NPROG Project Report

24/04/2009

NPROG
Natural Language Programming

Student:
Tamas Madl

Supervisor:
Chris Casey

A project report submitted in partial fulfilment of the degree of

BSc(Hons) Computing
Abstract
Natural language programming is the idea of using informal natural language as a programming language for creating software.

This project has the goal of translating program descriptions written in simplified English into a programming language. The idea is to make the creation of simple applications possible for users with no knowledge of formal programming, with little previous training required.

The resulting program is able to translate English sentences containing instructions into Java commands, and then into an executable program, almost independently of phrasing and syntax. The current instruction set allows for the creation of simple mathematical and financial applications, either in command line or with a graphical user interface.

 This report should give insight into this problem and which approach was taken to solve it in this project.

It gives some background information about natural language processing, and about a few other projects on this field.

It describes the specification of the project and explains its objectives and the tools that were used for creating it, and their advantages. Also, it gives an overview about the ideas behind the system and the classes in the system.

It also gives details about the implementation of the more complex and important algorithms in this project, and describes how and why they were written.

The report also evaluates the resulting program, discusses the methods and a few algorithms used, describes a few test cases, outlines the limitations of the language that can be used in the project and gives a few ideas what could be improved and added in the future to enhance it.

Finally, it concludes with the insight that although the problem at hand was more complex than initially estimated, the resulting program is working and able to produce simple applications from natural language descriptions.

Contents

2Abstract

3Contents

5Introduction

51.1
Background

51.2
Motivation

61.3
Overview

62.
Analysis

62.1
Introduction to NLP

82.2
Feasibility

102.3
Similar Projects

102.3.1
Metafor

122.3.2
NaturalJava

132.4
The Proxem Antelope Library

153.
Specification

153.1
Objectives

153.2
Non-objectives

153.3
The Graphical User Interface

173.4
Tools and techniques

173.4.1
The Integrated Development Environment

183.4.2
The NLP Library

183.4.3
The development process

193.4.4
Testing

204.
Design

204.1
Overview

214.2
The internal representation

224.3
Class Diagram

244.4
Error handling

255.
Implementation

255.1
Overview

265.2
ConditionPreprocessor

285.3
CommandCleaner

295.4
InstructionTable

295.4.1
Overview

315.4.2
The getBestInstructionString method

315.4.3
The getCommands method

355.5
IRCommand

365.6
Translator

365.6.1
TranslateSentence

385.6.2
TranslateConditionalStructure

395.7
ExplicitExpressions

395.8
GuiEditor & RectTracker

406.
Critical Evaluation

406.1
Overview

406.2
Evaluation against the objectives

416.3
Methodology

426.4
The NLP Library

436.5
Design and Implementation

436.5.1
String matching algorithm

446.5.2
ConditionPreprocessor

456.5.3
CommandCleaner

456.5.4
Internal representation

456.6
Test results and performance

486.7
Language limitations

486.8
Ideas for future improvement

496.9
Commercial potential

506.10
Time planning

517.
Conclusion

528.
References

549.
Appendices

549.1
Appendix A: Project Proposal

589.2
Appendix B: Mini Paper

679.3
Appendix C: Record of Supervision

689.4
Appendix D: The current instruction table

699.5
Appendix E: Message codes

709.6
Appendix F: Condition matching tables

709.7
Appendix G: Code listings of relevant methods

709.7.1
ConditionPreprocessor.processStructure

729.7.2
ConditionPreprocessor.getCondition

749.7.3
CommandCleaner methods

Introduction

1.1 Background
Since computers have become popular among non-technical users, many people of different backgrounds have the need for customized programs - for example, scientists could need custom software for modelling or finding numerical solutions; accountants could want specialized financial calculators etc.
My idea is to make it possible for them to create simple computer programs with very little learning and formal rules required. The user would just enter the description of the program he wants in natural language, and get the result in a formal language or in the next step as a finished executable program.

NPROG is a basic compiler for English as a natural language. It allows the user to enter the description of a program in simplified English, which the program then translates into a formal object-oriented programming language - Java (which then can be compiled into an executable program). The basic idea is to make the creation of simple programs possible for users with no knowledge of formal programming languages, with very little training required.

To achieve this, the input text is first analyzed using third-party NLP libraries: using part-of-speech tagging, parsing and semantic analysis. Then, the goal the user is trying to achieve is identified by comparing the sentence parts with a hard-coded instruction set. Then the equivalent formal code is displayed, and by pressing a button the user can compile it to an executable program.
The type of sentences/language which the program will be able to understand will be restricted to make the parsing easier. Also, the initial instruction set will be limited; but there will be an interface to add more commands so that it can be extended later. The instruction set editor can also be used to create instruction sets for new languages, extending the scope of possible output languages.
1.2 Motivation
A system which can understand natural language and is capable to produce software could be very useful for several reasons. This project does not realize the AI researcher’s dream of making computers perfectly understand verbal commands and then execute them as machine code commands; but I believe it comes a step closer than similar attempts in the same field (which will be discussed in Chapter 3).
Firstly and most obviously, describing any task in a human language is a much easier task than doing the same formally. Ideally, the source code – meaning the “blueprint” or the description of the executable which results after compilation – would be syntax-free, type-free and independent from the choice of words. In this case, a lot of time is saved for every programmer using that language, since the often tedious phase of checking for and correcting simple syntactic errors can be put aside. This will result in faster development. It would also enable anyone with logical thinking and some command of the language to create programs without having to learn lots of rules beforehand.
How close NPROG comes to this ideal will be discussed in Chapter 6.

A second reason could be a purely economic one. Although today there is at least one package of software for tackling almost any task, there is a more optimal and more specific solution to every task, which would allow for more efficient processes and thus more productivity and less costs. This is the reason why most big companies spend a lot of money for the development of software tailored for their exact tasks. But if we took the set of all tasks that can arise in all kinds of companies all around the world, there would not be enough programmers in the world to write tailored programs for each and every one of them (and even if it was possible, surely not every company could afford them). This problem could easily be solved if programming was available to the wide public – with the possibility of programming in natural language, any employee familiar with the companies’ tasks and processes could write programs to support them.
Finally, a natural language programming system could be used in education to teach even young children to be more than the end-user: to write programs themselves, or to extend them.
1.3 Overview
Chapter 2 introduces some natural language processing techniques and describes a few past projects on this area. It also explains the basic structure of Proxem, the NLP Library used for this project, and explains a few problems which it doesn’t support and which therefore have to be dealt with manually.
Chapter 3 explains the objectives and non-objectives of this project, and introduces and justifies the tools and techniques used for the development.
Chapter 4 gives an overview of the system’s original design, explains the internal representation used and the planned error handling system. It also gives an overview of the type of input language expected by the program and the constraints thereon.
In Chapter 5, implementation details are given about the most important, or most complex, classes and methods used in the system, including (but not limited to) the translator and the internal representation.

Chapter 6 contains an evaluation of the project, compares the intended objectives against reached goals and gives feedback about the algorithms, tools and techniques used. It also shows some test results highlighting the system’s performance, and describes some ideas about how the system could be improved in future.

Chapter 7 concludes this work with a few words about natural language programming and about the learning effect of this project.
2. Analysis
2.1 Introduction to NLP
Natural Language Processing (NLP) is a part of Artificial Intelligence and deals with the automated understanding of human language. The goal of natural language is to enable computer systems to process and “understand” a text in a natural human language, which often begins with the analysis of the input text and its conversion into a representation that is easier for a program to handle. NLP systems can be used for example in support of word processing, for automatic translation, for information extraction from given documents, or for the creation of easy-to-use human-computer-interfaces (which was the purpose of this project).
Natural language is complex, inexact and does not always conform to universal rules. Therefore there are many challenges when trying to process and understand it. Just to name a few:

· Sentence Boundary Disambiguation
Finding the beginning and the end of a sentence. This can be hard because the user can forget a period, and even a period doesn’t have to denote the sentence boundary: it could be part of an abbreviation or a number.
· Lexical Ambiguity
The same word can have multiple meanings, due to the sometimes ambiguous English grammar (e.g. wood can mean an organic material or an area containing many trees). The correct one has to be derived from the context.
· Syntactic and Semantic Ambiguity
Some sentences can have multiple meanings, which one is sensible can depend on the context (e.g. “they are hunting dogs” – can mean both dogs used for hunting, or people hunting for dogs).
 (Proxem Antelope Documentation, 2008)

In order to understand the intentions of the user to the point where we can generate code – which is the goal of this project -, the structure of the input text has to be analyzed first using a parser. Parsing in this context is the structuring of a sentence in accordance to a grammar (the English grammar). The result of parsing should be a list of words in the input sentence with additional information like the part of speech and the type of that word (dependency types like subject or object etc.). This information is then used to derive the meaning of the sentence.

To take a concrete example, we could parse the following sentence:
Add the second value to the first value.

The parser output (using a Stanford parser) is:
Tagging:

Add/VB the/DT second/JJ value/NN to/TO the/DT first/JJ value/NN ./.

Typed dependencies:

det(value-4, the-2)

amod(value-4, second-3)

dobj(Add-1, value-4)

det(value-8, the-6)

amod(value-8, first-7)

prep_to(Add-1, value-8)

The two-character codes after the slash after each word denote the parts of speech (NN means noun, DT determiner, VB verb and JJ adjective). The typed dependencies describe grammatical relationships between the words (for example, dobj is a direct object and amod is an adjectival modifier).
(de Marneffe & Mannig, 2008)

Having obtained this result we know the parts of speech for each word. We also know that they correspond to specific programming terms. Table1 shows some simplified correspondences.
	Word
	POS Code
	Equivalent
	Example

	Noun
	NN, NNS, NNP, NNPS
	Object
	The operator

	Verb
	VB, VBD, VBG, VBN, VBP, VBZ
	Function
	Is, add

	Adjective
	JJ, JJR, JJS
	Property
	First, second

Table 1. The correspondences of part of speech categories to programming term equivalents

From the parser output, and using these correspondences, it is possible to derive the information we need in order to create the necessary instructions: the action to be taken (i.e. the function to be invoked, which is determined by the verb, e.g. “add”) and its parameters (objects and properties; in this example “first value” and “second value”).
Using this information, an instruction set and the previous natural language commands, a program could generate the following compilable Java instruction (after having dealt with some problems, which will be described in Section 2.3):

first_value += second_value;

2.2 Feasibility
The idea of communicating with a computer in our native language has come up many times in the history of computer science and is almost as old as programming itself. It would undoubtedly be easier to just tell a machine our intentions and let it do the hard work (formalising the request and generating the corresponding machine code). However, since the field of natural language processing can still be considered to be in its infancy, and will take some time to make perfect language understanding possible, some doubt has been cast on the feasibility of natural language HCI (human-computer interaction).
For example, (Dijkstra, 1979) argues that the use of formal symbolism (what he calls a “narrow interface”) is more simple and efficient than the use of informal or verbal texts, because formal texts have to comply to specific rules – “they are, when you come to think of it, an amazingly effective tool for ruling out all sorts of nonsense that, when we use our native tongues, are almost impossible to avoid” (Dijkstra, 1979). He points out how easy it is to make vague, self-contradicting, or even nonsensical statements in a language as inexact and loosely defined as natural language. He even goes as far as to claim that if we had, right from the start, used our native tongue to communicate with information processing equipment, we would require a few thousand years to produce a sufficiently well-defined interface.
Dijkstra’s critique of natural language is valid. However, if he had known about modern AI and NLP techniques and algorithms (like deep semantic analysis, or common sense databases, both used in Metafor (Liu and Lieberman, 2005) – see Section 2.3), his view would probably have been less pessimistic. And even without making use of huge AI libraries, some of the problems he pointed out could be dealt with by putting constraints on the input language (and explaining them to the user). A user with some background knowledge about how to write exact instructions would have a much better chance of writing a text in natural language which can be understood by a program. Also, in the case of a vague or nonsensical input sentence, the system could simply point out the problem to the user and ask him to specify or rephrase his sentence.
(Miller, 1981) carried out a study where subjects had to write detailed instruction procedures on how to obtain specific information from a set of employee files, e.g. for a new clerk. He has found that most subjects (13 out of 14) were capable of producing a complete set of instructions (i.e. specific instructions which could be carried out without additional assumptions, and which would solve the specified question and produce the required information), if the specified question was simple. However, for more complicated questions, most subjects failed to produce complete instructions (only 1 out of 14 subjects produced a complete solution for the most complex problem). From this result, (Miller, 1981) implied that the direct transition of natural language to a programming language was only possible for simple problems. He also pointed out that a major problem of using natural language for programming was that most people write natural language instructions as if they were intended for another human – thus specifying inexactly and omitting information which is, for a human, “obvious”. Unrestricted natural language programming would thus require semantic and pragmatic understanding as well as a great amount of background knowledge (which was not possible at his time, and is still only partly possible now).
(Miller, 1981) also derived an interesting list of differences between a formal language and the type of natural language instructions his subjects used, which can be seen in Table 2 on the next page.
Some of these differences can be dealt with easily. For example, a human will never declare variables or data structures in a natural language specification, but this can be corrected by inserting the declaration later (after having determined the variable type, depending on how the variable is used). Also, relative indexing (“next”, “previous”) can be translated to absolute values.
Other problems, like contextual referencing (“…put them back and check the others…” – Put what and where? And check what?), or the loose language syntax, can be difficult (but not impossible) to solve. The most difficult problem, however, is that people using their native tongue naturally rely on “common sense”, and omit information that is, in their opinion, obvious. There have been attempts to deal with this problem by saving as much information as possible in common sense databases and then querying them when needed. The most relevant projects trying to build common sense knowledge bases include the Cyc project (Lenat et al., 1990), and the Open Mind Common Sense project at MIT (Singh et al., 2002).
[image: image1.png]Features Programming Natural language

languages specifications

Data

Declarations, ete. Always explicit Never oceurred

References Explicit, well-defined Implicit, contextual

Examination/ Usually iterative, On aggregate basis

creation element by element

Indexing By numerical/variable Seldom occurred, then
value, major aspect contextually defined (e.g.

“next.” “previous”)
Data types Many, defined No distinction
Format specs. Many, explici Infrequent, contextual

Transfer of control

Extent Major aspect of programs Seldom specified
and style

IF-THEN-ELSE Mot used at present When occurred, only par-

tial—IE-THEN (no else)

IF(cond) GOTO Major feature Never occurred

Uncond. GOTO Was major, still common ~ Never occurred

Exceptiondetec. Important feature Never occurred

Structure Many types: recursion, Basically linear block
co-routines, nonlinear structures

Procedure calls Frequent, specified Major control mechanism,
completely but context specified

Argument passing Always explicit Mostly implicit

General language

Lexicon Very limited, except Canbe rich and large,
for variable names with many synonyms.
may be restricted
Sentence type Active imperative Mainly active
and conditional imperative, but can

be declarative/conditional

Sentence syntax Quite rigid Extremely variable.
may be very complex

Table 2. Differences between programming languages and natural language specifications
(taken from Miller, 1981)
Miller said in 1981 that the research on the field of natural language processing was not sufficient to solve all the problems arising when trying to convert a natural language specification into a programming language. Although some new approaches have been introduced since then (like deep semantic analysis, or common sense knowledge bases, as described above), there is still no project which would be able to reliably produce flawless formal program code from natural language descriptions, even if they are complete and exact (which they most of the time are not, as Millers study pointed out).
(Miller, 1981) also doubts that unrestricted natural language programming by untrained users will ever be possible - not because of lacking expressive capability of the English language, but because of users lacking ability to express complete and exact instructions which could unambiguously be translated into a formal language (assuming that NLP was on a level where this would be feasible).

As a conclusion, it can be said that there are some very hard challenges which, up to this time, have prevented the dream of an unconstrained natural language programming system from becoming true. Until the fields of AI and NLP become much more advanced, and natural language understanding systems come close to a human in their capability, the problem has to be constrained and simplified in order to make implementation feasible.
In this project, the type of input language is strongly restricted, as can be seen from later chapters (especially sections 6.2, 6.6 and 6.7). The program NPROG can only handle a small set of well-defined instructions, making it possible to write simple programs in natural language while complying to a few rules (but almost none of them constraining syntax or vocabulary). Although this system cannot be called a real and complete natural language programming system, the type of input language it uses is much closer to natural English than any formal programming language – and it can translate a recognized instruction from a natural sentence of almost any phrasing, even with spelling mistakes or wrong punctuation.

For a list of similar projects on this field, and information about how they tried to simplify and solve this problem, see the next Section.
2.3 Similar Projects
2.3.1 Metafor

There are very few projects with the goal of attempting to convert English into a programming language. One of these projects is Metafor, developed at the MIT, “for visualizing a person’s interactively typed stories as code”. Their goal was to assist novice programmers and to provide a brainstorming and outlining tool for intermediate programmers. Metafors output consists of scaffolding (underspecified) code fragments, containing class and method definitions but no procedural program code. (Liu & Lieberman, 2005)
Metafor’s users communicate with the system in a conversational style. There is an input window which accepts one sentence at a time, an interaction log containing previously entered sentences and the systems (the agents) responses, a window with debugging output, and a window containing the output code fragments in python. After each sentence is entered, the agent’s interpretation and resulting actions are displayed in the interaction log, and the code in the output window is extended.
[image: image2.png]7 Wetafor Interactive Natural Language Programming (ugoamedia.mit.edu) [BEX]

[user] (01:28:32) Pacman is a [DEICTIC STACK: [('Pacman’, ['he’, |*
character who loves to run ‘him', 'his', 'her', 'she’, 'hers'
through a maze and eat dots. , 'who'l), ('character', ['it'l),
[agent] (01:28:32) Ok. I ('maze', ['it']), ('dots', ['they'
created a new agent Pacman that ||, 'them']), ('dot’, ['it']), ('dot
lis a kind of character agent. I |[', ['it'l), ('Pacman’', ['he', 'him
ladded the ability for Pacman to [, 'his', 'her', 'she', 'hers', 'w

[run, which can be through a maze. ||ho'l), ('dot', ['it'l), ('point’,
[T added the ability for Pacman to ||['it'])]
leat. A dot is something which can

[be eaten. DIR: ['_main_.Pacman', '_main__
[user] (01:28:53) Whenever ~dot ']

[Pacman eats a dot, it disappears

land he wins a point. CODETREE: [['_main__', 'FunctionT|.
lagent] (01:28:53) Ok. Now we

lare going to think about Pacman | [def _main_(): g
leating. .. When Pacman eats a dot, Class Pacman (character) :

lthe dot disappears and Pacman def run(maze):

[wins a point. ...Now that we are pass

done thinking about Pacman

leating, we are going to resume def eat(dot):

[thinking about _main . dot.disappear ()

Pacman.win (point)

def win(point) :

pass

[When Pacman is running through

the maze, if a ghost catches him, class dot:

then he loses and the game is def disappear():
pass

lover |

Figure 1. A screenshot of Metafor with an example description of the Pacman game
(taken from Liu & Lieberman, 2005)
For natural language processing, Metafor uses the MontyLingua system (Liu, 2004 and Lieberman & Liu, 2004), which is a natural language toolkit enriched with common sense knowledge. It contains a tokenizer, a POS tagger, a chunker, an extractor (can extract subject-object-verb triplets), a lemmatiser (converts to base forms), and a natural language generator (capable of generating English sentences from concise predicates). The advantage of MontyLingua over conventional NL systems is its common sense knowledge base, which is derived from the Open Mind Common Sense project (Singh et al., 2002), containing 750,000 natural language statements. This makes the parser more reliable (from multiple possible parsing trees, it will find the correct one with a greater probability than other parsers) and makes NLP tasks like anaphora resolution easier (anaphora resolution is the task of finding what a pronoun or other expression refers to).
The goal and the approach in the NPROG project is different from Metafor. The following are the main differences between Metafor and NPROG:

· Metafor outputs code fragments with the intention to assist programmers. Unlike NPROG, Metafor’s output code is not complete and cannot be compiled to a working program.

· Unlike NPROG, Metafor assumes that the user already has at least some knowledge of python, since it relies on the user checking the output code for error correction. In NPROG, the system tries to identify and point out the users mistakes in an error log (see Section 4.4), but there is a code output window as well for advanced users.
· Metafor is able to create classes and methods, and to automatically parameterize methods. NPROG at this stage can only deal with procedural code (but can be extended later, see Section 6.8).
Metafor is not designed to produce executable, procedural code. However, Metafor’s authors has some interesting ideas about procedural natural language programming in (Mihalcea, Liu & Lieberman, 2006). In their paper, they split the proposed system into 3 components: a step finder (for finding instructions / action statements), a loop finder (for finding statements indicating repetition) and a comment finder (which turns descriptive statements into comments).

The step finder processes each sentence (tokenizing, POS tagging), and then tries to find a verb (an action) and its corresponding objects, producing something like the predicate output of Proxem Antelope, the NLP library used in NPROG (see Section 2.4). This information can be turned into a function (based on the verb) and its parameters (based on the found objects).

The loop finder looks for repetition markers (like “every” or “all”), or plural nouns, in the input sentence, which could indicate repetition – and generates the programming language cycle from the found information. The loop finder is also capable of unifying loops (combining multiple loops into a single loop statement if the loop variable is the same).

The comment identification has the point of providing additional information in the code, in the form of comments. This information is derived from descriptive sentences, especially examples (“for instance”), conditional forms (“should”) and assumptions (“assume”).

The experimental system described in this paper was tested using example programming assignments, and had the following precision values (precision being the percentage of correct programmatic structures out of all the identified structures): 86% for the step finder, and 80,6% for the loop finder (Mihalcea, Liu & Lieberman, 2006).

The system described in (Mihalcea, Liu & Lieberman, 2006) took a very similar approach to the one used in NPROG. However, its loop finder is better – unlike NPROG, it does not depend on an exact description of a loop, but can find implicitly implied loops as well. In NPROG, a loop has to be defined explicitly with a condition and an action (e.g. “as long as the count is less than 10, increase the count” – see Section 5.2). Also, there is no comment identification in NPROG, but that has no effect on the program behaviour.

On the other hand, the system described in the paper did not have a code cleaning stage - like the CodeCleaner class in NPROG, which tries to assume information not given (it inserts variable declarations, explicit casts and compareTo where necessary) and recognizes noun compound parts referring to the same object. Also, it did not enable the user to build a graphical user interface and make use of event handlers and GUI control properties, like NPROG.
2.3.2 NaturalJava

NaturalJava (Price et al., 2000) is another project with the goal of producing program code – in this case, Java – using a natural language based interface. The architecture of NaturalJava is similar to NPROG. Its main components are:

· A natural language processing system capable of semantic parsing (Sundance, developed at the University of Utah. NPROG uses Proxem Antelope – see Section 2.4)
· An interpreting component building / editing the internal representation based on the NLP systems output (called PRISM). Its equivalent in NPROG is the Translator class. PRISM uses case frame templates to recognize and process instructions.
· A manager for the internal representation, which is stored in the form of an abstract syntax tree (AST) (called TreeFace). Its equivalent in NPROG is the IRCommand class.
The main difference between NPROG’s and NaturalJava’s approach is that the latter uses so-called case frames instead of predicates. Case frames provide semantic information about a sentence by displaying relations between the main verb and each of its complements, assigning role names to each relation (role names could be, for example, “AGENT” or “CONSTRUCT”). An example case frame produced by Sundance, with its corresponding case frame template, can be seen in Figure 2.
[image: image3.png]> Create a for loop that iterates from 1

to 10.

