNX4_PRUDU  EHQEKKGIIG QVKDKLPG.. GEKXDQYSHD xhTTGAYGGG YT........ 

  A1XSX2_MALDO  EPQEKKNMMD KIKEKLPGGH .......... .......... .......... 

     NP_190666  VHHENKSTMD KIKEKLPG.G .......... .......... .......... 

////////////////////////////////////////////////////////////////////////

     ;

endblock;

begin paup;

set errorstop;

set criterion=parsimony;

set increase=no;

pset collapse=maxbrlen;

hsearch start=stepwise addseq=simple swap=tbr;

savetrees /brlens file='/panfs/storage.local/genacc/home/stevet/tutorials/FVSU/paupsea

rch_105.pauptrees' replace;

quit;

endblock;

The PAUPscript file contains the NEXUS format file that was generated by GCG, which would normally be passed to PAUP*.  Notice that columns of your alignment with zeroes in their Mask are excluded from the NEXUS alignment.  This file can be used to run PAUP* in its native mode on whatever machine is appropriate.  Using a Macintosh may be desirable in order to take advantage of PAUP*’s very friendly Macintosh graphical user interface.  Since GCG automatically creates this file for you, correctly encoding all of the required format data, when you run PAUPSearch, there is no need to hassle with a later conversion of your alignment to NEXUS.  File format conversion can be a huge headache and here GCG has done all of that work for you.  When using this file as input to native PAUP* you will want to comment out or remove any inappropriate commands within the command block near the end of the file with a simple text editor.  Likewise, this file can be greatly expanded by encoding any desired commands and rate matrices within its command block.

As stated above, I would recommend running the latest version of PAUP* available, but whatever version you run, learn how to run the most robust searches possible, before accepting any output as valid phylogenetic inference.  Unfortunately the techniques of molecular phylogenetics are beyond the scope of this tutorial.  I encourage you to investigate further.

PHYLIP Format.

Dr. Joseph Felsenstein’s PHYLIP (PHYLogenetic Inference Package [1993]) programs from the University of Washington (http://evolution.genetics.washington.edu/phylip.html) use their own distinct file format.  PHYLIP is a comprehensive freeware suite of thirty different programs for inferring phylogenies that can handle molecular sequence, restriction digest, gene frequency, and morphological character data.  Complete documentation comes with the package and is available on the Web.  Methods available in the package include parsimony, distance matrix, and likelihood, as well as bootstrapping and consensus techniques.  A menu controls the programs and asks for options to set and starts the computation.  Data is automatically read into the program from a text file in PHYLIP format called "infile."  If it is not found, the user types in the proper data file name.  Output is written into special files with names like "outfile" and "treefile".  Trees written into "treefile" are in the Newick format, an informal standard agreed to in 1986 by authors of a number of major phylogeny packages.  PHYLIP has been in distribution since 1980, and has over 6,000 registered users.  It is the most widely distributed phylogeny package worldwide, and competes with PAUP* as that responsible for the largest number of published trees, though newer methods such as RaxML (Stamatakis, 2006), GARLI (Zwickl, 2006), and MrBayes (Ronquist and Huelsenbeck, 2003) are changing those statistics.

In the “SeqLab Main Window” go to the “File” “Export” menu; click “Format” in the new window and notice that several different formats are available for saving a copy of your RSF file.  But do not export any of these formats at this point, and “Cancel” the window.  Realize that using this export route does not use the Mask data to include or exclude columns from your alignment.  Since we want to take advantage of the Mask data for subsequent phylogenetic analyses, we’ll use another method to export our alignment.  Therefore, after being sure that all of the protein sequences as well as the Mask sequence are selected, go to the “Functions” menu, where choices will be affected by the Mask, and choose “Importing/Exporting” “SeqConv+. . ..”  “Set the output format to: FastA” and press “Run” to convert those portions of the alignment that are not masked out into FastA format.  FastA is a great intermediate format on our way to PHYLIP's required format because it is so simple.  However, the new non-GCG format file is not automatically displayed by SeqLab and is not listed in the Output Manager.  The file will appear in your working directory with the name “seqconv+.fa.”  Use your terminal window to look at it.  Notice that it excludes those positions that were masked with zero and that it now follows all FastA format conventions including the automatic conversion of all GCG style gap periods and tildes to the more universal gap hyphen representation.  This step, therefore, circumvents the common ‘dot to dash’ problem often encountered in sequence format conversion.  The very first and last entry from my FastA format output file is shown below:

