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Abstract

The objective of this research project was to develop a methodology to establish the potential of automated sorting for a minerals application. Such methodologies, have been developed for testwork in many established mineral processing disciplines. These techniques ensure that data is reproducible and that testing can be undertaken in a quick and efficient manner. Due to the relatively recent development of automated sorters as a mineral processing technique, such guidelines have yet to be established. 

The methodology developed was applied to two practical applications including the separation of a Ni/Cu sulphide ore. This experimentation also highlighted the advantages of multi-sensor sorting and illustrated a means by which sorters can be used as multi-output machines; generating a number of tailored concentrates for down-stream processing. This is in contrast to the traditional view of sorters as a simple binary, concentrate/waste pre-concentration technique.

A further key result of the research was the emulation of expert-based training using unsupervised clustering techniques and neural networks for colour quantisation. These techniques add flexibility and value to sorters in the minerals industry as they do not require a trained expert and so allow machines to be optimised by mine operators as conditions vary. The techniques also have an advantage as they complete the task of colour quantisation in a fraction of the time taken for an expert and so lend themselves well to the quick and efficient determination of automated sorting for a minerals application.
Future research should focus on the advancement and application of neural networks to colour quantisation in conjunction with tradition training methods Further to this research should concentrate on practical applications utilising a multi-sensor, multi-output approach to automated sorting. 
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1. Project Introduction
Automated sorting is a technique which can be used for the pre-concentration of ores. The technique has been used to upgrade ore quality, increase productivity and in certain cases can make the exploitation of small otherwise uneconomic deposits feasible. Over the last sixty years, automated sorting has found limited use in the mining industry. Research in this field, however, peaked in the 1970’s and developments since this time have mainly focused towards diamond sorting (Salter and Wyatt, 1991).
The lack of development in the mining industry has not been mirrored in other fields. The recycling industry and, more particularly, the food industry have advanced the technology of automated sorting. It is only recently that this technology has reached a level to meet the demands of mine operators, leading to its use being re-examined. 

A variety of sensor types have been successfully employed to sort minerals. These include photometric, conductive/magnetic, radiometric, microwave, X-ray fluorescence and X-ray transmission. Minerals that have been sorted range from gemstones such as diamonds, rubies and tanzanite to metal ores including nickel, copper and uranium through to low value products such as talc, rock salt and limestone (Salter and Wyatt, 1991), (CommoDas gmbH, 2006). 

The use of automated sorting has potential in cases where there are measurable changes in properties between high-grade and low-grade material. More than one sensor may be used simultaneously; the ability of such sorters to detect differences in material properties is greater than for single sensor systems and so the sorters’ versatility and potential for novel mining applications increases. Research into the use of automated sorters for the minerals industry is essential to fully exploit this innovative and beneficial pre-concentration technique.
The aim of this project was to increase the understanding of the suitability of automated sorting for the minerals industry. This was achieved by developing a methodology for the quick and efficient determination of a mineral’s suitability for automated sorting. To test the proposed methodology, a number of ores were processed using a CommoDas automated ore sorter equipped with both an optical and inductive sensors. To further increase the usefulness of automated sorting for the minerals industry, research was undertaken into supplementing the expert-based training techniques utilised by most automated sorters with unsupervised training techniques.
This thesis is split into 10 chapters and a number of appendices. Chapter 2 is a review of the literature relevant to automated ore sorting. The chapter describes a generic ore sorter before looking more specifically at the theory and physics behind sensors used for automated sorting. Next, the industries that are most associated with automated sorting, namely the food, pharmaceutical, recycling and minerals industries are discussed. Attention is paid to the historical use of sorting and the state of current technology in each industry sector. Finally, the theory of artificial neural networks, as related to this body of work is described.

Chapter 3 describes in more detail the CommoDas ore sorter used during the research program. The chapter covers the physical nature of the machine (from conveyor through to ejection system) and gives specific details of the sensors employed by the sorter. Also, covered in this chapter is a summary of the PACT software, the proprietary software provided by CommoDas for the control of the ore sorter. This includes a description of the method by which a separation model is created. This is the collection of rules used by the ore sorter to determine whether a particle should be rejected or accepted. Included are details on the creation of colour models for the quantisation of optical data and the creation of material definitions. The chapter also describes the physical aspects of the ore sorter controlled by the PACT software including the control of ejection valves and conveyor belt velocity.

In Chapter 4, novel discrimination techniques developed during the course of the research are described. It explains the selection of appropriate discrimination techniques and summarises the software that was developed in order to develop these novel methods.  

In Chapter 5, the calibration work undertaken on the CommoDas ore sorter is discussed. This work included the correction of image distortion; determination of optical sensor angle; identification of inclusions and estimation of particle size distribution.

Chapter 6 contains the proposed methodology for determining an ore’s amenability to automated sorting. The chapter describes all required stages of experimentation necessary to determine amenability. This Begins with ore characterisation, followed by a description of methods for determining sensor potential and the training of the automated sorter. The chapter uses an example of a nickel-copper ore to elucidate aspects of the methodology.

Chapters 7-8 are composed of the experimentation undertaken to validate the proposed methodology. Each chapter reports the results of research carried out using the methodology. Chapter 7 describes the attempted separation of a high grade iron ore whilst in Chapter 8 a nickel-copper ore is investigated with a specific focus on a multi-sensor approach to ore sorting.
Chapter 9 contains research aimed at using automated techniques, namely, unsupervised cluster analysis for the task of colour quantisation as related to automated sorting. The chapter outlines the experimentation developed to test the unsupervised techniques and results of experimentation. Clustering techniques used included k-means, competitive learning, self organising maps, rival penalised competitive learning and hybrid competitive learning. Each technique was used to generate quantised images which were then compared with those generated using a PACT colour model.
The final chapter summarises the results of experimentation and presents conclusions and recommendations for further research. This is followed by a list of referenced material within this body of work and all relevant appendices.


2. Literature Review
The literature review contains a general overview of automated sorting in the minerals industry. A detailed description of automated sorters and the theory behind the sensing equipment they employ is also included. There is also a summary of the application of automated sorters in the minerals, recycling, food and pharmaceutical industries.

The final section of the review describes the theory of various supervised and unsupervised learning techniques including a number of Artificial Neural Networks (ANNs) which were used during the course of research to emulate the training process of an automated sorter.

2. Introduction to Automated Sorting

As the Earth’s natural resources become ever more depleted, high-grade, easily mined deposits are ever rarer. Consequently, the mining industry is continually researching methods to make less desirable deposits economically feasible. A large number of techniques have been established towards this goal including selective mining, taking advantage of economies of scale, such as low-grade but large porphyry copper deposits, and the continual advancement of concentration techniques. 

One innovative concentration technique is sensor-based sorting. In common with all concentration techniques, sorting relies on exploiting differences in the physical properties of minerals, either natural or induced, to produce a distinct response to ambient forces (Monouchehri, 2003; Walsh, 1989). For ore sorting to be physically feasible as a method of concentration for a mineral deposit, there must be a discernable difference between high-grade ore and low-grade ore and waste. This difference can be expressed in terms of the emission or absorption of radiation, electromagnetic or conductive properties or any other difference that can be quickly and reliably measured. To fulfil this requirement, the ore must ideally be liberated from the waste material at a size greater than the sensors minimum resolution and must be presented so that the true mineral properties are observed, e.g. clean particle surfaces for optical sensors. Where this is possible sorting has a number of potential benefits for mining operations. These include: (Salter and Wyatt, 1991; Monouchehri, 2003)

· In the case of a new plant overall capital costs are reduced as the throughput for the downstream plant will be less and so the size of plant can be reduced. 

· Reduced operating costs, as less material will require liberation in downstream processes. Sorting large particles before crushing also reduces the environmental impact of the mining operation by rejecting waste material that can be used for construction or stockpiled in a dry form. This reduces the amount of fines waste produced. Harmful minerals, e.g. arsenic, can also be removed prior to fine grinding.

· The main treatment and pre-concentration plants can be decoupled. This means that by the use of a stockpile the feed rate to the main treatment plant can be kept at its optimal level and the feed will be of a uniform, high grade. This will ensure the efficient and economic running of the treatment plant.

· The use of sorters to pre-concentrate ore can lead to an overall higher economic metallurgical recovery.

· By removing waste rock at an existing plant, productivity can be increased provided the sorting plant has a higher throughput than the main treatment plant. It also allows higher grade fractions to be processed separately to increase mineral recovery.

· If the sorter is located close to the hoisting shaft or even underground then ore transport costs can be decreased by storing waste rock underground, e.g. as backfill.

· When applied to an established mine, ore sorting can increase the life of the mine by lowering the cut-off grade of the ore and so previously stockpiled and low grade in-situ material can be processed. 
The above points apply to ore sorters used as a pre-concentration technique within a mineral processing flowchart. All of the above benefits are a direct result of the removal of waste rock at a coarse size. This has the double effect of reducing downstream costs for transport and in grinding circuits whilst simultaneously increasing the grade and decreasing the amount of ore entering the main treatment plant.
Beyond the physical feasibility of ore sorting there are further considerations to be taken into account when determining the economic feasibility. For example, the relatively low throughputs associated with ore sorters may prohibit their use on large scale ore deposits where a number of sorters would be required to match the run of mine throughput. At the other end of the scale some small deposits may find the high capital cost of an automated sorter prohibitive. Sorting is also limited to deposits in which the liberation size for automated sorting is greater than the economic limit for treatment of the mineral. The economic limit for the treatment of low value minerals will be larger than that of higher value products. For example, the economic limit for limestone is approximately 15-20 mm whilst the limit for talc or rock salt can be as low as 1 mm (Monouchehri, 2003).     

2. Automated Sorting Machines 

Automated sorters are generally composed of four basic elements. The first is a system of feed preparation which optimises the raw material for examination. Particle examination is the second element common to all automated sorters. During examination one or more sensors are used to generate information describing the particles under investigation. This data is then transferred to a microprocessor for data analysis. The processor uses the sensor data to classify the input feed into one ore more output streams. The final element of an automated sorter is some means of physically separating particles. Figure 2.1 contains a schematic diagram illustrating the interactions of these four elements. 
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Figure 2.1 - Common elements of automated sorters (after Monouchehri, 2003)
2. Feed Preparation

Adequate feed preparation is necessary for the accurate sorting of minerals. Arvidson, 2002, states that 90% of the ore sorting process success is dependent on proper feed preparation rather than on the sorter machine itself. Feed preparation can be divided into a number of processes, some or all, of which will apply to a given sorting application. The processes involved in feed preparation are as follows:

· Sizing

· Washing

· Feed rate control

· Particle alignment

· Wetting

· Acceleration & Stabilisation

Sizing of the feed is necessary as a top-to-bottom size ratio of around 2:1 for coarse grain sizes and 3:1 for fine, less than 50 mm, is required for an accurate separation (Arvidson, 2002). If this ratio becomes too large then the physical rejection of particles becomes less accurate as the physical ejection process cannot be optimised. For example, in an air ejection unit, to eject large particles a high pressure blast is required; such a blast would affect the trajectory of any small particles in the vicinity and could result in the false rejection of particles. 

Washing may be carried out to remove dirt or any surface contaminant that would obscure a particles appearance to sensors. The feed rate must be controlled so that the microprocessor controlling the sort does not become overloaded. It is also important not to overlap particles during the rejection process as this will lead to misplaced particles. For some sorting machines the particles are placed in predefined channels before they pass by the sensors. Wetting is required for optical sorting as in most applications moist rock surfaces exhibit the most distinct optical properties while a dry surface may distort the rocks true characteristics (Arvidson, 2002). Particles are accelerated to separate them from one another and also to stabilise them. Stabilisation is necessary so that the position of a particle can be tracked.

2. Particle Examination

Once prepared particles are transported to a detection zone where the sensors employed by the machine gather data on each particle. Depending on the sensor(s) used the data may describe either the surface or bulk properties of particles. Table 2.1 lists some sensor types used in the minerals industry and examples of successfully separated ore types. 

Table 2.1 - Applications of various sorter types (after Salter & Wyatt, 1991)

	Sensor Type
	Minerals sorted

	Photometric/Optical
	Uranium, uranium/gold, coal, limestone, magnesite, base metal sulphides, wolframite, sulphates, talc, spodumene, lignite, feldspar, wollastonite

	Radiometric
	Uranium, uranium/gold

	Conductive/Magnetism
	Copper sulphide

	Microwave
	Kimberlite


2. Data Analysis

Some method of analysing the raw data from sensors must be included in a sorting system. The processor examines the raw data and generates a separation category for each particle examined by the sorter. The processors used to undertake this analysis in sorters have changed from dedicated sorting processors used in the 1990s to standard microcomputers today. Rapid advances in computing technology have meant that standard microprocessors are capable of handling the large volumes of data and quick processing times required for automated sorting. Microprocessors also have the advantage of allowing more integration with standard equipment and so increasing the versatility of automated sorters. 

2. Ejection System

The last step in the process is the physical separation of particles. Ejection systems use an external force to redirect particles into output streams based on the classification results taken from the data analysis. A number of devices have been used to generate the external forces used to actualise the separation, these include: jets of compressed air and water; mechanical deflectors; corona discharge ejectors and suction nozzles.  

2. Sensor Theory

Automated sorters are most often subdivided according to the sensors they employ. A variety of sensor types have been successfully developed for the purpose of automatically separating materials. This sub-section describes the theory and successful applications of these sensors. Sensors are divided into those based on the absorption and or emission of electromagnetic radiation (2.3.1) and those based on other principles (2.3.2).

2. Electromagnetic Radiation based Sensors

A large number of sensors have been developed based on the absorption or emission of electromagnetic (EM) radiation. EM radiation can be considered as waves of energy. All EM radiation travels at the same velocity, approximately 3x109ms-1, but the energy of the radiation is variable and is inversely proportional to its wavelength. The spectrum of wavelengths over which electromagnetic radiation extends is known as the electromagnetic spectrum. The spectrum is arbitrarily split into seven categories ranging from high energy to low. Table 2.2 lists the seven categories and their equivalent wavelengths. 

Table 2.2 - Electromagnetic spectrum (after George and McIntyre, 1987)

	Radiant Energy
	Wavelength λ (nm)

	Gamma rays
	<10-2

	X-rays
	10-2 – 101

	Ultraviolet
	100 – 4 x 102

	Visible
	4 x 102 – 7 x 102

	Infrared
	7 x 102 – 106

	Microwave
	106 – 109

	Radio wave
	>109


Energy from EM radiation can be transmitted, refracted or absorbed by matter at an atomic level. The specific interactions between the atoms of a material and EM radiation are unique to that material type and so can be used for identification purposes. 
Atoms can be modelled as nuclei composed of protons and neutrons that are surrounded by a cloud of electrons. Each element is defined by the number of protons in its nucleus, known as its atomic number. The number of electrons in the atom will balance the number of protons. These electrons are arranged in a definite pattern. The absorption of radiation can cause electrons to move from one orbital in the electron cloud to another. This is known as electronic transition. Absorption of radiation by atoms or crystals may also lead to changes in energy defined as rotational, vibrational and translational movement. The absorption of radiation leads to an increase in the energy within a particle, the loss of this energy results in the emission of radiation. The amount of energy absorbed and emitted by particles is characteristic to them and so can be used for identification purposes.

The changes in energy involved in atomic transformations can be expressed in terms of the equivalent wave number or frequency of electromagnetic radiation associated with them. Table 2.3 presents the processes of transformation associated with the different sections of the electromagnetic spectrum.

Table 2.3 - EM radiation energy equivalent to atomic transformations
(after George and McIntyre, 1987)

	Radiant Energy
	Transformation

	Gamma rays
	Atomic nuclei excitation

	X-rays
	Inner shell electronic transition;
Crystal lattice diffracting light

	Ultraviolet
	Outer shell electronic transition of atoms

	Visible
	

	Infrared
	Molecular vibrations

	Microwave
	Molecular rotations

	Radiowave
	Electron spin resonance;
Nuclear magnetic resonance


The phenomena associated with the absorption or emission of radiation by particles is explained by quantum theory. This theory, first proposed by Max Planck, explains the distribution of energy amongst the various wavelengths of radiation emitted by objects. The theory states that energy in the form of radiation can only be emitted in units of distinct quanta. The magnitude of the energy is found using the following Equation:
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In Equation 2.1, E represents energy; h Planck’s constant; v the frequency of radiation; c the velocity of light and λ the wavelength of radiation (Hume-Rotherly and Cole, 1969).

Electromagnetic radiation with the same energy as is required for an electronic transition from one state to a higher one causes the absorption of said radiation. When an atom absorbs radiation it usually remains excited for only a brief period before emitting a photon of energy and returning to an unexcited, or ground, state. The energy levels required for electronic transition are unique for each element. The quantum theory states, that there are numerous energy levels at which electrons in an atom may exist. Each jump between energy levels corresponds to different characteristic wavelengths. These various wavelengths constitute the spectrum of the element. Examination of spectra enables us to identify elements (Robinson, 1982).

By bombarding, or irradiating, particles with electromagnetic radiation of the correct wavelength atoms will absorb and emit some radiation. Atoms or crystals that emit radiation return to their ground state by one of two methods. The first is the transfer of an electron from a high transition level to an unexcited one. This process is always accompanied by the emission of radiation and is known as fluorescence. By measuring the intensity of fluorescence perpendicular to the angle of excitation radiation the amount of fluorescence generated by a material can be measured. The second method is known as phosphorescence or auto-ionisation. It is similar to fluorescence in terms of excitation however instead of emitting radiation the excited atom loses energy by further ionisation within the atom (aWillard et al, 1974).
Sensors based on EM radiation are capable of detecting the transmission, refraction or absorption/emission of radiation by materials and so the data they output can be used for the identification of particles. The following sub-sections describe in detail the methods by which sensors have been used to detect the interactions between EM radiation and matter. 

2. Gamma Rays (γ-rays)
Gamma rays are produced by the decay of atomic nuclei and at certain energies are capable of releasing neutrons which can be used to bombard an object. This can cause certain minerals to become radioactive and emit characteristic radiation. Minerals that can be distinguished using this method include those containing lead, iron, uranium, lithium, beryllium, tungsten and some rare earth elements (Salter and Wyatt, 1991).

The penetrating power of gamma radiation is much greater than that of alpha or beta radiation and so a filter between the sample and detector is used to ensure only the measurements of gamma radiation are obtained. The sensitivity of detectors can be increased by using long sample chambers, using gas fillings under pressure to increase the density, or by a thick scintillation method. Attenuation of gamma rays occurs by one of three methods: the photoelectric effect, Compton scattering, or by pair production.

The photoelectric effect is the method that causes greatest attenuation in heavy absorbing particles and for gamma rays of low energy. The process is that of X-ray absorption, whereby the energy of the gamma ray is transferred to an electron which is ejected from the atom.

Compton scattering is the method resulting in the most attenuation in particles that are light and for gamma rays possessing energy less than 3MeV. It dominates between 0.5MeV and 2MeV. In this case the gamma ray transfers some of its energy to an electron which is ejected from the atom whilst a new photon of lower energy proceeds from the collision.
Gamma ray pair production occurs at high energy levels. The threshold energy is 1.02MeV and is more efficient in atoms with heavier nuclei. The process involves the creation of an electron-positron pairing in the vicinity of the nucleus (Morse, 2005).

Ore types that are naturally radioactive can be sorted from waste rock by the detection of gamma radiation. Sorters which classify particles in this way are known as radiometric sorters. Uranium ores are the most commonly sorted using radiometric sorters. They have been used in many regions including: Africa, at the Rossing Uranium Mine (Rossing Uranium Ltd, 2006) and Australia, at the Kintyre Uranium Project (Gauci, 1997). 

The M17 radiometric sorter, manufactured by Applied Sorting Technologies, is typical of a radiometric sorter. The sorter’s feed preparation system consists of a small surge bin leading to a vibratory feeder. These are followed by a sliding plate that divides the feed into 2 to 5 channels depending on particle size. This leads to a channelled belt that accelerates the particles to 1ms-1 and finally a centrifugal accelerator increases the particles velocity to 5ms-1 before they pass over the radiometric sensors.

The sensor used has a scintillation detector contained within a drawer beneath the main belt, housed under a sliding plate. Depending on the particle sizes being processed, different configurations of scintillation detector are used. Each group of detectors is surrounded by lead bricks to prevent radiation interference from rocks in adjacent streams and general background radiation.

The signals from the detectors are processed and stored before being combined with size and shape data taken for each particle using photo-sensitive diodes. Combining the data gives an approximate grade for the uranium ore and rejection is based on preset grade limits. The rejection takes the form of a 750kPa compressed air blast. In practice, 30m3 of air at atmospheric pressure is required to process a single tonne of ore (Randol International Ltd, 1987).

2. X-Rays
X-rays are generated by electronic transitions of highly energetic inner shell electrons. It is possible for the radiation produced by these transitions to have more energy, and so a lower wavelength, than some γ-rays.

 The energy of X-Ray radiation is very high; it lies between 0.01 nm and 10 nm in the spectrum. Absorption and emission of these high energies correspond to the transition of electrons within the inner most orbitals of an atom. As there are only a few electrons within these shells there are only a few permitted transition energy levels for each element. X-Ray emission and absorption are dependant only on atomic number and not on the physical state of the ore nor its chemical composition, except for the lightest atoms, because the innermost electrons are not involved in chemical binding and are not significantly affected by the behaviour of the valence electrons (aWillard et al, 1974).

There are three methods of analysing materials using X-rays. The first method involves bombarding a target material with electrons and is known as emission analysis. The second method is to irradiate the target material with high energy X-rays and is known as X-ray fluorescence analysis. The last method is to irradiate the target material with low energy X-rays of varying wavelength and observe the absorption levels. This method is known as absorption analysis. When the energy of the exciting radiation equals the energy required to ionise an atom, i.e. remove an electron, the energy is strongly absorbed. 

A hot cathode bombards a target anode with electrons after they have been accelerated through a high voltage field. X-rays are produced due to the sudden deceleration of electrons as they encounter the target atoms. The result is a continuous spectrum of short wavelength radiation with sharp peaks at discrete wavelengths that are characteristic to a material. The continuous spectrum of radiation is known as white radiation. It is caused by the very rapid deceleration of electrons on encountering the strong electric fields near to the atomic nuclei of an object. The electrons lose energy in several steps. These steps result in the spectrum of radiation. Some of the electrons, a few in a million, will lose their energy in one stage. The energy produced is of the shortest possible wavelength for that particular element and is equal to the initial energy of the electron. The minimum wavelength produced is known as λ0 and is solely dependant on the potential difference of the field used to accelerate the electrons. The value is calculated using the Duane-Hunt Equation:
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In equation 2.2, eV stands for electron volts and V for voltage. The equation shows that the bigger the potential difference the lower the wavelength that can be produced. 

In X-Ray fluorescence a substance is bombarded with X-Ray radiation. At certain energy levels the substance will absorb a high energy photon, causing an electron to jump to a higher orbital, and then quickly emit a photon with slightly less energy, the energy difference between the absorbed and emitted photons ending up as molecular vibrations, or in other words, heat (Jenkins, 1999). The intensity of the X-rays fluorescing is about 1000 times less than that of the excitation energy. The exact intensity is important as it directly affects the time taken to obtain suitable results to obtain an X-ray fluorescent spectrum.

The exact difference in energy level is dependant on the number of protons in an atom and so each element has a characteristic fluorescence. It is only the availability of high-intensity X-ray systems, very sensitive detectors and suitable X-ray optics that can render the fluorescent method feasible (aWillard et al, 1974).  

The energy absorbed by a material is simply the difference in energy between the incident and transmitted beams. Each element has its own unique absorption characteristics and so the wavelength at which the absorption suddenly changes in a material can be used to determine the minerals that are present (aWillard et al, 1974). The absorption points are characteristic for elements as they are based on the rearrangement of orbital electrons when an atom has been ionised by the excitation radiation.

As the wavelength of excitation radiation is decreased or the potential across an X-ray tube is increased there is succession of ionisation:

· Electrons in the M-shells

· Electrons in the L-shells

· Electrons in the K-shell

K-shell spectra are used to analyse elements with atomic numbers less than about 60. Beyond this mass L-shell spectra are used.

X-ray absorption is used for routine analysis. Each element has its own K, L and M absorption edges allowing for qualitative analysis. Quantitative analysis is carried out by measuring the magnitude of change in the X-ray spectrum at an absorption edge. The absorption spectrum is useful as it illustrates the K and L absorption edges of an atom. The K-edge is caused by electrons dropping from the L or M shells into the K shell. The L edge is less definite and is a series of values caused by the dropping of electrons from higher shells. An example of an absorption spectrum is shown in Figure 2.2.
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Figure 2.2 - Absorption spectrum of bromine (after aWillard et al, 1974)

The electron that is lost is from an inner orbit of the electron and the ‘positive hole’ this leaves causes the ion to be unstable. The instability is reduced by the movement of electrons from higher orbitals. In general the degree of instability due to ionisation decreases from the inner orbitals to the outer ones, in the order K>L>M>N etc. The movement of electrons to fill the ‘positive holes’ has the result of radiation being emitted. The energy of this radiation is equal to the difference in the initial and final energy of the transferred electron. The energy of the transferred electron will correspond to the potential required for its removal from its particular shell (Jenkins and De Vries, 1970).

When X-ray radiation passes through matter it is attenuated by an amount which is dependant on the thickness and density of the absorbing matter. The degree of attenuation is also dependant on the wavelength of radiation used. The Equation used to calculate the transmittance or absorbance of a mono-chromatic collimated X-ray beam is:
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In Equation 2.3, P is the radiant power of P0 after passage through
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cm of homogenous matter with mass absorption co-efficient μm. This in turn, is dependant on the wavelength of the X-rays and the element of the absorbing atom.
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NA is Avogadro’s number, A is the atomic mass, B is a constant over the range between absorption edges and Z is the atomic number. The value of μm is independent of physical or chemical state. In a heterogeneous material the value of μm is the combination of the co-efficients of mass absorption of the constituent elements.
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W represents the weight fraction within the sample. This method of obtaining μm makes the transmittance equation more complicated. In a heterogeneous sample the Equation becomes:
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The term in brackets represents the difference in mass absorption co-efficient at the edge discontinuity. The mass absorption co-efficient is useful as it is a function of the wavelength of absorbed radiation and the atomic number of the absorbing matter only (Jenkins & De Vries, 1970;  aWillard et al, 1974). This property of X-rays is utilised by X-ray sorters to identify particles. 

Sorters utilising X-ray sensors are advantageous over many other types as they measure bulk properties of particles as opposed to surface properties. This means that the ore need not be liberated for detection and that they are unaffected by dust, moisture or surface contamination. X-rays sorters utilise X-ray tubes of the type found in X-ray imaging equipment as a source and an array of scintillation crystals as a detector. An X-ray sorter can be used to determine particle volume but in most classification work is used to create a high resolution image and to determine the average atomic mass of individual particles. 

Sorters that operate by X-ray transmission bombard particles with X-rays at two or more wavelengths. The relation between absorption at each wavelength can then be used to solve Equation 2.3 and Equation 2.4 to determine the average atomic mass and thickness of a particle. These features can then be used to classify particles. Further to this, sorters are capable of classifying particles based on inclusions and morphology. A Dual Energy X-Ray Transmission (DEXRT) sorter designed by CommoDas GmbH and used at TU Delft University in the Netherlands is capable of operating on particles between 5-50mm. The sorter operates at 3ms-1 and can sort between 5-45th-1 (Dalmijn & de Jong, 2004).

2. Visible Light
Visible light is generally considered to lie between 390 nm and 790 nm. Radiation between these wavelengths is absorbed if it corresponds to a discrete change in valence energy level for the atom or molecule in question. 

Absorptions in this region are common and account for the colours seen by humans - the colour seen corresponds to the wavelengths of visible light reflected by the material. Analysis using visual light requires a light source. Two types of artificial light source are used; either continuous spectrum sources such as tungsten bulbs or discontinuous spectrum lights such as fluorescent tubes or lasers. Common detectors of visible light include photodiodes, Charged Couple Devices (CCDs) and photomultipliers which are often used in conjunction with lasers (Wills, 1992). Diodes and photomultipliers can only determine the quantity of light received, not its wavelength. Thus values are monochromatic or grey-scale. CCDs are capable of analysing colours by one of two methods. 

The first is known as the Bayer mask technique. The Bayer mask designates each pixel as red, green or blue. A square of four pixels will contain two green pixels, diagonally opposite and a red and blue pixel. In this method the resolution for contrast or luminosity is four times greater than that for colour.

The second method employs three separate CCDs and a trichroic beam splitter prism. The prism splits light into red, green and blue components. Each CCD is designed to respond to one of the three components. Using this method the colour resolution is equal to the contrast resolution. The method is though much more expensive (aWikipedia, 2007).

Sensors designed to detect changes in visible light are known as optical or photometric. Optical sorters have been developed based on a number of sensing systems. Three sensing types have been developed using laser light sources. The first employs a scanning laser beam to create monochromatic images of particles (2.3.1.3a); the second uses a high energy laser to vaporise a mineral for detection (2.3.1.3b) whilst the third uses a lower energy laser to induce fluorescence within a particle. Beyond these laser based techniques sensors have been developed using digital cameras to create tri-chromatic images of particles (2.3.1.3c) whilst other sensors utilise the refractive index of particles for separation purposes (2.3.1.3d).

2. Scanning Laser Optical Sensors
Scanning laser technology is the more established of the laser based techniques. Sorters of this design have been in use since the 1970s when the Doornfontein gold mine in South Africa installed Model 13 and Model 16 sorters designed by the Ore Sorter Group (Salter & Wyatt, 1991). The typical throughput of this sorter type ranges from 50 th-1 for particles between 30 mm and 65 mm to 200 th-1 for particles between 65 mm and 150 mm. Historically, photometric sorters have been most often used for the separation of industrial minerals rather than metalliferous ores. Examples include the sorting of minerals such as limestone, barite, magnesite, talc and gypsum (Wills, 1992).

Sorters utilising scanning laser beams consist of a laser, usually He Ne, a rotating, faceted, mirror and a photomultiplier. The laser provides a high intensity beam of monochromatic light. This is reflected onto the particle path by the rotating mirror. Light reflected from the particles is passed back towards the mirror drum and onto a photomultiplier, see Figure 2.3, which measures the brightness of the particle.
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Figure 2.3 - Scanning laser beam principle (after Arvidson, 2002)

The rotation of the mirror propagates the position of the laser beam. The scan created by this propagation is perpendicular to the direction of particle travel. The mirror travels at such a speed that it is possible to complete 2000 scans per second. If the belt were moving at 4 ms-1 this would be equivalent to a scan every 2 mm.

2. Laser Induced Breakdown Spectroscopy (LIBS)
An optical laser beam can be used to create spectral emissions from materials. The principle of LIBS involves the absorption by a particle of intense radiation obtained from a laser beam which is concentrated through a microscope objective lens. The heat produced by the radiation vaporises all the mineral constituents exposed to the beam. As the plasma cools it emits light of characteristic wavelength depending on the materials present. The information gathered is then used to construct a spectrum. The laser microprobe allows for the vaporisation of a small amount of particle, typically in the region of nanogrammes, with minimum thermal degradation to the rest of the particle. The laser is highly accurate and can be used to focus on a spot as small as 50 microns. Since the heating time is very short a time of flight spectrometer can produce a complete spectrum from a single laser pulse lasting 0.4 ms. The accuracy of the laser means it can be focused onto small inclusions and impurities within a material. This makes it very useful as a separation technique (aWillard et al, 1974). 

2. Laser Induced Fluorescence (LIF)

LIF is similar to XRF in that it is the fluorescence of materials that are analysed to determine composition. Fluorescence is the term used to describe the phenomenon whereby matter temporarily emits radiation within the visible range of the spectrum in response to irradiation at a shorter wavelength. It occurs when electrons that have been excited by the irradiating energy return to lower energy state. The technique is very similar to LIBS except that instead of relying on vapours to determine mineral type, a lower energy laser is used to induce fluorescence within the sample. This fluorescence can be measured in a number of ways:

· Absorption spectrum

· Emission spectrum

· Decay curve

· Quantum efficiency

The absorption spectrum shows the fluorescence intensity at a single emission spectral band whilst the excitation wavelength varies. The emission spectrum shows the fluorescence intensity at varying wavelengths for a single excitation wavelength. The decay curve displays the decrease with fluorescence intensity with time. The curve generally shows an exponential decrease though abnormal cases have been found when the interactions of different atoms affect the decay rate (Mining Review Africa, 2004). Finally quantum efficiency is the ratio of the energy used to irradiate a sample to the energy emitted by the sample (Broicher, 2003).

LIF has been developed as a bulk sorting technique as almost all minerals will fluoresce when irradiated with short wavelength UV light. More importantly, different rocks will fluoresce differently as will rocks with different degrees of oxidation and alteration.

LIF sorters operate by using the individual ‘signatures’ created by examining the fluorescence of minerals that have been excited using a focused high energy UV laser beam. 

Although LIF will fingerprint minerals it cannot be used for mineral identification. This is because the presence and levels of trace elements varies from deposit to deposit. These trace elements have a large effect on the LIF signature and so minerals that are considered the same may give entirely different spectra. The technique instead is used mostly to identify rock types and in favourable conditions can be used as a quantitative assaying method - this is only possible in a two component mixture with one non-fluorescent component. 

A LIF sorter within a mine will follow the general principle of all sorters. Samples are collected to form representative classes. The samples are then analysed by LIF to create mineral signatures. These signatures are assigned to the various classes. When a bulk sample is analysed it is placed in the closest matching class and dealt with accordingly. The sorters that have been applied in the field are self contained units consisting of a laser, a series of optics, a detection system and a controlling computer.

One such sorter is used at the Kiruna iron ore mine in Sweden. Kiruna operates on a block caving system. LHDs collect ore from drawpoints and transport it to one of a number of ore passes. The sorter is suspended from the roof in between the drawpoint and ore passes. Each LHD passes under the sorter and using a remote trigger begins the analysis. Twenty readings of fluorescence are taken from each bucket, this takes about four seconds. After the analysis has been completed a signal from a lamp is observed by the LHD operator informing them as to which ore pass the bucket load should be taken to (Broicher, 2003).

2. Digital Optical Sensors
Sorters employing line scan or other digital type cameras have been around since the 1930’s and this method of sensing was employed by many of the earliest ore sorters. Today line scan cameras are used in most advanced optical sorters. They provide a high resolution, allowing small variations to be detected as well as differences in brightness and colour. They are, therefore, suitable to many ore sorting applications. The most advanced cameras can sometimes pick out differences that the human eye has difficulty detecting and can do so at a much greater speed (Arvidson, 2002). 
Digital optical sensors generally collect data in three channels, each of which detects visible light at varying wavelengths. In most cases these channels relate to Red, Green and Blue (RGB) regions of the EM spectrum. The information obtained in this way is said to be within the RGB colour space. Sorters can use this data directly or may convert the data into a number of alternative colour spaces. Two popular colour spaces are known as YUV and HS. These spaces describe the luminance and chrominance as separate features of an image. This can have the advantage that particles can be classified based purely on colour regardless of the luminance. 

2. Infrared Radiation

Infrared (IR) radiation is EM radiation between 7x102 nm and 1x106 nm. Spectra arising from IR radiation correspond to vibrational transitions in a molecule. Large molecules have many vibrational energy levels corresponding to their various atoms and bond enthalpies. These different energy levels lead to complex movements within molecules including wagging, rocking, twisting and scissoring, see Figure 2.4. 
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Figure 2.4 - Types of bond movement for methyl group:- a - symmetrical stretching, 
b - asymmetrical stretching, c - rocking, d - wagging, e - twisting, f – scissoring 
(after Skoog et al, 1998)

The energy levels that cause vibrational transitions are characteristic of functional groups and overall atomic arrangement of a molecule and so the spectrum of the target material can be used to identify it.

Large, solid particles such as minerals are easily studied through IR spectroscopy though the strength of IR absorption may require that thin sheets of crystalline or amorphous material samples are prepared. Course, irregular solids are not suited to IR spectroscopy because of the scattering of IR radiation by solid particles of sizes comparable to the wavelength of radiation (Ebsworth et al, 1991). The IR spectrum is can be further sub-divided into three categories known as near infrared (NIR), mid infrared (MIR) and far infrared (FIR).

The NIR region lies between 8x102 nm and 2.5x103 nm. Absorption bands corresponding to the harmonic overtones of fundamental and combination bands often associated with hydrogen, nitrogen and carbon atoms are located in this region. The differences in absorption bands for various functional groups provide the basis for rapid, quantitative analytical methods (aWillard et al, 1974). Table 2.4 displays examples of minerals with spectra in this region.

Table 2.4 - Minerals with spectra in the NIR range of the EM spectrum

(after Clark et al, 2003)

	Mineral
	Elemental Composition

	Dolomite
	CaMg(CO3)2

	Gypsum
	CaSO4 .5H2O

	Malachite
	Cu2(OH)2(CO3)

	Goethite
	FeO(OH)

	Siderite
	FeCO3

	Opal
	SiO2 .nH2O


The MIR region is split into the “group frequency” region and the “fingerprint” region, so called because of the information obtained by spectroscopy is highly specific to structures of particular compounds and so is very useful for identification purposes. The group frequency region covers from 2.5x103 nm to 8x103 nm whilst the fingerprint region lies between 8x103 nm and 1.5x103 nm. The group frequency region relates to the vibration of only two atoms within a molecule and so is dependant only on the functional group, not the complete molecular structure. 
The region from 2.5x103 nm to 4x103 nm covers absorptions typical of hydrogen stretching vibrations with elements with atomic mass less than 20. When hydrogen atoms are coupled with atoms heavier than this the absorption bands overlap those of triple-bonded particles. The region between 4x103 nm and 5x103 nm consists of triple-bonded particles while 5x103 nm to 6.5x103 nm consists of absorption bands for double-bonded particles. The region of 4x103 nm to 6.5x103 nm is known as the unsaturated region due to the absorption bands for double and triple bonded particles.

The major causes for absorption bands within the fingerprint region are that of single-bond stretching vibrations and bending vibrations of a polyatomic nature which involve motions of bonds that link functional groups that have replaced hydrogen to the remainder of a molecule (aWillard et al, 1974).

The FIR region covers from 1.5x104 nm to 1x106 nm. The region contains absorption bands related to the bending vibrations of carbon, nitrogen, oxygen and fluorine with other elements with atomic mass greater than 19. It also covers bending motions in cyclic and unsaturated functional groups. The low frequency vibrations in this region are sensitive to changes in the overall structure of molecules. The region is particularly suited to the study of organometallic compounds as FIR radiation is sensitive to metal ions and atoms and so can be used in the study of co-ordination bonds. It is particularly useful in organometallic molecules whose atoms are heavy and bonds weak (aWillard et al, 1974).

Most sources of FIR are broadband and so are generally useless for spectroscopy. There are a few fixed frequency lasers that operate within this region but there are no tuneable monochromatic sources available (aWillard et al, 1974). Most spectra obtained are done so by the use of interferometers or grating spectrophotometers. It is possible to obtain resolutions of quite a high standard in comparison to MIR spectroscopy but even so it is not easy to obtain a resolution better than about  0.01cm-1 (Ebsworth et al, 1991) 

Automated sorters have been developed which exploit absorptions in the NIR region to identify materials. For example, TiTech a Norwegian company have developed PolySort® NIR sorters which have been successfully employed for the separation of plastics in the recycling industry (TiTech, 2006). 

2. Microwaves

Microwaves are basically extremely high frequency radio waves. They can be reflected, absorbed or transmitted by minerals in their path and are entirely reflected by metallic materials. Materials containing moisture absorb microwave radiation. The microwaves penetrate a material and increase the rotational energy of its molecules. This increases molecular friction and leads to an increase in heat energy. The rate at which a substance is heated depends on its shape, volume and mass. The specific rate of energy absorption by a substance is determined either by its electronic or ionic conductivity or by the number of permanent dipole molecules per unit volume (Pickles, 2004). 

Most pure rotation spectra are observed following the direct absorption of EM radiation in the far infrared or microwave regions of the EM spectrum corresponding to wavelengths between 1x106 nm to 1x109 nm. Over such a wide range of wavelengths it is necessary to use several techniques for the production and detection of radiation. In the microwave region this a comparatively easy task as it is possible to generate monochromatic radiation that can be tuned over a wide range of wavelengths if using a single microwave source and an even wider range if several sources are used. Microwave based devices have an enormous advantage over typical IR techniques due to their high precision. Almost all particles except the lightest have some part of their rotation spectrum in the microwave region (Ebsworth et al, 1991).

Microwave sensors work by heating the particles in order to measure their thermal conductivity. Different materials have different thermal conductivities and so a separation is possible. Table 2.5 shows the thermal conductivities of some minerals.
Table 2.5 - Thermal conductivity of various minerals

(after aLide, 2005; bSears et al, 1987; cHolman, 2000; dIncropera & Dewitt, 1990)
	Material
	Thermal conductivity
(Wm-1·K-1)

	Diamond, impure
	1,000ab

	Silver (Ag), pure
	406b - 429a

	Iron (Fe), pure
	71.8b - 80.2a

	Granite
	1.73c - 3.98c

	Marble
	2.07c - 2.94c

	Sandstone
	1.83c - 2.90d


A system for sorting ores by this method was developed by Salter et al. in the 1980’s to discriminate between kimberlite and gabbro. A 100th-1 prototype machine was constructed and found to totally discriminate between the high value kimberlite and waste gabbro. The system utilised a low power 100mV, 10.525GHz microwave transmitter and a microwave attenuation system for detection (Sivamohan & Forssberg, 1991).

2. Non EM Radiation based Sensors
There are a number of non electromagnetic radiation based sensors used for automated sorting these include magnetic and induction sensors, which are described in the sub-sections 2.3.2.1 and 2.3.2.2, respectively. 

2. Magnetic Sorter

One form of magnetic separation is to use the magnetic force pulling on ferromagnetic or paramagnetic particles to deflect their trajectories. A splitter is used to separate particles as they fall from the machine. Magnetic sensors are capable of detecting weak magnetic susceptibility in most iron bearing minerals. Minerals that have been separated in this way include: magnetite from quartz; tin-bearing cassiterite which is often associated with traces of magnetite or wolframite and possible separation of quartz-wolframite aggregates (Wills, 1992). Data from such a sensor would be combined with data taken using a optical sensor as described previously.

2. Conductive Sorters

Minerals all have unique values of conductivity, if this conductivity can be accurately measured then it is possible to sort minerals based on this characteristic. Table 2.6 lists the conductivity of various minerals.

Table 2.6 - Electrical conductivity of various minerals

(after Sivamohan & Forssberg, 1991)

	Category
	Mineral
	Electrical Conductivity (Sm-1)

	Insulator
	Quartz
	8.3x10-13 – 2.6x10-11

	
	Calcite
	1.8x10-13

	
	Amphibole
	1x10-7

	
	Mica
	1.1x10-13 – 6.7x10-9

	
	Diamond
	1x10-12

	Semi-conductor
	Wolframite
	1x10-5 – 1x10-2

	
	Siderite
	1.4x10-2

	
	Hematite
	1x10-7 – 2.5x10-5

	
	Sphalerite
	1x10-5

	Conductor
	Pyrite
	1x102

	
	Chalcopyrite
	8.3x102

	
	Galena
	1x103

	
	Magnetic Iron Pyrite
	1.4x101

	
	Arsenopyrite
	5x100

	
	Magnetite
	1.7x102


The two main methods of detecting variations in conductivity are the beat frequency and induction balance techniques. The beat frequency detector is energised by a high frequency alternating current. As particles are passed over the detector any change in the frequency of the alternating current is detected. This technique has been used by the International Sorting Systems Corp. to separate copper ore from waste rock. In this way 61% of the copper was recovered in only 13% of the feed mass.

The induction balance uses two coils and energises them in such a way that the coils are in equilibrium creating a null or zero balance. When particles enter the vicinity of the coils the balance is disturbed and the consequent change in frequency measured (Sivamohan & Forssberg, 1991). 

2. Applications in the Plastic and Scrap Metal Industry

The waste generated from the disposal of cars, computers, domestic recycling schemes and other industrial sources contains valuable components that can be used as an alternate to raw materials. Usually a mixture of all these waste sources will be shredded or granulated to create liberated or nearly liberated particles. This will, in turn, make the separation process easier.

Most sorting in the recycling industry is based around a combination of optical, NIR, X-ray and metal detecting sensors. NIR sensors, made of semi-conducting material, are characterised by a very short measuring time, a high sensitivity and a high spectral resolution (Lucht et al, 2002). NIR is used for the sorting of plastics where it determines bonding structure of plastics to sort them into fractions.

Dual energy X-ray sensors measure the average atomic mass and thickness of particles while also obtaining an image of the particle under analysis. It is used within the recycling industry for the sorting of metal and metal alloys (Dalmijn & De Jong, 2004).

Optical sensors, in the form of line scan cameras, are quick and have high resolution. They can measure over 6000 lines a second (CommoDas, 2006) and have been used in a wide variety of recycling applications. For example, Magnetic Separation Systems (MSS) based in Tennessee, USA have developed the Aladdin Sorter. A number of these were installed at the Todd Heller Material Recovery Facility (MRF) in Pennsylvania, USA in 2002. The sorters are used to separate PolyEthylene Teraphthalate (PET) and natural High Density PolyEthylene (HDPE) from coloured HDPE and residue. This separation is carried out in a single pass. The sorter processes 12-14 th-1 with purities of 90-95% and 90% for PET and natural HDPE respectively. The sorter installation increased throughput by 30% while reducing manpower by 40%. The payback time on labour for the sorters was estimated at 18 months (Graham, 2005).

Metal detecting sensors employed in the recycling industry range from fixed magnetic separators to Eddy Current and ElectroMagnetic Separators (ECS and EMS respectively). They have been used for the separation of both ferrous and non-ferrous metals in the recycling industry.

A multi-sensor approach to sorting may prove beneficial in the sorting of plastics and scrap metals as particles tend to have similar properties. By combining data from multiple sensors the data obtained from each particle is increased this in turn will make the sorting decision more accurate and reliable. Figure 2.5 illustrates how data is combined from multiple sensors to separate a particle.
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Figure 2.5 - Principles of a multi-sensor classification process

(after Dalmijn & De Jong, 2004)

2. Applications in the Food Industry

Photometric sorting devices have been developed and used in the food industry since the installation of the ESM machine in 1932. This coupled with the development of Ultraviolet (UV), Near Infrared (NIR) and Infrared (IR) based sorters as well as others based on X-Rays has led to the sorting of a large number of food products. 
Applications include: defect detection in apples, peaches, tomatoes and citrus fruits (Wen & Tao, 1999; Kleynan et al, 2004); detection of infected wheat kernels (Dowell et al, 2002); sorting unwholesome from wholesome chickens (Chen et al, 2002) as well as sorting of nuts, grains, rice, beans and pulses, seeds, coffee, berries, carrots, snack foods and various spices (Sortex Ltd, 2003).

As the above applications suggest sorting is used essentially to detect faults or to otherwise grade food. They find applications due to their speed and accuracy over traditional hand picking. For example an 1800g sample of wheat kernels can take an inspector an hour to check for infection this same operation can be completed in about 45 seconds using an automated sorter. In tests, the sorter picked out 100% of infected wheat kernels as opposed to 77% recovery quoted for experienced personnel in an unpublished Animal and Plant Health Inspection Service (APHIS) report (Dowell et al, 2002).

After initial successes by the ESM Company other companies began to develop automated sorters. From about 1947 onwards, Sortex Ltd. has manufactured automated sorting machines for the foods and later plastics industries. It is the leading supplier in over one hundred countries. The company’s most recently developed sorter is the Niagara optical sorting machine. This was developed for the processing of frozen, canned and fresh fruit and vegetables (Sortex Ltd, 2003).

The Niagara sorter allows colour discrimination and mapping at three wavelengths of light including infra-red. The result is that colour defects such as discolouration, rot, and extraneous vegetable matter as well as shape defects including stocks, stems, sticks, size, pods and holes and foreign material such as animal matter, glass, plastic and stones can be removed with extremely high levels of accuracy. The Niagara is available in two sizes. The first has a belt width of 550 mm and is capable of processing 9 th-1. The second is double the belt width and so can process 18 th-1. The sorter is available with single or double sided camera systems. Its sophisticated shape algorithms mean that products of the same colour can still be separated by shape including cracks, ellipses, undersize, oversize, holes,long sticks, etc. The Niagara also has a facility enabling data such as number of defects to be transferred to an external PC where it can be stored and analysed. Niagara sorters have been used to sort a wide variety of products including sweet corn, peas, soft fruit, berries, swedes, potatoes and even mixed vegetables (Sortex Ltd, 2003).

Since its inception in 1992, Applied Sorting Technologies (AST) Pty Ltd has been developing X-ray inspection and sorting systems for the food industry. Its directors worked initially in the mining industry and were instrumental in the design of X-ray sorting in diamond mines. Having moved to the food industry, the directors of AST have developed the XR-2000 and XR-3000 series of food inspection machines which are capable of detecting: missing or damaged ingredients within packed products; relative changes in product weight; the fill level of products; missing or misaligned lids as well as the detection of defects within products. The machines are capable of detecting metal, glass, stones, bone and various types of hard rubber and plastic. These machines were the only ones tested by the Meat Research Corporation of Australia that could successfully detect and reject 27kg meat cartons with 2 mm diameter lead shot in the meat at high production levels (Applied Sorting Technologies Pty Ltd, 2006).

There are a large number of companies that offer automated sorting solutions for the food industry. Table 2.7 summarises some of the larger companies in this market divided into regions; European, American, Asian and Australasian.

Table 2.7 - Major suppliers of automated food sorters (after Zeuch, 2005)

	Region
	Major Companies

	Europe
	Aweta B.V.

Barca Machine Vision

Belgian Electronic Sorting Technology (BEST)

MAF Industries

Odenberg Engineering

QSort

Sortex

	North America
	Delta Technology

Durand-Wayland

Ensco

FMC Food Technology

Focused Technologies

Key Technology

Produce Sorters International

Sunkist

TTI/Exeter Engineering

Woodside Electronics

	Asia
	Satake

	Australasia
	Applied Sorting Technology

Compaq


2. Applications in the Pharmaceutical Industry

In the pharmaceutical industry it is not only the size, shape and colour of a product that is important but also its elemental composition and chemical structure. The property that is being analysed will decide the type of sensor required. For example, visual light would be used to determine whether a product is the correct colour and shape while NIR is suitable for the detection of the chemical compounds in various pharmaceutical products. Nuclear Magnetic Resonance (NMR) is a further possible sensor for use in pharmaceutical applications as it is already used for the scanning of body fluids in medical technology as it is able to detect hydrogen with great sensitivity (Sivamohan and Forssberg, 1991).

Proditec, an international private company, produces automated sorting systems for the pharmaceutical industry. Their latest machine is the VISITLAB 2 which employs six CCD line scan cameras for the fast and accurate checking of visual defects on all types and shapes of tablets. The machines are capable of sorting up to 210,000 tablets an hour. The multitude of cameras means that 360° inspection of tablets is possible and all defects are detected simultaneously (Proditec Ltd, 2004).
2. Unsupervised Learning Techniques
Unsupervised learning techniques as considered in the scope of this work are defined as set out by Michie et al. 1994. Such techniques are considered those that use a set of observations to establish the existence of any classes within a dataset. Unsupervised learning techniques belong to a family of techniques that have been used for the purposes of classification, pattern recognition, function approximation and prediction amongst others. According to Michie et al. 1994 learning techniques can be categorised into three types – statistical, machine learning and neural networks. Statistical techniques attempt to classify data using an underlying probability model. Machine learning encompasses any clustering techniques which uses logical or binary operations to ‘learn’ pre-defined classes from a series of examples. Neural networks seek to emulate the workings of the human brain to realise pre-defined clusters. It is this final category that is the focus of research within this project. 

Unsupervised learning was used during research for classification which in the scope of this work will be interpreted as a procedure by which vectors are assigned to pre-defined classes based on observed attributes or features. More specifically, unsupervised learning was applied to the problem of colour quantisation, or reduction, which is required during the training of optical automated sorters.
2. Unsupervised Classification
Unsupervised learning is a field that has found use in many applications, in a number of scientific and engineering fields. Omran and Engelbrecht (2005) suggested that unsupervised classification techniques can be categorised into one of two types; pre-clustering and post-clustering.
A technique is considered pre-clustering if training is carried out before the creation of all clusters. Algorithms in this category divide the colour space into mutually exclusive, disjointed regions. A representative colour is chosen for each region and these colours are used to form the colour palette. There are a number of algorithms that achieve this relatively quickly by splitting the colour space in successive steps. Referred to as splitting algorithms, two regularly used examples are the median-cut algorithm and the variance-based algorithm. Another popular method is the Octree quantisation algorithm. This method splits the colour space into eight cubes, hence ‘oct’, each of these cubes is then split into a further eight. This process is continued for a number of levels, usually no more than nine. This process is illustrated in Figure 2.6.
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Figure 2.6 - Partitioning of colour space using octree method

Colour reduction is then achieved by merging adjacent regions containing the least number of pixels until the desired number of colour classes is created. The reference colour of a region is generally taken as its centroid. 

Other pre-cluster algorithms employ clustering techniques. One such method relies on a hierarchical agglomerative method. In this technique proposed by Xiang and Joy (1994) each unique image colour begins as a separate region. Neighbouring regions (determined by some distance measure) are merged until the desired number of colour categories is obtained. A clustering technique which is reported as outperforming splitting algorithms and some post-clustering techniques is Hybrid Competitive Learning (HCL). HCL begins by selecting a single colour point as a cluster centroid. Competitive learning is then used to assign all pixels to a cluster surrounding this centroid. The centroid is then split and competitive learning is again undertaken. The result is two clusters with unique centroids. In each stage, all centroids are split until the appropriate number of colour classes is obtained.

Post-clustering techniques begin with a fixed size colour palette which is optimised during the training process. The main disadvantage of post-clustering techniques is that they are computationally expensive when compared to pre-clustering techniques as they must compute values for all clusters throughout the training process whilst pre-clustering techniques begin with fewer clusters. Techniques within this category include the k-means algorithm. In this technique a colour palette is formed and each cluster assigned a random colour value. Pixels are assigned to the nearest colour, by some distance measure, after which colour classes are then recalculated as the centroid of the resulting clusters and pixels re-assigned. This iterative approach is repeated until a local optimum is reached. The main problem with this technique is its reliance on initial conditions. Another standard method used for clustering is the competitive learning (CL) algorithm. In competitive learning cluster centroids are randomly initiated. As pixels are presented to the algorithm the distance to all centroids is calculated. The ‘winning’ centroid as determined by some distance measure is re-positioned so as to be closer to the input pixel. This process is continued until all pixels have been presented to the algorithm. As with the k-means algorithm, the initial position of the cluster centres has a large effect on the outcome of the clustering.

A method which is more stable to initial conditions is the Kohonen Self-Organising Map (KSOM). This is an improvement to the competitive learning algorithm. It is identical in its operation except that clusters are linked so that the recalculation of one centroid will have a ‘pulling’ effect on neighbouring centroids. Another technique based on the competitive learning algorithm is the Rival Penalised Competitive Learning algorithm (RPCL). This algorithm ‘pulls’ the winning centroid towards the input pixel whilst simultaneously ‘pushing’ the next closest centroid.

Other methods proposed to overcome the dependence on initial conditions include the use of evolutionary techniques in combination with the k-means algorithm. An example of this is the Genetic C-Means Algorithm (GCMA). Supervised learning techniques such as multi-layer perceptrons also belong in this category. Such techniques generate an error function by comparing the calculated output to an expected one. The error function is then reduced by some iterative method, such as the steepest descent approach. The algorithms used during the course of experimentation are described in more detail below.

2. The K-Means Algorithm
The K-means algorithm, also known as C-means, is a competitive learning algorithm. It is initialised by defining a fixed number of clusters centroids or model vectors, 
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The cluster centres are initially chosen from the data set using random vectors. Each input vector is then presented to the algorithm and assigned to the centroid which most resembles it as determined by a nearest neighbour function. Mathematically, the best matching cluster centre, mc, is the one that satisfies the condition:
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The cluster centroids split the input space into regions whose boundaries are defined as the midpoints between centroids. Division of space in this manner is known as Voronoi tessellation; an illustration of which is shown in Figure 2.7.

[image: image22.emf]
Figure 2.7 - Colour space segregated using Voronoi tessellations

(from Michie et al., 1994)

With each region being termed a tessellation. The tessellation of cluster centre mj is symbolised as Sj.

