The Complete Idiot's Guide to

NAHLN Messaging

Classical Swine Fever Results
OK, maybe the title is a bit harsh, but you've looked at the Hitchhiker's Guide to NAHLN Messaging, maybe even took the training course a year or two ago. Now your boss just wants to get this one message going and you don't know where to start. You have the feeling that the NAHLN HL7 Implementation Guide For Laboratory Results Messaging is written in some language other than English, and you are fairly sure that LOINC and SNOMED coding your entire lab catalogue is not the best way to start. This guide is designed to give you just what you need to be able to send a minimal Classical Swine Fever (CSF) result message.

What has been left out of this guide? Lots. This guide will not try to tell you why anything is the way it is, or how to use the message for any other purpose. It will not explain any of the obscure codes used, or even try to convince you that they matter. If you are using this guide for messaging, you will just have to take our word for it! That said, let's not waste any more time getting started.

Ingredients:

The first step in following any recipe is to assemble the ingredients and utensils needed. The main ingredient in a CSF result message is rather obviously the CSF results! You will need a few CSF cases to experiment with. Be sure you understand how the required fields (see below) are entered into the LIMS. You will also need to be able to get these values out of the LIMS. How you do so is up to you, but a key step is to get data in a format you can manipulate. That may be direct access to the database, a report output in electronic format, etc. Match up the values in the output to those on the LIMS so you can be sure you are using the right values. If you can accomplish this much, the hardest part is done. Really!

The second step is to figure out how you will know when the results are ready to send. You also need a way to avoid sending the same result twice. One approach is to keep a list of those results that have already been successfully submitted. This is really nothing more than the electronic version of what you already do with manual results entry in the web form. With that done, you are almost there. All that is left is the mechanics; the part that scares people the most. Let's walk through that, step by step.

Now it is time to map your data into the codes that the NAHLN wants. In the HHG, we go into great detail about how to do this “from scratch.” Here, we are using a “boxed mix” so we won't worry about that, you will be told most of the codes. For CSF the list for any one variable is very, very short. There are three kinds of values. Constants are values that depend only on your lab's identity. You code these once with your lab's NAIS ID, OID, etc. and then forget them. There are some values that are simply system-generated. These include counters and the current time. Then there are values that come from the LIMS. These include identifiers and results. There are also values that will change for different tests and testing programs, but we don't care about understanding those. In this guide we'll just tell you what to put where.

Lab Constants:

Once you obtain or generate these codes, you can put them into every message and forget them.

NAIS PIN or NPN and appropriate OID: To participate in the NAHLN, your lab must be registered with NAIS as either a premises or a non-producer participant. You need your PIN or NPN, and you should know which type you have. (Secret, if you get this wrong—you think you have a PIN but you are really in NAIS as an NPN, nothing will really break. But that is just between us.) Set this information aside for use when we create the message. The OID used in the header (MSH.4/HD.2) is to signify that the PIN or NPN was issued by NAIS and which type it is. It will always be 2.16.840.1.113883.3.5.6.1.1 if you have a PIN or 2.16.840.1.113883.3.5.6.1.4 if you have an NPN.
Lab Object Identifier (OID): Again, to participate you need an OID from the AAVLD OID registry. You can get this from http://aavld.vdl.iastate.edu/oid/search.htm. Click on “expanded root” and look for your lab, or click on search and enter part of your lab's name. In either case find your lab in the list and your OID is the value on the left displayed as a hyperlink. If you try looking in several ways and can't find yourself, click on register and follow the prompts. (Thanks to Randy Berghefer for making this step simple.) Set your OID aside—we will be plugging it into the message in a number of places.

System Variables:

There are two values that you won't get from the LIMS but that change from message to message. Each is pretty simple to get or create.

System Time: The message includes the date and time that it is actually sent. Just about any tool you use to assemble the message will be able to give you the current date and time. You want this down to the minute but even to the second is OK. We'll discuss formatting it later.