>NP_177745 ERD14 (EARLY RESPONSE TO DEHYDRATION 14) [Arabidopsis thaliana].

MAEEIKNV--PEQEVPKVATEESSA--------------------EVTDRGLFDFLGKKK

EKPEETPIASEFEKVHISEPEEV---------------KHESLLEKLHRSDSSSSSSSEE

GSDGEKRKKKKEKK---------------K---------------PT-------------

-----------TEVEVK---EEEKKGFMEKLKEKLPGH--KKPEDGSAVAAAPVVPP---

------PV-AHPVEKKGILEKIKEKLPG----------------------YHKTTEEE--

---KKD-----KE--

>Q30E95_PRUPE Author:       HMMER 2.1.1

NKSQDRGY--GKAGEYEEGSGARAAEC-----------------GEIKDRGLFDFLGKKE

EKPQE-VIVTEFEKVKVSDHEPHPHHESYK--EQEDKEKHGSLLEKLHRSDSSSSSSSEE

EGEGGEKKKKKKEK---------------KGLKEI---CGDHDQKDTAVPVK--------

------EEPTHE-----EKKEEEKKGFLEKIKEKLPG-QQKKPEEIPASYDDQCHAQHAE

PAEPAGVG-CEPKEKKGILEKIKEKIPG----------------------YHKTEEKEAI

EKEKEK-----ETSS

////////////////////////////////////////////////////////////

>NP_190666 LTI30/XERO2 (LOW TEMPERATURE-INDUCED 30) [Arabidopsis thaliana].

MNS-HQNQ--GVQK------------K-----------------G-ITEKIMEKLPGHHG

TTG-------------VVHHEKGMTEEQLP---GHGATTGGVHHEKKGMTEKVMEQLPHH

G-----SHQTGTNTTY--GTTNTGGVHEKKSVTEVMEKLPGHHG-SHQ---T--------

------NTAYGTNTNVV---HHEKKGIAEKIKEQLPGHHGTHKT---GTTT----SY---

----GNTG-VVHHENKSTMDKIKEKLPG-G------------------------------

-----------HH--

I suggest renaming this file with a name that makes more sense to you.  We won’t need SeqLab anymore in today’s session, so exit it with the “File” menu “Exit” choice and save your RSF file and any changes in your list with appropriate responses.  Accept the suggested changes and designate names that make sense; SeqLab will close.  Next, we can convert the FastA format file just produced to PHYLIP compatible format.

To do this we’ll run Don Gilbert’s public-domain program ReadSeq.  This program can be used to change your FastA format file into a format acceptable to PHYLIP.  A ReadSeq limitation is it doesn’t recognize that you want to just use portions of your alignment, nor does it automatically convert dots and tildes to hyphens.  However, since SeqLab has taken care of these points, it’ll work just fine for us here.  The command line version of ReadSeq runs a bit backward from what most people are used to, though.  Begin the program by typing “readseq” at your command prompt in your terminal window.  ReadSeq first prompts you for an appropriate output file name, not an input file.  Do not make a mistake in this step by giving the name of your input file first.  If you do, you will overwrite the input file while running the program, and then when it tries to read it, there will be nothing left to read!  Next choose “12” off of the ReadSeq menu for the current PHYLIP format and then designate the input FastA format sequence.  Mine is named “FVSU.fsa,” yours won’t be, unless you renamed it that in the previous paragraph.  It’ll have the cryptic default name “seqconv+.fa” if you didn’t rename it.   (Do not use the GCG {*} designator; this is not a GCG program.)  Finally, after the program has read all of the input sequences, specify “All” the sequences by typing the word “all.”  When the program again asks for an input sequence, press return to inform it that you are done, and let it do its thing.  A sample screen trace is shown below; as usual, responses are shown in bold:

> readseq
readSeq (1Feb93), multi-format molbio sequence reader.