The initial cluster centroids are unlikely to form a model which is a good approximation of the input space. The error of the approximation is defined by the following objective function.
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Where C is the total number of clusters. The purpose of the k-means algorithm is to minimise this objective function. This is achieved by a series of iterations in which the cluster centroids are moved to the mean position of all input vectors within their own tessellation. The updating process can be summarised as: 
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Where nSj is the number of input vectors within the tessellation of cluster centroid mi and t is the iterative step. After a number of iterations the algorithm will converge to a local minimum. In the case of colour quantisation the final centroid positions represent the representative colours for an image; this is referred to as the colour palette or map. The initial positions of the cluster centroids will have a large effect on the optimum value found (Scheunders, 1997). 
2. Competitive Learning Algorithm

The Competitive Learning (CL) algorithm acts to minimise the same objective function as the k-means algorithm (Equation 2.8). However, rather than the batch approach used by k-means, CL uses an incremental, continuous learning process known as the steepest descent approach. 

The input vectors are presented sequentially in a random order. Each input vector, xj, is assigned to the best matching cluster centroid, mc. This centroid is then updated using the following equation:
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Where 
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 is the learning rate at iteration t. The equation moves the winning cluster centroid nearer to the input vector. All other clusters remain unchanged. Such an update is referred to as Winner Takes All (WTA). The value of 
[image: image27.wmf]()

t

a

 in practice is initially set as 1. It is then linearly decayed during the iterative process. This guarantees that the clusters are globally ordered initially before fine adjustments are made in later iterations. The learning rate 
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Where 
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 is the initial learning rate and tmax is the total number of iterations. As well as depending on the initial positions of cluster centroids the CL approach is affected by the order in which input vectors are presented (Scheunders, 1997). These factors lead to the CL algorithm falling into local optima rather than a global optimum.  
2. The Hybrid Competitive Learning Algorithm
The Hybrid Competitive Learning (HCL) algorithm is an enhancement to the standard CL algorithm by the inclusion of a splitting technique. The HCL algorithm seeks to overcome the problems of local optima by combining the clustering effect of CL with splitting algorithms which do not rely on initial conditions. The technique is undertaken by the following process:

(1) A single cluster centroid is initialised in a random position and CL is applied so that the entire input space can be regarded as a single cluster around the cluster centre.

(2) The cluster centroid is degenerated, or split, into two independent cluster centres. CL is applied to both of these centres.

(3) Repeat step 2 until the desired number of cluster centroids is obtained.

HCL is independent of initial positions the local optima found depends only on the order in which input vectors are presented. To minimise the effect the order in which pixels are presented is shuffled between iterations.

2. The Kohonen Self-Organising feature Maps
A method of creating self-organising maps was proposed by Teuvo Kohonen in 1982. Known as Kohonen Self-Organising feature Maps (KSOM) they are artificial neural networks consisting of two, separate, fully connected layers of neurons. The first layer is an input layer and has as many neurons as there are input variables. The second layer consists of a user defined number of neurons usually arranged in a two dimensional grid. An illustrated representation of a KSOM is shown in Figure 2.8.

[image: image31.emf]
Figure 2.8 - Representation of KSOM (from Atsalakis & Papamarkos, 2006)

The output layer can be considered a grid of fully connected neurons and each one has a unique position within the output layer. The connectivity of the neurons means that a change in position of one neuron will ‘pull’ neighbouring neurons. This is known as co-operation between neighbouring neurons. The number of neurons chosen in the output layer depends on the desired number of colour classes it is independent of the number of input neurons. 

The KSOM algorithm computes values for the neurons so that they describe the input observations in an optimal manner. On completion of training the neurons are arranged so that similar neurons are located nearer to each other than dissimilar ones. In this way the KSOM can be described as a similarity graph as well as a clustering diagram. The computation used is a non-parametric, recursive regression process (Kohonen, 1998).
The basic KSOM algorithm is based on an incremental, continuous learning method. It can be considered an enhancement to the CL algorithm and operates in a similar manner. The KSOM algorithm optimises a set of neurons or cluster centroids, 
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Each centroid is initially given a value that is either set at random or chosen by selecting points that evenly cover the input space. Training consists of sequentially presenting the KSOM with input vectors and then updating the centroids until a preset level of convergence, or maximum number of iterations, is reached. For the presentation of input vector xj the update process for centroid mi is:


[image: image34.wmf](),

,  (1)()(()())

j

iicxii

j

imtmthtmt

x

"+=+-

                 Eqn 2 MACROBUTTON AuroraSupport.PasteReferenceOrEditStyle ( "" "2."
2.

 SEQ Eq \* arabic \* MERGEFORMAT 
12
)
Where t indicates the regression step and the variable 
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 acts like a smoothing or blurring kernel over the extent of the output layer. It is known as the neighbourhood function. The subscript c(xj) represents the cluster centroid which best matches the input vector. The best matching centroid is given the symbol mc(t). This vector is referred to as the ‘winner’. The distance measure used to determine the winning vector was the Euclidean distance though any distance measure could be used.

The neighbourhood function is usually taken to be Gaussian and is defined as follows:
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Where: 
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 and is known as the learning rate and decreases monotonically with the regression steps; 
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 are the relative positions of the cluster centroids within the output layer and 
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 is the width of the neighbourhood which also decreases monotonically with the regression steps (Kohonen, 1998). It is worth noting that when the initial neighbourhood radius is set to 0 the KSOM algorithm is equivalent to the CL algorithm. In fact, the CL algorithm can be interpreted as a special case of a KSOM whereby the neighbourhood radius is 0.

In the following work both the learning factor and neighbourhood width will decrease linearly as shown in Equation 2.11.
2. Rival Penalised Competitive Learning Algorithm

The Rival Penalised Competitive Learning (RPCL) algorithm was introduced by Xu et al. (1993) as an enhancement to the competitive learning algorithm. Its principle of operation is similar to CL but with a few added procedures. The first of these is that the updating of weights is not restricted to the winning centroid but includes the next closest centroid, known as the rival. Specifically, at each iterative step the weights of the winning centroid are adjusted so as to be closer to that of the input vector whilst the weights of the rival are moved away from the input vector. A further stage added to the algorithm is that the number of cluster centroids is optimised during training. The initial number of centroids is set artificially high and reduced at each iterative step by a system of pruning of both similar and underused cluster centroids.

Like the KSOM algorithm RPCL optimises a set of cluster centroids 
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. The stages involved in the RPCL algorithm are summarised in papers by Li et al. (1999) and Nair et al. (2003) and are as follows:

(1) Select a random input vector (xj) and then for each cluster centroid (mi) calculate the Euclidean distance to xj. 
(2) For all centroids calculate the output ki Where:
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In equation 2.14, mc is the winning centroid and mr the nearest rival. A conscience factor (
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) is added to reduce the winning rate of centroids that have ‘won’ frequently. It is calculated as shown in Equation 2.15.
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Where nj refers to the number of times cluster centroid mj has won.
(3) Calculate the weight updates for the centroids using the equation:
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 Where:
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In Equation 2.19, 
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 are the learning rates of the winning and rival model vectors, respectively. The initial values should be such that 
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. The learning rates are iteratively decreased, using equation 2.11.
(4) Prune any clusters within a pre-determined distance (τ) of one another. This is achieved as shown in Equation 2.18.:
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Where, in Equation 2.18, z is either a or b and C is the number of input vectors contained within the ma and mb tessellations. The centroid to be pruned is calculated as:
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Where a node is pruned if 
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= 0. These steps are repeated until a required number of iterations are completed without the pruning of any model vectors.

2. Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering (AHC) begins by considering input vector values of each sample within a set and using them to form a data matrix, an example of which is shown in Figure 2.9.


[image: image55]
Figure 2.9 - Example of data matrix for colour palette categories

 Using the values from the data matrix the Euclidean distance between each pair of colour classes is calculated, see Equation 2.20.
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where i and j are the indexes of the clusters. The Euclidean distance is a measure of the dissimilarity of each pair of clusters and so is referred to as a dissimilarity co-efficient. The larger the Euclidean distance the more dissimilar are the two colour classes. Once all distances have been calculated they are displayed in a Resemblance Matrix. Figure 2.10 shows a resemblance matrix generated using the example data from Figure 2.9.


[image: image57]
Figure 2.10 - Resemblance matrix of colour classes for example data
Once the resemblance matrix has been created the clustering process may begin. This is achieved by reducing the size of the resemblance matrix in steps by grouping, or clustering the pair of centroids that are most similar. This process creates a series of resemblance matrices of decreasing size that are referred to as a ‘tree’ of matrices. 

Training was undertaken by one of two methods. The first, referred to as the ‘centroid’ method describes each cluster by a cluster centroid positioned at its centre, where the position of the centroid is calculated as shown in Equation 2.21.
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Where C is the centroid of the cluster created by the combination of clusters i and j. When training commences each cluster contains a single input vector and so its position is simply that of the original vector. At each stage of clustering the centroids of each cluster are then recalculated.

In the resemblance matrix shown in Figure 2.10 the most similar colour classes are 1 and 3 as the Euclidean distance between them is the shortest. These classes will therefore be combined into a single cluster. The centroid of this cluster will be at the point:
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The new centroid is used to create a new data matrix and to re-calculate the resultant resemblance matrix. Figure 2.11 shows the data matrix and resemblance matrix after the combination of clusters 1 and 3 for the example data. The resemblance matrix shows that the most similar clusters are clusters (1, 3) and 4. The next iteration would combine these clusters using the centroid method. The hierarchical clustering terminates when all colour classes have been combined to form a single cluster. 
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[image: image60]
Figure 2.11 - (a) Data and (b) Resemblance matrices after centroid clustering

The second method of training is known as the Unweighted Pair-Group Method using arithmetic Averages (UPGMA). This method also uses the resemblance matrix to group the two most similar clusters. Where it differs from the ‘centroid’ method is how similarities are calculated as the later combines the clusters to create a new data matrix while the later does not. UPGMA uses the similarities between initial clusters to create a new resemblance matrix and so continue the clustering process. It does this by calculating similarities as the average between all vectors within a cluster. For example, having combined vectors 1 and 3 after the first stage of clustering, the similarity between cluster (1, 3) and 5 would be calculated as shown in Equation 2.23.
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The revised resemblance matrix for the example data is shown in Figure 2.12. The resemblance matrix shows that the most similar clusters are clusters (1, 3) and 4. The next iteration would combine these clusters using the UPGMA method. The hierarchical clustering terminates when all colour classes have been combined to form a single cluster. 


[image: image62]
Figure 2.12 - Revised resemblance matrix after UPGMA clustering

3. The CommoDas Ore Sorter and Pact Software
The ore sorter used for all project work was a CommoDas automated sorter as shown in Figure 3.1. CommoDas is a German company based in Wedel, near Hamburg. They supply sorters for the recycling and minerals industries. The sorter being used is an industrial scale model. 
[image: image63.jpg]



Figure 3.1 - CommoDas Sorter Installed at University of Exeter, Cornwall Campus
The sorter can be considered as consisting of five basic components. These are:

· A feeder

· Conveyor belt

· Sensors
· Ejection system

· Control and feedback system

A schematic diagram of the CommoDas sorter highlighting these five components is shown in Figure 3.2.
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Figure 3.2 - Schematic layout of CommoDas high-grade ore sorter
(after CommoDas, 2006) 
The remainder of this chapter is divided into four sections which examine in detail the five components of which the ore sorter is comprised. The first section (3.1), describes the feeder and conveyor which are used to present the particles to the sensors in an even and uniform manner. The sensors employed by the CommoDas ore sorter are described in detail in section 3.2. After detection particles are classified. Section 3.3 describes the ejection system used to physically separate particles after classification. The control and feedback components form the classification system whose input is the sensor data and output is an ejection decision. All aspects of the control and feedback components are controlled by proprietary software created by CommoDas GmbH which is known as PACT. The PACT software is described in Section 3.4.

3. Particle Presentation – Feeder and Conveyor

An Eriez vibratory feeder is used to supply the ore sorter with an even feed of material. An even feed ensures that the sensors are not overloaded and that the sorting process is efficient. On leaving the feeder the particles are passed onto the conveyor. The surface of the conveyor is a vulcanized rubber belt which is 660 mm in width and approximately 2.5 m long. The conveyor can be set to operate at velocities of either 3 ms-1 or 1.5 ms-1.  The purpose of the conveyor is to accelerate particles to a uniform velocity. This is essential to ensure that the time in which particles are detectable or ‘visible’ to the sensors remains constant to ensure the unbiased comparison of particle data. Accelerating particles to a uniform velocity also maximises their stability. 

3. Sensors

The CommoDas sorter employs both an optical and inductive sensor. The inductive sensor is located beneath the conveyor belt and so detects particles while they are on the conveyor. The optical sensor detects particles after they leave the conveyor. The properties of each sensor are described in the following sub-sections (3.2.1 and 3.2.2).

3. Optical Sensor
The optical sensor employed by the CommoDas ore sorter is a Pricolor TVI 2048R. This is a 2048-bit line scan camera which operates by the use of Charge-Coupled Devices (CCDs) which consist of single arrays of capacitors; in the case of the camera used on the sorter, 2048 capacitors. An image is created when a high speed shutter opens for a short length of time, in the scale of hundreds of microseconds and photons that are either transmitted through or reflected from the object being scanned strike the CCD and are converted into electrons. The more photons that strike each capacitor within the CCD the more electric charge builds up. When the shutter closes the charge from each capacitor is converted to a voltage which is measured by the control box of the ore sorter where it is interpreted as a standardised pixel value ranging between 0 and 1024.

A colour image is generated by the use of three separate CCDs. Before the photons strike these CCDs they are separated using a trichroic prismatic beam splitter. This splits the light into red, green and blue (RGB) components. Each of the split beams is passed through a separate CCD. Each pixel, defined by the control box, has a designated value in the RGB colour space. The value is found by combining the data collected from each of the three CCDs. Figure 3.3 shows an example of a trichroic prismatic beam splitter and a graph of transmission against wavelength for each split beam.
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Figure 3.3 - A trichroic prismatic beam splitter and its spectral distribution

(from www.tvivision.com)

The optical sensor is positioned at a large distance from the objects under investigation so as to ensure that the depth of field is large enough to keep the entire viewing area in focus. This is illustrated in Figure 3.4.


[image: image66]
Figure 3.4 - Effect of increasing distance to object plane on focus of visible area

For practical reasons the optical sorter is equipped with a mirror system to increase the distance to the viewing plane. The sensor is located above the conveyor belt and views particles as shown in Figure 3.5.


[image: image67]
Figure 3.5 - Distance to object plane for optical sensor

The optical sensor is in a fixed position and so to build up a two dimensional image there must be a relative movement of the object perpendicular to the alignment of the CCD device, as shown in Figure 3.6.
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Figure 3.6 - Particle Movement to create a two-dimensional image
The relative movement means that each line scan is of a different area of the scanned object. The control box combines the individual lines to form a 2D image. Each image will be 2048 pixels across with a length equal to the number of scans completed. 

The physical width of each pixel is dependant on the width of the area under examination by each capacitor within the CCD. This is determined by the total number of capacitors and the width under examination. The CommoDas ore sorter contains 2048 capacitors in each CCD which must cover the width of the belt, 600mm. The width covered by each pixel then is about 0.3mm as shown below.
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The length of each pixel is also dependant on the settings of the ore sorter. It is determined by the velocity at which objects move relative to the camera and the time taken to scan a single line. Obviously, the quicker an object is moving the more of its length will be examined by the camera during one shutter opening. The exact relationship between the velocity and camera timing determines the pixel length. As the conveyor belt on the ore sorter was operated at a fixed velocity of approximately 3ms-1during experimentation the length of a pixel was dependant on the scan time. For example, with a scan time of 150μs the length of a pixel would be 4.5x10-4m or 0.45mm as shown below.
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Under these conditions the dimensions of each pixel for the optical sensor would be     0.3 mm by 0.45 mm or 0.14 mm2. As the pixels in this case would be rectangular there would be an associated distortion of images along the axis of movement. Figure 3.7 contains an example of this distortion.
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Figure 3.7 - Example of distortion associated with optical sensor

3. Inductive Sensor
The inductive or EMS sensor employed by the CommoDas ore sorter was designed for use in the recycling industry and its appropriateness for minerals applications is unproven due to the inherint heterogeneity of minerals when compared to manufactured products encountered in the recycling industry.
The inductive sensor works on the principle of electromagnetic induction. A coil of wire is used to create an alternating magnetic flux. The alternating flux induces current in a set of receiver coils. The arrangement of the coils is shown in Figure 3.8. 
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Figure 3.8 - Schematic of CommoDas inductive sensor coils
When conductive materials pass over the transmitter coil, current is induced in them. The current flow will take the form of eddy currents and is orientated so that the electromagnetic field they produce will oppose that which created them (i.e. the field produced by the transmitter coil). This process is governed by Lenz’s law and is illustrated in Figure 3.9.
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Figure 3.9 - Principle of inductive sensor coils (after CommoDas, 2006)

As the two electromagnetic fields oppose each other the resultant flux is the difference between the two. Therefore, when a conductive material is placed over the coils the current induced in the receiver coils will be less. The associated drop in voltage is measured by the sorter. Materials with differing levels of conductivity will affect the voltage at the receiver coils to different degrees and so can be distinguished from one another (Mesina et al, 2003). The unit dimensions for the inductive sensor are much larger than that of the optical sensor leading to a much lower resolution. The length of a single unit is equal to that of the optical sensor, 0.3mm and is determined as previously shown. The width of a unit is determined by the distance between coils in the inductive sensor. There are 48 coils on the CommoDas sorter, giving a unit width of 12.5 mm as shown below.
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The unit area for the inductive sensor is then 3.75 mm2. 
3. Particle Separation – The Ejection System

After detection by the conductive and optical sensors particles are classified as either ‘reject’ or ‘accept’ products by the control and feedback components. A rejected particle is one which is subjected to a force, other than gravitational, which results in a change to its direction of motion. Accepted particles undergo no such force. In the case of the CommoDas ore sorter, rejected particles are those that are deflected by the compressed air jets whilst accepted particles are left to follow a parabolic path whose dimensions are determined by the horizontal velocity on leaving the conveyor belt and acceleration due to gravity. The sorter employs 128 compressed air valves aligned perpendicular to the direction of particle motion and covering a width equivalent to that of the conveyor belt. These valves blast ‘reject’ particles into a separate ore compartment/bin to that of the accepted particles, see Figure 3.10. 
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Figure 3.10 - (a) Accepted particle stream and (b) reject particle stream

The time between the collection of sensor data and a classification made is summarized in Figure 3.11. 


[image: image77]
Figure 3.11 - Processing time for CommoDas sorter
3. PACT Software for Control and Feedback

All aspects of the ore sorter are controlled using a single proprietry software package designed by CommoDas and known as PACT. Its purpose is to allow the user to tailor the ore sorter to the application at hand. To achieve this, the PACT software incorporates two functions. The first function is an interface for an expert to generate separation models which are the list of rules used to decide whether a particle should be accepted or rejected by the ore sorter. The models are based on the physical attributes of particles as measured by the optical and inductive sensors. The second function is the control of physical aspects of the sorter including the sensors, lighting, conveyor velocity and compressed air timing.

The remainder of this section is split into two sub-sections. The first describes the method by which a separation model is created (3.4.1) whilst the second discusses the physical aspects of the ore sorter that can be adjusted using the PACT software (3.4.2).

3. Creation of a Separation Model/Valve Image

Separation models are used by the ore sorter to create a ‘valve image’. The valve image is a series of instructions sent to the valve array describing which valves should be activated at any given moment as well as the duration of each activation. Valves are activated when particles that the separation model has categorised as ‘reject’ are passed under the valve array. The ore sorter processes the data required to create a valve image in a number of stages. The first stage is the collection of sensor data. This is followed by the manipulation of the optical sensor data. The modified optical data is then combined with the inductive sensor data before a final stage of processing based on either a number of particle attributes, object processing, or for some special applications solely on a particle’s surface area, surface processing. The final stage combines the two types of processed data and creates the valve image. All of these aspects of the valve image must be optimised by an expert, trained in the use of the PACT software. Figure 3.12 is a flowchart that summarises the process followed by the ore sorter when creating a valve image. 
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Figure 3.12 - Flowchart of decision making procedure used by ore sorter

The following sub-sections describe in detail each of the stages in the creation of a valve image. The bracketed numbers in Figure 3.12 relate to the sections in which each topic is expanded upon.

3. Optical Sensor Data
The optical sensor data used to create a valve image is simply the build up of scan lines taken by the optical sensor. The raw data that emerges from the sensor are pixels defined by their RGB values.

3. Image Manipulation

Image manipulation is the first stage in converting the raw data outputted from the optical sensor into a form useful for making separation decisions. In itself it consists of two steps. The first step is to convert the optical sensor data to the form utilised by the PACT sotware. The second step is a process of colour quantisation whereby the image data is simplified to reduce the computational expense of determining whether a particle should be accepted or rejected.

3. Conversion of Optical Data

The optical sensor data is converted from the RGB colour space to another colour space known as YUV. The YUV colour space is built up from three channels. The first two channels represent the colour, known as the chrominance, of a pixel whilst the third represents its brightness, known as the luminance. As the luminance of a pixel can be considered separately from its chrominance the affects of shadows, i.e. areas of low intensity, within an image will not effect the sorting process as they would the RGB colour space where any reduction in luminance is intrinsically linked with a change in chrominance. For this reason CommoDas, deems the YUV colour space to be more useful for ore sorting than the RGB. The conversion algorithm used by CommoDas to transform pixels from RGB format to YUV is proprietary and inaccessible to the user.

Within the PACT software, the three channels in YUV space have specific dimensions defining the number of possible values or quantum levels along its axes. The dimensions of the YUV space used in PACT are:

· Y – 256 quantum levels

· U – 1024 quantum levels

· V – 512 quantum levels 

Combining these quantum levels gives over 134 million unique points within the colour space. Henceforth each unique point will be referred to as a Colel (COLour ELement). The YUV colour space that is used within the PACT software is graphically represented in Figure 3.13.
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Figure 3.13 - The YUV colour space as used in the PACT software

3. Colour Quantisation
Upon detection by the sensors, there is a finite time in which the sorter must decide whether a particle is to be accepted or rejected – limited by the time required to travel from sensor to ejection array. This time is fixed by the speed at which a particle is moving and the distance between the optical sensor and the valve array. For sorters to operate at a high capacity this time is necessarily short. Therefore, the time taken to process data must be kept to a minimum. The primary aim of the image manipulation is to reduce the amount of processing required to create the valve image. 

During object processing the relative abundance of each unique colour on a particle surface is determined. These abundances are used to determine whether a particle should be rejected or accepted. If object processing was based on over 134 million points, it would be too computationally expensive and so would require the particle to move at so a slow velocity as to be uneconomic for sorting. Colour quantisation places colels into classes to reduce the number of unique points which must be examined during object processing.  It is achieved by combining colels that neighbour each other within the YUV colour space. Up to ten regions, known as colour classes, may be defined. In this way the computational cost is dramatically reduced. The classes are user defined and coincide with identified colour traits identified within particles. During colour quantisation the original image is transformed into a more basic secondary image, known as the simplified image, which is then passed on to the object processing stage. Each user defined class is labelled as either representing the background or foreground and is given a representative colour within the simplified image. Background colours are ignored during object and surface processing. The combined group of regions is known as the colour model and is used to quantise images.

Figure 3.14 shows an image of ore particles and the simplified image created during the colour reduction stage of processing. 
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Figure 3.14 - Original and simplified image of Raglan ore particles

In Figure 3.14, a bright green colour was chosen to represent the background. Yellow was used to represent chalcopyrite whilst black and white represent waste rock. The creation of colour classes is integral to the final valve image. The method used to create colour categories is described in the following section.

3. Defining Colour Classes
The classes used to divide the colour space take one of two forms, either boxes or colour clouds. Boxes are the simpler of the two class types to define. They are formed by describing distinct edges that represent the limits of a region within the YUV colour space which corresponds to a visual trait. The defined region encompasses all colels encompassed within it. To determine where the edges of a boxed region should be placed an image containing the particle under investigation is taken using the optical sensor. The Image Analysis application within the PACT software suite can then be used to generate histograms of the frequency of colels within an image. In practice there is a histogram for each of the channels of the YUV colour space, examples of which are shown in Figure 3.15.
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Figure 3.15 - Example histograms of colels for the Y, U and V channels
It is possible to place a filter at any point along one of the three histograms. Filtered pixels are then given a representative colour so as to be easily distinguished from those that are unfiltered. By manipulating the filters on all three histograms the desired colour trait can be separated from all others. The values at which these filters are set are equivalent to the position of the edges of the boxes to be set in the colour model. Figure 3.16 represents an example of a filtering process to separate pixels that represent the foreground from those that represent the background.
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Figure 3.16 - Image filtering by use of histograms

The top image in Figure 3.16 shows the unfiltered image and the histogram for the U channel. In the second image the filter on the U channel is shifted to the right. The second image shows the resultant filtration of pixels caused by this shift by displaying them in bright green. The change in the U histogram is displayed beside this image as is the resultant V histogram. The third image shows the affect of a shift to the V channel filter to the right and the final V histogram. The overall effect of this filtering process was to segregate the foreground pixels from the background ones. Figure 3.17 shows the box within the YUV colour space which is created as a result of the filtration process. The boxed region encompasses all foreground pixels whilst excluding all pixels that represent the background.
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Figure 3.17 - Boxed region of YUV space

Colour clouds are created using the chrominance values of a selection of pixels from within an image. These values when placed in the UV plane of the colour space form a cluster, or cloud, of colels. By selecting only the sections of an image that relate to an identified colour trait the cloud that is formed is representative of this trait. The creation of colour clouds involves the manipulation of more variables than for the creation of boxes and so is a more time consuming process. However, the method is preferential to boxes in situations where two identified colour traits lie in close proximity within the YUV colour space. In these circumstances creating the model using boxes would result in an overlap of classes, see Figure 3.18. 
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Figure 3.18 - YUV space segregated using boxes

As colour clouds are amorphous shapes it is much easier to create mutually exclusive colour classes. Figure 3.19 shows how the UV space segregated boxes in Figure 3.18 could be similarly segregated by colour clouds.
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Figure 3.19 - YUV space segregated using colour clouds

Colour clouds, like boxes, are created based on images taken using the optical sensor. In most cases it is desirable to select all pixels representing a particle and separating these from the background. 

The selection of pixels to be included in the colour cloud can take one of two forms. The first is by using a similar filtration technique to that used to create boxed regions. This though does not necessarily provide any better a separation than boxes and can result in similar regions of overlap.

The second method that can be used to select colels is a frequency filter. This filter only includes colels in the UV space that are relatively abundant within the image. The required abundance is user defined. The affect of changes in the frequency filter level are shown in Figure 3.20.
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Figure 3.20 - Effect on pixel inclusion when varying the level of frequency filter

In Figure 3.20, each image shows an increase in filter level. In each image the black pixels are included in the colour model whilst the grey pixels are not. The frequency filter can be used to segregate clouds which are adjacent by including only the most abundant colels within a particle.

It is possible to further manipulate the colour cloud after it has been added to the colour model. This manipulation can be used to add to or subtract from the area covered by the cloud. This is accomplished using two functions known as erosion dilation tools.

The effect of the erosion tool is to examine each colel within a cluster. If the colel under examination is not entirely surrounded by other colels from within the cluster it is removed from the colour model. The erosion filter can be used to reduce the size of colour clouds by removing outlying colels. A graphical representation of the erosion tool is shown in Figure 3.21.
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Figure 3.21 - PACT erosion filter tool

In Figure 3.21, the central colel on the left will not be eroded as it is completely surrounded by colels within the colour cloud. The central colel on the right will be eroded as it is not entirely surrounded by colels from the colour cloud. The colel on the right would therefore be removed from the colour cloud. The erosion process can be set at various integer levels. At each level the erosion process is undertaken a corresponding number of times.

The dilution can be considered as the opposite of the erosion tool its operation is to ensure that all colels within the colour cloud are entirely surrounded by other colels. It too can be set to a number of integer levels. Each level corresponds to the number of colels which will be added to each colel in the colour cloud. This operation is graphically represented in Figure 3.22.
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Figure 3.22 - PACT dilation filter tool

In Figure 3.22, a single layer of colels surrounding the central colel would be added to the colour cloud. In the image on the right two layers of colels would be added.
3. Priority System
The PACT software operates based on a priority or hierarchy system. Each colour class defined in the colour model is subject to this system. If there is any overlap in classes colels are placed in the category with highest priority. When colour categories overlap the priority system plays an important role in determining the result of the colour model. Careful consideration of class priority is required if an accurate separation model is to be created. 
3. Inductive Sensor Data
The inductive sensor can be set to operate as either an independent sensor or in conjunction with the optical sensor. When operating independently, the data obtained is fed directly to the valve array. In this mode, ejection valves are activated whenever the conductivity of a coil within the inductive sensor fluctuates. This method is ineffective in most minerals sorting applications due to the low resolution of the inductive sensor which will result in the ejection of all particles within the area of the detected object. When running large tonnages through the machine this may result in the unintentional rejection of particles.
When used in combination with the optical sensor, the conductive data is combined with optical information at the material level. The relative size of fluctuation in the coils is measured and recorded as a percentage for individual particles. Rejection can then be controlled by setting required levels in the fluctuation of the magnetic flux for a particle to be ejected. In this way, it is possible to control the rejection in a more sensitive and accurate manner. The increased accuracy in sorting is illustrated in Figure 3.23.
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Figure 3.23 - Inaccurate blasting when using inductive sensor independently

(after CommoDas, 2006)

3. Object Processing 
Before object processing data from the inductive sensor is combined with the simplified image. The aim of object processing is to examine virtual particles known as objects that are representative of the actual particles presented to the sensors. The separation decision is based on the measured properties of the objects. 

Objects are formed by grouping together pixels within the simplified image. It is at this stage that the importance of differentiating between foreground and background colour classes is realised. The image is scanned and any contiguous group of pixels that lie within foreground colour classes are grouped together to form a single object. The relative abundance of each colour class is then calculated for each object. These colour class percentages are used in conjunction with geometric properties of objects and the objects measured conductivity to determine whether a particle is to be rejected or accepted. Up to 32 unique object types may be defined and are referred to as materials within the PACT software. The material definitions are based upon the creation of boxed regions within the variable space of object properties. The number of dimensions in the object characteristic space is changeable. There may be up to ten colour categories and a conductivity measure which will vary between 0% and 100%. 

There are also four geometric variables for which limits can be set. The geometric properties are: 

· Surface Area 

· Height of bounding box

· Width of bounding box

· Shape factor

The surface area is given in terms of numbers of pixels. The bounding box is the smallest rectangle which entirely surrounds the object. The orientation of the rectangle is such that the height is perpendicular to the direction of the line scan whilst the width is parallel. Both height and width are measured in terms of numbers of pixels. The shape factor is calculated as:
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In equation 3.1: SF is the shape factor; 
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 is the length of the principle axis of the object and w and h are the width and height of the bounding box, respectively. This shape factor is limited in its ability to determine differences in shape. It provides, for example, no measure of angularity.
As with the image manipulation stage, the order of the materials is hierarchical during material processing. Each identified object is compared to the list of materials in order of priority. An object is classified as a specified material if its properties fall within its limits. Each material will represent a particle type and is set to be either rejected or accepted. The particle classification is then used to create a valve image. If a particle does not meet the requirements of any material then it is designated as unclassified and is automatically accepted. It is therefore important to have categories that encompass all objects. 

3. Surface processing
Surface processing is computationally much less expensive than object processing. The sorting is based entirely on the surface area of particles. No other information is used within the sorting decision. It is, therefore, not possible to combine data with that of the inductive sensor in surface processing.

In the image manipulation stage, two colours may be chosen to represent particles. These are known as area 1 and area 2. All other colours will be ignored, i.e. considered background, during surface processing. Surface area limits are then set for the areas being used and rejection is based purely on this criterion.

3. Combined Valve Image
The results of both the surface and object processing produce a valve image. These images are combined to create a final valve image. If one of the processing streams has not been used it is still active but will have no data and so the combined image is identical to the stream that has been used. The combined valve image is sent to the valve array where the appropriate compressed air jets will be activated when a particle needs to be rejected. 

The valve image consists of a data record for each particle which will include: the position of the particle on the belt; the time at which the particle was detected; the number of valves to be opened to reject the particle and where the air blast will be centred. The first two variables are independent of particle type. The position of the particle on the belt and the time it was detected are recorded so that it is known where and when the particle will pass under the valve array. This is essential to ensure accurate blasting of particles.

3. Control of Physical Aspects of the Sorter
The PACT software contains modules that allow for the adjustment of many of the physical aspects of the ore sorter. The settings used for these variables are task dependant and so must be optimised to ensure a successful separation of materials. This section will examine in detail the methods by which the sorter variables may be adjusted and the merits of using one variable setting over another. The variables that will be examined are those of the sensors, lighting, conveyor velocity and compressed air valves.

3. Control of Optical Sensor Variables

The main variable of concern when using the optical sensor is the exposure time. To avoid overloading and thus damaging the CCDs the time must be kept below 500μs. In practice, the standard exposure time is set based on the intensity of reflected light from a white surface and is known as a white balance. The exposure time is adjusted by the user to ensure that the exposure is high for this surface. This ensures that particles are neither over nor under-exposed during the running of the sorter. As well as ensuring a standard exposure the white balance also allows for the correction in the variation of light levels across the area covered by the line-scan camera. This is a vital stage to ensure that differences in intensity measured by the camera are as a result of particle properties and not variations in light levels. Figure 3.24(a) shows the intensities of the R, G and B channels across the area covered by the line scan camera before correction whilst Figure 3.24(b) shows them after correction.
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Figure 3.24 - (a) Uncorrected and (b) Corrected light intensities

After this initial stage of setting and correcting exposure levels it is further possible to deliberately over or under-expose an image taken using the optical sensor. The affect of over-exposing an image is to increase the intensities recorded by the camera. This may be necessary for darker particles to ensure that differences in chrominance are identifiable. The disadvantage of overexposing an image is that it results in a blurring of an image. This is obviously disadvantageous and could result, for example, in inclusions within particles being overlooked. For each task an optimal balance between intensity and resolution must be found.
3. Control of Inductive Sensor Variables

The PACT software has two coarse settings for the inductive sensor. The sensor is set at either high or low sensitivity. These settings relate to the relative loss of current at the receiver coils for an identical particle, with a low sensitivity setting resulting in a lower change in current. Fine tuning of the system is achieved through a scale of values ranging between 0% and 100% within each sensitivity range with higher percentage values increasing the sensitivity of the inductive sensor. The value chosen will depend on the material that is being detected. For example, if only trace amounts of metal are present within an ore then a high sensitivity is required to ensure detection however a separation between various types of ferric metals would require a low sensitivity so as to avoid saturation of the sensor.

3. Control of Lighting Variables

There are two light sources employed by the ore sorter. The first source provides reflected radiance. This light source is situated above the particle and reflects radiance from particle surfaces to the optical sensor.  The second light source provides transmitted radiation. In this case the light source is situated below the particles and radiation is refracted through particles and to the optical sensor.

In most circumstances it is desirable to use both light sources, however, for certain niche tasks it may be advisable to use only one light source. For example, when sorting translucent glass it is likely that the smooth, glassy surfaces would result in the complete reflection of light for certain particles. This glare would result in the misclassification of glass. If only transmitted light were used this problem would be avoided.
3. Control of Conveyor Belt Velocity

The speed at which the conveyor operates can be set at one of three levels within the PACT software. In most circumstances the belt speed is set at its maximum level to maximise the throughput of the machine. Lowering the speed though would be useful as it would counteract the blurring associated with increasing the exposure time of the optical sensor. If the belt speed were halved then the exposure could in theory be doubled with no loss in particle resolution. 
3. Control of Compressed Air Valve Variables

There are a number of adjustable variables for the compressed air jets within the PACT software. The first is the delay between particle detection and the activation of compressed air jets. This value is standard for all particles during a separation. The delay time for most materials is between 22 ms and 25 ms. The exact value will vary and is dependant on the effect of air resistance on individual particles. This variable is used in conjunction with the physical manoeuvring of the baffle which separates rejected and accepted particle bays to ensure accurate rejection.
The other adjustable variables are based around the rejection of individual particle types; they are: 

· The number of valves activated to reject a particle

· The minimum and maximum activation time of valves

· The position at which the activation of valves is centred 

Each of these variables will be set depending on the average size, shape and density of the material that is being processed. The number of valves used to reject a particle will depend on the size and density of the particle. Larger, denser particles will require more jets and these jets will need to be activated for longer periods of time to ensure the particle is rejected. Small, light particles need only a small number of valves open to be rejected. Activating too many jets in these circumstances may lead to the unintentional ejection of neighbouring particles. The minimum and maximum activation times will also vary depending on particle size and density to ensure that particles are effectively rejected without interfering with other particles. The position at which the blast will be centred is set as either the centre of the particle’s bounding box or at its centre of gravity (COG). For most regular shaped particles blasting centred on the bounding box is sufficient, however, for irregular shaped particles it may be desirable to centre the blast on  the COG to ensure an accurate rejection. 
3. Discussion
The PACT software contains all the functionality required to operate the CommoDas optical sorter. It does however, have a number of limitations. For example, the software is proprietry and so provides no oportunity to manipulate the way in which functions are implemented. Its propietry nature also means that any user must be trained by CommoDas.
A further limitation in the software is that it was designed for industrial applications. In such circumstances a small number of separation models are created and the software is used almost entirely for the day-to-day control of the sorter. In a research environment, a large number of separation models are generated and system settings are often varied. It was found that limitations in the coding of the PACT software resulted in a large number of errors when operated as a research tool.

Further limitations in the software may be attributed to its development for recycling applications which do not contain the same complexities as are found in minerals applications. For example, the need for expert training reduces the flexibility of the machine when faced with changes in situation, such as unexpected changes in geology between ore zones. Such changes are less likely to occur in the recycling industry. The software also contains no means of implementing the grade of particles in the separation decision.
4. Novel Particle Discrimination Techniques
To overcome the identified deficiencies in the PACT software a number of novel particle discrimination techniques were developed, in particular unsupervised learning techniques were investigated as an alternative to the expert training used in the PACT software. This chapter presents the techniques that were developed and explains the reasoning behind their selection. It also summarises the software that was developed in order to develop these novel methods. 
All software developed to investigate novel discrimination techniques was coded in the Visual Basic for Applications (VBA) programming language. This language was chosen as it is readily available and so allows for the customisation and development of the software by future users to suit a particular application. 

The Microsoft Excel environment was chosen as a user interface as the tasks required the manipulation of numerical data and Microsoft Excel contains a large number of inbuilt functions designed for this purpose.  

The chapter is split into a number of sub-sections each of which focuses on an aspect of discrimination. The first sub-section describes the use of unsupervised learning techniques for colour quantisation (4.1). This is followed by a method of implementing these within the PACT environment (4.2). The last sub-section describes alternative software for material definition and particle classification (4.3).
4. Unsupervised Learning Techniques

Unsupervised learning techniques were developed as an alternative to the PACT colour quantization technique which relies on an expert to train a separation model as shown in Chapter 3 on the use of the PACT software. By implementing unsupervised learning techniques any bias is removed from this process and the reliance on a trained technician is diminished. 
The problem of colour quantisation is one commonly associated with the storage and manipulation of digital images and so it is proposed that techniques from these fields are adapted for use with the ore sorter. Colour quantisation is used, for example, to compress images for use in mobile and hand-held equipment which generally contain only a small memory (Omran & Engelbrecht, 2005). It is also used to reduce the computational time required to process and understand images (Atsalakis et al., 2002). This is utilised, for example, in text and speech recognition software.

The goal of colour quantisation is to reduce the number of colours within an image whilst minimising the distortion to the image itself (Velho et al., 1997). In other words the visual differences between the original and quantised images are minimised. 

Colour quantisation operates by mapping colours from an original image to a smaller set of colours in a quantised image. The process is accomplished in two stages. The first stage is the creation of a colourmap, or colour palette. This consists of a small set of colour classes, usually between 8 and 256, chosen from all possible points in the colour space. Each class is assigned a reference colour. The colours may be chosen automatically using one of a number of algorithms during colour quantisation. The PACT software utilises a user-defined colour palette created using cuboids or clouds to segregate the YUV colour space. 

The second stage in colour quantisation is known as pixel mapping. Pixel mapping assigns each pixel within an image to one of the reference colours. This is usually accomplished by calculating a distance measure, e.g. Euclidean distance, between the pixel and each reference colour; it is then assigned to the nearest colour. The technique can be considered as a clustering problem in a three-dimensional space, for the three colour channels (Atsalakis et al., 2002).

4. Selection of Appropriate Techniques

For the purposes of classification unsupervised learning techniques were chosen as they require no previous knowledge of the relationship between objects. Five unsupervised techniques were chosen from those described in Chapter 2. These were the k-means, Competitive Learning (CL), Kohonen Self-Organising Map (KSOM), Rival Penalised Competitive Learning (RPCL) and Hybrid Competitive Learning (HCL) algorithms. The k-means and (CL) algorithms were chosen as they are generally regarded as standard clustering methods. The KSOM, RPCL and HCL algorithms were chosen due to their stability to variations in initial conditions and their superiority to the k-means and CL algorithms as documented in previous research including papers by King and Lau (1999) and Kohonen (1998). One further technique chosen was that of Agglomerative Hierarchical Clustering (AHC). 

4. Implementation of Unsupervised Techniques

To facilitate the unsupervised clustering, software was designed within a Microsoft Excel Spreadsheet. A detailed description of the functionality of this spreadsheet can be found in Appendix A. The selected unsupervised clustering techniques were modelled using the Visual Basic programming language. Pseudo-code for each of the techniques is shown below.

4. Pseudo-code for the K-means Algorithm
The pseudo-code in Figure 4.1 summarises the way in which the k-means algorithm was implemented. The full code which includes coding to import, normalise and export images can be found on the compact disk labelled ‘VBA Coding’ which accompanies this thesis or via the Exeter Research and Institutional Content archive (ERIC).
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Figure 4.1 - Pseudo-code of k-means algorithm
4. Pseudo-code for Kohonen Self Organising Maps
Kohonen self-organising feature maps are parallel processors. As the pseudo-code was written for serial processing, the training and running of the KSOM is longer than would be the case for a purpose built KSOM. Figure 4.2 shows the method of computation in pseudo-code.
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Figure 4.2 - Pseudo-code for KSOM algorithm
The pseudo-code in Figure 4.2 summarises the way in which the KSOM algorithm was implemented. The full code which includes coding to import, normalise and export images can be found on the compact disk labelled ‘VBA Coding’ which accompanies this thesis or via the Exeter Research and Institutional Content archive (ERIC). The pseudo-code was developed based on coding available at: http://www.ai-junkie.com/ann/som/som1.html. This implementation was also used to operate the CL algorithm using an initial neighbourhood radius of 0.

4. Pseudo-code for HCL Algorithm

The pseudo-code in Figure 4.3 summarises the way in which the HCL algorithm was implemented. The full code which includes coding to import, normalise and export images can be found on the compact disk labelled ‘VBA Coding’ which accompanies this thesis or via the Exeter Research and Institutional Content archive (ERIC).
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Figure 4.3 - Pseudo-code of HCL algorithm
4. Pseudo-code for RPCL Algorithm
The RPCL algorithm was developed based on the KSOM algorithm. Figure 4.4 shows the implemented algorithm in pseudo-code. The full code which includes coding to import, normalise and export images can be found on the compact disk labelled ‘VBA Coding’ which accompanies this thesis or via the Exeter Research and Institutional Content archive (ERIC).
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Figure 4.4 - Pseudo-code for RPCL algorithm
4. Pseudo-code for AHC Algorithm
The pseudo-code in Figure 4.5 summarises the way in which the AHC algorithm was implemented. The full code which includes coding to import, normalise and export data can be found on the compact disk labelled ‘VBA Coding’ which accompanies this thesis or via the Exeter Research and Institutional Content archive (ERIC).
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Figure 4.5 - Pseudo-code for AHC algorithm

4. Implementing Data to PACT Software
For the unsupervised clustering techniques to be integrated into the PACT software it is necessary to partition the YUV colour space. The PACT software stores the partitioned space using a three dimensional array which contains an address for each point within the colour space. The quantised colour at each unique point is stored and used during processing. To replicate this process it was necessary to partition the YUV space based on the clustered data and then to transfer this data to a three dimensional array of quantised values. As no software was available to undertake this task a program was developed within the Microsoft Excel Environment. This program partitioned the YUV space using the positions of cluster centroids and the nearest neighbour principle.

The spreadsheet used to partition data was based on a single worksheet. The worksheet contained an input table for the YUV values of the cluster centroids that were pre-determined using one of the clustering techniques. Based on these centroids the program produces two charts. The first shows the partitioning of the chromatic channels (UV) and the second of the luminance (Y) channel. Each centroid is colour coded so that it can be tracked between the two charts and the original input table. An example of a colour coded data table is shown in Table 4.1. The related chrominance and luminance charts are shown in Figure 4.6 and Figure 4.7 respectively.
Table 4.1 - Example cluster centroids
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Figure 4.6 - Nearest neighbour partitioning of chrominance space
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Figure 4.7 - Nearest neighbour partitioning of luminance space

The colour coded values in Table 4.1 correspond to the same colours shown in the Y and UV charts. The solid black lines within the chart represent the limits of the nearest neighbour for each centroid and are formed based on the perpendicular bi-sectors between centroids. The VBA coding used to partition the data is shown on the compact disk labelled ‘VBA Coding’ which accompanies this thesis or via the Exeter Research and Institutional Content archive (ERIC).
The partition spreadsheet was designed to provide a visualisation of the partitioning of the YUV colour space. However, in the form shown the data is incompatible with the PACT software. To partition the space for use in the PACT software a quantised array of the colour space is required. This is achieved by creating a three dimensional array of all points within the colour space and presenting each to a nearest neighbour algorithm. The output of this algorithm is a quantised array. Pseudo-code for this process is shown in Figure 4.8.


[image: image101]
Figure 4.8 - Pseudo-code to create array of quantised colour values

The pseudo-code in Figure 4.8 outputs an array directly compatible with the PACT software and sorting system. Full code for this process was not constructed as the outputs of the clustering algorithms are data in the YUVSTD colour space whilst the PACT software uses the YUVPACT space which is non-standard and undisclosed.

4. Quick Optimisation of Material Settings

The modules within the PACT software used to determine material characteristics and rejection criteria were found to be inadequate when separations involved a large number of optical traits and mineral types. 
The reasons for this were twofold. Firstly, due to limitations in the coding of the PACT software, the removal of colour classes or materials from a separation model would often result in system errors requiring the entire model to be deleted. Secondly, the software included no provision to link the measured physical properties of a particle with its mineralogy. This limited the scope to explore the effect of changes in classification.

 A ‘Material Settings’ spreadsheet was created to overcome these deficiencies; a detailed description of the functionality of this spreadsheet can be found in Appendix B. The Material Settings spreadsheet was designed as a tool for the quick establishment and optimisation of material settings and rejection criteria without errors caused by limitations in the PACT software coding. The spreadsheet was also designed to allow the user to view the outcomes of rejecting different combinations of materials without the need for further processing. In this way it was possible to examine a number of possible separations in a short period of time. 
By necessity the software must be used in conjunction with the PACT software. There is no link between the two pieces of software and so the optimised material settings and separation combination must be copied from the Material Settings spreadsheet into the PACT software to be implemented. The VBA coding which underpins the Material Settings spreadsheet is shown on the compact disk labelled ‘VBA Coding’ which accompanies this thesis or via the Exeter Research and Institutional Content archive (ERIC).

5. Calibration of CommoDas Automated Sorter
Calibration of the automated sorter was undertaken to evaluate both the potential and limitations of the sorting equipment. Such a step was essential to allow for the accurate determination of the amenability of the sorter to mineral sorting applications. 
The calibration work focussed on the optical sensor as the control of this sensor is dependant on the simultaneous optimisation of a large number of variables. The inductive sensor is controlled by a single variable and so the necessity for calibration was considered to be limited. 
5. Introduction

The calibration of the automated sorter began with relatively simple separations involving model particles such as LEGO® blocks. The aim of this initial work was to gain familiarity with the numerous variables associated with the control of the automated sorter.  This was followed by further testing of the optical sensor by way of an investigation into the sorter’s ability to estimate size distribution based on optical sensor data (a summary of this investigation can be found in Appendix C). The motivation behind this work was to gain experience in manipulating the data generated by the CommoDas sorter outside the PACT software environment. 
With increased understanding of the sorter, areas requiring further calibration became more apparent. The remainder of this chapter summarises the main aspects investigated during this calibration testwork.  These included an investigation into the correction of image distortion (5.2); the determination of the angle of the optical sensor (5.3) and an investigation into the sorter’s ability to identify inclusions (5.4). 

5. Image distortion

The PACT software includes a feature to correct for image distortion to ensure that the size and shape of particles are correctly recorded. This feature requires the manual input of a magnitude of distortion in order to correct for it. This section of work describes a universal proof developed to determine this magnitude of distortion.
As described in Chapter 3, the dimensions of a pixel for the optical sensor is dependant on the width and velocity of the conveyor belt, the number of capacitors and exposure time of the optical sensor. The width of the belt and the number of capacitors was fixed, so that the width of a pixel was a constant of 0.3 mm. The velocity of the belt was also fixed during experimentation to approximately 3 ms-1. The only variable which determined the magnitude of the image distortion was, therefore, the exposure time, or more properly, the line time which is the exposure time plus about 20 μs for the processing of data. The exact relationship between line time and image distortion, or the ratio between a pixel’s width and length was deduced as shown below.
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Using this calculation, it was possible to determine the expected image distortion for any line time. A graph of line time against image distortion is shown in Figure 5.1.
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Figure 5.1 - Graph of line time against image distortion

To ensure that the relationship displayed graphically in Figure 5.1 could be used to predict and correct image distortion, experimental data was collected at line times of 100, 150 and 200 μs. The measured distortions at these times were super-imposed on the expected data, as shown in Figure 5.2.
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Figure 5.2 - Experimental and expected image distortion

It can be seen that the expected distortions match well with the experimental values and so it can be concluded that the relationship displayed graphically in Figure 5.1 may be used during experimentation to predict and correct the effect of image distortion. 

5. Optical Sensor Angle

The optical sensor employed by the CommoDas automated sorter is located above the conveyor belt and views particles through an angled mirror. Particles are not, therefore, viewed parallel to the vertical, see Figure 5.3.


[image: image105]
Figure 5.3 - Angle of camera line of sight
This section of work describes testwork undertaken to determine the angle at which particles are viewed and so better understand the proportion of the total surface area that is analysed by the optical sensor. Figure 5.4 highlights the effect of a change in angle may have on the proportion of visible surface area.


[image: image106]
Figure 5.4 - Effect of Sensor angle on surface area visible
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To accurately determine the angle at which the optical sensor observes particles it was necessary to develop a model particle in which the horizontal and vertical faces were visually separable. In such an object the actual dimensions of the visible faces and those dimensions recorded by the optical sensor could be compared to determine the angle at which particles are viewed. This was deeduced using trigonometric theory, as shown in Figure 5.5.
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Figure 5.5 - Optical sensor angle

To calculate the angle of the optical sensor as shown in Figure 5.5 it was necessary to ensure that while being imaged the model particle did not rotate to ensure that the calculated angle could be referred to the vertical. The chosen particle was a rectangular with a length large enough to ensure that most of the particle remained on the belt when the particle was analysed. This is illustrated in Figure 5.6, which also contains approximate dimensions for the particle.


[image: image108]
Figure 5.6 - (a) position of particle on belt and (b) particle dimensions

Using the model particle illustrated in Figure 5.6(b), the angle of the optical sensor was found to be approximately 19º from the vertical. This angle meant that as well as the ‘top’ of particles being visible to the optical sensor, the ‘side’ of a particle was also visible.

5. Inclusion Detection

The work undertaken to correct for image distortion and to determine the angle of the optical sensor was built upon in a further stage of investigation, testing the optical sensor’s ability to detect inclusions within particles. This is an important operation as most ores will be unliberated when processed by the sorter due to the particle size ranges under which the sorter operates. 

The work resulted in the production of a table of the probability of detecting inclusions under different conditions using a number of optical sensor setups. The work began by analyzing, regular shaped, model particles using the CommoDas optical sensor. This was done so that results could be easily correlated and understood based on the physics of the model particles. This work was then used to predict the CommoDas sorter’s ability to detect various sized inclusions and lastly to predict the effect of using two optical sensors to detect inclusions.

5. Model Particles
The model particles chosen for the work were cubes created using LEGO® blocks. An illustration of the particles with dimensions is shown in Figure 5.7. 
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Figure 5.7 - Dimensions of model particles

A square, blue inclusion with sides measuring 16 mm was chosen for the test work so that the inclusion was distinct from the remainder of the particle and its surface area measurable. Based on the dimensions of the model particles, the probability of the optical sensor detecting an inclusion was calculated. The theory which was developed to achieve this is outlined in the remainder of this chapter.
5. Probability of Detecting Inclusions in Model Particles
The investigation into inclusion detection began by examining all possible orientations at which a model particle could be viewed by the optical sensor. The results of this work are summarised below.
The angle at which the particle was presented at, when compared to the line of sight of the optical sensor, determined the visibility of the inclusion. This angle was expressed in terms of the rotation in three principle axes, perpendicular to one another, as shown in Figure 5.8.

[image: image110.png]o

o

o°





Figure 5.8 - Principle axes of rotation

Due to the method of presenting particles to the optical sensor, two of the axes of rotation could only exist in a small number of fixed positions. Particles were presented to the optical sensor via an Eriez vibratory feeder and stabilization on the conveyor belt. After stabilization, the angles of rotation in the y-axis and z-axis, as referenced in Figure 5.8, could only be one of four fixed values as determined by the cubical nature of the particle. 
Assuming the z-axis in Figure 5.8 is parallel to the direction of motion for the conveyor belt then the angle of rotation in the z-axis can only be 0º, 90º, 180º or 270º as these equate to the angles of each of the four faces in the z-axis. Similarly the angle of rotation in the y-axis must be approximately 71º, 161º, 251º or 341º as the angle of the optical sensor is offset from the vertical by 19º. The only angle which was a continuous variable was that in the x-axis of rotation. This angle could vary between 0º and 360 º.

The visibility of the inclusion was dependent on the angle of each of the three principle axes. The angles of rotation was grouped into three categories that relate to the inclusion being on the ‘top’, ‘bottom’ or one of the ‘side’ faces of the cube. The visibility of the inclusion in each of these categories is summarized in Figure 5.9.
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Figure 5.9 - Visibility of inclusions

The first particle in Figure 5.9 (i) shows the particle as seen by the optical sensor when the inclusion is on the top face of the particle. Regardless of rotation in the x-axis the inclusion would be visible. The second particle (ii) illustrates the optical sensor’s view when the inclusion is on the bottom face of the particle; as in the first image, rotation in the x-axis has no affect the visibility of the inclusion. With the inclusion on a ‘side’ face the visibility becomes dependant on the angle of the particle in the x-axis. Images (iii) to (vi) in Figure 5.9 show the visibility of the inclusion with rotation about this axis. In image (iii) the inclusion would not be visible as it is located on a ‘side’ face which is not in the line of sight of the sensor. In images (iv) and (v) the ‘side’ face containing the inclusion would become visible to the optical sensor as the horizontal angle varied. In image (vi), the horizontal angle is 180° from that in (i) and so the inclusion would not be seen. Figure 5.10 summarises the probability of detecting an inclusion on the cube shaped particle.
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Figure 5.10 - Probability of detecting inclusion

It can be seen from Figure 5.10 that the probability of an inclusion being visible on the ‘top’ face is 1/6 whilst the probability of the inclusion being visible on a side face is 1/3. The combined probability of the optical sensor detecting an inclusion is 1/2, as shown in Equation 5.1. 
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It would, therefore, be expected that in a single pass through the optical sensor 1/2 of all particles containing inclusions would be detected and that of these detected inclusions, 1/3 (1/6 
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 1/2) would be detected on a ‘side’ face and 1/3 (1/3 
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 1/2) on the ‘top’ face.

5. Expected Measured Inclusion Size

As previously shown the angle of a particle can be expressed in terms of rotation about three perpendicular axes. The next stage of this testwork sought to determine the apparent size of the detected inclusions. This sub-section summarises the findings of this work.

The first stage in this work was to determine the affect of particle orientation on the apparent size of visible faces on the model particle. The optical sensor will collect data on either two or three faces of the model particle, depending on the particle’s orientation, see Figure 5.11.
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Figure 5.11 - Cube faces visible to optical sensor

The apparent size of the top face (1) will not vary with rotation about the x-axis and so is purely a function of the angle of rotation in the y-axis. Based on this, the relationship between apparent and actual size was determined as shown in Equation 5.2.
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The apparent size of the side faces (2,3) are dependant on the angle of rotation in both the y-axis and x-axis. The relationship between apparent and actual size for inclusions on one side face was calculated as shown in Equation 5.3.
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The area of the second face was then calculated as shown in Equation 5.4.
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From Equations 5.3 and 5.4 it can be seen that the areas of the two side faces are inversely proportional. Using Equations 5.2, 5.3 and 5.4, the effect of rotation on the fraction of the total surface area visible as an inclusion was determined. 

