Savitch

Instructor’s Resource Guide

Problem Solving w/ C++, 6e

Chapter 4

Chapter 4

Procedural Abstraction and Functions That Return a Value

1. Solutions to and Remarks on Selected Programming Problems

1. No solution provided.

2. No solution provided.

3. Value of Stock Holdings

This program asks for input of the price of a stock, the number of stocks owned, and outputs the value of the stock holding in dollars and cents. The program should define a function that accepts the price of the stock in three int values: whole dollars, numerator of fraction, and denominator of the fraction, then outputs the value of the stock as a double. For example, for a stock whose price was 7 7/8 dollars, the input would be 7 7/8 and the output would be 7.87 (using a "5's round odd" rule.) In supervised student labs, I find the error of having a function prototype different in some essential way than the function definition to be a prevalent error.

The Algorithm in Pseudocode and in code:

//required function:

//return value = dollars+num/denom with appropriate casts

//double convert (int dollars, int num, int denom)

//get price with fraction, number of shares

//call function to convert price with fraction to price as double

//value = price * (number of shares)

//output value

//Program:

//file Ch3Prob2.cc

//problem: take input of number of shares, price as dollars,

//numerator and denominator of fractional part of price, give

//value of holdings.

double convert(int dollars, int num, int den);

//accept as input the stock price with fraction, return

//price as double

#include <iostream>

using namespace std;

int main()

{

int dollars, numer, denom, shares;

double price, value;

cout << "Enter stock price and number of shares, please.\n"

 << "Enter price as integers: dollars, numerator, “

 << “denominator." << endl;

cin >> dollars >> numer >> denom;

cout << "Enter number of shares held." << endl;

cin >> shares;

price = convert(dollars, numer, denom);

value = price shares;

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << shares << " shares of stock with market price "

 << dollars << " " << numer << "/" << denom << endl

 << "have value $" << value << endl;

return 0;

}

double convert (int dollars, int num, int den)

{

 return dollars + double(num)/den;

}

A typical run follows.

14:24:24:~/AW$ a.out

Enter stock price and number of shares, please.

Enter price as integers: dollars, numerator, denominator.

10 5 8

Enter number of shares held.

100

100 shares of stock with market price 10 5/8

have value $1062.50

14:24:32:~/AW$

4. No solution provided.

5. No solution provided.

6. Credit Card Interest

This program computes interest on a credit card balance. The task is done with a function that accepts initial balance, monthly interest rate, number of months for which the interest must be paid. The value returned is the interest due. Allow repeat at user's option. NB Interest is compounded. Function is to be embed in a program that acquires these values and outputs the interest due. Repeat of computation at users option is to be allowed.

Algorithm in pseudocode:

Function name: interest

input: fetch values for:

double initBalance, double rate, int months.

process:

declare balance = initBalance, interest;

declare index = 0;

while (index < months)

{

 balance = balance (1 + rate);

 months++;

}

interest = balance - initBalance;

output: interest

main:

declare balance rate, interestEarned, months

fetch balance, rate, months

interestEarned = interest(balance, rate, months)

output interestEarned

Code:

//file: ch4Prog5.cc

#include <iostream>

using namespace std;

//Problem:

//given initial balance, rate and months to

//run, how much interest accrues on a credit card?

//allow repetition at user's option.

//compute compound credit card interest

double interest (double initBalance,

 double rate, int months)

{

 double balance = initBalance;

 int i = 0;

 while (i < months)

 {

 balance = balance (1 + rate);

 i++;

 }

return balance - initBalance;

}

int main()

{

 double balance, rate, interestEarned;

 int months;

 char ans;

 cout.setf(ios::showpoint);

 cout.setf(ios::fixed);

 cout.precision(2);

 do

 {

 cout << "Credit card interest" << endl

 << "Enter doubles: initial balance, “

 << “monthly interest rate as \n"

 << "a decimal fraction, e.g. for 1.5% “

 <<”per month write 0.015\n"

 << "and int months the bill has run.\n"

 << "I will give you the interest that “

 <<”has accumulated.\n";

 cin >> balance >> rate >> months;

 interestEarned = interest(balance, rate,

 months);

 cout << "Interest accumulated = $"

 << interestEarned << endl;

 cout << "Y or y repeats, any other character”

 <<“ quits" << endl;

 cin >> ans;

 } while ('Y' == ans || 'y' == ans);

 return 0;

}

A typical run follows:

15:19:13:~/AW$ a.out

Credit card interest

Enter doubles: initial balance, monthly interest rate as

a decimal fraction, e.g. for 1.5% per month write 0.015

and int months the bill has run.