Caseframe CREATE_01 (CREATE)
CREATE_TYPE: "a FOR_LOOP"

Caseframe ITERATES 01 (CONTROL_FLOW)

iterates

(active_verb iterates)
type control_flow

{

construct SUBJECT
loop_start PREP (PREP=FROM)
loop_end PREP (PREP=TO)

CONSTRUCT : "a FOR_LOOP" exit_condition PREP (PREP=WHILE)
LOOP_START: "&&1" }
LOOP_END: "&s10"

Case frame Case frame template

Figure 2. A case frame of a sentence containing a loop, and a corresponding case frame template
(taken from Price et al., 2000)
(Price et al., 2000) have manually implemented 400 case frame templates, which allows their system to deal with a wider range of instructions than NPROG (which has, at this time, an instruction set containing 30 instructions. However, unlike in NaturalJava, NPROG’s instruction set can be easily extended by the user using the provided instruction set editor).

Another advantage of NaturalJava is their ability to deal with classes (although no nested classes) and methods. And, unlike Metafor, they also can produce procedural code in the methods, and their output is complete and compilable.
However, there are also some limitations and disadvantages of their system. To simplify their interpreting component, they assumed that each sentence only contains one instruction (if there are more instructions in one sentence, in the best case all but the first are ignored, and in the worst case the case frame template will be matched to incorrect sentence parts and there will be errors).

They also assumed that the first found verb in every sentence contains the users intended action. If this is not the case, an incorrect instruction will be produced.

Furthermore, the type of input language NaturalJava requires is inflexible, and sometimes not intuitive. It lacks flexibility because the input sentence has to match an existing case frame template (at the very least, use the same verb as the template), thus limiting the range of sentences that can be interpreted (NPROG’s Translator is entirely syntax and phrasing independent, and is capable of dealing with predefined as well as lexical synonyms, and spelling mistakes). Also, some instructions are not intuitive to an inexperienced user or novice programmer – for example explicit and typed variable declarations (“declare an int”), or the required explicit ending of a cycle (“exit the loop”), which is not required in NPROG.

NaturalJava is also syntax-strict in its use of variable names (it cannot deal with spelling mistakes), and it cannot automatically insert variable declarations, or casts, or comparison functions where necessary.
2.4 The Proxem Antelope Library
Proxem Antelope (Advanced Natural Language Object-oriented Processing Environment) is an easy-to-use framework for developing natural language processing applications in .NET languages. It currently provides full support of the English language and partial (parsing but not semantic level processing) support of the French language.

Antelope is based on a number of tools and packages developed at various universities, and can perform processing on the following levels (ordered by complexity/required computing time):
· Tagging
The process of assigning POS-tags to the words.
Antelope uses the SS Tagger, developed at the University of Tokyo

· Parsing and deep parsing
Analyzing the structure of a sentence and organizing it through dependencies or syntactic trees. Deep parsing finds the correct dependencies despite varying surface syntax (e.g. the correct subject in a passive sentence).
For this purpose, the Stanford Parser is used (developed at the Stanford University)
· Semantic analysis
Tries to find out the meaning behind a sentence, using word disambiguation and role identification based on a semantic database.
The databases used in Proxem are WordNet (developed at Princeton University) and, for verbs, VerbNet (University of Colorado).

(Proxem Antelope Documentation, 2008)

The most useful feature of the Antelope package lies in its ability to derive predicates and their dependencies (at least one subject and, if present, objects) from the input sentence using semantic analysis. This can best be demonstrated by an example:

Increase the alpha value by 2 and then display alpha.
With this input, Antelope’s PredicateExtractor interface produces the following predicates:

predicate: increase; dependencies: (value[DirectObject,NN=Noun], 2[PrepObject,CD=Numeral])

predicate: display; dependencies: (alpha[DirectObject,NN=Noun])

predicate: value; dependencies: (alpha[AdjectiveNoun,JJ=Adjective], alpha[AdjectiveNoun,JJ=Adjective])

Looking at these predicates, we can conclude that the predicate and its dependencies contain enough information to create a function call (the required function name could be found in a lookup table, and the dependencies can be used as parameters), which is very useful for this project.
However, the information present is neither faultless nor precise. There are problems which have to be dealt with manually, using additional information (e.g. the typed dependency list from the parser):

· Redundant predicates
In this example, the word value is incorrectly assumed to be a verb and therefore a predicate, which could lead to the generation of a useless/unwanted function call.
· Insufficient information about the dependencies
The only useful information provided is the type of the dependency (e.g. that “2” is a numeral) - the vital knowledge that the “value” dependency of the first predicate refers to the same variable as the “alpha” dependency of the second predicate is not present.
· Unstable analysis
The semantic analysis completely fails if the sentence is grammatically wrong, or too short; sometimes even when using unusual sentence types (failure meaning Antelope does not output a predicate and just ignores the sentence). Using nouns unknown by the lexicon, or nouns which could be verbs, fails as well. An erroneous predicate is produced in some special cases, for example if the first character in a verb is uppercase, or if a sentence contains variable (dependency) with only 1 character, or if the verb used could be a noun as well.
· Unsupported structures
Antelope is unable to deal with conditional sentence structures (if, while, when) - the analysis either fails or the output does not contain enough information. It cannot deal with symbolic operators (>, =, etc), or string literals, or brackets either. All these structures have to be manually parsed while pre-processing.

· No matching / similarity recognition
The predicate verb displayed is the exact verb the user entered, not its base form, which can make it harder to recognize. Synonyms (of predicate verbs or of the dependencies) are not recognized either.

· Incomplete structure
Another obstacle (which, however, is not a problem with the Antelope framework but rather comes from the informality of the input language) is that the predicates produced from the sentences of a program description are not sufficient to produce all instructions of a complete program. For a complete program, the code has to be “cleaned up” first before it is passed on to the compiler. For example, the variables used have to be declared; implicit type casts have to be dealt with; and synonyms, and different parts of a noun compound used to refer to the same object, have to be recognized.

How NPROG tries to solve these problems is described in the Implementation section (Chapter 5).
3. Specification
3.1 Objectives

· Writing an interpreter which, using the output from the natural language analysis libraries, will be able to translate an English program description into a formal programming language. The input text will have to be simplified and comply with a few rules.
· A simple built-in GUI editor for making interface design faster and easier; implementing the most common controls (e.g. Label, Button, Textbox, Checkbox, Combobox, Image) and providing event handling as described by the user in the input text.
· Evaluation of mathematical formulas of a certain syntax (e.g. sqrt(sin(30))); also, evaluation of some predefined formal programming language statements

· An interface to easily extend or rewrite the built-in instruction set manually.
3.2 Non-objectives
· The interpreter is not planned to be able to handle all kinds of English sentences and all kinds of expressions (there are constraints on the type of language which can be analysed by the program, see Section 6.7)
· The implementation of any kind of guessing mechanism supporting the translator (e.g. a common sense knowledge base, a reasoning engine etc.)

· A complete instruction table mapping an entire programming language against natural language commands (only a subset of the language is available to the user).
3.3 The Graphical User Interface

NPROG’s graphical user interface (GUI) was designed to be functional, easy-to-use and similar to the standard Windows design, which most users are familiar with. The application has two important windows: the main window, and a settings window for advanced users. A screenshot of the NPROG main window:
[image: image18.png]

Figure 3. A screenshot of the NPROG main window (with a currency converter as an example)
1. The menu bar – contains file options (new, load, save), a menu for loading example programs, a project menu (for translating and executing the project), a tools menu (for opening the settings window) and a help menu.
2. The GUI control area – contains a checkbox activating the GUI editor (which is deactivated by default), the controls the user can create on his GUI, and a textbox for setting the control name.

3. The GUI editor area – contains the target program GUI. Each control can be selected, dragged/resized/deleted and its text edited.

4. The menu ribbon – contains buttons for accessing the most important menu functions, in an XP ribbon design. It also contains a textbox for setting the project name (which is also used as the main class name in the output program code).

5. The input area – the user can enter the input program description here in natural English (or as explicit program instructions using the explicit command delimiters, see Section 5.7)

6. Tabs for setting the output view – the view can be set to the code view, which displays the output code in the target programming language (for users familiar with that language), or to the Log view, which displays feedback about the input text in the form of Info, Warning or Error messages.
7. The output window, displaying the output code (or the Log messages, depending on the output view)
8. A status bar displaying the current action the program is taking, and a progress bar

There is also a settings window, which provides advanced settings for experienced users. It consists of four tabs:

[image: image4.png]NPROG Options

NPROG Options

Fi Paihs

Instuction Set. | Language Optons | Editor Dptions

Instruction set location: | Adatatinstiuctionsel_java_basic.dat

Synonym st locatior: | Adata\synonymiistdat
Vatypes fstocation: |.\datatwarypes.dat

Syntas highlghting fie: | Adatahsyrtashighiighting dat

Target Language Config Files —————————

NLP Library Files.

Lesicon locatior: F\Programme\Prorem\Antelopedata\Provem Lesicon d

Starford dictlocalior: | AStanfordwwsPCFG.t
LinkGirammar ditionary: | ALinkGrammar

LinkGrammar dis:

Compiler location: | \ProgiammetJavaidk1.6.0_12\birkjavac exe

BB EEE e

VM path (if needed): | F-\ProgrammetJavatidk1 6 0_12\bin\java exe.

T o,

Language Options | Editor Optons.

Fie Paths | [Tnsiucton Set

Instruction set location: | Adatatinstiuctionsel_java_basic.dat

B

Waning: Ol change f you know what e dinl[_Save Optons_

NPROG Options

NPROG Options

File Paths

Instuction Set. | [Canguage Optians|

Variable types:

Editor Options
Flosting point | double
Sting Sting

Ignored var names: itprogramthe programher e flse.null

Depenency types.

i v pamee P | amod semod.nfmodm

e L ciaeiciion)

File Paths | Instuction Set

Language Options || Edtor Options

Highiighted Stings
ERROR A
WARNING

INFO

class

public

private

int

double

Highiighted sting: w0

Hihihed g oo [(e Coor

Bold

[ttalie
[Undetine

Highghted sting styl:

return,

for

while

i

else v

New highighied sing:

Figure 4. A screenshot of the NPROG settings window
In the first tab, the user can set the path of important files (the instruction set, synonym list, variable type definitions, syntax highlighting definitions, the lexicon and dictionary and grammar files) as well as the location of the compiler and VM to be used for compiling and executing the program. These settings can be useful if the user wants to change the target programming language or if he wants to upgrade to a new release of the NLP library.

The second tab contains the instruction set editor for editing or extending the instruction set, or for creating a new one (see section 5.4 for a more detailed description).

The third tab contains advanced language options (the variable type names, variable names the program should ignore, and the dependency types used to identify variable names).

The fourth tab contains an editor for the syntax highlighter, making it possible to add new highlighted strings or to change the colour or the style of existing strings.

3.4 Tools and techniques

3.4.1 The Integrated Development Environment

The following list compares the most commonly used development environments:
· Microsoft Visual Studio .NET
Advantages:
+ Written for creating Windows programs, it is best suited to that purpose
+ Many useful libraries
+ CLR is faster than JVM (on Windows platforms)
+ Unified type system, everything is an object (“1.ToString()”)
+ Powerful IDE (good GUI editor etc.)
Disadvantages:
- Proprietary License
- Only for Windows (but can be ran on Mac and Unix-based platforms using MONO, if the program uses .NET version <= 2.0)
· Eclipse
Advantages:
+ Open source & Free
+ Java programs are cross-platform
Disadvantages:
- Slow because bytecode is interpreted (JVM)
- Relies on plugins, even for GUI building

· NetBeans
Advantages:
+ Open source & Free
+ Cross platform
+ Built-in GUI editor
Disadvantages:
- Slow because bytecode is interpreted (JVM)

In this project the Microsoft Visual Studio .NET IDE and the C# language was used – because of the advantages stated above, and also because C# is the language I am most familiar with.
3.4.2 The NLP Library

For this project, the Proxem Antelope framework was used. It is described in Section 2.4. A description of alternative libraries and of the reasons why Antelope was chosen can be found in Section 6.4.
3.4.3 The development process
For this project, an incremental prototyping approach was used, each prototype coming one step closer to the final product. For a more detailed description and a discussion of the advantages of incremental prototyping, see Section 6.3.
There were 3 major prototypes, with the following features:

· Prototype#1
- Basic GUI
- Integrated NLP Library
- Instruction table with basic commands (main class, variable declarations, print, read, arithmetics)
 and smart instruction matching (finding similar strings using their Levenshtein distance; finding synonyms)
- Internal Representation class (IRCommand) and methods for its use
- Basic Translator classes and methods (Translator: analyzes text and creates the command tree)

· Prototype #2
- Instruction set editor: allows removing, adding and editing commands of the target language. These will be saved in instruction set files. The base instruction set cannot be modified, but a new base instruction set file can be added for a new target programming language.
- Expression evaluator: will be able to interpret mathematical expressions of a certain syntax (e.g. sqrt(sin(30))) to make calculations easier. It will also allow insertion of explicitly defined programming language statements, which will allow faster development for users who do know some formal commands.

· Prototype #3
- GUI editor: a graphical editor allowing the user to build a GUI for his program easily using his mouse. It will incorporate basic components (e.g. Label, Button, Textbox, Checkbox, Combobox, Image). These can be added from a toolbar and dragged/resized/etc.
- Event handler: will allow the user to define events and actions corresponding to GUI objects in the program description. These will be translated to event handlers and added to the target code.

3.4.4 Testing
In this project, the csUnit framework was used for testing. csUnit (like its analogous java-based framework JUnit) is an easy-to-use framework for automating test-driven development (TDD) for C# .NET. The idea behind TDD is to write the unit test cases first, and develop new features afterwards, so they can be tested and verified immediately and also later on when they are changed.

Although undoubtedly slowing the development process initially – since the tests have to be written before even beginning to code the functionality, test-driven development has been claimed to have several advantages. (Müller & Padberg, 2003) claim that TDD leads to higher quality code, and show that the development cost of a TDD project can be smaller (making some reasonable assumptions). (Maximilien & Williams, 2003), lists higher reliability, improvement of testing quality, reduction of testing effort and a minimization of schedule as the advantages of TDD, and they also show how successfully this technology has been employed by IBM (decreasing their defect rate by 50%).

However, there are some applications that cannot be developed solely test-driven, for example network applications, security software and concurrent programs (Beck, 2003, p. XII). These kinds of applications have to be tested differently

As a conclusion, it can be said that TDD in general, and csUnit in case of programming with C#, seems to be well-suited to increasing software quality. Its advantages, especially the increased quality and decreased room for error, outweigh the cost for the slightly longer development time for most applications. However, in some special cases like concurrent software, other testing methods are required to ensure quality.

In this project, csUnit was useful to ensure the basic functionality (for example, to check that the IRCommand class was still working after it has changed, which happened often). However, it could not completely verify the most complex part of the project, the main translator functionality, since the few assertions containing example instructions could not cover a significant part of the possible input sentence structures.
4. Design

4.1 Overview
The following diagram shows the basic components of NPROG, and the way the information is passed on and processed in order to translate the natural language program description into an internal representation and then into the output formal programming language:
[image: image19.png]=/ NPROG IDE prototype#3 alpha

BE)

&

Ho oo 1w (1)

Activate Graphical Interface | Add control: A 1l | CtrlName: JTextare:

o o o
o o

GEP-EUR EUR->GBP.

=

Praject Options

Al

File Options

Frogram Controls

First, set the multiplier to 1,13, Then set the result to 0
If the user clicks on JButtonD, set the result to the JTextArea value, multiply
the result by the multiplier and set the JTextareal value to the result,

I case the user presses JButtonl, set the result to the JTextAreal value,
then divide the result by the multiplier, and then set the JTextarea0 value to

the result. @

["Code [View Log | Predicaeserin| \5)

——

public void actionPerformed (Accionivent o) {

)

if (e gecsource() == JBuctond) {
result = Double parseDouble (JTexcAread. gecText (11;

result *= multiplier;
ITexchreas. secText (Double.toString (resulel]

JiE (o gecSourcel) == IBuctonl) {
result = Double parseDouble (JTexcAread. gecText (11;
result /= multiplier;

ITexchreas. secText (Double.toString (resulel]

Tandatig (8)

[image: image20.png]

[image: image21.png]6J=:J(1—:J)};wkj6k

[image: image22.png]

[image: image23.png]lvernber 2008 [Decernber 2008 uary 2009 [Februsry 2009 IMarch 2008 il 209 ay 2

slolofo oo b b F T o i e T Ju T Jis fi i s

Figure 5. Data flow diagram with NPROG’s basic components

A short explanation of the basic components:

· Program description: a natural language text (in English) describing the behaviour of the output program. Some constraints and rules will apply to the type of language that can be used (see Section 6.7).

· Shallow Parser: in this component a shallow analysis of the sentence will take place, the results of which will be the parts of speech for each word used in the sentence (e.g. Noun, Verb etc.) as well as a list of typed dependencies describing the relationships of words which belong together

· Semantic analysis: outputs a list of predicates derived from the input sentence, as well as the corresponding dependencies
· Translator: will process each sentence individually; will use the POS tags, the typed dependencies, synonyms and base forms from the lexicon as well as the predicates from the NLP library and create an internal representation of programming commands.
· Internal representation: a data structure containing every instruction of the program. Because of the nested structure of a program, a tree representation was chosen. See the next section for details.

· GUI editor: implements the most common controls (e.g. Label, Button, Textbox, Checkbox, Combobox, Image). Events are defined in the program description.

· Instruction table: assigns a programming instruction to a natural language label (used by the translator to fill the internal representation tree with actual programming commands). The instruction set is stored in files on the hard disk there is an editor for it built into the program. Since the target language depends only on the instruction set, it can be changed to almost every object-oriented programming language by altering the instruction set file.
The instruction table is able to store nested instructions (by storing a “child” information for every command).
· Subcommand trees: the internal representations for each sentence, which will be combined to create the whole program tree

· The code is created by flattening the program tree and outputting the programming instructions of each node (provided that it contains a valid command).

· There is also a Logger class storing (and displaying) 3 types of messages:
- Errors: Found commands that will lead to a compiler error when the code is compiled.
- Warnings: Not enough information found in the description; or some optional translator task failed
- Informations: Successfully performed operations the user should know about
4.2 The internal representation
The internal representation in NPROG is a tree data structure, where each node (represented by the IRCommand class, see the class diagram in the next section) will consist of a command and, optionally, a number of child nodes or subcommands. The nodes also contain a pointer to their parent, and some information about their stored command: the command type, a return type if applicable, and an inaccuracy metric (a numeric value representing the difference between the word entered by the user and the identified corresponding command in the instruction table). For example:

Figure 6. An example internal representation tree

The main reasons for choosing a tree (instead of a linear data structure like an array or a list) are:
· A tree is structurally most suitable to represent a program, since a program, like a tree, is a nested structure

· It is easier and more efficient to search and navigate in a tree than in an array or list
· Editing a tree (e.g. replacing a function or the contents of a cycle) is faster than in a linear data structure
4.3 Class Diagram

[image: image5.png]Exporter ® { Config &
s 1 st s i
7 [v
& ks 12 s i
o exporter 1@ configun 4
o lastpath 15 Methods !
settnggrorm (5] - o sourcecode [!
e e = Properties 1 6 toad !
= code 16 sae !
& Methods R i
@ exeare ~-
 exportTo
@ getinstance
SControl ® RectTracker ®
st P
) Susercantrol
T T
5 Propeties
roject ®) o ® 2 conrd
L =0 O Rect
S =|— = Methods
& ks % Draw
jg g comrs £ teseon % IidizeComponent
4 prame v Methods @ Mouse_Mave
= Methods. & executeProgram (=D
o it 5% load (+ 1 overload) <
@ Load |59 newproiect Guiditor ®
— # lass.
@ Project (+ 1 averload) 9 save (+ L overtad)] a
& save ¥ translateprogram — T

o

T

Nested Types

Commandcleaner
Cszx

o Fes

3 sssoned vars

% declared_var_types

¥ declared_vars

o instructions

Hethods

@ clean (+ 3 overloads)

& deanssgnmentCests
deanconparisons

cleanUnassigned (+ 1 overload)

deanLndecred

CommandCleaner (+ 1 overload)

@ perfomClssnonoperatons

Nesid Types

o
o
o
o

Nested Types

ExplicitExpressions ®
Clas
7
= Fiekds
4 explct_expressions
= Methods
& addexpression
@ ExplctExpressions
@ extractExplctCommands
@ extractLiteralsFromstring
@ getEcpression
@ gettlextCommand
@ replaceLabels
{stringutils 71 {Logger
1 Statc s |1 Stacclas
[[
! i
12 Hathocs |1 ks
| =@ applyFunctionTowords e
| CompustevensterDstance | | ¥ showe
|
1o countstr Ll shomt
| % getoriyipha Lol o shonw
1 - istpha (& 1 overoad) 1L Hethods
| achathmerc (+ overload) || g isplaylog
1 0 iBoolOpChar 11 Gg
14 iscmpopChar 1
19 iscmeonch HE R
10 ithmeric (+ 1 overioad) !
16 apunctuation i
16 usttustng !
| o tobner |
! i
L i

Translator
Clszx

© Felds

lesion
 parser
& e
1= Propertes
2 program
 ethods
@ GetText
Settext
TrandateCondtionlsructurs
Trandaterogram
TranslateSentence (+ 1 overload)
Trandtor

S —

ConditionPreprocessor (3
Clszx

F |
(PPN

o
o
o
o
o

7

© Fields
conditionoperators
canditionstructures
cydestructures
original_sentence
parsed_sentence
 Methods

@ extractracketedaction

% isCondtion

@ isCyce

@ processCondtion

@ processCyde

@ processstructure

IRDependency (& 2

ass
4
& ks
¥ _information
5 Trame
o type
S Lused
 Methods
& TRoependency
Nested Types

= Properties
A cultondd

= Methods

@ getControl

@ getGuBuderstring

& newControl (+ 3 overloads)
@ storeChanges

Nested Types

IRCommand
Claze

& ek

& command

5 acauracy

5 istrucion type

ﬁ parent

5 retum type

% subCommands
 Methods

% addsubConmand

applyToChildren (+ 1 overload)
applyToParents (+ 1 overload)
‘getFlatCommandstructure (+ 1 overload)
getparent
getPath (+ 1 overload)
getSubCommand
replaceSsubCommand (+ 1 overload)
searchCommand

o
o
o
o
o
o
o

o
Nested Types

InstructionTable
Clszx

& ek
@ insructons
4 nsructiontable
S leicon
% parameters
% symenymis:
5% typed_dependenes
 Methods
59 getBestinsructionsting
% getCommands
% setFlnControlCommand
@ getinstance
@ lookupTypedDependency (+ 1 overload)
Nested Types

Figure 7. Simplified class diagram of NPROG
Note that this diagram is simplified: many less relevant properties and methods were omitted for lack of space.