The combined visible surface area is the sum of the area of the three visible faces. For the ‘side’ faces (2,3) the fraction of this area measured as an inclusion would be expected to be:


[image: image120.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

coscos  

sincoscossin  

yx

yyxyx

actualinclusionsize

cosactualfacesize

qq

qqqqq

´

éù

++´

ëû

  Eqn 5 MACROBUTTON AuroraSupport.PasteReferenceOrEditStyle ( "" "5."
5.

 SEQ Eq \* arabic \* MERGEFORMAT 
5
)
For the top face (1), the fraction area would be expected to be:
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Using these equations and the knowledge that the angle of rotation about the y-axis was fixed and could be considered to be 71º (90º - 19º), in reference to Figure 5.8, graphs of the expected inclusion size as a percentage of the surface area were created, see Figure 5.12. 
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Figure 5.12 - Variation in inclusion size with horizontal angle

Figure 5.12 shows that the inclusion size would be expected to lie between 0% and 7% and 16% and 19%.
5. Experimental Validation of Expected Results

Having established a theoretical mechanism by which the probability of detecting an inclusion and the relative size of this inclusion could be determined; the next stage in the testwork was an experimental validation of the theoretical framework.

To validate the theory, 25 particles identical to the one illustrated in Figure 5.7 were passed repeatedly through the sorter so that a total of 509 measurements were taken. Each measurement contained the relative proportions of ‘blue’ inclusion and ‘black’ host material. A histogram of the size of measured ‘blue’ inclusions as a percentage of the total surface area is shown in Figure 5.13.
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Figure 5.13 - Histogram of inclusion size as percentage of total surface area

The histogram shows that of the 509 particles examined by the optical sensor, inclusions were detected on 262 of them. Where inclusions were detected it can be seen they fall in two distinct regions. There were 183 particles on which the inclusion represented over 0% but less than 8% of the surface area and 79 between 17% and 22%. The relative inclusion sizes obtained by experimentation were as predicted by the suggested mechanism and so validate the theory. Small variations in the experimental and theoretical values were likely as a result of the blurring of pixels at the boundary between the ‘blue’ inclusion and ‘black’ host material as well as between the host material and background.

The proportion of inclusions detected on the top and side faces also supports the theory for determining the probability of detecting inclusions outlined above. A comparison of theoretical and experimental probabilities of detection are summarised in Table 5.1.

Table 5.1 - Probability of detecting inclusion

	Event
	Probability

	
	Expected
	Experimental

	Detect Inclusion
	0.500
	0.515

	Detected Inclusion on ‘Top’ Face
 – given inclusion is detected
	0.670
	0.698

	Detected Inclusion on ‘Side’ Face

– given inclusion is detected
	0.330
	0.302


The table illustrates a good agreement between the expected and experimental probabilities.

5. Inclusion Detection and Automated Sorting

Having established a mechanism by which the probability of detecting inclusions could be determined, the significance for the minerals industry of the results for the CommoDas optical sorter was next examined.

Based on the experimentation undertaken, the probability of detecting an inclusion in the model particles was found to be about 0.5. In terms of automated sorting, this would mean that in a single pass only 50% of particles with inclusions would be recovered; this represents an extremely low expected recovery of particles. To increase the recovery multiple passes would be required. The fraction of particles likely to be recovered for a given number of passes was determined as follows:
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In Equation 5.7, n is the number of passes. Based on this it was estimated that to recover over 99.9% of particles with inclusions would require about 10 passes through the CommoDas sorter, as shown in Figure 5.14. 
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Figure 5.14 - Chart of number of passes against recovery

A further conclusion drawn from the experimental results was that if the size of the inclusion affected a particles classification then the sorter would be ineffective. The inclusions viewed on the side are distorted by the angle at which they are viewed. Therefore, two inclusions of the same size could be measured differently depending on whether the inclusion is on the top or side face. The probability of measuring an inclusion at its actual size would then, in theory, fall to approximately one in six for a cube. 

5. Effect of Inclusion Size on Probability of Detection

The theory established for predicting the probability of detecting an inclusion was next applied to predicting the probability of detecting larger inclusions. Two further inclusion sizes were examined; in the first the inclusion was visible from three faces and in the second from five faces. The three inclusion sizes are shown in Figure 5.15.
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Figure 5.15 - Inclusion sizes investigated

For the three face inclusion the probability of detection with the CommoDas sorter was predicted to raise to 87.5% while the probability of viewing the inclusion on the top face would raise to 50%. This increase would mean that if all particles contained such inclusions, only two passes would be required to recover over 98% of the particles. For particles with the largest inclusion, visible from five faces, the inclusion would always be detected. However it was predicted that it would only be seen at its largest 17% of the time. All these predictions would only hold true for an unbiased cube. 

5. Multiple Optical Sensor Systems
The final stage of the inclusion detection testwork was to apply the developed theory to other optical sensor systems. Two types of multiple optical sensor systems, orthogonal and parallel, were considered during this section of work. Figure 5.16 illustrates these two setup types. The aim of the work was to determine the affect of using multiple cameras on the probability of detecting inclusions. 
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Figure 5.16 - Parallel and orthogonal optical sensor systems

For a parallel system the feasibility of successfully detecting inclusions would increase. Assuming that the cameras are not offset from the vertical the probability of detecting a small inclusion was determined to be 33% as the inclusion would be seen in its entirety on the top or bottom face. For an orthogonal two camera system the probability of detecting a single small inclusion was determined to be 50%. A summary of the calculated theoretical probability of detecting inclusions for these setups is shown in Table 5.2.

Table 5.2 - Expected probability of inclusion detection

	Inclusion Type
	1 Sensor -

No y-axis offset
	1 Sensor -

y-axis offset
	2 Sensors – Orthogonal
	2 Sensors - Parallel
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	0.170
	0.500
	0.500
	0.330
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	0.500
	0.875
	0.875
	1.000
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	1.000
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All values in the table hold true for an unbiased cube. The ‘1 sensor - no y-axis offset’ system is one that is similar to the CommoDas optical sensor system but the angle at which the sensor views the particles is parallel to the y-axis (0º), so that only one face is visible. The method used to determine the probabilities is shown in Appendix D. 
Based on these probabilities it was possible to critically compare various optical sensor systems for their ability to detect inclusions. For example, if only one sensor is used -with no y-axis offset; the low expected probability of detecting inclusions on one or three faces prohibits the use of such a system for inclusion detection. It can be seen that by offsetting the angle of the optical sensor the probability of detecting inclusions is increased by 37.5% for both the one and three faced inclusions.

Another interesting point is that the two sensor orthogonal system is not expected to increase the probability of detection over the single sensor of the CommoDas sorter. This is because the orthogonal system only views a maximum of three faces of the cube which is the same as the CommoDas sensor. This also highlights the advantages of offsetting the optical sensor from the vertical. 

The parallel system is ideal for examining larger inclusions, however, it would be expected to perform less well when detecting smaller inclusions. If the parallel system were offset from the vertical, all faces of the cube would be visible and so the probability of detection would be expected to be 100% for all inclusion sizes.

5. Discussion and Further Experimentation
The work undertaken has shown that for cubes the probability of detecting inclusions is predictable. Further work should concentrate on more realistic particles. For example, the probabilities would be expected to change for irregular particles and for particles in which the centre of mass is not equal to the geometric centre of the particle. If the material within the inclusion is extremely dense in comparison to the surrounding material it would be expected that the particle would be more likely to land such that inclusion is on the bottom side of the particle, this would lead to a much lower probability of detection for the CommoDas sorter.

Further to this, the probability of detecting inclusions should rise as particles become either flatter or more rounded as such shapes increase the percentage of the total surface area visible, as illustrated in Figure 5.17. 


[image: image131]
Figure 5.17 - Effect of particle shape on proportion of visible surface area

Figure 5.17 shows that the proportion of visible surface area increases as particles become flatter and/or rounder which would be expected to lead to a higher probability of detecting inclusions. Experimentation to evaluate this effect should be undertaken.
Further testwork into inclusion detection should focus on two areas. The first is the confirmation of expected results for multi-sensor systems. This work could be simulated on the CommoDas sorter by using model particles with multiple inclusions, as shown in Figure 5.18.
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Figure 5.18 - Particles to simulate multiple sensor systems

The second area of focus should involve the analysis of irregular shaped particles and particles with non-uniform mass distribution. Such particles would more accurately emulate the practical circumstances of automated sorting.


6. Proposed Methodology for Sorting of Minerals
Internationally recognised, standard techniques have been developed for testwork in many established mineral processing disciplines. These techniques ensure that test data is reproducible and that testing can be undertaken in a quick and efficient manner. Due to the relatively recent development of automated sorters as a mineral processing technique, such guidelines have yet to be established for them.
The objective of this chapter was to address this issue by presenting a general practice, or methodology, by which the ability of an automated sorter to separate a mineral ore can be quickly and efficiently evaluated. The methodology focuses on optical and conductive or EMS based sorters.

The methodology consisted of six stages of investigation to be carried out sequentially. The six stages are:
· Characterisation of ore under investigation (6.1).

· Preparation of ore sample (6.2)

· Determination of sensor potential for accurate sorting – adopting a multi-sensor approach if a single sensor cannot sort the ore (6.3).  

· Training and optimisation of ore sorter (6.4).

· Determination of rejection criteria (6.5).

· Sorting of bulk samples to determine success of sorting operation (6.6).

The bracketed numbers above indicate the section in which each step within the proposed methodology is detailed. 
6. Characterisation of Ore

The first step of the methodology for determining the potential for ore sorting was the characterisation of the ore. This stage of the work entailed a small desk study. The stages that were considered to be vital in this stage of work are summarised below.

Ore characterisation involved gathering information on the geology and mineralogy of the deposit from which the ore originates. This step was considered to be important for a number of reasons. The work identified minerals that were likely to be encountered during sorting. Also, information on known impurities within the ore and the relationship between the various mineral types was identified. The work also gave an idea of the economic worth of the various minerals and their abundance within the sample. This knowledge could then indicate a preferred method of separating the ore, i.e. ferrous and non-ferrous minerals that could be separated conductively. Knowledge of the geology and mineralogy of the ore was also considered to be essential for the interpretation of results in later experimental work.

Characterising the ore under investigation is an essential first step in any separation procedure. By gathering this information further investigative work is based upon a sound understanding of the ore itself. 

6. Sample preparation
Sample preparation is an integral stage in ore sorting. The exact requirements of sample preparation are dependant on the sensors employed by the ore sorter but will generally consist of two stages. The first stage involves the screening of particles into tight size ranges ensure accurate particle rejection (6.2.1) whilst the second stage prepares particles to maximise their likelihood of being identified by the sensors (6.2.2). 

6. Screening of Particles Prior to Ore Sorting

Screening was an important stage in sample preparation and would be required for any sensor type investigated. It was considered to have two functions: the first was to ensure a narrow size range of particles was presented to the sorter and the second was to remove particles which are either too large or too small to be examined by the sorter under investigation. This sub-section summarises the findings of research undertaken into determining the screening requirements for automated sorting.
Screening results in a narrow size range of particles presented to the ore sorter. This is required so as to ensure accurate rejection of particles with a minimum of misplacement. In the case of the sorter under investigation, large particles required a large force of air to ensure accurate rejection. This large force was not suitable for small particles and would have resulted in the unintentional rejection of small particles in the vicinity of the larger particles. Particle size was also examined in terms of the homogeneity or liberation of particles. Larger particles generally are less liberated than smaller ones. As sorting required the definition of relative abundances of identifiable traits, e.g. colours or absorption levels at a given wavelength, particles needed to be of a similar size to ensure that the defined abundances were appropriate. For example, the required abundance would likely need to be lower in larger particles to minimise the loss of valuable material into the waste product. It has been reported by Arvidson (2004) that the top to bottom size range of particles should not exceed 2:1 for coarse particles, over 40mm, and 3:1 for finer particles to ensure accurate sorting. 

Particles also need to be screened to remove undersize and oversize particles. Undersized particles are removed based on the resolution of the sensor under investigation. For example, the resolution of the optical sensor used during experimentation was such that it could not process particles less than 2mm in diameter.

The oversize limit of particles was determined based on the practicalities of sorting. For example, there was a size limit at which ejection by air valves became ineffective, based on particle mass. Large particles also have the potential to cause greater damage to the infrastructure of an ore sorter. For the CommoDas sorter the size limit was about 100 mm. The air pressure in the sorter was not sufficient to eject larger particles and this limit also ensured that all particles passed smoothly through the sorter without collision with the infrastructure of the machine.
Based on the under and over-size limits of the CommoDas sorter, appropriate sieve sizes were determined so as to split the sample into batches of 3:1 top to bottom sizing for particles less than 40mm and 2:1 for those over 40 mm. A list of approximate sieve sizes for accurate screening was determined and is shown in Table 6.1. 
Table 6.1 - Screen sizes for optical sensor

	Required Sieve Size

(mm)
	Ratio of Sizes

	2
	

	
	3:1

	6
	

	
	3:1

	18
	

	
	2.78:1

	50
	

	
	2:1

	100
	

	
	


6. Sensor Specific Preparation of Particles 

Particles were presented so as to maximise the likelihood of being adequately identified by the sensor under investigation. The exact requirements for adequate identification are sensor-dependant and a number of points of consideration were developed for various sensor types. These are discussed below.
An example of sensor specific preparation, involves sensors that are affected by surface contamination, e.g. dust, may require particles to be washed before presentation to the sensors. This applies to optical and NIR sensors amongst others. Other sensor types such as inductive and X-Ray sensors are not affected by surface contamination and so would not require particles to be washed. Further to this, if particles have been washed it may be preferable to dry the particles before presentation to the sensors. This will, again, depend on the sensors under investigation. Continuing with the above examples, an NIR sensor would be negatively affected by surface moisture and so would require that particles are dry before presentation. Optical sensors on the other hand generally operate more effectively when presented with particles that are damp as optical characteristics are more pronounced on moist particle surfaces. Another potential preparation stage is acid treatment. This was used, for example, during the course of work undertaken for True North Gems ltd., when rubies were treated with hydrofluoric acid before optical sorting to liberate particles from waste before separation (Fitzpatrick, 2008). 
Where more than one sensor is to be used to process an ore, the order in which the sensors are used must be taken into account. For example, if an optical and NIR sensor are to be used in series to separate an ore it would be advisable to first separate by NIR whilst particles are dry, as water is highly absorbent within the NIR region of the electromagnetic spectrum, before wetting particles for presentation to the optical sensor. 
6. Further Considerations during Sample Preparation
Experimentation is undertaken using the screened and prepared particles. All stages of work potentially require particles to be analysed by XRF or some other mineralogical or metallurgical technique and so the particles used must be large enough to provide sufficient material to allow for this analysis after losses from crushing; it was found during testwork that approximately 4 g was required. Due to this constraint a further sub-sample must be created in which smaller particles are removed. 

It was also found, that the removal of small particles was desirable when creating a colour model. The reasons for this were that the larger particles were easier to handle and provided more information during image analysis due to the larger number of pixels per particle. During the creation of the colour model the largest particles that exhibit all identifiable traits should be used.
6. Sensor Selection

Once the ore properties had been established and the sample has been prepared, the next stage of the work was considered to be the determination of whether the sensors employed by a sorter are capable of separating particles. More importantly, it was determined that it must be established whether such separations would be of an economic benefit. To accomplish these objectives, particles were categorised based on their physical characteristics; the economic worth of the created groups was then determined. If a correlation between data collected from the machine and the economic value of particles waas found then it was considered that a useful separation model could be created. This sub-section examines in detail the method developed to determine sensor potential and its application for future investigations.
To determine whether a sensor is capable of separating particles, distinct groups based on the measurement of physical attributes must be created based on data collected by sensors. The economic worth of these groups is then determined based on their chemical mineralogy, or some other appropriate measure. It was considered vital that where possible testing should be undertaken on particles representative of all particle types expected based on the ore characterisation. This however, needed to be balanced with minimising the time required to undertake the investigation.
When using the CommoDas sorter the chemical mineralogy was determined by XRF analysis which can take a number of days. The analysis was carried out after data had been collected from the sensors under investigation as preparation for XRF required particles to be pulverised.

Ideally, much of the sensor potential work will have been undertaken before the arrival of the ore under investigation. For example, the ores can be pre-sorted at the mine site. If this is done then groups have already been established. These groups can be sub-sampled to determine their economic worth. Further to this, the pre-sorted groups may also be pre-tested prior to arrival, e.g. mineralogy determined by microprobe. In these circumstances the economic value of each group is also known. If these processes are carried out before the arrival of the ore then this stage of investigation may be by-passed and the training and optimisation of a separation model (6.4) can be undertaken.

The remainder of this section will examine the methods established for determining sensor potential (6.3.1) and how the time taken to determine potential may be minimised (6.3.2). It will end by focusing on specific techniques developed for the CommoDas ore sorter (6.3.3).

6. Methodologies for Establishing Sensor Potential

At this stage it is useful to note the unique nature of optical sensors when compared to other sensor types. As optical sensors operate in the visual spectrum it is attractive to use the human eye to quickly establish sensor potential. When undertaking this method careful consideration is required as software used to interpret optical data from sensors is unlikely to operate with the same complexity as the human brain when interpreting visual stimuli. Therefore it may not be possible for the sorter to detect differences, such as texture and angularity, which a human can. On the other hand, in most circumstances the spectral response of an optical sensor will be wider than that of the human eye. For example, the spectral response of an average human eye peaks at about 550 nm. At about 650 nm the spectral response is about a tenth of this peak value. All spectral sensitivities were taken from K Deim’s Documenta Geigy Scientific Tables (1962). Whereas a Pricolor TVI 2048R linescan camera - the optical sensor used during experimental work - has an almost uniform spectral response over this same range. The optical sensor may then be able to distinguish differences in shades of red, from 620-750 nm (Wikipedia: after Bruno et al 2005) which the human eye cannot.

As the optical sensor is unique amongst sensors the methodology developed to determine its potential was also unique. A Flowchart illustrating the optical sensor methodology is shown in Figure 6.1 whilst a flow chart of the methodology for all other sensor types is illustrated in Figure 6.2.

[image: image133]
Figure 6.1 - Flowchart of procedure for determining optical sensor potential

[image: image134]
Figure 6.2 - Flowchart of procedure for determining potential of non-optical sensors
These methodologies may be used to establish the potential of any sensor. Depending on the equipment used to undertake the methodologies the process can be a time consuming and onerous one. To minimise the time required a number of variables should be taken into consideration. These variables are discussed in the following section. A number of practical considerations specific to the CommoDas sorter are described in Appendix E 
6. Minimising Time Taken for Data Collection 

The time taken to collect sensor data was determined to be a function of two variables and dependant on the sensor under investigation.
· Number of samples required

· Time taken to collect data for a single sample (or the sampling period)
As the aim of the proposed methodology was to quickly and accurately determine a sorters potential for separating an ore and it was considered desirable to minimise the time taken to collect data. This was achieved by minimising these two variables. It should be noted that minimising the time taken to gather data may reduce the robustness of the sorting methodology if the data collected is biased or unrepresentative. This effect can be reduced by ensuring that the data collected is statistically relevant. The following sub sections will give an overview of how each of the variables effects the overall time taken to collect data and describe in detail how each can be optimised to minimise the total time taken without adversely affecting the validity of the data gathered.

6. Determination of Minimum Number of Samples

During this stage of the investigation a balance must be struck between obtaining statistically significant results and completing the work in a short time frame. For this reason it was desirable to keep the number of particles processed low. One commonly used sampling theories to determine the minimum sample size in the mineral processing industry is Gy’s sampling theory (Wills, 1992). However, due to the relatively large size of particles required for automated sorting, the suggested minimum sample mass obtained using Gy’s theory is prohibitively large. This can be seen using a simple example, adapted from Wills (1992). 
A lead ore assaying 5% Pb must be assayed to a confidence level of 
[image: image135.wmf]§

 0.1% Pb 99 times out of 100. The galena is essentially liberated from the gangue at a particle size of 150μm. The ore is to be processed using the optical sensor and has a top size of 25 mm. Using Gy’s sampling theory the required mass of sample required to ensure representativity would be 176.6 kg. Assuming a specific gravity of about 4 and that the particles can be approximated as spheres with a diameter of 25mm, this would be the equivalent of about 5400 particles. To individually process and assay this number of particles would be both time-consuming and financially expensive. Due to these limitations in applying Gy’s theory at the particle size needed for automated sorting, an alternative method of sampling was established.
It was decided that the number of particles required at this stage of experimentation, need only be enough to ensure all identifiable particle types are represented and that where possible some measure of variations in mineralogy within groups was obtained. It was, therefore, decided that each identifiable group should be represented by at least three particles. This was determined to provide a trade-off between obtaining some measure of variability and minimising the number of particles required. If a large variation was found within clusters then further samples could then be collected.
The statistical theory adopted to determine the required number particles in the sample to ensure all groups are represented by at least three particles with a given degree of certainty/confidence was the binomial distribution. The binomial distribution is used to calculate the probability of a number of successes in a sequence of independent events. Probabilities are calculated using Equation 6.1.
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In Equation 6.1, the probability of r successful outcomes in a sequence of n individual events is a factor of the probability (p) of succeeding r times and failing n - r times. As the order in which the successes and failures occurs is irrelevant the probability must be multiplied by the number of ways in which r can be chosen from the n individual events. 

As the number of particles to be processed for each potential rock type was set at, at least three particles, in Equation 6.1, r must be greater than 2 for all groups after n events. This is the complement to the probability that r is less than or equal to 2 after n events. The number of particles that must be analysed can be minimised then by determining the value of n which will ensure that r is greater than 2 with a certain degree of confidence. For example, if there are two suspected groups, arbitrarily named a and b, whose relative abundances are 70% and 30% respectively then using Equation 6.1 the required number of particles to ensure with 95% confidence that there will be at least three particles in each group would be calculated as shown below. It should be noted that as group b is less abundant than a then the minimum required particles (n) to ensure b is adequately represented will always be greater than the equivalent for a, therefore n need only be calculated for group b.
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The final expression can be evaluated using an iterative method such as the Newton-Raphson method. As a reference guide, the minimum required particle values for varying relative abundances and confidence levels were calculated and are displayed on a log-log graph in Figure 6.3. 
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Figure 6.3 - Minimum number of particles required for investigation

Figure 6.3 shows that for the example of particles a and b at least 19 particles would need to be selected to ensure that both groups are represented by at least three particles, with 95% confidence. For the Pb ore example the number of particles to ensure there are three in every group with 95% confidence would be 124. To process and assay this number of particles is far more reasonable than the 5400 determined using Gy’s theory.

For the above method to be applied, the least abundant group of rock types must be identified and for this an estimate of the number of groups within the sample is required. The exact number of groups cannot be calculated prior to experimentation. The only method to ensure all groups are identified would be to process all particles and undertake a cluster analysis technique. This would, though, be undesirable as it would be extremely time consuming. A method of quickly estimating the number of groups was, therefore, established. This method based the expected number of groups on an empirical knowledge of the ore. The ore characterisation work undertaken provided information on both the suspected number of rock types and their relative proportions. These values were used to estimate the number of groups to be identified and the probability of encountering each group during processing.

This method of determining the minimum number of particles required is based on the assumption that the relative abundance of a mineral type will roughly equate to the probability of it being present within a number of particles. For example, if the abundance of a mineral is 10% then it is assumed that it will be detected in 1 out of 10 particles. This is unlikely to be true as it would require that all particles are liberated. A more likely scenario is that a small amount of the mineral type will be present within a number of particles. This would only serve to increase the likelihood of detection and so decrease the required number of particles. The method of estimatation established, therefore, will, in general, result in a conservative estimate of the required number of particles.

A special case can be made for optical sensors where the number of groups can be determined by visual inspection. It was undertaken during research in about 5-10 minutes. The possibility that, at this stage, subtle differences in appearance could lead to some mineral groups not being collected for analysis was considered. To compensate for this, in situations where the ore characterisation stage of work has suggested that minerals similar in appearance are present in the sample then it may be advisable to process a number of these similar particles through the sorter. If the sorter can identify subtle differences not visible to the human eye then two sub-groups can be created with each being separately analysed.
6. Minimisation of Sampling Period

The time taken to process a single particle is the sampling period. For visual inspection it is simply the time required to visually examine a particle, which was found to be in the range of a few seconds. When using any other method to measure the physical attributes of particles the sampling period was defined as: the time taken to position a sample for presentation to the measurement device; the time taken to complete the analysis and the time taken to recover the particle. Therefore,to minimise the sampling period, each of these factors should be minimised.
All three factors are a function of the measurement device used for analysis. The CommoDas sorter used during research was designed for the processing of large tonnages of material and so the time taken to complete analysis is minimal. However, the sorter does not readily lend itself to the recovery of individual particles. This problem is likely to exist for a number of commercial sorters and so an alternative approach was considered. This approach would adopt a complementary piece of analytical equipment which measures the same physical property as the sensor under investigation. Equipment can be chosen which is less cumbersome so as to reduce the time taken to present and recover particles. Handheld analytical equipment, for example, would allow for particles to remain in a fixed position so that the presentation and recovery time is minimal, equal to the time taken to move the equipment from one particle to the next. 
When a suitable device has been chosen with which to determine sensor potential, the time taken to analyse particles becomes a constant. The time taken to present and recover particles though is still variable and so it was considered prudent to put some consideration into minimising these times.
6. Potential of the CommoDas Inductive sensor
In the absence of a quick method for identifying differences in conductivity the inductive sensor itself was used. The sensor when operated independently from the optical sensor rejected all particles which were conductive. However, in this mode the level of conductivity was not recorded. To obtain data from the inductive sensor it was necessary to operate it in conjunction with the optical sensor. To ensure that the optical sensor did not affect the results, a simple colour model was created using the PACT software. This model identified and eliminated the background colour. The rest of the YUV colour space was then used to represent particles. This was done so that visual differences between particles were ignored by the sorter; and so the optical sensor was effectively ‘switched off’ and the relative conductivity of particles was measurable.
A single category was created to represent all particles. The conductivity as determined by the metal sensor was then recorded for each particle. The minimum number of particles that must be analysed was determined based on either the number of groups found during the testing of the optical sensor potential or based on the ore characterisation work. Each particle was passed through the sorter. The relative conductivity for each particle, reported as percent metal, was then plotted to identify the presence of groups within the data. These groups were identified using agglomerative hierarchical clustering. This method was chosen as it produced a number of possible solutions in a single analysis which could then be compared with geochemical analysis to determine the most appropriate number of groups.
6. Multi-Sensor approach

Whenever possible a multi-sensor approach was adopted.. Such an approach increases the number variables examined and so the dimensionality of the attribute space. This can potentially lead to the identification of previously undetected relationships between particles. A hypothetical example of how this could prove beneficial is presented below. In the example, the particles shown in Figure 6.4 were processed using both the optical and inductive sensor. 
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Figure 6.4 - Example particles processed by optical and inductive sensor

Using the data from the optical sensor, the above example particles were divided into two groups based on their luminosity. The particles have a uniform chrominance and so the U and V values were not used for classification purposes. The particles were also divided into two categories based on their conductivity. Table 6.2 gives the values for both conductivity and luminosity for each particle as well as the groups to which each particle was assigned and grade information.

Table 6.2 - Grouping of example particles

	Particle
	Luminosity
	Conductivity (%)
	Grade (%)

	
	Value
	Group
	Value
	Group
	

	1
	12
	Dark
	9
	Low Conductivity
	0.1

	2
	221
	Light
	18
	Low Conductivity
	12.2

	3
	11
	Dark
	75
	High Conductivity
	15.9

	4
	215
	Light
	99
	High Conductivity
	0.05

	5
	212
	Light
	26
	Low Conductivity
	7.6

	6
	5
	Dark
	21
	Low Conductivity
	0.3

	7
	218
	Light
	100
	High Conductivity
	1.0

	8
	12
	Dark
	69
	High Conductivity
	17.6


Using the data in Table 6.2 it was possible to determine the potential upgrade in product when separating particles using either the optical or inductive sensor. Table 6.3 and Table 6.4 show the results of these separations.

Table 6.3 - Separation using optical sensor

	Group
	Grade (%)

	Dark
	8.5

	Light
	5.2


Table 6.4 - Separation using inductive sensor

	Group
	Grade (%)

	Low Conductivity
	5.1

	High Conductivity
	8.6


The data in Table 6.3 and Table 6.4 show that when using either sensor independently the difference in grade between the two groups was very small. This would indicate that it is not possible to separate the particles based on economic worth. However, by combining the data from the optical and inductive sensors it was possible to identify further patterns within the data. This is illustrated in Figure 6.5 which shows a graph of the luminosity plotted against the conductivity for each particle. 
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Figure 6.5 - Combined sensor data for example particles
Figure 6.5 shows that when the data from both sensors are combined 4 data groups became apparent. Table 6.5 shows the grade of each of these groups based on data from Table 6.2.
Table 6.5 - Separation using combined sensor data

	Group
	Grade (%)

	Dark + Low Conductivity
	0.2

	Dark + High Conductivity
	16.8

	Light + Low Conductivity 
	9.9

	Light + High Conductivity
	0.5


Table 6.5 shows that there is a large variation in grade between groups. Based on this data it was possible to create a separation model, rejecting, as waste, particles that were either dark with low conductivity or light with high conductivity whilst accepting, as product, particles that were either dark with high conductivity or light with low conductivity. This gave a mean product grade of 13.3% and a mean waste grade of 0.4%. Such a separation would lead to a larger concentration of high grade product than would be achieved using either sensor independently.

The hypothetical example given above highlights the benefit of increased dimensionality in attribute space. Whenever possible, a number of appropriate sensors should be utilised to increase the number of physical attributes measured for each particle and so increase the number of potential groups which can be identified.
6. Discussion of Sensor Selection Work
This section of experimentation will have proven whether the sensors employed by the ore sorter are capable of separating the particles into groups that will lead to an increase in the economic value of the product. If sensors cannot individually or in parallel identify differences between particles or if it is discovered that these differences do not lead to a significant increase in economic value then experimentation should discontinue at this stage. Further work should then concentrate on repeating this section of work for other sensor types.

If however, it has been proven that groups of differing economic value can be identified then experimentation may continue to the next stage which is the training of the sorter to recognise the different groups of ore based on sensor data. 
6. Training and Optimisation of Ore Sorter

To successfully separate particles a sorter must be trained to recognise the various identified types. The method by which the sorter is trained is dependant on the system and sensors under consideration. The remainder of this section will give an overview of the method used for the preparation of samples for training and optimisation (6.4.1) and will then describe in detail how the training was undertaken on the CommoDas ore sorter (6.4.2).

6. Preparation of Sample for Training and Optimisation 

For training and optimisation of the ore sorter two sub-samples were collected. The first was used as a training set and the second for testing. The number of particles in each group was such that each data group was adequately represented so as to ensure a robust separation model. The actual number required was determined to be a function of the variance within a group. Groups with low variance were represented with only one or two particles whilst others with high variance required the use of more particles.
In general it can be considered that, if the sorter itself was used to test sensor potential, then training can be undertaken using the previously collected data. This assumes that all groups were adequately represented. In cases where the sorter was not used to test potential it is necessary to collect data using the sensors employed by the sorter. The sub-samples to be processed can be chosen using the same methods as for the previous stage of investigation, e.g. by visual inspection for optical sensors. 

6. Training and Optimisation of CommoDas Ore Sorter

Training of the CommoDas sorter was accomplished by developing and optimising a separation model using the PACT software as described in Chapter 3. The complexity of the model was dependant on the sensor(s) used for the collection of data and the number of rock types present within the sample. The inductive sensor produces a single output and so when used independently, required little optimisation. Separation models based on data from the optical sensor, or from both sensors, required the simultaneous optimisation of a large number of variables. Regardless of the sensor(s) used the number of rock types was found to be linearly related to the number of variables which needed to be optimised. This sub-section examines work undertaken to establish how optical sensor data is most effectively used to optimise a colour model (6.4.2.1) and how this is then combined with inductive sensor data to optimise a separation model (6.4.2.2).
6. Optimisation of a Colour Model using Optical Data
There were five variables taken into consideration when optimising a colour model for the CommoDas sorter, they were:

· Colour of background material

· Exposure time of the line scan camera

· Definitions of colour classes

· Priority of colour classes
· Use of pixel filters

The exposure time and the background colour were identified as the only two independent variables and so these were optimised before all others. The background colour was chosen so as to contrast with particles to ensure that pixels representing particles could be easily separated from those representing the background within images. 

The ideal exposure time was determined by idetifiying the optimum balance between the resolution and luminosity. This balance was established using a trial and error approach. For example, it was found that for certain samples it was advantageous to over-exposure images to increase the brightness of images and so amplify differences between particle luminosity. However, this was at the expense of resolution as over-exposed images suffer from a ‘blurring’ effect as a larger area is examined in a single exposure. Under-exposure of images proved more advantageous for other samples. Under-exposure had the converse effect and produced darker, more defined images. 
It is important to have a consistent exposure time during the operation of the sorter as the separation model used to control the sorter will have been optimised for only a small range of exposure times. To determine the optimal exposure time, images of particles were taken at a number of exposure times then visually compared. The exposure times that appearred to contain the largest variation between optical properties were used for the optimisation of a colour model.

The selected images were used to define the colour classes used within the colour model. The first colour class defined was one to represent background pixels. Its boundaries were determined using an image containing no particles, i.e. only background pixels. The range of YUV histogram values for this image then exactly mapped the background colour class. Defining the other colour classes, representative of particle types, was then undertaken. This work formed the basis of the colour model optimisation and was a time consuming process which required an experienced user to undertake.
Classes were created based on images of the training set of particles. The method by which these classes were created is explained in detail in Chapter 3. The following section will describe the method by which the classes were optimised after creation. An example involving a sample of nickel-copper ore will be used to elucidate the process. In the chosen example, a background colour was  established and an image of all particle types taken. This image is shown in Figure 6.6.
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Figure 6.6 - Nickel/copper ore sample to elucidate methodology
In Figure 6.6: row 1 contains peridotite, the host rock; row 2 contains basalt, a gangue mineral whilst row 3 contains sulphides, the copper and nickel bearing minerals.

Optimisation of the colour model began with the creation of colour classes for the background and identified traits of each rock type. In this example, four classes were created. Figure 6.7 shows the image used to create the background colour class. It represents 100 line scans across the entire width of the conveyor belt. 
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Figure 6.7 - Line-scan image of background

Figure 6.7 shows that even after white balancing the background was not entirely uniform. This is likely to have been caused by the combination of two factors. The first was that the ‘white’ background used to calibrate the optical sensor was not uniform, i.e. scratches on the surface. The second factor that can cause non-uniformity, is the material used to create the ‘green’ background which may have been scratched or in some other way defaced. The small variation in colouration should be taken into account when creating colour classes. Figure 6.8 shows the YUV histograms for the background and the colour class created based on these histograms.
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Figure 6.8 - YUV histograms and colour class for background

Having defined the background colour class, the image in Figure 6.6 was used to classify each of the three rock types. Figure 6.9, Figure 6.10 and Figure 6.11 show the filtered images, histograms and colour classes for the identified visual traits within the peridotite, basalt and sulphidic rock types respectively.

[image: image144.png]v T v

Moilert. 44 136 149
Min a1 120 110
Moz 55 178 176
Pixel (Helligkeit/YUV,Gessnt)
/244306250500

Original Image

Filtered Image

Neme | Activ_| Backar.

[Cloud [ ¥mn_|vmax |umin |umex [vin [ vmax |

Msackaround % %
Mok«

o ) £ o n
o 5 s 0 17





Figure 6.9 - YUV histograms, filtered image and colour class for peridotite
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Figure 6.10 - YUV histograms, filtered image and colour class for basalt
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Figure 6.11 - YUV histograms, filtered image and colour class for sulphides

A final colour class was added to ensure that the entire YUV colour space was contained within colour classes. Set at the lowest priority this colour class represented regions of the colour space not covered by the defined classes. Figure 6.12 shows the colour model after the creation of this class.
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Figure 6.12 - Colour model encompassing all regions of the YUV colour space

Having created an initial colour model, labelled ‘model 1’, the simulator module within the PACT software was used for testing. The simulator generates simplified images based on the colour model. Figure 6.13 shows the simplified images generated using the colour model as detailed in Figure 6.12.
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Figure 6.13 - Simplified image created using initial colour model

The simplified image in Figure 6.13 shows that although the model segregated the three particle types there was a large proportion of pixels that were not defined by the three colour classes representing identified particle traits. To optimise the colour model this proportion of unrepresented pixels was reduced. This was achieved initially by ensuring that the three colour classes abutted one another. For example, the upper bound of the ‘dark’ colour class in the luminance axis was 55 and the lower bound of the ‘light’ colour class 62 and so the ‘dark’ upper bound was raised to 62 to ensure that the two classes shared a common boundary. Figure 6.14 shows the revised colour model, model 2, and the simplified image generated based on this colour model.
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Figure 6.14 - Model 2 and simplified image

Figure 6.14 shows that model 2 reduced the amount of undefined regions within the image. There were though, relatively large proportions of the sulphidic particles that were not encompassed within the desired colour class. To reduce this proportion the pixel values within these regions were examined. It was found that extending the ‘yellow’ region and raising the priority would lead to the encompassing of these pixels. The adjusted colour model, model 3, and resultant simplified image are shown in Figure 6.15.
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Figure 6.15 - Model 3 and simplified image

The simplified image shows that model 3 reduced the extent of undefined regions but at the expense of segregation between the basalt and sulphide particles. It was found that the segregation could be improved by introducing a fifth colour class. This colour class would represent the darker regions of the sulphidic particles. The revised colour model, model 4, and resultant simplified image is shown in Figure 6.16.
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Figure 6.16 - Model 4 and simplified image

The simplified image in Figure 6.16 shows that model 4 led to good segregation of particles and had a low proportion of undefined pixels. The regions that were unclassified were on the boundaries between foreground and background within the image, where there was a degree of blurring of colours.

In situations where it is not possible to separate particles using the selected image an image at a different exposure time should be optimised. If it is not possible to optimise a colour model at any exposure level then it must be concluded that it is not possible to train the automated sorter to separate the ore under investigation and experimentation should be halted unless the inductive sensor is capable of separating ore into categories related to economic value. A flowchart designed to summarise this proposed method of optimising a colour model is shown in Figure 6.17.
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Figure 6.17 - Flowchart of colour model optimisation
6. Optimisation of a Separation model
The optimised colour model that was created in the previous sub-section is used as the basis for the separation model. In situations where only the optical sensor is being employed the simplified images created by the application of the colour model are used directly to create the separation model. For a multi-sensor approach the quantised optical data is combined with data from the conductivity sensor when establishing a separation model. A separation model is optimised based on the adjustment of the material settings. Each identified rock type is defined by a material category. The optimisation of category definitions forms the basis of the separation model optimisation. The remainder of this sub-section will utilise the previous nickel-copper ore example to illustrate the proposed method of optimising the separation model. 

Using the final colour model generated for the copper-nickel ore a number of test particles were processed using the ore sorter. Table 6.6 shows the relative abundances of quantised colours and measured metal content within each particle.

Table 6.6 - Relative abundances of colours for all rock types

	Particle Type
	Relative Abundances of Identified Traits (%)

	
	Yellow
	Yellow 2
	Dark
	Light
	Other

	Basalt
	0.28
	1.32
	31.96
	54.60
	11.84

	Basalt
	2.46
	0.71
	20.54
	64.55
	11.76

	Basalt
	3.51
	2.01
	13.51
	68.96
	12.01

	Peridotite
	0.00
	3.15
	76.71
	5.34
	14.80

	Peridotite
	0.00
	1.51
	85.72
	0.97
	11.79

	Peridotite
	0.09
	2.95
	80.56
	4.68
	11.71

	Sulphides
	73.83
	5.00
	1.91
	5.19
	14.07

	Sulphides
	48.28
	11.54
	12.58
	10.71
	16.89

	Sulphides
	68.21
	7.46
	5.99
	4.31
	14.03


Based on this data three material categories were defined: ‘basalt’, ‘peridotite’ and ‘sulphides’. The first category considered was that of ‘basalt’. 

During sorting a particle could have been classified as either basalt or one of the other two defined materials. This classification process was considered in simple terms as the method of testing two hypotheses; one null (H0) and the other alternative (H1).

Where:

· H0: The particle under examination is basalt

· H1: The particle under examination is not basalt

Using these hypotheses it was possible during the classification procedure for only one of four outcomes to occur. These are summarised in Table 6.7.

Table 6.7 - Possible outcomes of classification procedure

	True Classification
	Experimental Classification
	Error Type

	Particle is basalt 
[image: image153.wmf]\

H0 is true
	Accept H0​ 
[image: image154.wmf]\

 particle was classified as basalt
	-

	Particle is basalt 
[image: image155.wmf]\

H0 is true
	Reject H0
[image: image156.wmf]\

 particle was not classified as basalt
	Type I Error

	Particle is not basalt 
[image: image157.wmf]\

H0 is false
	Accept H0
[image: image158.wmf]\

 particle was classified as basalt
	Type II Error

	Particle is not basalt 
[image: image159.wmf]\

H0 is false
	Reject H0
[image: image160.wmf]\

 particle was not classified as basalt
	-


The two types of error shown above were equivalent to the misclassification of basalt as another rock (type I) and the misclassification of other rock as basalt (type II). The method proposed for the optimisation of the ‘basalt’ material category sought to minimise the occurrences of both of these error types. To accomplish this minimisation, the relationship between the material category definitions and the probability of each error type occurring needed to be understood.

The variables used to describe material categories are the relative abundances of colour classes within a particle as well as its geometric properties and metal content. These variables form an attribute space within which each material can be considered a cluster defined by the minimum and maximum values set for each variable. It is these values which were used to determine the probability of a type I or type II error occurring, i.e. a misclassification, mathematically:
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Where 
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 and λ are the minimum and maximum boundaries, respectively, of each of n attributes within the attribute space. To more closely examine how these factors affect the probability of misclassification a single variable was first considered. The minimum and maximum values of a material determine the width of a material cluster within an axis of the variable space. The width has a direct effect the number of particles that will be encompassed within it, and so the probability of misclassification. If the width of a cluster was such that it covered the entirety of the variable range, i.e. from 0% -100%, then all particles would be classified within this cluster. This being the case, it would not be possible for a type I error to occur. Similarly, with a width of 0%, no particles would be classified within the cluster and so the probability of a type I error would be 1. Assuming that wm is the width of a cluster, these ideas can be summarised mathematically as shown in Equation 6.4:
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Conversely, the probability of type II errors occurring would be affected as shown in Equation 6.5, again assuming that wm  represents the width of a cluster:
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Equation 6.4 and Equation 6.5 show that at either extreme in cluster width there will always be misclassifications. Figure 6.18 illustrates these properties of the cluster width. 


[image: image165]
Figure 6.18 - Effect of change in width on misclassification

It has been shown that the width of a cluster will affect the number of misclassifications and that a minimum probability of misclassification exists within the range 0% < wm < 100%. As the width of the material cluster will always be less than that of the cluster space, i.e. less than 100%, its position within the cluster space, as determined by the minimum and maximum boundaries, will also affect the number of misclassifications. The effect of the position of the cluster is highlighted in Figure 6.19.


[image: image166]
Figure 6.19 - Effect of cluster position on number of misclassifications

Figure 6.19 exemplifies that the position of a cluster can have a significant effect on the number of misclassifications.

It has been shown that the optimisation of material definitions involves careful consideration of the width and position of material clusters and that these factors are determined by the minimum and maximum boundaries for each attribute used to define a material. 

In an ideal situation, each of the materials will occupy a mutually exclusive area of the attribute space. An example of this can be seen, by examining an error surface of the total number of misclassifications for basaltic material within the light colour attribute space. In this error space (see Appendix F) there was an area in which the total number of misclassifications is 0. The minimum boundary could range from 11% to 54% and a maximum boundary between 64% and 100%. In this circumstance, the maximum boundary was set as 100% as this indicated a particle entirely composed of basalt. The minimum percentage was set high to minimise the number of type II errors.
In most applications there will be heterogeneous particles which contain a number of material types. In these circumstances, there will be no mutually exclusive clusters. Instead a boundary must be chosen that is a compromise between the relative proportions of error types obtained. 
It is proposed that the position of boundaries be determined by the relative ‘cost’ of type I and type II errors. For example, if the application were the separation of gemstones from waste rock then losing a gemstone in the waste would be much more costly than accepting a barren particle with the gemstones. Hence, the cost of a type I error would be much greater than a type II error. In such a situation, the optimal boundaries would concentrate on the minimisation of type I errors.

In another application, granite is to be removed from a limestone product to improve grindability. In this case, the loss of a small amount of limestone may be equally as costly as the addition of a small amount of granite to the final product. In other words, the cost of type I and type II errors are approximately equal. In such a situation, the optimal boundaries would aim to minimise all misclassifications. 

The idea of the ‘cost’ of error types can be enumerated and included in an error surface by including a weighting term to the errors. The weighted error surface would then reflect the probability of a misclassification and the severity of a misclassification. It may also be useful in these circumstances to perform a number of small scale separations with varying boundaries. Each of these can then be analysed and the optimal set points determined.

Each material is defined by a number of variables and for each of these the above theory applies and so the overall computation of a global minimum can be time consuming. However, when a good segregation is obtained using the colour model only one or two attributes are required to define each material. In most circumstances the choice of which variable to use is self-evident and will be those which gave rise to the obvious segregation of one particle type from all others in the simplified image. 
For the nickel-copper example, it is fairly intuitive from Figure 6.16 that: 

· peridotite is best defined by the large abundance of the ‘dark’ colour class;

· basalt by the large abundance of the ‘light’ colour class 

· sulphides by the ‘yellow’ colour class

A method of enumerating this intuitive process was established, whereby the variable which contained the maximum inter-cluster distance was determined. Using the data in Table 6.6 this process is shown for the basalt, peridotite and sulphidic materials in Table 6.8, Table 6.9 and Table 6.10 respectively.

Table 6.8 - Relative distances to basalt cluster

	Particle
	Variables (%)

	
	Yellow
	Yellow 2
	Dark
	Light
	Other

	Peridotite
	0.28
	1.14
	44.75
	49.26
	2.79

	Peridotite
	0.28
	0.00*
	53.76
	53.63
	0.00*

	Peridotite
	0.19
	0.94
	48.60
	49.92
	0.05

	Sulphide
	70.32
	2.99
	11.60
	49.41
	2.06

	Sulphide
	44.77
	9.53
	0.93
	43.89
	4.88

	Sulphide
	64.70
	5.45
	7.52
	50.29
	2.02


(* 0% denotes a particle encompassed within cluster)
Table 6.9 - Relative distances to peridotite cluster

	Particle
	Variables (%)

	
	Yellow
	Yellow 2
	Dark
	Light
	Other

	Basalt
	0.19
	0.19
	44.75
	49.26
	0.00*

	Basalt
	2.37
	0.80
	56.17
	59.21
	0.00*

	Basalt
	3.42
	0.00*
	63.20
	63.62
	0.00*

	Sulphide
	73.74
	1.85
	74.80
	0.00*
	0.00*

	Sulphide
	48.19
	8.39
	64.13
	5.37
	2.09

	Sulphide
	68.12
	4.31
	70.72
	0.00*
	0.00*


(* 0% denotes a particle encompassed within cluster)

Table 6.10 - Relative distances to sulphide cluster

	Particle
	Variables (%)

	
	Yellow
	Yellow 2
	Dark
	Light
	Other

	Basalt
	48.00
	3.68
	19.38
	43.89
	2.19

	Basalt
	45.82
	4.29
	7.96
	53.84
	2.27

	Basalt
	44.77
	2.99
	0.93
	58.25
	2.02

	Peridotite
	48.28
	1.85
	64.13
	0.00*
	0.00*

	Peridotite
	48.28
	3.49
	73.14
	3.34
	2.24

	Peridotite
	48.19
	2.05
	67.98
	0.00*
	2.32


(* 0% denotes a particle encompassed within cluster)
In Table 6.8, Table 6.9 and Table 6.10 the minimum distance for each variable is highlighted in bold text. As can be seen, the variables which segregated each material from all others were the same variables which were visually selected from the simplified image. 
The numerical approach is useful as it removes subjectivity from the process and may uncover possible separations which may not have been immediately obvious. For example, in Table 6.10 it can be seen that the largest inter-cluster distance between the sulphides and other particle types was in the ‘dark’ colour class as opposed to the more intuitive ‘yellow’. In most situations it is possible to intuitively define material categories. Where this is not possible the enumerated method should be adhered to.

Table 6.11 shows the proposed material settings which were intuitively defined for the nickel-copper ore and Table 6.12 the resultant classification of the test particles.

Table 6.11 - Material settings for example separation problem

	
	
	
	Materials

	
	
	
	Sulphides
	Peridotite
	Basalt

	Colour Classes (%)
	Yellow
	Min
	40
	0
	0

	
	
	Max
	100
	100
	10

	
	Yellow 2
	Min
	0
	0
	0

	
	
	Max
	100
	100
	100

	
	Dark
	Min
	0
	70
	0

	
	
	Max
	100
	100
	100

	
	Light
	Min
	0
	0
	0

	
	
	Max
	100
	100
	100

	
	Other
	Min
	0
	0
	0

	
	
	Max
	100
	100
	100


Table 6.12 - Classification of particles based on selected material settings

	Particle Type
	Relative Abundances of Identified Traits (%)
	Material Classification

	
	Yellow
	Yellow 2
	Dark
	Light
	Other
	

	Basalt
	0.28
	1.32
	31.96
	54.60
	11.84
	Basalt

	Basalt
	2.46
	0.71
	20.54
	64.55
	11.76
	Basalt

	Basalt
	3.51
	2.01
	13.51
	68.96
	12.01
	Basalt

	Peridotite
	0.00
	3.15
	76.71
	5.34
	14.80
	Peridotite

	Peridotite
	0.00
	1.51
	85.72
	0.97
	11.79
	Peridotite

	Peridotite
	0.09
	2.95
	80.56
	4.68
	11.71
	Peridotite

	Sulphide
	73.83
	5.00
	1.91
	5.19b
	14.07
	Sulphide

	Sulphide
	48.28
	11.54
	12.58
	10.71
	16.89
	Sulphide

	Sulphide
	68.21
	7.46
	5.99
	4.31
	14.03
	Sulphide


Table 6.12 shows that the chosen material settings adequately separated particles into their appropriate rock types. At this stage the separation model was completed and it was concluded that the ore sorter was trained and optimised for the segregation of the example nickel-copper ore. The next stage of investigation was to determine suitable rejection criteria for the physical separation of the ore under investigation.

6. Determination of Rejection Criteria

Once the ore sorter had been trained it was theoretically possible to sort particles into clusters related to economic worth. This section will discuss the methodology used to optimisise the way in which particles were physically separated. It examines the decision making process when determining the rejection criteria of the different identified rock type groups.

The physical separation of particles is a process whereby a single input stream is split into two or more output streams, see Figure 6.20.


[image: image167]
Figure 6.20 - Input and output streams generated by ore sorter

The output streams and the particles within them will henceforth be described as either ‘rejected’ or ‘accepted’. A rejected stream is one in which the particles are subjected to a force, other than gravitational, which results in a change to their direction of motion. The particles within an accepted stream undergo no such force. In the case of the CommoDas ore sorter used during experimental work, rejected particles were those that were deflected by the compressed air jets whilst accepted particles were left to follow a parabolic path whose dimensions were determined by the horizontal velocity on leaving the conveyor belt and acceleration due to gravity. The classification of rock types into rejected and accepted output streams was the first stage in the process of determining the rejection criteria.

In certain circumstances there is no choice as to which particles to reject and which to accept. For example, a corona discharge ejector rejects particles based on their surface conductivity which as a physical characteristic of the particles cannot be altered. Where it is possible to decide which group of particles should be rejected the first factor to consider is the number of output streams that are required. In the simplest separations there will be only two outputs; a concentrated product and a waste. In such circumstances it must be decided which output should be accepted and which rejected. Generally, the relative abundance of the products should first be considered followed by grade-recovery considerations. This can be summarized as follows:

1. The waste stream is more abundant than the desired product 
[image: image168.wmf]\

 the desired product should be rejected to reduce the number of physical ejections and so minimise the operational cost of the ore sorter or vice versa if the product stream is more abundant

2a. The economic value of the desired product is such that misclassification is undesirable 
[image: image169.wmf]\

 the waste stream should be rejected so that deficiencies in the rejection system will not lead to the loss of desired product - this will have the effect of increasing recovery at the expense of grade.

2b. Minerals within the waste stream will adversely affect the downstream processing of the desired product 
[image: image170.wmf]\

 the desired product should be rejected as this minimises the risk of contamination - this will have the effect of increasing grade at the expense of recovery.

The listed points should be considered when determining which output stream to reject. Priority is generally given to the abundance of the output streams as this directly affects the operational cost of the ore sorter. In the case of machines using compressed air the primary operational cost is the use of air and so this is generally minimised at all costs. Whilst point 1 in the above list aims to reduce the cost of ore sorting, points 2a and 2b aim to maximise the benefit of sorting. In circumstances where the value of the product or detrimental effect of contamination outweigh the cost of increased physical ejections then priority must be shifted to these areas.

It is not always possible to categorise particles into only two output streams. There are circumstances in which there are a number of desired products that require separate down stream processing whilst in other situations it may be desirable to obtain a number of middling products as well as a concentrated one. In the previous example where only two output streams were considered it was only necessary to decide which stream to reject and which to accept. With more than two output streams it is also necessary to decide in which order the streams are to be separated as most sorters can only create two products in a single processing stage. There are no absolute rules as to the order of separation; however there are a few guidelines which should be followed.
Listed below are relationships between two hypothetical products, referred to as A & B, and how these relationships should affect their order of separation.
· The mineral content of Product A is such that it adversely affects the downstream processing of Product B 
[image: image171.wmf]\

 Product A should be separated first to remove a large proportion and so reduce the likelihood of contaminating Product B

· Product A is more abundant than product B 
[image: image172.wmf]\

 product B should be rejected first to decrease the likelihood of misclassification due to the unwanted rejection of particles in close proximity 

· Product A is softer than Product B 
[image: image173.wmf]\

 Product A should separated first to reduce the affects of abrasion
The three listed considerations should be used to determine the order in which two or more products are separated. The priority of these points is case dependant with no point in general being more important than the others. 

6. Physical Separation of Material
The physical separation of a sample is the final stage in the methodology for determining an ore’s amenability to sorting. It is only undertaken after all other stages of experimentation are complete. To ensure an accurate separation there are a number of physical properties of the ore sorter which must be optimised as this is the first stage of the investigation in which the ore will be ejected using the sorters ejection system. It is, therefore, important to optimise the sorter properties related to the physical separation of particles. The properties which affect the physical separation of material for the CommoDas machine are outlined in Appendix G. 

Having optimised the automated sorter for physical separation, the next stage is to determine the optimum compromise between grade and recovery. A discussion of the grade-recovery trade off when using an ore sorter can be found in sub-section 6.6.1. Having optimised all variables, the physical processing of samples may be undertaken. This is discussed in sub-section 6.6.2.

6. Grade-Recovery Trade Off when Ore Sorting
As with all mineral processing techniques there is a trade off between the grade of the final product and the amount of product recovered. The optimisation of both the colour model and physical properties of the ore sorter will maximise the magnitude of the grade and recovery. The position along the grade-recovery curve though is determined by the material settings. 
The data used to establish the material settings is gathered using relatively homogeneous particles which are representative of the identified traits. In reality, when sorting bulk samples of ore, unliberated particles will exist. In the example used in the training and optimisation section (6.4), unliberated particles containing copper would contain relative abundances of the identified traits ‘yellow’ and ‘yellow 2’ which are lower than those reported for the test particles. It must be decided whether the loss of these heterogeneous particles is acceptable. Reducing the lower bound of the ‘yellow’ colour class in the sulphidic material will ensure a good recovery of copper but will reduce the grade of the final product. Leaving the settings as they are would result in a high grade of copper but at the expense of a lower recovery.
The point at which an economically optimal sort is achieved is dependant on the balance between a number of variables. On the one hand a material with high intrinsic value will be recovered in large quantities at the expense of grade. However, by recovering more material the cost of transportation and grinding in the downstream circuit will increase. For high value products such as gemstones it is sensible to aim for a large recovery to ensure that unliberated stones are not misclassified as waste. On the other hand, in circumstances where the waste product adversely affects the downstream processing it would be advisable to maximise grade to ensure that a minimum of waste is classified as product. Where possible a number of small samples (>5 kg) should be processed and the results analysed. The optimum position can then be established and a larger sample (>200 kg) processed to ensure the reproducibility of the results.
6. Processing of Ore
Processing the ore requires a sample of material similar in size to the test particles. The exact size of sample used for bulk processing is dependant on the size of the initial ore sample received. It was determined that in most cases a sample with a mass of at least 2kg was sufficient to ensure that the belt was fully loaded and that the ore sorter was acting under practical conditions. The results obtained, therefore, emulated those achievable on-site. 
At this stage the ore is processed using the optimised separation model and the products collected and then crushed and sampled. The sampled ore is then analysed using XRF or some other mineralogical or metallurgical technique. The results of the analyses are then used to establish whether it is possible in a practical sense to sort the ore. The results should show an upgrade in ore quality, if they do not then it may be necessary to adjust the material settings and rejection criteria. 

