Learning

1. A general model of learning

Learning element (LE)

Picture

Performance element (PE)

Critic

Problem generator

In designing a learning system, there are four major issues to consider:

1. components - which parts of the performance element are to be improved

2. representation of those components

3. feedback available to the system

4. prior information available to the system

All learning can be thought of as learning the representation of a function.

2. Types of learning

Depending on 1 (above): concepts, rules, utility functions, etc.

Depending on 2: level of K in the LE as compared to the level of K in the PE

· rote learning (memoization)

· learning by being told

· inductive learning

· learning by analogy

Also

· EBL

· Clustering

· Discovery: Both inductive and deductive learning in which an agent learns without help from a teacher. It is deductive if it proves theorems and discovers concepts about those theorems; it is inductive when it raises conjectures.

Depending on 3: supervised or unsupervised learning

· Supervised learning: Techniques used to learn the relationship between independent attributes and a designated dependent attribute (the label). Most induction algorithms fall into the supervised learning category.

· Unsupervised learning: Learning techniques that group instances without a pre-specified dependent attribute. Clustering algorithms are usually unsupervised.

· Reinforcement learning

Depending on 4:

· the learning method IS NOT based on prior information on the domain: decision trees, version space, reinforcement

· the learning method IS based on prior information on the domain: EBL, relevance learning, ILP

3. Inductive learning

Example (x, f(x))

Pure inductive function: given { (x, f(x)) } returns a function h – hypothesis – that approximates f

The hypothesis must be consistent with the examples

P(a1) … P(an) /

P(a1) (Q(b1) … P(an) (Q(bn) / (x (y P(x) (Q(y)

Examples, attributes, classification

Picture
3.1. Decision-tree learning (ID3)

· A decision tree is a simple inductive learning structure.

· Given an instance of an object or situation, which is specified by a set of properties, the tree returns a classification (a "yes" or "no" decision for the Boolean case) of the object or situation in a class.

· Each internal node in the tree represents a test on one of those properties, and the branches from the node are labeled with the possible outcomes of the test.

· Each leaf node is a (Boolean) classifier for the input instance.

Expressiveness of DTs: propositional language; Boolean functions – some Boolean functions are difficult to represent

How do we build the tree?

Ockam’s razor: The most likely hypothesis is the simplest one that is consistent with all observations. Propounded by the 13th century philosopher William of Ockham.

Description of the algorithm

Ex no.
Shape

Color

Size
Classification

1
circle

red

small

+

2
circle

red

big

+

3
triangle
yellow

small

-

4
circle

yellow

small

-

5
triangle
red

big

-

6
circle

yellow

big

-

	Ex No
	Credit history
	Debt
	Collateral
	Income
	RISK (classific.)

	1
	bad
	high
	none
	0-15K
	high

	2
	unknown
	high
	none
	15-35K
	high

	3
	unknown
	low
	none
	15-35K
	moderate

	4
	unknown
	low
	none
	0-15K
	high

	5
	unknown
	low
	none
	over 35K
	low

	6
	unknown
	low
	adequate
	over 35K
	low

	7
	bad
	low
	none
	0-15K
	high

	8
	bad
	low
	adequate
	over 35K
	moderate

	9
	good
	low
	none
	over 35K
	low

	10
	good
	high
	adequate
	over 35K
	low

	11
	good
	high
	none
	0-15K
	high

	12
	good
	high
	none
	15-35K
	moderate

	13
	good
	high
	none
	over 35K
	low

	14
	bad
	high
	none
	15-35K
	high

Income

0-15K

15-35K

over 35K

RISK high

Credit history

Credit history

unknown
bad

good
unknown
bad

good

Debt

RISK high
RISK moderate
 RISK low
RISK moderate
RISK low
high
low

RISK high
RISK moderate

Outcomes:

· leaves labeled with uniform classification examples

· no attributes left but no uniform classification examples – noisy data

· no examples left – no such examples observed – return a default value from the majority of the parents

Performance of learning

training set / test set

Learning curve

Happy graphs

Using information theory to build the smallest tree

Universe of messages M

M = {m1, m2, ..., mn }

p(mi) – the probability of getting message mi
Informational content of a message

[image: image1.wmf]I

M

p

m

i

i

n

(

)

(

)

=

-

=

å

1

* log(mi)

C – set of training examples

Attribute A, with n values, will partition the training set in

{C1, C2, ..., Cn}.