Message Control ID: Each message needs a unique identifier. If there are errors, questions, etc., this is how the NAHLN will identify the message back to you. So you need a way to generate unique IDs. These can be simple integers counting up forever or any other system that ensures that no two messages get the same ID. You'll want to keep a copy of each message you send with this identifier so you can look them up if there are problems. There will be problems early on. That is normal. The Message Control ID will help you easily deal with them.

LIMS Variables:

The rest is composed of data you will need to pull from the LIMS. This is the one part that this guide can't walk you through step-by-step. The best approach is to get on the Implementation Issues discussion forum at http://terminology.vetmed.vt.edu/NAHLN and ask for help from other labs using your same LIMS. Someone who has been through this on the same brand of LIMS can help you get close. There may be minor differences in the way your lab configures tests, etc., but those will be obvious as you examine the data from the user interface and extracted data side-by-side. Many labs find it helpful to record the source of each data element in the Message Mapping Template.

Accession Number: This should most likely be the accession number as seen by the user. If you restart numbering each year, it must include the year component and any other parts needed to keep this number unique. “Number” is a common misnomer, it can include characters other than just digits.

Specimen IDs: You need both the submitter's specimen ID from the barcode label, and your lab's unique specimen ID. The lab ID may not be something users routinely see but rather that identifier that the system uses to keep this specimen distinct from all others. The assigning authority for CSF barcodes is the CSF program with OID 2.16.840.1.113883.3.5.8.3. The assigning authority for the lab specimen ID is the lab with either the lab OID or your OID for specimen IDs if you differentiate.

Specimen Type: There is a very small number of possible specimen types for CSF testing.

So for reporting CSF PCR tests you only need these three specimen SNOMED codes.

Tonsil: Tissue specimen from tonsil (specimen)
Code:
811000009103

Tonsil Scraping: Tonsil scraping (specimen)
Code:
4241000009102

Nasal swab: Nasal swab (specimen)

Code:
421000009108

And for ELISA serology you need this one.

Serum: Serum specimen (specimen)

Code:
119364003

Specimen Received Date: Virtually every LIMS records the date on which the specimen was received. The only thing left is to format it. We’ll cover that later, along with the other dates.

Filler Order Number: This can be any value that lets you find this specific order/result in your LIMS if anyone using the message needs to refer to it.

CSF Referral Number: This value comes on the submission form, but doesn’t normally have a standard location in the LIMS. Your lab will need to standardize the use of some location to record this.

Test Performed: For many NAHLN testing programs there is only a single test code per program. Classical Swine Fever used to be like that. But now CSF testing may include either PCR or ELISA. So for reporting of CSF results we need to determine which test is being reported. The LIMS will need to provide information that can be translated into one of the two Logical Observation Identifiers Names and Codes (LOINC) codes.

PCR

CSFV RNA XXX PCR-aCnc

Code:
44273-1
ELISA
Classical Swine Fever Virus E2
Ab:ACNC:Pt:Ser:Qn:EIA

Code:
58440-9
Result: The result type depends on the test performed. For PCR it will be a Ct value and for ELISA a percent blocking value.
Ct Value: If your LIMS already stores the Ct value, you just need to find it. If it only stores interpreted value (POS, INC, NEG), you will have some work to do in redefining the test setup. In general, USDA/VS testing programs that use PCR will be requiring raw Ct values, so invest some time in looking at any other regulatory PCR your lab may do.

Percent Blocking: ELISA results are reported quantitatively as the percent blocking in OBX.5. This number is probably only used by QA, etc. The interpretation in OBX.8 is what most users will reference. The value is represented as a single number that may include a decimal fraction part. (A floating point number.)