Further experimentation is required if other size ranges are to be processed. This is because the homogeneity of particles tends to vary with particle size. For this reason the percentage of colour classes within a material will vary and so the testing of the separation model must be carried out again before the processig of sample should  be undertaken.
To determine whether the sorting procedure has been successful a benchmark must be obtained with which to judge the results. To create a benchmark a proportion of the initial sample of ore should be crushed and analysed using XRF without processing. By identifying the grade and abundance of impurities within this sample a benchmark for the sorting process is created. This step should only be carried out where there is enough ore remaining after the processing of a bulk sample. If the ore sample is too small then sorting results may only be compared in terms of the accepted and rejected products.
6. Timescale of Proposed Methodology

This section will introduce a timescale for undertaking the proposed methodology. The approximate times required to undertake each of the six sequential stages when using the CommoDas ore sorter are discussed. The section is completed with the introduction of a schedule of work for the methodology.
6. Ore Characterisation

The characterisation of the ore under investigation can be undertaken before the arrival of the ore itself. The time required to complete the characterisation is dependant on the availability of the required information. Ideally, the ore provider will supply the required information; where this is not possible then other sources must be sought, e.g. ore mineralogy textbooks, the internet, etc. If information is readily available then the desk study can be completed within a day. This may extend to a week or more where information is not available.

TOTAL TIME ELAPSED: 0 hours
6. Sample Preparation

Sample preparation involves the screening of ore and any further sensor dependant preparation that may be required. The time required to screen the ore is a function of the sample size and the mass that can be screened at any one time. During the experimental work within this thesis 30 cm diameter sieves were used. These were processed in batches of approximately 500g. The time to process a single batch was 20 minutes. For a sample of 20kg, then, the required time to complete screening would be around 13 hours, or 800 minutes. Where larger sieve sizes are available the time taken will obviously decrease.

For the CommoDas ore sorter particles needed to be washed and dried before processing. Washing particles requires approximately 30mins for a 20kg sample. Drying requires a much longer period of time to complete. Using ovens heated to approximately 100ºC a 20 kg sample took approximately 4 hours to dry.
TOTAL TIME ELAPSED: 17 hours 30 minutes
6. Determining Sensor Potential
To determine sensor potential, particles must be classified before analysis by XRF. The time taken to determine sensor potential will vary depending on the sensor under examination. For the optical sensor the classification can be visually completed in approximately 10 minutes. For the inductive sensor particles are processed through the sorter itself. The time taken to present and recover a particle is approximately 30 seconds. The repeatability of the sensor is poor and in general particles must be processed a minimum of 5 times. The time taken to process a single particle then is at least 2 minutes 30 seconds. The total processing time then is dependant on the estimated number of clusters. For a sample with four particle types of approximately equal proportions the minimum number of particles that must be processed is about 30. The minimum time to process these particles would be 75 minutes. 

The analysis of particles is the most time consuming stage in the methodology. Particles are first individually crushed in a TEMA mill. The time taken to crush and collect a sample and then clean the TEMA pot is approximately 20 minutes. The crushed sample is then placed in a boric jacket, as described in Chapter 6, a process which takes about 15 minutes per a particle. The prepared samples are then analysed using XRF which takes approximately 30 minutes per a particle. The total processing time per a particle is then 65 minutes per a particle. For 30 particles the analysis stage would take approximately 32 hours and 30 minutes.

TOTAL TIME ELAPSED: 48 hours
6. Training and Optimisation of the Ore Sorter

The time required to complete the training and optimisation stage of the methodology is dependant on the number and similarity of identified traits within images. For example, training the sorter to separate an ore which contains only two rock types can be completed within an hour whilst training the sorter to separate five rock types into multiple products can take 1-2 days. The work can be undertaken whilst particles are being analysed by the XRF machine.
TOTAL TIME ELAPSED: 48 hours
6. Determination of Rejection Criteria
Determining which materials to reject and which to accept can be completed in about 20 minutes whilst setting the physical variables of the sorter and preparing it for bulk sorting can be undertaken in about 1 hour.

TOTAL TIME ELAPSED: 50 hours
6. Processing of Ore
The time taken to sort and analyse samples is dependant on the amount of ore being processed. The processing speed of the ore sorter is in the magnitude of tens of tonnes per an hour and so the actual sorting and collection of a small bulk sample can be completed in about 10 minutes. 
The time consuming element in this stage is the analysis of the ore. The ore is again crushed using a TEMA mill. The pots used are large enough to process approximately 400g of product. The time taken to crush and collect 400g of product is approximately 10 minutes. When switching between products the TEMA pot must be cleaned this also takes approximately 10 minutes. Three samples are then collected from each product and placed in boric jackets this takes approximately 15 minutes per a sample and so 45 minutes per a product. 
The XRF analysis takes about 30 minutes per a sample or 90 minutes per a product. The total time then to process and analyse 400g of product is then about 145 minutes. Assuming that 2kg of ore has been separated into two streams resulting in three bulk samples, namely, the product, waste and head sample then the total processing time for this stage would be about 540 minutes or 9 hours.

TOTAL TIME ELAPSED: 59 hours
6. Schedule of Work

Table 6.13 and Table 6.14 contain Gannt charts for the schedule of work, based on a 40 hour working week, for the proposed methodology showing the duration and relative order of tasks. It is based on a case study in which approximately 20 kg of sample is received for investigation. The sample contains four rock types of roughly equal abundances. Bulk sampling is undertaken on a 2kg sample of ore. 

	Task
	Week 1

	
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday

	
	9
	10
	11
	12
	1
	2
	3
	4
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	10
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	10
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	12
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	3
	4
	9
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	3
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	3.3.1 Crushing
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Table 6.13 - Week 1 of schedule of work for proposed methodology

	Task
	Week 2

	
	Monday
	Tuesday
	Wednesday

	
	9
	10
	11
	12
	1
	2
	3
	4
	9
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	4
	9
	10
	11
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Table 6.14 - Week 2 of schedule of work for proposed methodology

6. Discussion of Methodology
The above methodology was developed based on testwork undertaken during the course of research. It describes a means by which any mineral ore may be tested for its amenability to automated ore sorting. All required experimentation is described. 
It should be noted that the methodology only determines whether it is physically possible to separate an ore. Further work would be required to determine the economic benefit of sorting on a large scale. Such a study would need to balance the benefits of sorting against the specific cost of the sorting process, including: the initial capital cost for machinery; the costs of electricity and spare parts and the cost of compressed air.


7. Sorting of Iron Ore
The aim of this chapter was to test the proposed methodology by applying it to a sample of iron ore. A sample of approximately 18 kg of high grade iron ore was obtained from Hamersley Iron Pty Ltd. The ore was from the Marandoo deposit which is located about 30 miles East of Tom Price. The ore in this deposit is of the Marra Mamba type. The ore consists mainly of goethite and martite with manganese hotspots throughout the deposit. The ore was processed to determine whether it can be separated into fractions related to ore quality.

7. Ore Characterisation

Approximately 150 million years ago banded iron formation (BIF) within sections of the Marra Mamba iron formation was altered as magnetite (Fe3O4) was oxidised to form both hematite (Fe2O3) and kenomagnetite (Fe2+ deficient magnetite). After which the movement of groundwater led to the supergene enrichment of the BIF, as gangue minerals were replaced by iron oxides carried in the water. These iron oxides were dissolved in the groundwater near surface and re-deposited at greater depth as goethite (FeO.OH). Goethite was also formed within hematite grains by the hydration of kenomagnetite as the latter is relatively unstable. These processes led to the basic mineralogy of the Marra Mamba iron formation which is martite-goethite; the name given for hematite pseudomorphs after magnetite crystals (bWillard et al, 1974).

Later erosion of the BIF at surface led to the exposure of the martite-goethite formation. Leaching and weathering of the formation followed, which was responsible for the complex physical and chemical properties of the ores.

Goethite is more soluble than hematite and so was most affected by the leaching processes. Depending on the source of the goethite, the solubility varies, leading to a number of altered goethite products. Included is the micro-porous, yellow ‘ochreous’ goethite created by extensive leaching which is characteristic of the Marra Mamba deposit (Bergstrand et al, 2003).
The mineral assemblage of the Marra Mamba ore as a result of the above genesis is summarised in Table 7.1, whilst Table 7.2 highlights the gangue contents of the three primary minerals.

Table 7.1 - Mineral assemblage of Marra Mamba iron ore (after Bergstrand et al, 2003)
	Relative Mineral Abundance
	Mineral
	Characteristics

	Primary Minerals
	Martite (Fe2O3)
	Mainly microporous

	
	Goethite (FeO.OH)
	Dense, light to dark brown

	
	Ochreous Goethite (FeO.OH)
	Yellow in colour

	Secondary Minerals
	Vitreous Goethite (FeO.OH)
	Dark brown with glassy appearance

	
	Hydrohematite (Fe(2-x)/3​(OH)xO3-x)
	Amorphous hydrous iron oxide, very dense and finely grained

	
	Secondary Hematite (Fe2O3)
	Can be present in microplaty form

	Major Gangue Minerals
	Kaolinite (Al2Si2O5(OH)4)
	White, colourless, green or yellow

	
	Quartz (SiO2)
	Commonly clear to white/cloudy

	
	Cryptomelane (K(Mn4+,Mn3+)8°16)
	Brown to greyish white

	
	Pyrolusite (MnO2)
	Steel grey to black


Table 7.2 - Gangue content of primary Marra Mamba mineral types (from Bergstrand et al, 2003)

	Mineral
	%SiO2
	%Al2O3
	%P

	Hematite (Martite)
	0.5-0.8
	0.006-0.009
	0.002

	Goethite
	1.5-2.6
	1.8-3.3
	0.09-0.21

	Ochreous Goethite
	1.5-4.2
	3.5-6.5
	0.09-0.56


Table 7.1 and Table 7.2 highlight that the hematite contained a lower proportion of gangue minerals and should have been significantly different in appearance from goethite to allow a separation using the optical sensor of the ore sorter. The minerals also had slightly different proportions of iron and so there was potential to separate the ore using the inductive sensor. The aim of the investigation was then, to separate these two ore types and remove outright gangue minerals.
7. Sample preparation

The 18 kg sample received was pre-screened at +6mm -54mm. On arrival the sample was washed and allowed to dry. The particles were further screened to create +6mm, +12mm, +24mm and -54mm fractions. All experimental work was undertaken based on particles within this sample.
7. Sensor Selection using a Small Sample
As described in Chapter 6, the first stage of experimentation undertaken was the determination of which of the sensors, if any, incorporated within the CommoDas automated sorter was capable of separating the iron ore into groups of varying economic worth.
7. Separation Potential with Optical Sensor
From the experimental sub-sample five visually separable clusters containing three particles each were gathered. Examples of these particles are shown in Figure 7.1.
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Figure 7.1 - Images of identified iron ore types
The particles were analysed using semi-quantitative XRF, the full results of which can be found in Appendix H. The three compounds that were of interest were Fe2O3 and the acid oxides contaminants, namely, Al2O3 and SiO2. A scatter chart of the iron grade against acid oxide content for each particle is shown in Figure 7.2.
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Figure 7.2 - Iron content and acid oxide impurities for iron ore sample
Figure 7.2 shows that of the five identified clusters, one in particular had significantly lower iron content and higher levels of impurities than any other. It should be noted that although the split y-axis distorts the relationship between levels of impurity, in cluster 1 there is at least 4.5 times the acid oxide content when compared to any other cluster. In the most extreme cases, there are over 20 times the levels of impurities of some particles. In the remaining four clusters the iron content and levels of impurity are all similar. 
From this work it would seem that by separating particles similar to those classified as Cluster 1 from all other mineral types there is the potential to sort the ore based on optical characteristics so as to increase the economic worth of the ore.

7. Separation Potential with Inductive Sensor

The sample received from Hamersley contained only high grade iron ore. The number of expected clusters then would be equivalent to the number of primary mineral types, namely: Martite (Fe2O3), Goethite (FeO.OH), Ochreous Goethite (FeO.OH) and the secondary mineral types: Vitreous Goethite (FeO.OH), Hydrohematite (Fe(2-x)/3​(OH)xO3-x) and Secondary Hematite (Fe2O3). It was assumed that the abundance of the three secondary minerals was approximately half that of the three primary mineral types. Based on this assumption the lowest abundance would be a ninth, or 0.111, and so the minimum number of particles, n, required for processing can be estimated by interpolating between the required number of particles for the relative abundances of 0.1 and 0.15 which are taken from Figure 6.3. The interpolation process is shown in Equation 7.1. 
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Based on the result of Equation 7.1, 56 particles were randomly selected and processed through the ore sorter. The metal contents of each particle were then analysed using an agglomerative hierarchical clustering algorithm. A hierarchical algorithm was chosen as the number of clusters within the data was only estimated at six based on the ore characterisation. It was possible that the conductive properties of a number of mineral types would be similar and so fewer clusters would be identified. Conversely, due to the heterogeneous nature of the sample, more than six clusters may have been detected. 
Using a hierarchical algorithm allowed for the comparison of a number of solutions in only a single stage of analysis. The specific method used was the Unweighted Pair-Group Method using arithmetic Averages (UPGMA). This method was chosen as it can be used with any resemblance co-efficient and it judges similarity between pairs of clusters in a less extreme way than rival techniques such as the Single-LINKage (SLINK) and Complete-LINKage (CLINK) clustering methods (Romesburg, 2004). The software used to conduct the clustering was written using Visual Basic for Applications. The coding can be found on the compact disk labelled ‘VBA Coding’ which accompanies this thesis or via the Exeter Research and Institutional Content archive (ERIC).
The similarity coefficient chosen was the Euclidean distances between pairs of clusters. Similarities were calculated as shown in Equation 7.2.
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Where exy is the Euclidean distance between clusters x and y whilst n is the dimensionality of the attribute space. Based on the results of the cluster analysis, a ‘tree’ of Euclidean distances was created. Figure 7.3 shows the agglomeration of the final twelve clusters from the clustering tree. 
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Figure 7.3 - Clustering tree for percentage metal content

Based on the results of the cluster analysis the final number of clusters was decided and these clusters were then crushed and analysed by XRF. The decision was made based on the range of Euclidean distances covered by each number of clusters – choosing a number of clusters with a wide range of distances minimises the sensitivity to error (Romesburg, 2004). Table 7.3 shows the number of clusters obtained for different ranges of Euclidean distances.

Table 7.3 - Number of clusters obtained for different ranges of exy for iron ore
	Clusters
	Range of Euclidean Distances
	Width

	2
	39.7 < exy < 71.4
	31.8

	3
	18.4 < exy < 39.7
	21.3

	6
	9.9 < exy < 15.7
	5.7

	4
	16.2 < exy < 18.4
	2.2

	8
	7.5 < exy < 9.1
	1.6

	9
	6.3 < exy < 7.5
	1.1

	7
	9.1 < exy < 9.9
	0.9

	12
	4.7 < exy < 5.5
	0.8

	5
	15.7 < exy < 16.2
	0.5

	11
	5.5 < exy < 6.0
	0.5

	10
	6.0 < exy < 6.3
	0.3


Table 7.3 shows that the ranges of Euclidean distances are widest when there are 2, 3 or 6 clusters. Figure 7.4 shows scatterplots of the data grouped into clusters at these stages of agglomeration.
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Figure 7.4 - Scatterplots of data at different stages of agglomeration

The range of Euclidean distances is greatest when there are 2 or 3 clusters which would suggest that these values should be used. It was decided however, to use six clusters. This decision was made for three reasons. The first was that the ore characterisation suggested that there were six mineral types within the ore sample and so it was suspected that six clusters of values would be found. The second reason was that the scatterplot for 6 clusters shows a good separation between clusters. The final reason was that having separately analysed the 6 clusters it would be possible to combine data to obtain the equivalent results for any number of clusters less than 6. The grade and levels of impurities for each of the clusters is summarised in Table 7.4.

Table 7.4 - Results of XRF analysis of clusters for iron ore
	6 Clusters
	Cluster
	1
	2
	3
	4
	5
	6

	
	Mean conductivity (%)
	91.5
	0.0
	31.7
	74.7
	15.7
	51.7

	
	Mineral composition (%)
	Fe
	68.8
	68.0
	68.9
	69.0
	68.9
	69.0

	
	
	Acid Oxides

 (Al2O3 + SiO2)
	1.3
	1.2
	1.2
	1.0
	1.2
	1.1

	
	
	P
	0.04
	0.04
	0.04
	0.04
	0.04
	0.04

	3 Clusters
	Cluster
	1
	2
	3

	
	Mean conductivity (%)
	46.75
	53.2
	33.7

	
	Mineral composition

 (%)
	Fe
	68.40
	68.95
	68.95

	
	
	Acid Oxides

 (Al2O3 + SiO2)
	1.25
	1.10
	1.15

	
	
	P
	0.04
	0.04
	0.04

	2 Clusters
	Cluster
	1
	2

	
	Mean conductivity (%)
	41.07
	47.37

	
	Mineral composition 

(%)
	Fe
	68.57
	68.67

	
	
	Acid Oxides

 (Al2O3 + SiO2)
	1.27
	1.1

	
	
	P
	0.04
	0.04


It can be seen from Table 7.4 that differences in the measured conductivity had little to no effect on either the grade or level of impurities. The most significant differences can be seen at the agglomerative stage where six clusters were formed. At this stage the measured conductivity in cluster 2 was 0% and the grade of this cluster is lower than all other clusters. The difference, though, was only about 1%. To more closely examine the correlation between measured conductivity and mineral composition the Spearman’s rank correlation co-efficient was used to compare results at the six cluster stage of agglomeration. This correlation measure was chosen as it is the relative position of values which is of interest not the values themselves and the measured conductivity is not analogous to mineral composition.
It was found that there was a slightly negative correlation, with ρ = -0.37, between the conductivity and levels of acid oxides. Slight positive correlations were found between the conductivity and grade, with ρ = 0.14, and also the conductivity and levels of phosphorus, with ρ = 0.43. The correlations found were not significant enough to justify further testing using the innductive sensor and it so it was concluded that it could not be used to separate the iron ore. 
7. Discussion of Sensor Selection
The experimentation undertaken successfully determined the potential of the optical and innductive sensors. It was found that one of the identified optical clusters had a significantly lower grade and higher levels of impurities than all other clusters. It was concluded that the data obtained from the inductive sensor, once clustered, led to no significant upgrade in ore. It was therefore determined that this sensor could not be used to upgrade the iron ore. Based on the findings of this work further experimentation would be aimed at training the ore sorter to identify the optical cluster containing ore with a lower grade and higher levels of impurity.

7. Training and Optimisation of the Ore Sorter

In the previous section of work it was determined that the optical sensor had the potential to separate the sample of iron ore so as to increase its economic value. Specifically, it was found that the ‘white’ particles similar to those classified as Cluster 1, contained high levels of impurities, in particular silica. These, particles will henceforth be referred to as white or siliceous particles.

This section summarises the training of the ore sorter to identify the siliceous particles by following the proposed methodology. To achieve this, a number of particles were selected by visual inspection to create both training and test samples. As only one optical trait was of interest the sample was skewed to over represent this trait, though particles representing each cluster were presented to the ore sorter.  

7. Optimisation of Colour Model

The first stage of optimisation was the creation of a colour model capable of sorting particles. This began with the selection of a suitable background colour. A green background as shown in Figure 6.7 was selected as it occupied an area within the YUV colour space that was mutually exclusive to that of the iron ore particles. Having chosen a suitable background colour, images of both samples of iron ore were taken at a number of exposure levels; namely, 80μs, 100μs and 120μs. Based on these images it was found that the difference between particles was more pronounced within images of dry particles. Images of wet particles did not offer a clear separation and further suffered as droplets of water were visible within the images. An example of this effect is shown in Figure 7.5.
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Figure 7.5 - Image of wetted particles with water droplets highlighted
To avoid the unintentional ejections caused by these water droplets the minimum particle size would need to be raised to about 10 mm2 - based on the number of pixels in the largest droplets. This has the disadvantage that waste particles with surface areas less than 10mm2 would also be ignored by the ore sorter.

It was found that the greatest apparent separations were obtained at an exposure time of 100 μs. The simplified image at this exposure level is shown in Figure 7.6. The ‘white’ siliceous particles are numbered 1 and 2. The remaining particles are of the high grade/low impurity type.
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Figure 7.6 - Simplified image of particles (white represents siliceous material) 
Figure 7.6 shows that the abundance of pixels classified as ‘white’ is greater in the two siliceous particles than their high grade counterparts and so the optimised colour model used to generate this image was selected for further experimentation.

7. Determination of Material Settings

To determine suitable material settings the optimal colour model was used to process a further test sample containing 13 particles which by visual inspection were classified as high grade and 7 particles with varying abundances of the ‘white’ siliceous colour trait. The results of this processing are shown in Table 7.5.

Table 7.5 - Relative colour class abundances of test iron sample

	Visual Classification
	Particle
	White %
	Other %

	High Grade Product
	1
	0.00
	100.00

	
	2
	0.00
	100.00

	
	3
	0.02
	99.98

	
	4
	0.24
	99.76

	
	5
	0.35
	99.65

	
	6
	0.66
	99.34

	
	7
	0.91
	99.09

	
	8
	1.00
	99.00

	
	9
	1.09
	98.91

	
	10
	3.28
	96.72

	
	11
	4.93
	95.07

	
	12
	12.31
	87.69

	
	13
	13.97
	86.03

	‘White’/

Siliceous

Waste
	1
	5.27
	94.73

	
	2
	13.25
	86.75

	
	3
	31.33
	68.67

	
	4
	62.51
	37.49

	
	5
	66.34
	33.66

	
	6
	70.34
	29.66

	
	7
	74.40
	25.60


The relative abundances of ‘white’ colouration in the above table was used to determine the optimal material settings using the ‘Material Settings’ program. The white colour class was chosen as the separation variable and the outcomes of the classification procedure were defined as summarised in Table 7.6 using the following hypotheses:

· H0: Particle is product, i.e. it is not ‘white’ & siliceous

· H1: Particle is waste, i.e. it is ‘white’ and siliceous

Table 7.6 - Classification outcomes for iron ore

	True Classification
	Experimental Classification
	Error Type

	Particle is product 
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H0 is true
	Accept H0​ 
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 particle is classified as product
	-

	Particle is product 
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H0 is true
	Reject H0
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 particle is not classified as product
	Type I Error

	Particle is not product 
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H0 is false
	Accept H0
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 particle is classified as product
	Type II Error

	Particle is not product 
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H0 is false
	Reject H0
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 particle is not classified as product
	-


The number of misclassifications was calculated with variation in the minimum and maximum boundaries of ‘white’ colouration. The error surface created in this way is shown in Appendix I.
The minimum number of misclassifications, which was two, occured when the minimum boundary for the ‘white’ colour class is at either 5% or between 13% and 31% and the maximum boundary is at least 75%. To determine which of the two material definitions to use, 5%-100% or 13%-100%, the error types at these points were examined in more detail. It was found that with boundaries of 5% and 100% the two misclassifications were caused by Type I errors whilst with boundaries of 13% and 100% one was caused by a type I error and the other a Type II error. As the removal of ‘white’ siliceous particles is the highest priority of the separation, type II errors are more ‘expensive’ than type I errors, therefore the most appropriate definition for the waste material is between 5% and 100% ‘white’ colouration. The final material definitions were then:

· Siliceous, waste material – 5% to 100% abundance of ‘white’ colour class

· Product material – 0% to 5% abundance of ‘white’ colour class

Having established a colour model and determined the material settings the separation model was completed and the ore sorter trained and optimised for the segregation of the iron ore sample. The next stage of the investigation was to establish the rejection criteria to use whilst physically separating the iron ore.

7. Rejection Criteria

For the separation of the iron ore there were two output streams. The waste was the low grade, siliceous material whilst the product consisted of the concentrated high grade ore. Two opposing factors affected the decision as to which stream to reject. The first factor was discussed in the previous section, namely the minimisation of type I errors. To minimise these errors the waste should have been accepted. However, the relative abundance of the siliceous material suggested that the waste should be rejected. The relative abundance of white siliceous particles was estimated based on the visual inspection of the ore and was approximately 5%. As the relative abundance of the waste was much lower than that of the product the waste should have been rejected. It was decided that the nine-fold increase in compressed air use more than over-compensated for the small increase in type II errors and so the waste was rejected during bulk sorting.

7. Physical Separation of Material 

The final stage of experimentation was undertaken to prove that an upgrade in ore quality was possible using the ore sorter. The processed sample consisted of approximately 2kg of iron ore screened between 6 and 18 mm. Before processing the splitter position was optimised using a small sample of ore. The bulk sample was then presented to the ore sorter using an Eriez model N30, vibratory feeder. Sorting was undertaken using the optimised separation model developed during the training of the ore sorter. The accepted and rejected materials from this sample were then crushed and a representative sample collected using a James riffle to divide the output streams into fractions suitable for XRF preparation. The results of the XRF analysis are shown in Table 7.7.

Table 7.7 - Metallurgical balance for separation of iron ore
	Sample
	Grade (%Fe)
	Acid Oxides (%)
	Other Impurities (%)
	LOI (%)

	
	
	Al2O3
	SiO2
	
	

	Product
	67.3
	0.39
	1.01
	0.50
	1.69

	Siliceous waste
	64.5
	2.09
	3.19
	0.46
	1.85


The results in Table 7.7 show that an upgrade in ore quality was achieved. The product had a 2.8% higher grade than the waste and had significantly less acid oxide content, 3.88%. A decrease in the Loss On Ignition (LOI) was also achieved. These three changes in ore characteristics increase the economic value of the ore and so it was concluded that the automated ore sorter was capable of separating the ore.

7. Discussion of Results
The stages of experimentation undertaken proved that the ore sorter was capable of upgrading a sample of iron ore based on the ore’s optical properties. More specifically, the removal of white siliceous particles led to a 2.8% increase in grade and an associated 3.88% decrease in levels of acid oxides. This conclusion was reached by following the methodology proposed in Chapter 7 and so is a validation of it. 

An interesting result of the experiments was that the conductivity of the ore as measured by the ore sorter had little to no influence on the quality of the ore. This seems counter-intuitive as it would be expected that an increase in the iron content would lead to an increase in conductivity. By adhering to the proposed methodology time-consuming attempts to incorporate the inductive sensor data whilst optimising the separation model were avoided. 

Although the separation of the iron ore is useful in that it validates the methodology proposed within this thesis the experimentation is let down in that the ore sample received contained only high-grade ore and so the separation that was achieved was of little economic benefit. Automated sorting in the mining of iron ore is likely to have more benefit in the processing of waste heaps to separate ore from host rock and other waste products. Such sorting can be conducted at lower tonnages than full production processing and would produce a more pronounced upgrade. Separations of high- from low-grade ore and iron ore from barren rock should lead to greater benefits.


8. Sorting of Raglan Nickel/Copper Ore
The aim of this chapter was twofold. The first aim was to corroborate the conclusions of the previous chapter regarding the validity of the methodology proposed in Chapter 6. The second aim was to compare the results of the conductive and optical sensors working both independently and in parallel. To achieve these aims a sample of approximately     18 kg of nickel/copper ore was obtained from the Raglan mine owned by Falconbridge ltd. The objective of the separation was the removal of barren waste from nickel/copper bearing minerals. Such a separation would increase the grade of ore for downstream processing whilst reducing the amount of material requiring transportation from the mine to the processing plant.

8. Ore Characterisation

The land, on which the Raglan property sits, stretches 55km along the Cape Smith fold belt. The belt strikes east-west across the Ungava peninsula; located in the far north of the Nunavut region. The stratigraphy of the belt can be sub-divided into three broad groups. These are:

· A lower sedimentary group

· A central division of tholeiitic basalts and sediments - known as the Povungnituk group

· An upper region komatiitic basalts - known as the Chukotat group

Mafic to ultramafic flows and sills are numerous in the east-central region of the Cape Smith fold belt.

The mineralization at Raglan consists of lenses of sulphides that are associated with ultramafic flows between the Povungnituk and Chukotat divisions of the fold belt. Nine peridotitic flow bodies contain economic mineralization within the Raglan region. From east to west these regions are: Donaldson, Boundary, West Boundary, zones 13-14, zones 5-8, Katinniq, zones 2-3, East Lake and Cross Lake, see Figure 8.1.
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Figure 8.1 - Map of the Raglan property showing six of nine economic flow bodies

(from Infomine.com, 2008)  

The ultramafic bodies named above contain mostly sulphide mineralization. This is generally in the form of 1-3% finely disseminated pyrrhotite and pentlandite. The ore lenses contained within these areas vary greatly in size and shape. Thickness varies from a few metres to tens of metres and strike length from tens to hundreds of metres. The lenses are generally found in channels and troughs at the base of the peridotitic flows. The lenses consist of a narrow region of massive sulphides along the footwall with net-textured and disseminated sulphide above this. The minerals present in these regions are: hexagonal pyrrhotite, pentlandite, chalcopyrite, magnetite and minor pyrite in a peridotite gangue. As well as these major minerals the zones are associated with traces of Platinum Group Elements (PGEs) and cobalt. 

8. Sample preparation

The sample of nickel-copper ore was screened at 2 mm, 6 mm, 18 mm and 54 mm. All particles were less than 18mm in diameter. To prepare the sample for optical sorting all particles were washed after screening then left to dry. All experimental work was undertaken based on particles within this sample.
8. Sensor Selection using a Small Sample
As described in Chapter 6, the first stage of experimentation undertaken was the determination of which of the sensors incorporated within the CommoDas automated sorter was capable of separating the sulphide ore into groups of varying economic worth.

8. Separation Potential with Optical Sensor
From the experimental sample of particles a sub-set was collected to typify the identified visible traits. Four visually distinct particle types were identified and are shown in Figure 8.2.
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Figure 8.2 - Image of identified ni/cu ore rock types
Based on the ore characterisation it was predicted that the light, white particles as typified by particle A in Figure 8.2 were a basaltic host rock whilst particles similar to C were peridotite. It was assumed that the minerals of interest were contained in particles similar to those shown in B and D. Particles similar to D were assumed to contain a mixture of chalcopyrite, pentlandite and pyrite whilst particles similar to B represented pyrrhotite. As the D type particles were likely to represent a number of mineral types a bias for these particles was introduced during sampling. In total, 19 samples were collected; 3 each of the type represented in A, B and C and 10 of the type represented in D. These particles were then analysed by XRF, the full results of the analysis can be found in Appendix J. Figure 8.3 contains a stacked histogram which highlights the distribution of the minerals of interest, Ni and Cu, amongst the 19 particles analysed. 
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Figure 8.3 - Stacked Histogram showing minerals of interest for preliminary test
The histogram confirms that the light coloured particles represented by A in Figure 8.2 and the dark particles as represented by C contain very little of the copper and nickel within the sample. From the histogram it can be seen that the particles of type D contain nearly the entire distribution of copper within the sample. Interestingly, two of the particles D2 and D4 contain much higher Ni grades than any of the other particles analysed but were not visually distinct. The Ni within the sample is found both within particles of type B and within a small numbers of D type particles.

The histogram clearly shows the potential of optical sorting to remove low grade particles, types A and C, from the ore to produce a concentrated copper and nickel product. 

8. Inductive Sensor Potential
The ore received from the Raglan mine contained material ranging from high grade ore to low grade waste. The number of expected minerals was seven, specifically:

Table 8.1 - Expected Minerals in Raglan Ore
	Expected Minerals in Raglan Ore

	Pyrrhotite

	Pentlandite

	Chalcopyrite

	Magnetite

	Pyrite

	Peridotite

	Basalt


Visual examination of the received sample indicated that it contained a large proportion of high grade material. Based on this observation and the ore characterisation, it was assumed that the abundance of the sulphide minerals was approximately a third of the two host mineral types; peridotite and basalt. Based on this assumption the lowest abundance would be an eleventh, or 0.091, and so the minimum number of particles, n, required for processing was estimated by interpolating between the required number of particles for the relative abundances of 0.09 and 0.10 which were taken from Figure 6.3. The interpolation process is shown in Equation 8.1. 
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Based on the result of Equation 8.1, 62 particles were randomly selected and processed through the ore sorter. The conductivity, given as a percent metal content, of each particle were then analysed using the agglomerative hierarchical clustering algorithm as set out in Chapter 7. A hierarchical algorithm was chosen as the number of clusters within the data was only estimated at eight based on the ore characterisation. It was possible that the conductive properties of a number of mineral types would be similar and so fewer clusters would be identified. Conversely, due to the heterogeneous nature of the sample, more than eight clusters may have been detected. Using a hierarchical algorithm allowed for the comparison of a number of solutions in only a single stage of analysis. The similarity co-efficient chosen was the Euclidean distances between pairs of clusters. Similarities were calculated as shown in Equation 7.2.

Figure 8.4 shows the agglomeration of the final ten clusters from the clustering tree created using AHC. 
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Figure 8.4 - Clustering tree illustrating AHC based on conductivities

Based on the results of the cluster analysis the final number of clusters was decided and these clusters were then crushed and analysed by XRF. The decision was made based on the range of Euclidean distances covered by each number of clusters – choosing a number of clusters with a wide range of distances minimises the sensitivity to error (Romesburg, 2004). Table 8.2 shows the number of clusters obtained for different ranges of Euclidean distances.

Table 8.2 - Number of clusters obtained for different ranges of exy for Ni/Cu ore
	Clusters
	Range of Euclidean Distances
	Width

	2
	179.7 < exy < 378.1
	198.3

	4
	80.54 < exy < 147.5
	67.0

	3
	147.5 < exy < 179.7
	32.2

	6
	46.76 < exy < 71.88
	25.1

	7
	36.37 < exy < 46.76
	10.4

	5
	71.88 < exy < 80.54
	8.7

	9
	31.17 < exy < 36.37
	5.2

	10
	25.98 < exy < 31.17
	5.2

	8
	36.37 < exy < 36.37
	0.0


Table 8.2 shows that the ranges of Euclidean distances are widest when there are 2, 3 or 4 clusters. It was decided to separate the particles into 4 clusters and analyse these. The results could then be used to determine the grades for separations with either 2 or 3 clusters. The nickel and copper grades for each potential separation is summarised in Table 8.3.

Table 8.3 - Results of XRF analysis of clusters for Ni/Cu Ore
	4 Clusters
	Cluster
	1
	2
	3
	4

	
	Mean conductivity (%)
	0
	23.8
	57.8
	91.0

	
	Mineral composition (%)
	Cu
	2.04
	6.28
	5.38
	2.90

	
	
	Ni
	0.40
	0.15
	0.20
	0.69

	3 Clusters
	Cluster
	1
	2
	3

	
	Mean conductivity (%)
	11.9
	57.8
	91.0

	
	Mineral composition (%)
	Cu
	2.89
	5.38
	2.90

	
	
	Ni
	0.35
	0.20
	0.69

	2 Clusters
	Cluster
	1
	2

	
	Mean conductivity (%)
	11.9
	74.4

	
	Mineral composition (%)
	Cu
	2.89
	4.09

	
	
	Ni
	0.35
	0.46


The Ni/Cu analysis of the clustered inductive sensor data shows that there was little correlation between conductivity and either nickel or copper grade. When the sample was separated into two categories there were slightly higher grades of both Ni and Cu for the more conductive cluster. It was found during the training process that particles which by visual inspection were considered barren material did not register on the inductive sensor. Unfortunately, some particles containing sulphide mineralisation also did not register on the inductive sensor. This was the main cause for the lack of correlation observed in Table 8.3.  
8. Discussion of Sensor Selection
The experimentation undertaken successfully determined the potential of the optical and inductive sensors. It was found that two of the optical clusters, identified as basalt and peridotite, could be removed without significant loss in the recovery of either copper or nickel. It was concluded that the data obtained from the inductive sensor, once clustered, led to only a small upgrade in ore quality. It was found that particles containing basalt and peridotite could be removed by the inductive sensor but at the expense of non-conductive sulphide minerals. 

An interesting discovery made during the inductive sensor testing was that some particles that were visually identifiable as containing sulphide mineralisation were non-conductive whilst others were conductive. Based on this observation, it was decided that the optical sensor data would be used to generate a separation model but that the conductivity of particles would also be recorded and used to further separate the product into conductive and non-conductive fractions to determine if there was a difference in mineralisation between the fractions. 

8. Training and Optimisation of the Ore Sorter

In the previous section of work it was determined that the optical sensor had the potential to increase the grade of both copper and nickel within the product. This section details the training of the ore sorter to identify both the high grade ore types and the low grade waste components. To this end, a number of particles, containing the visual traits identified in the previous section of work, were selected to form both training and test samples. These samples were then presented to the optical sensor.

8. Optimisation of Colour Model

The first stage of optimisation was the creation of a colour model capable of segregating particles. This began with the selection of a suitable background colour. A green background as shown in Figure 6.7 was selected as it occupied an area within the YUV colour space that was mutually exclusive to that of the ore under investigation. Having chosen a suitable background colour, images of both the training and test samples were taken at a number of exposure levels; namely, 80μs, 100μs and 140μs. Based on these images, colour models were created and optimised to allow for the separation of ore. It was found that the greatest apparent separations were obtained at an exposure time of 140μs with dry particles. The simplified image at this exposure level is shown in Figure 8.5. 
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Figure 8.5 - Simplified image of Ni/Cu ore

In Figure 8.5, row 1 contains peridotite, row 2 contains basalt and row 3 contains sulphidic particles. The images show that the particles can be separated based on visual properties. The optimised colour model used to generate the simplified image in Figure 8.5 was used to create material definitions.  

8. Determination of Material Settings

To determine suitable material settings the optimised colour model was used to process a further test sample containing 22 particles. The test sample was chosen so as to contain all of the optical traits identified in the sensor potential stage of the investigation. The results of this processing are shown in Table 8.4.

Table 8.4 - Relative abundances of colour classes in test Ni/Cu sample

	Visual Classification
	Particle
	Yellow (%)
	White (%)
	Brown (%)
	Black (%)
	Other (%)

	Sulphide
	1
	78.2
	2.5
	1.7
	10.3
	4.7

	
	2
	77.3
	6.3
	9.0
	2.8
	2.7

	
	3
	70.4
	2.7
	14.3
	8.9
	0.7

	
	4
	64.1
	2.4
	15.1
	15.2
	0.2

	
	5
	63.8
	3.6
	20.9
	7.3
	1.1

	
	6
	59.2
	2.1
	21.8
	14.4
	0.3

	
	7
	56.9
	3.6
	25.4
	10.5
	0.9

	
	8
	51.6
	6.8
	16.0
	19.5
	0.7

	
	9
	41.8
	4.4
	26.5
	24.3
	0.6

	
	10
	32.5
	1.1
	31.6
	31.0
	0.3

	Basalt
	11
	3.3
	93.3
	0.0
	0.1
	0.2

	
	12
	4.2
	82.4
	3.2
	6.6
	0.4

	
	13
	4.8
	78.4
	0.7
	11.9
	0.6

	
	14
	0.3
	64.0
	0.4
	30.1
	0.6

	
	15
	14.5
	60.7
	7.9
	12.2
	0.6

	Pyrrhotite
	16
	4.8
	0.3
	39.4
	52.7
	0.1

	
	17
	2.6
	5.9
	33.5
	54.5
	0.2

	
	18
	1.8
	3.8
	24.0
	67.3
	0.3

	Peridotite
	19
	1.7
	2.9
	6.3
	85.1
	0.0

	
	20
	0.0
	0.1
	4.1
	93.4
	0.0

	
	21
	0.1
	0.2
	3.0
	94.4
	0.2

	
	22
	0.0
	3.8
	1.8
	91.2
	0.1


Using the data in Table 8.4, the material settings for the separation model were optimised. The first stage in this process was to determine the number of required materials. In this case there were four materials: Sulphides, basalt, peridotite and pyrrhotite. The next stage was to decide which attributes to use when defining each of the four materials. This was undertaken intuitively based on both the simplified image in Figure 8.5 and the data in Table 8.4. Table 8.5 lists the attributes chosen for each material.

Table 8.5 - Defining attributes for each Ni/Cu material type

	Material
	Defining Attribute(s)

	Sulphides
	Yellow

	Basalt
	White

	Peridotite
	Black

	Pyrrhotite
	Brown


Having decided on the attributes to be used to separate particles into material types, the next step was to determine the boundaries for each material cluster. To do this the costs of each possible error were analysed.

The most costly error in this separation was considered to be the loss of sulphidic material as waste rock. The compromise between error types for all materials was, therefore, chosen so as to minimise this type of error. Table 8.6, summarises the criteria used to direct the optimisation process.

Table 8.6 - Criteria for optimisation of boundaries for Ni/Cu ore
	Material
	Criteria
	Comment

	Sulphides
	Minimisation of Type I Errors
	Minimise loss of sulphides by using large material cluster

	Basalt
	Minimisation of Type II Errors
	Minimise incorrect classification of sulphides by using small material cluster

	Peridotite
	Minimisation of Type II Errors
	Minimise incorrect classification of sulphides by using small material cluster

	Pyrrhotite
	Minimisation of Type II Errors
	Minimise incorrect classification of sulphides by using small material cluster


Based on the criteria in Table 8.6 the optimisation of the material settings was undertaken using the ‘Material Settings’ Excel spreadsheet. The optimisation was undertaken intuitively as each of the materials was mutually exclusive. The finalised material definitions and the consequent classification of the test particles are shown in Table 8.7 and Table 8.8, respectively.

Table 8.7 - Boundaries of colour classes within Ni/Cu ore material types

	
	
	
	Materials

	
	
	
	Sulphides
	Basalt
	Pyrrhotite
	Peridotite

	Colour Classes (%)
	Yellow
	Min
	15
	0
	0
	0

	
	
	Max
	100
	100
	10
	100

	
	White
	Min
	0
	55
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Brown
	Min
	0
	70
	20
	0

	
	
	Max
	100
	100
	100
	100

	
	Black
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Other
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100


Table 8.8 - Classification of Ni/Cu ore based on optimised material definitions

	Particle
	Visual Classification
	Yellow (%)
	White (%)
	Brown (%)
	Black (%)
	Other (%)
	Material

	1
	Sulphides
	78.2
	2.5
	1.7
	10.3
	4.7
	Sulphides

	2
	Sulphides
	77.3
	6.3
	9.0
	2.8
	2.7
	Sulphides

	3
	Sulphides
	70.4
	2.7
	14.3
	8.9
	0.7
	Sulphides

	4
	Sulphides
	64.1
	2.4
	15.1
	15.2
	0.2
	Sulphides

	5
	Sulphides
	63.8
	3.6
	20.9
	7.3
	1.1
	Sulphides

	6
	Sulphides
	59.2
	2.1
	21.8
	14.4
	0.3
	Sulphides

	7
	Sulphides
	56.9
	3.6
	25.4
	10.5
	0.9
	Sulphides

	8
	Sulphides
	51.6
	6.8
	16.0
	19.5
	0.7
	Sulphides

	9
	Sulphides
	41.8
	4.4
	26.5
	24.3
	0.6
	Sulphides

	10
	Sulphides
	32.5
	1.1
	31.6
	31.0
	0.3
	Sulphides

	11
	Basalt
	3.3
	93.3
	0.0
	0.1
	0.2
	Basalt

	12
	Basalt
	4.2
	82.4
	3.2
	6.6
	0.4
	Basalt

	13
	Basalt
	4.8
	78.4
	0.7
	11.9
	0.6
	Basalt

	14
	Basalt
	0.3
	64.0
	0.4
	30.1
	0.6
	Basalt

	15
	Basalt
	14.5
	60.7
	7.9
	12.2
	0.6
	Basalt

	16
	Pyrrhotite
	4.8
	0.3
	39.4
	52.7
	0.1
	Pyrrhotite

	17
	Pyrrhotite
	2.6
	5.9
	33.5
	54.5
	0.2
	Pyrrhotite

	18
	Pyrrhotite
	1.8
	3.8
	24.0
	67.3
	0.3
	Pyrrhotite

	19
	Peridotite
	1.7
	2.9
	6.3
	85.1
	0.0
	Peridotite

	20
	Peridotite
	0.0
	0.1
	4.1
	93.4
	0.0
	Peridotite

	21
	Peridotite
	0.1
	0.2
	3.0
	94.4
	0.2
	Peridotite

	22
	Peridotite
	0.0
	3.8
	1.8
	91.2
	0.1
	Peridotite


Table 8.7 summarises the material definitions for the Ni/Cu ore separation. The sulphides cluster was given the highest priority so as to minimise the loss of sulphides as waste particles. For the same reason, the minimum abundance of the ‘Yellow’ colour class was set at a low value, 15% of surface area. Table 8.8 shows that with the optimised material settings there were no misclassifications.

For the second stage of separation, based on conductivity, two materials would be defined to separate the particles into conductive and non-conductive fractions. The boundary for the non-conductive fraction was set at 0% so that any particle that registered on the inductive sensor would be classified as conductive.

8. Rejection Criteria

For the separation of the Ni/Cu ore there were two output streams. The waste output contained the basalt and peridotite whilst the product consisted of the sulphidic particles and pyrrhotite. Two opposing factors affected the decision as to which stream to reject. The first factor was discussed in the previous section, namely minimising the amount of sulphides misclassified as waste. To minimise such misclassifications the product should have been accepted. However, the relative abundance of the sulphidic and pyrrhotitic particles was low, suggesting that the product should have been rejected. It was decided that the increase in compressed air use over-compensated for a small increase in the misclassification of product and so the waste was rejected during bulk sorting. For the second separation, the non-conductive particles were rejected as previous testwork indicated that the relative abundance of these was significantly less than that of conductive particles.

8. Physical Separation of Material 

The final stage of experimentation was undertaken to prove that an upgrade in ore quality was possible using the ore sorter. The sample processed consisted of approximately 4kg of Ni/Cu ore screened between 6mm and 18 mm. Before processing, the splitter position was optimised using a small sample of ore. The sample was then presented to the ore sorter using an Eriez model N30, vibratory feeder. 
Sorting was undertaken in two stages. In the first the optimised separation model developed for the optical sensor was used to sort the ore. A material balance for this separation is shown in Table 8.9.

Table 8.9 - Metallurgical balance for optical separation of Ni/Cu ore
	Sample
	Mass
	Grade (%)
	Metal Recovery (%)

	
	g
	%
	Cu
	Ni
	Fe
	Cu
	Ni
	Fe

	Optical Product
	1186.6
	59.5
	13.2
	6.0
	16.7
	93.3
	95.8
	71.7

	Optical Waste
	809.0
	40.5
	1.4
	0.4
	9.7
	6.7
	4.2
	28.4

	Calculated Head
	1995.6
	100
	8.4
	3.7
	13.9
	100.0
	100.0
	100.0


The results in Table 8.9 show that an upgrade in ore quality was achieved. The optical sorting resulted in the removal of about 40% of the total sample mass whilst recovering over 93% of the available copper and over 95% of the available Ni.

For the second stage, the two optical products were re-processed using the settings developed for the inductive sensor. It was found that the reprocessing of the optical poduct resulted in a further separation, producing conductive and non-conductive optical fractions. Based on the assays for these final products it was possible to construct a material balance for a separation based purely on conductivity. Such a balance is shown in Table 8.10.
Table 8.10 - Metallurgical balance for conductivity separation of Ni/Cu sample
	Sample
	Mass
	Grade (%)
	Recovery (%)

	
	g
	%
	Cu
	Ni
	Fe
	Cu
	Ni
	Fe

	Non-conductive
	1503.5
	75.3
	6.3
	4.5
	12.4
	56.7
	90.6
	67.6

	Conductive
	492.1
	24.7
	14.8
	1.4
	18.2
	43.3
	9.5
	32.4

	Calculated Head
	1995.6
	100.0
	8.4
	3.7
	13.9
	100.0
	100.0
	100.0


The material balance for the inductive sensor shows that the separation based purely on conductivity produced a relatively poor separation. Although there was a good concentration of Ni in the conductive product, neither product recovered enough Cu to allow for the other product to be discarded. This result agrees with sensor selection testwork previously undertaken.
The results of the experimentation show that the optical separation produced a good concentrate and relatively barren waste whilst the separation using the inductive sensor was less successful. These two results though, become of much greater interest when the two sensors are considered together. Table 8.11 shows a material balance for the two sensors operated in series.

Table 8.11 - Metallurgical balance for series separation of Ni/Cu sample
	Sample
	Mass
	Grade (%)
	Recovery (%)

	
	g
	%
	Cu
	Ni
	Fe
	Cu
	Ni
	Fe

	Optical Product
	1186.6
	59.5
	13.2
	6.0
	16.7
	93.3
	95.8
	71.7

	Optical Conductive
	492.1
	24.7
	14.8
	1.4
	18.2
	43.3
	9.5
	32.4

	Optical Non-conductive
	694.5
	34.8
	12.1
	9.2
	15.6
	50.0
	86.2
	39.3

	Waste
	809.0
	40.5
	1.4
	0.4
	9.7
	6.7
	4.2
	28.4


The results show that operating the two sensors in a series arrangement would allow for a more tailored separation of the sample. This is best visualised with a flowchart of the separation procedure, see Figure 8.6.
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Figure 8.6 - Flowchart of Series Separation of Ni/Cu Ore
Figure 8.6 shows that the optical sorting resulted in the removal of about 40% of the total sample mass whilst recovering over 93% of the available copper and over 95% of the available Ni. The second separation stage revealed that the nickel-bearing minerals were conductive. This is shown by the 7.8% difference in Ni grade between the conductive and non-conductive fractions. The two concentrates produced by the second separation stage could then be treated as high and low grade Ni concentrates. These could be separately processed downstream. For example, the two streams could be floated separately to optimise reagent usage.
This type of multi-sensor, multi-output separation advances automated sorters from simple binary, concentrate/waste units to machines capable of tailored and flexible solutions to mineral processing operations. 

8. Discussion of Results
The stages of experimentation undertaken proved that the ore sorter was capable of upgrading a sample of Ni/Cu based on the ore’s optical properties. More specifically, the removal of particles comprised of basalt and peridotite led to a 40% reduction in mill feed whilst recovering over 93% of the copper and over 95% of the nickel available in the ore. More importantly the work illustrated the advantages of a multiple sensor, multiple output approach when considering automated sorting, to produce a number of tailored products for downstream processing.
Future experimentation should focus on separation of larger bulk samples, at least 250 kg, to validate the results of the experimentation conducted to date. Further to this, separations which reject only sulphidic particles should be undertaken to determine the abundance of nickel and copper in particles judged to be pyrrhotite by visual inspection.

9. Artificial Neural Networks for the Supplementation of Expert Based Training
When training the ore sorter to separate particles, an experienced user is required to create a separation model, as described in Chapter 3. The task of defining a colour model for use in the creation of simplified image represents a large proportion of the work involved in creating the separation model. This is especially true for separation models requiring the creation of a number of colour classes as each class must be defined by an area within the colour space and given a priority compared to other colour classes. An optimised colour model is one in which the segregation of pixels within images leads to the successful separation of particles into categories that relate to economic worth. Such a separation can take a number of hours to perfect.
The task of optimising a colour model can be described as one of colour reduction, or quantisation, whereby the initial image which may contain over 134 million separate colours is simplified into an image containing no more than 10 colours. This is required to ensure that images can then be quickly analysed in the latter stages of the separation model. The aim of this section of work is to reduce the time taken and expertise required to create a colour model. This was achieved using automated methods to quantise the number of colours within the image. 

9. Colour Quantisation for Sorter Training

Colour quantisation for an automated sorter differs from most applications in the restraints that must be applied. The first restriction is that pixels that represent the background and those representing particles must be mapped to different reference colours. The second restriction is that the colour quantisation must not be at the expense, i.e. removal, of colours that allow for the differentiation between ore types. The finalised colour palettes must, therefore, contain enough colour categories to allow for the separation of particles. The task also differs in that there is a priori knowledge of the number of required colour classes as it can be assumed that the number of colours will roughly equate to the number of visual traits identified within the ore. 

9. Chosen Colour Quantisation methods
The chosen techniques for colour quantisation were those summarised in Chapter 5 on Novel Particle Detection Techniques, namely: Kohonen Self-Organising Maps (KSOMs) and the K-Means, Competitive Learning (CL), Hierarchical Competitive Learning (HCL) and Rival Penalised Competitive Learning (RPCL) algorithms.
One further technique was also selected for testing. In this technique the cluster centroids were manually selected so that a user-defined colour palette was created. The technique will henceforth be referred to as the User-Defined Nearest Neighbour approach (UDNN). The centroids were directly chosen from images with pixels that were representative of the principle colours within an image selected to form the colour palette. 
The method, though not leading to optimised results, is much quicker than clustering techniques as it does not involve a training stage. While the UDNN approach is not generally possible in colour quantisation applications where the principal colours within an image are unknown, colour traits that distinguish particles may be identified when training the ore sorter. Selecting a small number of pixels to represent these traits is a relatively simple process. 
9. Testing of Proposed Colour Quantisation Techniques

The colour palettes generated by the chosen techniques were used to generate simplified, or quantised, images by mapping pixels from a test image. To test the effectiveness of each technique the quantised images were compared to one generated using a trained colour model created within the PACT software. 
The relative success of each approach was judged qualitatively using the following criteria:

· Ability to distinguish pixels representing the background from those representing the foreground

· Ability to classify pixels such that particles can be split into categories based on their economic worth

These two criteria were considered the most important in judging the success of each method. Both would need to be achieved if a method was to be considered as a suitable training system for the ore sorter. Where these qualitative methods were not able to separate between techniques a quantitative method was employed. In this method of comparison, the separations were judged by applying a measure of the degree of separation between particle types.
9. Standard Testing Procedure
A standard test procedure was used for each of the chosen methods. The procedure can be split into several key stages; these are:

· Generation of colour palettes (9.2.1.1)

· Mapping of pixels to colour palettes (9.2.1.2)

· Exportation of quantised images (9.2.1.2)
· Comparison of quantised images with the PACT generated image (9.2.1.3)

The following sub-sections examine each of these key stages.

9. Generating Colour palette

Images taken by the optical sensor are saved in a non-standard file format known as PICT which is not recognised by most graphical software packages - in the case of the UDNN approach this was unimportant as the cluster centroids could be selected from within the PACT software. For the other techniques, the image files were converted to a 24-bit Bitmap (BMP) format using the PACT image viewer. This conversion resulted in an associated loss in colour as the PICT format can identify 1024 bits per a channel, or over 134 million colours, whilst the bitmap identified only 256 bits per a channel, or about 16.5 million colours. This loss can be considered inconsequential, however, in relation to the proposed colour quantisation of about 16.5 million to

The BMP formatted images were then converted to the Portable PixelMap (PPM) format. This format stores the image size, maximum number of colours and the R, G and B values for individual pixels in ASCII form. An example of an image and its ASCII code is shown in Figure 9.1.
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Figure 9.1 - Example of a PPM formatted image

It was necessary to convert to a PPM format so that the pixel RGB values were in ASCII form and so could be imported into Microsoft Excel where the clustering techniques were simulated. Using a Microsoft Visual Basic for Applications (VBA) macro the RGB values for each pixel were stored in separate columns of an array whose length was determined by the image dimensions contained within the PPM file. For the example in Figure 9.1 the array length would be 16 (4 x 4). Before training the RGB values were normalised between 0 and 255. The normalised values from this array were then used as the inputs for each clustering method.

The order in which the input vectors were presented to each clustering method was important. This was especially true for the CL. The pixels presented to the CL at the beginning of training have a larger effect on the resultant colour palette than those presented later. For this reason the pixels were presented to each technique in a random, non-repeating order. The training process for each clustering technique was undertaken using VBA macros. Once training was completed the colour palette was exported to an Excel worksheet. In the case of UDNN the selected colours were manually inserted into the worksheet.

9. Mapping Pixels to Colour palette and Exporting Image

Quantised images were created using a VBA macro. The colour palette was imported from the Excel worksheet and each pixel was in turn examined and replaced by the nearest cluster centroid, as determined by Euclidean distance. The quantised image was then exported from Excel and stored as a PPM file.
9. Testing of quantised image against PACT image

The quantised images could have been tested by converting them to BMP image files and opening them within the PACT software. A simple colour model could then be generated and the relative abundance of colours within particles measured using the simulator. However, this would have been time-consuming and so a macro was created to measure the relative abundance of colours within particles by analysing particles on an individual basis and separating foreground and background pixels. The abundances resulting from this macro were then directly compared to percentages obtained from the simplified image created using the PACT generated colour model.