· The MainForm class is the main user interface of the program and contains the methods and event handlers required for this interface. It has an instance of the following classes through aggregation: SettingsForm, RectTracker, Project, GuiEditor and Translator. It also contains interface methods to these classes, for example for saving or loading a project, or for translating the input text using the Translator class.
· SettingsForm provides a user interface for changing advanced settings. Apart from the possibility to set the path settings of various configuration and data files (the instruction set, synonym list, syntax highlighting definitions, the lexicon and dictionary and grammar files), it also provides an instruction set editor, and an editor for the syntax highlighter styles.
· Exporter is the class providing functions for saving the output program code to the harddisk, and for compiling and executing the output program using the compiler and VM specified in the configuration file (the paths are editable using the settings form).
· The Config class provides methods to get or set configuration parameters, and to load or save them to the harddisk. All configuration options are editable using the SettingsForm.
· Project is a serializable class containing all information about the current project, including its name, source code, path and GUI controls (if the GUI is active). It also contains functions to save and load a project to/from the harddisk. See Section 5.8.
· SControl builds a very simple façade to a form Control object, with the purpose of a) being serializable and b) being small and efficient for storage on the harddisk. Apart from essential information about the control (its name, type, text, position and size), it contains a method which converts it to a real Control.
· The GuiEditor class manages the GUI designed by the user, which is displayed on the GUI editor panel on the main form. It contains methods to create or add or remove controls to/from the GUI editor panel. Internally, these controls are saved as SControls in the Project class. The GuiEditor class also has the ability to generate the program code building the GUI from the stored SControls. Section 5.9 contains a description of how the GuiEditor works.
· RectTracker is a helper class to enable the user to easily edit his GUI. If a control is selected, a RectTracker is created around it and makes it possible to drag or resize the control or change its text. The RectTracker class used in this project is a modified version of the RectTracker published on the Code Project (nashcontrol, 2004 - http://www.codeproject.com/KB/miscctrl/CSharpRectTracker.aspx) , see Section 5.9.
· Translator is the main interpreter class, with methods which pre-process the input text (mainly by using the methods of the ExplicitExpression class) and translate it into the internal representation tree (making use of the Antelope library to parse the sentences and convert them into predicates, and of the InstructionTable to obtain the IRCommands from the predicates). For a more detailed description see Section 5.6.
· CommandCleaner has the purpose to “clean up” the code and resolve issues which could lead to compiler errors (for example undeclared or unassigned variables, or assignment casts, or shallow comparisons, or implicit casts). For details see Section 5.3.
· IRCommand is the building block of the internal representation, which is a tree generated by the Translator. This tree can then be flattened and completed into the target program code. The most important members of the IRCommand class are its programming language instruction, and pointers to its respective parent and subcommands (IRCommand is described in Section 5.5).

· The ExplicitExpressions class has the purpose of pre-processing input text and contains methods to extract string literals and defined explicit programming language commands (since these do not have to be parsed and processed) and replace them by labels which can be dealt with later in the Translator (string literals are put in place after processing, e.g. into the corresponding print statement, while explicit commands are added into the internal representation as IRCommands). See Section 5.7.
· ConditionPreprocessor is the class used to deal with conditional structures (conditions, cycles and event handlers), since these are not supported by Proxem Antelope. This class extracts the type of statement, the condition and the corresponding action. This information can then be used by the translator to generate the correct IRCommand structure and insert it into the internal representation. How the algorithm processing conditional structures works is explained in Section 5.2.
· InstructionTable contains all natural language instructions and their corresponding programming language commands (as well as additional information about them), is capable to save and load them to/from the harddisk, and has some useful methods for finding the best match and generating the correct IRCommand from it. See Section 5.4.
· IRDependency is a simple class containing information about a typed dependency (which is a grammatical relationship, see Section 2.1) – its name, type and information and whether it has been used already.
· The StringUtils class contains string processing utilities, for example for checking if a string is numeric, alphabetic or alphanumeric, or for converting its case, or for comparing two strings containing minor mistakes.
· RichtextUtils is able to save or load the syntax highlighting definition, and to perform syntax highlighting on the specified RichTextBox.
· The Logger class stores error, warning or info messages. It also contains methods to add new messages and to display all messages in the specified RichTextBox. For more information about logged messages see Section 4.4.
The Singleton design pattern was used for all classes only requiring one instance. This means that those classes have private constructors to prevent other classes from creating instances of them, but contain a public getInstance method which returns a static instance of that class, which is only created once the first time it is used (Nguyen, 1998). First, this avoids redundancy (for example in case of the project class, which is required by MainForm, Translator and GuiEditor – of course there is no need to instantiate 3 classes). Second, it is essential for memory efficiency to have only one instance of big classes like InstructionTable.
4.4 Error handling
In NPROG, all feedback to the user is communicated using the output window. The user can either manually check for errors using the code view – in case he is familiar with the target programming language -, or he can read the messages in the Log view to check for errors and to verify that the program makes the right assumptions, and to correct his input text if and where necessary.
The Log view can contain the following types of messages, ordered by their severity:

· “INFO” messages. These will almost always appear and are entirely harmless. Their purpose is to inform the user about particular steps and decisions the program took which where not explicitly defined by the user (and to give the user a chance to rephrase his input text if it has lead to an incorrect interpretation). For example, an INFO message could appear when the program resolves ambiguous or misspelled variable names, or when it uses the dictionary to find a probable synonym for the used instruction if it was not found in the instruction table.

· “WARNING” messages. They can appear as a consequence of:
a) a sentence which was misinterpreted by the natural language library (for example because the verb used is incorrectly assumed by the library to be a noun), or
b) as a consequence of an incorrect or incomplete definition in the input text (e.g. if an instruction is specified with objects the type of which differ from what its corresponding command would require, or with too few objects), or
c) because of syntax errors, spelling mistakes or unrecognized symbols which cause the NLP library to misinterpret (or fail to interpret) parts of a sentence.
In the first two cases, NPROG tries to complete the missing parts and to assemble a predicate anyway (see the Translator class, Section 5.6.). If this process fails, or if the cause of the warning was a severe syntax error, the sentence causing the problem is simply ignored. The sentence is also ignored (and produces a warning) if neither the predicate nor its synonyms can be found in the instruction set. Note that the appearance of a WARNING does not necessarily mean that the text was misinterpreted, or that the output code is wrong in any way. It simply signifies that something did not go as planned and that the output should be checked if possible.
· “ERROR” messages. These are the most severe type of message and mean that the output program code is incorrect and/or incomplete.
Error messages can be the consequence of:
a) one of the essential files used by NPROG being broken or not found at its specified path (e.g. the instruction set)
b) the system noticing something in the produced target code which would lead to a compiler error (for example the use of unassigned variables)
c) syntax errors severe enough to make parsing impossible (unterminated literals, the use of unknown symbols, or sentences not containing any sensible and correctly spelled English word could cause this), and also any sentence structure which causes the NLP library to fail (because of a few bugs mentioned above, this can appear quite often, for example when using variable names consisting of only one character)
d) a conditional structure being found but which cannot be interpreted, for example because one of its essential parts is missing, or because it contains a serious syntactic flaw.
If at least one ERROR message is present, this prevents the execution of the program. In this case, the input text has to be rephrased. The sentence number of the erroneous sentence (or at least a part of that sentence) is displayed in the log to make the correction faster and easier.
A complete list of all possible messages can be found in Appendix E.
5. Implementation

5.1 Overview

This chapter describes some of the more complex approaches and algorithms in this project, grouped by their respective classes. Some classes, like Config (saving or loading the parameters of the configuration from/to the harddisk) or Logger (stores and displays info, warning and error messages) are relatively straightforward and are not mentioned at all.
Most – but not all - of the algorithms described here had to be written to deal with the problems (and bugs) of the Proxem Antelope library. The following table points out which problem is solved by which method or class (the algorithms themselves are explained in subsequent sections):
	Problem
	Class/Method
	Description

	No matching / similarity recognition
	InstructionTable.
 getBestInstructionString()
	Uses an edit distance based algorithm to recognize similar words and ignore spelling mistakes, and a lexicon to derive base forms and check all synonyms of a word, before looking for it in the list of instructions.

	Redundant predicates
	InstructionTable.
 getCommands()
	Predicates with unrecognized names or with invalid/insufficient dependencies are ignored

	Insufficient information, Incomplete structure
	CommandCleaner.clean()
 cleanAssignmentCasts()
 cleanComparisons()
 cleanUnassigned()
 cleanUndeclared()
	Recognizes that noun compound parts refer to the same object; and tries to assume information not given (inserts variable declarations, explicit casts and compareTo where necessary)

	Unstable analysis
	Translator.
 TranslateSentence()
	If the semantic analysis fails, this method tries to assemble the instruction and required parameters using only the shallow parser. It also generates warnings for the user, e.g. in case he made a spelling mistake.

	Unsupported structures
	ConditionPreprocessor.

 processCondition()

 processCycle()

 extractBracketedAction()

ExplicitExpressions.

 extractLiteralsFromString()

 extractExplicitCommands()

 getExpression()
	ConditionPreprocessor recognizes and manually processes a conditional sentence (e.g. if/while) using string processing and regular expressions.
The methods of ExplicitExpressions extract string literals and explicit commands before the sentence is semantically analysed, and puts them back after the analysis.

Table 3. The problems with Antelope as listed in Chapter 2 and how they are solved in NPROG
5.2 ConditionPreprocessor

ConditionPreprocessor is a class created for the purpose of recognizing, extracting and processing conditional sentence structures and converting them into flow control commands. This is necessary since Antelope’s predicate extractor is unable to deal with these types of sentences.
A conditional sentence in our sense can be split into three parts: a subordinating conjunction (if, when, while etc.), the condition itself and the resulting action. An example sentence:
If the value is greater than 0, increase it by 1.

s.c.

condition

 action

Although there are a number of different conditional sentence types, they can all be processed if these three parts can be identified.
In this project, the subordinating conjunction part is identified using lookup tables, which also help with identifying what type of flow control command the user is trying to formulate. The ConditionPreprocessor class can recognize three types of flow control commands:
· Cycles (“while”, “as long as”, “perform … as long as …”)

· Conditions (“if”, “if … then …”, “when”, “in case”)

· Event handlers (“when/if the user clicks on button1, …”), which are processed in a similar way as conditions, since they have the same structure.

If a sentence is recognized as one of the three types listed above (this can be checked by the methods ConditionPreprocessor.isCondition(string) and isCycle(string)), then the ConditionPreprocessor.processStructure method is invoked for semantic analysis, instead of Antelope’s PredicateExtractor.
processStructure identifies the three parts in the conditional sentence and returns an appropriate flow control function containing the defined condition and the corresponding actions. If the user applies the correct syntax (e.g. “if CONDITION, then (ACTION).”) - either by placing the comma and the then keyword correctly to separate the condition from the action or by bracketing the action – then this is a simple string matching task. If he does not, which is to be expected since the software was written for non-technical users and novice programmers, separating the condition from the action is more difficult. It is solved by extracting the condition first by using the method getCondition, and then getting the action instructions by removing the condition and converting the remaining sentence to predicates using Antelope’s PredicateExtractor.
getCondition processes conditions by traversing the sentence and recognizing and saving objects and operators based on their parts of speech and positions in the sentence. The end of the condition is found after the object following the last operator. The algorithm used is based on a finite state machine, because of the nature of the problem (each word can be assigned a state and the action taken depends on that state) and also because similar text matching and searching tasks in other projects have used this approach successfully - for example, in the FASTUS information extraction system (Hobbs et.al., 1993).

The state transition diagram in Figure 8 illustrates this process.

Word irrelevant

word irrelevant

 /read new word

 /read new word

 Word irrelevant

 /read new word

 word not a

word is a noun

 noun
start

/read next word

/read next word

 word is noun

 /read next

Operator doesn’t match RegExp

/read next word

No words left

/return empty command

Operator matches RegExp

/return resulting command
Figure 8. State transition diagram describing getCondition()
Operators are identified using a predefined matching table containing regular expressions. For example, the operator “<=” would be assigned the regular expression “.*less.*equal.*”. A complete list of the recognized regular expressions and their corresponding operators can be found in Appendix F.
Code listings of the getCondition and processStructure methods can be found in Appendix G, Sections 9.7.1 and 9.7.2.
5.3 CommandCleaner

The main goal of this class is to assume and fill in information that is not given by the user in order to make the target program complete enough for compilation. Another goal is to point out mistakes the user has made (through warnings and errors) and fix them if possible.

The main method CommandCleaner.clean() is called after the program translation and consists of four steps, implemented as methods (called on each command in the internal representation tree):

· cleanUnassigned
This method recognizes the use of unassigned variables. Using the dependencies from the parser, it first tries to replace the possibly wrong variable name with a correspondent (e.g. with the other part of a noun compound). If this fails, an error message is generated.
· cleanUndeclared
This method finds undeclared variables and creates a declaration for them, assuming their type based on how they are used later (for example, a variable used for calculations will be declared double). It inserts the declaration into the appropriate scope according to where they are used later (trying to minimize the scope – if a variable is used only in an if statement, it will be declared in that if statement).
· cleanAssignmentCasts
If the user tries to assign a different type to a variable than that variables own type, this method inserts a forced cast according to the cast definitions in the instruction table (in order to avoid compiler errors). However, the cast is unhandled by a try-catch block, making the program vulnerable to casting exceptions, which is pointed out to the user in the log and can be fixed by him later.
· cleanComparisons
Java’s operators only do shallow comparisons – they only compare the references instead of the values – if applied to objects. This can lead to unintended behaviour. cleanComparisons makes sure that all operators comparing objects are replaced with compareTo function calls in order to perform the intended comparison.

Each one of these methods takes the same parameters – a single node of the internal representation tree which it performs its operation upon (an IRCommand), and the current variable name. They are called with all nodes and all occurring variable names. There is one function recursively traversing the tree, performCleanOnOperations, which is passed the respective method in form of a delegate. This function first obtains all variable names from the command string of its current node, and then calls the method, passing it its current node and the list of variable names.

The extraction of variable names is performed by a different method, getVarNames, which requires the command string and the command type as its parameters. This method processes the string and extracts the variables based on the command type – for each type of command there are different known delimiters between which the variable name can be found. Examples for this can be found in Table 4.

	Command type
	Example command
	Variables
	Used delimiters

	Assignment / Arithmetic
	celsius_val *= conversion;
	celsius_val
conversion
	*= operator
Semicolon

	Declaration
	double value;
	value
	Type name
Semicolon

	Function call
	System.out.println(value);
	value
	Function brackets
Comma for multiple parameters

	Flow control
	if (celsius > 37)
	celsius
	Brackets
Comparison operator
Logical operators for multiple conditions

	Default / Unknown
	
	
	Non-alphanumeric symbols

Table 4. The extraction of variable names from various command types
For each assumption or replacement made by the CommandCleaner, an INFO message is generated. If one of the methods fails, a WARNING message is generated, but the program will still be translated and compilable (except if a command which will cause a compiler error is identified, e.g. reading the value of an unassigned variable – in this case, an ERROR is generated and program execution is disabled).
Detailed code listings of the most relevant CommandCleaner methods can be found in Appendix G, Section 9.7.3.
5.4 InstructionTable
5.4.1 Overview

The instruction table contains all programming language commands of the target language, stored and loaded from a serialized file from the harddisk at the program start. The instructions in a particular instruction set can be edited by the user, and many instruction sets can be created and loaded for different target programming languages. This makes it possible to adapt NPROG to produce command-line applications in most object-oriented programming languages (note: at this time, the GUI commands and routines are not in the instruction set editor and only available for Java).
The instructions are contained in a linked list structure. Each instruction has a label, a corresponding programming language instruction, and a set of properties, as can be seen in Table 5 below.
	Property name
	Purpose

	Instruction label
	Used for looking up the instruction based on the predicate from the translator (lexical synonyms are also checked if no corresponding instruction label is found)

	[Children]
	Labels of child instructions. This field makes it possible to store nested commands in the instruction set.

	Instruction string
	Contains the actual programming language command associated with the instruction label (in most commands there are placeholders which will have to be replaced with the actual objects or variable names)

	[Command types]
	Gives information about the type of the instruction (e.g. arithmetic operation, assignment, variable declaration etc.).

	[Return type]
	Stores the return type of the instruction, if applicable (string, decimal or undefined).

	Synonyms
	User-defined synonyms(in case the lexical synonym lookup is not enough)

	[Placeholders]
	Placeholders are not stored in an extra property field but in the instruction string and signify where objects or variables from a sentence can be fit in. For example, in the increase statement $NN0 += $CD0; the strings beginning with $ are placeholders. They can have a type (for example, NN for noun or CD for numeric) and a number (which controls which object is used instead of the placeholder later).

 Table 5. The properties of the instructions in the instruction table
The current instruction table used by the program can be found in Appendix D.
In order to make the instructions easily editable and extendable, the program contains an instruction set editor in one of the settings tabs:

[image: image6.png]NPROG Options

Fie Paths | [Instiuction Set | Language Optons | Editor Dptons

Instucion setlocalor: | Adatanstructonsel_java_basicdat @
declare_double (] Inscton abet |ask
declare_stiing
set Childrer:
add
increase Instuction sing: SN = System.consolelesdLine(:
sublract TN v 0 0
dectease
muitiply
dnide Command types: [Arthmelcs [peration
display Assignment [Var declaration
exit 0] Obiectdeckraton [] Instaniton
Sleep Furcioncal [Flow contl
- [RighfTolett
New nshucton abet
[Retumn type]: | Sting |
Syronyms
Bddinsncion] S, ead prompl gt
Warin: Ol changsfyou ko wht youts dong [

Figure 9. Screenshot of the instruction set editor
The instruction table class also contains a few important methods, which makes it easy to obtain IRCommands for the internal representation using the information from a predicate. Its two most important methods are getBestInstructionString and getCommands, described in subsequent sections (5.4.2 and 5.4.3). Other relevant methods in the InstructionTable class are:
· lookupTypedDependency

This method is used to recognize words which can be referred to using different words, e.g. parts of a noun compound. It searches through all typed dependencies found parsing the previous sentences and tries to find one matching its parameters, the lookup string and the dependency type.
· getPlainString

Simply returns the plain instruction string based on the instruction label in the parameter (which has to be exact, there is no checking for similarity like in getFlowControlCommand and getCommands)
· getApproxPlainString

Returns the instruction string from the table - like getPlainString, but with approximate string matching, allowing spelling mistakes or synonyms (uses the getBestInstrucionString method, see below).
· getFlowControlCommand

Similarly to getCommands, this method returns an IRCommand for the internal representation. The returned command contains a flow control command, which it looks up in the instruction table based on the type (cycle or condition). The flow control command does not contain standard placeholders, but has room for a condition IRCommand and an action IRCommand, which have to be passed as parameters. They are extracted from the input sentence by the methods of the class ConditionPreprocessor (see Section 5.2).

5.4.2 The getBestInstructionString method

The goal of the getBestInstructionString method is the approximate matching of a natural language verb against an instruction table, which is an important part of the project.

This method compares the string passed to it as a parameter to the instruction labels of all instructions in the instruction table and returns the best match. It tries to match in a smart way, by first converting the word to its base form, and also by ignoring small differences in order to deal with spelling mistakes (it does this by looking up the instruction with the smallest edit distance to the parameter word – explained in more detail below). It is also capable of looking up and checking synonyms of the word if no immediate match is found, first in the user-defined synonym list from the instruction table and then from Antelope’s dictionary. (Note that the resulting instruction can depend on whether the users program has a GUI – in this case, the method tries to find instruction labels with the “_gui” postfix first - for example, the display command can be a command line output per default, or a message box if a GUI is present.)
To make approximate comparisons, getBestInstructionString calls the StringUtils.computeLevenshteinDistance static method with the parameter verb and each instruction label in the instruction set, and identifies the best match as the instruction label with the smallest edit distance to the parameter verb. For calculating the Levenshtein distance, I have used the function written by Sam Allen (Allen, 2009), which uses a distance matrix based calculation, and returns the edit distance - the number of differences (deletions, insertions or replacements) between two strings. For a description of how a distance matrix is calculated and how the edit distance is obtained from it, see Section 2.2 in the mini paper (Appendix C).

If there is no exact match – an instruction with zero edit distance - , the method first checks for the user defined synonyms, then for the lexical synonyms (in this case using Antelope’s built-in similarity metric, a percentage value the calculation algorithm of which is not documented). If there are no matching synonyms, and the edit distance between the best match and the parameter verb is sufficiently low, the best match is returned. If the edit distance is too high, a code signifying that no match was found is returned.
5.4.3 The getCommands method

This method produces a list of IRCommands for the internal representation based on a predicate, which is passed as a parameter including its dependencies. It calls getBestInstructionString, to obtain the target programming language statement with placeholders. If no matching instruction was found, it tries to swap the predicate with its argument, which fixes an Antelope bug (in some cases where the predicate can be a noun as well, Antelope interchanges the predicate with the object, e.g. it produces the predicate “x1(display)” from “display x1”).

Then it tries to replace the placeholders with the correct objects referred to in the input sentence (these are listed in the sentences typed dependencies). Multiple variable references or ambiguities are dealt with through type comparisons between the placeholder and the object (for example, if the instruction contains the placeholder “$CDn”, only numeric objects are considered for replacing it if possible).

If a variable is referred to using a part of a noun compound, the program recognizes this using the stored typed dependencies (lookupTypedDependency method). The variable is named using both noun compound parts, but recognized even if the user only uses one noun compound part. An example: if the input text contains the string “Fahrenheit value”, a variable named Fahrenheit_value is introduced which can be referred to as “the value” or as “Fahrenheit”.
If there are no objects of the correct type in the input sentence, the placeholders are replaced using normal nouns (“NN” dependencies). If there are not enough dependencies to replace all placeholders, the program produces a warning and ignores the incomplete predicate.

The method returns a list of IRCommands produced from the input predicate in the way described above. It has to be a list instead of a single command, since a single predicate can contain multiple instructions (the sentence “set x1 to 1 and x2 to 2” would be translated to one “set” predicate with four dependencies, two nouns and two numeric. The method simply generates new assignment commands as long as there are enough dependencies to replace the placeholders with).

Apart from Translator.TranslateSentence, InstructionTable.getCommands is the most important method for obtaining the target source code (from the predicate information, which is extracted by TranslateSentence). The following code listing contains its most relevant parts to describe how it works.
	//getCommands returns a list of IRCommands based on a predicate (verb is the predicate governor, and pos_dependencies contains all parameters/dependencies of the predicate and information about them)
public List<IRCommand> getCommands(string verb, List<IRDependency> pos_dependencies) {

 //... (signifies that uninteresting code parts were omitted for readability or conciseness)

 //look for best match in the instruction table
 getBestInstructionString(word, out instruction, out ldistance, out instr_index);

 //...
 if (instruction.Contains("???"))