Interpretation: The interpretation code (POS, INC, NEG) is derived from the numeric value and may or may not be stored as a value you can pull directly from the LIMS.
Method OID: The specific method used may be the trickiest variable to map. Each combination of options in the NAHLN Methods SOPs gets a different long identifier called an OID. This string of numbers is meaningless but unique identifier for each method. Currently used method OIDs are available on the NAHLN Terminology web site or from the NAHLN directly. If you are doing your messaging from this guide, you are probably best off contacting someone at the NAHLN to clarify which OID for which test you are doing.
Constants:
The list above really isn’t very much data to have to assemble. At this point you should have each of these values in a query, report, or some other format you can read from electronically.

The rest of the message can be “hard coded.” We’ll provide a template including all the CSF program constants. (Remember, we are building a CSF-only message here. If you were trying to be more reusable, your approach would be slightly different.) Your first task will be to fill in the so called lab constants. With those values plugged in, you have a template to reuse for each message. A good next step is to take a copy of this lab template and plug in the values for one result. This should then be your first valid CSF message. If you have a good XML editor, you can load it up and validate it against the latest CSF message schema. You can also post it to the Implementation Issues forum on the NAHLN terminology web site. One or more of the IT committee members will be happy to both validate it against the schema and read it through for content consistency. (We sometimes call this “semantic validation.”)

Automation:
You could build each message this way and then send it to the NAHLN using cURL at the command-line. But no one would suggest that. As part of the NAHLN, you have access to a very good deal (free) on Orion’s Rhapsody interface engine that can be used to construct and deliver your message. Or, you can use any number of other tools depending on the people and skills you have available.

Rhapsody:
1. Install Rhapsody

For version 2.x, you'll need a back end database to run the rhapsody engine. Available databases are—MS SQL Server ($), Oracle ($), PostGreSql (free). If you already have a RDBMS, all you'll need to do is configure a database (terminology for MS SQL Server) or a schema (Oracle Land). If you need to install a RDBMS, you can visit http://www.postgresql.org/ .

For version 3.x, the version we recommend, no RDBMS is required to run the engine.

2. Identify your data source: This will be whatever form you collected your lab constants and system variables in (Rhapsody can generate the system variables if you know how.) Create a communication point in Rhapsody to point toward your data source. The data source is your LIMS, either database or an output file that you have assembled in the general data gathering earlier.

3. Manipulate the data into the HL7 format

Use Symphonia Mapper (java programming language), which comes with Rhapsody Administrator, to convert the data from native format into HL7 format… Oops, forgot about the “complete idiot” part there for a minute. Had you there for a minute didn’t I? Instead, get your hands on an already created route made by one of the geniuses on the IT committee such as Scott Ross or Jeff Duke. Shamelessly reuse their work by modifying it to point to your source instead of theirs.

4. Create or modify an output communication point. The type of comm point (input/output) will be http client.

Configuration settings:

-Url https://vslabsubroutes.aphis.usda.gov/HL7Result

-HTTP Method - post

-request headers - [username, *****], [password,*****]

-trusted certificate - you need the NAHLN trusted certificate, which you can find on this message board

5. Process the incoming ack message

If the route you shamelessly copied from doesn’t do with the results what you want it to, you’ll need to modify it slightly. The laziest way to handle this is to get a hold of whomever wrote your stolen route and ask for help.

Home Grown Solution:
There are as many possible solutions as there are creative lab IT folks out there. But let’s start by assuming that you don’t want to write any computer code. (Complete Idiots don’t program, right?) On the other hand let’s assume you can put together a query against your data to get the values discussed above into some computer readable format, maybe a spreadsheet or Access database. (Complete Idiots probably can’t handle that either, but we are not literally calling you a “complete idiot.”)

Various desktop tools can be used to create documents by combining a template with a data source. This could be a Microsoft Word document merge printed with a spreadsheet or database query. You could then do a “Save As” to save the output as a text file. Change the extension to .xml and you’d have a message. By using the “record macro” feature, you could semi-automate sending your messages. This paragraph is not meant to say do it this way, but to inspire your local solution.