9. Test Image

The remainder of this section of work will examine the five proposed methods of replicating the colour quantisation undertaken using the PACT software. The image used during experimental work was of a sample of nickel-copper ore. The image was created using the Optical sensor. The image is shown in Figure 9.2.
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Figure 9.2 - Image of rock types used to test colour quantisation techniques

The image shown in Figure 9.2 contains ten particles. The particles in the row 1 are peridotite; row 2 consists of basalt and the particles in the row 3 are sulphide ores. A successful training method would need to have been capable of separating the peridotite and basalt gangue minerals from the sulphides. It should also have been able to distinguish particles from the background pixels. The original image contained 36429 unique colours which needed to be reduced to no more than ten as PACT software allows for only ten colour classes. The colour model generated by an experienced PACT user, and used to benchmark the alternative techniques, is shown in Figure 9.3. 
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Figure 9.3 - PACT generated colour model

The colour model was generated in about 240 minutes and contained six colour classes. A single colour was used to represent the background and a further four used to represent particles. The final colour class was used to classify pixels which represent neither identified traits nor the background within the image. The quantised image generated using the PACT colour model is shown in Figure 9.4.
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Figure 9.4 - Quantised image generated using PACT software

The particles in the quantised image were separated into the relevant particle types. The background was also separated from the foreground and so the colour model was successful. The percentage of each colour within particles is shown in Table 9.1.


Table 9.1 - Percentage of colours within particles for Ni/Cu ore


	Particle
	Other
	White
	Yellow + Yellow 2
	Black

	Peridotite 1
	12%
	0%
	1%
	87%

	Peridotite 2
	11%
	8%
	2%
	79%

	Basalt 1
	11%
	70%
	11%
	8%

	Basalt 2
	11%
	82%
	2%
	4%

	Basalt 3
	12%
	57%
	2%
	28%

	Basalt 4
	12%
	81%
	4%
	3%

	Sulphides 1
	19%
	12%
	59%
	9%

	Sulphides 2
	15%
	7%
	77%
	2%

	Sulphides 3
	14%
	4%
	81%
	2%

	Sulphides 4
	19%
	4%
	66%
	11%


Table 9.1 enumerates the distinction between particles that was visually obvious in Figure 9.4. The following sections will focus on the proposed alternative techniques and the results generated from the colour palettes.  

9. Determination of Most Effective Training Method

To test each of the proposed algorithms a number of scenarios were considered for training. In each of these scenarios the states of four variables were altered. These variables were:

· Level of supervision (9.3.1) 

· Colour space (9.3.2)

· Post-clustering processing (9.3.3)

· Method of centroid initiation (9.3.4)

Each combination of the above variables, a total of 16 combinations, was tested to determine the most effective method of training the algorithms. The algorithms chosen to investigate these scenarios were the K-Means and CL algorithms. These were chosen as the other three algorithms; HCL, KSOM and RPCL are derivatives of the CL algorithm and so would be expected to react similarly to the initial conditions (Cheung, 2005). The following sub-sections describe the possible states for each of the variables used. 
9. Level of Supervision in Training Stage
The first variable adjusted during testing was the level of supervision within the classification process. Three levels were considered which varied in degree of supervision during the training process. 

The most simple and unsupervised method of training tested was the presentation of an entire image to the algorithm. Each pixel within the image would be used to train the algorithm and generate a colour palette. This method will henceforth be referred to as Supervision Level 1 (SL1). 

The second method tested was to separately present pixels representing the foreground and background to the algorithms. The aim of this variation was to produce a single colour within the final palette to represent the background within an image. This would leave more cluster centroids in the colour palette to distinguish between particle types, henceforth, this method will be referred to as Supervision Level 2 (SL2). Using this method the training of a colour palette was split into two stages. The first was the creation of a single cluster centroid to represent the background within an image. The second was the training of a colour palette using only pixels that represented the foreground. To determine the optimal position for the background cluster centroid, an image of the background without particles was taken. Each pixel within this image was taken as an input vector (xBG) so that the position of the cluster centroid was simply the centre of mass of the input space assuming the entire input space belonged within the tessellation of the single cluster centroid (
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For the second training stage it was essential that pixels representing the background colour were not used to train the colour palette. Two complementary methods were used to this end. The first was to randomly initiate the positions of all but one cluster centroid. The last colour centroid taking the position of the optimised background cluster centroid. The clustering methods were then undertaken with the following adaptations. The background cluster centroid was considered a Winner-Takes-All (WTA) node, i.e. no neighbourhood radius for KSOM; it was also immune from training so that its position remained unaltered. In this way the only input vectors that affected the training of the colour palette were those not classified as background. 

The second method was to vet all inputted vectors before presentation to the training algorithms. Vectors that represent background pixels were not submitted for training. Pixels representing the background were defined by the relative proportions of intensity of the R, G and B channels or the chrominance. The minimum and maximum UV values or ratios of R:G:B were determined during an initial background training stage. These were then used with a 0.5% tolerance to classify pixels in the second stage of training as either representing the background or foreground. Ratios were used for the RGB colour space so that the classification was independent of the absolute intensity of the RGB values of a pixel.  

The last method investigated was the most supervised. In this case, the background pixels were again separated from the foreground pixels. Further to this, the image was split so that identified particle types were presented in separate training stages. The final colour palette was then a combination of the palettes created during each stage of training. Henceforth, this method will be referred to as Supervision Level 3 (SL3). This method of training is analogous to the way in which PACT is trained through the separate presentation of particle types.

9. Colour Space

The second variable for the testwork was the choice of colour space to use during clustering. The colour spaces considered were the RGB and YUV colour spaces which differ in that the RGB space shares chrominance and luminance information between each of the three channels while YUV space uses one channel exclusively for luminance and two exclusively for chrominance.

It was not possible to use the YUV space as found in the PACT software (YUVPACT) as the software uses a non-standard and undisclosed conversion algorithm. For the purpose of the investigation the standard method of calculating the YUV space (YUVSTD) was used, i.e. the luminance of a pixel is equal to:
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The luminance value is then used in combination with the R and B channels to calculate the chrominance of each pixel. The equations used are:
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The two colour models were chosen to investigate the effects of the method by which a colour space stores luminance and chrominance information on the clustering process.
It was noted, for example, that during agglomerative hierarchical clustering, the colour space played a large role in determining which clusters were considered most similar. This is illustrated in Figure 9.5. 
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Figure 9.5 - Agglomerative hierarchical clustering of colour palette

Figure 9.5 shows that in the RGB colour space the Euclidean distance between cluster centroids 3 and 4 is less than between centroids 1 and 2.  Figure 9.6 shows the same clusters converted to the YUVSTD and shows the Euclidean distances between them.


[image: image212]
Figure 9.6 - Agglomerative hierarchical clustering of colour palette

Figure 9.6 shows that with the YUVSTD colour model the Euclidean distance is shorter between clusters 1 and 2. Figure 9.5 and Figure 9.6 show the importance of colour space on clustering as the outcome using identical data and methods of clustering led to different outcomes. 

9. Post Clustering Processing
The next variable investigated was whether to use representative colours as a post-processing technique. This technique could only be used in conjunction with SL3. When representative colours were used, the clusters generated during initial training were combined under a single ‘representative’ colour specific to the particle type under investigation. These representative colours would be visualised in PACT as the combined area of the Voronoi tessellations for each cluster within the representative colour. This is illustrated in Figure 9.7 using the values from Table 4.1.

[image: image213.png]500
400

300 C A2

205 31

200 223 420
100

208 130 427

o wEm
0 200 400 600 800 1000

100 150 200 250





Figure 9.7 - YUV colour space divided by representative colours

In this way, each particle type was given a representative colour which was used in the quantised image in the place of the actual cluster position. This meant that the size of the colour palette did not affect the number of colours in the quantised image. The number of colours was instead a factor of the number of particle types. In the example used, there were three particle types and so the number of colours in the quantised image for SL3 would be four, including the background.  

9. Method of Initiation for Centroid Positions

Two methods of initiating the cluster centroids were examined during experimentation. The first method was to randomly select the position of the centroids. This has the advantage of removing subjectivity from the classification process. 

The second method was to select the initial position of clusters to exemplify the principle colours within an image (as in the UDNN approach). After selection, training was undertaken in the usual way except that as the global position of the cluster centroids had been established before training, large positional changes were undesirable; only fine adjustments were required. For this reason the learning rate was set lower than for the randomly initiated method. This method had the advantage of ensuring that a local optimum was reached and that all cluster centroids represented a principle colour.

9. Experimentation into most Effective Training Method 

To ensure the validity of the experimentation the number of clusters was kept constant between both algorithms. During SL1 and SL2 training 10 clusters were used whilst during SL3 training 5 clusters were used for each training image. 

Training was undertaken using each of the 16 unique combinations of variables. Effectiveness was judged on the ability to distinguish between particle types using the final colour palette produced during training. The tables of results are shown in Appendix K. The remainder of this sub-section describes the findings of this experimentation. 

It was found that the variable which most affected the performance of the algorithms was the level of supervision. As the training became more supervised the ability to distinguish between particles dramatically improved. It was found when the background pixels were not separately trained, i.e. supervision level 1 (SL1), a large proportion of clusters would represent background pixels. This is disadvantageous as for a given number of clusters the number used to distinguish between particle types is diminished. In supervision level 2 (SL2), the background was separately trained and it was found that this problem was reduced. This can be seen in Figure 9.8 which shows the final colour palette for two tests, one the result of training the CL algorithm under SL1 the other under SL2. All other variables remained unchanged (random initiation of clusters in the RGB colour space).

[image: image214.png]



Figure 9.8 - Effect of supervision level on colour palettes with ten centroids
Figure 9.8 shows that in SL1 five clusters represent background pixels and so only five clusters are left to distinguish between particle types. When trained under SL2 it can be seen that only two clusters represent the background pixel, consequently, eight clusters remain to distinguish between particle types. This increase in the proportion of clusters used to represent foreground pixels can be seen to improve the performance of the algorithm as shown in Table 9.3 and Table 9.2 which show the percentage of pixels from each cluster within a particle.

Table 9.2 - Percentage of colours within particles after SL1 training

	Particle
	0
	3
	6
	8
	9

	Peridotite 1
	0%
	13%
	86%
	1%
	0%

	Peridotite 2
	0%
	55%
	39%
	5%
	0%

	Basalt 1
	40%
	16%
	0%
	38%
	5%

	Basalt 2
	49%
	8%
	1%
	23%
	18%

	Basalt 3
	20%
	36%
	5%
	36%
	2%

	Basalt 4
	38%
	13%
	0%
	31%
	18%

	Sulphides 1
	7%
	44%
	13%
	35%
	1%

	Sulphides 2
	30%
	16%
	8%
	35%
	11%

	Sulphides 3
	22%
	21%
	8%
	27%
	22%

	Sulphides 4
	6%
	43%
	17%
	33%
	1%


Table 9.3 - Percentage of colours within particles after SL2 training

	Particle
	0
	1
	3
	4
	5
	6
	7
	8
	9

	Peridotite 1
	93%
	0%
	0%
	6%
	0%
	0%
	0%
	6%
	0%

	Peridotite 2
	60%
	34%
	0%
	4%
	0%
	0%
	0%
	4%
	0%

	Basalt 1
	3%
	16%
	0%
	2%
	2%
	25%
	19%
	2%
	0%

	Basalt 2
	2%
	9%
	1%
	1%
	9%
	10%
	30%
	1%
	0%

	Basalt 3
	14%
	36%
	0%
	3%
	1%
	19%
	6%
	3%
	0%

	Basalt 4
	0%
	16%
	0%
	2%
	4%
	16%
	38%
	2%
	0%

	Sulphides 1
	30%
	17%
	0%
	9%
	1%
	30%
	1%
	9%
	0%

	Sulphides 2
	11%
	5%
	5%
	6%
	17%
	25%
	9%
	6%
	0%

	Sulphides 3
	16%
	5%
	12%
	6%
	18%
	19%
	7%
	6%
	1%

	Sulphides 4
	35%
	12%
	0%
	11%
	2%
	31%
	2%
	11%
	0%


In Table 9.3 and Table 9.2 the values highlighted in red, green or blue represent values that allow one particle type to be distinguished from all others. As can be seen in Table 9.3, only the Peridotite was separable when the CL algorithm was trained using SL1. Table 9.2 shows that when trained using SL2 the CL algorithm produced a colour palette capable of segregating peridotite and basalt. Thus, it can be concluded that for the CL algorithm training in SL2 is more effective than training in SL1.  

The improvement in results when the algorithm was trained under supervision level 3 (SL3) were even more pronounced than between SL2 and SL1. Table.9.4 contains the percentages of each representative colour within a particle created using a combined colour palette which contained the clusters generated for each training image.

Table.9.4 - Percentage of representative colours within particles after SL3 training

	Particle
	0
	1
	2

	Peridotite 1
	95%
	5%
	0%

	Peridotite 2
	81%
	3%
	16%

	Basalt 1
	10%
	38%
	52%

	Basalt 2
	4%
	16%
	80%

	Basalt 3
	26%
	9%
	64%

	Basalt 4
	3%
	22%
	75%

	Sulphides 1
	41%
	52%
	8%

	Sulphides 2
	14%
	82%
	4%

	Sulphides 3
	18%
	76%
	6%

	Sulphides 4
	42%
	55%
	3%


Table.9.4 shows that there was a clear distinction between each of the three particle types. An experiment undertaken in SL2 with the same variables as for the SL3 training produced the following results:

Table 9.5 - SL2 percentage table for comparison with SL3 training

	Particle
	0
	1
	2
	3
	4
	5
	6
	7
	8

	Peridotite 1
	76%
	23%
	0%
	0%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	26%
	58%
	16%
	0%
	0%
	0%
	0%
	0%
	0%

	Basalt 1
	0%
	10%
	58%
	9%
	20%
	3%
	0%
	0%
	0%

	Basalt 2
	0%
	4%
	50%
	0%
	40%
	5%
	0%
	0%
	0%

	Basalt 3
	1%
	26%
	65%
	0%
	7%
	0%
	0%
	0%
	0%

	Basalt 4
	0%
	3%
	49%
	4%
	41%
	1%
	2%
	0%
	0%

	Sulphides 1
	3%
	46%
	35%
	13%
	0%
	3%
	0%
	0%
	0%

	Sulphides 2
	5%
	14%
	19%
	29%
	1%
	29%
	1%
	0%
	0%

	Sulphides 3
	4%
	21%
	14%
	22%
	3%
	27%
	7%
	1%
	0%

	Sulphides 4
	9%
	44%
	21%
	21%
	0%
	4%
	0%
	0%
	0%


Table 9.5 shows that there was still segregation between particle types but that the distinction is not as great as for SL3. For example the maximum distance between particle types is 15% for SL2 whereas the maximum for SL3 is 40%.

It was found during training that when using random initiation there was a large variation in final colour palette when using the same test conditions. For example, Figure 9.9 shows three final colour palettes created by training an algorithm with 10 clusters, using the SL2 method in the YUV colour space. No post-processing was undertaken and all clusters bar the background cluster were randomly initiated.
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Figure 9.9 - Colour palettes generated by random initiation of ten centroids
In Figure 9.9, it can be seen that the results are changeable when using random initiation. This problem is much less prevalent when using user-defined initiation. However, the random initiation may still prove important when trained using SL2. These would be the most effective initial conditions if the particles within an image could not be split into particle types, e.g. when the geology of the material is unknown. It was found that there was very little difference in the performance of the algorithms when using either the RGB or YUV colour space.

Based on the findings of the work the training of the algorithms was undertaken under supervision level 3, with user-defined initiation. The algorithms were tested within the YUV colour space for consistency with the PACT software as there was no obvious benefit of adopting one colour space over another. 

9. Determination of Optimal Number of Clusters

Having determined the initial conditions for the testing of algorithms, the next stage was to determine an optimal number of clusters. Each algorithm would then be tested using the same number of clusters to allow for a direct comparison of the strength of the algorithms. It has been stated by Nair et al. (2003) that the RPCL algorithm can be used to automatically determine the optimal number of cluster centroids for a given set of data. The algorithm was used for this purpose during experimentation. Optimal numbers were determined for each of the three training images and these numbers utilised during the training of the other algorithms. The optimisation was determined by initiating the RPCL algorithm 11 times for each training image and using the modal number as the optimal number of clusters. The initial number of clusters used was 40. Table 9.6 lists the final number of clusters for each of the tests undertaken.

Table 9.6 - Number of clusters in colour palettes generated by RPCL

	Sulphide test image
	8
	6
	8
	6
	9
	6
	6
	8
	7
	6
	7

	Basalt test image
	7
	5
	8
	8
	7
	6
	7
	8
	7
	8
	7

	Peridotite test image
	6
	5
	4
	5
	6
	5
	5
	6
	6
	5
	8


Table 9.6 shows that the optimal number of clusters was: six for the sulphide test image; seven for the basalt test image and five for the peridotite test image.
9. Experimental Results
Having established the optimal number of cluster centroids for each test image, each of the chosen algorithms was trained under the optimised test conditions. The results of this work are summarised below.
9. Results of K-means Clustering Experimentation

The positions of clusters within the final colour palette created by training the K-means algorithm are shown in Appendix L. Table 9.7 gives the percentages of each representative colour within a particle based on the optimised colour palette. The associated quantised image for the percentages given is shown in Figure 9.10.

Table 9.7 - Representative percentages after training by K-means

	Particle
	0
	1
	2

	Peridotite 1
	91%
	9%
	0%

	Peridotite 2
	74%
	9%
	17%

	Basalt 1
	5%
	9%
	86%

	Basalt 2
	4%
	2%
	94%

	Basalt 3
	22%
	5%
	73%

	Basalt 4
	2%
	5%
	94%

	Sulphides 1
	9%
	75%
	16%

	Sulphides 2
	2%
	88%
	10%

	Sulphides 3
	2%
	82%
	16%

	Sulphides 4
	11%
	83%
	6%
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Figure 9.10 - Quantised image generated using K-means algorithm
Table 9.7 and Figure 9.10 show that it was possible to separate all particle types using the K-means trained colour palette. 

9. Results of CL Experimentation

The positions of clusters within the final colour palette created by training the CL algorithm are shown in Appendix M. Table 9.8 gives the percentages of each representative colour within a particle based on the optimised colour palette. The associated quantised image for the percentages given is shown in Figure 9.11.

Table 9.8 - Representative percentages after training by CL

	Particle
	0
	1
	2

	Peridotite 1
	77%
	14%
	9%

	Peridotite 2
	68%
	9%
	23%

	Basalt 1
	10%
	8%
	82%

	Basalt 2
	6%
	6%
	88%

	Basalt 3
	27%
	4%
	68%

	Basalt 4
	8%
	7%
	84%

	Sulphides 1
	10%
	54%
	36%

	Sulphides 2
	2%
	80%
	18%

	Sulphides 3
	3%
	83%
	14%

	Sulphides 4
	10%
	67%
	23%
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Figure 9.11 - Quantised image generated using CL algorithm
Table 9.8 and Figure 9.11 show that it was possible to separate all particle types using the CL trained colour palette. 

9. Results of HCL Experimentation
The positions of clusters within the final colour palette created by training the HCL algorithm are shown in Appendix N. Table 9.9 gives the percentages of each representative colour within a particle based on the optimised colour palette. The associated quantised image for the percentages given is shown in Figure 9.12.
Table 9.9 - Representative percentages after training by HCL

	Particle
	0
	1
	2

	Peridotite 1
	95%
	5%
	0%

	Peridotite 2
	80%
	5%
	15%

	Basalt 1
	8%
	13%
	79%

	Basalt 2
	4%
	5%
	90%

	Basalt 3
	28%
	6%
	66%

	Basalt 4
	3%
	9%
	89%

	Sulphides 1
	20%
	56%
	24%

	Sulphides 2
	9%
	81%
	10%

	Sulphides 3
	10%
	79%
	10%

	Sulphides 4
	28%
	59%
	13%
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Figure 9.12 - Quantised image generated using HCL algorithm
Table 9.9 and Figure 9.12 show that it was possible to separate all particle types using the HCL trained colour palette. 

9. Results of KSOM Experimentation
The KSOM utilises a neighbourhood radius to influence clusters which are in close proximity within the colour palette. For this reason the geometry of the colour palette can have a large effect on the outcome of clustering. To maximise the effect of the ‘pulling’ effect on clusters each image was trained using six clusters arranged in a 3x2 grid. This diverges from the optimal number of clusters as determined by the RPCL algorithm but does so by, at most, one cluster and results in the same number of clusters in the combined colour palette.

The positions of clusters within the final colour palette created by training the KSOM algorithm are shown in Appendix O. Table 9.10 gives the percentages of each representative colour within a particle based on the optimised colour palette. The associated quantised image for the percentages given is shown in Figure 9.13.

Table 9.10 - Representative percentages after training by KSOM

	Particle
	0
	1
	2

	Peridotite 1
	99%
	0%
	1%

	Peridotite 2
	94%
	1%
	6%

	Basalt 1
	15%
	7%
	79%

	Basalt 2
	10%
	1%
	89%

	Basalt 3
	40%
	1%
	59%

	Basalt 4
	13%
	3%
	85%

	Sulphides 1
	44%
	44%
	12%

	Sulphides 2
	17%
	75%
	7%

	Sulphides 3
	20%
	73%
	7%

	Sulphides 4
	48%
	47%
	5%
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Figure 9.13 - Quantised image generated using KSOM algorithm
Table 9.10 and Figure 9.13 show that it was possible to separate all particle types using the KSOM trained colour palette. 

9. Results of RPCL Experimentation
As the optimal number of clusters was previously determined the ‘pruning’ function of the RPCL algorithm was removed for this stage of experimentation. This allowed for control over the number of clusters generated.

The positions of clusters within the final colour palette created by training the RPCL algorithm are shown in Appendix P. Table 9.11 gives the percentages of each representative colour within a particle based on the optimised colour palette. The associated quantised image for the percentages given is shown in Figure 9.14.
Table 9.11 - Representative percentages after training by RPCL

	Particle
	0
	1
	2

	Peridotite 1
	97%
	3%
	0%

	Peridotite 2
	93%
	3%
	3%

	Basalt 1
	13%
	10%
	76%

	Basalt 2
	7%
	1%
	92%

	Basalt 3
	39%
	2%
	59%

	Basalt 4
	8%
	3%
	89%

	Sulphides 1
	23%
	59%
	18%

	Sulphides 2
	8%
	83%
	9%

	Sulphides 3
	8%
	85%
	7%

	Sulphides 4
	25%
	66%
	9%


[image: image220.png]



Figure 9.14 - Quantised image generated using RPCL algorithm
Table 9.11 and Figure 9.14 show that it was possible to separate all particle types using the RPCL trained colour palette. 

9. Results of UDNN Experimentation
The positions of clusters within the final colour palette created using the UDNN approach are shown in Appendix Q. Table 9.12 gives the percentages of each representative colour within a particle based on the optimised colour palette. The associated quantised image for the percentages given is shown in Figure 9.15.

Table 9.12 - Representative percentages after training by UDNN

	
	0
	1
	2

	Peridotite 1
	88%
	12%
	0%

	Peridotite 2
	80%
	17%
	3%

	Basalt 1
	14%
	33%
	53%

	Basalt 2
	18%
	14%
	69%

	Basalt 3
	41%
	23%
	36%

	Basalt 4
	7%
	27%
	66%

	Sulphides 1
	8%
	88%
	3%

	Sulphides 2
	5%
	76%
	19%

	Sulphides 3
	4%
	69%
	27%

	Sulphides 4
	13%
	85%
	2%
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Figure 9.15 - Quantised image generated using UDNN approach
Table 9.12 and Figure 9.15 show that it was possible to separate all particle types using the UDNN trained colour palette. 

9. Discussion of Results

The experimentation has shown that, under the optimised training conditions and number of cluster centroids, each of the algorithms was capable of segregating particles by rock type. To quantitatively judge the ability to separate particle types the inter-cluster distance between particle types was used as a measure of the degree of separation. For example, in Table 9.12 the lowest percentage of ‘black’ within the peridotitic material was 80% whilst the maximum amount in the other particle types was 41%. The inter-cluster distance was, therefore, 39% for ‘black’. Table 9.13 shows, for each algorithm, the minimum inter-cluster distances for each particle type. The distance is calculated only in the plane of the representative colour with the maximum inter-cluster distance, e.g. ‘black’ for peridotite. 

Table 9.13 - Comparison of inter-cluster distances for tested algorithms

	Algorithm
	Peridotite
	Basalt
	Sulphides
	Total

	K-Means
	50.4%
	62.4%
	51.7%
	165%

	CL
	40.3%
	40.1%
	32.3%
	113%

	HCL
	51.3%
	42.9%
	41.5%
	136%

	KSOM
	51.8%
	41.9%
	48.9%
	143%

	RPCL
	53.9%
	48.5%
	41.1%
	144%

	UDNN
	38.9%
	36.3%
	8.8%
	84%

	PACT
	51%
	48%
	45%
	144%


Table 9.13 indicates that the K-means algorithm was the most effective at segregating the particles as the total of the inter-cluster distances is 21% greater than any other training method, including the PACT separation model. The RPCL and KSOM algorithms also would seem to perform on a comparable level to the PACT generated model.
These results are extremely promising and bode well for future research in the area. Three of the unsupervised algorithms which required no expert input to produce and were generated in a matter of minutes performed equally well, if not better than, the PACT colour model which took 240 minutes to produce. This drastically increases the flexibility of automated sorters as it allows for the quick adjustment of separation models without the need of an expert, allowing mine operators to effectively adjust system parameters as mining conditions vary.
10. Conclusions and Recommendations

The objective of this research project was to develop a general methodology for establishing the potential of automated sorting within the minerals industry. Such a methodology, which has not to date been established, would bring sorting in-line with more traditional processing technologies. 

Chapter 6 summarises the author’s proposed methodology for establishing the amenability of an ore to automated sorting. It describes a sequential approach, whereby the financial cost and time requirements of experimentation, are minimised and work is only undertaken when the results of the previous stage of experimentation justify it.

The work was experimentally validated using an iron ore and nickel/copper sulphide ore. The most interesting of these was the Ni/Cu ore where a novel application of multi-sensor sorting produced interesting results. An optical sensor was used to concentrate sulphide ore, this was followed by the separation of conductive sulphide ore from non-conductive. The result was the removal of 40% of the feed material, for a loss of only 6.7% of the Cu and 4.2% of the Ni, and the creation of two concentrates; a conductive high Ni content one and a non-coductive low Ni content one. The conductive concentrate contained 86.2% of the total Ni at a grade of 9.2% Ni whilst the non-conductive one contained only 9.5% of the Ni at a grade of 1.4% Ni. These differences allow for the optimisation of downstream processes. For example, reagent use in floatation could be optimised by separately floating the concentrates. The use of automated sorting as a multi-sensor, multi-output technique greatly increases its flexibility for mineral processing and advances its use from simple binary, concentrate/waste, pre-concentration.  

To further increase the flexibility and value of automated sorters to the minerals industry the use of novel discrimination techniques was examined. Specifically, unsupervised clustering algorithms were used to emulate the colour quantisation currently undertaken by an expert when training the sorter for a particular application. Unsupervised techniques have the advantage of being quick and unbiased when compared to an expert trained system. This makes them ideal for quickly establishing the potential of automated sorters for a minerals application and allows for greater flexibility as a mine operator can easily modify the separation parameters as the mining conditions vary, without the need of an expert. The results of the experimentation, summarised in Chapter 9, showed that an unsupervised algorithm was capable of outperforming a trained expert in the degree of separation between particle types and was created in less than a hundredth of the time. This result bodes well for the applied use of these algorithms in the future.    

Future research should focus on the advancement and application of neural networks to colour quantisation in conjunction with tradition training methods to confirm the results found for the Ni/Cu sulphide ore in the course of this research. Further to this research should concentrate on a multi-sensor, multi-output approach to practical sorting problems. This can be achieved theoretically by examining particles with multiple sensors and combining the data into a single attribute space. Future work should though, not ignore practical applications where a sorter may be used to generate a number of tailored output streams for down-stream processing. 
In conclusion, the work undertaken has shown that automated sorting has a great deal to offer the minerals industry and that with further advances in training techniques and multi-sensor systems, sorters can have a greater impact still.
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Appendices
Appendix A – Functionality of Unsupervised Classification Spreadsheet

The spreadsheet created to facilitate the unsupervised classification algorithms consisted of four worksheets, the functions of which are shown below.

Unsupervised clustering aspects covered by worksheets

	Worksheet 1
	Clustering of data by k-means, CL, SOM, RPCL and HCL

 and image simplification

	Worksheet 2
	Numerical representation of cluster centroids

	Worksheet 3
	Visual representation of cluster centroids 

	Worksheet 4
	Agglomerative hierarchical clustering output



	Worksheet 5
	Agglomerative hierarchical clustering summary


A.1 Data Clustering and Image Simplification

The first worksheet contains the bulk of the spreadsheet’s functionality. There are six buttons located at the top of the sheet, each of which initiates the unsupervised clustering of data taken from an image. 
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SOM, K-Means, HCL, RPCL and Hierarchical clustering buttons

Clicking any of these buttons opens a dialogue box used to select the image to be used for training. A training image is selected using the dialogue box which must be of the portable pixel map file type. When a suitable file has been selected and the Open button clicked the software imports the image into a Visual Basic macro which then undertakes the unsupervised clustering. The exact clustering method used will depend on the learning technique selected. 

The variables which control the unsupervised clustering algorithms are contained within a table on this worksheet. The training variables for unsupervised clustering are contained within this worksheet. The variables and their possible values are shown below.

Training variables for unsupervised clustering

	Variable
	Possible Values

	Number of neurons in X dimension (X)
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	Number of neurons in Y dimension (Y)
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	Number of Inputs
	3

	Sampling method
	Random/Systematic

	Initial learning rate (α(0))
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	Initial neighbourhood radius (hc)
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	Number of preset neurons (m)
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	Train with background pixels
	Yes/No

	Background Image for Elimination
	Filename.bmp

	Learning Rate Decay Type
	Exponential/Linear

	Colour Space
	RGB/YUV

	Use Representative Colours
	Yes/No


Having selected suitable values for each of the variables the spreadsheet is prepared for cluster analysis. On completion the macro outputs a table of the trained cluster centroids. This table can then be used to create a simplified image using the ‘Simplify Image’ button.
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Simplify image button

On clicking the button a dialogue box is opened. Having selected an image and clicked the Open button the chosen image is imported to a Visual Basic macro and simplified based on the nearest neighbour approach using the table of trained cluster centroids. Once the image has been simplified the dialogue box shown below is displayed.
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Save as dialogue box for simplified image
The dialogue box is used to select a name and location for the simplified image file. The default name is ‘Simplified Image-RGB’ and default location the desktop. To view the simplified image a third-party graphics program capable of opening portable pixel map files must be used.

A.2 Representation of Cluster Centroids

The spreadsheet represents the cluster centroids, created when cluster analysis is undertaken as described in sub-section A.1, in two ways. The first is a numerical table of the cluster centroid positions in the chosen colour space and is located on Worksheet 2. The table identifies each centroid and lists both its position within the chosen colour space and its number of ‘wins’, i.e. an input vector that is closer to said centroid than any other centroid. An example table containing four cluster centroids is shown below.

Example of cluster centroid table

	Wins
	Neuron
	Weight Vector

	
	Pos X
	Pos Y
	R
	G
	B

	8604
	0
	0
	155
	139
	208

	2809
	0
	1
	146
	97
	70

	1140
	0
	2
	100
	145
	106

	5918
	0
	3
	235
	32
	51


The cluster centroid table can also be used to manually input centroid positions. The second representation of the cluster centroids is graphical and is located on Worksheet 3. The representation visualises the colour each centroid as determined by its position in the RGB colour space. There follows a graphical representation of the cluster centroids.
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Visualisation of cluster centroids
The cluster centroids are the end product of the data clustering and are used for both image simplification and for any post-clustering techniques.

A.3 Agglomerative Hierarchical Clustering

A post-clustering technique applied during the research was an Agglomerative Hierarchical Clustering (AHC) algorithm. This algorithm is modelled within the fourth and final worksheet within the unsupervised clustering spreadsheet. The spreadsheet allows for the undertaking of AHC by one of two methods, either agglomeration by Unweighted Pair-Group Method using arithmetic Averages (UPGMA) or by the centroid method. Both methods are initiated using buttons on Worksheet 1.
Selecting either button initiates the AHC process as shown in the pseudo-code below.

[image: image231]
Pseudo-code for AHC algorithm

The only training variable that must be specified is the number of remaining clusters in the agglomeration process before results are outputted, where:


[image: image232.wmf][

]

.   0, . 

noofclustersremainingtotalnoclusters

Î


This option is given as it is time consuming to output resemblance matrices for large numbers of clusters. For each stage of agglomeration after the selected number of clusters remaining has been reached, the spreadsheet outputs a resemblance matrix and a table summarising the properties of the remaining. Examples of these for the clustering of RGB data are shown below.
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Example of similarity matrix
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Table of Cluster Centroids before agglomeration
The above figures show a resemblance matrix for one stage of agglomeration and the most similar cluster centroids which are to be combined. 

Worksheet 5 summarises the agglomerative clustering process. For each stage of illustrated clustering the similarity before and after agglomeration are listed. These values form a width for the clustering stage. It has been suggested by Romesburg (2004) that stages with larger ranges of distances are less sensitive to error and so the table of values, as shown in the table below, can be used to determine the likely number of clusters.

Range of Euclidean distances covered by cluster centres

	Clusters
	Range of Avg. Similarity
	Width

	4
	62.35 < exy < 168.5
	106.15

	3
	168.5 < exy < 274.2
	105.74

	2
	274.2 < exy < 329.9
	55.71

	8
	0 < exy < 41.56
	41.57

	5
	41.56 < exy < 62.35
	20.78

	7
	41.56 < exy < 41.56
	0.00

	15
	0 < exy < 0
	0.00

	14
	0 < exy < 0
	0.00

	13
	0 < exy < 0
	0.00

	12
	0 < exy < 0
	0.00

	11
	0 < exy < 0
	0.00

	10
	0 < exy < 0
	0.00

	9
	0 < exy < 0
	0.00

	6
	41.56 < exy < 41.56
	0.00


Using the table, the number of clusters for which the range of similarity is largest is 4. Choosing this number would minimise the sensitivity to error.

Appendix B – Functionality of Material Settings Spreadsheet
The material settings program was established to accomplish two objectives: the first was the quick and straight-forward establishment of material settings whilst the second was to combine the sensor data for a particle with its mineralogical properties. The second objective would allow the effects on ore grade of separating different materials as reject and accept. To achieve these two distinct aims the material settings spreadsheet was set within a number of worksheets. The functionality of each worksheet is shown below.
Functionality of material settings worksheets

	Instructions Worksheet
	Instructions for the Material Settings Spreadsheet

	Sample Worksheet
	Raw data

	Material Settings Worksheet
	Defining material settings and classifying particles

	Avg Grade Worksheet
	Combination of sensor and mineralogical data

	Grade Results Spreadsheet
	Material Separation


B.1 Particle Classification

The required information for the optimisation of the material settings are the number of samples and number of colour classes used; not including any background colour classes. This information can be specified by the user or automatically derived from the data file in the ‘Sample’ worksheet. The program also requires the number of material classes to be defined and whether or not the data file contains inductive sensor information. Having entered the required information and clicked the OK button a further dialogue box is displayed. This box requires the names of each colour class and material to be specified. Below is an example of this dialogue box for a separation model with 5 colour classes and 4 materials. The colour names can either be entered manually or automatically derived from the data files. In most circumstances the material names must be entered manually. However, in situations where the number of materials matches the number of colours, the names can be transferred.
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Names of materials and colour classes dialogue box

When the names have been entered and the OK button clicked the user is returned to the ‘Material Settings’ worksheet. This worksheet will now contain two tables. The first table contains the material settings whilst the second contains the sample information. The material settings for a nickel-copper ore sample are shown below.

Material settings table

	
	
	
	Material Categories

	
	
	
	Sulphides
	Pyrrhotite
	Peridotite
	Basalt

	Colour Classes
	Yellow/gold
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	White
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Brown
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Black
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Other
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Metal
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100


Based on the material settings table, the particles in the sample information table are classified. Classification is undertaken by clicking the ‘Classify’ button, the table below shows the classification of a nickel-copper ore sample based on the above material settings table.

Classification table for nickel-copper ore

	Particle
	Yellow
	White
	Brown
	Black
	Other
	Metal
	Material Class

	1
	31.7
	0.7
	33.6
	31.2
	0.5
	0.0
	Sulphide

	2
	35.3
	7.4
	29.9
	23.2
	1.2
	0.0
	Sulphide

	3
	30.6
	0.6
	48.4
	17.8
	0.2
	0.0
	Sulphide

	4
	77.4
	0.9
	9.0
	6.5
	3.1
	95.0
	Sulphide

	5
	50.7
	1.4
	32.3
	12.0
	0.9
	0.0
	Sulphide

	6
	38.9
	16.4
	17.6
	22.2
	1.7
	0.0
	Sulphide

	7
	58.5
	0.5
	23.6
	12.8
	1.3
	61.0
	Sulphide

	8
	42.1
	1.6
	41.4
	11.1
	0.9
	37.0
	Sulphide

	9
	73.2
	2.3
	15.1
	5.3
	1.4
	24.0
	Sulphide


The classification process utilizes a priority system ordered from the left to the right of the material settings table. As the material settings are in a default state, i.e. all settings from 0-100%, all of the particles were classified as sulphides which are the highest priority material. To optimize the separation the user can change the material settings based on the data in the particle data table. For example, the user might decide that any particle with over 1% metal content should be classified as pyrrhotite. This is achieved by adjusting the definition of pyrrhotite to include metal contents from 1-100%. As shown below.
Revisions to material settings table

	
	
	
	Material Categories

	
	
	
	Sulphide
	Pyrrhotite
	Peridotite
	Basalt

	Colour Classes
	Yellow/gold
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	White
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Brown
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Black
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Other
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Metal
	Min
	0
	1
	0
	0

	
	
	Max
	100
	100
	100
	100


For this change to affect the classification process the priority of the pyrrhotite material must be raised above that of sulphide. This is achieved by clicking the ‘Change Priority’ which opens the dialogue box shown below.
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Change priority dialogue box

To change priorities any of the materials can be clicked and moved by clicking the up and down buttons. In this example, the pyrrhotite material at priority 2 is selected and moved up. The revised dialogue box is shown below.
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Revised priority dialogue box

Having established the correct priority system the OK button is clicked which revises the material settings table to take account of the priority changes. The revised material settings table is shown in the table below.

Material settings table after change in priority

	
	
	
	Material Categories

	
	
	
	Pyrrhotite
	Sulphide
	Peridotite
	Basalt

	Colour Classes
	Yellow/gold
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	White
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Brown
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Black
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Other
	Min
	0
	0
	0
	0

	
	
	Max
	100
	100
	100
	100

	
	Metal
	Min
	1
	0
	0
	0

	
	
	Max
	100
	100
	100
	100


Clicking the classification button will then re-classify the particles based on the revised material settings. The table below shows the sample information table after re-classification.

Sample information table based on revised material settings

	Particle
	Yellow
	White
	Brown
	Black
	Other
	Metal 
	Material Class

	1
	31.7
	0.7
	33.6
	31.2
	0.5
	0.0
	Sulphide

	2
	35.3
	7.4
	29.9
	23.2
	1.2
	0.0
	Sulphide

	3
	30.6
	0.6
	48.4
	17.8
	0.2
	0.0
	Sulphide

	4
	77.4
	0.9
	9.0
	6.5
	3.1
	95.0
	Pyrrhotite

	5
	50.7
	1.4
	32.3
	12.0
	0.9
	0.0
	Sulphide

	6
	38.9
	16.4
	17.6
	22.2
	1.7
	0.0
	Sulphide

	7
	58.5
	0.5
	23.6
	12.8
	1.3
	61.0
	Pyrrhotite

	8
	42.1
	1.6
	41.4
	11.1
	0.9
	37.0
	Pyrrhotite

	9
	73.2
	2.3
	15.1
	5.3
	1.4
	24.0
	Pyrrhotite


Repeating this process results in the quick optimization of the material settings so that particles are separated into appropriate materials. Having classified particles into appropriate materials it is necessary to decide which combinations of materials to accept and which to reject. The following section describes how the software can be used to provide information before this decision is made.

B.2 Separation of Accept and Reject Materials 
In many situations, including the nickel-copper example used above, there are more than two defined materials. As there are only two possible products, an accepted and rejected stream of particles, a decision must be reached as to which materials to combine to form these streams. To assist in this process the worksheet entitled ‘Avg Grade’ can be used. This sheet combines the sample information table which must be transferred from the ‘Material Settings’ worksheet with mineralogical properties of the particles. To gather this information a technique such as XRF must be used. 

The ‘Avg Grade’ worksheet provides space to input data on a single mineralogical aspect of the ore. In the example used above this could be the copper grade. Once this information is entered it can be used in one of two ways: the first is to find the resultant grade of product and waste for a single combination of materials whilst the second examines the same for all possible combinations. To examine a single combination the button labelled ‘Find Grade For Current Sort’, must be clicked, doing so opens the dialogue box shown below.
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Single combination separation dialogue box
Using the dialogue box the user can choose which combination of particles to combine for the rejected stream. When the OK button is clicked a graph showing the relative abundance and grade of the resultant reject and accept streams is shown in worksheet ‘Avg Grade’, an example graph is shown below.
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Separation results for single material combination

To examine the potential upgrade of all combinations of materials the ‘Find Grades For All Possible sorts’ button can be selected.

When clicked the ‘Grade Results’ worksheet is updated. The majority of this worksheet is used to display the resultant grade, relative abundance and equivalent product recovery of the rejected and accepted products, calculated as average grade multiplied by relative mass, for all possible combinations of material. The table below shows this data for the nickel-copper ore example.

Separation information for all possible separations

(R = Rejected and A = Accepted)
	Mass of Products
	Average Grade
	Equivalent Recovery

 (grade x mass)
	Material Categories Rejected

	
	
	
	

	R
	A
	R
	A
	R
	A
	Pyrrhotite
	Sulphides
	Peridotite
	Gangue

	0.00
	66.38
	0.00
	7.20
	0.00
	4.78
	A
	A
	A
	A

	31.59
	34.79
	6.51
	7.75
	2.05
	2.70
	R
	A
	A
	A

	13.73
	52.65
	12.18
	4.70
	1.67
	2.48
	A
	R
	A
	A

	45.32
	21.06
	8.94
	1.10
	4.05
	0.23
	R
	R
	A
	A

	2.21
	64.17
	2.15
	7.83
	0.05
	5.02
	A
	A
	R
	A

	33.80
	32.58
	5.63
	9.15
	1.90
	2.98
	R
	A
	R
	A

	15.94
	50.44
	9.68
	5.21
	1.54
	2.63
	A
	R
	R
	A

	47.53
	18.85
	8.09
	0.04
	3.85
	0.01
	R
	R
	R
	A

	18.85
	47.53
	0.04
	8.09
	0.01
	3.85
	A
	A
	A
	R

	50.44
	15.94
	5.21
	9.68
	2.63
	1.54
	R
	A
	A
	R

	32.58
	33.80
	9.15
	5.63
	2.98
	1.90
	A
	R
	A
	R

	64.17
	2.21
	7.83
	2.15
	5.02
	0.05
	R
	R
	A
	R

	21.06
	45.32
	1.10
	8.94
	0.23
	4.05
	A
	A
	R
	R

	52.65
	13.73
	4.70
	12.18
	2.48
	1.67
	R
	A
	R
	R

	34.79
	31.59
	7.75
	6.51
	2.70
	2.05
	A
	R
	R
	R

	66.38
	0.00
	7.20
	0.00
	4.78
	0.00
	R
	R
	R
	R


Based on the information contained in this table the software can be used to automatically highlight the three best case separations by clicking the ‘Generate Best Case Scenarios’ button on the ‘Grade Results’ worksheet. Selecting this button opens a dialogue box. The dialogue box allows the user to decide whether the best scenarios are decided based on the grade of the rejected material, i.e. highest grade is best case, or by equivalent product recovered, i.e. largest amount recovered.

Once an option has been highlighted and the OK button clicked the user is returned to the ‘Grade Results’ page. The page is updated with the best case scenarios highlighted on the separation information table. These best cases are further displayed in a best case scenario table. This table is located at the top of the sheet and displays the mass, grade and material combinations for the three best case scenarios. An example best case scenario table was generated based on the example data by selecting the separations which led to the highest possible grade. These scenarios are shown below.

Best Case Scenario Table

	
	Mass Recovered
	Grade of Recovered Particles
	Material Categories Rejected

	
	
	
	Pyrrhotite
	Sulphides
	Peridotite
	Basalt

	1st
	13.73
	16.65
	A
	R
	A
	A

	2nd
	15.94
	13.02
	A
	R
	R
	A

	3rd
	32.58
	12.50
	A
	R
	A
	R


The table shows that the highest grade is achieved by rejecting only those particles classified as sulphide. Doing so will give a grade of 16.65%.

Appendix C – Determination of Particle Size Distribution
In this work the ability of the optical sensor to create particle size distributions was compared to that of traditional mechanical sieving. The motivation behind this work was to gain experience in manipulating data generated by the PACT software.

The testwork was undertaken on a sample of granite taken from Carnsew Quarry, Penryn, UK. The optical sensor was used to collect measurements of the surface area of the aggregate particles. The system employed provided a two-dimensional projection of particles. The aim of the investigation was to use this data to approximate the size distribution obtained by mechanical sieving.
C.1 Estimation of Mass Distribution from Area Distribution

The method used during testwork to approximate a mass distribution from the two-dimensional projection was that which was adopted by Mora et al. (1998) and is summarized below.
The optical sizing method employed classified particles based on the breadth of particles as measured by the optical sensor. Such a classification is equivalent to mechanically sizing through a screen with circular apertures as the measured breadth would need to be less than the diameter of the aperture to pass through. The screens used during sieving had square apertures and so a conversion factor was required so that a direct comparison of results was possible. This was required as the size of square apertures is measured parallel to the mesh not diagonally which means particles with larger breadths than the stated aperture may pass through. This is illustrated below. 

[image: image240.emf]
Large particle passing through square aperture 
 (from Mora et al., 1998)
It was suggested by Bernhardt (1994) that a conversion between circular and square aperture sieves could be made using a linear constant. This method was adopted for the present study. A constant, C, was used to represent the conversion, as shown in the following Equation.
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Having established a direct comparison between measurements obtained by optical sizing and mechanical sieving the next stage was to convert the number of particles retained on the theoretical sieves into a mass gradation curve. This was done by following the method proposed by Mora et al (1998). The method is based on the following equation:
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In the above equation, ρ is the density, r the number of particles retained on the sieve and n the total number of particles. It is assumed that there is a linear relationship between the thickness of a particle and the breadth, mathematically:
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Where ε is a constant relating thickness to breadth. Combining the two preceding equations, the mass retained on a sieve is:
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Assuming, that the density and relation between thickness and breadth is constant for all particles then, ρ and ε cancel out so that the percentage mass retained is simply a function of the breadth and surface area of particles. This equation was used to create mass gradation curves for the optical sensor data. 

The value of C, was optimized by a system of trial and error whereby optical sensor mass gradation curves utilizing different C values were compared to the mass gradation curve created by mechanical sieving, such a system is consistent with the work of Mora et al (1998).

C.2 Size Classification of Granite Sample
To determine the sorter’s ability to classify particles by size a 30 kg granite sample was split into two fractions of approximately 15 kg. The first sample was used as a training sample for the optimization of C, the constant relating breadth to square aperture whilst the second was used as a validation sample. Both samples were mechanically screened and then processed through the optical sensor. The mass gradation curve of the training sample, obtained by mechanical screening is shown below.
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Mass gradation for mechanically screened granite

Using this curve and the optical sensor data the value for C was optimised using a system of trial and error. The optimum value of C was defined as that which minimised the Root Mean Square Error (RMSE) between the mechanically screened and optically sized mass gradation curves. The RMSE for all tested values of C is shown below.
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Optimisation of C 



The optimised value of C was found to be 0.668. The mass gradation chart produced using this value was then compared with the chart obtained by mechanical screening.
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Mass gradation curves for training sample
It can be seen from the chart that there is a good correlation between the mechanically screened masses and those estimated by the optical sensor. The standard error of estimation for the data is 2.78 and the Product Moment Correlation Coefficient (PMCC) is 0.9989. The same value of C was then used with optical data for the validation sample. The mass gradation curves using both mechanically screened and optical sized data are shown below.
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Mass gradation chart for validation sample

The correlation on the validation data is better than that of the test sample. The Product Moment Correlation Co-efficient (PMCC) is 0.9993 and the standard error of estimation is also slightly less at 2.31.

There is enough evidence in the work done to state that it is possible to use the CommoDas sorter to replicate the work of mechanical sieving to produce cumulative mass distributions. The optical results replicated those of mechanical sieving with a high degree of accuracy. The small error within the sample is not distributed evenly within the sample. Most of the error is concentrated between the 22 mm and 31.5 mm screen sizes where the estimated masses retained were less than those found by mechanical screening. This suggests that the relationship between a particle’s breadth and the square aperture through which it will pass is not consistent across the entire size range.

Appendix D – Probabilities of Detecting Inclusions
The probabilities were all predicted by numbering the faces of a model cube from 1 to 6. Each face in turn was then considered as the face directed towards the optical sensor and the probability of detecting the inclusion in this position calculated. By multiplying each probability by a sixth the total probability of viewing an inclusion was found. This was then done for detecting the inclusion at its largest. All of this was repeated for the one, three and five faced inclusions. The results are shown below.

Inclusion on 1 Face

	Face
	1 Sensor -

no y-axis offset
	1 Sensor -

y-axis offset
	2 Sensors – Orthogonal
	2 Sensors - Parallel

	1
	1
	1
	1
	1

	2
	0
	0.5
	0.5
	0

	3
	0
	0.5
	0.5
	0

	4
	0
	0.5
	0.5
	0

	5
	0
	0.5
	0.5
	0

	6
	0
	0
	0
	1


Inclusion on 3 Faces
	Face
	1 Sensor -

no y-axis offset
	1 Sensor -

y-axis offset
	2 Sensors – Orthogonal
	2 Sensors - Parallel

	1
	1
	1
	1
	1

	2
	1
	1
	1
	1

	3
	1
	1
	1
	1

	4
	0
	0.75
	0.75
	1

	5
	0
	0.75
	0.75
	1

	6
	0
	0.75
	0.75
	1


Inclusion on 5 Faces
	Face
	1 Sensor -

no y-axis offset
	1 Sensor -

y-axis offset
	2 Sensors – Orthogonal
	2 Sensors - Parallel

	1
	1
	1
	1
	1

	2
	1
	1
	1
	1

	3
	1
	1
	1
	1

	4
	1
	1
	1
	1

	5
	1
	1
	1
	1

	6
	0
	1
	1
	1


Appendix E – Using the CommoDas Sorter to Determine Sensor Potential

The CommoDas sorter uses a conveyor belt to accelerate particles to 3ms-1 before presentation to the sensors. The sorter utilises two sensors; one optical and the other inductive. The inductive sensor is located under the belt whilst the optical sensor scans the particles as they leave the belt. During practical applications the particles on leaving the belt follow their natural trajectory and are collected in ore bins. This is a fairly abrasive process. 
When the ore sorter is used to collect data it is important to reduce the abrasion of particles to ensure particles can be recovered and re-processed. To reduce the abrasive effect the ore bins were adapted to reduce the energy of impacts. This was achieved by padding the main impact points within the ore bins. The first impact point is the side of the separation bay opposite the conveyor belt. The second impact area is the base of each ore bin. Diagrams of the sorter before and after the addition of padding are shown below.
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Impact points within ore sorter
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Padding used to dissipate energy at impact points within ore sorter

The padding has the added advantage of reducing the time taken to recover particles as it is easier to collect from the padding at the top of the ore bins than from the bins themselves. The remainder of this sub-section will examine the specific methods adopted to reduce the time taken to test the potential of both the optical and inductive sensors. It is assumed that the particles have not been pre-sorted. 

The method used to determine the potential of the optical sensor follows the flowchart in Figure 6.1, with visual identification being used, where possible, to create groups for analysis. The limitations of the image processing undertaken by the PACT software must be taken into consideration when visual inspection is used. Firstly, the software provides no method by which the texture of a particle may be identified. Secondly, the software has only limited shape recognition ability using the following equation:
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In this equation, the principle axis is defined as the longest length that can be measured within the particle. In theory, the shape factor can be used to recognise a number of shapes including square shapes from rounded and elongated shapes from squat. However as can be seen below, the shape factor can in certain circumstances give very misleading results.
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Limitation of PACT shape factor

The figure shows that in some circumstances rounded shapes can be confused with square ones. When visually separating particles into groups the limited shape recognition of the CommoDas sorter must be taken into account. 

In some circumstances it may not be possible to visually separate particles, when this is the case the sorter itself should be used. The PACT software’s Image Analysis module is utilised in these situations. The module includes a ‘trigger’ function which instructs the line-scan camera to record an image when a pre-defined event is encountered. This event is the detection by the optical sensor of a specific user defined material. To record an image of the sub-sample of particles they are placed on the conveyor belt behind a target particle. The belt is started and on the detection of the target particle an image of the ore sample is captured. 
For the recovery of particles it is necessary to track the particles whilst the images are being taken. The simplest method to accomplish this is to collect images of individual particles. Though simple, this method is time consuming and will entail the individual presentation and recovery of particles. To reduce the presentation time, a number of particles can be imaged simultaneously using labels to allow for recovery. The labels are attached to the underside of the particles, i.e. the side not facing the sensor. A note of the particle positioning can then be made and used to connect the particle with its image. In this way, the number of particles per image can be increased dramatically.
 The limit to the number of particles per image is the maximum image size allowable by the PACT software which is approximately 260 kPixels; equivalent to an area of approximately 340 cm2. All particles must therefore fit within this area. The repeatability of data when using the optical sensor is such that only a single image of a particle is required. To ensure that lighting conditions are uniform for each particle the same section along the width of the conveyor is used when presenting particles to the sorter. This minimises the change in lighting conditions. When images have been taken the YUV histogram slide filters are used to place particles into groups.

Appendix F – Error Surface for Ni/Cu Examples
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Appendix G – Using the CommoDas Sorter to Separate Material
The following physical properties should be optimised before the undertaking of a physical separation using the CommoDas automated sorter.