I will give you the interest that has accumulated.

1000

.015

12

Interest accumulated = $195.62

Y or y repeats, any other character quits

y

Credit card interest

Enter doubles: initial balance, monthly interest rate as

a decimal fraction, e.g. for 1.5% per month write 0.015

and int months the bill has run.

I will give you the interest that has accumulated.

1000

.021

12

Interest accumulated = $283.24

Y or y repeats, any other character quits

q

15:19:35:~/AW$

7. No solution provided

8. No solution provided

9. Clothes size calculation

The major problem for students in this as in many ‘word problems’ is determining the formulas from the problem statement.

Given height, weight, age, compute clothes sizes:

hatSize = weight (lbs.) / height (in.) 2.9

jacketSize (chest size, in.) =

 height weight / 288 +(1/8)(age-30)/10

Note carefully that the adjustment only occurs for complete 10 year interval after age 30, i.e., if age < 40, there is no adjustment!

40 <= age < 49 gets 1/8 in. adjustment, etc.

waist (in.) = weight / 5.7 + (1/10) * (age - 28)/2

NB: adjustment only occurs for complete 2 year

 interval after 28

age = 29, no adjustment

30 <= age < 32, 1/10 inch adjustment.

Use a function for each calculation.

Allow repetition at user option.

Now let's make some declarations:

int height; // inches

int weight; // lbs

int age; // years

double jacketSize; // inches at chest

double waist; // inches at waist

double hatSize;

Hat Size Calculation:

hat size = 2.9 * double(weight) / height;

The cast is clearer, but is not strictly necessary. The weight would be promoted automatically when multiplication by 2.9 occurs. (This is why the 2.9 is first!)

Jacket Size Calculation:

jacket = double(height) * weight / 288

if (age > 40)

 jacket = jacket + (age - 30)/10 * 0.125;

This depends on the behavior of the C/C++ language to obtain the results required. The (age-30/10) arithmetic will be done as int, since there is nothing to require type change. The int result will be then converted to double in the multiplication by the 0.125 (which is 1/8 as a decimal.)

Waist Size Calculation:

size = weight/5.7;

if (age>=30)

 size = size + (age - 28)/2 * 0.1;

Again, the weight will be converted to double in the division by 5.7. The expression, (age - 28)/2, will be computed as an int, then be promoted to double in the multiplication by 0.1.

//file: ch4Prb8.cc

//problem: Clothes size calculation:

//given height (inches) weight (pounds) and age (years)

//compute jacket size, waist size, in inches, and hat size:

//returns hat size in standard hat size units

#include <iostream>

using namespace std;

double hatSize (int height, int weight)

{

 return 2.9 * double(weight) / height;

}

//returns jacketSize in inches at the chest

double jacketSize (int height, int weight, int age)

{

 double jacket = double(height) * weight / 288;

 if (age > 40)

 jacket = jacket + (age - 30)/10 * 0.125;

 return jacket;

}

// returns waist size in inches

double waistSize (int height, int weight, int age)

{

 double size = weight/5.7;

 if (age>=30)

 size = size + (age - 28)/2 * 0.1;

 return size;

}

int main()

{

 int height, weight, age;

 double hat, jacket, waist;

 char ans;

 do

 {

 cout << "Give me your height in inches, weight in "

 << "pounds, and age in years" << endl

 << "and I will give you your hat size, jacket "