NAHLN-O-Matic:

It slices, it dices, it even sends NAHLN messages. Most of the complexity of the NAHLN message is there to make it flexible. If we ignore the flexibility and concentrate on sending one test at a time with only the minimum required content, we can boil it all down to a few simple pieces. 1. A small configuration file with the lab constants. 2. A flat file with the test or tests to send. 3. Someplace to put the messages and acknowledgments. 4. A place to keep track of message control IDs we’ve already used. The last two are specified in the configuration file. Using NAHLN-O-Matic is as simple as:

C:\> NAHLN-O-Matic myLabconf.properties nextTest.csv

(Or something like that depending on how the application is eventually packaged. See its readme file.)

Or run NAHLN-O-Matic on autopilot mode

C:\> NAHLN-O-Matic myLabconf.properties

All flat files dropped into a file directory specified in the configuration file will be processed and sent until you kill the NAHLN-O-Matic program.

Delivery:
Once again, you have choices. If you use Rhapsody or NAHLN-O-Matic to build your message, it is a no-brainer to use it for delivery as well. (Not a requirement, but makes sense.) If you have your message in the form of a file with a .xml extension, then you can send it with cURL as described in the User’s Guide. This can be automated by a batch file, etc. (OK, writing a batch file is sort of programming, but not too hard.)

Dealing With Acknowledgements:
You have one last annoying detail to deal with. Before you can really say that you have sent the results, you must receive an acceptance from the NAHLN. This is in the form of an HL7 Acknowledgement message. This is another XML “file” that includes some record-keeping and one of three codes. The “AA” code means you are successful. The NAHLN Application has Accepted the data and they are now its problem, not yours. The “AR” code means the Application has Rejected the message. This means that for one reason or another they could not take responsibility for it just now. There isn’t necessarily anything wrong with your message. Maybe the NAHLN’s database is temporarily unavailable, etc. But you still have to make a note to send this one again later. Finally, the “AE” code means that the Application has detected and Error in your message. There is a typically un-human-readable error message embedded in the AE message. As a complete idiot, you are not expected to make sense of this. The easiest way to deal with it is to post your message and the acknowledgement message to the Implementation Issues forum on the NAHLN Terminology Services web site. Someone on the IT Committee will have a good laugh at your expense and then explain what is most likely going wrong.

It is up to you how much you want to, or need to, automate this process of sorting the acknowledgements, and resending, or correcting and resending the messages with AR or AE responses. The Acknowledgment comes as the response to your submission no matter which of the delivery methods you have selected. Rhapsody can be set up to automatically log these and to retry the AR’s. NAHLN-O-Matic moves your input text files to different folders depending on the results and saves the messages and acknowledgements in the same folders. In a future release it may have the ability to be set to retry the AR’s on a fixed schedule if specified in the configuration file. If your sending is more manual, you will probably set up a manual workflow for dealing with the errors as well. And obviously, if you have errors caused by your configuration or data in the LIMS, you’ll have to deal with those at the source.

Message Template:
The following provides an example of a minimal message for CSF program PCR results. Elements that must be replaced by lab constants are highlighted in yellow, those that must be replaced by run-time variables are highlighted in red. Some items such as the profile ID and method OID can be expected to change from time to time but are constants at run time.

<?xml version="1.0" encoding="UTF-8"?>
<OPU_R25 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../OfficialXML/NAHLNResultCSFV1_0_7.xsd"
 xmlns:hl7="urn:hl7-org:v2xml">