 { //failed to find correct instruction

 instruction = "";

 if (!verb.Contains("«gui"))

 {

 if (pos_dependencies.Count == 1)

 { //try swapping predicate and object (fixes nlplib bug, when a verb that can also be a noun is used)

 string overb = verb;

 verb = pos_dependencies[0].Name;

 getBestInstructionString(verb, out instruction, out ldistance, out instr_index);

 if (instruction.Contains("???")) instruction = "";

 pos_dependencies[0] = new IRDependency(overb, pos_dependencies[0].Type, pos_dependencies[0].Information);

 }

 if (instruction == "")

 {

 Logger.log("WARNING(W03): Command not found! (Ommitted expression in sentence[SENT_NO],cmd#" + inst_no + ", governor=" + verb + ")");

 }

 }

 }
 //replace placeholders

 foreach (string key in parameters.Keys)

 {

 if (instruction.Contains(key))

 instruction = instruction.Replace(key.ToString(), parameters[key].ToString());

 }

 if (instruction.Contains("$"))

 {

 if (pos_dependencies == null || pos_dependencies.Count == 0) instruction = "";

 else

 {

 //...

 foreach (IRDependency obj in pos_dependencies)

 {

 varname = "";

 //nouns or explicit objects can be used to replace placeholders
 if (obj.Information.Contains("NN") && obj.Type.ToLower().Contains("object")

 || obj.Name.Contains(ExplicitExpressions.LABEL_PREFIX) && obj.Name == obj.Name.ToUpper())
 {

 if (!obj.Name.Contains(ExplicitExpressions.LABEL_PREFIX) || obj.Name != obj.Name.ToUpper())

 {

 int inaccuracy = 0;

 varname = lookupTypedDependency(obj.Name, "*", out inaccuracy, true);

 if (inaccuracy > 0) varname = "";

 else

 {

 //check if compound contains form element

 Project p = Project.getInstance();

 bool isformelement = false;

 string propname = "";

 foreach (System.Windows.Forms.Control c in p.GuiControls) {

 if (StringUtils.ComputeLevenshteinDistance(c.Name, varname) < 3) {

 //object name is similar to a form element name, determine property name

 propname = obj.Name;

 foreach (string[] prop in GuiEditor.CtrlTypes.properties) {

 if (c.Name.Contains(prop[0]) && (prop[1] == obj.Name || prop[1] == ""))

 {

 propname = prop[2];

 }

 }

 //assemble variable name from form element name and property name

 varname = c.Name + "." + propname;

 isformelement = true;

 }

 }

 if (!isformelement)

 //assemble variable name from noun compound parts
 varname = varname + "_" + obj.Name;
 }

 }

 if (varname == "")

 varname = obj.Name;

 nounObjects.Add(varname);

 }

 else if (obj.Information.Contains("CD"))

 { // numeral objects can replace placeholders as well
 varname = obj.Name.Replace(",", ".");

 if (StringUtils.isNumeric(varname[0]))

 {

 string num = "";

 foreach (char c in varname) if (c == '.' || StringUtils.isNumeric(c)) num += c;

 numeralObjects.Add(num);

 }

 }

// no identifyed type, add object to restObjects
 if (varname != "" && !ignoredObjects.Contains(varname.ToLower())) {

 restObjects.Add(varname);

 restObjInfo.Add(obj.Information);

 }

 else if (!ignoredObjects.Contains(obj.Name.ToLower()))

 {

 restObjects.Add(obj.Name);

 restObjInfo.Add(obj.Information);

 }

 }

 //...

 //replace placeholders with found objects

 while (restObjects.Count >= no_placeholders)

 {

 instruction = oinstruction;

 if ((!instruction.Contains("$NN") || nounObjects.Count > 0) && (!instruction.Contains("$CD") || numeralObjects.Count > 0))

 {

 //if all types found, just replace them

 removeList.Clear();

 for (i = 0; i < nounObjects.Count; i++)

 {

 if (instruction.Contains("$NN" + i))

 {

 instruction = instruction.Replace("$NN" + i, nounObjects[i]);

 paramTypes.Add("NN");

 //...

 }

 }

 //...

 for (i = 0; i < numeralObjects.Count; i++)

 {

 if (instruction.Contains("$CD" + i))

 {

 instruction = instruction.Replace("$CD" + i, numeralObjects[i]);

 paramTypes.Add("CD");

 //...

 }

 }

 //...

 }

 else

 {

 //not everything found -> replace all remaining placeholders with found objects

 //if property right_to_left is not set, objects replaced in the order they were read

 int increment = 1;

 int start = 0;

 if (instructiontypes.containstype(itype, instructiontypes.right_to_left))

 {

 increment = -1;

 start = restObjects.Count - 1;

 }

 removeList.Clear();

 for (i = start; instruction.Contains("$") && i < restObjects.Count && i >= 0; i += increment)

 {

 for (j = 0; j < instruction.Length; j++)

 {

 if (instruction[j] == '$' && instruction.Length > j + 3 && instruction.Substring(j, 3) == instruction.Substring(j, 3).ToUpper())

 {

 string newinstruction = "";

 if (j > 0) newinstruction = instruction.Substring(0, j);

 newinstruction += restObjects[i];

 removeList.Add(i);

 newinstruction += instruction.Substring(j + 4);

 instruction = newinstruction;

 break;

 }

 }

 paramTypes.Add(restObjInfo[i].ToString());

 }

 //...

 }

 inst_list.Add(instruction);

 }

 }

 for (inst_no = 0; inst_no < inst_list.Count; inst_no++)

 {

 if (inst_list[inst_no].Contains("$"))

 {

 inst_list[inst_no] = "";

 string deps = "";

 foreach (IRDependency dep in pos_dependencies) deps += dep.Name + ":" + dep.Type + ":" + dep.Information;

 Logger.log("WARNING(W01): " + word + ": Not enough dependencies found in sentence[SENT_NO],cmd#" + inst_no + " (governor=" + word + ",dependencies=" + deps + ")");

 }

 }

 }

 else

 {

 inst_list.Add(instruction);

 }

 List<IRCommand> cmds = new List<IRCommand>();

 foreach (string cinstruction in inst_list)

 {

 IRCommand cmd = new IRCommand(ldistance, cinstruction, itype);

 //set return type if applicable

 if (instructions[instr_index].Length > 4) cmd.ReturnType = instructions[instr_index][4];

 if (instructiontypes.containstype(itype, instructiontypes.assignment))

 {

 if (cmd.Command.Contains("\"") || cmd.Command.Contains(ExplicitExpressions.STRING_LABEL)) {

 cmd.ReturnType = vartypes["string"].ToString();

 }

 else if (cmd.ReturnType == null || cmd.ReturnType.Length < 1)

 {

 string lastType = paramTypes[paramTypes.Count - 1];

 if (lastType.Contains("CD"))

 { //assigning numeric value

 cmd.ReturnType = vartypes["decimal"].ToString();

 }

 else

 { //assigning string value (default)

 cmd.ReturnType = vartypes["string"].ToString();

 }

 }

 }

 //omitted code recursively calling getCommands if the current command had children
 cmds.Add(cmd);

 }

 return cmds;

}

5.5 IRCommand

An IRCommand is a node in the internal representation tree. It contains a programming language command (stored as a string) and the following additional fields:
· A pointer to its parent

· Pointers to child nodes / subcommands

· An instruction type (corresponding to the command type field in the instruction set)

· A return type (string, decimal or undefined)

· An inaccuracy metric (which is 0 if the predicate used to generate the command perfectly matches the corresponding instruction table entry)

The translator class generates the internal program representation tree from the input text, using the instruction table, as described in Section 5.6. The reasons for choosing a tree data structure are explained in Section 4.2.

There are some useful methods in the IRCommand class, which make it easy to build, maintain, change or search the internal representation. The most important methods, apart from the obvious insert, get and replace functions, are:

· countInTree, a recursive function counting the occurrences of a specific string in the whole IR tree (useful e.g. for identifying the variable scope for each variable, in the CommandCleaner.cleanUndeclared method)

· getFlatCommandStructure, a recursive method which flattens the IR tree into a string containing the target code. It also indents subcommands for better readability.

· applyToChildren and applyToParents, methods which take a delegate (a function pointer taking one IRCommand – the current tree node – as an argument) and call it for each node above, or below, the current level in the tree, respectively. This can be useful when applying custom operations to the internal representation for which there are no predefined methods. It is used in CommandCleaner.cleanUndeclared, for example, to read all types of instructions using the current variable into a string, which helps deciding the intended variable type (variables used in arithmetic operations are numeric and declared double).
5.6 Translator
The translator class is the main interpreting component of the project. It takes the input text and, sentence by sentence, converts it to the internal representation, which it then flattens into the program code and saves to the main project class.

 TranslateProgram(), TranslateSentence()

 IRCommand.getFlatCommandStructure()

Figure 10. The steps the input information goes through in the Translator
In the method passing the input text to the translator (SetText), the text is pre-processed, removing string literals and explicit commands and replacing them with placeholders (done by the ExplicitExpressions class, see Section 5.7). The sentence boundary disambiguation is carried out in this step as well.

The method translating the sentences is called TranslateProgram. It first generates the internal representation of the program skeleton from the instruction table and looks for the entry point of the Run method. Then it calls TranslateSentence on each sentence, and assembles the programs internal representation from the lists of IRCommands this method returns.
5.6.1 TranslateSentence

TranslateSentence is one of the most important methods in the program, since it generates the internal representation from a natural language sentence (making use of InstructionTable. getCommands to obtain the nodes for the IR tree - see Section 5.4. Understanding these two methods is enough to understand the basic translation process in NPROG). This method first parses the input sentence using the Proxem Antelope libraries parser (the Stanford parser). Then it checks for conditional sentence structures using the ConditionPreprocessor class (Section 5.2) and calls the TranslateConditionalStructure method if necessary (see the next Section). Otherwise it uses Antelope to extract predicates from the input sentence, pre-processes the predicate, and passes it to InstructionTable.getCommands, which returns the internal representation of the input sentence.
TranslateSentence also tries to manually assemble a predicate based on the information from the Tagger in case Antelope’s predicate extractor fails (or produces incomplete information). Basically, it assumes that the first identified verb is the predicate governor, that the first noun is the sentence subject, and that the set of all nouns are the objects in the sentence.
The following listing contains the code of the TranslateSentence method:

	public bool TranslateSentence(out string predicateString, out List<IRCommand> commands, string strsent)

{

 //...(signifies that uninteresting code parts were omitted for readability or conciseness)
 //parse input sentence

 ISentence sentence = parser.ParseSentence(strsent);
 //check if conditional sentence (in this case, process manually with TranslateConditionalStructure)

 condition_preproc = new ConditionPreprocessor(strsent, sentence);

 if (condition_preproc.isCondition() || condition_preproc.isCycle()) {

 commands = null;

 return TranslateConditionalStructure(strsent, sentence, out predicateString, ref commands);

 }

 //save typed dependencies to the InstructionTable's dependency list

 List<IRDependency> typed_deps = new List<IRDependency>();

 foreach (IDependency dep in sentence.Dependencies) {

 predicateResult += dep.Type + ": " + dep.Governor.Text + "->" + dep.Dependent.Text + "\n";

 instructions.addTypedDependency(new IRDependency(dep.Governor.Text, dep.Type, dep.Dependent.Text));

 }

 //extract predicates (deep dependencies)

 sentence.ComputePredicates(new PredicateExtractor());

 IList<IDeepDependency> deepDeps = sentence.DeepSyntaxDependencies;

 //...
 if (strsent.Contains(ExplicitExpressions.COMMAND_LABEL))

 {

 //if explicit expression, add to the command list unchanged

 IRCommand cmd = new IRCommand(explicitexpressions.getNextCommand());

 commandList.Add(cmd);

 Logger.replaceTag("[SENT_NO]", sentenceNumber.ToString());

 }

 else if (deepDeps.Count > 0)

 {

 List<IRDependency> pos_deps = new List<IRDependency>();

 foreach (IDeepDependency deepDep in deepDeps)

 {

 //obtain the predicate's base form

 gbaseforms = lexicon.GetBaseForms(deepDep.Governor.Text, deepDep.Dependent.PartOfSpeech);

 if (gbaseforms.Count > 0)

 governor = gbaseforms[0].BaseForm;

 else

 governor = deepDep.Governor.Text;

 deptype = deepDep.DepType.ToString();

 partofspeech = deepDep.Dependent.TagAsString;

 dependent = deepDep.Dependent.Text;

 if (prevgovernor != governor)

 {

 predicateResult += "\n" + governor + "(";

 if (prevgovernor != null)

 {

 //get the command corresponding to the predicate and add it to commandList

 List<IRCommand> cmd = instructions.getCommands(prevgovernor, pos_deps);

 foreach (IRCommand c in cmd) commandList.Add(c);

 Logger.replaceTag("[SENT_NO]", sentenceNumber.ToString());

 pos_deps = new List<IRDependency>();

 }

 prevgovernor = governor;

 }

 pos_deps.Add(new IRDependency(dependent, deptype, partofspeech));

 predicateResult += deepDep.Dependent.Text + "[" + deptype + "," + partofspeech + "=" + deepDep.Dependent.PartOfSpeech + "], ";

 }

 predicateResult += ")";

 if (prevgovernor != null)

 {

 //get the command corresponding to the last predicate and add it to commandList

 List<IRCommand> cmd = instructions.getCommands(prevgovernor, pos_deps);

 foreach (IRCommand c in cmd) commandList.Add(c);

 Logger.replaceTag("[SENT_NO]", sentenceNumber.ToString());

 }

 }

 if (commandList.Count == 0)

 {

 //if the predicate extraction or the conversion into commands failed,

 //try to assemble the command manually based on POS tags

 if (strsent.Length < 1 || StringUtils.isPunctuation(strsent[strsent.Length - 1])) {

 List<IRDependency> pos_deps = new List<IRDependency>();

 governor = "";

 bool hadsubject = false;

 for (int i = 0; i < sentence.Words.Count; i++) {

 //assume the first verb to be the predicate governor

 if (sentence.Words[i].PartOfSpeech == PartOfSpeech.Verb && governor == "") {

 governor = sentence.Words[i].BaseForms[0];

 }

 else if (sentence.Words[i].PartOfSpeech == PartOfSpeech.Noun) {

 //add noun objects to the dependency list

 if (!hadsubject) {

 //assume the first noun to be the subject

 deptype = DeepDependencyType.Subject.ToString();

 hadsubject = true;

 }

 else {

 deptype = DeepDependencyType.DirectObject.ToString();

 }

 partofspeech = PartOfSpeech.Noun.ToString();

 dependent = sentence.Words[i].BaseForms[0];

 pos_deps.Add(new IRDependency(dependent, deptype, partofspeech));

 }

 }

 if (governor != "" && pos_deps.Count > 0)

 {

 //try to assemble commands from the collected information, and produce a warning

 List<IRCommand> cmd = instructions.getCommands(governor, pos_deps);

 foreach (IRCommand c in cmd) commandList.Add(c);

 Logger.log("WARNING(W07): Semantic analysis failed for sentence#[SENT_NO]. Predicate was assembled using assumptions. You might want to check and rephrase the sentence.");

 Logger.replaceTag("[SENT_NO]", sentenceNumber.ToString());

 }

 else

 {

 //no governor or no dependencies could be found, produce an error

 Logger.log(">ERROR(E04): Sentence#" + sentenceNumber + " could not be interpreted, try to rephrase it<");
 success = false;
 }

 }

 else {

 return TranslateSentence(out predicateString, out commands, strsent + ".");

 }

 }

 predicateString = predicateResult;

 commands = commandList;

 return success;

}

5.6.2 TranslateConditionalStructure

Like TranslateSentence, this method has the goal of generating and returning the internal representation of an input sentence – which in this case must be a conditional sentence (either a condition – “if”, or a cycle – “while”, or an event handler).
If the sentence is recognized to be an event handler (that is, if it contains a condition with the name of a form element, e.g. ‘if Button1 is pressed, display “test”’), this method generates the correct event handler using an event stub obtained from the InstructionSet. It also calls TranslateSentence with the part of the sentence containing the action (‘display “test”’ in our example), and inserts the returned IRCommands into the event handler body.

Otherwise, if the sentence contains a condition or a cycle, TranslateConditionalStructure uses the methods of the ConditionPreprocessor class (Section 5.2) to extract a condition and an action from the conditional structure. It calls TranslateSentence to convert the action from natural language to an IRCommand. Then it obtains the correct flow control command from the instruction set using getCommands and replaces the placeholders in it with the condition command and the action commands.
5.7 ExplicitExpressions

The ExplicitExpressions class has the purpose of pre-processing the input text, removing any expressions which could lead to a parser failure (Antelope’s parser can’t handle unusual symbols or expressions containing too many words not found in its dictionary), replacing them with placeholder labels, but saving them as well for later use. Its three main methods are:

· extractExplicitCommands – can remove explicit programming language instructions from the input string (delimited by “´ “, e.g. ´value=Math.sin(value);´) and replace them by numbered placeholder labels (e.g. EEXPLICITCOMMAND0)

· extractLiteralsFromString – removes string literals (delimited by double quotes) and replaces them by numbered placeholder labels

· replaceLabels – takes an IRCommand and replaces all placeholder labels in it with the saved original expression from the input text

5.8 GuiEditor & RectTracker
GuiEditor is the class managing the graphical user interface being built by the user. This class is only in use if the GUI option is enabled in the project.

In NPROG, there are three layers of GUI representation, which can be converted into each other: the form control layer (containing the C# controls displayed on the main program interface which the user can manipulate), the internal control layer (containing serializable SControl objects – this representation is only necessary for saving and loading the project), and the source code layer (containing the GUI building code in the target programming language) – see Figure 11.
The GuiEditor class operates on the Form control layer and has methods to add controls to the GUI. Its most important method is getGuiBuilderString(), which generates the GUI building code by taking predefined GUI builder template strings, and replacing their placeholders with actual control properties (their name, position and size). An example template string:
«NAME» = new «TYPE»();\n «NAME».setBounds(«X»,«Y»,«W»,«H»);\n «NAME».setText(\"«TEXT»\");\nthis.getContentPane().add(«NAME»);

getGuiBuilderString()

Project.GuiControls.set .get

Figure 11. The layers of user GUI representation in NPROG
The class which makes the subsequent editing of created controls possible is called RectTracker. This is a slightly modified version of the freely available RectTracker published on the Code Project (nashcontrol, 2004 - http://www.codeproject.com/KB/miscctrl/CSharpRectTracker.aspx).
The features I have added are the possibility to edit the control text (apart from the rectangle around the control, a textbox in its middle is displayed with the text), the SetName method (making it possible to change the name of a control), the removeSubcontrols method (deleting any subcontrols of a control) and an option to make a control immovable (the isMovable property).

The purpose of a RectTracker is to display a rectangle around the control when the control is selected, making it possible for the user to drag the control around or to resize it using the mouse, or to change its text using the textbox displayed in the middle of the control (See Figure 12). When the control is deselected, the rectangle and the textbox disappear.

[image: image7.png]e
o Test

-

Figure 12. A draggable and resizable RectTracker
Changes to the user GUI made by using the RectTracker are only applied to the internal control representation and to the source code representation when the project is either saved or executed. If a GUI is present, its building code is obtained using GuiEditor.getGuiBuilderString(), and inserted into the constructor of the main class in the target source code by the Translator.TranslateProgram method.
6. Critical Evaluation

6.1 Overview
This chapter contains an evaluation of the achieved results, a discussion of the used methods, tools and approaches, and comparisons to alternatives. It also points out some ways and approaches to improve the project in the future.
6.2 Evaluation against the objectives
The following table compares the objectives as specified in the project proposal to the currently achieved state:
	Objective
	Current state

	· Writing an interpreter which, using the output from the natural language analysis libraries, will be able to translate an English program description into a formal programming language. The input text will have to be simplified and comply with a few rules.
	The interpreter is working and capable of translating well-defined English descriptions into Java code. However, the type of language that can be understood is more restricted and constrained than how it has been thought to be possible (See Section 6.6).

	· A simple built-in GUI editor for making interface design faster and easier; implementing the most common controls (e.g. Label, Button, Textbox, Checkbox, Combobox, Image) and providing event handling as described by the user in the input text.
	An optional GUI editor is finished and working

	· Evaluation of mathematical formulas of a certain syntax (e.g. sqrt(sin(30))); also, evaluation of some predefined formal programming language statements
	Both mathematical formulas in Java notation and Java commands can be entered using explicit expression delimiters, e.g. ´x=Math.sin(y);´

	· An interface to easily extend the built-in instruction set manually
	The instruction set editor is finished and working. At this point only one instruction set for Java is available.

As can be seen from the table above, the current state of the project fulfils the defined objectives. However, the language is less flexible as originally planned (see Section 6.6), and the program cannot deal with classes and methods (a feature I originally planned to implement).

This is due to two unfortunate facts. First, the Proxem Antelope package is much less powerful than anticipated and has a lot of problems and bugs which I had to deal with, which took a lot of the development time which could otherwise have been spent to improve the capabilities of the program. Second, I have simply underestimated the complexity of natural language, and the consequential complexity of analyzing it. Coming from a programming background it is easy to just assemble a program description from Java instructions translated into English, and think that they are easy to parse. However, human language has an astronomic number of different ways to express the same thing, many of them requiring heavy background knowledge for understanding their semantics.
Contrary to what I thought before starting this project, I do not believe that the field of natural language processing will reach a level where it can exactly translate a human language into machine code anytime in the near future.

6.3 Methodology
The incremental model was used for the development of this project. In this model, software is written incrementally. Each iteration consists of the basic steps of a software development model: requirements, design, implementation, testing; and each step produces a working version of the software (with a subset of the functionality of the final program). (Scacchi, 2001)
The main advantages of this method are:

· It produces working software quickly

· It is flexible and does not require the whole set of exact requirements at the start

· Testing and debugging after each version are easier than testing and debugging a complete system.
Another commonly used software development model is the waterfall model. In this model, there is only one requirement, design, implementation and testing step, respectively. The steps have to be traversed in order, they can’t overlap, and one step has to be completed entirely before proceeding to the next step. The main advantage of this method is its simplicity. (Scacchi, 2001)

There are several reasons why the incremental model was a better choice for this project. The sheer complexity of the task was one of them – it was clear from the start that the dream of translating arbitrary natural language into programming code was not accomplishable within the scope of this project. The goal was coming as close as possible with the given resources in the given timeframe. Therefore the exact requirements for the end product could not have been specified at the start of the project, which would have made the use of the waterfall model very difficult. Also, in the waterfall model, there would have been no verification and testing until the very end. The possibility of testing each working version in the incremental model made some vital direction changes possible (like the re-writing of the string matching algorithm to an edit distance based approach instead of a neural network approach for efficiency reasons – see Section 6.5.1 – or the decision to leave out the algorithms dealing with functions and objects in order to finish the project in time).
The final reason for choosing an incremental model is that this project will never be finished entirely (meaning it can flawlessly translate English into Java), but can improve with each new version, and that I intend to continue developing it even after having finished the university.

6.4 The NLP Library
For this project, the Proxem Antelope framework for .NET was used. Antelope is a complete natural language processing library for .NET languages (version 2.0 above) fully supporting the English language (and partially supporting French).

Proxem Antelope is a complete NLP package which has the Stanford POS Tagger and parser as well as deep syntax and semantic analysers, based on WordNet and VerbNet, and also contain useful dictionaries for the English language. Also, it allows predicate extraction, and has a built-in lexicon for base form and synonym lookups.
For a more detailed description of Antelope see Section 2.4.
(Proxem Antelope Documentation, 2008)

I ran across quite a few problems and bugs while working with the Antelope framework (see Section 2.4.). Writing the pre-processing functionality to deal with those problems took up much development time which could otherwise have been spent to increase the range of functionality and the flexibility of the accepted input language.
NLTK would have been an alternative NLP library with similar functions. It also has chunking, tagging, parsing and deep parsing and semantic analysis capabilities. One advantage of NLTK is the range of supported AI technologies - it not only supports predicate calculus, but has built-in libraries for model building and theorem proving as well. Another advantage is that it is open source and licensed under the GNU GPL.