· the angle of the splitter between the two separation compartments

· the pressure at which compressed air is stored

· the length of time an air jet is activated for whilst rejecting a particle
· the number of air jets activated for each detected particle
· the focus of the compressed air jets for each detected particle

Optimisation should begin by setting the angle of the splitter. Below is a photograph and an annotated diagram of the splitter. 
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Photograph showing splitter, valve array and first ore bin
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Annotated diagram showing relative position and action of the splitter

The most efficient method of optimising the splitter position is to initially set it as near to the belt as possible.
[image: image256.png]



Splitter in initial position

A small sample of particles should then be passed over the sorter without rejection. The line of flight of the particles can be observed and the splitter set to be as close to this line of flight as possible without causing the disruption of particles. Coarse adjustment of the splitter is achieved by adjusting the splitter angle whilst fine tuning is achieved by altering its height. The adjusted position should be tested by passing more particles over the sorter and any corrections to position made as is necessary. 
The remaining variables are centred on the use of the compressed air valve array. The pressure at which the air is stored is manually adjusted whilst all other variables are adjusted as described in Chapter 3. The optimal pressure of compressed air is dependant on the mass of the particles being ejected with larger particles requiring more pressure to ensure ejection.
Appendix H – Oxide Groups Present in Iron Ore Samples
Sample 1

	Compound Formula
	Concentration (%)

	MgO
	0.159

	Al2O3
	0.498

	SiO2
	1.580

	P2O5
	0.058

	K2O
	0.034

	CaO
	0.039

	MnO
	0.080

	Fe2O3
	82.990


Sample 2

	Compound Formula
	Concentration (%)

	Al2O3
	0.715

	SiO2
	1.230

	P2O5
	0.174

	CaO
	0.031

	Cr
	0.012

	MnO
	0.097

	Fe2O3
	83.540


Sample 3

	Compound Formula
	Concentration (%)

	Al2O3
	0.734

	SiO2
	1.370

	P2O5
	0.113

	K2O
	0.023

	CaO
	0.016

	MnO
	0.045

	Fe2O3
	82.830


Sample 4

	Compound Formula
	Concentration (%)

	Al2O3
	1.140

	SiO2
	5.100

	P2O5
	0.063

	S
	0.083

	K2O
	0.043

	CaO
	0.043

	MnO
	0.061

	Fe2O3
	78.580

	Pb
	0.295


Sample 5

	Compound Formula
	Concentration (%)

	Al2O3
	0.837

	SiO2
	2.460

	P2O5
	0.155

	K2O
	0.069

	CaO
	0.036

	MnO
	0.035

	Fe2O3
	83.220


Sample 8

	Compound Formula
	Concentration (%)

	Al2O3
	6.250

	SiO2
	6.780

	P2O5
	0.109

	S
	0.023

	K2O
	0.034

	CaO
	0.277

	MnO
	0.030

	Fe2O3
	76.140

	Pb
	0.047


Sample 10

	Compound Formula
	Concentration (%)

	Al2O3
	0.789

	SiO2
	1.330

	P2O5
	0.164

	S
	0.023

	CaO
	0.073

	MnO
	0.028

	Fe2O3
	79.770

	Pb
	0.068


Sample 11

	Compound Formula
	Concentration (%)

	MgO
	0.224

	Al2O3
	3.910

	SiO2
	6.800

	P2O5
	0.203

	K2O
	0.150

	CaO
	0.086

	TiO2
	0.054

	Cr
	0.013

	MnO
	0.070

	Fe2O3
	78.500


Sample 12

	Compound Formula
	Concentration (%)

	Al2O3
	0.641

	SiO2
	1.290

	P2O5
	0.093

	CaO
	0.103

	Cr
	0.012

	MnO
	0.054

	Fe2O3
	82.060


Appendix I –Error Surface for Iron Ore Sample
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Appendix J – Oxide Groups Present in Sulphide Sample
A1

	Compound Formula
	Concentration (%)

	Na2O
	7.146

	MgO
	0.579

	Al2O3
	18.1

	SiO2
	64.29

	P2O5
	0.071

	SO3
	0.21

	Cl
	0.103

	K2O
	1.59

	CaO
	3.384

	TiO2
	0.109

	Cr2O3
	0.1233

	MnO
	0.0449

	Fe2O3
	3.752

	NiO
	0.1931

	CuO
	0.08105

	ZnO
	0.0179

	SrO
	0.07015

	ZrO2
	0.02549

	BaO
	0.0872

	Os
	0.00235


A2

	Compound Formula
	Concentration (%)

	Na2O
	6.52

	MgO
	2.898

	Al2O3
	17.65

	SiO2
	50.23

	P2O5
	2.13

	SO3
	0.345

	Cl
	0.0588

	K2O
	0.126

	CaO
	9.079

	TiO2
	1.85

	V2O5
	0.035

	Cr2O3
	0.0755

	MnO
	0.09762

	Fe2O3
	8.419

	CoO
	0.00428

	NiO
	0.1539

	CuO
	0.113

	ZnO
	0.00894

	SrO
	0.05491

	ZrO2
	0.0983


A3

	Compound Formula
	Concentration (%)

	Na2O
	5.637

	MgO
	0.334

	Al2O3
	16.11

	SiO2
	68.69

	P2O5
	0.118

	SO3
	0.152

	Cl
	0.0852

	K2O
	3.141

	CaO
	2.34

	TiO2
	0.132

	Cr2O3
	0.0882

	MnO
	0.0298

	Fe2O3
	2.629

	NiO
	0.1074

	CuO
	0.0592

	SrO
	0.05862

	ZrO2
	0.00658

	BaO
	0.185

	PbO
	0.0773


B1

	Compound Formula
	Concentration (%)

	Na2O
	0.657

	MgO
	0.479

	Al2O3
	1.82

	SiO2
	5.51

	SO3
	48.86

	K2O
	0.0572

	CaO
	0.582

	TiO2
	0.0643

	Fe2O3
	37.92

	CoO
	0.09115

	NiO
	3.818

	CuO
	0.0409

	Ho2O3
	0.0184


B2

	Compound Formula
	Concentration (%)

	Na2O
	0.143

	MgO
	0.162

	Al2O3
	0.545

	SiO2
	1.71

	SO3
	52.16

	K2O
	0.049

	CaO
	0.155

	TiO2
	0.0411

	Fe2O3
	41.6

	CoO
	0.0825

	NiO
	3.252

	CuO
	0.0305


B3

	Compound Formula
	Concentration (%)

	Na2O
	0.1

	MgO
	0.268

	Al2O3
	0.57

	SiO2
	2.17

	SO3
	52.01

	K2O
	0.0689

	CaO
	0.224

	TiO2
	0.0402

	Fe2O3
	40.78

	CoO
	0.08889

	NiO
	3.526

	CuO
	0.0228

	ZnO
	0.011


C1

	Compound Formula
	Concentration (%)

	Na2O
	3.15

	MgO
	7.042

	Al2O3
	9.919

	SiO2
	48.88

	P2O5
	0.237

	SO3
	0.586

	Cl
	0.129

	K2O
	1.73

	CaO
	8.934

	TiO2
	1.87

	Cr2O3
	0.0639

	MnO
	0.2352

	Fe2O3
	16.82

	CoO
	0.0131

	NiO
	0.1179

	CuO
	0.1378

	ZnO
	0.05586

	SrO
	0.06865


C2

	Compound Formula
	Concentration (%)

	Na2O
	3.44

	MgO
	6.706

	Al2O3
	10.64

	SiO2
	48.86

	P2O5
	0.304

	SO3
	0.371

	Cl
	0.137

	K2O
	1.78

	CaO
	8.719

	TiO2
	1.98

	Cr2O3
	0.0562

	MnO
	0.2295

	Fe2O3
	16.36

	NiO
	0.0727

	CuO
	0.102

	ZnO
	0.0826

	SrO
	0.0859

	PbO
	0.103


C3

	Compound Formula
	Concentration (%)

	Na2O
	2.96

	MgO
	4.672

	Al2O3
	14.77

	SiO2
	55.62

	P2O5
	0.283

	SO3
	0.141

	Cl
	0.0517

	K2O
	0.235

	CaO
	3.457

	TiO2
	0.824

	Cr2O3
	0.1455

	MnO
	0.1824

	Fe2O3
	15.64

	CoO
	0.0063

	NiO
	0.8238

	CuO
	0.0307

	ZnO
	0.06645

	SrO
	0.0217


D1

	Compound Formula
	Concentration (%)

	MgO
	0.238

	Al2O3
	1.86

	SiO2
	7.614

	SO3
	44.94

	K2O
	0.0358

	CaO
	1.33

	Fe2O3
	24.25

	CoO
	0.0237

	NiO
	0.1642

	CuO
	19.44

	ZnO
	0.05206

	SeO2
	0.0142

	SrO
	0.0108


D2

	Compound Formula
	Concentration (%)

	Al2O3
	0.079

	SiO2
	3.52

	SO3
	49.73

	CaO
	0.0708

	Fe2O3
	18.32

	CoO
	0.1151

	NiO
	14.25

	CuO
	13.8

	ZnO
	0.0205

	SeO2
	0.0181


D3

	Compound Formula
	Concentration (%)

	Al2O3
	0.411

	SiO2
	1.97

	SO3
	49.79

	K2O
	0.0899

	CaO
	0.048

	Fe2O3
	26.58

	CoO
	0.02358

	NiO
	0.09742

	CuO
	20.72

	ZnO
	0.168

	SeO2
	0.0137


D4

	Compound Formula
	Concentration (%)

	MgO
	0.134

	Al2O3
	0.129

	SiO2
	2

	SO3
	49.94

	Cl
	0.034

	K2O
	0.026

	CaO
	0.414

	Fe2O3
	21.3

	CoO
	0.1398

	NiO
	9.085

	CuO
	16.72

	ZnO
	0.03711

	SeO2
	0.0208


D5

	Compound Formula
	Concentration (%)

	Al2O3
	0.086

	SiO2
	0.444

	SO3
	50.52

	Cl
	0.038

	K2O
	0.018

	CaO
	0.024

	Fe2O3
	26.17

	NiO
	0.1843

	CuO
	22.32

	ZnO
	0.1229

	SeO2
	0.0163


D6

	Compound Formula
	Concentration (%)

	Al2O3
	0.126

	SiO2
	0.421

	SO3
	51.5

	K2O
	0.03

	Fe2O3
	25.08

	CoO
	0.0103

	NiO
	0.09142

	CuO
	22.58

	ZnO
	0.07165

	SeO2
	0.0164


D7

	Compound Formula
	Concentration (%)

	Al2O3
	0.088

	SiO2
	0.559

	SO3
	50.83

	K2O
	0.021

	CaO
	0.132

	Fe2O3
	25.44

	CoO
	0.01359

	NiO
	0.0284

	CuO
	22.76

	ZnO
	0.03504

	SeO2
	0.0134


D8

	Compound Formula
	Concentration (%)

	MgO
	0.0974

	Al2O3
	0.142

	SiO2
	0.786

	SO3
	50.88

	K2O
	0.027

	CaO
	0.0609

	Fe2O3
	25.3

	CoO
	0.0144

	NiO
	0.0432

	CuO
	22.48

	ZnO
	0.1057

	SeO2
	0.0152


D9

	Compound Formula
	Concentration (%)

	MgO
	1.41

	Al2O3
	0.458

	SiO2
	6.448

	SO3
	45.52

	K2O
	0.0497

	CaO
	1.37

	Fe2O3
	23.84

	CoO
	0.01299

	NiO
	0.3584

	CuO
	20.49

	SeO2
	0.0144


D10

	Compound Formula
	Concentration (%)

	Al2O3
	0.167

	SiO2
	1.1

	SO3
	50.99

	K2O
	0.0355

	CaO
	0.0325

	Fe2O3
	23.69

	NiO
	1.773

	CuO
	22.13

	ZnO
	0.00818

	SeO2
	0.0119


Appendix K - Results of Experimentation into most Effective Training Method
Each of the 24 unique combinations of initial conditions are labeled using the following system:

Algorithm Used / Supervision Level / Colour Space / Method of Centroid Initiation

For each combination the colour palette generated by training is displayed both numerically and graphically. For Supervision Level 3 the representative colour palette is also graphically displayed. For all combinations there is a table showing the relative abundance of colours within each particle. For supervision level three there is atable showing abundances with and without representative colours. Lastly, for all combinations, there is a summary of the performance of the training in terms of separation of particle types. The results begin on the next page

K-Means / Supervision Level 1 / RGB / Random
	Wins
	Neuron Position
	[image: image305.emf]0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Weight Vector

	
	X
	Y
	R
	G
	B

	3606
	0
	0
	39
	127
	54

	0
	0
	1
	97
	148
	165

	141
	0
	2
	159
	152
	99

	218911
	0
	3
	37
	171
	58

	5680
	0
	4
	91
	91
	82

	0
	0
	5
	33
	148
	188

	10685
	0
	6
	69
	72
	68

	0
	0
	7
	44
	212
	234

	1396
	0
	8
	116
	114
	94

	10081
	0
	9
	46
	49
	53


	
	0
	1
	2
	3
	4

	Peridotite 1
	96%
	4%
	0%
	0%
	0%

	Peridotite 2
	81%
	19%
	0%
	0%
	0%

	Basalt 1
	8%
	56%
	33%
	2%
	0%

	Basalt 2
	4%
	41%
	42%
	13%
	0%

	Basalt 3
	26%
	59%
	13%
	1%
	0%

	Basalt 4
	2%
	47%
	43%
	8%
	0%

	Sulphides 1
	34%
	56%
	9%
	0%
	0%

	Sulphides 2
	13%
	39%
	34%
	13%
	1%

	Sulphides 3
	17%
	32%
	27%
	19%
	5%

	Sulphides 4
	40%
	49%
	9%
	1%
	0%


· Peridotite separable from all other particle types using colour 0

· Basalt and Sulphides not separable

K-Means / Supervision Level 1 / RGB / User Defined
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	220620
	0
	0
	37
	171
	59

	1413
	0
	1
	108
	105
	75

	2222
	0
	2
	97
	97
	96

	3773
	0
	3
	39
	40
	47

	4829
	0
	4
	57
	61
	61

	2703
	0
	5
	48
	107
	59

	3773
	0
	6
	48
	50
	54

	5599
	0
	7
	71
	70
	68

	5043
	0
	8
	83
	83
	77

	525
	0
	9
	136
	132
	101


	
	0
	1
	2
	3
	4
	5
	6
	7

	Peridotite 1
	70%
	24%
	6%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	0%
	21%
	38%
	37%
	4%
	0%
	0%
	0%

	Basalt 1
	2%
	15%
	34%
	35%
	13%
	1%
	0%
	0%

	Basalt 2
	0%
	2%
	8%
	22%
	32%
	32%
	0%
	4%

	Basalt 3
	1%
	13%
	31%
	34%
	15%
	5%
	0%
	0%

	Basalt 4
	0%
	0%
	12%
	27%
	27%
	31%
	0%
	2%

	Sulphides 1
	2%
	18%
	33%
	31%
	13%
	0%
	2%
	0%

	Sulphides 2
	5%
	5%
	11%
	22%
	28%
	2%
	24%
	3%

	Sulphides 3
	4%
	8%
	13%
	19%
	20%
	2%
	24%
	11%

	Sulphides 4
	8%
	20%
	29%
	28%
	12%
	0%
	3%
	0%


· Peridotite separable from all other particle types using colour 1

· Sulphides separable from all other particle tpes using colour 6

· Basalts separable using colours 1 and 6

K-Means / Supervision Level 1 / YUV / Random
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	10433
	0
	0
	47
	49
	54

	0
	0
	1
	124
	250
	114

	27
	0
	2
	195
	182
	105

	0
	0
	3
	100
	239
	214

	442
	0
	4
	135
	131
	92

	77871
	0
	5
	36
	180
	59

	142070
	0
	6
	37
	167
	58

	4530
	0
	7
	99
	99
	85

	2810
	0
	8
	43
	119
	57

	12317
	0
	9
	72
	74
	70


	
	0
	1
	2
	3
	4

	Peridotite 1
	97%
	3%
	0%
	0%
	0%

	Peridotite 2
	86%
	14%
	0%
	0%
	0%

	Basalt 1
	10%
	69%
	21%
	0%
	0%

	Basalt 2
	5%
	53%
	39%
	3%
	0%

	Basalt 3
	30%
	62%
	7%
	0%
	0%

	Basalt 4
	3%
	58%
	38%
	1%
	0%

	Sulphides 1
	39%
	55%
	5%
	0%
	0%

	Sulphides 2
	15%
	46%
	34%
	5%
	0%

	Sulphides 3
	18%
	38%
	30%
	13%
	1%

	Sulphides 4
	45%
	49%
	6%
	0%
	0%


· Peridotite separable from all other particle types using colour 0

· Sulphides and Basalt inseparable

K-Means / Supervision Level 1 / YUV / User Defined
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	220889
	0
	0
	37
	171
	58

	1845
	0
	1
	111
	108
	87

	3377
	0
	2
	77
	103
	77

	2858
	0
	3
	39
	38
	47

	6146
	0
	4
	59
	60
	63

	2647
	0
	5
	54
	84
	62

	3976
	0
	6
	46
	48
	53

	3325
	0
	7
	74
	70
	64

	5117
	0
	8
	83
	81
	79

	320
	0
	9
	145
	140
	95


	
	0
	1
	2
	3
	4
	5
	6
	7
	8

	Peridotite 1
	59%
	30%
	6%
	4%
	2%
	0%
	0%
	0%
	0%

	Peridotite 2
	12%
	38%
	7%
	38%
	1%
	4%
	0%
	0%
	0%

	Basalt 1
	0%
	1%
	5%
	18%
	22%
	9%
	40%
	6%
	0%

	Basalt 2
	0%
	1%
	4%
	8%
	11%
	18%
	42%
	14%
	1%

	Basalt 3
	0%
	11%
	7%
	35%
	18%
	9%
	18%
	2%
	0%

	Basalt 4
	0%
	0%
	8%
	14%
	15%
	10%
	36%
	17%
	0%

	Sulphides 1
	1%
	15%
	9%
	30%
	27%
	7%
	9%
	1%
	0%

	Sulphides 2
	3%
	5%
	7%
	8%
	23%
	7%
	23%
	21%
	2%

	Sulphides 3
	3%
	6%
	6%
	12%
	18%
	10%
	15%
	22%
	8%

	Sulphides 4
	6%
	17%
	10%
	24%
	27%
	6%
	8%
	2%
	0%


· Peridotite separable from all other particle types using colour 0 or 1

· Sulphides and Basalt inseparable 

K-Means / Supervision Level 2 / RGB / Random
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	632
	0
	0
	36
	171
	58

	13
	0
	1
	192
	184
	106

	6
	0
	2
	225
	205
	109

	237
	0
	3
	120
	122
	118

	13601
	0
	4
	70
	76
	69

	4829
	0
	5
	98
	98
	86

	0
	0
	6
	1
	119
	189

	0
	0
	7
	154
	223
	173

	287
	0
	8
	141
	135
	89

	10068
	0
	9
	46
	49
	52


	
	0
	1
	2
	3
	4
	5
	6

	Peridotite 1
	93%
	7%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	82%
	16%
	1%
	0%
	0%
	0%
	0%

	Basalt 1
	10%
	66%
	23%
	1%
	0%
	0%
	0%

	Basalt 2
	5%
	50%
	36%
	9%
	0%
	0%
	0%

	Basalt 3
	29%
	60%
	10%
	1%
	0%
	0%
	0%

	Basalt 4
	3%
	56%
	37%
	4%
	0%
	0%
	0%

	Sulphides 1
	36%
	56%
	8%
	0%
	0%
	0%
	0%

	Sulphides 2
	14%
	47%
	34%
	1%
	4%
	0%
	0%

	Sulphides 3
	17%
	39%
	31%
	3%
	10%
	0%
	0%

	Sulphides 4
	42%
	50%
	7%
	0%
	0%
	0%
	0%


· Peridotite separable from all other particle types using colour 0 or 1

· Sulphides and basalt inseparable 

K-Means / Supervision Level 2 / RGB / User Defined
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	410
	0
	0
	36
	171
	58

	1370
	0
	1
	108
	105
	75

	2199
	0
	2
	97
	97
	97

	3699
	0
	3
	39
	40
	47

	5004
	0
	4
	57
	62
	61

	2453
	0
	5
	54
	100
	63

	3835
	0
	6
	48
	50
	54

	5270
	0
	7
	72
	70
	67

	4914
	0
	8
	84
	83
	78

	519
	0
	9
	136
	132
	101


	
	0
	1
	2
	3
	4
	5
	6
	7

	Peridotite 1
	70%
	24%
	5%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	21%
	40%
	36%
	2%
	0%
	0%
	0%
	0%

	Basalt 1
	0%
	3%
	16%
	33%
	35%
	12%
	1%
	0%

	Basalt 2
	0%
	2%
	8%
	21%
	33%
	32%
	0%
	4%

	Basalt 3
	1%
	14%
	33%
	31%
	15%
	5%
	0%
	0%

	Basalt 4
	0%
	0%
	14%
	26%
	28%
	30%
	0%
	2%

	Sulphides 1
	2%
	20%
	33%
	32%
	11%
	0%
	2%
	0%

	Sulphides 2
	5%
	5%
	10%
	24%
	27%
	1%
	24%
	3%

	Sulphides 3
	4%
	8%
	13%
	19%
	19%
	2%
	24%
	11%

	Sulphides 4
	8%
	21%
	28%
	30%
	11%
	0%
	3%
	0%


· Peridotite separable from all other particle types using colour 0 or 1

· Sulphides separable from all other particle tpes using colour 0 or 6

· Basalts separable from all other particle types using colour 0 or 5

K-Means / Supervision Level 2 / YUV / Random
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	2
	0
	0
	36
	171
	58

	458
	0
	1
	129
	127
	90

	10346
	0
	2
	77
	78
	73

	13210
	0
	3
	50
	52
	56

	0
	0
	4
	219
	242
	160

	1613
	0
	5
	103
	101
	73

	12
	0
	6
	213
	201
	108

	1722
	0
	7
	49
	106
	59

	1852
	0
	8
	100
	101
	99

	69
	0
	9
	164
	155
	99


	
	0
	1
	2
	3
	4
	5
	6

	Peridotite 1
	100%
	0%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	95%
	5%
	0%
	0%
	0%
	0%
	0%

	Basalt 1
	16%
	69%
	14%
	1%
	0%
	0%
	0%

	Basalt 2
	8%
	54%
	34%
	0%
	3%
	0%
	0%

	Basalt 3
	43%
	52%
	5%
	0%
	0%
	0%
	0%

	Basalt 4
	10%
	55%
	32%
	0%
	1%
	0%
	0%

	Sulphides 1
	53%
	43%
	0%
	4%
	0%
	0%
	0%

	Sulphides 2
	20%
	44%
	0%
	30%
	5%
	0%
	0%

	Sulphides 3
	25%
	34%
	0%
	26%
	12%
	2%
	0%

	Sulphides 4
	56%
	39%
	0%
	4%
	0%
	0%
	0%


· Peridotite separable from all other particle types using colour 0 or 1

· Sulphides separable from all other particle tpes using colour 1 or 3

· Basalts separable using colour 1 or 2

K-Means / Supervision Level 2 / YUV / User Defined

[image: image312.emf]0
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	g
	0
	0
	36
	171
	58

	4079
	0
	1
	92
	97
	85

	2479
	0
	2
	39
	38
	47

	6416
	0
	3
	57
	60
	61

	4383
	0
	4
	62
	79
	69

	3932
	0
	5
	45
	47
	53

	2148
	0
	6
	75
	71
	60

	3940
	0
	7
	83
	81
	77

	519
	0
	8
	50
	120
	62

	0
	0
	9
	62
	179
	17


	
	0
	1
	2
	3
	4
	5
	6

	Peridotite 1
	58%
	33%
	5%
	4%
	0%
	0%
	0%

	Peridotite 2
	11%
	40%
	43%
	6%
	0%
	0%
	0%

	Basalt 1
	0%
	1%
	20%
	13%
	14%
	36%
	16%

	Basalt 2
	0%
	1%
	9%
	17%
	2%
	32%
	39%

	Basalt 3
	0%
	10%
	41%
	20%
	4%
	19%
	6%

	Basalt 4
	0%
	0%
	16%
	15%
	8%
	27%
	33%

	Sulphides 1
	1%
	15%
	36%
	6%
	28%
	8%
	4%

	Sulphides 2
	3%
	5%
	10%
	5%
	25%
	18%
	34%

	Sulphides 3
	3%
	6%
	14%
	5%
	20%
	12%
	39%

	Sulphides 4
	6%
	16%
	31%
	7%
	29%
	7%
	4%


· Peridotite separable from all other particle types using colour 0 or 1

· Sulphides separable from all other particle types using colour 0, 4 or 5

· Basalts separable using colour 0, 3, 4 or 5

K-Means / Supervision Level 3 / RGB / Random

	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	350
	0
	0
	36
	171
	58

	1215
	0
	1
	112
	109
	78

	174
	0
	2
	147
	144
	98

	4791
	0
	3
	56
	61
	52

	3800
	0
	4
	81
	85
	65

	10
	0
	5
	211
	205
	113

	 211
	0
	6
	120
	122
	120

	7606
	0
	7
	70
	77
	74

	1136
	0
	8
	53
	56
	61

	0
	0
	9
	177
	69
	25

	2808
	0
	10
	95
	95
	94

	2295
	0
	11
	53
	65
	63

	0
	0
	12
	207
	64
	127

	0
	0
	13
	191
	243
	173

	5045
	0
	14
	42
	42
	51

	0
	0
	15
	241
	124
	192
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	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Peridotite 1
	81%
	9%
	6%
	3%
	0%
	0%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	34%
	41%
	18%
	2%
	4%
	1%
	0%
	0%
	0%
	0%
	0%

	Basalt 1
	0%
	7%
	11%
	1%
	46%
	12%
	22%
	0%
	1%
	0%
	0%

	Basalt 2
	1%
	2%
	7%
	0%
	40%
	5%
	36%
	0%
	9%
	0%
	0%

	Basalt 3
	3%
	20%
	20%
	1%
	42%
	4%
	8%
	0%
	0%
	0%
	0%

	Basalt 4
	0%
	1%
	15%
	0%
	36%
	7%
	37%
	0%
	4%
	0%
	0%

	Sulphides 1
	10%
	9%
	13%
	31%
	17%
	19%
	0%
	1%
	0%
	0%
	0%

	Sulphides 2
	7%
	1%
	4%
	17%
	9%
	38%
	2%
	19%
	0%
	2%
	0%

	Sulphides 3
	6%
	2%
	5%
	21%
	6%
	31%
	3%
	21%
	0%
	6%
	0%

	Sulphides 4
	14%
	10%
	9%
	35%
	8%
	22%
	0%
	2%
	0%
	0%
	0%


· Peridotite separable from all other particle types using colour 0, 1, 3, 4 or 5

· Sulphides separable from all other particle types using colour 0, 3, 4, 5 or 7

· Basalts separable using colour 0, 3, 4, 5 or 6

	
	Black
	Yellow
	White

	Peridotite 1
	88%
	3%
	9%

	Peridotite 2
	52%
	3%
	45%

	Basalt 1
	11%
	14%
	75%

	Basalt 2
	7%
	6%
	87%

	Basalt 3
	23%
	5%
	72%

	Basalt 4
	15%
	7%
	78%

	Sulphides 1
	23%
	51%
	26%

	Sulphides 2
	12%
	76%
	12%

	Sulphides 3
	11%
	79%
	10%

	Sulphides 4
	22%
	59%
	18%


· Peridotite separable from all other particle types using black

· Sulphides separable from all other particle types using yellow 

· Basalts separable using white

K-Means / Supervision Level 3 / RGB / User Defined

	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	126
	0
	0
	36
	171
	58

	861
	0
	1
	49
	112
	56

	2383
	0
	2
	49
	53
	47

	864
	0
	3
	125
	122
	86

	2527
	0
	4
	92
	90
	69

	3579
	0
	5
	70
	68
	59

	1628
	0
	6
	98
	97
	97

	4020
	0
	7
	81
	82
	83

	1243
	0
	8
	53
	114
	65

	4854
	0
	9
	63
	66
	69

	384
	0
	10
	115
	117
	115

	2268
	0
	11
	42
	44
	51

	540
	0
	12
	41
	87
	53

	1026
	0
	13
	58
	63
	67

	1736
	0
	14
	50
	51
	59

	1792
	0
	15
	38
	37
	46
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	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	Peridotite 1
	46%
	35%
	6%
	13%
	1%
	0%
	0%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	4%
	26%
	3%
	32%
	29%
	6%
	0%
	0%
	0%
	0%
	0%
	0%

	Basalt 1
	0%
	0%
	1%
	4%
	9%
	23%
	5%
	44%
	2%
	12%
	1%
	0%

	Basalt 2
	0%
	0%
	1%
	1%
	4%
	15%
	0%
	44%
	0%
	23%
	11%
	0%

	Basalt 3
	0%
	2%
	1%
	13%
	19%
	34%
	0%
	25%
	0%
	4%
	1%
	0%

	Basalt 4
	0%
	0%
	0%
	0%
	6%
	25%
	1%
	32%
	1%
	28%
	5%
	0%

	Sulphides 1
	1%
	3%
	20%
	9%
	8%
	5%
	38%
	4%
	9%
	0%
	0%
	0%

	Sulphides 2
	4%
	1%
	8%
	1%
	1%
	1%
	30%
	4%
	39%
	1%
	0%
	9%

	Sulphides 3
	3%
	1%
	11%
	2%
	1%
	1%
	26%
	2%
	30%
	4%
	0%
	19%

	Sulphides 4
	7%
	3%
	20%
	11%
	4%
	1%
	40%
	1%
	11%
	0%
	0%
	0%


· Peridotite separable from all other particle types using colour 1, 2 or 7 

· Sulphides separable from all other particle types using colour 2, 6, 7 or 8

· Basalts separable using colour 0, 2, 5, 7 or 10

	
	Black
	Yellow
	White

	Peridotite 1
	94%
	6%
	0%

	Peridotite 2
	90%
	4%
	6%

	Basalt 1
	12%
	7%
	81%

	Basalt 2
	6%
	1%
	93%

	Basalt 3
	34%
	2%
	64%

	Basalt 4
	7%
	2%
	91%

	Sulphides 1
	22%
	68%
	10%

	Sulphides 2
	7%
	86%
	7%

	Sulphides 3
	7%
	86%
	7%

	Sulphides 4
	26%
	72%
	2%


· Peridotite separable from all other particle types using black

· Sulphides separable from all other particle types using yellow 

· Basalts separable using white

K-Means / Supervision Level 3 / YUV / Random

	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	129
	0
	0
	36
	171
	58

	3698
	0
	1
	75
	73
	61

	874
	0
	2
	49
	111
	56

	2006
	0
	3
	99
	97
	72

	3105
	0
	4
	52
	55
	49

	528
	0
	5
	133
	130
	90

	0
	0
	6
	59
	10
	189

	1140
	0
	7
	52
	119
	66

	478
	0
	8
	113
	115
	113

	7363
	0
	9
	68
	70
	72

	3216
	0
	10
	92
	91
	91

	4648
	0
	11
	41
	42
	50

	2272
	0
	12
	54
	57
	63

	0
	0
	13
	188
	34
	46

	0
	0
	14
	197
	126
	204

	486
	0
	15
	43
	97
	56
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	0
	1
	2
	3
	4
	5
	6
	7
	8

	Peridotite 1
	83%
	10%
	6%
	0%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	34%
	7%
	52%
	7%
	0%
	0%
	0%
	0%
	0%

	Basalt 1
	0%
	1%
	12%
	45%
	7%
	32%
	1%
	2%
	0%

	Basalt 2
	0%
	1%
	5%
	35%
	0%
	44%
	0%
	14%
	0%

	Basalt 3
	3%
	3%
	30%
	49%
	0%
	14%
	0%
	1%
	0%

	Basalt 4
	0%
	0%
	7%
	39%
	1%
	43%
	1%
	9%
	0%

	Sulphides 1
	6%
	28%
	17%
	9%
	33%
	1%
	5%
	0%
	0%

	Sulphides 2
	6%
	10%
	3%
	2%
	37%
	1%
	34%
	0%
	6%

	Sulphides 3
	5%
	15%
	4%
	2%
	29%
	1%
	29%
	1%
	14%

	Sulphides 4
	11%
	29%
	13%
	2%
	38%
	0%
	6%
	0%
	0%


· Peridotite separable from all other particle types using colour 0 

· Sulphides separable from all other particle types using colour 0, 4 or 6

· Basalts separable using colour 0, 1, 3 or  5

	
	Black
	Yellow
	White

	Peridotite 1
	90%
	10%
	0%

	Peridotite 2
	85%
	8%
	7%

	Basalt 1
	12%
	9%
	78%

	Basalt 2
	5%
	2%
	93%

	Basalt 3
	33%
	3%
	64%

	Basalt 4
	7%
	2%
	92%

	Sulphides 1
	23%
	66%
	10%

	Sulphides 2
	9%
	87%
	4%

	Sulphides 3
	9%
	88%
	3%

	Sulphides 4
	24%
	74%
	2%


· Peridotite separable from all other particle types using black

· Sulphides separable from all other particle types using yellow 

· Basalts separable using white

K-Means / Supervision Level 3 / YUV / User Defined

	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	10
	0
	0
	36
	171
	58

	2262
	0
	1
	95
	111
	72

	968
	0
	2
	42
	46
	44

	2685
	0
	3
	85
	82
	65

	3229
	0
	4
	64
	67
	56

	978
	0
	5
	56
	53
	51

	1636
	0
	6
	97
	97
	96

	3952
	0
	7
	81
	82
	82

	1039
	0
	8
	55
	108
	66

	4842
	0
	9
	63
	65
	69

	419
	0
	10
	114
	117
	113

	2397
	0
	11
	45
	45
	53

	680
	0
	12
	42
	56
	52

	490
	0
	13
	43
	94
	56

	1691
	0
	14
	56
	58
	65

	2127
	0
	15
	38
	37
	47
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	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Peridotite 1
	51%
	7%
	10%
	29%
	1%
	2%
	0%
	0%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	7%
	4%
	5%
	33%
	3%
	37%
	9%
	1%
	0%
	0%
	0%
	0%
	0%

	Basalt 1
	0%
	0%
	1%
	1%
	1%
	8%
	25%
	5%
	43%
	3%
	0%
	12%
	1%

	Basalt 2
	0%
	0%
	1%
	0%
	0%
	3%
	16%
	1%
	43%
	0%
	1%
	23%
	11%

	Basalt 3
	0%
	0%
	2%
	6%
	1%
	23%
	37%
	2%
	24%
	0%
	0%
	4%
	1%

	Basalt 4
	0%
	0%
	0%
	0%
	0%
	3%
	27%
	3%
	32%
	1%
	0%
	28%
	5%

	Sulphides 1
	0%
	5%
	6%
	3%
	19%
	6%
	6%
	35%
	3%
	15%
	1%
	1%
	0%

	Sulphides 2
	1%
	4%
	2%
	0%
	5%
	0%
	1%
	21%
	2%
	35%
	19%
	3%
	3%

	Sulphides 3
	2%
	3%
	1%
	0%
	11%
	1%
	1%
	19%
	1%
	26%
	19%
	4%
	11%

	Sulphides 4
	4%
	6%
	6%
	3%
	22%
	4%
	2%
	32%
	0%
	18%
	2%
	1%
	0%


· Peridotite separable from all other particle types using colour 0, 3 or 11

· Sulphides separable from all other particle types using colour 4, 7, 9 or 11

· Basalts separable using colour 1, 6 or 8 

	
	Black
	Yellow
	White

	Peridotite 1
	92%
	8%
	0%

	Peridotite 2
	82%
	8%
	10%

	Basalt 1
	10%
	9%
	82%

	Basalt 2
	5%
	2%
	93%

	Basalt 3
	31%
	3%
	65%

	Basalt 4
	3%
	4%
	93%

	Sulphides 1
	15%
	75%
	10%

	Sulphides 2
	4%
	85%
	10%

	Sulphides 3
	4%
	78%
	18%

	Sulphides 4
	17%
	79%
	3%


· Peridotite separable from all other particle types using black

· Sulphides separable from all other particle types using yellow 

· Basalts separable using white

CL / Supervision Level 1 / RGB / Random
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	7045
	0
	0
	75
	74
	77

	88456
	0
	1
	41
	173
	59

	63331
	0
	2
	35
	179
	58

	22083
	0
	3
	30
	157
	51

	5417
	0
	4
	88
	86
	87

	5321
	0
	5
	38
	41
	42

	46338
	0
	6
	35
	164
	56

	8603
	0
	7
	61
	59
	56

	2530
	0
	8
	47
	121
	61

	1376
	0
	9
	128
	123
	90


	
	0
	1
	2
	3
	4

	Peridotite 1
	87%
	12%
	1%
	0%
	0%

	Peridotite 2
	41%
	54%
	5%
	0%
	0%

	Basalt 1
	0%
	20%
	45%
	34%
	1%

	Basalt 2
	1%
	8%
	34%
	48%
	9%

	Basalt 3
	5%
	41%
	39%
	14%
	1%

	Basalt 4
	0%
	15%
	34%
	47%
	4%

	Sulphides 1
	10%
	55%
	26%
	9%
	0%

	Sulphides 2
	7%
	21%
	24%
	35%
	13%

	Sulphides 3
	6%
	26%
	17%
	28%
	23%

	Sulphides 4
	15%
	54%
	22%
	8%
	1%


· Peridotite separable from all other particle types using colour 0, 2 or 3

· Sulphides separable from all other particle types using colour 0 

· Basalt separable from all other particle types using colour 0

CL / Supervision Level 1 / RGB / User Defined
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	7307
	0
	0
	56
	55
	63

	5378
	0
	1
	93
	91
	85

	92620
	0
	2
	39
	171
	57

	8250
	0
	3
	73
	75
	75

	2477
	0
	4
	50
	122
	61

	5781
	0
	5
	41
	41
	50

	29784
	0
	6
	41
	162
	60

	64569
	0
	7
	35
	181
	59

	33253
	0
	8
	30
	160
	53

	1081
	0
	9
	132
	124
	85


	
	0
	1
	2
	3
	4

	Peridotite 1
	82%
	15%
	2%
	0%
	0%

	Peridotite 2
	35%
	59%
	6%
	0%
	0%

	Basalt 1
	0%
	17%
	55%
	27%
	0%

	Basalt 2
	0%
	8%
	42%
	44%
	6%

	Basalt 3
	4%
	40%
	46%
	10%
	0%

	Basalt 4
	0%
	11%
	43%
	44%
	2%

	Sulphides 1
	8%
	45%
	39%
	7%
	0%

	Sulphides 2
	6%
	13%
	35%
	36%
	9%

	Sulphides 3
	6%
	19%
	26%
	30%
	18%

	Sulphides 4
	12%
	44%
	35%
	8%
	1%


· Peridotite separable from all other particle types using colour 0, 2 or 3

· Sulphides separable from all other particle tpes using colour 0 or 2

· Basalts separable using colour 0 or 2

CL / Supervision Level 1 / YUV / Random
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	90889
	0
	0
	39
	169
	61

	40757
	0
	1
	30
	162
	53

	5737
	0
	2
	54
	52
	61

	7686
	0
	3
	62
	72
	65

	4746
	0
	4
	39
	42
	47

	2648
	0
	5
	107
	102
	93

	599
	0
	6
	133
	129
	86

	2381
	0
	7
	43
	105
	55

	88860
	0
	8
	37
	178
	62

	6197
	0
	9
	85
	85
	82


	
	0
	1
	2
	3
	4
	5

	Peridotite 1
	79%
	17%
	4%
	0%
	0%
	0%

	Peridotite 2
	30%
	57%
	13%
	0%
	0%
	0%

	Basalt 1
	0%
	11%
	37%
	44%
	8%
	0%

	Basalt 2
	0%
	5%
	25%
	47%
	21%
	1%

	Basalt 3
	2%
	32%
	44%
	19%
	3%
	0%

	Basalt 4
	0%
	3%
	36%
	37%
	23%
	1%

	Sulphides 1
	6%
	32%
	46%
	13%
	2%
	0%

	Sulphides 2
	7%
	8%
	28%
	31%
	21%
	6%

	Sulphides 3
	5%
	13%
	25%
	21%
	21%
	14%

	Sulphides 4
	11%
	33%
	40%
	13%
	2%
	0%


· Peridotite separable from all other particle types using colour 0, 2 or 3

· Sulphides separable from all other particle tpes using colour 0

· Basalts separable using colour 0

CL / Supervision Level 1 / YUV / User Defined
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	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	67322
	0
	0
	37
	180
	58

	7261
	0
	1
	73
	72
	70

	7645
	0
	2
	58
	61
	61

	5494
	0
	3
	40
	38
	47

	20597
	0
	4
	29
	155
	50

	5907
	0
	5
	86
	90
	84

	89459
	0
	6
	38
	172
	60

	2042
	0
	7
	115
	113
	99

	42011
	0
	8
	39
	163
	60

	2762
	0
	9
	35
	133
	53


	
	0
	1
	2
	3
	4

	Peridotite 1
	84%
	15%
	1%
	0%
	0%

	Peridotite 2
	38%
	56%
	4%
	1%
	0%

	Basalt 1
	0%
	19%
	43%
	35%
	3%

	Basalt 2
	1%
	9%
	31%
	45%
	14%

	Basalt 3
	4%
	42%
	36%
	15%
	2%

	Basalt 4
	0%
	15%
	32%
	42%
	11%

	Sulphides 1
	8%
	48%
	34%
	9%
	1%

	Sulphides 2
	6%
	16%
	31%
	31%
	16%

	Sulphides 3
	6%
	20%
	23%
	25%
	25%

	Sulphides 4
	14%
	46%
	31%
	8%
	1%


· Peridotite separable from all other particle types using colour 0, 2, 3 or 4

· Sulphides separable from all other particle tpes using colour 0

· Basalts separable using colour 0

CL / Supervision Level 2 / RGB / Random


	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	3
	0
	0
	36
	171
	58

	8106
	0
	1
	43
	52
	47

	880
	0
	2
	50
	145
	64

	1636
	0
	3
	77
	100
	81

	4293
	0
	4
	89
	94
	89

	5967
	0
	5
	57
	86
	73

	1091
	0
	6
	110
	112
	110

	5838
	0
	7
	53
	70
	49

	1807
	0
	8
	107
	102
	66

	52
	0
	9
	209
	195
	103


	
	0
	1
	2
	3
	4
	5
	6
	7

	Peridotite 1
	92%
	4%
	4%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	79%
	14%
	6%
	1%
	0%
	0%
	0%
	0%

	Basalt 1
	7%
	26%
	22%
	5%
	37%
	0%
	3%
	0%

	Basalt 2
	4%
	10%
	26%
	8%
	39%
	0%
	14%
	0%

	Basalt 3
	26%
	31%
	23%
	4%
	13%
	0%
	1%
	0%

	Basalt 4
	1%
	23%
	21%
	4%
	41%
	0%
	10%
	0%

	Sulphides 1
	29%
	48%
	8%
	3%
	9%
	2%
	0%
	0%

	Sulphides 2
	11%
	31%
	7%
	3%
	22%
	24%
	2%
	0%

	Sulphides 3
	14%
	28%
	5%
	5%
	16%
	24%
	8%
	1%

	Sulphides 4
	35%
	45%
	6%
	2%
	8%
	3%
	0%
	0%


· Peridotite separable from all other particle types using colour 0 3 or 4 

· Sulphides separable from all other particle tpes using colour 5

· Basalts separable using colour 2

CL / Supervision Level 2 / RGB / User Defined


	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	0
	0
	0
	36
	171
	58

	444
	0
	1
	51
	150
	65

	7136
	0
	2
	64
	62
	62

	1780
	0
	3
	57
	108
	64

	246
	0
	4
	149
	141
	93

	7985
	0
	5
	44
	54
	49

	7190
	0
	6
	78
	78
	73

	3477
	0
	7
	93
	97
	90

	30
	0
	8
	193
	177
	106

	1385
	0
	9
	114
	113
	88


	
	0
	1
	2
	3
	4
	5
	6

	Peridotite 1
	98%
	1%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	62%
	36%
	2%
	0%
	0%
	0%
	0%

	Basalt 1
	3%
	28%
	50%
	18%
	2%
	0%
	0%

	Basalt 2
	3%
	13%
	41%
	34%
	9%
	0%
	0%

	Basalt 3
	15%
	46%
	31%
	7%
	1%
	0%
	0%

	Basalt 4
	0%
	25%
	36%
	34%
	5%
	0%
	0%

	Sulphides 1
	27%
	44%
	24%
	4%
	1%
	0%
	0%

	Sulphides 2
	11%
	19%
	35%
	19%
	14%
	1%
	0%

	Sulphides 3
	14%
	20%
	26%
	15%
	19%
	6%
	1%

	Sulphides 4
	34%
	38%
	23%
	3%
	1%
	0%
	0%


· Peridotite separable from all other particle types using colour 0, 2, 3 or 4

· Sulphides and basalt inseparable

CL / Supervision Level 2 / YUV / Random


	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	0
	0
	0
	36
	171
	58

	2594
	0
	1
	83
	84
	64

	1437
	0
	2
	86
	108
	88

	6367
	0
	3
	38
	49
	42

	1070
	0
	4
	37
	110
	51

	5955
	0
	5
	55
	59
	46

	457
	0
	6
	61
	122
	78

	761
	0
	7
	136
	130
	88

	3451
	0
	8
	96
	89
	83

	7192
	0
	9
	74
	73
	78


	
	0
	1
	2
	3
	4
	5
	6

	Peridotite 1
	93%
	7%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	49%
	42%
	8%
	0%
	0%
	0%
	0%

	Basalt 1
	1%
	13%
	53%
	7%
	4%
	22%
	0%

	Basalt 2
	1%
	5%
	43%
	2%
	20%
	25%
	2%

	Basalt 3
	9%
	27%
	52%
	2%
	4%
	6%
	0%

	Basalt 4
	0%
	7%
	44%
	3%
	8%
	36%
	1%

	Sulphides 1
	12%
	45%
	25%
	13%
	1%
	2%
	0%

	Sulphides 2
	8%
	17%
	13%
	30%
	5%
	20%
	7%

	Sulphides 3
	6%
	23%
	9%
	23%
	7%
	16%
	15%

	Sulphides 4
	17%
	46%
	16%
	16%
	1%
	3%
	0%


· Peridotite separable from all other particle types using colour 0, 2, 3, 4 or 5

· Sulphides separable from all other particle tpes using colour 2 or 3

· Basalts separable using colour 2 or 3

CL / Supervision Level 2 / YUV / User Defined


	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	2
	0
	0
	36
	171
	58

	6331
	0
	1
	68
	68
	74

	6320
	0
	2
	83
	87
	68

	3076
	0
	3
	37
	39
	42

	1130
	0
	4
	46
	76
	47

	3992
	0
	5
	47
	48
	55

	4342
	0
	6
	58
	59
	56

	2161
	0
	7
	111
	105
	72

	1581
	0
	8
	53
	106
	64

	349
	0
	9
	138
	143
	86


	
	0
	1
	2
	3
	4
	5
	6
	7

	Peridotite 1
	59%
	5%
	33%
	3%
	0%
	0%
	0%
	0%

	Peridotite 2
	11%
	4%
	46%
	30%
	8%
	0%
	0%
	0%

	Basalt 1
	0%
	2%
	2%
	11%
	44%
	37%
	5%
	0%

	Basalt 2
	0%
	2%
	1%
	4%
	34%
	43%
	13%
	1%

	Basalt 3
	0%
	0%
	4%
	13%
	19%
	48%
	13%
	2%

	Basalt 4
	0%
	4%
	5%
	36%
	40%
	13%
	0%
	0%

	Sulphides 1
	2%
	7%
	14%
	36%
	25%
	15%
	1%
	0%

	Sulphides 2
	5%
	5%
	3%
	13%
	14%
	37%
	21%
	2%

	Sulphides 3
	4%
	4%
	5%
	18%
	9%
	28%
	23%
	9%

	Sulphides 4
	8%
	8%
	14%
	35%
	17%
	16%
	2%
	0%


· Peridotite separable from all other particle types using colour 0, 2 or 5

· Sulphides separable from all other particle types using colour 0

· Basalts separable using colour 0

CL / Supervision Level 3 / RGB / Random

	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	117
	0
	0
	36
	171
	58

	58
	0
	1
	190
	183
	120

	2094
	0
	2
	50
	50
	42

	1988
	0
	3
	116
	111
	84

	865
	0
	4
	43
	115
	53

	5218
	0
	5
	69
	66
	59

	4333
	0
	6
	83
	80
	89

	3079
	0
	7
	70
	72
	71

	1258
	0
	8
	52
	106
	62

	2596
	0
	9
	61
	63
	68

	825
	0
	10
	119
	117
	115

	3289
	0
	11
	39
	40
	49

	2075
	0
	12
	49
	46
	55

	306
	0
	13
	37
	76
	49

	353
	0
	14
	43
	97
	55

	1383
	0
	15
	59
	57
	68



	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Peridotite 1
	70%
	24%
	4%
	2%
	1%
	0%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	17%
	34%
	1%
	33%
	12%
	0%
	2%
	0%
	0%
	0%
	0%

	Basalt 1
	0%
	1%
	0%
	7%
	12%
	3%
	30%
	41%
	3%
	2%
	0%

	Basalt 2
	0%
	1%
	0%
	3%
	6%
	0%
	21%
	51%
	1%
	16%
	0%

	Basalt 3
	0%
	9%
	1%
	19%
	22%
	0%
	27%
	18%
	0%
	2%
	0%

	Basalt 4
	0%
	0%
	0%
	2%
	15%
	1%
	23%
	44%
	6%
	10%
	0%

	Sulphides 1
	2%
	7%
	17%
	9%
	8%
	32%
	17%
	7%
	2%
	0%
	0%

	Sulphides 2
	4%
	1%
	7%
	1%
	1%
	23%
	16%
	20%
	27%
	0%
	0%

	Sulphides 3
	3%
	1%
	10%
	1%
	2%
	21%
	11%
	14%
	33%
	1%
	2%

	Sulphides 4
	7%
	8%
	17%
	8%
	4%
	37%
	10%
	6%
	3%
	0%
	0%


· Peridotite separable from all other particle types using colour 0, 1, 6 or 7 

· Sulphides separable from all other particle types using colour 0, 2, 5, 6 or 7

· Basalts separable using colour 0, 6, 7 or 9

	
	Black
	Yellow
	White

	Peridotite 1
	97%
	2%
	0%

	Peridotite 2
	84%
	1%
	14%

	Basalt 1
	8%
	7%
	85%

	Basalt 2
	4%
	2%
	94%

	Basalt 3
	29%
	2%
	69%

	Basalt 4
	2%
	11%
	87%

	Sulphides 1
	21%
	49%
	30%

	Sulphides 2
	5%
	57%
	38%

	Sulphides 3
	7%
	63%
	30%

	Sulphides 4
	26%
	57%
	17%


· Peridotite separable from all other particle types using black

· Sulphides separable from all other particle types using yellow 

· Basalts separable using white

CL / Supervision Level 3 / RGB / User Defined

	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	408
	0
	0
	36
	171
	58

	144
	0
	1
	150
	146
	100

	1016
	0
	2
	55
	101
	50

	3625
	0
	3
	87
	84
	64

	4522
	0
	4
	60
	57
	62

	843
	0
	5
	126
	120
	88

	2441
	0
	6
	58
	70
	67

	4775
	0
	7
	82
	83
	87

	3423
	0
	8
	68
	68
	74

	648
	0
	9
	120
	121
	121

	961
	0
	10
	53
	137
	68

	991
	0
	11
	53
	48
	65

	3057
	0
	12
	45
	47
	54

	953
	0
	13
	63
	61
	69

	383
	0
	14
	39
	113
	53

	2032
	0
	15
	35
	35
	45



	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	Peridotite 1
	48%
	42%
	3%
	4%
	2%
	0%
	0%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	5%
	36%
	16%
	9%
	21%
	12%
	1%
	0%
	0%
	0%
	0%
	0%

	Basalt 1
	0%
	1%
	6%
	7%
	8%
	27%
	43%
	5%
	3%
	0%
	0%
	0%

	Basalt 2
	0%
	1%
	0%
	4%
	2%
	4%
	18%
	56%
	0%
	14%
	0%
	0%

	Basalt 3
	0%
	6%
	7%
	8%
	11%
	17%
	28%
	21%
	0%
	1%
	0%
	0%

	Basalt 4
	0%
	0%
	0%
	9%
	2%
	8%
	20%
	49%
	2%
	10%
	0%
	0%

	Sulphides 1
	1%
	15%
	1%
	9%
	29%
	6%
	22%
	2%
	15%
	1%
	0%
	0%

	Sulphides 2
	2%
	6%
	0%
	6%
	10%
	1%
	12%
	2%
	48%
	0%
	12%
	1%

	Sulphides 3
	3%
	5%
	0%
	5%
	15%
	2%
	8%
	1%
	37%
	0%
	19%
	5%

	Sulphides 4
	5%
	15%
	1%
	8%
	29%
	5%
	15%
	0%
	19%
	0%
	1%
	0%


· Peridotite separable from all other particle types using colour 1 or 6 

· Sulphides separable from all other particle types using colour 8

· Basalts separable using colour 0 or 7

	
	Black
	Yellow
	White

	Peridotite 1
	97%
	1%
	2%

	Peridotite 2
	72%
	18%
	10%

	Basalt 1
	10%
	13%
	77%

	Basalt 2
	6%
	2%
	92%

	Basalt 3
	32%
	10%
	58%

	Basalt 4
	8%
	6%
	86%

	Sulphides 1
	31%
	47%
	22%

	Sulphides 2
	14%
	72%
	14%

	Sulphides 3
	13%
	76%
	11%

	Sulphides 4
	34%
	53%
	13%


· Peridotite separable from all other particle types using black

· Sulphides separable from all other particle types using yellow 

· Basalts separable using white

CL / Supervision Level 3 / YUV / Random

	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	2
	0
	0
	36
	171
	58

	467
	0
	1
	52
	117
	58

	25
	0
	2
	224
	218
	123

	1035
	0
	3
	50
	88
	52

	6088
	0
	4
	65
	61
	50

	2515
	0
	5
	111
	105
	87

	1161
	0
	6
	109
	103
	103

	5508
	0
	7
	74
	66
	70

	970
	0
	8
	53
	106
	64

	3547
	0
	9
	85
	91
	92

	706
	0
	10
	43
	74
	56

	1353
	0
	11
	53
	68
	62

	189
	0
	12
	49
	110
	66

	3126
	0
	13
	47
	44
	56

	2425
	0
	14
	41
	37
	49

	293
	0
	15
	45
	85
	57



	
	0
	1
	2
	3
	4
	5
	6
	7
	8

	Peridotite 1
	0%
	58%
	38%
	4%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	10%
	55%
	29%
	1%
	4%
	0%
	0%
	0%
	0%

	Basalt 1
	3%
	10%
	2%
	45%
	33%
	5%
	1%
	0%
	0%

	Basalt 2
	0%
	2%
	7%
	0%
	27%
	46%
	18%
	0%
	0%

	Basalt 3
	0%
	16%
	22%
	1%
	43%
	15%
	2%
	0%
	0%

	Basalt 4
	0%
	0%
	10%
	0%
	33%
	35%
	21%
	0%
	0%

	Sulphides 1
	1%
	18%
	8%
	29%
	34%
	6%
	0%
	2%
	0%

	Sulphides 2
	4%
	4%
	2%
	16%
	26%
	18%
	0%
	30%
	0%

	Sulphides 3
	3%
	6%
	2%
	20%
	18%
	13%
	0%
	37%
	1%

	Sulphides 4
	7%
	18%
	6%
	33%
	27%
	5%
	0%
	3%
	0%


· Peridotite separable from all other particle types using colour 1, 2, 4 or 5

· Sulphides separable from all other particle types using colour 7

· Basalts separable using colours 5 and 7

	
	Black
	Yellow
	White

	Peridotite 1
	96%
	1%
	3%

	Peridotite 2
	92%
	2%
	6%

	Basalt 1
	14%
	5%
	81%

	Basalt 2
	10%
	1%
	89%

	Basalt 3
	38%
	2%
	59%

	Basalt 4
	12%
	3%
	85%

	Sulphides 1
	27%
	32%
	41%

	Sulphides 2
	10%
	46%
	44%

	Sulphides 3
	11%
	58%
	31%

	Sulphides 4
	31%
	36%
	33%


· Peridotite separable from all other particle types using black

· Sulphides separable from all other particle types using yellow 

· Basalts separable using white

CL / Supervision Level 3 / YUV / User Defined

	Wins
	Neuron Position
	Weight Vector

	
	X
	Y
	R
	G
	B

	1
	0
	0
	36
	171
	58

	4579
	0
	1
	82
	75
	61

	1062
	0
	2
	129
	122
	88

	697
	0
	3
	62
	124
	66

	89
	0
	4
	163
	159
	95

	3704
	0
	5
	58
	54
	54

	517
	0
	6
	48
	48
	56

	1091
	0
	7
	103
	101
	98

	5013
	0
	8
	61
	62
	72

	4731
	0
	9
	92
	88
	89

	473
	0
	10
	111
	114
	107

	313
	0
	11
	47
	93
	62

	1301
	0
	12
	58
	63
	69

	1907
	0
	13
	51
	49
	52

	3701
	0
	14
	39
	41
	52

	164
	0
	15
	49
	108
	63



	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	Peridotite 1
	70%
	21%
	5%
	1%
	3%
	0%
	0%
	0%
	0%
	0%
	0%
	0%

	Peridotite 2
	20%
	33%
	6%
	8%
	19%
	15%
	0%
	0%
	0%
	0%
	0%
	0%

	Basalt 1
	0%
	1%
	0%
	4%
	9%
	23%
	24%
	31%
	6%
	1%
	0%
	0%

	Basalt 2
	0%
	1%
	0%
	0%
	5%
	17%
	9%
	43%
	12%
	11%
	0%
	0%

	Basalt 3
	1%
	10%
	2%
	4%
	12%
	44%
	8%
	15%
	3%
	1%
	0%
	0%

	Basalt 4
	0%
	0%
	0%
	0%
	11%
	21%
	11%
	34%
	18%
	4%
	0%
	0%

	Sulphides 1
	2%
	2%
	13%
	28%
	12%
	8%
	30%
	4%
	1%
	0%
	0%
	0%

	Sulphides 2
	4%
	0%
	4%
	10%
	3%
	2%
	39%
	14%
	13%
	1%
	8%
	1%

	Sulphides 3
	3%
	0%
	5%
	15%
	3%
	2%
	30%
	10%
	12%
	1%
	15%
	3%

	Sulphides 4
	7%
	2%
	14%
	31%
	6%
	3%
	32%
	3%
	1%
	0%
	0%
	0%


· Peridotite separable from all other particle types using colour 0, 1, 6, 7 or 8