<MSH>

<MSH.1>|</MSH.1>

<!--Required: default to "|"-->

<MSH.2>^~\&</MSH.2>

<!--Required: default to "^~\&"-->

<MSH.4>

<!--Required: field with all subcomponents required-->

<HD.1>00HLQL3</HD.1>

<!--NAIS Premises ID for the sending laboratory-->

<HD.2>2.16.840.1.113883.3.5.6.1.1</HD.2>

<HD.3>ISO</HD.3>

</MSH.4>

<MSH.6>

<!--Required: Represent the NAHLN NAIS ID, may be used as the receiving facility

 Always the same as long as messages go to the NAHLN -->

<HD.1>0034P2K</HD.1>

<HD.2>2.16.840.1.113883.3.5.6.1.1</HD.2>

<HD.3>ISO</HD.3>

</MSH.6>

<!--Required: Date and time the message was generated-->

<MSH.7>201009241010-0800</MSH.7>

<MSH.9>

<!--Required: Three fields representing the message structure used as the

template for the message-->

<MSG.1>OPU</MSG.1>

<MSG.2>R25</MSG.2>

<MSG.3>OPU_R25</MSG.3>

</MSH.9>

<!--Required: Unique message ID-->

<MSH.10>1003456</MSH.10>

<!--Required: describes the nature of the message-->

<MSH.11>

<!--Processing code: May be (D)ebug, (T)est, (P)roduction-->

<PT.1>P</PT.1>

</MSH.11>

<!--Required: Version of HL7 used-->

<MSH.12>

<!--HL7 version used for the source of the message structure.

Default to v2.6-->

<VID.1>2.6</VID.1>

</MSH.12>

<MSH.21>

<!-- Filename of schema without path or extension -->

<EI.1>NAHLNResultCSFV1_0_7</EI.1>

<!--OID for profile assignment, from proposed OID tree-->

<EI.3>2.16.840.1.113883.3.5.9</EI.3>

<EI.4>ISO</EI.4>

</MSH.21>

</MSH>

<PV1>

<!--Required: Default value required by HL7-->

<PV1.2>C</PV1.2>

<!--Required: Provides laboratory accession number-->

<PV1.19>

<!--Testing laboratory accession number-->

<CX.1>D0601234</CX.1>

<CX.4>

<!--Assigning authority of the accession number
 May be the lab’s OID or an OID specifically for

 the accession number system. -->

<HD.2>2.16.840.1.113883.3.5.1.7</HD.2>

<HD.3>ISO</HD.3>

</CX.4>

</PV1.19>

<!--Required: default to "V" This should not be required. Will be dropped. -->

<PV1.51>V</PV1.51>

</PV1>

<!--Required: Reason for submission observation.