Name of output file (?=help, defaults to display): 

FVSU.phy

         1. IG/Stanford           10. Olsen (in-only) 

         2. GenBank/GB            11. Phylip3.2       

         3. NBRF                  12. Phylip          

         4. EMBL                  13. Plain/Raw       

         5. GCG                   14. PIR/CODATA      

         6. DNAStrider            15. MSF             

         7. Fitch                 16. ASN.1           

         8. Pearson/Fasta         17. PAUP/NEXUS      

         9. Zuker (in-only)       18. Pretty (out-only)

Choose an output format (name or #): 

12

Name an input sequence or -option: 

FVSU.fsa

Sequences in FVSU.fsa  (format is  8. Pearson/Fasta)

 1)  NP_177745 ERD14 (EARLY RESPONSE TO DEHYDRATION 14) [Arabidopsis thaliana].

 2)  Q30E95_PRUPE Author:       HMMER 2.1.1

 3)  Q9SDS0_PRUDU Author:       HMMER 2.1.1

 4)  NP_850947 ERD10/LTI45 (EARLY RESPONSIVE TO DEHYDRATION 10) [Arabidopsis thaliana].

 5)  NP_564114 ERD10/LTI45 (EARLY RESPONSIVE TO DEHYDRATION 10) [Arabidopsis thaliana].

 6)  NP_173468 COR47 (cold regulated 47) [Arabidopsis thaliana].

 7)  NP_001067843 Os11g0454200 [Oryza sativa (japonica cultivar-group)].

 8)  NP_001067842 Os11g0454000 [Oryza sativa (japonica cultivar-group)].

 9)  NP_001067844 Os11g0454300 [Oryza sativa (japonica cultivar-group)].

 10)  NP_001067841 Os11g0453900 [Oryza sativa (japonica cultivar-group)].

 11)  NP_001067838 Os11g0451700 [Oryza sativa (japonica cultivar-group)].

 12)  NP_001032162 RAB18 (RESPONSIVE TO ABA 18) [Arabidopsis thaliana].

 13)  NP_201441 RAB18 (RESPONSIVE TO ABA 18) [Arabidopsis thaliana].

 14)  NP_190667 dehydrin, putative [Arabidopsis thaliana].

 15)  Q5QIC0_PRUPE Author:       HMMER 2.1.1

 16)  Q9SW89_PRUDU Author:       HMMER 2.1.1

 17)  Q9LUX4_PYRPY Author:       HMMER 2.1.1

 18)  NP_001043995 Os01g0702500 [Oryza sativa (japonica cultivar-group)].

 19)  NP_179744 dehydrin family protein [Arabidopsis thaliana].

 20)  Q9LEE1_PRUPE Author:       HMMER 2.1.1

 21)  Q40968_PRUPE Author:       HMMER 2.1.1

 22)  Q40955_PRUPE Author:       HMMER 2.1.1

 23)  Q4JNX4_PRUDU Author:       HMMER 2.1.1

 24)  A1XSX2_MALDO Author:       HMMER 2.1.1

 25)  NP_190666 LTI30/XERO2 (LOW TEMPERATURE-INDUCED 30) [Arabidopsis thaliana].

Choose a sequence (# or All): 

all

This format requires equal length sequences.

Sequence truncated or padded to fit.

This format requires equal length sequences.

Sequence truncated or padded to fit.

This format requires equal length sequences.

Sequence truncated or padded to fit.