· Sulphides separable from all other particle types using colour 0, 2, 3 or 6

· Basalts separable using colour 0, 5, 6 or 7

	
	Black
	Yellow
	White

	Peridotite 1
	78%
	1%
	21%

	Peridotite 2
	44%
	8%
	47%

	Basalt 1
	9%
	28%
	63%

	Basalt 2
	6%
	10%
	84%

	Basalt 3
	15%
	12%
	73%

	Basalt 4
	11%
	12%
	77%

	Sulphides 1
	27%
	58%
	15%

	Sulphides 2
	11%
	58%
	30%

	Sulphides 3
	11%
	62%
	26%

	Sulphides 4
	27%
	63%
	9%


· Peridotite separable from all other particle types using black

· Sulphides separable from all other particle types using yellow 

· Basalts separable using white

Appendix L – Results of K-Means Clustering

	Training Image
	Neuron Position
	Weight Vector

	
	
	R
	G
	B

	BG
	0
	36
	171
	58

	Test Image 1
	1
	96
	115
	73

	
	2
	43
	45
	44

	
	3
	92
	89
	68

	
	4
	57
	63
	53

	
	5
	56
	52
	51

	
	6
	72
	73
	60

	Test Image 2
	1
	103
	102
	100

	
	2
	92
	93
	92

	
	3
	54
	108
	65

	
	4
	84
	83
	84

	
	5
	115
	119
	115

	
	6
	59
	61
	66

	
	7
	72
	74
	76

	Test Image 3
	1
	41
	42
	50

	
	2
	43
	95
	56

	
	3
	38
	36
	47

	
	4
	55
	60
	65

	
	5
	47
	49
	56


Appendix M – Results of CL Clustering

	Training Image
	Neuron Position
	Weight Vector

	
	
	R
	G
	B

	BG
	0
	36
	171
	58

	Test Image 1
	1
	58
	56
	51

	
	2
	41
	44
	46

	
	3
	143
	136
	97

	
	4
	64
	75
	57

	
	5
	108
	106
	76

	
	6
	77
	94
	68

	Test Image 2
	1
	113
	117
	113

	
	2
	61
	115
	69

	
	3
	82
	84
	85

	
	4
	53
	53
	58

	
	5
	73
	76
	78

	
	6
	63
	88
	70

	
	7
	65
	65
	73

	Test Image 3
	1
	46
	47
	56

	
	2
	59
	70
	68

	
	3
	41
	40
	50

	
	4
	52
	103
	63

	
	5
	58
	56
	68


Appendix N – Results of HCL Clustering

	Training Image
	Neuron Position
	Weight Vector

	
	
	R
	G
	B

	BG
	0
	36
	171
	58

	Test Image 1
	1
	81
	84
	68

	
	2
	44
	109
	52

	
	3
	140
	136
	93

	
	4
	101
	95
	75

	
	5
	49
	59
	51

	
	6
	68
	73
	59

	Test Image 2
	1
	99
	99
	98

	
	2
	56
	112
	65

	
	3
	76
	73
	76

	
	4
	123
	118
	119

	
	5
	88
	86
	87

	
	6
	58
	62
	66

	
	7
	0
	135
	0

	Test Image 3
	1
	44
	65
	56

	
	2
	40
	108
	54

	
	3
	45
	45
	52

	
	4
	40
	38
	47

	
	5
	57
	56
	67


Appendix O – Results of KSOM Clustering

	Training Image
	Neuron Position
	Weight Vector

	
	
	R
	G
	B

	BG
	0
	36
	171
	58

	Test Image 1
	1
	81
	84
	68

	
	2
	44
	109
	52

	
	3
	140
	136
	93

	
	4
	101
	95
	75

	
	5
	49
	59
	51

	
	6
	68
	73
	59

	Test Image 2
	1
	99
	99
	98

	
	2
	56
	112
	65

	
	3
	76
	73
	76

	
	4
	123
	118
	119

	
	5
	88
	86
	87

	
	6
	58
	62
	66

	
	7
	0
	135
	0

	Test Image 3
	1
	44
	65
	56

	
	2
	40
	108
	54

	
	3
	45
	45
	52

	
	4
	40
	38
	47

	
	5
	57
	56
	67


Appendix P – Results of RPCL Clustering

	Training Image
	Neuron Position
	Weight Vector

	
	
	R
	G
	B

	BG
	0
	36
	171
	58

	Test Image 1
	1
	81
	84
	68

	
	2
	44
	109
	52

	
	3
	140
	136
	93

	
	4
	101
	95
	75

	
	5
	49
	59
	51

	
	6
	68
	73
	59

	Test Image 2
	1
	99
	99
	98

	
	2
	56
	112
	65

	
	3
	76
	73
	76

	
	4
	123
	118
	119

	
	5
	88
	86
	87

	
	6
	58
	62
	66

	
	7
	0
	135
	0

	Test Image 3
	1
	44
	65
	56

	
	2
	40
	108
	54

	
	3
	45
	45
	52

	
	4
	40
	38
	47

	
	5
	57
	56
	67


Appendix Q – Results of UDNN Clustering

	Training Image
	Neuron Position
	Weight Vector

	
	
	R
	G
	B

	BG
	0
	36
	171
	58

	Test Image 1
	1
	81
	84
	68

	
	2
	44
	109
	52

	
	3
	140
	136
	93

	
	4
	101
	95
	75

	
	5
	49
	59
	51

	
	6
	68
	73
	59

	Test Image 2
	1
	99
	99
	98

	
	2
	56
	112
	65

	
	3
	76
	73
	76

	
	4
	123
	118
	119

	
	5
	88
	86
	87

	
	6
	58
	62
	66

	
	7
	0
	135
	0

	Test Image 3
	1
	44
	65
	56

	
	2
	40
	108
	54

	
	3
	45
	45
	52

	
	4
	40
	38
	47

	
	5
	57
	56
	67
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1. For all neurons in the output layer


        1.1 Set cluster centres at random positions within input space


2. Next neuron


3. Do Until [max cluster radius < threshold value] or [(∆ Max cluster radius)< threshold value]


        3.1 Randomise order of input vector presentation


        3.2 For x = 1 to Number of Samples


                3.2.1 For all neurons


          3.2.1.1 Calculate Euclidean distance between input vector and cluster centre


                         3.2.1.2 If Euclidean distance < Nearest Euclidean Distance Then


                   3.2.1.2.1 Nearest Euclidean distance = Euclidean distance


	     3.2.1.2.2 Winning neuron = current neuron


           3.2.1.3 End If


  3.2.2 Next neuron


  3.2.3 If Nearest Euclidean distance > max cluster radius Then 


          3.2.3.1 max cluster radius = Nearest Euclidean distance


  3.2.4 End If


  3.2.5 Number inputs in winning cluster = Number inputs in winning cluster + 1 


  3.2.6 Σ Inputs in winning cluster = Σ Inputs in winning cluster + input vector


        3.3 Next x


        3.4 For all neurons


                3.4.1 If number of inputs in cluster = 0 then


	          3.4.1.1 Re-initialise cluster centre as random position


	  3.4.2 ElseIf number of inputs in cluster > 0 then


	          3.4.2.1 Position of cluster centre =  Σ Input Vectors in winning cluster


           				          Number inputs in winning cluster


  3.4.3 End If


         3.5 (∆ Max cluster radius) = Abs(max cluster radius – old max cluster radius)


         3.6 Old max cluster radius = max cluster radius


         3.7 Reset max cluster radius


4. Loop





	








1. Set initial Learning Rate (LR0) and initial Neighbourhood Radius (NR0) 


2. For all neurons in the output layer


        2.1 Set cluster centres as random positions within input spaces


3. Next neuron


4. Randomise order of input vector presentation


        4.1 For x = 1 to Number of Samples


                4.1.1 For all neurons


          4.1.1.1 Calculate Euclidean distance between input vector and cluster centre


                         4.1.1.2 If Euclidean distance < Nearest Euclidean Distance Then


                   4.1.1.2.1 Nearest Euclidean distance = Euclidean distance


	     4.1.1.2.2 Winning neuron = current neuron


           4.1.1.3 End If


  4.1.2 Next neuron


        4.2 learning rate = LR0 * Exp[- (x /number of samples)]  


        4.3 neighbourhood radius = NR0  * Exp[- (x /(number of samples/log(NR0))]   


        4.4 If neuron is within neighbourhood radius Then


                4.4.1 Cluster centre = pos. of cluster centre + learning rate *neighbourhood function      


                                                   * (input vector – position of cluster centre) 


        4.5 End If        


5. Loop


	








1. Set initial learning rate (LR0)


2. For all neurons in the output layer


        2.1 Set cluster centres at random positions within input space


3. Next neuron


4. Do Until number of neurons = max number of neurons


        4.1 Randomise order of input vector presentation


        4.2 For x = 1 to Number of Samples


                4.2.1 For all neurons


          4.2.1.1 Calculate Euclidean distance between input vector and cluster centre


                         4.2.1.2 If Euclidean distance < Nearest Euclidean Distance Then


                   4.2.1.2.1 Nearest Euclidean distance = Euclidean distance


	     4.2.1.2.2 Winning neuron = current neuron


           4.2.1.3 End If


  4.2.2 Next neuron


  4.2.3 If Nearest Euclidean distance > max cluster radius Then 


          4.2.3.1 max cluster radius = Nearest Euclidean distance


  4.2.4 End If


  4.2.5 learning rate = LR0  – Exp[- (x /(number of samples/log(LR0))]   


  4.2.5 Pos. of cluster centre = pos. of cluster centre + 


           learning rate * (input vector – position of cluster centre) 


        4.3 Next x


        4.4 Number of iterations = number of iterations + 1


        4.5 If 2^(number of iterations) < max number of neurons Then Duplicate all neurons  


        4.6. If 2^(number of iterations) > max number of neurons Then


                4.6.1 For x = 1 To number of samples


                        4.6.1.1 For all neurons


                 4.6.1.1.1 Calculate Euclidean distance between inputs and cluster centre


                               4.6.1.1.2 If Euclidean distance < Nearest Euclidean Distance Then


                         4.6.1.1.2.1 Nearest Euclidean distance = Euclidean distance


	           4.6.1.1.2.2 Winning neuron = current neuron


                4.6.1.1.3 End If


         4.6.1.2 Next neuron


                       4.6.1.3 Number inputs in winning cluster = Inputs in winning cluster + 1 


                       4.6.1.4 Σ (input vector – cluster centre) = Σ (input vector – cluster centre) + 


                                                                              (current input vector – winning cluster centre)


                4.6.2 Next sample


                4.6.3 Variance of cluster = Σ (input vector – cluster centre)


                                                              Number of inputs in cluster


                4.6.4 Sort clusters by variance in descending order


                4.6.5 Duplicate neurons with most variance until max number of neurons is reached


        4.7 End If


5. Loop


	








1. Set initial Winning Learning Rate (� EMBED Equation.DSMT4  ���) and Rival Learning Rate (� EMBED Equation.DSMT4  ���) 


2. For all neurons in the output layer


        2.1 Set cluster centres as random positions within input spaces


3. Next neuron


4. Do Until Iterations without pruning > 3


        4.1 Randomise order of input vector presentation


        4.2 For x = 1 to Number of Samples


                4.2.1 For all neurons


          4.2.1.1 Calculate Euclidean distance between input vector and cluster centre


                         4.2.1.2 If Euclidean distance < Nearest Euclidean Distance Then


                   4.3.1.2.1 Nearest Euclidean distance = Euclidean distance


	     4.3.1.2.2 Winning neuron = current neuron


           4.2.1.3 ElseIf Euclidean distance < 2nd Nearest Euclidean Distance Then


                   4.3.1.3.1 2nd Nearest Euclidean distance = Euclidean distance


	     4.3.1.3.2 Rival neuron = current neuron


           4.2.1.3 End If


  4.2.2 Next neuron


        	  4.2.3 � EMBED Equation.DSMT4  ���= � EMBED Equation.DSMT4  ��� * Exp[- (x /number of samples)]  


                4.2.4 � EMBED Equation.DSMT4  ���= � EMBED Equation.DSMT4  ��� * Exp[- (x /number of samples)]  


        	  4.2.5 Update weights of all neurons


        4.3 Next Sample


        4.4 Calculate Number of wins


        4.5 Prune all neurons with wins = 0


        4.6 For All neurons


                4.6.1 Calculate distance between neurons


                4.6.2 If distance between neurons is less than τ Then


	            4.6.2.1 Delete neuron with least wins within tessellations


                4.6.3 End If


        4.7 Next Neuron


        4.8 If no neurons pruned Then 


	  4.8.1 Iterations without pruning = Iterations without pruning +1


        4.9 Else


                4.9.1  Iterations without pruning = 0


      4.10 End If


5. Loop


	








1. For all cluster centroids


        1.1 Set positions based on recorded values


        1.2 Calculate Initial Similarity (based on distance measure) with centroids


2. Next neuron


3. Do Until all cluster centroids are agglomerated


        3.1 For all cluster centroids         


                1.2 Initial Similarity (based on distance measure) with centroids 


        3.2 Next neuron


        3.3 Agglomerate most similar centroids by either UPGMA or Centroid Method


4. Loop 








1 For all points in the YUV colour space array


        1.1 For all cluster centroids


  1.1.1 Calculate Euclidean distance between unique colour point and    


                          centroid


                1.1.2 If current Euclidean distance < Nearest Euclidean Distance Then


                        1.1.2.1 Nearest Euclidean distance = current Euclidean distance


                        1.1.2.2 Quantised colour value = current centroid position


  1.1.3 End If


        1.2 Next Cluster centroid


        1.3 Output quantised colour value to Quantised colour array


2 Next unique point in colour space
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1    136     -70      -93
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1. For all cluster centroids


        1.1 Set positions based on recorded values


        1.2 Calculate Initial Similarity (based on distance measure) with centroids


2. Next neuron


3. Do Until all cluster centroids are agglomerated


        3.1 For all cluster centroids         


                1.2 Initial Similarity (based on distance measure) with centroids 


        3.2 Next neuron


        3.3 Agglomerate most similar centroids by either UPGMA or Centroid Method


4. Loop 
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Optical Separation





Conductive Separation





� EMBED Equation.Ribbit  ���  = 100


� EMBED Equation.Ribbit  ��� = 100


� EMBED Equation.Ribbit  ��� = 100








� EMBED Equation.Ribbit  ���  = 40.5


� EMBED Equation.Ribbit  ��� = 6.7


� EMBED Equation.Ribbit  ��� = 4.2








� EMBED Equation.Ribbit  ���  = 59.5


� EMBED Equation.Ribbit  ��� = 93.3


� EMBED Equation.Ribbit  ��� = 95.8








� EMBED Equation.Ribbit  ���  = 32.4


� EMBED Equation.Ribbit  ��� = 43.3


� EMBED Equation.Ribbit  ��� = 9.5








� EMBED Equation.Ribbit  ���  = 39.3


� EMBED Equation.Ribbit  ��� = 50.0


� EMBED Equation.Ribbit  ��� = 86.2








� EMBED Equation.Ribbit  ��� = Optical Separation Feed


� EMBED Equation.Ribbit  ��� = Optical Reject


� EMBED Equation.Ribbit  ��� = Conductive Separation Feed


� EMBED Equation.Ribbit  ��� = Conductive Concentrate


� EMBED Equation.Ribbit  ��� = Non-Conductive Concentrate  


� EMBED Equation.Ribbit  ���   = Mass Distribution


� EMBED Equation.Ribbit  ��� = Cu Distribution


� EMBED Equation.Ribbit  ���  = Ni Distribution











Filter Applied





Filter Applied
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Sheet1

		Sieve Size		Mech Sieve		DIP		SD										c		cB		Breadth		Area		cBA

		1.0		0.000		0.072		0.005										0.743		2.9577213777		3.9807816712		19.5995927145		19.5995927145										1.000

		4.0		0.037		0.205		0.028										alpha		3.2863570863		4.4230907457		20.617753375		20.617753375										1.000

		5.0		0.110		0.498		0.151				Flakiness				1		1.000		3.2863570863		4.4230907457		22.2722644483		22.2722644483										1.000										0.223		4.000

		6.3		0.245		0.811		0.321				0.3626				2		1.000		3.4045053516		4.5821058755		28.2539583287		28.2539583287										1.000										0.238		5.000

		8.0		0.838		1.732		0.800								3		1.000		3.614992795		4.8653998203		22.1449943657		22.1449943657										1.000										0.113		6.300

		11.2		1.738		3.459		2.962								4		1.000		3.614992795		4.8653998203		24.0540456042		24.0540456042										1.000										0.123		8.000

		14.0		4.912		7.199		5.230								5		1.000		3.617286936		4.8684874927		36.1447034475		36.1447034475										0.000										0.200		11.200

		16.0		21.704		22.659		0.911								6		1.000		3.9436285036		5.3077088949		23.4176951914		23.4176951914										1.000										0.342		14.000

		20.0		36.529		37.287		0.575				Fraction total				7		1.000		3.9436285036		5.3077088949		23.9267755216		23.9267755216										1.000										0.410		16.000

		22.0		82.194		78.761		11.784				running total				8		1.000		3.9436285036		5.3077088949		26.2176370077		26.2176370077										1.000										0.445		20.000

		28.0		94.947		88.849		37.185				% mass passing				9		1.000		3.9436285036		5.3077088949		31.4357103927		31.4357103927		278.085		278.085		0.072				1.000										0.388		22.000

		31.5		98.535		96.528		4.031								10		1.000		4.042850105		5.4412507272		24.8176660995		24.8176660995										1.000										0.163		28.000

		37.5		100.000		100.000		0.000								11		1.000		4.042850105		5.4412507272		27.1085275857		27.1085275857										1.000										0.280		31.500

		not used														12		1.000		4.042850105		5.4412507272		34.2356522091		34.2356522091										0.000										0.407		37.500

		not used														13		1.000		4.2722642122		5.7500179695		34.9992727045		34.9992727045										0.000										0.333		45.000

		not used								Fill In Test Details On Sheet 3										4.6008999209		6.192327044		28.763038659		28.763038659										1.000

						SumSD		63.983												4.6008999209		6.192327044		30.6720898974		30.6720898974										1.000

																				4.6008999209		6.192327044		38.9446452639		38.9446452639										0.000

		Best Value of c		0.743																4.6008999209		6.192327044		40.0900760069		40.0900760069										0.000

		Associated Error		92.677																4.8939764429		6.586777196		30.6720898974		30.6720898974										1.000

																				4.8939764429		6.586777196		51.2898432724		51.2898432724										0.000

		Iteration Step		Sum of Error		c														4.8939764429		6.586777196		57.5260773179		57.5260773179										0.000

		1		6655.291		1.000														4.9295356295		6.6346361186		34.2356522091		34.2356522091										0.000

		2		2987.993		0.900														4.9295356295		6.6346361186		39.0719153465		39.0719153465								Avg		0.000		n(B)		n(S)		n(F)		P(F)/Flakiness Index

		3		508.458		0.800														4.9295356295		6.6346361186		43.9081784838		43.9081784838		516.335		794.420		0.205		31.777		0.000		15.000		25.000		5.576		0.223

		4		260.439		0.700														5.1067580274		6.8731588133		35.5083530347		35.5083530347										1.000

		5		3239.429		0.600														5.2581713381		7.0769451932		32.7084112184		32.7084112184										1.000

		6		10255.136		0.500														5.2581713381		7.0769451932		33.8538419614		33.8538419614										1.000

		7		21328.621		0.400														5.3195396118		7.1595404305		59.816938804		59.816938804										1.000

		8		34544.156		0.300														5.5323211963		7.4459220477		44.0354485664		44.0354485664										1.000

		9		48321.941		0.200														5.5323211963		7.4459220477		53.8352449236		53.8352449236										1.000

		10		75431.078		0.100														5.5868070468		7.5192542677		36.9083239429		36.9083239429										1.000

		11		37313.359		-0.000														5.5868070468		7.5192542677		45.0536092269		45.0536092269										1.000

		12		508.458		0.800														5.5868070468		7.5192542677		47.9808211258		47.9808211258										1.000

		13		408.381		0.790														5.5868070468		7.5192542677		53.5807047585		53.5807047585										1.000

		14		301.157		0.780														5.7451027808		7.7323036649		36.2719735301		36.2719735301										1.000

		15		242.928		0.770														5.9154427554		7.9615633423		36.7810538603		36.7810538603										1.000

		16		169.582		0.760														5.9154427554		7.9615633423		46.3263100525		46.3263100525										1.000

		17		128.385		0.750														5.9154427554		7.9615633423		48.8717117037		48.8717117037										1.000

		18		101.662		0.740														5.9154427554		7.9615633423		52.8170842631		52.8170842631										1.000

		19		114.582		0.730														5.9154427554		7.9615633423		54.2170551713		54.2170551713										1.000

		20		136.452		0.720														5.9154427554		7.9615633423		97.87069349		97.87069349										0.000

		21		208.450		0.710														6.1706659497		8.3050668994		43.7809084012		43.7809084012										1.000

		22		260.439		0.700														6.1706659497		8.3050668994		61.4714498773		61.4714498773										0.000

		23		374.495		0.690														6.1706659497		8.3050668994		61.7259900424		61.7259900424										0.000

		24		531.705		0.680														6.244078464		8.4038724169		66.3077130147		66.3077130147										0.000

		25		766.183		0.670														6.244078464		8.4038724169		82.4710135		82.4710135		1132.195		1926.615		0.498				0.000

		26		991.368		0.660														6.3834475342		8.5914485166		66.0531728495		66.0531728495										0.000

		27		1204.357		0.650														6.5727141727		8.8461814915		45.308149392		45.308149392										1.000

		28		1545.597		0.640														6.5727141727		8.8461814915		93.4162406003		93.4162406003										0.000

		29		1832.809		0.630														6.5962291187		8.8778301338		55.6170260795		55.6170260795										1.000

		30		2270.760		0.620														6.5962291187		8.8778301338		86.4163860594		86.4163860594										0.000

		31		2728.202		0.610														6.9013498813		9.288490566		61.853260125		61.853260125										0.000

		32		3239.429		0.600														6.9013498813		9.288490566		73.3075675556		73.3075675556										0.000

		33		150.784		0.755														7.2299855899		9.7307996406		78.7801811057		78.7801811057										0.000

		34		152.910		0.754														7.2299855899		9.7307996406		80.3074220965		80.3074220965										0.000

		35		129.882		0.753														7.4473554566		10.0233566027		104.6160078658		104.6160078658										0.000

		36		125.700		0.752														7.5586212986		10.1731087152		69.8712753264		69.8712753264										0.000

		37		125.700		0.751														7.5586212986		10.1731087152		98.8888541505		98.8888541505								60.195		0.000		19.000		34.000		8.092		0.238

		38		128.385		0.750														7.5586212986		10.1731087152		111.1067820764		111.1067820764										1.000

		39		120.767		0.749														7.8729186255		10.5961198371		89.0890577932		89.0890577932										1.000

		40		117.518		0.748														7.8872570072		10.6154177898		97.3616131597		97.3616131597		1211.993		3138.608		0.811				1.000

		41		117.518		0.747														8.2158927158		11.0577268643		97.7434234074		97.7434234074										1.000

		42		102.913		0.746														8.2158927158		11.0577268643		103.9796574529		103.9796574529										1.000

		43		104.806		0.745														8.2984817944		11.1688830716		98.7615840679		98.7615840679										1.000

		44		95.872		0.744														8.5112633789		11.4552646888		124.2156005803		124.2156005803										1.000

		45		92.677		0.743														8.5445284245		11.5000359389		81.8346630872		81.8346630872										1.000

		46		104.473		0.742														8.5445284245		11.5000359389		90.616298784		90.616298784										1.000

		47		110.248		0.741														8.5445284245		11.5000359389		119.3793374429		119.3793374429										1.000

		48		101.662		0.740														8.5445284245		11.5000359389		146.9969453588		146.9969453588										1.000

		49		101.662		0.739														8.8731641331		11.9423450135		101.8160660494		101.8160660494										1.000

		50		105.925		0.738														8.8731641331		11.9423450135		195.1050365671		195.1050365671										0.000

		51		106.104		0.737														9.1496081323		12.3144095404		117.8520964522		117.8520964522										1.000

		52		99.185		0.736														9.5304355504		12.8269631626		135.7971780934		135.7971780934										1.000

		53		102.913		0.735														9.859071259		13.2692722372		124.4701407454		124.4701407454										1.000

		54		102.913		0.734														9.859071259		13.2692722372		138.0880395795		138.0880395795										1.000

		55		102.925		0.733														9.859071259		13.2692722372		172.3236917886		172.3236917886										0.000

		56		102.925		0.732														9.859071259		13.2692722372		198.1595185486		198.1595185486										0.000

		57		113.268		0.731														10.1877069676		13.7115813118		135.1608276806		135.1608276806										1.000

		58		114.582		0.730														10.1877069676		13.7115813118		155.7785810556		155.7785810556										1.000

		59		136.732		0.729														10.2135160547		13.7463176265		153.1059093218		153.1059093218										1.000

		60		134.084		0.728														10.4262976392		14.0326992437		152.3422888264		152.3422888264										1.000

		61		133.609		0.727														10.5163426763		14.1538903863		226.0316666297		226.0316666297										0.000

		62		131.105		0.726														10.8449783849		14.5961994609		141.142521561		141.142521561										1.000

		63		134.835		0.725														10.8449783849		14.5961994609		159.5966835324		159.5966835324										1.000

																				10.8449783849		14.5961994609		182.8871086412		182.8871086412										0.000

																				11.0646423926		14.8918440954		213.8137387037		213.8137387037		3566.999		6705.606		1.732				0.000

																				11.2774239771		15.1782257126		334.5930470548		334.5930470548										0.000

																				11.5022498022		15.4808176101		269.0489545355		269.0489545355										0.000

																				11.8308855108		15.9231266846		196.2504673102		196.2504673102										0.000

																				12.128550315		16.3237521815		239.3950252986		239.3950252986										0.000

																				12.1595212194		16.3654357592		255.3037856189		255.3037856189										0.000

																				12.4881569281		16.8077448338		343.8837630818		343.8837630818										0.000

																				12.7668950684		17.1828970332		233.7951416659		233.7951416659								163.909		0.000		22.000		35.000		3.969		0.113

																				12.7668950684		17.1828970332		234.1769519136		234.1769519136										1.000

																				12.8167926367		17.2500539084		238.7586748858		238.7586748858										1.000

																				12.8167926367		17.2500539084		286.612225929		286.612225929										1.000

																				12.9796766529		17.4692786504		216.8682206852		216.8682206852										1.000

																				13.1454283453		17.6923629829		241.9404269499		241.9404269499										1.000

																				13.1454283453		17.6923629829		244.4858286011		244.4858286011										1.000

																				13.1454283453		17.6923629829		344.7746536598		344.7746536598										1.000

																				13.1454283453		17.6923629829		513.5347831366		513.5347831366										0.000

																				13.4052398218		18.0420418848		484.1353940649		484.1353940649										0.000

																				13.474064054		18.1346720575		282.0305029568		282.0305029568										1.000

																				13.474064054		18.1346720575		319.3206371474		319.3206371474										1.000

																				13.474064054		18.1346720575		329.5022437523		329.5022437523										1.000

																				13.474064054		18.1346720575		427.8820175726		427.8820175726										0.000

																				13.6180214063		18.328423502		305.8300083959		305.8300083959										1.000

																				13.8308029907		18.6148051193		341.8474417608		341.8474417608		6683.971		13389.577		3.459				1.000

																				14.0435845752		18.9011867365		687.8947962462		687.8947962462										0.000

																				14.4599711799		19.4615992812		333.5748863943		333.5748863943										1.000

																				14.4599711799		19.4615992812		358.647092659		358.647092659										1.000

																				14.6819293286		19.7603315881		384.6101895016		384.6101895016										0.000

																				14.6819293286		19.7603315881		500.1714244676		500.1714244676										0.000

																				14.7886068885		19.9039083558		317.7933961567		317.7933961567										1.000

																				14.7886068885		19.9039083558		352.0290483658		352.0290483658										1.000

																				14.7886068885		19.9039083558		353.9380996042		353.9380996042										1.000

																				14.7886068885		19.9039083558		422.1548638573		422.1548638573										0.000

																				14.7886068885		19.9039083558		434.1182516181		434.1182516181										0.000

																				14.7886068885		19.9039083558		451.9360631767		451.9360631767										0.000

																				14.8947109131		20.0467132054		395.3008764368		395.3008764368										0.000

																				14.8947109131		20.0467132054		486.1717153859		486.1717153859										0.000

																				14.8947109131		20.0467132054		563.2973854183		563.2973854183										0.000

																				15.1074924976		20.3330948226		317.6661260741		317.6661260741										1.000

																				15.1074924976		20.3330948226		394.4099858588		394.4099858588										0.000

																				15.1074924976		20.3330948226		424.8275355911		424.8275355911										0.000

																				15.1074924976		20.3330948226		474.3355977076		474.3355977076										0.000

																				15.1172425971		20.3462174304		307.4845194692		307.4845194692										1.000

																				15.1172425971		20.3462174304		362.0833848882		362.0833848882										1.000

																				15.3202740821		20.6194764398		530.4617041173		530.4617041173										0.000

																				15.4458783058		20.7885265049		310.4117313681		310.4117313681										1.000

																				15.4458783058		20.7885265049		366.2832976127		366.2832976127								377.403		1.000		22.000		38.000		4.674		0.123

																				15.4458783058		20.7885265049		539.7524201443		539.7524201443										0.000

																				15.4458783058		20.7885265049		547.0068148504		547.0068148504										0.000

																				15.5330556665		20.905858057		372.9013419059		372.9013419059										1.000

																				15.5330556665		20.905858057		382.8284083457		382.8284083457										1.000

																				15.745837251		21.1922396742		375.0649333094		375.0649333094										1.000

																				15.745837251		21.1922396742		431.1910397192		431.1910397192										1.000

																				15.7745140144		21.2308355795		402.5552711428		402.5552711428										1.000

																				15.7745140144		21.2308355795		452.9542238372		452.9542238372										1.000

																				15.7745140144		21.2308355795		517.480155696		517.480155696										0.000

																				15.9586188355		21.4786212914		415.9186298118		415.9186298118										1.000

																				15.9586188355		21.4786212914		505.6440380178		505.6440380178		14472.899		27862.477		7.199				0.000

																				16.1714004199		21.7650029087		363.7378959615		363.7378959615										1.000

																				16.3841820044		22.0513845259		412.4823375826		412.4823375826										1.000

																				16.3841820044		22.0513845259		413.3732281605		413.3732281605										1.000

																				16.3841820044		22.0513845259		430.8092294715		430.8092294715										1.000

																				16.4317854317		22.1154537287		391.3555038774		391.3555038774										1.000

																				16.4317854317		22.1154537287		410.4460162616		410.4460162616										1.000

																				16.4317854317		22.1154537287		413.7550384082		413.7550384082										1.000

																				16.4317854317		22.1154537287		491.7715990186		491.7715990186										0.000

																				16.4317854317		22.1154537287		495.4624314129		495.4624314129										0.000

																				16.4317854317		22.1154537287		750.0025965363		750.0025965363										0.000

																				16.5969635889		22.3377661431		314.4843740101		314.4843740101										1.000

																				16.7604211403		22.5577628032		363.865166044		363.865166044										1.000

																				16.7604211403		22.5577628032		401.028030152		401.028030152										1.000

																				16.7604211403		22.5577628032		416.1731699769		416.1731699769										1.000

																				16.7604211403		22.5577628032		425.5911560865		425.5911560865										1.000

																				16.7604211403		22.5577628032		431.1910397192		431.1910397192										1.000

																				16.7604211403		22.5577628032		604.023811838		604.023811838										0.000

																				16.7604211403		22.5577628032		637.4958435518		637.4958435518										0.000

																				16.7604211403		22.5577628032		662.5680498164		662.5680498164										0.000

																				16.8097451734		22.6241477603		398.9917088311		398.9917088311										1.000

																				16.8097451734		22.6241477603		500.935044963		500.935044963										0.000

																				17.0225267578		22.9105293775		469.4993345703		469.4993345703										1.000

																				17.0225267578		22.9105293775		485.2808248079		485.2808248079										0.000

																				17.0225267578		22.9105293775		504.3713371922		504.3713371922										0.000

																				17.0225267578		22.9105293775		614.205418443		614.205418443										0.000

																				17.0890568489		23.0000718778		427.2456671598		427.2456671598										1.000

																				17.0890568489		23.0000718778		455.2450853233		455.2450853233										1.000

																				17.0890568489		23.0000718778		495.716971578		495.716971578										0.000

																				17.0890568489		23.0000718778		514.298403632		514.298403632										0.000

																				17.0890568489		23.0000718778		546.243194355		546.243194355										0.000

																				17.2353083423		23.1969109948		556.5520710425		556.5520710425										0.000

																				17.2353083423		23.1969109948		627.9505873596		627.9505873596										0.000

																				17.4176925576		23.4423809524		371.8831812454		371.8831812454										1.000

																				17.4176925576		23.4423809524		604.1510819206		604.1510819206										0.000

																				17.4176925576		23.4423809524		622.2234336444		622.2234336444										0.000

																				17.6608715113		23.7696742292		710.1670606945		710.1670606945										0.000

																				17.6608715113		23.7696742292		734.7301866289		734.7301866289										0.000

																				17.7463282662		23.884690027		373.155882071		373.155882071										1.000

																				17.7463282662		23.884690027		385.5010800795		385.5010800795										1.000

																				17.7463282662		23.884690027		412.2277974175		412.2277974175										1.000

																				17.7463282662		23.884690027		414.7731990687		414.7731990687										1.000

																				17.7463282662		23.884690027		453.3360340849		453.3360340849										1.000

																				17.7463282662		23.884690027		463.5176406899		463.5176406899										1.000

																				17.7463282662		23.884690027		547.1340849329		547.1340849329										0.000

																				17.7463282662		23.884690027		573.8608022709		573.8608022709								482.788		0.000		31.000		56.000		11.200		0.200

																				17.7463282662		23.884690027		638.004923882		638.004923882										0.000

																				17.8736530957		24.0560558464		471.026575561		471.026575561										1.000

																				18.0749639748		24.3269991015		526.0072512277		526.0072512277										1.000

																				18.0749639748		24.3269991015		529.4435434568		529.4435434568										1.000

																				18.0749639748		24.3269991015		755.2206699214		755.2206699214										0.000

																				18.0864346802		24.3424374636		369.5923197593		369.5923197593										1.000

																				18.0864346802		24.3424374636		412.7368777477		412.7368777477										1.000

																				18.0864346802		24.3424374636		539.1160697315		539.1160697315										1.000

																				18.0864346802		24.3424374636		564.9518964916		564.9518964916										1.000

																				18.0864346802		24.3424374636		680.1313212099		680.1313212099										0.000

																				18.0864346802		24.3424374636		781.4383069291		781.4383069291										0.000

																				18.2992162647		24.6288190809		648.8228808998		648.8228808998										0.000

																				18.2992162647		24.6288190809		696.0400815302		696.0400815302										0.000

																				18.4035996835		24.7693081761		488.3353067894		488.3353067894										1.000

																				18.4035996835		24.7693081761		494.1897305872		494.1897305872										1.000

																				18.4035996835		24.7693081761		558.3338521984		558.3338521984										1.000

																				18.4035996835		24.7693081761		666.2588822107		666.2588822107										0.000

																				18.5119978491		24.9152006981		401.5371104823		401.5371104823										1.000

																				18.7247794336		25.2015823153		743.7663624908		743.7663624908										0.000

																				18.7322353921		25.2116172507		406.5006437022		406.5006437022										1.000

																				18.7322353921		25.2116172507		424.4457253434		424.4457253434										1.000

																				18.7322353921		25.2116172507		480.317291588		480.317291588										1.000

																				18.7322353921		25.2116172507		485.7899051382		485.7899051382										1.000

																				18.7322353921		25.2116172507		536.6979381629		536.6979381629										1.000

																				18.7322353921		25.2116172507		575.5153133442		575.5153133442										1.000

																				18.9375610181		25.4879639325		556.5520710425		556.5520710425										1.000

																				18.9375610181		25.4879639325		557.570231703		557.570231703										1.000

																				19.0608711007		25.6539263252		462.1176697817		462.1176697817										1.000

																				19.0608711007		25.6539263252		527.4072221359		527.4072221359										1.000

																				19.0608711007		25.6539263252		558.0793120332		558.0793120332										1.000

																				19.0608711007		25.6539263252		559.4792829414		559.4792829414										1.000

																				19.0608711007		25.6539263252		561.8974145101		561.8974145101										1.000

																				19.0608711007		25.6539263252		589.515022426		589.515022426										0.000

																				19.0608711007		25.6539263252		602.4965708473		602.4965708473										0.000

																				19.0608711007		25.6539263252		612.2963672045		612.2963672045										0.000

																				19.0608711007		25.6539263252		662.8225899815		662.8225899815										0.000

																				19.0608711007		25.6539263252		683.1858031914		683.1858031914										0.000

																				19.363124187		26.060727167		643.0957271845		643.0957271845										0.000

																				19.363124187		26.060727167		695.785541365		695.785541365										0.000

																				19.363124187		26.060727167		769.0931089206		769.0931089206										0.000

																				19.3895068094		26.0962353998		421.645783527		421.645783527										1.000

																				19.3895068094		26.0962353998		435.1364122786		435.1364122786										1.000

																				19.3895068094		26.0962353998		458.4268373874		458.4268373874										1.000

																				19.3895068094		26.0962353998		513.2802429715		513.2802429715										1.000

																				19.3895068094		26.0962353998		548.4067857585		548.4067857585										1.000

																				19.3895068094		26.0962353998		555.533910382		555.533910382										1.000

																				19.3895068094		26.0962353998		779.5292556907		779.5292556907										0.000

																				19.3895068094		26.0962353998		788.6927016351		788.6927016351										0.000

																				19.3895068094		26.0962353998		1075.1776574816		1075.1776574816										0.000

																				19.5759057715		26.3471087842		533.2616459337		533.2616459337										1.000

																				19.5759057715		26.3471087842		536.5706680803		536.5706680803										1.000

																				19.5759057715		26.3471087842		695.1491909522		695.1491909522										0.000

																				19.5759057715		26.3471087842		745.8026838118		745.8026838118										0.000

																				19.718142518		26.5385444744		495.716971578		495.716971578										1.000

																				19.718142518		26.5385444744		497.4987527338		497.4987527338										1.000

																				19.718142518		26.5385444744		527.661762301		527.661762301										1.000

																				19.718142518		26.5385444744		549.5522165016		549.5522165016										1.000

																				19.718142518		26.5385444744		549.6794865842		549.6794865842										1.000

																				19.718142518		26.5385444744		603.0056511775		603.0056511775										0.000

																				19.718142518		26.5385444744		636.0958726436		636.0958726436										0.000

																				19.718142518		26.5385444744		670.8406051829		670.8406051829										0.000

																				19.718142518		26.5385444744		917.4900251876		917.4900251876										0.000

																				19.788687356		26.6334904014		571.8244809499		571.8244809499										1.000

																				19.788687356		26.6334904014		723.0213390333		723.0213390333		59837.422		87699.898		22.659				0.000

																				20.0014689405		26.9198720186		552.2248882354		552.2248882354										1.000

																				20.0014689405		26.9198720186		831.0736391282		831.0736391282										0.000

																				20.0467782266		26.980853549		474.0810575425		474.0810575425										1.000

																				20.0467782266		26.980853549		520.9164479252		520.9164479252										1.000

																				20.0467782266		26.980853549		544.4614131991		544.4614131991										1.000

																				20.0467782266		26.980853549		546.243194355		546.243194355								588.766		1.000		43.000		70.000		23.968		0.342

																				20.0467782266		26.980853549		551.5885378226		551.5885378226										1.000

																				20.0467782266		26.980853549		555.2793702169		555.2793702169										1.000

																				20.0467782266		26.980853549		556.6793411251		556.6793411251										1.000

																				20.0467782266		26.980853549		744.9117932339		744.9117932339										0.000

																				20.0467782266		26.980853549		778.3838249476		778.3838249476										0.000

																				20.0467782266		26.980853549		793.656234855		793.656234855										0.000

																				20.0467782266		26.980853549		843.1642969715		843.1642969715										0.000

																				20.0467782266		26.980853549		1099.4862432509		1099.4862432509										0.000

																				20.2142505249		27.2062536358		887.454285703		887.454285703										0.000

																				20.2142505249		27.2062536358		893.8177898311		893.8177898311										0.000

																				20.3754139353		27.4231626235		547.1340849329		547.1340849329										1.000

																				20.3754139353		27.4231626235		571.1881305371		571.1881305371										1.000

																				20.3754139353		27.4231626235		580.224306399		580.224306399										1.000

																				20.3754139353		27.4231626235		640.9321357809		640.9321357809										1.000

																				20.3754139353		27.4231626235		671.0951453481		671.0951453481										1.000

																				20.3754139353		27.4231626235		700.4945344198		700.4945344198										1.000

																				20.3754139353		27.4231626235		786.1472999839		786.1472999839										0.000

																				20.4270321094		27.4926352531		476.244648946		476.244648946										1.000

																				20.4270321094		27.4926352531		637.3685734692		637.3685734692										1.000

																				20.6398136939		27.7790168703		648.0592604044		648.0592604044										1.000

																				20.6398136939		27.7790168703		927.9261719577		927.9261719577										0.000

																				20.7040496439		27.8654716981		512.0075421459		512.0075421459										1.000

																				20.7040496439		27.8654716981		559.2247427763		559.2247427763										1.000

																				20.7040496439		27.8654716981		564.4428161613		564.4428161613										1.000

																				20.7040496439		27.8654716981		611.7872868743		611.7872868743										1.000

																				20.7040496439		27.8654716981		666.8952326235		666.8952326235										1.000

																				20.7040496439		27.8654716981		678.094999889		678.094999889										1.000

																				20.7040496439		27.8654716981		766.9295175171		766.9295175171										0.000

																				20.7040496439		27.8654716981		841.5097858982		841.5097858982										0.000

																				20.8525952784		28.0653984875		497.8805629815		497.8805629815										1.000

																				20.8525952784		28.0653984875		537.9706389885		537.9706389885										1.000

																				20.8525952784		28.0653984875		716.1487545749		716.1487545749										1.000

																				20.8525952784		28.0653984875		937.8532383975		937.8532383975										0.000

																				21.0326853525		28.3077807727		557.6975017855		557.6975017855										1.000

																				21.0326853525		28.3077807727		639.4048947902		639.4048947902										1.000

																				21.0326853525		28.3077807727		683.0585331089		683.0585331089										1.000

																				21.0326853525		28.3077807727		696.2946216953		696.2946216953										1.000

																				21.0326853525		28.3077807727		706.0944180525		706.0944180525										1.000

																				21.0326853525		28.3077807727		885.7997746297		885.7997746297										0.000

																				21.0653768628		28.3517801047		632.9141205795		632.9141205795										1.000

																				21.0653768628		28.3517801047		722.6395287856		722.6395287856										1.000

																				21.0653768628		28.3517801047		1171.6483800634		1171.6483800634										0.000

																				21.0653768628		28.3517801047		1173.3028911367		1173.3028911367										0.000

																				21.2781584473		28.6381617219		564.824626409		564.824626409										1.000

																				21.2781584473		28.6381617219		669.4406342748		669.4406342748										1.000

																				21.2781584473		28.6381617219		690.3129278149		690.3129278149										1.000

																				21.2781584473		28.6381617219		697.5673225209		697.5673225209										1.000

																				21.2781584473		28.6381617219		829.8009383026		829.8009383026										0.000

																				21.2781584473		28.6381617219		917.9991055178		917.9991055178										0.000

																				21.3613210612		28.7500898473		522.8254991636		522.8254991636										1.000

																				21.3613210612		28.7500898473		659.3862977524		659.3862977524										1.000

																				21.3613210612		28.7500898473		687.6402560811		687.6402560811										1.000

																				21.3613210612		28.7500898473		787.4200008095		787.4200008095										0.000

																				21.3613210612		28.7500898473		943.5803921127		943.5803921127										0.000

																				21.4909400318		28.9245433392		675.9314084854		675.9314084854										1.000

																				21.6899567698		29.1923989218		488.9716572022		488.9716572022										1.000

																				21.6899567698		29.1923989218		551.0794574923		551.0794574923										1.000

																				21.6899567698		29.1923989218		553.1157788133		553.1157788133										1.000

																				21.6899567698		29.1923989218		625.6597258735		625.6597258735										1.000

																				21.6899567698		29.1923989218		775.3293429661		775.3293429661										0.000

																				21.6899567698		29.1923989218		813.128557487		813.128557487										0.000

																				21.6899567698		29.1923989218		830.9463690456		830.9463690456										0.000

																				21.6899567698		29.1923989218		863.5275101814		863.5275101814										0.000

																				21.7037216162		29.2109249564		639.4048947902		639.4048947902										1.000

																				21.7037216162		29.2109249564		674.5314375772		674.5314375772										1.000

																				21.7037216162		29.2109249564		744.7845231513		744.7845231513										0.000

																				21.7037216162		29.2109249564		1049.4691008041		1049.4691008041										0.000

																				21.7037216162		29.2109249564		1222.8109532532		1222.8109532532										0.000

																				21.9165032007		29.4973065736		457.7904869746		457.7904869746										1.000

																				21.9165032007		29.4973065736		624.0052148002		624.0052148002										1.000

																				21.9165032007		29.4973065736		686.3675552555		686.3675552555										1.000

																				21.9165032007		29.4973065736		916.0900542794		916.0900542794										0.000

																				21.9165032007		29.4973065736		1337.3540275588		1337.3540275588		56620.934		144320.828		37.287				0.000

																				22.0185924784		29.6347079964		512.6438925587		512.6438925587										1.000

																				22.0185924784		29.6347079964		529.0617332092		529.0617332092										1.000

																				22.0185924784		29.6347079964		603.3874614252		603.3874614252										1.000

																				22.0185924784		29.6347079964		776.2202335441		776.2202335441										0.000

																				22.0185924784		29.6347079964		782.0746573419		782.0746573419										0.000

																				22.0185924784		29.6347079964		789.8381323782		789.8381323782										0.000

																				22.0185924784		29.6347079964		808.8013746799		808.8013746799										0.000

																				22.1292847852		29.7836881908		695.0219208697		695.0219208697										1.000

																				22.1292847852		29.7836881908		1239.7378742339		1239.7378742339										0.000

																				22.3420663697		30.070069808		565.7155169869		565.7155169869										1.000

																				22.3420663697		30.070069808		853.6004437416		853.6004437416										0.000

																				22.3420663697		30.070069808		1189.466191622		1189.466191622										0.000

																				22.3472281871		30.077017071		646.9138296613		646.9138296613										1.000

																				22.3472281871		30.077017071		681.9131023658		681.9131023658										1.000

																				22.3472281871		30.077017071		695.785541365		695.785541365										1.000

																				22.3472281871		30.077017071		716.7851049877		716.7851049877										1.000

																				22.3472281871		30.077017071		722.3849886204		722.3849886204										1.000

																				22.3472281871		30.077017071		1037.7602532084		1037.7602532084										0.000

																				22.5548479541		30.3564514252		682.0403724484		682.0403724484										1.000

																				22.5548479541		30.3564514252		923.5989891506		923.5989891506										0.000

																				22.6758638957		30.5193261456		657.9863268442		657.9863268442										1.000

																				22.6758638957		30.5193261456		732.6938653079		732.6938653079										1.000

																				22.6758638957		30.5193261456		745.4208735641		745.4208735641										0.000

																				22.6758638957		30.5193261456		878.5453799237		878.5453799237										0.000

																				22.6758638957		30.5193261456		902.7266956104		902.7266956104								740.021		0.000		58.000		98.000		40.209		0.410

																				22.6758638957		30.5193261456		921.435397747		921.435397747										1.000

																				22.6758638957		30.5193261456		1021.0878723929		1021.0878723929										1.000

																				22.7676295386		30.6428330425		721.3668279599		721.3668279599										1.000

																				22.7676295386		30.6428330425		782.5837376721		782.5837376721										1.000

																				22.9804111231		30.9292146597		691.7128987231		691.7128987231										1.000

																				22.9804111231		30.9292146597		728.2394124183		728.2394124183										1.000

																				22.9804111231		30.9292146597		909.9810903164		909.9810903164										1.000

																				22.9804111231		30.9292146597		928.9443326181		928.9443326181										1.000

																				22.9804111231		30.9292146597		1037.3784429607		1037.3784429607										1.000

																				22.9804111231		30.9292146597		1091.8500382972		1091.8500382972										0.000

																				23.0044996043		30.9616352201		652.3864432115		652.3864432115										1.000

																				23.0044996043		30.9616352201		684.8403142647		684.8403142647										1.000

																				23.0044996043		30.9616352201		690.1856577323		690.1856577323										1.000

																				23.0044996043		30.9616352201		722.3849886204		722.3849886204										1.000

																				23.0044996043		30.9616352201		764.6386560309		764.6386560309										1.000

																				23.1931927076		31.2155962769		739.8209899314		739.8209899314										1.000

																				23.1931927076		31.2155962769		963.5617950749		963.5617950749										1.000

																				23.1931927076		31.2155962769		1020.9606023103		1020.9606023103										1.000

																				23.1931927076		31.2155962769		1111.1950908466		1111.1950908466										0.000

																				23.333135313		31.4039442947		633.5504709923		633.5504709923										1.000

																				23.333135313		31.4039442947		661.4226190734		661.4226190734										1.000

																				23.333135313		31.4039442947		675.4223281552		675.4223281552										1.000

																				23.333135313		31.4039442947		710.039790612		710.039790612										1.000

																				23.333135313		31.4039442947		749.7480563712		749.7480563712										1.000

																				23.333135313		31.4039442947		831.4554493759		831.4554493759										1.000

																				23.333135313		31.4039442947		842.4006764762		842.4006764762										1.000

																				23.333135313		31.4039442947		924.2353395634		924.2353395634										1.000

																				23.405974292		31.5019778941		589.2604822609		589.2604822609										1.000

																				23.405974292		31.5019778941		827.1282665688		827.1282665688										1.000

																				23.6187558765		31.7883595113		922.9626387377		922.9626387377										1.000

																				23.6617710216		31.8462533693		652.513713294		652.513713294										1.000

																				23.6617710216		31.8462533693		744.5299829862		744.5299829862										1.000

																				23.6617710216		31.8462533693		800.2742791482		800.2742791482										1.000

																				23.6617710216		31.8462533693		820.382952193		820.382952193										1.000

																				23.6617710216		31.8462533693		880.9635114924		880.9635114924										1.000

																				23.6617710216		31.8462533693		901.8358050325		901.8358050325										1.000

																				23.6617710216		31.8462533693		944.7258228558		944.7258228558										1.000

																				23.6617710216		31.8462533693		960.3800430109		960.3800430109										1.000

																				23.6617710216		31.8462533693		1090.8318776367		1090.8318776367										0.000

																				23.831537461		32.0747411286		799.5106586529		799.5106586529										1.000

																				23.831537461		32.0747411286		864.800211007		864.800211007										1.000

																				23.831537461		32.0747411286		870.1455544746		870.1455544746										1.000

																				23.831537461		32.0747411286		1209.3203245017		1209.3203245017										0.000

																				23.9904067302		32.2885624438		641.5684861937		641.5684861937										1.000

																				23.9904067302		32.2885624438		659.0044875047		659.0044875047										1.000

																				23.9904067302		32.2885624438		687.1311757508		687.1311757508										1.000

																				23.9904067302		32.2885624438		741.2209608396		741.2209608396										1.000

																				23.9904067302		32.2885624438		754.5843195086		754.5843195086										1.000

																				23.9904067302		32.2885624438		851.3095822555		851.3095822555										1.000

																				24.0443190454		32.3611227458		647.8047202393		647.8047202393										1.000

																				24.0443190454		32.3611227458		807.019593524		807.019593524										1.000

																				24.0443190454		32.3611227458		887.7088258681		887.7088258681										1.000

																				24.0443190454		32.3611227458		888.345176281		888.345176281										1.000

																				24.2571006299		32.647504363		919.5263465086		919.5263465086										1.000

																				24.2571006299		32.647504363		924.617149811		924.617149811										1.000

																				24.2571006299		32.647504363		949.8166261583		949.8166261583										1.000

																				24.3190424389		32.7308715184		662.5680498164		662.5680498164										1.000

																				24.3190424389		32.7308715184		689.5493073195		689.5493073195										1.000

																				24.3190424389		32.7308715184		764.0023056181		764.0023056181										1.000

																				24.3190424389		32.7308715184		853.473173659		853.473173659										1.000

																				24.3190424389		32.7308715184		912.6537620502		912.6537620502										1.000

																				24.3190424389		32.7308715184		1138.4308885148		1138.4308885148										0.000

																				24.4698822144		32.9338859802		659.7681080001		659.7681080001										1.000

																				24.4698822144		32.9338859802		858.6912470441		858.6912470441										1.000

																				24.6476781475		33.173180593		617.6417106721		617.6417106721										1.000

																				24.6476781475		33.173180593		642.9684571019		642.9684571019										1.000

																				24.6476781475		33.173180593		771.6385105718		771.6385105718										1.000

																				24.6476781475		33.173180593		952.4892978921		952.4892978921										1.000

																				24.6476781475		33.173180593		994.9975054677		994.9975054677										1.000

																				24.6476781475		33.173180593		1130.9219536436		1130.9219536436										0.000

																				24.6826637989		33.2202675974		930.0897633612		930.0897633612										1.000

																				24.6826637989		33.2202675974		960.1255028458		960.1255028458										1.000

																				24.6826637989		33.2202675974		963.5617950749		963.5617950749										1.000

																				24.8954453833		33.5066492147		693.3674097964		693.3674097964										1.000

																				24.9763138561		33.6154896676		720.3486672995		720.3486672995										1.000

																				24.9763138561		33.6154896676		739.6937198488		739.6937198488										1.000

																				24.9763138561		33.6154896676		801.0378996436		801.0378996436										1.000

																				24.9763138561		33.6154896676		817.2012001289		817.2012001289										1.000

																				24.9763138561		33.6154896676		817.7102804592		817.7102804592										1.000

																				24.9763138561		33.6154896676		838.5825739993		838.5825739993										1.000

																				24.9763138561		33.6154896676		840.7461654029		840.7461654029										1.000

																				24.9763138561		33.6154896676		891.6541984276		891.6541984276										1.000

																				24.9763138561		33.6154896676		899.4176734638		899.4176734638										1.000

																				24.9763138561		33.6154896676		923.9807993982		923.9807993982										1.000

																				24.9763138561		33.6154896676		934.2896760857		934.2896760857										1.000

																				24.9763138561		33.6154896676		957.0710208643		957.0710208643										1.000

																				24.9763138561		33.6154896676		961.9072840016		961.9072840016										1.000

																				24.9763138561		33.6154896676		1031.3967490803		1031.3967490803										1.000

																				24.9763138561		33.6154896676		1053.1599331984		1053.1599331984										0.000

																				24.9763138561		33.6154896676		1139.8308594229		1139.8308594229										0.000

																				24.9763138561		33.6154896676		1204.3567912818		1204.3567912818										0.000

																				25.1082269678		33.7930308319		665.1134514677		665.1134514677										1.000

																				25.3049495648		34.0577987421		740.0755300965		740.0755300965										1.000

																				25.3049495648		34.0577987421		903.1085058581		903.1085058581										1.000

																				25.3049495648		34.0577987421		911.6356013898		911.6356013898										1.000

																				25.3049495648		34.0577987421		948.5439253327		948.5439253327										1.000

																				25.3210085523		34.0794124491		969.6707590379		969.6707590379										1.000

																				25.3210085523		34.0794124491		980.9977963859		980.9977963859										1.000

																				25.3210085523		34.0794124491		1149.5033856976		1149.5033856976										0.000

																				25.5337901368		34.3657940663		999.0701481097		999.0701481097										1.000

																				25.6335852734		34.5001078167		866.9638024106		866.9638024106										1.000

																				25.6335852734		34.5001078167		877.018138933		877.018138933										1.000

																				25.6335852734		34.5001078167		901.3267247022		901.3267247022										1.000

																				25.6335852734		34.5001078167		945.7439835163		945.7439835163										1.000

																				25.6335852734		34.5001078167		1281.6097313967		1281.6097313967										0.000

																				25.9593533057		34.9385573008		1114.5041129932		1114.5041129932										0.000

																				25.962220982		34.9424168913		782.8382778373		782.8382778373										1.000

																				25.962220982		34.9424168913		792.1289938643		792.1289938643										1.000

																				25.962220982		34.9424168913		883.8907233913		883.8907233913										1.000

																				25.962220982		34.9424168913		1222.0473327578		1222.0473327578										0.000

																				25.962220982		34.9424168913		1304.2638060927		1304.2638060927										0.000

																				26.1721348902		35.224938918		997.2883669538		997.2883669538										1.000

																				26.1721348902		35.224938918		1041.960165933		1041.960165933										1.000

																				26.2908566907		35.3847259659		1057.2325758404		1057.2325758404										0.000

																				26.2908566907		35.3847259659		1291.409527754		1291.409527754										0.000

																				26.2908566907		35.3847259659		1371.4624096853		1371.4624096853										0.000

																				26.3849164746		35.5113205352		1053.5417434461		1053.5417434461										0.000

																				26.3849164746		35.5113205352		1514.132172237		1514.132172237										0.000

																				26.5976980591		35.7977021524		981.7614168813		981.7614168813										1.000

																				26.6194923993		35.8270350404		723.6576894461		723.6576894461										1.000

																				26.6194923993		35.8270350404		827.7646169816		827.7646169816										1.000

																				26.6194923993		35.8270350404		868.7455835664		868.7455835664										1.000

																				26.6194923993		35.8270350404		963.9436053226		963.9436053226										1.000

																				26.6194923993		35.8270350404		1255.5193644716		1255.5193644716										0.000

																				26.6194923993		35.8270350404		1532.8408743736		1532.8408743736										0.000

																				26.8104796436		36.0840837696		766.4204371868		766.4204371868										1.000

																				26.8104796436		36.0840837696		1151.2851668535		1151.2851668535										0.000

																				26.8104796436		36.0840837696		1154.339648835		1154.339648835										0.000

																				26.8104796436		36.0840837696		1428.9884870032		1428.9884870032										0.000

																				26.9481281079		36.269344115		866.7092622455		866.7092622455										1.000

																				26.9481281079		36.269344115		954.0165388828		954.0165388828										1.000

																				26.9481281079		36.269344115		1033.814880649		1033.814880649										1.000

																				26.9481281079		36.269344115		1175.3392124577		1175.3392124577										0.000

																				26.9481281079		36.269344115		1188.320760879		1188.320760879										0.000

																				27.0232612281		36.3704653869		846.3460490356		846.3460490356										1.000

																				27.0232612281		36.3704653869		852.5822830811		852.5822830811										1.000

																				27.0232612281		36.3704653869		1092.8681989577		1092.8681989577										0.000

																				27.2360428125		36.6568470041		740.2028001791		740.2028001791										1.000

																				27.2360428125		36.6568470041		760.4387433064		760.4387433064										1.000

																				27.2360428125		36.6568470041		781.6928470942		781.6928470942										1.000

																				27.2767638166		36.7116531896		942.8167716174		942.8167716174										1.000

																				27.2767638166		36.7116531896		1081.9229718574		1081.9229718574										0.000

																				27.2767638166		36.7116531896		1124.6857195981		1124.6857195981										0.000

																				27.2767638166		36.7116531896		1133.3400852123		1133.3400852123										0.000

																				27.2767638166		36.7116531896		1365.2261756398		1365.2261756398										0.000

																				27.2767638166		36.7116531896		1392.8437835557		1392.8437835557										0.000

																				27.6616059815		37.2296102385		1935.3961455164		1935.3961455164										0.000

																				27.874387566		37.5159918557		847.4914797786		847.4914797786										1.000

																				27.874387566		37.5159918557		1108.5224191128		1108.5224191128										0.000

																				27.9340352338		37.5962713387		1014.8516383473		1014.8516383473										1.000

																				27.9340352338		37.5962713387		1106.4860977918		1106.4860977918										0.000

																				27.9340352338		37.5962713387		1364.3352850619		1364.3352850619		160524.078		304844.906		78.761				0.000

