[image: image1.png]

Jahshaka
Jahshaka V3.0.0
Development Plan
Revision 2
[image: image62.png]Timehne || Effects | Tracker | Browser [Audio [Audition | Basic Colour Carrectar
2 [V}

SOURGE || RESULT || Rer
Rass | Rass | R2%s
Gass | Gass |G
5355 | 5255 | 85

o] ws v

L

Reference Image
Thekelimie png

	Author(s)
	Karsten Becker

	Version Number
	0.2

	Status
	In Use

	Date Issued
	August 20th, 2006

DOCUMENT CONTROL
Version History

	Version
	Date
	Author
	Comments

	0.1
	June 20th
	Karsten Becker
	Draft

	0.2
	August 20th
	Karsten Becker
	In Use

	
	
	
	

	
	
	
	

Authorisation List

	
	

	
	

Distribution List

	
	

	
	

	
	

	
	

	
	

	
	

	
	

CONTENTS

41
INtrOductiON

1.1
Overview
4
1.2
Description
4
2
Resources
5
2.1
Jahshaka Development Team
5
2.2
Development Team Responsibilities
6
2.3
Outsourcing
6
2.4
Technical Requirements
6
2.5
Hardware & software requirements
7
2.6
Application requirements
8
3
Features & Functionality
9
3.1
Primary Feature Overview
9
3.2
Secondary Feature Overview
9
3.3
Feature Breakdown
11
4
GOALS & Deliverables
12
4.1
Development Goals
12
4.2
Master Development Timeline
12
5
Development Phases
13
5.1
Phase 1 – Framework Design & Development
13
5.2
Phase 2 – Application Prototype & jahplayer
15
5.3
Phase 3 – Desktop & Library
27
5.4
Phase 4 – Colour correction & Encoding
35
5.5
Phase 5 – Compositing & Effects
41
5.6
Phase 6 – Editing functionality
43
5.7
Phase 7 – Paint & Rotoscoping
45
6
Test Approach
46
6.1
Jahshaka Testing
47
6.2
Three-Pass Testing Approach
47
6.3
Test Cycles
48
6.4
Defect Reporting
48
7
Appendices
50
7.1
Appendix A – Project Timeline
50
7.2
Appendix B – Jahplayer Screenshot
51
7.3
Appendix C – desktop
52
7.4
Appendix D – color correction
53
7.5
Appendix E – compositing
54
7.6
Appendix F – editing
55
7.7
Appendix G - Test Cycle Details
56
7.8
Appendix H - Defect Categorisation
56

1 INtrOductiON

1.1 Overview

Jahshaka is a media management and playback, compositing, editing and effects application. It is developed as an open source project under the GPL licence, and is designed to be compiled for Windows, OsX and many distributions of Linux. Jahshaka uses the openlibraries
 as the underlying technology that gives it most of its features and functionality.
This document is a functional specification for Jahshaka version 3.x.x. (which includes jahplayer). Its purpose is to explain and detail the application’s features and functionality. It is expected that this specification will evolve and grow during the development cycle.

Core Jahshaka features will include:

· Media and asset management
· 2D and 3D playback
· Colour Correction
· 2D and 3D compositing
· Editing & Effects
1.2 Description

This document also serves as a Development Plan, outlining the technical and functional requirements for the development of Jahshaka 3.0.0. It describes the testing strategy and approach to testing that will be used to validate the quality of this product prior to final release.
In addition it documents various roadmaps required for the successful development of jahshaka. Those features include:

· Features & Functionality

· Application structure and overview

· Technology development overview

· Application development overview

· Goals & Deliverables

· Development timelines and resources

· Implementation of BAU technical service elements

This plan also encompasses usability testing with respect to the various environments in which jahshaka will be used by developers, designers and end-users, who will build, use and interact with both the application.

2 Resources

Jahshaka v3 is being built using an open source model and so source code is distributed publicly online and we actively recruit the assistance of external developers to assist in the overall development and debugging process.
The internal development team is dedicated to development of the Jahshaka and jahplayer applications, the application framework, and the user interface widgets that drive the end user experience. This team consists of a lead developer and five underlying developers.
2.1 Jahshaka Development Team

The jahshaka development team will consist of a Core group of 6 developers lead by a project manager whose responsibilities will be to coordinate the efforts of the team and follow the development deliverables. The team is also accentuated by a release manager.