This format requires equal length sequences.

Sequence truncated or padded to fit.

Name an input sequence or -option: 

<enter or return key>

Never mind if you happen to get the “. . . padded to fit” error message — the program is just doing what it is supposed to do.

Do realize, though, that had we not used ReadSeq on the output from SeqConv+ to convert to PHYLIP, and had rather used a GCG MSF file as input, then an essential change would have to be made before it would be correct for PHYLIP.  As mentioned before, periods and tildes will not work to represent indels (gaps); they must all be changed to hyphens.  The following, rather strange, UNIX command works very well for this step from the command line:

$ tr \~\. \- < infile.phy > outfile.phy
but you should not need to use it in this tutorial!
Run “more” on your new file to see what PHYLIP format looks like:

$ more FVSU.phy
The first part of that PHYLIP output file is displayed below:

 25 315

NP_177745    MAEEIKNV-- PEQEVPKVAT EESSA----- ---------- -----EVTDR

Q30E95_PRU   NKSQDRGY-- GKAGEYEEGS GARAAEC--- ---------- ----GEIKDR

Q9SDS0_PRU   KICGDHDQED TAVPE----- ---------- ---------- --KEEEKKGF

NP_850947    MAEEYKNT-- PEQETPKVAT EESSA----- ---------- ----PEIKER

NP_564114    MAEEYKNT-- PEQETPKVAT EESSA----- ---------- ----PEIKER

NP_173468    MAEEYKNN-- PEHETPTVAT EESPATT--- ---------- ----TEVTDR

NP_0010678   MDN-YQGQH- --------GY GA-DRVDVYG NPGGQYGG-- --G-------

NP_0010678   MEN-YQGQH- --------GY GA-DRVDVYG NP-GQYGG-- --G-------

NP_0010678   ME--HQGQH- --------GH VT-SRVDEYG NPGGAGHGQG MGG-------

NP_0010678   ME--YQGQHG --------GH AS-SRADEHG NPV------- ----------

NP_0010678   MAHFQGQQHG PAARVDEYGN PVAAGHGITG TQAAGGYGAG QPAFGGATDA

NP_0010321   MAS-YQNRPG --QATDEYGN PIQQQYDEYG NPGGGYGTGG TGGYGT----

NP_201441    MAS-YQNRPG --QATDEYGN PIQQQYDEYG NPGGGYGTGG TGGYGT----

NP_190667    MES-YQNQSG --------AQ QTHQQLDQFG NPP------- ----------

Q5QIC0_PRU   MAS-YEKQYG --TPTDEYGN PIRRT-DEYG NPGHTTTTGT TGGYDP----

Q9SW89_PRU   MAS-YEKQYG --TPTDEYGN PIRRT-DEYG NPGHTTTTGT TGGYXP----

Q9LUX4_PYR   KIPGTGGGDD ---------- ---------- ---------- --NAQTGTGM

NP_0010439   MAEHATGV-- G------HPY PRVDQYG--- ---------- ----NPVPPV

NP_179744    MAD-LRDEKG PIHLTDTQGN PIVDLTDEHG NPYTGVVSSP ESSDIA----

Q9LEE1_PRU   KTDEYGNPVH HTTT------ ---------- -G-TGRTDEF GNPVQHGATG

Q40968_PRU   MAH-FGST-- EPTKTDEYGN PVHHTTT--- ---------- ----G-TGRT

Q40955_PRU   NSAREDDQYC RDTHPT---- TGAYGR--AG YTG-GEHQEK KGIIGQVKDK

Q4JNX4_PRU   MAH-FGST-- EPTKTDEYGN PVHHTTT--- ---------- ----G-TGRT

A1XSX2_MAL   MSN-YGNT-- AEKTTDEYGN PTYNGSA--- ---------- ----G-ADRT

NP_190666    MNS-HQNQ-- GVQK------ ------K--- ---------- ----G-ITEK

////////////////////////////////////////////////////////////////////

The file begins with two numbers; the first shows the number of sequences in the matrix and the second lists the length of the matrix including any gaps and ambiguities.  The next section lists the names of the sequences truncated to ten characters, if necessary, along with all the sequences printed in an ‘interleaved’ fashion.  Only the first sequence block lists the names, all others just give the sequence data itself.