 << " size(inches at chest)" << endl

 << "and your waist size in inches." << endl;

 cin >> height >> weight >> age;

 hat = hatSize (height, weight);

 jacket = jacketSize (height, weight, age);

 waist = waistSize (height, weight, age);

 cout.setf(ios::showpoint);

 cout.setf(ios::fixed);

 cout.precision(2);

 cout << "hat size = " << hat << endl;

 cout << "jacket size = " << jacket << endl;

 cout << "waist size = " << waist << endl;

 cout << endl

 << "enter Y or y to repeat, “

 << “any other character ends." << endl;

 cin >> ans;

 } while ('Y' == ans || 'y' == ans);

 return 0;

}

A typical run follows:

17:07:37:~/AW$ a.out

Give me your height in inches, weight in pounds, and age in years

and I will give you your hat size, jacket size (inches at chest)

and your waist size in inches.

69 185 50

hat size = 7.78

jacket size = 44.57

waist size = 33.56

enter Y or y to repeat, any other character ends.

y

Give me your height in inches, weight in pounds, and age in years

and I will give you your hat size, jacket size (inches at chest)

and your waist size in inches.

67 200 58

hat size = 8.66

jacket size = 46.78

waist size = 36.59

enter Y or y to repeat, any other character ends.

n

17:08:55:~/AW$

No solutions provided for problems 10-12.

13.

// ***

// Ch4Proj13.cpp

//

// This program outputs the 99 bottles of beer on the wall song.

// A simple loop calls a function that outputs each stanza

// for a particular number of bottles of beer.

//

// We use another function that takes a integer from 0-99 and

// outputs that integer as a word. It uses / and % to extract the

// tens digit and the ones digit so we don't need 100 different

// if-then-else statements.

//

// ***

#include <iostream>

#include <cstring>

using namespace std;

// Function prototypes

string numToEnglish(int num);

void printStanza(int numStanzas);

// ======================

// numToEnglish:

// Returns num in English.

// num must be between 0-99.

// ======================

string numToEnglish(int num)

{

 int tens, ones;

 string englishNum = "";

 // Extract the digit in the tens place and the ones place

 tens = num / 10;

 ones = num % 10;

 // Determine the tens digit for 20-90

 switch (tens)

 {

 case 9: englishNum = "Ninety ";

 break;

 case 8: englishNum = "Eighty ";

 break;

 case 7: englishNum = "Seventy ";

 break;

 case 6: englishNum = "Sixty ";

 break;

 case 5: englishNum = "Fifty ";

 break;

 case 4: englishNum = "Forty ";

 break;

 case 3: englishNum = "Thirty ";

 break;

 case 2: englishNum = "Twenty ";

 break;

 }

 // Handle special cases of 10-19,0 and return immediately

 switch (num)

 {

 case 10: return("Ten ");

 case 11: return("Eleven ");

 case 12: return("Twelve ");

 case 13: return("Thirteen ");

 case 14: return("Fourteen ");

 case 15: return("Fifteen ");

 case 16: return("Sixteen ");

 case 17: return("Seventeen ");

 case 18: return("Eighteen ");

 case 19: return("Nineteen ");

 case 0: return("Zero ");

 }

 // Add in the ones digit

 switch (ones)

 {

 case 1: englishNum = englishNum + "One ";

 break;

 case 2: englishNum = englishNum + "Two ";

 break;

 case 3: englishNum = englishNum + "Three ";

 break;

 case 4: englishNum = englishNum + "Four ";

 break;

 case 5: englishNum = englishNum + "Five ";

 break;

 case 6: englishNum = englishNum + "Six ";

 break;

 case 7: englishNum = englishNum + "Seven ";

 break;

 case 8: englishNum = englishNum + "Eight ";

 break;

 case 9: englishNum = englishNum + "Nine ";

 break;

 }

 return englishNum;

}

// ======================

// printStanza

// Outputs an entire stanza for n bottles.