The team is broken down as follows:
	Project Role
	Developer

	Project Manager
	TBD

	Lead Developers
	TBD

	Team Lead
	TBD

	Lead Qt Developer
	TBD

	Qt Developer
	TBD

	Qt Developer
	TBD

	Python Developer
	TBD

	C++ Developer
	TBD

	Release Manager
	TBD

Project Staffing Tree

[image: image2]
2.2 Development Team Responsibilities

	Project Role
	Responsibility

	Project Manager
	Responsible for jahshaka Project deliverable schedules and the overall success of the project. Ensure all testing and test documentation is completed to plan

	Application Lead Developer
	Work with the project manager to assist in collating and streamlining the application development plan, and lead the development and testing of the application

	Lead Qt Developer

Tim deWhirst
	Focus on designing the front (user interaction side) of the web application, focus on application framework

	Qt Developer
	Focus on designing the front (user interaction side) of the web application, focus on widget generation

	Qt Developer
	Focus on designing the front (user interaction side) of the web application, focus on widget generation

	Python Developer
	Focus on architecture framework development and framework management

	C++ Developer
	Focus on core application logic

	Release Manager
	The release manager will be responsible for packaging and testing releases as well as documentation

2.3 Outsourcing

After review of the development cycle it has been decided that it is not practical to make use of outsourcing for Jahshaka development at this time. Instead, a greater focus will be on using the Jahshaka community to assist in the feature and debug cycles of Jahshaka development.

2.4 Technical Requirements

The following is a list of technical requirements for this development plan:

· Bugzilla will be used for the logging and management of all feature requests and bug service management defects

· The target platform for deployment will be Windows XP, Linux (Redhat AW 4.0, Fedora core 4+5, Ubuntu and Debian) and OsX 10.3+
· All development will be on the CPU and gpu in parallel to allow for full hardware abstraction.

· All front end development will be done using Qt3 with an upward path to migrate to Qt4. (from trolltech)
· All code management will be done using CVS hosted on Sourceforge’s repositories for maximum open source presence and traction. It estimated that we will migrate to Subversion once Sourceforge has stabilized subversion support.

· Goals are to be reviewed monthly and releases are to be done on bi monthly basis (every 2 months) to allow for maximum user feedback and interaction

· All code must be synchronized with the code management system on a regular basis (every 2-3 days) unless in the case of individual module development in which case the code can be submitted on a weekly basis

· Adequate time must be given to correct test failures, and test logs are to be kept for knowledge management

· Graphics card standardization and support as well as OpenGL versioning must be defined and approved prior to final release
2.5 Hardware & software requirements

The following is a list of hardware and software requirements for the development teams, and covers both in house development systems as well as the software they require for development.
	Project Role
	Tools

	Project Manager
	Dual core windows based workstation outfitted with Microsoft office, Microsoft project and large screen (24”) display

	Lead developer
	Dual Processor P4 or AMD workstation, dual 20” hires monitor configuration, nvidia or ati dual SLI, linux or windows
Mac mini with windows and OsX for OsX testing and testing of Intel graphics support

Visual Studio 7 is required on windows workstations

	Developers
	Dual core PC’s, dual 20” monitors or large screen 24” monitor, nvidia or ati graphics, windows or OsX
Mac mini with windows and OsX for OsX testing and testing of Intel graphics support for select developers

Visual Studio 7 is required on windows workstations

	Release Manager
	Release manager will need to have access to a variety of systems for application testing and release management

A vWare cluster for testing release across the different Linux distributions

a high speed Intel and amd windows workstations

high speed Intel and ppc OsX workstations
Mac mini with windows and OsX for OsX testing and testing of Intel graphics support

2.6 Application requirements

The following is a list of minimum operating system requirements for deploying the application. The development team goes through a regular set of testing processes to ensure full support on the minimum operating system specification.
	OS
	Configuration

	Windows
	Windows XP SP2

	Linux
	Any 2.6 kernel

	OsX
	OsX 10.4 or later

	
	

The following is a list of minimum graphics card requirements for deploying the application. The development team goes through a regular set of testing processes to ensure full support on the minimum graphics specification.