Regardless of how you go from GCG format to acceptable PHYLIP format, one more technicality should be looked at.  As discussed in the introduction, you should evaluate the terminal ends of your data matrix.  If any of the implied indels are uncertain (especially true if sequence lengths were different), then question marks, “?”’s, are usually more appropriate than hyphens.  Leaving them hyphens could be misleading in some programs.  As discussed earlier, gaps in the data are represented by deletion symbols, “-,” which is logically correct in most cases.  However, gaps at the ends and beginnings of sequences probably should not have hyphens unless you really know that a deletion/insertion is responsible for the length discrepancy.  Therefore, it is a good idea to edit the output from ReadSeq to replace leading and trailing hyphens in your alignment with question marks or the unknowns characters “n” or “x” depending on which is more appropriate, DNA or protein sequence respectively.  Be very careful when changing these characters so that the alignment doesn’t shift out of phase.  Don’t bother performing this question mark editing procedure today though.

This is also an excellent point at which to verify that the sequence names are exactly as you wish them to appear in the final treeplots.  As mentioned in the introduction, PHYLIP sequence names can contain limited punctuation and mixed capitalization, and can be up to ten characters in length.

Multiple Sequence Alignment and Structure Prediction.

Structural inference is fraught with difficulties, as you no doubt realize.  However, using comparative multiple sequence approaches is by far the most reliable strategy.  In fact, in my opinion, the best predictor of protein secondary structure around, available at http://www.embl-heidelberg.de/predictprotein/predictprotein.html, uses multiple sequence alignment profile techniques along with neural net technology.  PredictProtein is a service offered by the Protein Design Group at the European Molecular Biology Laboratory, Heidelberg, Germany.  A multiple sequence alignment is created with the MaxHom weighted dynamic programming method (Schneider, 1991) and a secondary structure prediction is produced by the profile network method (PHD).  PHD is rated at an expected 70.2% average accuracy for the three states helix, strand, and loop (Rost and Sander, 1993 and 1994).  Their Web page provides default, advanced, and expert submission forms.  One powerful advanced and expert option is to submit your own multiple alignment.  Their automated search and alignment procedure is very good, but if you’ve been working for months on a multiple alignment, and you know it is the best it can be, you may want to force PredictProtein to use that information, rather than it’s own automated alignment. 

In fact, three-dimensional modeling without crystal coordinates is even possible.  This is “homology modeling.”  It will often lead to remarkably accurate representations if the similarity is great enough between your protein and one with an experimentally solved structure.  Automated homology modeling is available through the Web as GlaxoSmithKline’s SWISS-MODEL (see e.g. Guex, et al. [1999] and Guex and Peitsch [1997]) at Bairoch’s ExPASy server in Switzerland (http://swissmodel.expasy.org/).  As with PredictProtein, you can submit an individual sequence and the server will perform a database search, in this case against all of the sequences from the three-dimensional Protein Data Bank, and then create a multiple alignment of the significant hits, and then finally provide a structural inference.  This is “First Approach mode,” or you can submit your own customized and carefully scrutinized multiple sequence alignment using “Optimise (project) mode.”  There are a couple of tricks to using project mode though.  Naturally, your template sequences must have solved structures, however, Swiss-PdbViewer must be used to format and submit your data.  Swiss-PdbViewer is an interactive molecular structure viewer and editor, also developed at GlaxoSmithKline, that allows superpositioning of both structures and their corresponding sequences, that you install on your own computer.  It has versions for many of the major operating systems.  An extensive menu and help system is provided by the SWISS-MODEL home page.  Results are returned in one of three modes, Swiss-PdbViewer mode, normal mode, or short mode.  Normal mode and short mode both return PDB format coordinates for the model, normal with a complete log file of all the server actions, short without.  Swiss-PdbViewer mode returns a project file containing PDB formatted coordinates for the model and all templates superimposed, formatted for Swiss-PdbViewer, and a complete log file.