However, NLTK has one great disadvantage: it is only available in Python, which is an interpreted language (and therefore slow). Another disadvantage is that it supports neither frame not predicate extraction – these tasks would have to be performed manually when using this library.

(Bird & Loper, 2004) and (Garrette and Klein, 2009)

Another alternative NLP toolkit is the GATE (the General Architecture for Text Engineering) project, which is a huge collection of NLP related tools, libraries and resources. It has various built-in parsers (Stanford, SUPPLE, RASP) lexicons in various languages, a semantic tagger, and visual GUI components. In its syntactic analysis and parsing abilities, GATE introduces nothing groundbreakingly new (apart from a range of algorithms to choose from). However, it has a very useful component: ANNIE (a Nearly-New Information Extraction System), which as the name indicates can be used for information extraction. Apart from semantic analysis tasks like named entity recognition and coreference resolution, this component is also capable of producing detailed frames, which could – like in the NaturalJava project described in Section 2.3.2 – be used to generate instructions.

GATE is open source and licensed under GNU GPL as well.

The main reason for not choosing GATE for this project was that the conversion of predicates into instructions is easier than the conversion of frames. Also, ANNIE’s output does not contain enough information (e.g. type dependencies), which would make the use of a different component necessary (which would have to parse the sentence again, making the process slower).

Finally, GATE only supports Java, while I would prefer C# - both because the .NET CLR is arguably faster than Sun’s JVM, and because I have more experience with C#.

(GATE Documentation, 2009)

A fourth possibility would have been to use separate tools for the levels of language processing. For example, the Berkeley Parser (Berkeley University) could have been used for shallow and deep parsing, and the Mikrokosmos semantic analyser (New Mexico State University) could have been used for semantic analysis. It would also have been possible not to use semantic analysis at all but to write a predicate extractor based on the deep parser output - but this would have taken much more development time.

As a conclusion it can be said that Antelope was the framework with the most features and, for this purpose, the most adequate components (especially for the C# language). Its easy-to-use interfaces and useful modules (like its lexicon or predicate extractor) saved much development time, although it also caused many problems, which took a part of the development time to fix. This probably would not have been necessary using the GATE framework, since it has been tested and developed for a long time (and it is also open source, a lot of people are working on it) – but the application would have been slower (as stated above) and would have to have been written in Java.
6.5 Design and Implementation
This chapter explains the advantages of certain algorithms, and compares them to possible alternatives. Only the algorithms worth discussing which have sensible alternatives are discussed in this chapter, and the algorithm descriptions were omitted to avoid duplication. Reasons and advantages as well as the descriptions of other relevant algorithms can be found in the Implementation section (Chapter 5).
6.5.1 String matching algorithm
The string matching algorithm used in NPROG is based on the Levenshtein edit distance algorithm, which returns the edit distance as the number of differences (insertions, deletions or replacements) between two strings (see Section 5.4.2).

In my mini paper (see Appendix C), I have argued that while both edit distance based algorithms and neural networks can perform this task, a neural network is the more powerful approach to use. However, I have underestimated the resources this approach requires and the resulting drop in translation performance if it would be introduced into NPROG.

I have built a simple test program to test the speed of a neural network based matching system, assuming for simplicity that the maximum possible number of storable instructions is 65536 (which implies that there must be 16 output neurons), and the maximum possible command length is 10 characters. Using the string coding scheme detailed in Section 3.3 of Appendix C, and limiting the alphabet to 26 allowed characters, it follows that the number of neurons in the input layer must be 260. I have used 2 hidden layers containing 200 and 100 neurons, respectively.

[image: image8.png]= BEX]

mrpret] [_oa) [vanreuaont) (un]

diplay
System.out pinin(SNNO);

Figure 13. A simple test program for neural network based matching
The execution time of the trained neural net was 91ms +/- 10ms, which is a much higher number than expected. Antelope’s parser takes approximately 440ms to parse a sentence (Proxem Antelope Documentation, 2008). Each verb in the sentence has to be matched against the instruction set. If we assume that every sentence contains two verbs on average (for example, “increment the value and display it”), that would mean that a neural network based approach introduces 41,4% time overhead, which would make NPROG even slower than it already is.

A distance based string matching algorithm is much, much faster than such a neural network – calculating the Levenshtein distance takes less than 1ms for all strings of reasonable length (for strings below 100 characters).

Since a user’s patience has limits (and since NPROG is already up to 10 times slower than the standard java compiler – see Section 6.6), I have decided to use a distanced based algorithm, the Levenshtein distance, in this project.
6.5.2 ConditionPreprocessor

As described in Section 5.3, the ConditionPreprocessor class is based on string processing techniques – on comparing the input sentence against predefined matching tables using regular expressions, and on identifying condition parts using a finite state machine. This works well, as long as the user uses one of the predefined structures, and the correct keywords (e.g. “while” or “as long as” in case of a cycle, or “greater” or “less” etc. when defining comparative operators – see Appendix F).

However, there is a vast amount of phrasing possibilities in the English language, and of course it is not possible to make all of them available to the program, which is a disadvantage of a matching table based approach (for example, the user could write “the values of textareas the value of which is below 0 should be set to zero”, which would not be recognized as a conditional sentence because it doesn’t contain the appropriate keywords. The comparison would not be recognized either, because “below” is used instead of the known keyword “less”; and the word zero is used, which is not identified by the NLP library for the number it is).
One way of making the recognition of such sentences more reliable would be to recognize the type of phrasing, instead of trying to find exact keywords. We know the example sentence above is a conditional sentence because it is phrased conditionally (“should”). This could be recognized by the program as well – it would just have to find modal auxiliaries (aux) among the typed dependencies. This approach would still not lead to a 100% sure recognition of all conditional phrases, but it would significantly increase the recognition rate.
For a more efficient comparison analysis, a different NLP library – one with more powerful information extraction abilities – would be needed. GATE’s ANNIE module, for example, would be able to recognize numerals in word form (e.g. “zero”). Still, I have used Antelope, for the reasons explained in Section 6.4. Another possible approach would have been to add a numeral word to number conversion to the pre-processing stage (in Translator.SetText), and possibly to extend the matching table to be able to deal with the most commonly used comparisons. I could not yet implement the improvements suggested in this section for lack of time.
6.5.3 CommandCleaner
The CommandCleaner class was written to deal with mistakes or underdefinitions which could lead to a compiler error when compiling the output source code. It is largely based on dependency analysis and predefined assumptions (see Section 5.3). It can quite efficiently deal with unassigned variables, implicit casts and shallow comparisons (as can be seen from some of the examples in Section 6.6).
There are two known issues which will have to be dealt with in the future, when creating a stable release. First, the forced cast that is inserted when the user tries to assign a variable to another variable of a different type is unhandled – if the cast fails, the user’s program will crash with an exception. Second, the program does not check the left hand object when inserting the compareTo method to deal with shallow reference comparisons (e.g. in string_obj.compareTo(“hello”)). If the left hand object does not contain a defined compareTo method, then this could lead to the user’s program crashing as well.
There is also a range of features which it would be sensible to add to the CommandCleaner class in the future. This could include checking for unreachable code, checking for endless loops or recursions, resolving contradictory code and optimising the program.
6.5.4 Internal representation
In NPROG, a tree data structure was chosen as the internal representation, with each node of the tree being represented by an IRCommand object (see Section 5.5). Many compilers and interpreters use a tree based internal representation (Click & Paleczny, 1995). Using a tree has many advantages – it accurately represents the naturally nested structure of a program, it is easier and more efficient to search and navigate in, and editing operations on it are fast and efficient.

An interesting property of the nodes in the IR is the inaccuracy metric they store, which can be used to verify how accurate a particular instruction is (Section 5.5). This concept could have been extended by allowing not only the most accurate instruction string in an IR node, but, for example, the best two or three. Then it would be possible to present alternatives to the user, if he finds that the output program was not entirely correct. Even without understanding the program code, he could execute his program, and switch to the second or third possible IR command tree if he is not satisfied with the results.
6.6 Test results and performance
The following is a list of example program descriptions which demonstrate what the program can do. For each program the number of sentences, the translation time, the compile time of compiling the output code with javac and the java output code are listed. The translation speed of course depends on the CPU speed of the client machine (the following values were obtained using an AMD 1,8GHz Dual Core CPU).
	Program: Fahrenheit/Celsius converter

No. of sentences: 4

Translation time: 1,4s (+/- 0,1s)
Compilation time:1,0s (+/- 0,1s)
	class CelsiusCalc {

public static void main(String[] args) {

new CelsiusCalc();

}

public CelsiusCalc() {

Run();

}

public void Run() {

double celsius_value;

System.out.println("Fahrenheit:");

celsius_value = Double.parseDouble(System.console().readLine());

celsius_value -= 32;

celsius_value *= 0.555;

System.out.println("Celsius:");

System.out.println(celsius_value);

Run();

}

}

	First, the program displays "Fahrenheit:". Then it asks for the Fahrenheit value. It subtracts 32 from Fahrenheit, and multiplies Fahrenheit by 0,555. Then it displays "Celsius:", displays the value, and starts over again.
	

	
	

	Program:
 Fibonacci series

No. of sentences: 5

Translation time: 5,1s (+/- 0,3s)
Compilation time:1,0s (+/- 0,1s)

Comments: the bracketed cycle action takes longest to parse (about 3 seconds)
	class CelsiusCalc {

public static void main(String[] args) {

new CelsiusCalc();

}

public CelsiusCalc() {

Run();

}

public void Run() {

double celsius_value;

System.out.println("Fahrenheit:");

celsius_value = Double.parseDouble(System.console().readLine());

celsius_value -= 32;

celsius_value *= 0.555;

System.out.println("Celsius:");

System.out.println(celsius_value);

Run();

}

}

	Set f1 to 1 and set f2 to 1.

Display f1, and then display f2.

As long as f1 is smaller than 30, (Add f1 to f2 and set f3 to f2. Set f2 to f1, set f1 to f3, and then display f1).
	

	
	

	Program:
 Calculator

No. of sentences: 11

Translation time: 2,1s (+/- 0,1s)
Compilation time:1,0s (+/- 0,1s)
Comments: parsing is fast because of the very short sentences
	class CelsiusCalc {

public static void main(String[] args) {

new CelsiusCalc();

}

public CelsiusCalc() {

Run();

}

public void Run() {

double celsius_value;

System.out.println("Fahrenheit:");

celsius_value = Double.parseDouble(System.console().readLine());

celsius_value -= 32;

celsius_value *= 0.555;

System.out.println("Celsius:");

System.out.println(celsius_value);

Run();

}

}

	Display "Calculator>".

Ask for the first value.

Ask for the myoperator.

Ask for the second value.

If myoperator is "+", add the second to the first.

If myoperator is "-", subtract the second from the first.

If myoperator is "*", multiply the first by the second.

If myoperator is "/", divide the first by the second.

Display the first value. Then display "\n". Then start over again.
	

	
	

	Program:
 Currency Converter
No. of sentences: 11
Translation time: 15s (+/- 6s)
Compilation time:1,4s (+/- 0,2s)
Comments: the event handlers take very long to parse, for three reasons:

- they are very long
- they contain words not found in the dictionary (JButton0 etc.)
- they are parsed twice (first the whole sentence for the ConditionPreprocessor and second to translate the identified action part, which can result in a different parse tree)
	import javax.swing.*;

import java.awt.event.*;

class CurrencyConv extends JFrame implements ActionListener {

double result;

double multiplier;

private JButton JButton1;

private JButton JButton0;

private JTextArea JTextArea0;

public static void main(String[] args) {

new CurrencyConv();

}

public CurrencyConv() {

/*GUI code omitted*/

Run();

}

public void Run() {

multiplier = 1.13;

result = 0;

}

public void actionPerformed(ActionEvent e) {

if (e.getSource() == JButton0) {

result = Double.parseDouble(JTextArea0.getText());

result *= multiplier;

JTextArea0.setText(Double.toString(result));

}if (e.getSource() == JButton1) {

result = Double.parseDouble(JTextArea0.getText());

result /= multiplier;

JTextArea0.setText(Double.toString(result));

}

}

}

	Set the multiplier to 1.13.

Set the result to 0.

If the user clicks on JButton0, set the result to the JTextArea0 value, multiply the result by the multiplier and set the JTextarea0 value to the result.

If the user clicks on JButton1, set the result to the JTextArea0 value, then divide the result by the multiplier, and set the JTextarea0 value to the result.

GUI:

[image: image9.png]GEP-EUR EUR->GBP

	

From the translation times of the simple programs above it can be seen that the translation of the English description to program code in NPROG is much slower (up to 10 times slower) than the translation of program code to machine code in javac.
The bottleneck in the translation process is the deep parser, which according to the (Proxem Antelope Documentation, 2008) takes about half a second to process one sentence, but actually can take much longer if presented with grammatically incorrect sentences or unusual symbols.
The following tables contain the relevant part of a benchmark done by Proxem on an Intel 2.4GHz Dual Code CPU. The benchmark was performed on a document with 10 sentences and 134 words.

[image: image10.png]“Analysis level Component Time __ Wordsisec

Tagging SSTagger 78 ms 1720

TaggingtChunking _ SSTagger+chunker 130ms 1030

Parsing’ Stanford Parser 4300 ms 30

[image: image11.png]Operation Previous analysis level _ Time _ Overhead
Collocation collapsing _ Parsing <100 ms +3%
Context extraction Tag./Chunk /Parsing “Tms

Coreferences extraction _Parsing <90 ms 2%
Word sense disambig. __ Parsing (Stanford Parser) 7615 ms +50%
Deep syntax Parsing (Stanford Parser) +100 ms 3%
Deep syntax+semantics Parsing (Stanford Parser) +200 ms +3%

Table 6. Proxem Antelope benchmark (10 sentences, 134 words)
(taken from the Proxem Antelope Documentation, 2008)
6.7 Language limitations
The type of accepted input language is strongly restricted in NPROG. There are three major types of limitations, caused by various reasons as listed below:

1. The instruction set is very limited at this time - containing mostly basic arithmetic operations and I/O functions (the current instruction set can be found in Appendix D). This means that the programs created with NPROG are limited to mathematical and financial applications.
2. There are the system inherent phrasing limitations – the input sentences must provide a very detailed description of the behaviour expected by the user. This means that the user has to break down his ultimate goal into elementary steps. For example, he cannot write “fill all textareas with random numbers” – that would not be detailed enough. He has to define the value of each individual textarea – e.g. “set the textarea0 value to a random value”. He also has to make sure that each sentence contains at least one predicate which can be found in the instruction set, and enough objects to fill the placeholders in the instruction.

3. There are limitations caused by the Proxem Antelope library, as described in Section 2.4. NPROG has algorithms which successfully solve some of these problems (see Section 5.1). However, there are still enough sentences and kinds of phrasing which can cause the parser to produce incorrect output, or to fail to produce any output. For example, sentences one character variable names still can’t be parsed correctly. Also, there is no output from the parser at all if there are any unusual symbols in the sentence.
The first limitation can be mitigated easily by extending the instruction set – even the user could do that, using the provided instruction set editor.
The greatest obstacle preventing the program from parsing any English program description is the second limitation, the necessity to break down every description into atomic and well-defined instructions. This is a process which requires some practice, and an analytical mind. If NPROG is presented to an untrained user, this would have to be the first thing he has to learn in order to use the program. To overcome that limitation one would probably have to employ AI techniques (see the next Section).

The third limitation depends on the used parser and could only be avoided if another NLP library was used.
6.8 Ideas for future improvement

Apart from the suggestions in Section 6.5, the following additional features which could be added in the future would improve the capabilities of NPROG:

· Adding a common sense knowledge base, e.g. OpenCyc, would greatly increase the flexibility of the input language (since a lot of language constructs require background knowledge). Such a knowledge base contains common sense facts which can be looked up by the program if an expression written by the user is not clearly defined. For example, the user could write “display a grid with 9 random numbers”. Although the program doesn’t know what “grid” means, it can use the knowledge base to look it up, find that it is a kind of table (similar objects ordered into columns and rows), and display a 3x3 table containing random numbers based on this information.
· Adding support for functions and objects (like in Metafor, Section 2.3.1) would make the tool more useful when writing more complex programs.
Dealing with functions would be simple – one would just have to attach a new method into the internal representation tree every time a verb which is not in the instruction set is used. This method can be called every time the user makes use of that verb again. Of course, he would have to define the method body as well – for this purpose a new sentence structure or keyword would have to be introduced (e.g. “method_name means …”).
Dealing with classes would be a bit more complex, first because the program has to decide which used nouns should be defined as classes, and second because new notation would have to be introduced to access variables and methods of different classes. Also, some components which were written for a single class would have to be re-written (e.g. the CommandCleaner).
· Using an agent asking the user to specify imprecise instructions and to revise faulty instructions, instead of a log with errors and warnings, would probably make the tool easier to use. This system was used by Metafor as well (Section 2.3.1). To realize this feature, a natural language generator would be required for communicating with the user, preferably one which can generate a sensible English sentence from a predicate. Also, there would have to be a set of predefined predicates which the program can use for each situation and where it only has to fit in some program specific parameters. For example, when the user specifies too few parameters for his instruction - e.g. “add alpha” -, the program could look up a predefined predicate – e.g. “specify($CMD, $VAR)” – and print something like “please specify which variable I should add alpha to”.
· Adding support for double-buffered graphical plotting in order to make the programming of simple games possible. The double buffering functionality and a façade class to java’s 2D drawing functions would have to be added to the instruction set, as well as common drawing functions (drawLine, drawRectangle etc.).

· Extending the instruction set, and adding additional controls the user can add to his GUI

6.9 Commercial potential

NPROG is a research project; it is not yet completed and far from perfect. However, after extending the instruction set, implementing the ideas from section 6.8, and doing extensive tests, I think it would be possible to sell it as a basic integrated development environment, with by far the simplest programming language. Since the few projects done on the same field are not available for sale, it would have virtually no competition. Although the input language would still be very limited, and it would only be useful for simple applications, I believe it would have the potential to be successful even on today’s turbulent market - since programming in English is a new idea to most people.

In case of commercial use, the problem of the licences for the NLP library components would have to be sorted out first, which could prove tricky since Antelope consists of the products of various universities (the Stanford parser, VerbNet from the Uni of Colorado etc.), all of which have their individual licence – and most of which are only free for academic or personal use.
Since there are so many components (and none of them has published a licence price for commercial use on their website), I cannot make a price estimation of the product.
Apart from obtaining the licences, doing tests and surveys on the target audience and improving the program based on their results would be a good idea as well, since it is an experimental project. On the one hand, many aspects and functions of the program could be optimized this way, on the other hand, there would be some proof that the program really does what it was intended for and actually makes development easier (which is not self-evident at the first glance and not something which can be verified by one or two test cases).

6.10 Time planning

The GANNT chart in Figure 14 contains the planned and actual time frames of each single milestone. The incremental prototyping approach and the planned time frames worked very well to keep the project on track until the third prototype. Sadly, during the completion of the algorithms of the third prototype there was a delay of almost five weeks (see Figure 14). This was due to three facts:
· I underestimated the severity of some bugs and missing features in Proxem Antelope (I had to rewrite and extend parts of the CommandCleaner, especially for it to work with the GUI event handlers and control properties)

· The amount of time required to write the project report was greater than I have estimated - time which could have been spent on finishing the prototype

· The GUI editor and the event handling mechanism took much more work than what was planned for in the GANNT chart.

The delay caused by the first and the last points could have been eliminated through more careful planning – if I had started to make a very simple model prototype of the GUI editor and the event handlers right at the start, I would have seen the complexity of the task and would have planned accordingly.

The delay caused by the project report taking more time than I thought it would was due to my lacking experience in writing documents of this magnitude, and could have been avoided if I had planned a buffer time of one or two weeks for writing the report.

1. 6.11 Learning outcomes

There have been a great number of interesting things that could be learned during developing this project, especially on the field of natural language processing.
Learning about tagging and parsing, and about the ambiguity problems during that process, has made it clear how hard the understanding of natural language is. Learning about semantic analysis and predicate (or frame) extraction has lead to an understanding of how meaning can be extracted from a sentence.

Working with an NLP library made it possible to experiment with a lot of features to analyse language but also made clear the limitations of NLP systems. Finding subsequent solutions to these limitations was a challenging task, which in the process also increased my understanding of language structure representations, finite state machines, regular expressions and recursive functions.
Solving the problem of generating and manipulating formal program code has given some insight into the field of code generation and program modelling. It has also refreshed my knowledge about recursive data structures and functions.

Writing a GUI editor and the algorithms for converting the GUI representation into code, as well as writing the Translator and the CodeCleaner, has increased my understanding of integrated development environments.
Working with Visual Studio and C#.NET was also a good experience for future developments with this tool. The language features of .NET have made development much easier. Some new applications of previously known technologies could also be learned, like the use of delegates to apply various functions with similar signatures to each entry of the same data structure.

Finally, working on a project of this scale has been a valuable experience and has improved my understanding of the importance of careful time planning (especially, of the use of time buffers for tasks the complexity of which is not known yet), and of choosing the right methodology for the development (the use of incremental development and prototyping worked very well for this project).

7. Conclusion
It can be concluded from this work that natural language programming is a very interesting, but also an extremely complex field which still is in its infancy. Although it is quite possible to rudimentarily convert precise natural language instructions into programming language instructions, there are still many obstacles in the way of translating unrestricted natural language into code.
There are a great number of things I have learned from this project, among them the importance of planning time buffers for complex project tasks, and the usefulness of prototyping complex program parts. But perhaps the most important is to never to underestimate the complexity of a programming task, especially if it is supposed to model a process performed by a human brain. If a task seems to be easy for a human, that doesn’t mean that it is easy to write software which can perform the same task with the same ease. In the case of natural language programming, research probably will not reach a level where an NL programming system would reach the capabilities of a real programmer in the near future – as can be seen from the limitations of current natural language processing libraries. However, NPROG (along with a few other projects on this field) demonstrates that it is possible to convert simplified natural language to code, and that this can be useful for writing simple applications, for users not educated in a formal programming language.
References
Basili, V.R. & Turner, A.J., 2005. Iterative Enhancement: APractical Technique for Software Development. Foundations of Empirical Software Engineering: The Legacy of Victor R. Basili, 28.
Beck, K., 2002. Test Driven Development: By Example, Addison-Wesley Professional.
Bird, S. & Loper, E., 2004. NLTK: the natural language toolkit. Proceedings of the ACL demonstration session, 214–217.
Click, C. & Paleczny, M., 1995. A simple graph-based intermediate representation. In Papers from the 1995 ACM SIGPLAN workshop on Intermediate representations. San Francisco, California, United States: ACM, pp. 35-49.

Dijkstra, E.W., 1979. On the Foolishness of "Natural Language Programming". In Program Construction, International Summer School. Springer-Verlag, pp. 51-53. Available at: http://portal.acm.org/citation.cfm?id=760596 [Accessed April 21, 2009].

Floyd, C., 1984. A systematic look at prototyping.
GATE Documentation. 2009. Available at: http://gate.ac.uk/documentation.html [Accessed April 22, 2009].