	Hardware
	Configuration

	Nvidia
	Nvidia Quadro or GeForce Cards

	Ati
	Ati Cards

	Intel
	Intel Graphics 2

3 Features & Functionality

In the Jahshaka V3 application framework there is a complete separation of the core functionality (media access, 3d object acquisition and the scene graph architecture) from the application via a reusable and comprehensive cross platform toolkit known as the openlibraries.

This approach enables the development of multiple user interfaces, tools and 3rd party/compatible components, making the application easily and dynamically expandable.
Application Framework
Our application development language is python - this has been elected as it provides a reliable and proven cross platform Rapid Application Development (RAD) tool. Access to both the user interface components and openlibraries will be provided by a set of python bindings which will be developed using the boost::python API.
Application Interface
The v3 application interface uses the QT toolkit for the user interfaces. We will use QT version 3 due to its stability and availability on our target platforms (Windows, OS/X and Linux). Our usage of this has been specifically designed so as not to preclude our ability to migrate to QT4 (or yet another GUI toolkit) at a later point.

3.1 Primary Feature Overview

Most of the core features and functionality that we will be deploying in the jahshaka 3.0 application have already been developed in the jahshaka 2.0 application. As such we expect a rapid development cycle since we have done this once before.

The core features and functionality we will be deploying in the Jahshaka 3.0 application will be released initially as a separate stand alone application called Jahplayer and will consist of:

· Industrial Strength Asset Management
· Data centric workflow solution

· Both stand alone and group based environments

· Real Time Media Playback
· Resolution independent media playback

3.2 Secondary Feature Overview

The core Jahshaka V3 application will build upon the Jahplayer framework to deliver more advanced features and functionality to the end user. These will include the following core features:
· Desktop based media management

· Dynamic reel management
· Metadata integration for assets
· Real time effects

· CPU and GPU based effects

· Colour Correction

· Primary and Secondary

· Node based compositing

· Both 3D and 3D

· Non linear editing

· Support for multi track horizontal and vertical editing

· Paint and Rotoscoping

· User for matte painting and matte cleanup operations

· Plug-in Support

· Openlibraries plugins

· OpenFx

· Enterprise Collaboration via JahNet server
· Centralized data management through an enterprise-class relational database (MySQL).
· Support for multiple workgroups, or single integrated pipelines.
· Multi-user concurrent access to metadata for collaboration.
· Ability to dynamically link to other users projects to review and share work and versions.
3.3 Feature Breakdown

[image: image3]
4 GOALS & Deliverables

4.1 Development Goals

The development of Jahshaka 3.0 is broken into 6 main phases spread over 6 months. The primary goals of the development during this period are:

1. To deliver a working, stable jahplayer application with core functionality within 2 months

2. To deliver a working, stable jahshaka application with core functionality within 4 months

4.2 Master Development Timeline

Please see appendix A for complete timeline and detailed development deliverables and milestones.

[image: image4.wmf]ID

Task Name

1

jahshaka 2.0

2

2.0rc3

3

2.0rc4

4

2.0rc5 eol

5

jahshaka 3.0 architecture

6

framework design

7

framework development

8

jahplayer 3.0

9

core functionaliy

10

application release player

11

maintenance release

12

application feature release

13

maintenanace

14

application feature release

15

maintenanace

16

jahshaka 3.0

17

core functionality

18

appliction development - desktop

19

appliction release - color

20

application development - effects

21

application release - editing

22

application development - roto/paint

23

jahtools

15

22

29

05

12

19

26

03

10

17

May '06

Jun '06

Jul '06

5 Development Phases

5.1 Phase 1 – Framework Design & Development
The first phase of Jahshaka 3.0 development calls for a re-architecture of the application framework. During the development of Jahshaka 2.0 the focus was on features and functionality rather than architecture. As a result the application grew to be difficult to manage and maintain and attracted little 3rd part developer support.

The new architecture is based on a python based application framework, with Qt widgets, that sits directly on top of the openlibraries. This architecture was chosen for various reasons including:

· Next Generation Script based Application provides us with a RAD environment, also allows for rapid remodelling of the application itself

· Direct connectivity to openlibraries allows for a fast and easy to maintain application since there is no intermediary layer

Our primary focus during the initial development of the v3 code base is ensuring that our components and bindings will be developed in a manner that is extensible, consistent and can be divided in small units so work can be carried out in parallel.
It was decided that since the primary goals of the Jahshaka v3 application will be media management and playback, and that since a simpler application would need to be developed to test and prove the model, that the initial deliverable would the consumer based jplayer media playback tool.