Conclusions — Do You Have Any?

The comparative method is a cornerstone of the biological sciences.  Multiple sequence alignment and database searching are the comparative method on a molecular scale, and are a vital prerequisite to some of the most powerful biocomputing techniques available.  Many methods are available.  Understanding something about the algorithms and the program parameters of each is the only way to rationally know what is appropriate.  Several methods are even available on the Internet over WWW servers.  Knowing and staying well within the limitations of any particular method will avert much frustration.  Oftentimes you’ll need to deal with very large datasets, or you may need to manually adjust alignments.  A comprehensive multiple sequence editor such as the GCG Wisconsin Package SeqLab graphical user interface can be a lifesaver in these situation.

One point that needs to be emphasized is most sequence analysis techniques can be run with default parameters.  This will often work, but it is a good idea to think about what these default values imply and adjust them accordingly, especially if the results seem inappropriate after running through a first pass with the default parameters intact.  Another vital point that can’t be repeated often enough, is the dramatic importance of your multiple sequence alignments.  All subsequent analyses are absolutely dependent upon them, especially phylogenetic inference.  Also, if you are building multiple sequence alignments for phylogenetic inference, do not base an organism’s phylogeny on just one gene.  Many complicating factors can make interpretation difficult.  Weird phylogenies can be the result of several things: bad alignments, insufficient data, abjectly incorrect models, saturated positions (homoplasy), compositional biases, and/or horizontal gene transfer.  Use several genes — the Ribosomal Database Project (RDP) (http://rdp.cme.msu.edu/html/) provides a good, largely accepted, alignment and phylogenetic framework with which other phylogenies can be compared.  The complete RDP can be installed on a local GCG server in aligned GCG format, given sufficient interest and a cooperative GCG systems manager, which could then be used in the same manner as the sequences explored in this chapter.  Otherwise desired data subsets can be downloaded from RDP and loaded into SeqLab.  Anytime the orthologous phylogenies of organisms based on two different genes do not agree, there is either some type of problem with the analysis, or you have found a case of lateral transfer of genetic material.  Paralogous gene phylogenies are another story altogether and should be based, if at all possible, on sequences all from the same organism.

Furthermore, keep in mind that this tutorial was written using a pretty small dataset.  This was done so that individuals working through the text on-line would be able to proceed in ‘real time.’  However, many datasets that you will encounter, especially the ‘very-interesting!’ ones, will much more divergent, or you’ll be trying to align distantly related domains, or you’ll be working on a paralogous system, or . . . .  These are the situations that will present vexing alignment problems and difficult editing decisions.  These are the times that you’ll really have to think.

Gunnar von Heijne in his quite readable but very dated treatise, Sequence Analysis in Molecular Biology; Treasure Trove or Trivial Pursuit (1987), provides an appropriate conclusion:

“Think about what you’re doing; use your knowledge of the molecular system involved to guide both your interpretation of results and your direction of inquiry; use as much information as possible; and do not blindly accept everything the computer offers you.”

He continues:

“. . . if any lesson is to be drawn . . . it surely is that to be able to make a useful contribution one must first and foremost be a biologist, and only second a theoretician . . . .  We have to develop better algorithms, we have to find ways to cope with the massive amounts of data, and above all we have to become better biologists.  But that’s all it takes.”

This has been a very long workshop; I apologize for that.  However, database searching and multiple sequence alignment are two of the more commonly misunderstood areas in computational molecular biology and bioinformatics.  There is a tremendous amount of confusion in the field and anything that can be done to try and clear up some of the mess is entirely worthwhile.
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