Garrette, D. & Klein, E., 2009. An Extensible Toolkit for Computational Semantics (FP). Eighth International Conference on Computational Semantics (IWCS-8 2009) , 8. Available at: http://iwcs.uvt.nl/iwcs8/18.html [Accessed April 22, 2009].
Grune, D. & Jacobs, C.J.H., 1990. Parsing techniques a practical guide, Chichester, England: Ellis Horwood Limited. Available at: http://citeseer.ist.psu.edu/grune90parsing.html [Accessed March 26, 2009].
Hobbs, J.R. et al., 1993. FASTUS: a system for extracting information from text. In Proceedings of the workshop on Human Language Technology. Princeton, New Jersey: Association for Computational Linguistics, pp. 133-137. Available at: http://portal.acm.org/citation.cfm?id=1075671.1075701&coll=Portal&dl=GUIDE&CFID=28241585&CFTOKEN=70082040 [Accessed March 30, 2009].

Lenat, D.B. et al., 1990. Cyc: Toward programs with common sense. Communications of the ACM, 33(8), 30-49.
Lieberman, H. & Liu, H., 2004. Feasibility Studies for Programming in Natural Language.
Little, G. & Miller, R., 2006. Syntax-free Programming. Available at: http://groups.csail.mit.edu/uid/projects/keyword-commands/index.html [Accessed March 26, 2009].

Liu, H., 2004. montylingua :: a free, commonsense-enriched natural language understander. Available at: http://web.media.mit.edu/~hugo/montylingua/ [Accessed April 21, 2009].

Liu, H. & Lieberman, H., 2005. Metafor: visualizing stories as code. In Proceedings of the 10th international conference on Intelligent user interfaces. San Diego, California, USA: ACM, pp. 305-307. Available at: http://portal.acm.org/citation.cfm?id=1040908 [Accessed March 27, 2009].

de Marneffe, M. & Manning, C.D., 2008. Stanford typed dependencies manual. Available at: http://209.85.229.132/search?q=cache:pDbj5kp3mDcJ:nlp.stanford.edu/software/dependencies_manual.pdf+Stanford+typed+dependencies+manual&cd=1&hl=de&ct=clnk&gl=at [Accessed March 26, 2009].

Maximilien, E.M. & Williams, L., 2003. Assessing test-driven development at IBM. In Proceedings of the 25th International Conference on Software Engineering. Portland, Oregon: IEEE Computer Society, pp. 564-569. Available at: http://portal.acm.org/citation.cfm?id=776892&coll=GUIDE&dl=GUIDE&ret=1 [Accessed March 5, 2009].

Mihalcea, R., Liu, H. & Lieberman, H., 2006. NLP (Natural Language Processing) for NLP (Natural Language Programming).
Miller, L.A., 1981. Natural language programming: Styles, strategies, and contrasts. IBM Systems Journal, 20(2), 184-215.
Müller, M.M. & Padberg, F., 2003. About the return on investment of test-driven development. In International Workshop on Economics-Driven Software Engineering Research EDSER-5, 2631.
nashcontrol, 2004. CodeProject: C# Rect Tracker. Available at: http://www.codeproject.com/KB/miscctrl/CSharpRectTracker.aspx [Accessed April 24, 2009].

Nguyen, D., 1998. Design patterns for data structures. SIGCSE Bull., 30(1), 336-340.
Price, D. et al., 2000. NaturalJava: a natural language interface for programming in Java. In Proceedings of the 5th international conference on Intelligent user interfaces. New Orleans, Louisiana, United States: ACM, pp. 207-211. Available at: http://portal.acm.org/citation.cfm?id=325737.325845 [Accessed April 22, 2009].
Rohit, K., Y. Wong & R. Mooney, 2005. Learning to Transform Natural to Formal Languages. Available at: http://www.aaai.org/Library/AAAI/2005/aaai05-168.php [Accessed April 19, 2009].

Sammet, J.E., 1966. The use of English as a programming language. Commun. ACM, 9(3), 228-230.
Singh, P. et al., 2002. Open Mind Common Sense: Knowledge acquisition from the general public. Lecture Notes in Computer Science, 1223-1237.
Strooper, P. & Wildman, L., 2007. Testing Concurrent Java Components. In Companion to the proceedings of the 29th International Conference on Software Engineering. IEEE Computer Society, pp. 161-162. Available at: http://portal.acm.org/citation.cfm?id=1248821.1248984&coll=Portal&dl=GUIDE&CFID=25392720&CFTOKEN=69221229 [Accessed March 5, 2009].

8. Appendices
8.1 Appendix A: Project Proposal
Name:
Tamas Madl

Course: BSc(Hons) Computing

Size: double/single

Discussed with (lecturer):
Laurent Noel; Gareth Bellaby

Type: development

Previous and Current Modules
[CO3401] - Advanced Software Engineering Techniques
[CO3402] - Object Oriented Methods in Computing

[CO3710] - Data Warehousing
[EL2015] - Artificial Neural Networks
[CO3808] - Double Project
Problem Context

Many people of different backgrounds would need to write programs, but don’t have knowledge of a formal programming language (for example for physicists writing a program for getting a numerical solution, or for normal computer users who want to make some task easier etc.). My idea is to make it possible for them to create simple computer programs with very little learning and formal rules required. The user would just enter the description of the program he wants in natural language, and get the result as a formal language.

For the analysis of the input text, some third party libraries will be used:

· Proxem Antelope for .NET
which has the Stanford POS Tagger and parser as well as deep syntax and semantic analyzers
http://www.proxem.com/Antelope/tabid/55/Default.aspx
· Or, as an alternative, a separate POS Tagger and semantics analyzer:
· POS Tagger and Parser
- Candidate: The Stanford Parser (Stanford University)
http://www-nlp.stanford.edu/software/lex-parser.shtml
- Dan Klein and Christopher D. Manning. 2003. Fast Exact Inference with a Factored Model for Natural Language Parsing. In Advances in Neural Information Processing Systems 15 (NIPS 2002), Cambridge, MA: MIT Press, pp. 3-10.

- Dan Klein and Christopher D. Manning. 2003. Accurate Unlexicalized Parsing. Proceedings of the 41st Meeting of the Association for Computational Linguistics, pp. 423-430.

· Semantics analyzer
- VerbNet (University of Colorado)
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
Based on Karin Kipper´s publications

As far as I know, there is only one project attempting to convert English to a programming language: Metafor (Hugo Liu and Henry Lieberman. 2005. Metafor: visualizing stories as code), developed at the MIT. My approach is different, however. The main differences are:

- Metafor was more complex and had powerful NLP capabilities. It also used a common sense database.
- The output of Metafor was never a compilable, whole program

- Metafor´s users needed knowledge of the programming language to check the output code

The Problem
This project will be a basic compiler for English as a natural language. The product of this project will allow the user to enter the description of a program in simplified English, which the program would then translate into a formal object-oriented programming language, e.g. java (which then can be compiled into an executable program). The basic idea is to make the creation of simple programs possible for users with no knowledge of formal programming languages, with very little training required.

To achieve this, the input text will first be analyzed using third-party NLP libraries: using part-of-speech tagging, parsing and semantic analysis. Then, the goal the user is trying to achieve is identified by comparing the sentence parts with a hard-coded instruction set. Then the equivalent formal code can be displayed.
The type of sentences/language which the program will be able to understand will be restricted to make the parsing easier. Also, the initial instruction set will be limited; but there will be an interface to add more commands so that it can be extended later.

Here are some examples of English descriptions the program will be able to parse:

· A Celsius-Fahrenheit converter (easy):

First, the program asks for the Fahrenheit value. Then, it subtracts 32 of Fahrenheit. Then, it multiplies Fahrenheit by 0,555. Then it displays Fahrenheit and starts over again.
· A Calculator (more difficult):

There is a calculator. It first asks the user for the first number, then for an operator, then for the second number. If the first or the second number is either smaller than –2147483648 or greater than +2147483647, the following error is displayed: "Wrong number format!". The operator can be either “+”, or “-“,or “*”, or “/”. If the operator is "+", the result equals the first number plus the second number. If the operator is "-", the result equals the first number minus the second number. If the operator is "*", the result equals the first number times the second number. If the operator is "/", the result equals the first number divided by the second number. After these operations, the string “Result:” is displayed, then the result is displayed. Then the program starts over again.

· A very complicated example (which would be on the border of feasibility) would be parsing the description of the pong game. The following is just a part of the required description.
… If the user presses the “UP”-Key, the top of racket1 is decreased by 10. If the user presses the “DOWN”-Key, the top of racket1 is increased by 10. There is an image called ball with the url “ball.gif”. At program start, the left of ball is 200 and the top of ball is 200. A ball can move. A ball moves at program start. Move means its left is increased by xspeed and its top is increased by yspeed, then the program checks for collisions, then the program waits for 100, then move is called again. Check for collision means that if the left of the ball is smaller than 10, and (its top is smaller than the top of racket1 or its top is bigger than the top of racket1 plus the height of racket1), a message box with the text “Game Over!” is displayed and the program exits. …

Potential Ethical or Legal Issues

· Since the project will use some third party libraries, which are only licensed for academic or private use; it cannot be used in any commercial way.

· There will be no guarantee whatsoever for the user; not for the correctness of the resulting program, not even the implied guarantee of fitness for a particular purpose. Also, I cannot be made responsible for any harm caused by the program.

· An appropriate license and disclaimer will have to be written to make these points clear.

Specific Objectives

· An interpreter which, using the output from the natural language analysis libraries, will be able to translate english text into a formal object-oriented programming language. It will also be able to ask the user to clarify if a statement is not clear.

· A simple built-in GUI editor for making interface design faster and easier

· Evaluation of mathematical formulas of a certain syntax (e.g. sqrt(sin(30))); also, evaluation of some predefined formal programming language statements

· An interface to easily extend the built-in instruction set manually (and save/load an extended instruction set from/to a web server)
· Writing a mini-paper: A comparison of modern NLP-analysis libraries for analyzing English program descriptions
The Approach

Planning:

· Informal

· UML

Implementation:

· Programming Language: C#.NET 2.0

· Test-Driven Development

· Predefined Unit-Tests

Tools to be used:

· Visual Studio .NET 2005

· Sun JSDK

· Visual Paradigm for UML

· GanttProject

· Microsoft Office

GANTT Chart:

[image: image12.png]Gantr 55 rcwrte | eomter | sy roey | s \M‘
e T bbb bbbk
Docunentatn EIERE) |[e———————]
+Planning ou1oj08 31/10/08 || N,
WintngaMiniPaper 31A0J08_27/12/08 —
) Implementation 2j08 27j03109
T aungior sh2is_orpoijos [
L T i
terpreter 12252109 [
" Expresson Evauaton 26102109 1710909 =3
rstrcton et edtor_ 17103109 27/0109
Testig 24303 10j04j05 =
‘Completing Report 1004109 25/04j03 [

Resources

Hardware

· Computer

· Web server for storing/retrieving custom instruction sets

Software

· Proxem Antelope NLP Library

· Alternately, the Stanford Parser + VerbNet

· Windows and .NET 2+

· Visual Studio .NET 2005

· Sun JSDK

Potential Commercial Considerations

Estimated costs and benefits

Economic viability would depend on:

· Number of interpretable expressions
· Number of interpretation errors made

· Ease of use / Training time require

· Scope of functionality

· Development speed (time required to create a program)

· Interpretation speed

Sources of cost:

· Costs for the licences of the NLP libraries if the project is used for commercial purposes

· Costs for running the server storing custom instruction sets

Benefits:

· Can be sold as the easiest-to-use development environment on the market

· There are very few development tools available for the intended target audience (people with no knowledge of formal programming languages and no intention and/or time to learn them; people with a not very high level of education; children; etc.)

· The instruction set and, with it, the scope of functionality can be extended at any time without changing the code
If this project were to be sold, extensive tests on the target audience would need to be made first, since it is an experimental project. On the one hand, many aspects and functions of the program could be optimized this way, on the other hand, there would be some proof that the program really works, does what it was intended for and actually makes development easier (which is not self-evident at the first glance and not something which can be verified by one or two test cases).

Mini-Paper Content
A comparison of modern NLP-analysis libraries for analyzing English program descriptions
References

· J.P. Bennett, Introduction to compiling techniques
(Information about grammars, syntactic and semantic analysis, parsing, code generation)

· H.M.Noble. 1988. Natural Language Processing

· L.Sparck Jones. 1983. Automatic Natural Language Parsing
(Both good introductions to NLP, with a different emphasis)

· http://www.proxem.com/Antelope/tabid/55/Default.aspx
(Proxem Antelope, an NLP Library for .NET environments, free for academic use)

· http://www-nlp.stanford.edu/ (Many publications on the topic of NLP; also, documentation of the Stanford POS Tagger used by Proxem Antelope)
· Hugo Liu and Henry Lieberman. 2005. Metafor: visualizing stories as code
(A similar but more complex “natural to programming language” project done at the MIT)
8.2 Appendix B: Mini Paper
Approximate string matching techniques for natural language command matching – a comparison
Tamas Madl,

BSc (Hons) Computing
Project: A compiler for English as a natural language
Supervisor: Chris Casey
Second Reader: Gareth Bellaby
27 April 09
Abstract

Approximate string matching algorithms are string matching algorithms which allow errors. This is a relevant and growing topic on many fields such as computational biology, signal processing and text retrieval.

The goal of this paper is to compare approximate string matching approaches for the purpose of natural language command matching, meaning finding an erroneous command string in an instruction set. This paper compares two major approaches.

The paper describes the first approach: minimum edit distance, outlines a basic algorithm for its calculation and examines the algorithmic complexity of the best available algorithm for calculating the edit distance.

The paper also introduces the second approach: string matching using neural networks. It explains a training mechanism, introduces a coding scheme for strings, outlines how neural networks could be used to solve the problem at hand and describes their advantages and disadvantages.

It also points out the significance and the application of approximate string matching techniques in my project.

Finally, it concludes that for the problem at hand, where – for reasons stated below - the importance lies in a high recognition rate rather than in performance, string matching using neural networks seems to be the best choice.

Introduction

Context

String matching allowing errors, or approximate string matching, is the “…matching of a pattern in a text where one or both of them have suffered some kind of (undesirable) corruption” (Navarro, 2001). The goal of this paper is comparing algorithms suitable for matching a natural language command against a pre-defined instruction set, where the command is an English word and can contain a number of mistakes. Two approximate string matching algorithms are examined which can accomplish this goal.

It would be possible to use an exact matching algorithm for this task and ignore erroneous words. However, exact matching could not deal with a certain percentage of commands. The command error rate would be 2.5-5.7% (the sum of the error rates caused by typing, 1-3.2% and spelling, 1.5-2.5%) (Kukich, 1992). This implies that in a text of sufficient length, typed by a human, there will be enough mistakes to justify the use of approximate matching techniques.

There are a great number of applications for approximate string matching techniques in general. According to (Navarro, 2001), the main application areas are:

· Computational Biology
In this field matching algorithms are used to detect patterns in the DNA, which can be modelled as a string using the special alphabet {A, C, G, T}

· Signal Processing
Important subfields are audio signal processing (e.g. for speech recognition) and error correction after physical transmission. Research on the latter field has led to the discovery of an important measure of similarity called the Levenshtein Distance.

· Text Retrieval
Correcting words in text written on a keyboard, or recognized using speech recognition, or scanned using OCR (words which are prone to kinds of mistakes depending on the input system).

There are too many approximate string matching techniques to deal with all of them in this paper. Therefore, we will only examine minimum edit distance and neural network based approaches. A reasonably complete survey on the field can be found in (Navarro, 1998).

Overview

This paper compares approaches to match a natural language command against an instruction set allowing errors.

Section 2 explains the concept of edit distance, describes algorithmic complexities and outlines a matching algorithm.

Section 3 explains neural networks, their training, algorithmic complexities and an application to string matching.

Section 4 describes the relevance of this topic to my project

Section 5 contains the conclusion drawn from the facts presented in sections 2 and 3.
Minimum Edit Distance

What is the Edit Distance?

An edit distance function is a function which provides a metric of similarity between two patterns. This can be used for approximate string comparisons.

Edit distance as a metric of similarity was first introduced by Levenshtein in 1965 (and is therefore also called the Levenshtein distance). According to (Levenshtein, 1965, cited by Navarro, 1998), the Levenshtein distance is defined as the minimum number of character operations required to transform one string into another. Levenshtein used three kinds of operations: character insertions, deletions and replacements.

Other works have extended the allowed operations:

· (Damerau, 1964) introduced a transposition operation. He also stated that 80% of spelling errors could be corrected by a single character operation using his extended set of operations. His extended distance measure became known as the “Damerau-Levenshtein-distance”.

· (Cormode & Muthukrishnan, 2007) added substring moves within a string as an operation. They also proposed a fast approximating algorithm to reduce the algorithmic complexity of their proposed similarity metric.

There are also known algorithms using fewer operations than the Levenshtein distance:

· The Hamming Distance (Sankoff & Kruskal, 1983, cited by Navarro, 2001) uses only insertion as its single character operation.

· The length of the Longest Common Subsequence (LCS) of two strings can be obtained by calculating an edit distance which allows only insertions and deletions (Needleman & Wunsch, 1970 and Apostolico & Guerra, 1987; both cited by Navarro, 2001).

Summarizing, a distance function can be defined in the following way:

The distance d(x, y) between two strings x and y is the minimal cost of a sequence of operations that transform x into y (and ∞ if no such sequence exists). The cost of a sequence of operations is the sum of the costs of the individual operations. (…)

(Navarro, 2001)

To match a natural language command against an instruction set, we can now use a distance function with an appropriate set of operations.

If S is the instruction set containing all possible commands, and E is the current, possibly erroneous command, the task is simply to find the string C Є S where d(E, C) is the lowest of all distances d(E, Si) between E and all elements of S.

However, dealing with synonyms – which can be an important task in a natural language system (since the input is provided by a human) – is only possible if we include them into our instruction set. This is not a neat solution since it unnecessarily increases the instruction set size and can also lead to redundancy (depending on the data structure used).

The metric-based matching using an edit distance algorithm is frequently used, because it is fast and simple (see Section 2.2). It has been used in many areas, to name a few examples: in spelling correction for text editing or language interfaces (Kukich, 1992); machine translation (Leusch et al., 2003) and matching an erroneous word against a dictionary (Mihov & Schulz, 2004).

Algorithms and Complexity

The worst-case complexity of calculating the edit distance d(x, y) for the strings x and y varies, depending on the algorithm used. One of the first solutions was computing a matrix C0...|x|,0…|y| , with each cell Ci,j containing the minimum number of operations required to transform x1…i to y1…j , and C0,0 containing 0 (Navarro, 1998 and Ukkonen, 1985). This matrix can be computed from the following recurrence (Ukkonen, 1985), where δ(a,b) is the cost for a character operation (=1 in the Levenshtein distance):

C0,0 = 0

Ci,j = min(Ci-1,j-1 + IF xi=yj THEN 0 ELSE δ(xi,yj))

The last cell C|x|,|y| contains the result d(x,y).

An example result of this matrix is shown in Figure 1.

[image: image13.png]-

Figure 1: Distance Matrix for computing the edit distance between “car” and “cat”

Computing this matrix column-by-column (or row-by-row) would take the time O(|x| * |y|). The space needs only be O(min(|x|, |y|)), since it is enough to store a single column (or row) for generating the next one (note: if x is a string, |x| is the number of characters in x).

This basic algorithm can be optimized (since the matrix contains and evaluates some unnecessary values):

The algorithm in (Ukkonen, 1985) solved the problem in O(d*min(|x|, |y|)) time and
O(min(d, |x|, |y|)) space (d being either the resulting or maximum edit distance). The single pattern bit-parallel algorithm (bit-parallel means that the algorithm stores multiple patterns in the same binary word) proposed by (Hyyrö, Fredriksson & Navarro, 2005) only needs O(⌈|x|/⌊w/|y|⌋⌉) operations (w is the word size in bits, 32bit on a standard PC), thus being the most efficient algorithm to my knowledge for small |y| (we can safely assume that |y|<w for all sensible English words on a standard PC).

String Matching with Neural Networks

What is a Neural Network?

Neural networks are adaptive systems used for pattern recognition and based on a model of the biological brain.

To use the definition of (Gurney, 1997, p1):

A neural network is an interconnected assembly of simple processing elements, units or nodes, whose functionality is loosely based on the animal neuron. The processing ability of the network is stored in interunit connection strengths, or weights, obtained by a process of adaptation to, or learning from a set of training patterns.
Because this paper is limited in size, we will only consider feed-forward neural networks, since they are best suited to pattern matching with known results (since they are trained by supervised learning) (Rojas, 1996, p78). Also, we will only consider the backpropagation algorithm for training the net.

[image: image14.png]ij
input J & output
vallies vallies neuron

x1

0wl

22

input hidden output
layer layer layer

Figure 2: A basic feed-forward neural network and its basic element, the neuron
As can be seen in Figure 2, a neural network consists of layers of neurons with binary input values (xi), binary output values (zi) and weights (wi,j).

According to (Rojas, 1996, p23-33, p152), the output of each neuron can be computed using the formula

a= Σxiwi
z = f(a)

f is the activation function, which can be chosen depending on the application. We will choose the sigmoid function

This function has two advantages, both of which are required by the backpropagation algorithm: it is continuous, and its derivative is easily calculated: f '(x) =f(x)(1-f(x))

Using the equations above, the output values can easily be calculated for any input vector.

The Backpropagation Algorithm

To recognize patterns correctly, the network needs to learn (meaning that it needs to adapt its weights to produce the correct output for all entries in the training set) using a learning algorithm – in our case, the backpropagation algorithm. This algorithm has been developed by (Rumelhart, Hinton & Williams, 1986, cited by Bishop, 1995).

(Rojas 1996, p151) says “The backpropagation algorithm looks for the minimum of the error function in weight space using the method of gradient descent.”

The error function En is

 – where zk are the net output values and tk the

desired outputs from the training set.

Rojas’ definition means that backpropagation tries to find the weights which would produce the output with the smallest error. Thus, the task of training the weights is an extremum problem – the stepwise solution according to (Bishop, 1995, p140-146) yields the following algorithm:

1. Apply an input vector xn to the network and obtain the outputs of the neurons in the hidden and output layer

2. Evaluate the error δk for output units: δk=zk – tk

3. For hidden neurons, back-propagate the errors δj:

the same way we would propagate the values through the net to obtain the net result, but backwards.
4. Use the errors and the learning rate η to adjust the weights:
Δwji = – ηδjxi
(the learning rate defines the size of the weight adjustment in each iteration)

The net can be trained by repeating these 4 steps until the output errors δk are sufficiently small.

Implementation Details and Algorithmic Complexity

To implement a command matching system using a neural network, a string coding scheme needs to be used, for example the method suggested by (Majewski & Zurada, 2008) (see Figure 3). This method uses the occurrence positions of each letter as an input, which implies the need for at least k=n*a input values for our network – a is the maximum number of occurrences for each character, and n is the alphabet size (e.g. 26).

[image: image15.png]Btmnter

Bit={ 0 (for ANN:-1) 00 L)
»
ABCDEFGH | J KLMNOPQRSTUVWXY:
[T
u -

ABCDEFGH1JKLMNOPQ

Represerod oter

WXYZ

=0
=0
R

Figure 3: A binary word coding method
(taken from Majewski & Zurada, 2008)
The number of outputs has to be at least m = log2 |S|, for the net to be able to output a distinct value for each command Si Є S (|S| is the size of the instruction set). The number and size of the hidden layers would have to be assumed and then adjusted using experimental results.