Architecture

In this phase the new architecture will be defined, test cases will be deployed, and the first generic applications based on the new architecture will be specified and the necessary framework needed to build them will be assembled. This includes test cases showing application to openlibraries connectivity via python.
Framework

The key design elements and application framework will be implemented in this phase. The concept is to create a framework that can provide separation between the user interface and the open libraries core using the PCOS model - Property, Container, Observer, Subject (PCOS) components. These components are to provide state retention, propagation and serialisation throughout the application.
User Interface

All user interface development will rely on dynamically generated user interface objects in Qt. This allows for dynamic generation of custom widgets using Qt Designer. This also allows for UI design to be done by non-coders, and allows for custom testing of all widgets.
Development milestones will include the following:

· Initial python architecture
· Integrated openlibraries media playback test cases
· Initial Qt architecture

· Qt based interface test cases implemented in python
· initial jplayer test application
· created using using python, Qt and openlibraries
Phase 1 Deliverables

To ensure all development occurs as planned, a schedule of the core deliverables is detailed below:

	Deliverable
	Responsibility
	Completion Date

	Python based architecture
	Application Lead Developer, Library Lead Developer
	15th July 2006

	3.0 front end architecture based test applications
	Application Lead Developer, Library Lead Developer
	25th July 2006

	Generic jplayer test application
	Application Lead Developer, Library Lead Developer
	1st august 2006

5.2 Phase 2 – Application Prototype & jahplayer
In this phase the core focus is on development of the jahshaka 3.0 application framework. Development in this phase was focused around the development of Jahplayer 3.0. This was identified as the first Jahshaka development deliverable since media playback and asset management tools were defined as the base for the Jahshaka v3 application itself.

As a part of this phase extensive work was done defining the user interface requirements and the underlying features and functionality that went along with them. These can bee seen in Appendix B.
Since this was the first real application to be built atop the new application architecture, a certain amount of freedom was deemed necessary for the development team to allow the ability to implement features and functionality in a manner that they understood.
	Media Playback
	Asset Management

	[image: image5.jpg]NTSC D1 - 24fps - injection.mov 00:00:10:23

BINDISPLAY LIBRARY VIEWOPTIONS

	[image: image6.jpg]NTSC D1 - 24fps - injection.mov

’
00:00:23:22 4 « 4 = » 3 » o— It 5 00:00:23:22
0y ' T ' 230

BINDISPLAY LiBRARY VIEWOPTIONS

A !
~ - ¢
JAHSHAKA &
2
INSERT POINT LUT RANGE LEVELS HISTOGRAVM SURPRESS WATCH MASK RESET(home) LOCK SAVE UNDO REDO OPTIONS DESKTOP 1 2 3 4

DESKTOP. ANIMATION EFFECTS EDITING PAINT TEXT PREFERENCES PLUGINS HELP

	Standalone media playback with transport controls and audio overlay
	Playback of assets from reel

The following features and core functionality will be available at the end of the Prototype phase:

· Initial application framework
· This is the python framework that will control application state and will connect the widgets to the underlying openlibraries

· Initial application skin
· This is the Qt based application skin and the individual widgets that make up the application itself

· Load media functionality
· The ability to import/load media files into the application for playback via drag and drop and via a file loader utility
· Preview media functionality

· The ability to preview media in different modes including the group as a reel, individual asset+metadata and expanded asset as a filmstrip including thumbnail creation and caching.

· OpenGL based player
· The playback mechanism to be implemented will be a hardware accelerated OpenGL based playback system. All colour conversion is to be done in hardware using shaders for maximum speed.

· Database driven Asset management system (Reel based)
· The asset management system will provide the functionality needed to store multiple assets via a embedded sqlite database, along with the functionality needed to create and store groups of asset (known as reels)

· Media playback and image sequence playback
· Media support will be limited to select media formats and select image formats for image sequences, including support for 2k images

· Visualisation systems

· Initial implementation of visualization systems used to vie image data on screen, such as histograms, vectorscope and RGB colour picker

· Multi Clip playback

· The ability to preview and play dual clips in different modes including A+B and A/B previews.