// ======================

void printStanza(int n)

{

 string numEnglish;

 // function below gets n in English

 numEnglish = numToEnglish(n);

 cout << numEnglish;

 // account for "one bottle" vs. many "bottles"

 if (n==1)

 {

 cout << "bottle of beer on the wall, " << endl;

 }

 else

 {

 cout << "bottles of beer on the wall, " << endl;

 }

 cout << numEnglish;

 if (n==1)

 {

 cout << "bottle of beer, " << endl;

 }

 else

 {

 cout << "bottles of beer, " << endl;

 }

 cout << "Take one down, pass it around," << endl;

 n--;

 numEnglish = numToEnglish(n);

 cout << numEnglish;

 if (n==1)

 {

 cout << "bottle of beer on the wall, " << endl;

 }

 else

 {

 cout << "bottles of beer on the wall, " << endl;

 }

 cout << endl;

 return;

}

// ======================

// main function

// ======================

int main()

{

 // Variable declarations

 int num;

 // Loop from 99 down to 0

 for (num=99; num>0; num--)

 {

 printStanza(num);

 }

 cout << endl;

 return 0;

}

14.

// ***

// Ch4Proj14.cpp

//

// This program calculates hwo many calories must be ingested

// to maintain one's weight.

//

// An adult that weighs P pounds requires:

// 1) Basal Metabolic Rate: 70 * (P/2.2)^0.756

// 2) Exercise: 0.0385 * Intensity * P * Minutes

// 3) Digestion: TotalCalsConsumed * 0.1

//

// ***

#include <iostream>

#include <cmath>

// Needed for pow function

using namespace std;

// Function prototypes

double computeBMR(double weight);

double computeExercise(int intensity, double weight, int minutes);

// ======================

// computeBMR:

// Returns the number of calories required

// to maintain the basal metabolic rate.

// ======================

double computeBMR(double weight)

{

return pow((70.0 * (weight / 2.2)),0.756);

}

// ======================

// computeExercise:

// Returns the number of calories required

// to support exercising at the given intensity

// ======================

double computeExercise(int intensity, double weight, int minutes)

{

return (0.0385) * intensity * weight * minutes;

}

// ======================

// main function

// ======================

int main()

{

double weight;

int intensity;

int minutes;

int cals;

double totalCals;

double numServings;

cout << "This program will compute how many servings of your" << endl;

cout << "favorite food must be eaten daily to maintain your weight." << endl;

cout << "What is your weight in pounds?" << endl;

cin >> weight;

cout << "What intensity of activity will you participate in?" << endl;

cout << "1 = Walking 1 MPH" << endl;

cout << "10 = Running 6 MPH" << endl;

cout << "17 = Running 10 MPH" << endl;

cin >> intensity;

cout << "How many minutes will you participate in this activity?" << endl;

cin >> minutes;

cout << "How many Calories are there in one serving of your" << endl;

cout << "favorite food?" << endl;

cin >> cals;

// Compute totalCals needed

totalCals = computeBMR(weight) + computeExercise(intensity,weight,minutes);

// Factor in digestion efficiency

totalCals = totalCals / 0.9;

// Compute servings

numServings = totalCals / cals;

cout << "You need to eat " << numServings << " servings of your " << endl;

cout << "food to maintain a daily total of " << totalCals << " Calories."

<< endl;

return 0;

}

Extra Programming Problem: Grade and Pass Status

Statement: A class has four exams in one term. A student needs an average score of 60 or more in order to pass. Write a program that will read in a student’ four exam scores (into variables of type int) and will output the student’s average for the exams as well as tell whether or not the student has passed the course. Define a function to compute the average. Your program should allow the user to repeat this calculation as often as the user wishes.

Solution:

A class has 4 exams in one term. We are:

to determine the grade average and pass status based on these exam grades,

to use a function to compute the average Pass means average >= 60,

to allow user to repeat computation.

Algorithm in pseudocode:

Input:

4 exam scores (integer test scores, 0-100%)

a required function produces

average = double(G1 + G2 + G3 + G4)/4;

Process:

call avg function to get average

passStatus = (average >= 60);

Output: pass status and average

Additional requirement: computation may be repeated at users request.