The significant operation in the algorithm is the multiplication in xiwi, which depends on the number of weights W – it is performed W times. For a sufficiently large W, the complexity of calculating the net output is O(W) (Bishop, 1995, p146).

 Since every neuron between two layers is interconnected, the number of weights is

 (li is the number of neurons in layer number i, and L is the total number of

layers). This is one disadvantage of a neural network, since even for a relatively small number of layers and neurons W will be a big enough value to make obtaining the neuron outputs slow.

Using a network with a sufficient number of neurons and the coding method described above – and training the net with the entries in the instruction set – will result in a flexible string matching system.

This approach has a serious advantage: it is more flexible, in the sense that it can be extended and trained for any number of input values, thus leading to a higher recognition rate than a minimum edit distance algorithm. If properly trained, it can correctly match even words that are more similar to an incorrect entry in the instruction set than to their correct correspondent. A probability-based weighting of mistyped words is possible through varying the number of training runs: one just has to train the net with the most frequently used erroneous words (with the number of training iterations depending on their frequency) as well as the correct words (which will have the most iterations). It is also possible to train the network to recognize synonyms not included in the instruction set.
The application of ideas from this paper to the project

Approximate string matching is of great importance in my project, since the program will have to know which programming instruction the natural language command corresponds to for being able to generate the code – which is the most important task of the program. Since the commands will be entered by a human, there is a probability of errors in a word, or a choice of a different synonym for that word. In both cases the program has to recognize the correct word – otherwise, the user would be frustrated, since the code generation cannot be finished if there are unrecognized instructions.

The approaches described above could be easily used in my project. The following criteria apply to the usage of these approaches in this case:

· we could create data structures prior to the actual matching, making the matching easier (since the instruction set does not change during matching)

· we don’t need to use a very fast matching algorithm, since the third-party deep parser used by the program takes enough time – ~400ms/sentence (Proxem Antelope Documentation, 2008) – to make the matching time negligible

· we need to deal with synonyms, since it is not guaranteed that the user will use the word in the instruction set

· and we have to achieve a recognition rate as high as possible, because every unrecognized command will lead to an error and prevent the program from finishing its task (thus frustrating the user)

Both described approaches meet these, but not equally well (see Section 5).

To perform well in the context of my project, the following adjustments would have to be made to the algorithms:

· For the implementation of the minimum edit distance approach, all recognizable synonyms will have to be stored in the instruction set, otherwise they cannot be recognized

· In the neural network approach, experiments will have to be carried out to determine the number of hidden layers and the neurons therein, since this number has a huge influence on the recognition rate as well as the efficiency. An appropriate coding scheme will have to be chosen (see 3.3). The net can be trained at program start and has to be re-trained every time the instruction set changes. Although slower, this approach would work well as long as the evaluation time of the net is smaller than the time taken by the deep parser used in the project (~400ms/sentence on a 2,4GHz CPU (Proxem Antelope Documentation, 2008)).

· For both approaches, pre-processing would be sensible - converting both strings to lowercase, removing symbols and obtaining word roots (smallest parts still carrying meaning) before matching.
Conclusion

String matching allowing errors is used in many areas, and there is no easy answer to which approach is the best. However, in the particular case of matching a command against an instruction set, the set of criteria described in Section 4 suggest that a neural network approach is best suited to our task:

· it has a higher recognition rate than the edit distance approach

· it can easily deal with synonyms not in the instruction set

· it can deal with mistyped word probabilities

· its bigger computing time does not carry weight

Also, it is widely believed that neural networks are well-suited to the task of pattern matching, for example by (Jain et al. 1996), and (Bishop, 1995), and (Majewski & Zurada, 2008) (who used them for word matching), and others.

For the reasons stated above, I believe that matching with neural networks is best suited to the discussed problem.
References

	Apostolico & Guerra, 1987

Bishop, 1996

Cormode & Muthukrishnan, 2007
Damerau, 1964

Gurney, 1997

Hyyrö, Fredriksson & Navarro, 2005

Jain et al., 1996

Kukich, 1992

Leusch et al., 2003

Majewski & Zurada, 2008

Mihov & Schulz, 2004

Navarro, 1998

Navarro, 2001

Needleman & Wunsch, 1970

Rojas & Feldman, 1996

Rumelhart, Hinton and Williams, 1986

Sankoff & Kruskal, 1983

Ukkonen, 1985

Proxem Antelope Documentation, 2008
	Apostolico, A. & Guerra, C., 1987. The longest common subsequence problem revisited. Algorithmica, 2(1), 315-336.

Bishop, V.C.M., 1996. Neural Networks for Pattern Recognition 1st ed., USA: Oxford University Press.

Cormode, G. & Muthukrishnan, S., 2007. The string edit distance matching problem with moves. ACM Trans. Algorithms, 3(1), 2.

Damerau, F.J., 1964. A technique for computer detection and correction of spelling errors. Commun. ACM, 7(3), 171-176.

Gurney, V.K., 1997. An Introduction to Neural Networks 1st ed., USA: CRC.

Hyyrö, H., Fredriksson, K. & Navarro, G., 2005. Increased bit-parallelism for approximate and multiple string matching. J. Exp. Algorithmics, 10, 2.6.

Jain, A.K., Mao, J. & Mohiuddin, K., 1996. Artificial neural networks: A tutorial. IEEE Computer, 29, 31--44.

Kukich, K., 1992. Technique for automatically correcting words in text. ACM Comput. Surv., 24(4), 377-439.

Leusch, G., Ueffing, N. & Ney, H., 2003. A novel string-to-string distance measure with applications to machine translation evaluation. In Proceedings of MT Summit IX, 240--247.

Majewski, M. & Zurada, J.M., 2008. Sentence recognition using artificial neural networks. Knowledge-Based Systems, 21(7), 629-635.

Mihov, S. & Schulz, K.U., 2004. Fast Approximate Search in Large Dictionaries. Comput. Linguist., 30(4), 451-477.

Navarro, G., 1998. Approximate text searching. PhD Thesis. Available at: http://www.searchforum.org.cn/dataflowgroup/Reading/2002StringMatch/ doctor_thesis/NAVARROthesis98englisj.pdf [Accessed November 6, 2008].

Navarro, G., 2001. A guided tour to approximate string matching. ACM Comput. Surv., 33(1), 31-88.

Needleman, S.B. & Wunsch, C.D., 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-53.

Rojas, V.R. & Feldman, J., 1996. Neural Networks 1st ed., New York: Springer.

Rumelhart, D.E., Hinton, G.E. & Williams, R.J., 1986. Learning internal representations by error propagation. In Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations. Massachusetts: MIT Press, pp. 318-362. Available at: http://portal.acm.org/citation.cfm?id=104293 [Accessed November 23, 2008].

Sankoff, D. & Kruskal, J.B., 1983. Time warps, string edits, and macromolecules: The theory and practice of sequence comparison, Stanford: Center for the Study of Language and Information. Available at: http://adsabs.harvard.edu/abs/1983twse.book.....S [Accessed November 23, 2008].

Ukkonen, E., 1985. Algorithms for approximate string matching. Inf. Control, 64(1-3), 100-118.

Unknown, 2008. Proxem Antelope Documentation (NLP Library). Available at: http://www.proxem.com/Antelope/tabid/55/Default.aspx [Accessed November 23, 2008].

8.3 Appendix C: Record of Supervision
Student: Tamas Madl
Student Email: TMadl@UCLan.ac.uk

Supervisor: Chris Casey

[If you are doing a double project (co3808), include the review of a draft mini-paper and of a draft project report as part of this record.]

	Date
	Issues (From meeting or email)
	Actions
	Due by
	Next Contact

	21.10.08
	First version Technical Plan; Mini Paper topic
	Technical Plan v1 approved; Find 3 topics for Mini Paper
	28.10.08
	31.10.08

	31.10.08
	Received feedback on Mini Paper Topics; choice: Approximate string matching techniques
	Write the mini paper
	25.11.08
	25.11.08

	04.12.08
	Status report; questions about documentation and technical questions (condition syntax)
	Main documentation: final report (structure needed); if syntax with brackets when using many substatements
	
	14.01.09

	14.01.09
	Mini Paper Feedback
	-
	
	15.02.09

	15.02.09
	Status report; questions about draft report structure
	Implement suggested changes in draft report structure, start writing draft report
	
	31.03.09

	31.03.09
	Draft Project Report
	Do suggested changes
	
	07.04.09

	07.04.09
	Demonstration to supervisor
	Fix bugs (but project report has priority)
	
	

8.4 Appendix D: The current instruction table

	Instruction Label
	Children
	Instruction string
	Command

type
	Return

Type

	???
	
	???
	0
	

	«*»
	
	«*»
	0
	

	add
	
	$NN0 += $CD0;
	275
	double

	ask
	
	$NN0 = System.console().readLine();
	68
	String

	const_double_cast
	
	Double.parseDouble(«*»);
	18
	

	const_prog_cmd
	
	Run();
	64
	

	const_prog_constr
	«guiinit»,
const_prog_cmd
	public $CLASS_NAME()
	0
	

	const_prog_createclass
	
	new $CLASS_NAME();
	32
	

	const_prog_eventhandler
	«*»
	public void actionPerformed(ActionEvent e)
	0
	

	const_prog_mainclass
	const_prog_mainmethod,
const_prog_constr,
const_prog_run
	class $CLASS_NAME
	0
	

	const_prog_mainclass_gui
	«guidecl»,
const_prog_mainmethod,
const_prog_constr,
const_prog_run,
const_prog_eventhandler
	import javax.swing.*;
import java.awt.event.*;
class $CLASS_NAME extends JFrame

implements ActionListener
	0
	

	const_prog_mainmethod
	const_prog_createclass
	public static void main(String[] args)
	0
	

	const_prog_run
	«*»
	public void Run()
	0
	

	const_String_cast
	
	«*».ToString();
	18
	

	constr_prog_event_stub
	
	if (e.getSource() == «NAME») {

 «CODE»

}
	0
	

	declare_double
	
	double $NN0;
	8
	double

	declare_string
	
	String $NN0;
	8
	String

	decrease
	
	$NN0 -= $CD0;
	19
	double

	display
	
	System.out.println($NN0);
	82
	

	display_gui
	
	javax.swing.JOptionPane.

showMessageDialog(null, $NN0);
	82
	

	divide
	
	$NN0 /= $CD0;
	19
	double

	exit
	
	System.exit(0);
	64
	

	if
	«a»
	if («c»)
	128
	

	increase
	
	$NN0 += $CD0;
	19
	double

	multiply
	
	$NN0 *= $CD0;
	19
	double

	randomvar
	
	Math.round(Math.random()*10)
	18
	double

	set
	
	$NN0 = $CD0;
	4
	double

	sleep
	
	try {

 Thread.sleep($CD0 * 1000);

}

catch (Exception ex) {}
	64
	

	start
	
	Run();
	64
	

	subtract
	
	$NN0 -= $CD0;
	275
	double

	while
	«a»
	while («c»)
	128
	

Note: The command types consist of one or more of the command codes from the following table, combined with a binary OR operator.

	Command Code
	Meaning

	0
	Undefined

	1
	Arithmetics

	2
	Operation

	4
	Assignment

	8
	Variable Declaration

	16
	Object Declaration

	32
	Instantiation

	64
	Function call

	128
	Flow control

	256
	Right-to-left (placeholders are filled from right to left instead of from left to right)

8.5 Appendix E: Message codes

	Code
	Message level
	Meaning

	I01
	INFO
	Inserted variable declaration

	I02
	INFO
	Adjusted variable name using noun compound

	I03
	INFO
	Command not found, assumed a command synonym

	I04
	INFO
	Shallow comparison on object replaced with .compareTo() function

	I05
	INFO
	Inserted forced cast because of assignment to different type

	W01
	WARNING
	Not enough dependencies in sentence

	W02
	WARNING
	Assignment to different type: failed to insert forced cast

	W03
	WARNING
	Command not found

	W04
	WARNING
	Invalid variable name (contains symbols)

	W05
	WARNING
	Invalid character literal

	W06
	WARNING
	Condition operator could not be identified

	W07
	WARNING
	NLPLibrary’s Semantic analysis failed

	E00
	ERROR
	Broken instruction set

	E01
	ERROR
	Variable not initialized before use

	E02
	ERROR
	Empty condition in conditional sentence structure

	E03
	ERROR
	Conditional sentence structure without actions

	E04
	ERROR
	Failed to interpret sentence

	E05
	ERROR
	Failed to process condition

	E06
	ERROR
	Failed to generate event handler instructions

8.6 Appendix F: Condition matching tables

Condition operator matching table:

	NL operator matching RegExp
	Corresponding operator

	.*greater.*equal.*
	>=

	.*less.*equal.*
	<=

	.*bigger.*equal.*
	>=

	.*smaller.*equal.*
	<=

	.*greater.*
	>

	.*less.*
	<

	.*bigger.*
	>

	.*smaller.*
	<

	.*not equal.*
	!=

	.*equal.*
	==

	.*differ.*
	!=

	.*is.*
	==

	.*is not.*
	!=

Condition matching table:

	|if| «c» |then| «a»

	|if| «c» «a»

	«a» |if| «c»

	|when| «c» «a»

	«a» |when| «c»

	|in case| «c» «a»

	«a» |in case| «c»

Cycle matching table:

	|while| «c» «a»

	|as long as| «c» «a»

	|perform| «a» |as long as| «c»

8.7 Appendix G: Code listings of relevant methods

8.7.1 ConditionPreprocessor.processStructure

	public void processStructure(out IRCommand condition, out string action, string[] structures) {

 string cmdString = "", aString = "", cString = "";

 int parseLeftToRight = 0;

 string[] sp;

 string[] structureparts;

 List<string> keywords = new List<string>();

 List<string> sentenceparts = new List<string>();

 int prevIndex = 0;

 bool contains = false;

 foreach (string structure in structures)

 {

 sp = structure.Split('|');

 contains = true;

 keywords.Clear();

 for (int i = 1; i < sp.Length; i += 2)

 {

 keywords.Add(sp[i]);

 if (!original_sentence.Contains(sp[i]))

 {

 contains = false;

 }

 }

 if (!contains) continue;

 string baction = "", rest = "";

 extractBracketedAction(cmdString, out baction, out rest);

 if (baction == "")

 {

 prevIndex = 0;

 sentenceparts.Clear();

 bool err = false;

 foreach (string keyword in keywords)

 {

 if (original_sentence.Contains(keyword) && original_sentence.IndexOf(keyword) >= prevIndex)

 {

 sentenceparts.Add(original_sentence.Substring(prevIndex, original_sentence.IndexOf(keyword) - prevIndex));

 }

 else

 {

 err = true;

 break;

 }

 foreach (string kpart in keyword.Split(' ')) sentenceparts.Add(kpart);

 prevIndex = original_sentence.IndexOf(keyword) + keyword.Length;

 }

 if (err)

 continue;

 if (prevIndex < original_sentence.Length) sentenceparts.Add(original_sentence.Substring(prevIndex));

 sentenceparts.Remove("");

 structureparts = structure.Replace("|", "").Split(' ');

 contains = true;

 for (int i = 0; i < sentenceparts.Count; i++)

 {

 if (StringUtils.isAlphaNumeric(structureparts[i][0]))

 {

 if (sentenceparts[i] != structureparts[i])
 {

 contains = false;

 break;

 }

 }

 else

 {
 if (sentenceparts[i].Length < 3)

 {

 contains = false;

 break;

 }

 else

 {

 if (structureparts[i] == "«c»")

 {

 if (parseLeftToRight == 0) parseLeftToRight = -1;

 cString = sentenceparts[i];

 }

 else if (structureparts[i] == "«a»")

 {

 if (parseLeftToRight == 0) parseLeftToRight = 1;

 aString = sentenceparts[i];

 }

 cmdString += sentenceparts[i];

 }

 }

 }

 }

 else {

 aString = baction;

 cString = rest;

 }

 if (cmdString != "" || cString != "") break;

 }

 if (cString != "" && aString != "")

 {

 condition = getCondition(ref cString);

 action = aString;

 }

 else

 {

 condition = getCondition(ref cmdString);

 action = cmdString;

 }

}

8.7.2 ConditionPreprocessor.getCondition

	private IRCommand getCondition(ref string cmdString)

{

 if (cmdString.Length < 1) return null;

 while (cmdString[0] == ' ') cmdString = cmdString.Substring(1);

 string cword;

 List<string> words = new List<string>();

 string[] pos;

 int i, j, k, psentIndex = 0;

 string baction = "", rest = "";

 extractBracketedAction(cmdString, out baction, out rest);

 cmdString = rest;

 if (cmdString.Substring(cmdString.Length - 1) != " ") cmdString += " ";

 j = 0;

 for (i = 0; i < cmdString.Length; i++) {

 if (!StringUtils.isAlphaNumeric(cmdString[i]))

 {

 words.Add(cmdString.Substring(j, i - j));

 j = i;

 while (i < cmdString.Length && !StringUtils.isAlphaNumeric(cmdString[i])) i++;

 cword = cmdString.Substring(j, i - j).Replace(" ", "");

 if (cword != "") words.Add(cword);

 j = i;

 }

 }

 //identify cmdString start position in parsed_sentence

 for (i = 0; i < parsed_sentence.Words.Count; i++)

 {

 if (words[0].ToLower() == parsed_sentence.Words[i].Text.ToLower())

 {

 j = i;

 k = 0;

 for (; k < words.Count; k++,j++)

 {

 while (j < parsed_sentence.Words.Count && StringUtils.getOnlyAlpha(parsed_sentence.Words[j].Text.ToLower()) != StringUtils.getOnlyAlpha(words[k].ToLower())) j++;

 if (j >= parsed_sentence.Words.Count) break;

 }

 if (k >= words.Count)

 {

 psentIndex = i;

 break;

 }

 }

 }

 pos = new string[words.Count];

 for (i = 0; i < words.Count; i++) {

 pos[i] = parsed_sentence.Words[psentIndex + i].TagAsString.ToLower();

 }

 int fwend = cmdString.IndexOf(" ");

 if (fwend <= 0) fwend = cmdString.Length;

 string firstword = cmdString.Substring(0, fwend);

 if (StringUtils.getOnlyAlpha(firstword.ToLower()) == "true" || StringUtils.getOnlyAlpha(firstword.ToLower()) == "false")

 {

 cmdString = cmdString.Replace(firstword, "");

 return new IRCommand(StringUtils.getOnlyAlpha(firstword.ToLower()));

 }

 //finite state machine for obtaining the variables and operators in the condition
 string condition = "";

 string cCondStr = "";

 string cCondCmd = "";

 string cCondOp = "", cBoolOp = "&&";

 bool betweenNN = false;

 List<int> nounIndices = new List<int>();

 List<int> objIndices = new List<int>(); //includes adjectives, in case nn is not enough

 int lastConditionWordIndex = -1;

 for (i = 0; i < words.Count; i++) {

 if (pos[i].Contains("nn") || pos[i].Contains("cd"))

 {

 betweenNN = !betweenNN;

 objIndices.Add(i);

 nounIndices.Add(i);

 while (i < words.Count && (pos[i].Contains("nn") || pos[i].Contains("cd"))) i++;

 i--;

 }

 else if (pos[i].Contains("jj") && !isInCondition(words[i])) {

 objIndices.Add(i);

 while (i < words.Count && pos[i].Contains("jj")) i++;

 i--;

 }

 if (betweenNN && !pos[i].Contains("nn") && !pos[i].Contains("cd"))

 {

 cCondStr += words[i] + " ";

 if (cCondStr.IndexOf(" ") != cCondStr.LastIndexOf(" ") && (pos[i].Contains("vb") || words[i] == ","))

 {

 i--;

 betweenNN = false;

 }

 }

 if (!betweenNN && cCondStr != "")

 {

 for (j = 0; j < conditionOperators.Length; j++)

 {

 if (System.Text.RegularExpressions.Regex.IsMatch(cCondStr, conditionOperators[j][0])) break;

 }

 if (j < conditionOperators.Length)

 {

 if (cCondCmd != "")

 {

 condition += cCondCmd + " " + cBoolOp + " ";

 cCondCmd = "";

 }

 cCondOp = conditionOperators[j][1];

 if (nounIndices.Count > 1)

 {

 cCondCmd = words[nounIndices[nounIndices.Count - 2]] + cCondOp + words[nounIndices[nounIndices.Count - 1]];

 lastConditionWordIndex = nounIndices[nounIndices.Count - 1];

 nounIndices.Clear();

 objIndices.Clear();

 }

 else if (objIndices.Count > 1)

 {

 cCondCmd = words[objIndices[objIndices.Count - 2]] + cCondOp + words[objIndices[objIndices.Count - 1]];

 lastConditionWordIndex = objIndices[objIndices.Count - 1];

 nounIndices.Clear();

 objIndices.Clear();

 }

 cCondStr = "";

 }

 }

 }

 if (cCondCmd != "")

 {

 condition += cCondCmd;

 }

 cmdString = "";

 for (i = lastConditionWordIndex + 1; i < words.Count; i++)

 {

 cmdString += words[i] + " ";

 }

 while (cmdString != "" && !StringUtils.isAlphaNumeric(cmdString[0])) cmdString = cmdString.Substring(1);

 if (baction != "" && baction.Length > cmdString.Length) cmdString = baction.Replace(bracketEnd.ToString(), "").Replace(bracketStart.ToString(), "");

 IRCommand cmd = new IRCommand(condition);

 return cmd;

}

8.7.3 CommandCleaner methods

A listing of the most relevant methods in the CommandCleaner class.
	public void clean(ref IRCommand cmd, System.Windows.Forms.ToolStripProgressBar progressBar) {

 if (progressBar != null) {

 progressBar.Value = 0;

 progressBar.Minimum = 0;

 progressBar.Maximum = 4;

 progressBar.Visible = true;

 progressBar.ProgressBar.Refresh();

 MainForm.doevents();

 }

 IRCommand c = cmd.getHead();

 instructions.resetDependencyUsedFlags(false);

 //look for all assigned and declared variables

 initVars(c);

 //deal with unassigned variables

 performCleanOnOperations(ref c, new CleanerFunction(cleanUnassigned));

 if (progressBar != null)

 {

 progressBar.Value++;

 MainForm.doevents();

 }

 //deal with undeclared variables

 performCleanOnOperations(ref c, new CleanerFunction(cleanUndeclared));

 if (progressBar != null)

 {

 progressBar.Value++;

 MainForm.doevents();

 }

 //auto cast if wrong type

 performCleanOnOperations(ref c, new CleanerFunction(cleanAssignmentCasts));

 if (progressBar != null)

 {

 progressBar.Value++;

 MainForm.doevents();

 }

 //automatic object comparison functions

 performCleanOnOperations(ref c, new CleanerFunction(cleanComparisons));

 if (progressBar != null)

 {

 progressBar.Value++;

 MainForm.doevents();

 }

}

//extract assigned and declared variables from IR and save them

public void initVars(IRCommand cmd) {

 int ctype = cmd.Type;

 string[] vars = getVarNames(cmd.Command, ctype);

 if (vars.Length > 0)

 {

 string cvar = vars[0]; //this is ok for assigned and declared vars (but perhaps we'll need a loop later)

 if (cvar.Length > 0)

 {

 if (InstructionTable.instructiontypes.containstype(ctype, InstructionTable.instructiontypes.assignment))

 {

 if (!assigned_vars.Contains(cvar))

 {

 assigned_vars.Add(cvar);