· Ram based caching system

· For proper professional playback of image sequences a dynamic ram based caching system will need to be implemented.

· Application State

· Save and restore application upon start-up
· Application release and automatic updates system

· Cross platform release and packaging, with automatic updates on Linux using a YUM repository

· Review of windows and OsX automatic update solutions and strategies

· Multi code support strategy

· Review of 3rd part codec’s and overhead required to implement and support them
5.2.1 Application framework

The following section lists summary detail of the jahshaka application architecture interfaces. The initial implementation is based on a shared application framework that can be used for both jahplayer and Jahshaka.
Screen 1 - Framework

The main screen displays the main application layout and core GUI objects, detailed at the right hand side of the layout.

[image: image7.png]I The Header I

2-The Viewport

| 3~ The Controlspace |

4 —The Reel

5 —The Footer

The Header
menu system and file
information space

The Viewport
media playback and
visualization space

The Controlspace
transport controller and
timeline

The Reel
asset selection and
information

The Footer
application options and
control

Input Boxes
file io and media
managernent

6~ Input Boxes

Screen 2 - Header

Screen 2 outlines the first main application widget, the header bar which includes display modes and application status and feedback
[image: image8.png]Display mode widgets
«Alb display

«alb display

*Rgba modes

Screen 3 - Viewport
Screen 3 outlines the main viewport and user workspace. In the current v3 application architecture the viewport is static and its functionality is defined by the relevant modules

[image: image9.png]Viewport Options
~aspect ratio resampling
“View channels

+Pan and zoom

+Crop and select area
*Visualization overlays
«2d or 3d

«afb modes

2a—overlays
Vectorscope

Waveform
Rgb graph

2a- overlays

2-The Viewport

2c - Audio Overla:

3

Video Preview Options
*Full Screen

“VGA or SDI out
«Stereo option
*Freeze master

2b - Video Preview

2¢ — audio overlays

Channel a

alb modes
Split screen

Channel b

Audio Overlay Options
“Multple channels, stacked
*Full clip preview
Live osciloscope
“Insert cue points

Screen 4 - Controlbar
Screen 4 outlines the control bar, used to control time management and in all time related modules

[image: image10.png]| Audio ch " | Audio waveform " Chmode I

Cortrol space is synced
with audio overlays

in the viewport
Initially to be a Qt widget

Transport controls for
—ThE Comfzaes

Play, pause, stop,
forward, fast forward,
back, fast back

Tool bar (fps, audio,etc) | < transport controls > | Tool bar (fps, audio,etc)

In paint ~ Current frame out point

— :
| | | timeline | " timecode I

urrent frame] | Ram cache preview Total frames

Screen 5 – The Reel
Screen 5 outlines the reel manager, used to control the display of the media and asset management widgets

[image: image11.png]Highlight on selected clip

Move
Left1
frame

Move
Left1
frame

Media r

orgering

Move
Right 1
Asset

Move
Right 1

Asset

Move
Right 1
frame

Move
Right 1
frame

Move
Right 1
Asset

Screen 6 – The Footer
Screen 6 outlines the footer. The footer is a hot box to provide switching in the application as the framework grows, ie access to the color correction module, short cuts to activate important features will all go here
[image: image12.png]Dialog boxes Alternate modules Display overlays

Screen 7 – File IO
Screen 7 outlines the file IO loader, used to bring media into the application

[image: image13.png]Media locator

Wiew Modes -> wmagel tet! Itex\z

Filesystem tree

dive

Tolder

i

Tolder

View image option

oooton0 oooton00

A B C

oooton00

T

L3

Image sequences

o b an stctoptn

Viewtext option

=
=

Load media

I T |

Media meta data panel - displays data such as file size,
Resolution, creation date, creator etc
Anything that can be grabbed along with the file on the fiy

> displayed as a
single clip

loads media
into current reel

Hide meta data
panel

Screen 7 – Reel manager
Screen 7 outlines the reel manager, used to manage assets in the application

[image: image14.png]Reels

Wiew Modes -> wmagel tet! Itex\z

— EAEE
A B c
[reel ;‘J ¥
DR
e
Senu et oton o vt selctopn
Wiew text option .
=
=
=
e} loads resl
i
Load reel
=1, st
p
Media meta data panel — displays data such as file size,
Resolution, creation date, creator etc
*Meta data here can be edited, tags can be added, etc