The solution to the programming problem follows:

// file: Ch4Prob1.cc

// Problem: enter 4 exam scores,

// compute average and pass status

// output average and pass status

// allow user to repeat at will

// compute arithmetic mean (usual average) of arguments

#include <iostream>

using namespace std;

double avg (int s1, int s2, int s3, int s4);

int main()

{

int score1, score2, score3, score4, pass;

double average;

char ans;

do

{

 cout << "Enter exactly four integer exam scores. "

 << endl

 << "Use white space to separate. " << endl

 << "I'll tell you whether you passed and give “

 << “your average." << endl;

 cin >> score1 >> score2 >> score3 >> score4;

 average = avg (score1, score2, score3, score4);

 if (average >= 60.0)

 cout << "Our congratulations, you passed, “

 <<“with a grade of ";

 else

 cout << "Our condolences, you failed, with a grade”

 <<“of " << average << endl;

 cout << " Y or y repeats. any other response quits "

 << endl;

 cin >> ans;

} while('Y' == ans || 'y' == ans);

return 0;

}

// compute arithmetic mean (usual average) of arguments

double avg (int s1, int s2, int s3, int s4)

{

double average;

average = double(s1 + s2 + s3 + s4) / 4;

return average;

}

/* A typical run follows:

10:09:42:~/AW$ a.out

Enter exactly four integer exam scores.

Use white space to separate.

I'll tell you whether you passed and give your average.

60 56 72 86

Our congratulations, you passed, with a grade of 68.5

Y or y repeats. any other response quits

y

Enter exactly four integer exam scores.

Use white space to separate.

I'll tell you whether you passed and give your average.

66 72 83 86

Our congratulations, you passed, with a grade of 76.75

Y or y repeats. any other response quits

q

*/

2. Outline of topics in the chapter

4.1 Top-down Design

4.2 Predefined Functions

4.3 Programmer Defined Functions

4.4 Procedural Abstraction

4.5 Local Variables

4.6 Overloading Function Names

3. General Remarks on the Chapter

Top Down Design

In this chapter the student learns some of the tools we will use to build the function members of the classes, that is, the actions that the classes will take. This involves stepwise refinement, that is, divide and conquer. Divide and conquer involves identifying subproblems of a nature that, once the subproblems are solved, all that remains of the original problem is fitting them together. Top down design shows how to recognize subproblems and solve them in such a way that they fit together automatically, making the last step trivial.

3. Topics that routinely cause students difficulty.

ANSI C uses the word prototype to indicate the declaration of a function with the argument list to be checked. C++ uses the word declaration. The text takes an appropriately relaxed attitude toward usage in this matter. The student should understand that every new language creates new words to describe old ideas. This has caused my students a problem, so this bears mentioning. We will use the term prototype.

As pointed out in the text, C++ considers the number and types of the arguments in selecting the particular version of the function to be used. In fact, C++ considers the name of the function together with the list of the argument types to be the type of the function.

In #include <file> and #include <file.h> preprocessor commands, avoid any extra space after the < and before the >. The preprocessor is not very smart. It will think you mean a file name that starts with a blank, or ends with a blank. Some are even dumber, as mentioned in the text. These preprocessors don't know what to do with a preprocessor command that doesn't start in column 1. Preprocessors with most modern development environments don't have this problem.

In the past, under Unix™, Linux, and other Unix work-alike operating systems, the linker did not automatically search the math library. To get the linker phase of compilation to search the math library, one had to issue the compile command as:

g++ file.cc -lm

With later versions of Borland and Microsoft development environments, the compiler will search all the libraries automatically. According to my reading of the manual, the command line compiler also searches all libraries automatically. GNU g++ 2.7 and later compilers also search the math library automatically. Your manuals are your friend here.

Type Changing Functions (Casts)

Traditional (Kernighan & Ritchie) C and ANSI C write a cast from the int value 9 to the double, 9.0, as (double)9. The student who has programmed in C before may be bothered by this difference. It is worth mentioning that C++ also accepts C style casts for backward compatibility. I suggest that the new usage be encouraged, at least for new programmers.