 }

 }

 else if (InstructionTable.instructiontypes.containstype(ctype, InstructionTable.instructiontypes.var_declaration))

 {

 if (!declared_vars.Contains(cvar))

 {

 declared_vars.Add(cvar);

 declared_var_types.Add(cvar + "," + (cmd.ReturnType == null ? "" : cmd.ReturnType));

 }

 }

 }

 }

 for (int i = 0; i < cmd.SubCommandCount; i++) initVars(cmd.getSubCommand(i));

}

public delegate void CleanerFunction(ref IRCommand command, string variable);

//traverse IR tree and apply function to each node

public void performCleanOnOperations(ref IRCommand cmd, CleanerFunction function) {

 int ctype = cmd.Type;

 //obtain all variable names in the command string of the current node

 string[] vars = getVarNames(cmd.Command, ctype);

 if (InstructionTable.instructiontypes.containstype(ctype, InstructionTable.instructiontypes.operation) ||

 InstructionTable.instructiontypes.containstype(ctype, InstructionTable.instructiontypes.assignment) ||

 InstructionTable.instructiontypes.containstype(ctype, InstructionTable.instructiontypes.flow_control) ||

 InstructionTable.instructiontypes.containstype(ctype, InstructionTable.instructiontypes.function_call) ||

 InstructionTable.instructiontypes.containstype(ctype, InstructionTable.instructiontypes.arithmetics))

 {

 foreach (string cvar in vars)

 {

 if (cvar.Length > 0 && cvar[0] != '"')

 {

 //call the delegate with the current node and the current variable

 function(ref cmd, cvar);

 }

 }

 }

 for (int i = 0; i < cmd.SubCommandCount; i++)

 {

 IRCommand c = cmd.getSubCommand(i);

 performCleanOnOperations(ref c, function);

 }

}

//clean undeclared variables, declaring double if arithmetic, string otherwise

public void cleanUndeclared(ref IRCommand cmd, string cvar) {

 bool contains = false;

 foreach (string var in declared_vars)

 {

 if (var == cvar) contains = true;

 }

 if (!contains && prev_undeclared_var != cvar)

 {

 if ((!StringUtils.isAlpha(cvar[0]) && cvar[0] != '_') || !StringUtils.isAlphaNumeric(cvar)) //if invalid varname

 {

 Logger.log("WARNING(W04): Cant declare, or perform operations on, a variable with an invalid name (\"" + cvar + "\", in " + cmd.Command + ")");

 }

 else {

 string declaration_command = "declare_string";

 string alltypes = getUsageTypesOfVar(cmd, cvar);

 if (alltypes.Length > 1 && alltypes.Contains(","))

 {

 alltypes = alltypes.Substring(0, alltypes.Length - 1);

 string[] types = alltypes.Split(',');

 foreach (string ctype in types)

 {

 if (cmd.ReturnType.Contains(InstructionTable.vartypes["string"].ToString()) && InstructionTable.instructiontypes.containstype(int.Parse(ctype), InstructionTable.instructiontypes.assignment)

 || cmd.Command.Contains("\"")) {

 declaration_command = "declare_string";

 }

 else if (InstructionTable.instructiontypes.containstype(int.Parse(ctype), InstructionTable.instructiontypes.arithmetics)

 || cmd.ReturnType.Contains(InstructionTable.vartypes["decimal"].ToString()) && InstructionTable.instructiontypes.containstype(int.Parse(ctype), InstructionTable.instructiontypes.assignment))

 {

 declaration_command = "declare_double";

 break;

 }

 }

 List<IRDependency> vardependencies = new List<IRDependency>();

 vardependencies.Add(new IRDependency(cvar, "Object", "NN"));

 IRCommand declaration = instructions.getCommands(declaration_command, vardependencies)[0];

 int cvar_usage_count = IRCommand.countInTree(cmd.getHead(), cvar);

 cmd = cmd.getParent();

 //as long as there is a parent scope using cvar, move upward

 while (IRCommand.countInTree(cmd, cvar) < cvar_usage_count) cmd = cmd.getParent();

 cmd.insertSubCommand(0, declaration);

 string varname = getVarNames(declaration.Command, declaration.Type)[0]; //only first varname was declared

 declared_vars.Add(varname);

 declared_var_types.Add(varname + "," + (declaration.ReturnType == null ? "" : declaration.ReturnType));

 Logger.log("INFO(I01): Inserted declaration of \"" + cvar + "\" in " + cmd.Command + " [assumed:" + declaration_command + "]");

 prev_undeclared_var = cvar;

 }

 }

 }

}

//inserts forced casts in case of assignment to different types

public void cleanAssignmentCasts(ref IRCommand cmd, string cvar)

{

 if (cmd.ReturnType != null) {

 string datatype = "";

 for (int i = 0; i < declared_var_types.Count; i++)

 {

 if (declared_var_types[i]!="" && declared_var_types[i].Split(',')[0] == cvar)

 {

 datatype = declared_var_types[i].Split(',')[1];

 }

 }

 datatype = datatype.Replace(" ", "");

 if (cmd.ReturnType != datatype && cmd.ReturnType != "")

 {

 string newcmdstr = cmd.Command;

 string[] cmdparts = newcmdstr.Split('=');

 string right_operand = cmdparts[1].Replace(";", "").Replace(" ", "");

 string new_right_operand = instructions.getPlainString("const_" + datatype + "_cast");

 if (new_right_operand == "" || !new_right_operand.Contains("«*»"))

 {

 Logger.log("WARNING(W02): Failed to resolve assignment to different data type to \"" + datatype + "\" in: " + cmd.Command + "");

 return;

 }

 new_right_operand = new_right_operand.Replace("«*»", right_operand);

 newcmdstr = cmdparts[0] + "= " + new_right_operand;

 IRCommand newcmd = new IRCommand(cmd.InAccuracy, newcmdstr, cmd.Type, cmd.ReturnType);

 cmd.getParent().replaceSubCommand(cmd, newcmd);

 Logger.log("INFO(I05): Inserted unhandled forced cast (because of assignment to different data type: " + cmd.Command + ")");

 }

 }

}

//replaces shallow comparisons of objects with a .compareTo function

public void cleanComparisons(ref IRCommand cmd, string cvar)

{

 if (cmd.ReturnType != null)

 {

 string datatype = "";

 for (int i = 0; i < declared_var_types.Count; i++)

 {

 if (declared_var_types[i] != "" && declared_var_types[i].Split(',')[0] == cvar)

 {

 datatype = declared_var_types[i].Split(',')[1];

 }

 }

 datatype = datatype.Replace(" ", "");

 if (InstructionTable.instructiontypes.containstype(cmd.Type, InstructionTable.instructiontypes.flow_control)

 && cmd.Command.Contains(cvar)

 && (datatype.Contains(InstructionTable.vartypes["string"].ToString()) || false)) // || datatype is object

 {

 string cmdstr = cmd.Command, newcmdstr = "";

 int p1 = cmdstr.IndexOf(cvar);

 int p2 = p1 + cvar.Length;

 string op = "";

 while (StringUtils.isCmpOpChar(cmdstr[p2]) && p2 < cmdstr.Length) op+=cmdstr[p2++];

 if (op == "") {

 Logger.log("WARNING(W06): Condition operator could not be identified - cant fix object comparison (in: " + cmd.Command + ")");

 return;

 }

 if (p1 > 0) newcmdstr += cmdstr.Substring(0, p1);

 newcmdstr += cvar;

 newcmdstr += ".compareTo(";

 while (cmdstr[p2] != ')' && !StringUtils.isBoolOpChar(cmdstr[p2]) && p2 < cmdstr.Length) newcmdstr += cmdstr[p2++];

 newcmdstr += ")";

 newcmdstr += op;

 newcmdstr += "0";

 if (p2 < cmdstr.Length) newcmdstr += cmdstr.Substring(p2);

 IRCommand newcmd = new IRCommand(cmd.InAccuracy, newcmdstr, cmd.Type, cmd.ReturnType);

 cmd.getParent().replaceSubCommand(cmd, newcmd);

 Logger.log("INFO(I04): Operator \'" + op + "\' used on an object, replaced with compareTo() (in: " + cmd.Command + ")");

 }

 }

}

//checks for unassigned variables, tries to remove spelling mistakes or replace them with noun compounds, generates error if necessary

public void cleanUnassigned(ref IRCommand cmd, string cvar) {

 cleanUnassigned(ref cmd, cvar, true);

}

public void cleanUnassigned(ref IRCommand cmd, string cvar, bool ignoreUsed)

{

 bool contains = false;

 foreach (string var in assigned_vars)

 {

 if (var == cvar) contains = true;

 }

 if (!contains)

 {

 int inacc = 0;

 string equivalent = instructions.lookupTypedDependency(cvar, "*", out inacc, ignoreUsed);

 if (equivalent == "")

 {

 equivalent = instructions.lookupTypedDependency(cvar, "*", out inacc);

 }

 int maxerr = cvar.Length < 2 ? cvar.Length - 1 : 2;

 foreach (string var in assigned_vars)

 {

 if (maxerr > var.Length) maxerr = var.Length;

 if (var.Contains(equivalent) && var.Contains(cvar)

 || StringUtils.ComputeLevenshteinDistance(var, cvar) <= maxerr) {

 equivalent = var;

 contains = true;

 break;

 }

 }

 if (!contains)

 {

 if (equivalent == "")

 {

 equivalent = instructions.getApproxPlainString(cvar);

 if (equivalent == "" && cvar.Contains("_")) {

 equivalent = instructions.getApproxPlainString(cvar.Split('_')[0]);

 if (equivalent == "") equivalent = instructions.getApproxPlainString(cvar.Split('_')[1]);

 }

 if (equivalent != "") contains = true;

 }

 else

 {

 contains = false;

 foreach (string var in assigned_vars)

 {

 if (var.Contains(equivalent))

 {

 equivalent = var;

 contains = true;

 break;

 }

 }

 }

 }

 if (equivalent != "" && !StringUtils.isAlpha(equivalent[0])) equivalent = "";

 if (equivalent == "" || contains == false)

 {

 if (ignoreUsed)

 {

 cleanUnassigned(ref cmd, cvar, false); //nothing found, call again without ignoring used typed deps

 return;

 }

 else

 {

 Logger.log(">ERROR(E01): Variable \"" + cvar + "\" was not initialized before use (" + cmd.Command + ")! Please set a value before performing operations.<");

 }

 }

 else

 {

 string cmdstr = cmd.Command;

 for (int i = 0; i < cmdstr.Length-cvar.Length; i++) {

 if (cmdstr.Substring(i, cvar.Length) == cvar && ((i == 0 || !StringUtils.isAlphaNumeric(cmdstr[i - 1])) && (i + cvar.Length >= cmdstr.Length || !StringUtils.isAlphaNumeric(cmdstr[i + cvar.Length]))))

 {

 if (i > 0) cmdstr = cmdstr.Substring(0, i) + equivalent + cmdstr.Substring(i + cvar.Length);

 else cmdstr = equivalent + cmdstr.Substring(i + cvar.Length);

 }

 }

 int cmdtype = cmd.Type;

 int cmdinacc = cmd.InAccuracy;

 IRCommand newcommand = new IRCommand(cmdinacc, cmdstr, cmdtype);

 newcommand.ReturnType = cmd.ReturnType;

 cmd.getParent().replaceSubCommand(cmd, newcommand);

 cmd = newcommand;

 assigned_vars.Add(getVarNames(newcommand.Command, cmdtype)[0]); //only first varname was assigned

 Logger.log("INFO(I02): Variable \"" + cvar + "\" replaced with \"" + equivalent + "\" using NN dependency (" + cmdstr + ")");

 }

 }

}

8.8 Appendix H: Brief User Manual

8.8.1 Overview

NPROG is a program capable of translating simple English instructions first into Java code and then into an executable application. The goal of NPROG is to make the creation of simple applications possible for users with no knowledge of programming. It is much easier to learn to create programs with NPROG than to learn a formal programming language. Only basic mathematical knowledge and logical thinking is essential for being able to use NPROG and for understanding this manual (knowledge about the basics of programming is helpful but not obligatory).
NPROG can be installed and run on a PC with at least 300MB free disk space, and a minimum of 512MB RAM (NPROG takes at least 220MB in the memory when running). The machine has to have Windows with the .NET 2.0+ framework installed, or a Unix-based operating system with MONO installed.
It is helpful to have a look at a few example applications after having installed the products, in order to get some understanding of how the program works and what type of input it requires. The example projects can be found under File->Load Example.

8.8.2 The main graphical user interface

NPROG’s main interface looks like this and has the following areas:

1. The menu bar – contains file options (new, load, save), a menu for loading example programs, a project menu (for translating and executing the project), a tools menu (for opening the settings window) and a help menu.

2. The GUI control area – contains a checkbox activating the graphical user interface (GUI) editor (which is deactivated by default), the controls that can be created on the GUI, and a textbox for setting the control name.

3. The GUI editor area – contains the target program GUI. Each control can be selected, dragged/resized/deleted and its text edited.

4. The menu ribbon – contains buttons for accessing the most important menu functions, in an XP ribbon design. It also contains a textbox for setting the project name (which is also used as the main class name in the output program code).

5. The input area –the input program description can be entered here in natural English

6. Tabs for setting the output view – the view can be set to the code view, which displays the output code in the target programming language (for users familiar with that language), or to the Log view, which displays feedback about the input text in the form of Info, Warning or Error messages.

7. The output window, displaying the output code (or the Log messages, depending on the output view)

8. Status bar displaying the current action the program is taking, and a progress bar

8.8.3 Managing the project
When NPROG is started, the main project is empty and has the name NEW_PROJECT. The project name can be entered in the menu ribbon – area (4) on the interface –, the program description can be entered in the input area – area (5) –, and the graphical user interface for the program can be designed in the GUI editor – area (3).

· Creating a new project – a new project can be created using the “New” button on the menu ribbon (4), or using the File->New Project option.

· Saving the project – the project can be saved using the Save button on (4) or using the File->Save menu. If Save is pressed for the first time, the saving location will be asked in a dialog box. Later the project will be automatically saved to that location.
There is also a Save As button on both menus, in case the project needs to be saved to a different location later.

· Loading a previously saved project – a project can be loaded using the Load button on (4) or using the File->Load menu

· Loading an example project – some provided example projects can be loaded in the

 File->Example Projects menu

· Translating the project – the Translate button on (4), or the Project->Translate to Code menu will translate the input text to program code and display all messages in the log

· Executing the project – the Execute button on (4), or the Project->Execute menu option can be used to first translate, then compile and execute the program. Note that if NPROG recognizes that there is an error, the project will fail to execute and an error message will appear in the log.

8.8.4 Writing the instructions

NPROG can only understand a subset of the English language (see table below). The preferred tone is an imperative tone (e.g. “display my value”), although a descriptive tone works as well (e.g. “then my value is displayed”). The trick in writing the working instructions lies in using only instructions it can understand (see table below), and in being as exact and specific as possible, like if one would tell a person from another planet what to do. We’ll soon have a look at an example to make this clearer.
Note: If a sentence in the input text is only a comment and should not be interpreted by NPROG, it must begin with the single comment quote, “ ‘ ”. The whole line starting with this character will be ignored.

Note for advanced users and users with knowledge about programming: explicit Java commands can be inserted into the output program as well – they must be delimited by the explicit expression apostrophe, “ ´ “. For example, ´sine_value=Math.sin(some_value);´ would be a valid statement and included in the output program. However, this feature should only be used if absolutely necessary, because it can lead to errors, since there is no built-in verification of explicit commands.
The following table contains the most important instructions NPROG can understand, with a description, the number of expected nouns and examples of how to use them in the input field. Of course, it is not mandatory to use them in the exact way described here – if the instruction contains the verb from the table, or its synonym, the program will recognize it.

	Instruction
	Description
	Expected nouns or objects
	Examples

	Set / assign
	Sets the value of a variable, either to a value or to another variable
	2

(e.g. Celsius, Fahrenheit)
	Set the Celsius value to the Fahrenheit value.

	Display / print / write / output
	Displays the value or the variable
	1
	The Celsius value is displayed.

	Ask / read / prompt / get
	Reads a value from the user into a variable
	1
	Ask for the Fahrenheit value.

	Add / increase
	Adds a number or another variable to a variable
	2
	Add 5 to Celsius.

	Subtract / decrease
	Subtracts a number or another variable from a variable
	2
	Subtract 5 from Celsius.

	Multiply
	Multiplies a variable by a number or another variable
	2
	Multiply Celsius by the factor.

	Divide
	Divides a variable by a number or another variable
	2
	Divide Celsius by the factor.

	Start / begin / run
	Starts the program again
	0
	Then start again.

	Exit / quit / stop / die
	Stops the program
	0
	

	Sleep / wait
	Waits for the specified number of seconds
	1
	Wait for 5s.

We can use these instructions to create simple programs. To demonstrate how the instructions should be written, let’s have a look at a program which calculates the BMI (body mass index).

The BMI can be calculated according to the following formula: BMI = weight / height². We have to break down the task of calculating this value into exact steps in order to be as specific as possible.

· Let’s start with telling the user what the program is about:
	First, display “BMI Calculator v1”

· Then we’ll need the height of the user (its always best to display some description about what we want the user to enter instead of just asking away)
	Display “Height in m?” and ask for the height of the user.

· According to the formula, we have to square the height
	Then multiply the height by the height.

· We also need the users weight:

	Then display “Mass in kg?” and ask for the mass.

· Now that we have all necessary information we can calculate the BMI and display it:

	Set the bmi to the mass, and then divide the bmi by the height of the user.
Finally, display "BMI:" and display the bmi.

· Now our program is finished and ready to run. Optionally we can add two if statements telling the user if he has to gain (or lose) weight, just to demonstrate how conditions work:

	If the bmi is less than 18, display "you need to eat more!". In case the bmi is greater than 25, display "you should do some sports!".

That’s it, we have a functional program! Here is a listing of the complete input text, and a screenshot of the executed project:

	First, display "BMI Calculator v1".

Display "Height in m?" and ask for the height of the user. Then multiply the height by the height. Then display "Mass in kg?" and ask for the mass. Set the bmi to the mass, and then divide the bmi by the height of the user. Finally, display "BMI:" and display the bmi.

If the bmi is less than 18, display "you need to eat more!". In case the bmi is greater than 25, display "you should do some sports!".

[image: image16.png]F:\WINDOWS\system32\cmd.exe

[Joi should do some sports:

A program which is based on existing instructions, and which is broken down into exact and well specified steps like above, is almost guaranteed to run. The challenge is identifying the steps that need to be taken in order to solve the problem at hand.

8.8.5 Building a GUI

Creating a graphical user interface in NPROG is a simple click-and-point task. First, one has to enable the GUI editor using the checkbox on the GUI control area - (2) in the screenshot.
After that the desired control can be selected in the control area – a button, a textfield or a label – and inserted onto the now visible GUI (the big grey rectangle) by a mouse click.

When a control is selected (clicked once), a dragging and resizing rectangle appears around the control. Controls on the GUI can be manipulated in four ways when selected:

· They can be dragged to the desired position using the mouse (the rectangle around the control is draggable)

· They can be resized to the desired size with the mouse (using the little squares on the corners of the rectangle)

· Their text can be adjusted, using the textbox which appears when they are selected

· Their name can be set, using the name textbox in the GUI control area (2)

Note that if the graphical user interface is enabled, the display command will cause a message box to appear instead of a command line message.

The behaviour of the GUI controls can be defined in the input program description. For example, one could define what should happen when the button called Button1 is clicked in the following way:
	If Button1 is clicked, display “click!”.

Properties of the controls can be used by the program description, if both the control name and a valid property name can be identified:

	Display the textarea1 value.

8.8.6 Extending the instruction set

The instruction set can be extended or modified using the built-in instruction set editor, which can be accessed in the Instructions tab of the Tools->Options window.

Note: only users with strong background knowledge in Java (and preferably with knowledge about NPROG) should change anything in the options window!

The instruction set editor looks like this:

[image: image17.png]NPROG Options

Fie Paths | [Instiuction Set | Language Optons | Editor Dptons

Instucion setlocalor: | Adatanstructonsel_java_basicdat @
declare_double (] Inscton abet |ask
declare_stiing
set Childrer:
add
increase Instuction sing: SN = System.consolelesdLine(:
sublract TN v 0 0
dectease
muitiply
dnide Command types: [Arthmelcs [peration
display Assignment [Var declaration
exit 0] Obiectdeckraton [] Instaniton
Sleep Furcioncal [Flow contl
- [RighfTolett
New nshucton abet
[Retumn type]: | Sting |
Syronyms
Bddinsncion] S, ead prompl gt
Warin: Ol changsfyou ko wht youts dong [

First, an instruction set file must be loaded using the text box and the button on the top. Then the list of instruction labels in that instruction set will appear in the list box on the left. The properties of a particular instruction are loaded into the form controls on the right when that instruction is selected. The following table contains an instruction’s properties:
	Property name
	Purpose

	Instruction label
	Used for looking up the instruction based on verbs from the input text

	[Children]
	Labels of child instructions. This field makes it possible to store nested commands in the instruction set.

	Instruction string
	Contains the actual programming language command associated with the instruction label (in most commands there are placeholders which will have to be replaced with the actual objects or variable names)

	[Command types]
	Gives information about the type of the instruction (e.g. arithmetic operation, assignment, variable declaration etc.).

	[Return type]
	Stores the return type of the instruction, if applicable (string, decimal or undefined).

	Synonyms
	User-defined synonyms

	[Placeholders]
	Placeholders are stored in the instruction string and signify where objects or variables from a sentence can be fit in. For example, in the increase statement $NN0 += $CD0; the strings beginning with $ are placeholders. They can have a type (for example, NN for noun or CD for numeric) and a number (which controls which object is used instead of the placeholder later).

A new instruction can be added by typing the desired instruction label into the text box on the bottom left and clicking “Add instruction”. Then the new instruction will appear in the list box and can be selected to adjust its properties. After a programming language command has been set for it, and its types have been specified, the modified instruction set can be saved using the Save Options button. If the Cancel button is clicked, all changes are discarded.

8.8.7 Log messages

In NPROG, all feedback to the user is communicated using the output window. After the translation the messages in the Log view should be read to check for errors and to verify that the program makes the right assumptions - and to correct the input text if and where necessary.

There can be three types of messages in the Log:

· INFO – these are harmless and just provide information about assumptions and helping operations performed by the NPROG translator

· WARNING – signifies that something did not go as planned. Does not necessarily mean that the program is wrong, but the sentence should be verified.

· ERROR – means the program cannot run because of one or more illegal operations in the input text. Those sentences will have to be rephrased (the sentence number of the sentence causing the message is displayed for almost every message)

For a complete table of all possible messages, see Appendix E (Section 9.5)

User

Program description

Instruction set files

Code

Internal Representation

Translator

Antelope: Semantic analysis

(Predicates)

Antelope: Shallow parser

(POS Tags, dependencies)

Antelope Library

GUI

GUI Editor

Instruction table

Instruction

Loop

Constructor

Function

Main class

main()

Instruction

Instruction

Code Cleaner

New word read

Object found

Operator found

Object found

Condition found

Condition search failed

English program description

Internal representation tree

Target source code

Source code representation

Internal control representation

Form control representation

Figure 14. GANTT chart of the project

Tamas Madl
- 75/85 -
G20383888

_1301583567