The information gain of an attribute A

Gain(A) = I(C) – E(A)

I(C) = the information content of tree

E(A) the expected information needed to complete the tree after choosing A

[image: image2.wmf]E

P

C

C

I

C

i

i

i

n

(

)

|

|

|

|

(

)

=

=

å

1

See ex above

p(RISK is high) = 6/14

p(RISK is moderate) = 3/14

p(RISK is low) = 5/14

I(Tree) = 1.531 bits

E(income) = 0.564

Gain(Income) = 0.967 bits

Gain(Credit history) = 0.266

Inductive bias = A preference for one hypothesis over another OR any criteria the LE uses to constraint the concept space.

Broadening the applicability of DTs

· Handle missing data, where the values of some attributes in the test set are not known. Several approaches have been suggested: assign a value based upon the distribution of values in other instances, or construct another decision tree just to decide the value. The simplest is to give it the most common value, and in practice this seems to produce nearly as good results as the other methods.

· Permit continuous-valued attributes - need to be discretized in some way to be used in a decision tree.

· Attributes with many values – use gain ratio

· Write rules from DTs

3.2. Learning general logical descriptions

Logical connection among examples, hypothesis and goal
Logical inference in learning

· Goal Q(x)

candidate (concept) description Ci(x)

· Concept space

· Hypothesis Hi(x) = (x Q(x) (Ci(x)

· Hypothesis space = the set of all hypotheses considered by the learning algorithm, H={H1, .., Hk}

· Version space – the set of hypothesis consistent with all the examples

· Examples Xi, i=1,n

ex+ Q(Xi),
ex-
(Q(Xi)

Eg. Decision tree expressed as logical hypotheses

Set of training examples X = {X1, …, Xm}
X1 (… (Xm

We must look for a hypothesis that satisfies the property:

Hypothesis (Descriptions(X) (= Classifications(X)

i.e. hypothesis consistent with all examples

Hypothesis inconsistent with an example

· false negative

· false positive

3.2.1
Current best hypothesis search

H1 with C1

H2 with C2

H1 is a generalization of H2 iff (x C2 (x) (C1(x)

Generalization

Drop disjoints;
Transform constants (variables

Specialization

Add conjuncts;
Transform variables (constants

3.2.2
Version Space (least-commitment or candidate elimination)

Keep a set of hypotheses and check consistency of every hypothesis with the examples

Introduce an ordering in the hypotheses space, namely from general to particular (a partial order. Use this order to guide search.

Keep thus boundary sets
· the most general boundary G-set – keeps the most general specialization

· the most specific boundary S-set – keeps the most specific generalization

P, Q the sets of formulas that unifies with p and, respectively, q (in FOPL)

p is more general than q if P (Q

p covers q iff p(Xi) (Q(Xi) |= q(Xi) (Q(Xi)

Picture concept space

Example domain

Shape: ball, house, box

ob(Shape, Color, Size)

Color: red, blue, white

Size: big, small

3 possibilities of search

Specific (General (use S-set)

General (Specific (use G-set)

Bi-directional (use simultaneously S-set and G-set)

S – keeps the most specific generalization. A concept description C is maximal specific if it covers all ex+ and does not cover any ex- and, for any other concept description C’ that covers all ex+ C’ is more general than C

G – keeps the most general specialization. A concept description C is maximal general if it does not cover any ex- and, for any other concept description C’ that does not cover any ex-, C is more general than C’

Specific (General

Example set
+ ob(ball, small, red)

+ ob(ball, small, white)

+ ob(ball, big, blue)

General (Specific

Example set
- ob(house, red, small)

+ ob(ball, white, big)

- ob(box, blue, big)

+ ob(ball, blue, small)

Bi-directional

Example set
+ ob(ball, red, small)

- ob(box, blue, small)

+ ob(ball, red, big)

- ob(house, red, big)

Outcomes

· one concept left in the version space S = G and card(S) = 1

· the version space collapses – S = (or G = (- no consistent hypothesis with the training set

· no more examples and S ((, G ((- disjunction of hypotheses in G

Drawbacks of Version space

· does not work for noisy data or insufficient attributes

· if we allow unlimited disjunctions in the hypotheses space – S – disjunction of descriptions of ex+, G – disjunction of (descriptions of ex-

generalization hierarchy

4. Explanation-based learning (EBL)

Use of background knowledge

Hypothesis (Descriptions |= Classifications

Background |= Hypothesis

Explanation-based generalization (EBG)

EBG Problem:

Goal concept

Learning example

Domain theory

Operationality criterion

EBG method

· Build an explanation based on the learning example – build a proof tree

· Generalize – goal regression through the proof tree = match the goal concept with the root of the proof tree, replace constants with variables, then continue matching the tree downwards, keeping the unifications

PAGE
4

_1068995455.unknown

_1068995457.unknown