There are three new cast notations that are not used in this text: static_cast<operand>, dynamic_cast<operand>, and const_cast<operand>. Treating these new cast operators is beyond the scope of this document. The both the older cast operators, for example, int(operand) and (int)operand, still work as they did earlier, and however, the new forms are safer and should be mastered and used. Further information is available in these books: Accelerated C++ by Koenig and Moo, The C++ Programming Language, 3rd edition, by Stroustrup; and C++ Primer, 3rd edition by Lippman and Lajoie. There are valuable books that provide annotated solutions to may of the exercises in the Stroustrup and the Lippman-Lajoie books. Addison Wesley publishes all these books.

Programmer Defined Functions

In my experience, only the exceptional student is willing to provide carefully thought-out comments for function declaration (prototype) comments. The importance of these remarks to people reading, using, or modifying code cannot be overstated. Much of the beginning student's commentary tends to restates the action of the code. This is worse than no comment at all, and should be discouraged. In short, inane, inappropriate, or obvious commentary should be discouraged. Remarks about what a function does belong both at the declaration/prototype and at the function definition.

ISO/ANSI C++ Language Standard uses the term "argument" to mean the object that appears in the call to a function, and the phrase "parameter" to mean the placeholder that appears in the declaration (prototype) and in the definition of a function. Pascal used the term "formal parameter" where the C++ Standard uses "parameter" and "actual parameter" where the C++ Standard uses "argument". This text uses "formal parameter" where the Standard uses parameter, and "argument" as the Standard does. The author's experience, and mine, is that students definitely do well when terminology is used consistently.

Further, we recommend that regardless of the usage the instructor chooses, that on tests and exams, instructors should be sure to make the usage clear by using "argument" AND whatever term they normally use. For example, "formal parameter(argument)" or "argument (formal parameter)" or something similar that is appropriate to your usage. It is our desire that the text and this IRM support the instructor, not to impose any particular terminology.

While formal parameter names are not necessary in the prototype, any student writing at this level should provide these names. The following example shows that formal parameter names are not necessary. If the formal parameter is not being used, as in the following example, the name is in fact not required regardless of whether the formal parameter is value or reference. The student will see this when the postscript operator++ is overloaded. I usually tell my class at this time that the student should make it a rule to provide formal parameter names, but that there are times when their omission is permitted.

#include <iostream>

using namespace std;

// to test whether a function header must ALWAYS have

//formal parameter names

using namespace std;

void f(int, int, int&)

{

cout << "It worked!!!!" << endl;

}

int main()

{

int z;

f(1,1,z); // arguments here are required

return 0;

}

Some Possible Errors:

A problem students will have is computing an arithmetic average using integer division (which truncates). Student code typically does the integer division first, then casts the integer quotient to double. It is hard for the student programmer to see this error, as it looks right. Encourage the students to help debug each other's code. While there is the very real risk of the student copying code, in my opinion, the enhancement to learning from the debugging effort is worth the risk.

Another problem the student may encounter is writing a prototype with different return values but having the same signature such as:

int avg (int s1, int s2, int s3, int s4);

and
double avg (int s1, int s2, int s3, int s4);

The following error message from g++ is clearer than most compiler messages. The conflict is between the return types:

cd ~/AW/

g++ ch4Prb1.cc

ch4Prb1.cc: In function `double avg(int, int, int, int)':

ch4Prb1.cc:38: conflicting types for `double avg(int, int, int, int)'

ch4Prb1.cc:10: previous declaration as `int avg(int, int, int, int)'

Compilation exited abnormally with code 1 at Thu Jun 15 10:07:04

Procedural and Functional Abstraction, Information Hiding

David L. Parnas, circa 1972, introduced the notion of information hiding. In this chapter, we see information hiding in the notion of procedural abstraction. Procedural abstraction is probably the most important idea in this chapter. All the rest may be learned, but if the student does not internalize the notion that how a task is done should be hidden, with only what is done being revealed, that student, as a programmer, is crippled until this is learned. Code written by such a programmer is likely to be difficult to read and unmaintainable.

1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

2

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