May be defaulted as described for CSF surveillance.-->

<OBX>

<!--Required: May be defaulted to CWE-->

<OBX.2>CWE</OBX.2>

<OBX.3>

<!--Required: LOINC Code for reason for submission may be defaulted-->

<CNE.1>29298-7</CNE.1>

<CNE.2>Reason for Visit</CNE.2>

<CNE.3>LN</CNE.3>

</OBX.3>

<OBX.5>

<!--Required For CSF may be defaulted as described below-->

<CWE.1>N</CWE.1>

<CWE.2>National Surveillance</CWE.2>

<CWE.3>L</CWE.3>

</OBX.5>

<!--Required: Default to "F"-->

<OBX.11>F</OBX.11>

</OBX>

<OPU_R25.ACCESSION_DETAIL>

<!-- Required: Starts a segment group. All required fields will be defaulted.-->

<NK1>

<!--Required: Default to "1"-->

<NK1.1>1</NK1.1>

<NK1.3>

<!--Required: Relationship may be defaulted to OWN-->

<CNE.1>OWN</CNE.1>

<CNE.2>Owner</CNE.2>

<CNE.3>HL70063</CNE.3>

</NK1.3>

</NK1>

<OPU_R25.SPECIMEN>

<SPM>

<SPM.2>

<!--Required: CSF program specific.-->

<EIP.1>

<!--Required: This represents the externally assigned specimen ID-->

<EI.1>A0012345</EI.1>

<!-- The OID for the CSF program-->

<EI.3>2.16.840.1.113883.3.5.8.3</EI.3>

<EI.4>ISO</EI.4>

</EIP.1>

<EIP.2>

<!--Required: This represents the internally assigned laboratory ID-->

<EI.1>1190023432-01</EI.1>

<!-- Laboratory's OID or specific OID for specimen IDs -->

<EI.3>2.16.840.1.113883.3.5.1.7</EI.3>

<EI.4>ISO</EI.4>

</EIP.2>

</SPM.2>

<!--Required: Identified specimen type-->

<SPM.4>

<!--SNOMED Code for specimen type-->

<CWE.1>309078004</CWE.1>

<CWE.2>Lymph node tissue sample</CWE.2>

<CWE.3>SCT</CWE.3>

</SPM.4>

<SPM.11>

<!--Required: The role of the specimen.

 P for patient specimen used for all but QA etc.-->

<CNE.1>P</CNE.1>

<CNE.2>Patient</CNE.2>

<CNE.3>HL70369</CNE.3>

</SPM.11>

<!--Required: Specimen received date/time.

 Typically only populated to level of date -->

<SPM.18>20100924-0500</SPM.18>

</SPM>

<OPU_R25.ORDER>

<OBR>

<OBR.3>

<!--Required: The filler order number.-->

<EI.1>D060123401</EI.1>

<!-- Laboratory's OID or specific OID for order IDs -->

<EI.3>2.16.840.1.113883.3.5.1.7</EI.3>

<EI.4>ISO</EI.4>

</OBR.3>

<OBR.4>

<!--Required: The order code.

In this case it is the same as the result code-->

<CWE.1>44273-1</CWE.1>

<CWE.2>CSFV RNA XXX QN PCR</CWE.2>

<CWE.3>LN</CWE.3>

</OBR.4>

<!--Required: transaction date for the order.

 When this order was released for messaging -->

<OBR.22>201009241534-0800</OBR.22>

</OBR>

<ORC>

<!--Required. Always SC for status change -->

<ORC.1>SC</ORC.1>

<ORC.4>

<!--Required for CSF Program: This is the CSF referral number. -->

<EI.1>CAJTC20100924A</EI.1>

<!--CSF Surveillance Program to make sure the referral number -->

<EI.3>2.16.840.1.113883.3.5.8.1.3</EI.3>

<EI.4>ISO</EI.4>

</ORC.4>

<!--Required: Provides status of the order. Order complete -->

<ORC.5>CM</ORC.5>

</ORC>

<OPU_R25.RESULT>

<OBX>

<!-- Required: The LOINC Code represents a quantitative value, i.e. CT number-->

<OBX.2>NM</OBX.2>

<OBX.3>

<!--Required: Observation ID-->

<CNE.1>44273-1</CNE.1>

<CNE.2>CSFV RNA XXX QN PCR</CNE.2>

<CNE.3>LN</CNE.3>

</OBX.3>

<!--Conditional: One of OBX.5 or OBX.8 required, if a valid result-->

<OBX.5>39.1</OBX.5>

<!--Conditional: One of OBX.5 or OBX.8 required, if a valid result-->

<!-- POS, NEG, IND -->

<OBX.8>NEG</OBX.8>

<!--Required: Status of observation. Only final F sent -->

<OBX.11>F</OBX.11>

<!--Not Required, but strongly encouraged-->

<OBX.17>

<!--This is the NVSL supplied OID for the CSF PCR-->

<CWE.1>2.16.840.1.113883.3.5.1.7.8.2.3.1</CWE.1>

<CWE.2>CSF Reverse Transcriptase Real-Time Polymerase Chain Reaction</CWE.2>

<CWE.3>ISO</CWE.3>

</OBX.17>

<!--Required: Time of the analytical determination-->

<OBX.19>201009241535-0800</OBX.19>

</OBX>

</OPU_R25.RESULT>

</OPU_R25.ORDER>

</OPU_R25.SPECIMEN>

</OPU_R25.ACCESSION_DETAIL>
</OPU_R25>