T

L asdordelsterests

5.2.2 Using the reel
The reel is accessible through the player module and a user will be able to drag and drop clips from the reel into the player

· Reels are built and managed via the desktop* or in the library module

· Reels can laid out either vertically or horizontally (only a horizontal implementation is required at this point in time

· Reels can also be flipped between multi-asset mode and single asset mode in order to zoom in on a timeline for a visual representation of where you are at in the playback

In multi-asset mode all the assets in the reel are displayed in a collapsed view mode. Assets can be scrubbed in the reel but cannot be expanded

[image: image15.jpg]4 « 4 L 4 » » o— J 2}
0) 1)) i
BINDISPLAY L EWoPTI

| £ Fomn

JAHSHAKA : &

Ll

INSERT POINT LUT RANGE LEVELS HISTOGRAMM SURPRES!

MATCH MASK RESET(home) LOCK SAVE UNDO REDO OPTIONS DESKTOP. 234

DESKTOP. ANIMATION EFFECTS EDITING PAINT TEXT PREFERENCES

PLUGINS HELP

The single assert mode is a expanded mode for a single asset and the user can zoom in and out and scroll horizontally

[image: image16.jpg]Ll « 4 = » » » [o= Y D
-y I . " I i I . " W I " | I n | | | 230

BINDISPLAY LIBRARY VIEWOPTIONS
3

INSERT POINT LUT RANGE LEVELS HISTOGRAMM SURPRESS MATCH MASK RESET(home) LOCK SAVE UNDO REDO OPTIONS. | DESKTOP 1.2 3 4

DESKTOP ANIMATION _EFFECTS ‘EDITING PAINT TEXT PREFERENCES PLUGINS HELP

5.2.3 Audio overlay
[image: image17.jpg]

The audio overlay can be toggled on or off and can either be translucently superimposed over the playback are on inserted into the playback area. It should take up the same screen size as the player timeline itself and should playback in sync with the player timeline
5.2.4 Dual Clip mode
[image: image18.jpg]NTSG D1 - 24fps - injection.mov = 00:00:10:23

2 ; —_

hospital scene, take 14, 24fps 00:00:23:22 NTSC D1 NTSC D1
d « 4 L] 4 » » J e 4 « 4 - 4 » 14 J 22
| |
FX OPTIONS BIN

[£ s

JAHSHAKA

il

TOGRAVM SURPRESS MATCH MASK RESET(home) LOCK SAVE UNDO REDO OPTIONS DESKTOP 1 2 3 4

INSERT POINT LUT RANGE LEVELS HIS

DESKTOP. ANIMATION EFFECTS EDITING PAINT TEXT PREFERENCES PLUGINS HELP

Dual clip mode would allow for the playback of 2 clips side by side

5.2.5 Transport and Timeline Block

Graphical representation of requirements

The following is intended only to show the requirements of this area of Controlspace. It has been used throughout this document for consistency, but it is not intended as a “concrete” layout of the interface.

[image: image19]
Figure 1: transport block - Graphical representation of the requirements for display

	No.
	Description
	Keyboard
	Notes

	1
	Display mode of current Project
	
	Timecode / Frames – FULL LIST REQd

	2
	Start of Project
	
	This is written, and not editable

	3
	End of Project
	
	This is written, and not editable

	4
	Timeline
	
	Leftmost is START time
Rightmost is END time

	5
	NOW marker (yellow line)
	
	Shows current position
Click-hold to drag it about and change NOW time
Linked with 6

	6
	Current Time
	
	Display of the Current time in the Project units
Click to text enter a new time
Linked with 5

	7
	In point time (red)
	
	Click in box to enter time
Drag the Red marker to set on timeline

	8
	Mark In Point button (red)
	I (letter i)
	Marks in-point at current Now position

	9
	Out point time (green)
	
	Click in box to enter time
Drag the Green marker to set on timeline

5.2.6 Playback controls

Overview

During the research for this document it was noted that the use of the J, K and L keys as a method of shuttling through footage and projects seems to be spoken of as “A Very Good and Professional Thing”! But when searching Google for “JKL Control” you will NOT (easily) find a definition… it always referred to as “JKL Control” and everyone is expected to know what it is!