																				28.0871691504		37.8023734729		823.9465145047		823.9465145047										1.000

																				28.2626709425		38.0385804133		1067.0323721976		1067.0323721976										0.000

																				28.2626709425		38.0385804133		1224.7200044916		1224.7200044916										0.000

																				28.7255139039		38.6615183246		896.74500173		896.74500173										1.000

																				28.9199423597		38.9231985624		953.5074585526		953.5074585526										1.000

																				28.9199423597		38.9231985624		1034.3239609793		1034.3239609793										1.000

																				28.9199423597		38.9231985624		1070.9777447571		1070.9777447571										0.000

																				28.9199423597		38.9231985624		1078.9957599584		1078.9957599584										0.000

																				28.9382954883		38.9478999418		828.2736973118		828.2736973118										1.000

																				28.9382954883		38.9478999418		896.4904615649		896.4904615649										1.000

																				28.9382954883		38.9478999418		1201.3023093003		1201.3023093003										0.000

																				29.1510770728		39.234281559		1660.1109569354		1660.1109569354										0.000

																				29.2485780684		39.365507637		1076.8321685549		1076.8321685549										0.000

																				29.2485780684		39.365507637		1219.374661024		1219.374661024										0.000

																				29.3638586573		39.5206631763		889.490607024		889.490607024										1.000

																				29.5766402417		39.8070447935		741.2209608396		741.2209608396										1.000

																				29.5766402417		39.8070447935		931.2351941043		931.2351941043										1.000

																				29.577213777		39.8078167116		967.6344377169		967.6344377169										1.000

																				29.577213777		39.8078167116		983.6704681197		983.6704681197										1.000

																				29.577213777		39.8078167116		1080.1411907015		1080.1411907015										0.000

																				29.7894218262		40.0934264107		1471.6239646614		1471.6239646614										0.000

																				29.9058494856		40.2501257862		1141.1035602486		1141.1035602486										0.000

																				29.9058494856		40.2501257862		1396.6618860325		1396.6618860325										0.000

																				30.4277665796		40.9525712624		1291.5367978366		1291.5367978366										0.000

																				30.5631209029		41.1347439353		1109.5405797733		1109.5405797733										0.000

																				30.5631209029		41.1347439353		1136.2672971112		1136.2672971112										0.000

																				30.6405481641		41.2389528796		1525.7137497502		1525.7137497502										0.000

																				30.8917566115		41.5770530099		1219.2473909415		1219.2473909415										0.000

																				30.8917566115		41.5770530099		1268.3736428103		1268.3736428103										0.000

																				30.8917566115		41.5770530099		1338.6267283844		1338.6267283844										0.000

																				31.0661113331		41.811716114		1465.1331904508		1465.1331904508										0.000

																				31.2203923202		42.0193620845		1121.5039675341		1121.5039675341										0.000

																				31.2788929175		42.0980977312		1098.2135424253		1098.2135424253										0.000

																				31.2788929175		42.0980977312		1834.9800503752		1834.9800503752		39044.551		343889.469		88.849				0.000

																				31.5490280288		42.461671159		1515.7866833103		1515.7866833103										0.000

																				31.7044560865		42.6708609657		1391.8256228952		1391.8256228952										0.000

																				31.8776637374		42.9039802336		1016.1243391729		1016.1243391729										1.000

																				31.9172376709		42.9572425829		1145.6852832208		1145.6852832208										0.000

																				32.2062994461		43.3462893082		1366.7534166305		1366.7534166305										0.000

																				32.3428008399		43.5300058173		1753.3999274531		1753.3999274531										0.000

																				32.5555824244		43.8163874346		1974.5953309454		1974.5953309454										0.000

																				33.192206572		44.6732165319		1357.8445108512		1357.8445108512										0.000

																				33.1939271778		44.6755322862		1213.9020474739		1213.9020474739										0.000

																				33.4067087623		44.9619139034		1225.6108950696		1225.6108950696										0.000

																				33.4067087623		44.9619139034		1270.0281538836		1270.0281538836										0.000

																				33.8494779892		45.557834681		1201.0477691352		1201.0477691352										0.000

																				34.0450535157		45.8210587551		1149.3761156151		1149.3761156151										0.000

																				34.1781136979		46.0001437556		1436.3701517918		1436.3701517918										0.000

																				34.4706166846		46.3938219895		1362.4262338234		1362.4262338234										0.000

																				34.8353851151		46.8847619048		1516.0412234755		1516.0412234755										0.000

																				35.1640208238		47.3270709793		1431.1520784068		1431.1520784068										0.000

																				36.1499279497		48.6539982031		2171.7366888336		2171.7366888336										0.000

																				36.3856509449		48.9712565445		1278.4279793327		1278.4279793327										0.000

																				36.3856509449		48.9712565445		1556.7676498952		1556.7676498952										0.000

																				36.8071993669		49.5386163522		1384.9530384369		1384.9530384369		29719.857		373609.313		96.528				0.000

																				37.6623404517		50.6895462478		1660.6200372656		1660.6200372656										0.000

																				37.7931064928		50.8655435759		1494.2780393574		1494.2780393574										0.000

																				39.7649207446		53.5193980234		1801.5080186614		1801.5080186614										0.000

																				39.7901562964		53.55336242		1155.7396197432		1155.7396197432										0.000

																				40.0935564533		53.9617070979		2204.699640217		2204.699640217										0.000

																				43.194661648		58.1354682955		1772.7449800025		1772.7449800025										0.000

																				51.0675802735		68.7315881326		3350.5121935204		3350.5121935204		13440.102		387049.40625		100.000				0.000

																										387049.5										1.000

																																				1.000

																																				1.000

																																				1.000

																																				1.000

																																				1.000

																																				1.000

				3.9807816712		19.5995927145		4.2957242583		20.3632132099																										1.000

				4.4230907457		20.617753375		4.4230907457		20.4904832924																										1.000

				4.4230907457		22.2722644483		4.4230907457		27.7448779985																										1.000

				4.5821058755		28.2539583287		4.8653998203		20.3632132099																										1.000

				4.8653998203		22.1449943657		4.8653998203		28.6357685764																										1.000

				4.8653998203		24.0540456042		5.3077088949		27.4903378333																										1.000

				4.8684874927		36.1447034475		5.3077088949		34.2356522091																										1.000

				5.3077088949		23.4176951914		5.7276323444		24.690396017																										1.000

				5.3077088949		23.9267755216		5.7500179695		34.4901923742																										1.000

				5.3077088949		26.2176370077		5.7500179695		43.271828071																										1.000

				5.3077088949		31.4357103927		6.0140139616		31.6902505579																										1.000

				5.4412507272		24.8176660995		6.0140139616		39.8355358418																										1.000

				5.4412507272		27.1085275857		6.192327044		39.0719153465																										1.000

				5.4412507272		34.2356522091		6.192327044		48.2353612909																										1.000

				5.7500179695		34.9992727045		6.3003955788		39.0719153465																										1.000

				6.192327044		28.763038659		6.586777196		31.0539001451																										1.000

				6.192327044		30.6720898974		6.586777196		32.1993308881																										1.000

				6.192327044		38.9446452639		6.586777196		74.4529982986																										1.000

				6.192327044		40.0900760069		6.6346361186		34.8720026219																										1.000

				6.586777196		30.6720898974		6.6346361186		51.2898432724																										1.000

				6.586777196		51.2898432724		6.8731588133		38.4355649336																										1.000

				6.586777196		57.5260773179		6.8731588133		38.5628350162										0																1.000

				6.6346361186		34.2356522091		6.8731588133		58.1624277307										0																1.000

				6.6346361186		39.0719153465		7.0769451932		34.4901923742										0																1.000

				6.6346361186		43.9081784838		7.0769451932		38.1810247685										0																1.000

				6.8731588133		35.5083530347		7.0769451932		44.6717989792										0																1.000

				7.0769451932		32.7084112184		7.0769451932		54.0897850887										0																1.000

				7.0769451932		33.8538419614		7.1595404305		34.9992727045										0																1.000

				7.1595404305		59.816938804		7.1595404305		36.2719735301										0																1.000

				7.4459220477		44.0354485664		7.1595404305		41.4900469151										0																1.000

				7.4459220477		53.8352449236		7.4459220477		39.8355358418										0																1.000

				7.5192542677		36.9083239429		7.5192542677		43.0172879059										0																1.000

				7.5192542677		45.0536092269		7.5192542677		45.4354194745										0																1.000

				7.5192542677		47.9808211258		7.7323036649		42.5082075756										0																1.000

				7.5192542677		53.5807047585		7.9615633423		37.4174042732										0																1.000

				7.7323036649		36.2719735301		7.9615633423		51.5443834375										0																1.000

				7.9615633423		36.7810538603		7.9615633423		58.671508061										0																1.000

				7.9615633423		46.3263100525		8.0186852821		46.0717698874										0																1.000

				7.9615633423		48.8717117037		8.0186852821		79.4165315185										0																1.000

				7.9615633423		52.8170842631		8.3050668994		45.1808793094										0																1.000

				7.9615633423		54.2170551713		8.3050668994		47.2172006304										0																1.000

				7.9615633423		97.87069349		8.5914485166		65.1622822716										0																1.000

				8.3050668994		43.7809084012		9.164211751		70.2530855741										0																1.000

				8.3050668994		61.4714498773		9.288490566		67.07133351										0																1.000

				8.3050668994		61.7259900424		9.4505933682		93.2889705178										0																1.000

				8.4038724169		66.3077130147		9.7307996406		59.0533183086										0																1.000

				8.4038724169		82.4710135		9.7307996406		66.0531728495										0																1.000

				8.5914485166		66.0531728495		9.7307996406		71.2712462346										0																1.000

				8.8461814915		45.308149392		9.7369749855		66.6895232624										0																1.000

				8.8461814915		93.4162406003		9.7369749855		88.1981672153										0																1.000

				8.8778301338		55.6170260795		10.0233566027		92.3980799398										0																1.000

				8.8778301338		86.4163860594		10.3097382199		68.0894941705										0																1.000

				9.288490566		61.853260125		10.3097382199		75.9802392894										0																1.000

				9.288490566		73.3075675556		10.5961198371		82.8528237477										0																1.000

				9.7307996406		78.7801811057		10.5961198371		92.3980799398										0																1.000

				9.7307996406		80.3074220965		10.6154177898		84.1255245733										0																1.000

				10.0233566027		104.6160078658		10.6154177898		187.8506418611										0														1043.731		1.000		192.000		214.000		95.273		0.445

				10.1731087152		69.8712753264		10.8825014543		106.5250591042										0																0.000

				10.1731087152		98.8888541505		11.0577268643		91.8889996096										0																0.000

				10.1731087152		111.1067820764		11.1688830716		101.4342558017										0																0.000

				10.5961198371		89.0890577932		11.5000359389		144.1970035425										0																0.000

				10.6154177898		97.3616131597		11.5000359389		182.6325684761										0																0.000

				11.0577268643		97.7434234074		11.9423450135		142.7970326343										0																0.000

				11.0577268643		103.9796574529		11.9423450135		182.6325684761										0																0.000

				11.1688830716		98.7615840679		12.0280279232		96.8525328295										0																0.000

				11.4552646888		124.2156005803		12.0280279232		142.4152223866										0																0.000

				11.5000359389		81.8346630872		12.3846540881		114.2885341404										0																0.000

				11.5000359389		90.616298784		12.3846540881		174.7418233573										0																0.000

				11.5000359389		119.3793374429		12.6007911576		117.7248263696										0																0.000

				11.5000359389		146.9969453588		12.6007911576		151.578668331										0																0.000

				11.9423450135		101.8160660494		12.8269631626		241.9404269499										0																0.000

				11.9423450135		195.1050365671		12.8871727749		122.3065493418										0																0.000

				12.3144095404		117.8520964522		13.1735543921		157.3058220463										0																0.000

				12.8269631626		135.7971780934		13.4599360093		135.9244481759										0																0.000

				13.2692722372		124.4701407454		13.4599360093		144.5788137901										0																0.000

				13.2692722372		138.0880395795		13.7115813118		159.9784937801										0																0.000

				13.2692722372		172.3236917886		13.7463176265		128.5427833874										0																0.000

				13.2692722372		198.1595185486		14.0326992437		164.6874868349										0																0.000

				13.7115813118		135.1608276806		14.1538903863		126.6337321489										0																0.000

				13.7115813118		155.7785810556		14.1538903863		223.613535061										0																0.000

				13.7463176265		153.1059093218		14.319080861		159.9784937801										0																0.000

				14.0326992437		152.3422888264		14.5961994609		186.0688607053										0																0.000

				14.1538903863		226.0316666297		14.5961994609		207.3229644931										0																0.000

				14.5961994609		141.142521561		14.6054624782		174.232743027										0																0.000

				14.5961994609		159.5966835324		14.8918440954		268.4126041227										0																0.000

				14.5961994609		182.8871086412		15.0385085355		123.1974399198										0																0.000

				14.8918440954		213.8137387037		15.0385085355		152.469558909										0																0.000

				15.1782257126		334.5930470548		15.0385085355		154.8876904776										0																0.000

				15.4808176101		269.0489545355		15.1782257126		267.7762537099										0																0.000

				15.9231266846		196.2504673102		15.4646073298		174.1054729445										0																0.000

				16.3237521815		239.3950252986		15.4646073298		232.1406305926										0																0.000

				16.3654357592		255.3037856189		15.4808176101		185.0507000448										0																0.000

				16.8077448338		343.8837630818		15.4808176101		208.4683952361										0																0.000

				17.1828970332		233.7951416659		15.4808176101		287.7576566721										0																0.000

				17.1828970332		234.1769519136		15.7509889471		178.0508455039										0																0.000

				17.2500539084		238.7586748858		15.9231266846		179.8326266597										0																0.000

				17.2500539084		286.612225929		16.0373705643		173.9782028619										0																0.000

				17.4692786504		216.8682206852		16.0373705643		182.6325684761										0																0.000

				17.6923629829		241.9404269499		16.3237521815		190.3960435124										0																0.000

				17.6923629829		244.4858286011		16.3654357592		188.7415324391										0																0.000

				17.6923629829		344.7746536598		16.3654357592		213.9410087863										0																0.000

				17.6923629829		513.5347831366		16.3654357592		214.9591694468										0																0.000

				18.0420418848		484.1353940649		16.6101337987		197.0140878056										0																0.000

				18.1346720575		282.0305029568		16.8077448338		207.5775046582										0																0.000

				18.1346720575		319.3206371474		16.8965154159		212.4137677955										0																0.000

				18.1346720575		329.5022437523		17.2500539084		298.830153855										0																0.000

				18.1346720575		427.8820175726		17.2500539084		319.8297174777										0																0.000

				18.328423502		305.8300083959		17.6923629829		211.5228772176										0																0.000

				18.6148051193		341.8474417608		17.6923629829		234.940572409										0																0.000

				18.9011867365		687.8947962462		17.6923629829		240.5404560417										0																0.000

				19.4615992812		333.5748863943		17.6923629829		244.1040183534										0																0.000

				19.4615992812		358.647092659		17.6923629829		291.4484890664										0																0.000

				19.7603315881		384.6101895016		17.7556602676		456.8995963966										0																0.000

				19.7603315881		500.1714244676		18.0420418848		257.3401069398										0																0.000

				19.9039083558		317.7933961567		18.1346720575		320.3387978079										0																0.000

				19.9039083558		352.0290483658		18.5769811321		304.6845776528										0																0.000

				19.9039083558		353.9380996042		18.5769811321		339.3020401096										0																0.000

				19.9039083558		422.1548638573		18.5769811321		405.7370232068										0																0.000

				19.9039083558		434.1182516181		18.5769811321		464.6630714329										0																0.000

				19.9039083558		451.9360631767		18.9011867365		255.0492454537										0																0.000

				20.0467132054		395.3008764368		19.0192902066		328.9931634221										0																0.000

				20.0467132054		486.1717153859		19.0192902066		389.4464526389										0																0.000

				20.0467132054		563.2973854183		19.0192902066		628.714207855										0																0.000

				20.3330948226		317.6661260741		19.1875683537		250.0857122338										0																0.000

				20.3330948226		394.4099858588		19.1875683537		253.2674642979										0																0.000

				20.3330948226		424.8275355911		19.1875683537		337.5202589537										0																0.000

				20.3330948226		474.3355977076		19.4615992812		212.6683079607										0																0.000

				20.3462174304		307.4845194692		19.4615992812		389.5737227215										0																0.000

				20.3462174304		362.0833848882		19.4615992812		534.1525365116										0																0.000

				20.6194764398		530.4617041173		19.4739499709		371.8831812454										0																0.000

				20.7885265049		310.4117313681		19.4739499709		465.808502176										0																0.000

				20.7885265049		366.2832976127		19.7603315881		286.4849558465										0																0.000

				20.7885265049		539.7524201443		19.7603315881		347.1927852284										0																0.000

				20.7885265049		547.0068148504		19.9039083558		288.64854725										0																0.000

				20.905858057		372.9013419059		20.0467132054		767.6931380124										0																0.000

				20.905858057		382.8284083457		20.3330948226		564.824626409										0																0.000

				21.1922396742		375.0649333094		20.3462174304		295.7756718735										0																0.000

				21.1922396742		431.1910397192		20.3462174304		336.7566384584										0																0.000

				21.2308355795		402.5552711428		20.3462174304		454.0996545803										0																0.000

				21.2308355795		452.9542238372		20.6194764398		346.9382450633										0																0.000

				21.2308355795		517.480155696		20.6194764398		420.6276228666										0																0.000

				21.4786212914		415.9186298118		20.6194764398		493.4261100919										0																0.000

				21.4786212914		505.6440380178		20.6194764398		571.0608604545										0																0.000

				21.7650029087		363.7378959615		20.905858057		346.0473544854										0																0.000

				22.0513845259		412.4823375826		20.905858057		458.4268373874										0																0.000

				22.0513845259		413.3732281605		21.1922396742		348.9745663843										0																0.000

				22.0513845259		430.8092294715		21.1922396742		394.9190661891										0																0.000

				22.1154537287		391.3555038774		21.1922396742		425.2093458388										0																0.000

				22.1154537287		410.4460162616		21.1922396742		589.3877523434										0																0.000

				22.1154537287		413.7550384082		21.2308355795		407.5188043627										0																0.000

				22.1154537287		491.7715990186		21.2308355795		526.8981418056										0																0.000

				22.1154537287		495.4624314129		21.4786212914		387.9192116482										0																0.000

				22.1154537287		750.0025965363		21.6731446541		328.3568130093										0																0.000

				22.3377661431		314.4843740101		21.6731446541		332.6839958164										0																0.000

				22.5577628032		363.865166044		21.6731446541		545.4795738596										0																0.000

				22.5577628032		401.028030152		21.6731446541		708.7670897863										0																0.000

				22.5577628032		416.1731699769		21.7650029087		346.9382450633										0																0.000

				22.5577628032		425.5911560865		21.7650029087		461.8631296166										0																0.000

				22.5577628032		431.1910397192		21.7650029087		629.6050984329										0																0.000

				22.5577628032		604.023811838		22.0513845259		320.3387978079										0																0.000

				22.5577628032		637.4958435518		22.0513845259		438.9545147554										0																0.000

				22.5577628032		662.5680498164		22.0513845259		479.4264010101										0																0.000

				22.6241477603		398.9917088311		22.0513845259		543.8250627863										0																0.000

				22.6241477603		500.935044963		22.1154537287		395.4281465193										0																0.000

				22.9105293775		469.4993345703		22.1154537287		414.0095785733										0																0.000

				22.9105293775		485.2808248079		22.1154537287		601.6056802693										0																0.000

				22.9105293775		504.3713371922		22.3377661431		330.3931343303										0																0.000

				22.9105293775		614.205418443		22.3377661431		370.4832103372										0																0.000

				23.0000718778		427.2456671598		22.3377661431		399.6280592439										0																0.000

				23.0000718778		455.2450853233		22.3377661431		598.2966581227										0																0.000

				23.0000718778		495.716971578		22.3377661431		638.2594640471										0																0.000

				23.0000718778		514.298403632		22.3377661431		643.6048075147										0																0.000

				23.0000718778		546.243194355		22.5577628032		445.6998291312										0																0.000

				23.1969109948		556.5520710425		22.6241477603		372.010451328										0																0.000

				23.1969109948		627.9505873596		22.6241477603		400.1371395741										0																0.000

				23.4423809524		371.8831812454		22.6241477603		481.4627223311										0																0.000

				23.4423809524		604.1510819206		22.9105293775		361.7015746405										0																0.000

				23.4423809524		622.2234336444		23.0000718778		370.1014000895										0																0.000

				23.7696742292		710.1670606945		23.0000718778		462.1176697817										0																0.000

				23.7696742292		734.7301866289		23.0000718778		548.7885960062										0																0.000

				23.884690027		373.155882071		23.0000718778		558.9702026112										0																0.000

				23.884690027		385.5010800795		23.0000718778		571.4426707022										0																0.000

				23.884690027		412.2277974175		23.0000718778		632.5323103319										0																0.000

				23.884690027		414.7731990687		23.1969109948		363.6106258789										0																0.000

				23.884690027		453.3360340849		23.1969109948		391.4827739599										0																0.000

				23.884690027		463.5176406899		23.1969109948		397.9735481706										0																0.000

				23.884690027		547.1340849329		23.1969109948		422.0275937747										0																0.000

				23.884690027		573.8608022709		23.1969109948		471.1538456436										0																0.000

				23.884690027		638.004923882		23.4423809524		265.6126623064										0																0.000

				24.0560558464		471.026575561		23.4423809524		362.5924652184										0																0.000

				24.3269991015		526.0072512277		23.4423809524		467.5902833318										0														0.000		0.000		0.000		0.000		0.000		0.000

				24.3269991015		529.4435434568		23.4423809524		852.5822830811										0																0.000

				24.3269991015		755.2206699214		23.483292612		465.5539620108										0																0.000

				24.3424374636		369.5923197593		23.483292612		576.7880141698										0																0.000

				24.3424374636		412.7368777477		23.483292612		758.0206117377										0																0.000

				24.3424374636		539.1160697315		23.7696742292		381.6829776027										0																0.000

				24.3424374636		564.9518964916		23.7696742292		415.0277392338										0																0.000

				24.3424374636		680.1313212099		23.7696742292		454.481464828										0																0.000

				24.3424374636		781.4383069291		23.7696742292		463.3903706073										0																0.000

				24.6288190809		648.8228808998		23.7696742292		470.2629550656										0																0.000

				24.6288190809		696.0400815302		23.7696742292		752.5479981876										0																0.000

				24.7693081761		488.3353067894		23.884690027		393.1372850332										0																0.000

				24.7693081761		494.1897305872		23.884690027		404.5915924638										0																0.000

				24.7693081761		558.3338521984		23.884690027		451.9360631767										0																0.000

				24.7693081761		666.2588822107		23.884690027		496.2260519082										0																0.000

				24.9152006981		401.5371104823		24.0560558464		419.4821921235										0																0.000

				25.2015823153		743.7663624908		24.0560558464		503.0986363666										0																0.000

				25.2116172507		406.5006437022		24.0560558464		509.2076003295										0																0.000

				25.2116172507		424.4457253434		24.0560558464		511.2439216505										0																0.000

				25.2116172507		480.317291588		24.0560558464		660.0226481652										0																0.000

				25.2116172507		485.7899051382		24.0560558464		679.3677007146										0																0.000

				25.2116172507		536.6979381629		24.3269991015		430.3001491412										0																0.000

				25.2116172507		575.5153133442		24.3269991015		435.1364122786										0																0.000

				25.4879639325		556.5520710425		24.3269991015		475.6082985332										0																0.000

				25.4879639325		557.570231703		24.3269991015		490.4988981929										0																0.000

				25.6539263252		462.1176697817		24.3269991015		570.2972399592										0																0.000

				25.6539263252		527.4072221359		24.3269991015		671.7314957609										0																0.000

				25.6539263252		558.0793120332		24.3424374636		404.5915924638										0																0.000

				25.6539263252		559.4792829414		24.3424374636		435.3909524437										0																0.000

				25.6539263252		561.8974145101		24.3424374636		485.1535547254										0																0.000

				25.6539263252		589.515022426		24.3424374636		503.8622568619										0																0.000

				25.6539263252		602.4965708473		24.3424374636		682.0403724484										0																0.000

				25.6539263252		612.2963672045		24.6288190809		434.1182516181										0																0.000

				25.6539263252		662.8225899815		24.6288190809		452.6996836721										0																0.000

				25.6539263252		683.1858031914		24.6288190809		570.6790502068										0																0.000

				26.060727167		643.0957271845		24.7693081761		447.7361504522										0																0.000

				26.060727167		695.785541365		24.7693081761		573.6062621058										0																0.000

				26.060727167		769.0931089206		24.7693081761		820.6374923581										0																0.000

				26.0962353998		421.645783527		24.7693081761		975.1433725881										0																0.000

				26.0962353998		435.1364122786		24.9152006981		436.2818430216										0																0.000

				26.0962353998		458.4268373874		24.9152006981		571.9517510325										0																0.000

				26.0962353998		513.2802429715		25.2015823153		420.2458126189										0																0.000

				26.0962353998		548.4067857585		25.2015823153		446.8452598743										0																0.000

				26.0962353998		555.533910382		25.2015823153		512.5166224761										0																0.000

				26.0962353998		779.5292556907		25.2015823153		636.859493139										0																0.000

				26.0962353998		788.6927016351		25.2116172507		510.8621114028										0																0.000

				26.0962353998		1075.1776574816		25.2116172507		563.1701153357										0																0.000

				26.3471087842		533.2616459337		25.2116172507		699.7309139245										0																0.000

				26.3471087842		536.5706680803		25.2116172507		709.5307102817										0																0.000

				26.3471087842		695.1491909522		25.2116172507		762.3477945448										0																0.000

				26.3471087842		745.8026838118		25.2116172507		805.8741627809										0																0.000

				26.5385444744		495.716971578		25.2116172507		971.7070803589										0																0.000

				26.5385444744		497.4987527338		25.4879639325		461.0995091212										0																0.000

				26.5385444744		527.661762301		25.4879639325		497.1169424862										0																0.000

				26.5385444744		549.5522165016		25.4879639325		616.6235500116										0																0.000

				26.5385444744		549.6794865842		25.6539263252		542.0432816305										0																0.000

				26.5385444744		603.0056511775		25.6539263252		729.1303029962										0																0.000

				26.5385444744		636.0958726436		25.6539263252		730.9120841521										0																0.000

				26.5385444744		670.8406051829		25.6539263252		795.3107459283										0																0.000

				26.5385444744		917.4900251876		25.6539263252		804.7287320379										0																0.000

				26.6334904014		571.8244809499		25.6539263252		895.9813812347										0																0.000

				26.6334904014		723.0213390333		25.7743455497		488.5898469545										0																0.000

				26.9198720186		552.2248882354		25.7743455497		549.6794865842										0																0.000

				26.9198720186		831.0736391282		25.7743455497		584.0424088758										0																0.000

				26.980853549		474.0810575425		25.7743455497		787.9290811397										0																0.000

				26.980853549		520.9164479252		25.7743455497		803.3287611297										0																0.000

				26.980853549		544.4614131991		26.060727167		586.0787301968										0																0.000

				26.980853549		546.243194355		26.060727167		626.0415361212										0																0.000

				26.980853549		551.5885378226		26.060727167		748.6026256282										0																0.000

				26.980853549		555.2793702169		26.060727167		891.2723881799										0																0.000

				26.980853549		556.6793411251		26.0962353998		632.4050402493										0																0.000

				26.980853549		744.9117932339		26.3471087842		488.8443871196										0																0.000

				26.980853549		778.3838249476		26.3471087842		514.9347540448										0																0.000

				26.980853549		793.656234855		26.3471087842		572.5881014453										0																0.000

				26.980853549		843.1642969715		26.3471087842		577.1698244175										0																0.000

				26.980853549		1099.4862432509		26.3471087842		778.6383651127										0																0.000

				27.2062536358		887.454285703		26.5385444744		403.1916215556										0																0.000

				27.2062536358		893.8177898311		26.5385444744		466.6993927539										0																0.000

				27.4231626235		547.1340849329		26.5385444744		560.3701735193										0																0.000

				27.4231626235		571.1881305371		26.5385444744		586.8423506922										0																0.000

				27.4231626235		580.224306399		26.5385444744		642.7139169368										0																0.000

				27.4231626235		640.9321357809		26.5385444744		805.6196226158										0																0.000

				27.4231626235		671.0951453481		26.6334904014		516.8438052832										0																0.000

				27.4231626235		700.4945344198		26.6334904014		535.5525074198										0																0.000

				27.4231626235		786.1472999839		26.6334904014		540.3887705572										0																0.000

				27.4926352531		476.244648946		26.6334904014		579.4606859036										0																0.000

				27.4926352531		637.3685734692		26.9198720186		453.0814939198										0																0.000

				27.7790168703		648.0592604044		26.9198720186		482.8626932392										0																0.000

				27.7790168703		927.9261719577		26.9198720186		493.5533801744										0																0.000

				27.8654716981		512.0075421459		26.9198720186		536.8252082454										0																0.000

				27.8654716981		559.2247427763		26.9198720186		561.2610640973										0																0.000

				27.8654716981		564.4428161613		26.9198720186		995.8883960456										0																0.000

				27.8654716981		611.7872868743		26.980853549		476.8809993588										0																0.000

				27.8654716981		666.8952326235		26.980853549		571.1881305371										0																0.000

				27.8654716981		678.094999889		26.980853549		592.1876941598										0																0.000

				27.8654716981		766.9295175171		26.980853549		712.3306520981										0																0.000

				27.8654716981		841.5097858982		26.980853549		787.0381905618										0																0.000

				28.0653984875		497.8805629815		27.2062536358		503.0986363666										0																0.000

				28.0653984875		537.9706389885		27.2062536358		541.1523910525										0																0.000

				28.0653984875		716.1487545749		27.2062536358		611.0236663789										0																0.000

				28.0653984875		937.8532383975		27.4231626235		500.8077748804										0																0.000

				28.3077807727		557.6975017855		27.4231626235		522.5709589985										0																0.000

				28.3077807727		639.4048947902		27.4231626235		597.1512273797										0																0.000

				28.3077807727		683.0585331089		27.4231626235		646.0229390834										0																0.000

				28.3077807727		696.2946216953		27.4231626235		713.4760828411										0																0.000

				28.3077807727		706.0944180525		27.4231626235		799.765198818										0																0.000

				28.3077807727		885.7997746297		27.4231626235		873.2000364561										0																0.000

				28.3517801047		632.9141205795		27.4231626235		994.1066148898										0																0.000

				28.3517801047		722.6395287856		27.4926352531		541.5342013002										0																0.000

				28.3517801047		1171.6483800634		27.4926352531		563.5519255834										0																0.000

				28.3517801047		1173.3028911367		27.4926352531		611.6600167917										0																0.000

				28.6381617219		564.824626409		27.7790168703		487.6989563766										0																0.000

				28.6381617219		669.4406342748		27.7790168703		715.8942144098										0																0.000

				28.6381617219		690.3129278149		27.7790168703		777.6202044522										0																0.000

				28.6381617219		697.5673225209		27.7790168703		803.83784146										0																0.000

				28.6381617219		829.8009383026		27.8654716981		585.3151097014										0																0.000

				28.6381617219		917.9991055178		27.8654716981		669.3133641922										0																0.000

				28.7500898473		522.8254991636		27.8654716981		750.1298666189										0																0.000

				28.7500898473		659.3862977524		27.8654716981		775.3293429661										0																0.000

				28.7500898473		687.6402560811		27.8654716981		807.019593524										0																0.000

				28.7500898473		787.4200008095		28.0653984875		552.9885087308										0																0.000

				28.7500898473		943.5803921127		28.0653984875		553.497589061										0																0.000

				28.9245433392		675.9314084854		28.0653984875		564.3155460788										0																0.000

				29.1923989218		488.9716572022		28.0653984875		755.6024801691										0																0.000

				29.1923989218		551.0794574923		28.3077807727		701.0036147501										0																0.000

				29.1923989218		553.1157788133		28.3077807727		793.9107750201										0																0.000

				29.1923989218		625.6597258735		28.3077807727		840.1098149901										0																0.000

				29.1923989218		775.3293429661		28.3517801047		649.9683116428										0																0.000

				29.1923989218		813.128557487		28.6381617219		524.2254700718										0																0.000

				29.1923989218		830.9463690456		28.7500898473		671.4769555957										0																0.000

				29.1923989218		863.5275101814		28.7500898473		699.858184007										0																0.000

				29.2109249564		639.4048947902		28.9245433392		620.6961926536										0																0.000

				29.2109249564		674.5314375772		28.9245433392		656.586355936										0																0.000

				29.2109249564		744.7845231513		28.9245433392		746.4390342246										0																0.000

				29.2109249564		1049.4691008041		28.9245433392		1190.7388924476										0																0.000

				29.2109249564		1222.8109532532		29.1923989218		622.3507037269										0																0.000

				29.4973065736		457.7904869746		29.1923989218		653.2773337894										0																0.000

				29.4973065736		624.0052148002		29.1923989218		691.8401688056										0																0.000

				29.4973065736		686.3675552555		29.1923989218		702.9126659885										0																0.000

				29.4973065736		916.0900542794		29.1923989218		794.8016655981										0																0.000

				29.4973065736		1337.3540275588		29.1923989218		847.8732900263										0																0.000

				29.6347079964		512.6438925587		29.1923989218		982.7795775418										0																0.000

				29.6347079964		529.0617332092		29.1923989218		992.1975636513										0																0.000

				29.6347079964		603.3874614252		29.1923989218		1125.1947999283										0																0.000

				29.6347079964		776.2202335441		29.2109249564		611.1509364615										0																0.000

				29.6347079964		782.0746573419		29.2109249564		621.2052729839										0																0.000

				29.6347079964		789.8381323782		29.2109249564		680.3858613751										0																0.000

				29.6347079964		808.8013746799		29.4973065736		551.46126774										0																0.000

				29.7836881908		695.0219208697		29.4973065736		637.2413033866										0																0.000

				29.7836881908		1239.7378742339		29.4973065736		661.4226190734										0																0.000

				30.070069808		565.7155169869		29.4973065736		740.2028001791										0																0.000

				30.070069808		853.6004437416		29.4973065736		783.0928180024										0																0.000

				30.070069808		1189.466191622		29.4973065736		837.8189535039										0																0.000

				30.077017071		646.9138296613		29.6347079964		664.3498309723										0																0.000

				30.077017071		681.9131023658		29.6347079964		675.9314084854										0																0.000

				30.077017071		695.785541365		29.6347079964		936.835077737										0																0.000

				30.077017071		716.7851049877		29.6347079964		1204.1022511166										0																0.000

				30.077017071		722.3849886204		29.7836881908		880.199890997										0																0.000

				30.077017071		1037.7602532084		30.070069808		638.8958144599										0																0.000

				30.3564514252		682.0403724484		30.070069808		692.8583294661										0																0.000

				30.3564514252		923.5989891506		30.070069808		710.2943307771										0																0.000

				30.5193261456		657.9863268442		30.070069808		813.128557487										0																0.000

				30.5193261456		732.6938653079		30.070069808		888.345176281										0																0.000

				30.5193261456		745.4208735641		30.077017071		641.9502964414										0																0.000

				30.5193261456		878.5453799237		30.077017071		664.0952908072										0																0.000

				30.5193261456		902.7266956104		30.077017071		790.9835631212										0																0.000

				30.5193261456		921.435397747		30.3564514252		683.4403433565										0																0.000

				30.5193261456		1021.0878723929		30.5193261456		673.0041965865										0																0.000

				30.6428330425		721.3668279599		30.5193261456		819.8738718627										0																0.000

				30.6428330425		782.5837376721		30.5193261456		916.4718645271										0																0.000

				30.9292146597		691.7128987231		30.5193261456		954.9074294607										0																0.000

				30.9292146597		728.2394124183		30.6428330425		604.023811838										0																0.000

				30.9292146597		909.9810903164		30.9292146597		619.5507619106										0																0.000

				30.9292146597		928.9443326181		30.9292146597		717.8032656482										0																0.000

				30.9292146597		1037.3784429607		30.9292146597		1274.3553366907										0																0.000

				30.9292146597		1091.8500382972		30.9616352201		774.5657224708										0																0.000

				30.9616352201		652.3864432115		30.9616352201		928.689792453										0																0.000

				30.9616352201		684.8403142647		30.9616352201		1091.0864178018										0																0.000

				30.9616352201		690.1856577323		30.9616352201		1220.265551602										0																0.000

				30.9616352201		722.3849886204		31.2155962769		717.0396451528										0																0.000

				30.9616352201		764.6386560309		31.2155962769		738.6755591883										0																0.000

				31.2155962769		739.8209899314		31.2155962769		743.130012078										0																0.000

				31.2155962769		963.5617950749		31.2155962769		796.9652570016										0																0.000

				31.2155962769		1020.9606023103		31.2155962769		859.7094077046										0																0.000

				31.2155962769		1111.1950908466		31.4039442947		739.1846395186										0																0.000

				31.4039442947		633.5504709923		31.4039442947		904.890287014										0																0.000

				31.4039442947		661.4226190734		31.4039442947		997.5429071189										0																0.000

				31.4039442947		675.4223281552		31.5019778941		648.5683407346										0																0.000

				31.4039442947		710.039790612		31.5019778941		695.9128114476										0																0.000

				31.4039442947		749.7480563712		31.5019778941		896.2359213998										0																0.000

				31.4039442947		831.4554493759		31.5019778941		904.6357468489										0																0.000

				31.4039442947		842.4006764762		31.5019778941		1176.993723531										0																0.000

				31.4039442947		924.2353395634		31.7883595113		678.2222699715										0																0.000

				31.5019778941		589.2604822609		31.7883595113		702.7853959059										0																0.000

				31.5019778941		827.1282665688		31.7883595113		824.8374050826										0																0.000

				31.7883595113		922.9626387377		31.8462533693		643.4775374322										0																0.000

				31.8462533693		652.513713294		31.8462533693		743.7663624908										0																0.000

				31.8462533693		744.5299829862		31.8462533693		875.7454381073										0																0.000

				31.8462533693		800.2742791482		31.8462533693		1033.814880649										0																0.000

				31.8462533693		820.382952193		31.8462533693		1191.2479727779										0																0.000

				31.8462533693		880.9635114924		32.0747411286		678.6040802192										0																0.000

				31.8462533693		901.8358050325		32.0747411286		713.0942725934										0																0.000

				31.8462533693		944.7258228558		32.0747411286		733.7120259684										0																0.000

				31.8462533693		960.3800430109		32.0747411286		771.6385105718										0																0.000

				31.8462533693		1090.8318776367		32.0747411286		1120.6130769561										0																0.000

				32.0747411286		799.5106586529		32.2885624438		688.531146659										0																0.000

				32.0747411286		864.800211007		32.2885624438		867.9819630711										0																0.000

				32.0747411286		870.1455544746		32.2885624438		913.6719227107										0																0.000

				32.0747411286		1209.3203245017		32.3611227458		655.6954653581										0																0.000

				32.2885624438		641.5684861937		32.3611227458		727.730332088										0																0.000

				32.2885624438		659.0044875047		32.3611227458		750.8934871143										0																0.000

				32.2885624438		687.1311757508		32.3611227458		946.3803339291										0																0.000

				32.2885624438		741.2209608396		32.3611227458		959.1073421853										0																0.000

				32.2885624438		754.5843195086		32.3611227458		1020.1969818149										0																0.000

				32.2885624438		851.3095822555		32.3611227458		1392.3347032255										0																0.000

				32.3611227458		647.8047202393		32.647504363		695.0219208697										0																0.000

				32.3611227458		807.019593524		32.647504363		717.6759955657										0																0.000

				32.3611227458		887.7088258681		32.647504363		855.50949498										0																0.000

				32.3611227458		888.345176281		32.647504363		855.50949498										0																0.000

				32.647504363		919.5263465086		32.647504363		944.7258228558										0																0.000

				32.647504363		924.617149811		32.7308715184		737.5301284453										0																0.000

				32.647504363		949.8166261583		32.7308715184		764.8931961961										0																0.000

				32.7308715184		662.5680498164		32.7308715184		776.8565839569										0																0.000

				32.7308715184		689.5493073195		32.7308715184		836.928062926										0																0.000

				32.7308715184		764.0023056181		32.7308715184		1089.5591768111										0																0.000

				32.7308715184		853.473173659		32.9338859802		676.6950289808										0																0.000

				32.7308715184		912.6537620502		32.9338859802		883.8907233913										0																0.000

				32.7308715184		1138.4308885148		32.9338859802		893.1814394183										0																0.000

				32.9338859802		659.7681080001		32.9338859802		1012.3062366961										0																0.000

				32.9338859802		858.6912470441		32.9338859802		1013.0698571915										0																0.000

				33.173180593		617.6417106721		32.9338859802		1189.8480018697										0																0.000

				33.173180593		642.9684571019		33.173180593		756.7479109121										0																0.000

				33.173180593		771.6385105718		33.173180593		911.6356013898										0																0.000

				33.173180593		952.4892978921		33.2202675974		783.0928180024										0																0.000

				33.173180593		994.9975054677		33.2202675974		824.9646751652										0																0.000

				33.173180593		1130.9219536436		33.2202675974		1078.7412197933										0																0.000

				33.2202675974		930.0897633612		33.2202675974		1277.9188990024										0																0.000

				33.2202675974		960.1255028458		33.5066492147		728.621222666										0																0.000

				33.2202675974		963.5617950749		33.5066492147		811.9831267439										0																0.000

				33.5066492147		693.3674097964		33.5066492147		843.6733773018										0																0.000

				33.6154896676		720.3486672995		33.5066492147		918.8899960958										0																0.000

				33.6154896676		739.6937198488		33.5066492147		1063.723350051										0																0.000

				33.6154896676		801.0378996436		33.5066492147		1442.0973055071										0																0.000

				33.6154896676		817.2012001289		33.6154896676		760.9478236366										0																0.000

				33.6154896676		817.7102804592		33.6154896676		812.1103968265										0																0.000

				33.6154896676		838.5825739993		33.6154896676		828.1464272292										0																0.000

				33.6154896676		840.7461654029		33.6154896676		1047.8145897308										0																0.000

				33.6154896676		891.6541984276		33.6154896676		1142.3762610742										0																0.000

				33.6154896676		899.4176734638		34.0577987421		717.5487254831										0																0.000

				33.6154896676		923.9807993982		34.0577987421		864.1638605942										0																0.000

				33.6154896676		934.2896760857		34.0577987421		882.4907524831										0																0.000

				33.6154896676		957.0710208643		34.0577987421		938.3623187277										0																0.000

				33.6154896676		961.9072840016		34.0577987421		1283.6460527177										0																0.000

				33.6154896676		1031.3967490803		34.0794124491		794.0380451027										0																0.000

				33.6154896676		1053.1599331984		34.0794124491		1021.4696826405										0																0.000

				33.6154896676		1139.8308594229		34.3657940663		944.7258228558										0																0.000

				33.6154896676		1204.3567912818		34.3657940663		1031.9058294106										0																0.000

				33.7930308319		665.1134514677		34.3657940663		1263.537379673										0																0.000

				34.0577987421		740.0755300965		34.5001078167		1101.3952944893										0																0.000

				34.0577987421		903.1085058581		34.5001078167		1150.1397361105										0																0.000

				34.0577987421		911.6356013898		34.6521756835		786.9109204792										0																0.000

				34.0577987421		948.5439253327		34.6521756835		886.1815848774										0																0.000

				34.0794124491		969.6707590379		34.6521756835		938.871399058										0																0.000

				34.0794124491		980.9977963859		34.6521756835		1025.5423252825										0																0.000

				34.0794124491		1149.5033856976		34.6521756835		1060.541597987										0																0.000

				34.3657940663		999.0701481097		34.9385573008		790.3472127084										0																0.000

				34.5001078167		866.9638024106		34.9385573008		824.8374050826										0																0.000

				34.5001078167		877.018138933		34.9385573008		875.3636278597										0																0.000

				34.5001078167		901.3267247022		34.9385573008		897.635892308										0																0.000

				34.5001078167		945.7439835163		34.9385573008		898.781323051										0																0.000

				34.5001078167		1281.6097313967		34.9424168913		914.6900833712										0																0.000

				34.9385573008		1114.5041129932		35.224938918		898.1449726382										0																0.000

				34.9424168913		782.8382778373		35.224938918		960.5073130935										0																0.000

				34.9424168913		792.1289938643		35.224938918		1217.0837995379										0																0.000

				34.9424168913		883.8907233913		35.3847259659		938.1077785626										0																0.000

				34.9424168913		1222.0473327578		35.3847259659		939.3804793882										0																0.000

				34.9424168913		1304.2638060927		35.3847259659		1194.0479145942										0																0.000

				35.224938918		997.2883669538		35.5113205352		865.4365614198										0																0.000

				35.224938918		1041.960165933		35.7977021524		914.0537329584										0																0.000

				35.3847259659		1057.2325758404		35.7977021524		931.2351941043										0																0.000

				35.3847259659		1291.409527754		35.8270350404		855.3822248975										0																0.000

				35.3847259659		1371.4624096853		35.8270350404		858.8185171266										0																0.000

				35.5113205352		1053.5417434461		35.8270350404		953.38018847										0																0.000

				35.5113205352		1514.132172237		35.8270350404		1409.1343541236										0																0.000

				35.7977021524		981.7614168813		36.0840837696		1056.9780356753										0																0.000

				35.8270350404		723.6576894461		36.269344115		849.7823412647										0																0.000

				35.8270350404		827.7646169816		36.269344115		900.817644372										0																0.000

				35.8270350404		868.7455835664		36.269344115		968.0162479646										0																0.000

				35.8270350404		963.9436053226		36.269344115		1375.2805121622										0																0.000

				35.8270350404		1255.5193644716		36.3704653869		969.2889487902										0																0.000

				35.8270350404		1532.8408743736		36.3704653869		986.5976800186										0																0.000

				36.0840837696		766.4204371868		36.6568470041		1280.3370305711										0																0.000

				36.0840837696		1151.2851668535		36.6568470041		1436.8792321221										0																0.000

				36.0840837696		1154.339648835		36.7116531896		875.7454381073										0														0.000		0.000		0.000		0.000		0.000		0.000

				36.0840837696		1428.9884870032		36.7116531896		936.5805375719										0																0.000

				36.269344115		866.7092622455		36.7116531896		1069.3232336838										0																0.000

				36.269344115		954.0165388828		36.9432286213		978.8342049823										0																0.000

				36.269344115		1033.814880649		37.1539622642		992.1975636513										0																0.000

				36.269344115		1175.3392124577		37.1539622642		1007.5972436413										0																0.000

				36.269344115		1188.320760879		37.1539622642		1026.6877560256										0																0.000

				36.3704653869		846.3460490356		37.1539622642		1170.884759568										0																0.000

				36.3704653869		852.5822830811		37.1539622642		1502.5505947239										0																0.000

				36.3704653869		1092.8681989577		37.2296102385		1019.8151715672										0																0.000

				36.6568470041		740.2028001791		37.5159918557		961.6527438365										0																0.000

				36.6568470041		760.4387433064		37.5159918557		1353.1355177964										0																0.000

				36.6568470041		781.6928470942		37.5159918557		1414.6069676737										0																0.000

				36.7116531896		942.8167716174		37.5962713387		1186.5389797231										0																0.000

				36.7116531896		1081.9229718574		37.5962713387		1416.8978291599										0																0.000

				36.7116531896		1124.6857195981		37.8023734729		952.6165679746										0																0.000

				36.7116531896		1133.3400852123		37.8023734729		969.1616787077										0																0.000

				36.7116531896		1365.2261756398		37.8023734729		970.3071094507										0																0.000

				36.7116531896		1392.8437835557		38.0385804133		1027.1968363558										0																0.000

				37.2296102385		1935.3961455164		38.0385804133		1097.9590022601										0																0.000

				37.5159918557		847.4914797786		38.0385804133		1209.7021347494										0																0.000

				37.5159918557		1108.5224191128		38.0887550902		939.5077494708										0																0.000

				37.5962713387		1014.8516383473		38.0887550902		1124.431179433										0																0.000

				37.5962713387		1106.4860977918		38.4808894879		816.1830394684										0																0.000

				37.5962713387		1364.3352850619		38.4808894879		968.6525983774										0																0.000

				37.8023734729		823.9465145047		38.4808894879		1045.5237282447										0																0.000

				38.0385804133		1067.0323721976		38.4808894879		1400.8617987571										0																0.000

				38.0385804133		1224.7200044916		38.6615183246		1054.0508237763										0																0.000

				38.6615183246		896.74500173		38.6615183246		1446.9335686444										0																0.000

				38.9231985624		953.5074585526		38.9231985624		821.0193026058										0																0.000

				38.9231985624		1034.3239609793		38.9231985624		1097.4499219299										0																0.000

				38.9231985624		1070.9777447571		39.234281559		1076.9594386374										0																0.000

				38.9231985624		1078.9957599584		39.234281559		1432.8065894801										0																0.000

				38.9478999418		828.2736973118		39.365507637		1092.9954690402										0																0.000

				38.9478999418		896.4904615649		39.365507637		1114.6313830757										0																0.000

				38.9478999418		1201.3023093003		39.365507637		1598.3849668929										0																0.000

				39.234281559		1660.1109569354		39.5206631763		1026.8150261081										0																0.000

				39.365507637		1076.8321685549		39.5206631763		1036.4875523828										0																0.000

				39.365507637		1219.374661024		39.8070447935		1111.3223609291										0																0.000

				39.5206631763		889.490607024		39.8078167116		1314.6999528628										0																0.000

				39.8070447935		741.2209608396		40.0934264107		1359.2444817594										0																0.000

				39.8070447935		931.2351941043		40.2501257862		1025.4150552										0																0.000

				39.8078167116		967.6344377169		40.2501257862		1027.5786466035										0																0.000

				39.8078167116		983.6704681197		40.2501257862		1143.3944217347										0																0.000

				39.8078167116		1080.1411907015		40.2501257862		1434.9701808836										0																0.000

				40.0934264107		1471.6239646614		40.3798080279		1091.7227682146										0																0.000

				40.2501257862		1141.1035602486		40.6924348607		1103.6861559754										0																0.000

				40.2501257862		1396.6618860325		40.6924348607		1180.4300157601										0																0.000

				40.9525712624		1291.5367978366		40.6924348607		1240.3742246467										0																0.000

				41.1347439353		1109.5405797733		40.9525712624		1275.8825776814										0																0.000

				41.1347439353		1136.2672971112		41.1347439353		814.0194480649										0														0.000		0.000		0.000		0.000		0.000		0.000

				41.2389528796		1525.7137497502		41.1347439353		2112.4288303598										0																0.000

				41.5770530099		1219.2473909415		41.2389528796		1756.4544094346										0																0.000

				41.5770530099		1268.3736428103		41.5253344968		1173.6847013844										0																0.000

				41.5770530099		1338.6267283844		41.5253344968		1301.0820540287										0																0.000

				41.811716114		1465.1331904508		41.5770530099		993.5975345595										0																0.000

				42.0193620845		1121.5039675341		41.5770530099		1436.7519620395										0																0.000

				42.0980977312		1098.2135424253		42.0193620845		1255.1375542239										0																0.000

				42.0980977312		1834.9800503752		42.0193620845		1332.8995746691										0																0.000

				42.461671159		1515.7866833103		42.0980977312		1214.4111278041										0																0.000

				42.6708609657		1391.8256228952		42.3844793485		1358.6081313466										0																0.000

				42.9039802336		1016.1243391729		42.461671159		1360.6444526676										0																0.000

				42.9572425829		1145.6852832208		43.2436242001		1249.5376705912										0																0.000

				43.3462893082		1366.7534166305		43.3462893082		1290.1368269284										0																0.000

				43.5300058173		1753.3999274531		43.5300058173		1010.6517256228										0																0.000

				43.8163874346		1974.5953309454		43.5300058173		1299.3002728728										0																0.000

				44.6732165319		1357.8445108512		43.5300058173		1373.7532711714										0																0.000

				44.6755322862		1213.9020474739		43.5300058173		1428.3521365904										0																0.000

				44.9619139034		1225.6108950696		43.5300058173		1466.1513511113										0																0.000

				44.9619139034		1270.0281538836		43.8163874346		1151.1578967709										0																0.000

				45.557834681		1201.0477691352		44.2309074573		1102.9225354801										0																0.000

				45.8210587551		1149.3761156151		44.389150669		1092.1045784623										0																0.000

				46.0001437556		1436.3701517918		44.389150669		1467.8058621846										0																0.000

				46.3938219895		1362.4262338234		45.1155256065		1339.0085386321										0																0.000

				46.8847619048		1516.0412234755		45.5346771379		1432.6793193975										0																0.000

				47.3270709793		1431.1520784068		45.8210587551		1602.8394197826										0																0.000

				48.6539982031		2171.7366888336		46.1074403723		1000.2155788527										0																0.000

				48.9712565445		1278.4279793327		46.4424528302		1018.6697408242										0														0.000		0.000		0.000		0.000		0.000		0.000

				48.9712565445		1556.7676498952		47.3270709793		1533.3499547039										0																0.000

				49.5386163522		1384.9530384369		48.3984933101		1592.7850832602										0																0.000

				50.6895462478		1660.6200372656		49.9809254268		2508.747867457										0														0.000		0.000		0.000		0.000		0.000		0.000

				50.8655435759		1494.2780393574		50.4031646306		1691.4193972455										0

				53.5193980234		1801.5080186614		50.4031646306		1887.4153243906										0

				53.55336242		1155.7396197432		50.4232345013		1361.1535329978										0

				53.9617070979		2204.699640217		50.975927865		1308.8455290649										0

				58.1354682955		1772.7449800025		51.3078526505		2259.8075859663										0

				68.7315881326		3350.5121935204		70.3271428571		259.3764282608										0
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