Therefore this section explains what the J-K-L Control offers and a decision can be made as to the relevance for its inclusion in Jahshaka v3.0.

An historical note

The use of “shuttling” is a throwback from the days of analogue tape machines. This would mean the playback device would be put into PLAY, and the tape moved over the play head at various speeds. As this was wearing to both tape and motors, “shuttling” was originally reserved for the more expensive machines and formats.

It is now quite common-place and – strictly speaking – a nonsensical term when talking about digital playback! It is still referred to when offering playback at different rates for auditioning or positioning edit points, etc.

Going into Shuttle mode

Again an analogue throwback, many systems talk of “going into shuttle mode” as the old machines had to spin up their motors ready to offer instant movement. With JKL control, the system can be “put into shuttle mode” by pressing the K-key. This would put the system into Shuttle, paused at the NOW-line.

All of the following keystrokes are applicable once the system is in Shuttle Mode.

Basic Shuttling at 1x Speed

[image: image20]
Figure 2: JKL Keys - Basic Shuttling at 1x Speed

Shuttling Forwards at higher speeds

[image: image44.jpg]The Jahshaka Project

This is achieved by repeated presses of the L key

Press TWICE

shuttle forward at 2x speed

Press THREE TIMES
shuttle forward at 3x speed

Press FOUR TIMES
shuttle forward at 5x speed
Press FIVE TIMES
shuttle forward at 8x speed

Shuttling Backwards at higher speeds

[image: image45.jpg]The Jahshaka Project

This is achieved by repeated presses of the J key

Press TWICE

shuttle backwards at 2x speed

Press THREE TIMES
shuttle backwards at 3x speed
Press FOUR TIMES
shuttle backwards at 5x speed
Press FIVE TIMES
shuttle backwards at 8x speed

Shuttling at Quarter Speed

This requires pressing TWO keys at the same time – plus the relevant “direction”:

[image: image21]

Stepping one frame at a time

This is equivalent to having playback stopped, and using the frame forward / backward buttons on the Transport Control.

[image: image46.png]

Press AND HOLD

This has the effect of putting the system in “pause shuttle” mode, but “holding” it ready for movement. You then step backwards and forwards a frame at a time by TAPPING the relevant direction:

[image: image47.png]

[image: image48.png]

While holding down tap - step FORWARDS one frame

[image: image49.png]

[image: image50.png]

While holding down tap - step BACKWARDS one frame

5.2.7 Scopes and Overlays

RGB Parade
This displays waveforms of the Red, Green and Blue components side by side. Since video cameras capture in RGB, this display may help to show camera problems among other things.
Keep in mind that red, green and blue are used together to create all other colours in video. A white area in the image will be seen as peaks in all three RGB Parade waveforms at the same relative location. A high red level does not mean a reddish image unless the corresponding green and blue levels are low.
Vectorscope
There are TWO possible scales for the Vectorscope, depending on whether the Project is PAL or NTSC. The Vectorscope shows only the chroma, without the luma. The Cr signal is shown in the vertical dimension, and the Cb signal in the horizontal dimension. Colours created by various positive and negative combinations of Cb and Cr show up around the circle. Areas of the image with little chroma are centred in the circle, and areas with more saturation are further out from the centre. Images with an overall colour cast produce a vectorscope trace that is generally off-centre.
Small squares in the Scale mark the location of standard colour bar vectors. Inner squares mark the proper values for 75% colour bars, and outer squares are for 100% colour bars.
Y Waveform
“Y" refers to Luma, the brightness component of the image without any colour. The Y Waveform measures what a viewer would see on a black and white screen.
When you measure a standard colour bars test pattern, pure black will be seen in the waveform as a flat step at a height of 0%. Pure white produces a step at 100%. In addition to the percentage scale on the right, the left side of the Y Waveform shows a digital level scale in an 8-bit or 256-step range. On the standard digital scale (ITU-R BT.601), 16 is the level for black, and 235 for white.
YC Waveform
The YC Waveform shows components encoded as composite video. Composite video has a Chroma signal (C, derived from Cb and Cr components) "riding" upon the Y waveform.

By default, the Y trace is shown in green, and C as a cyan "envelope" surrounding it. Because the C signal usually has equal positive and negative excursions, you may notice that the cyan bands are at an equal distance above (Y+C) and below (Y-C) the green waveform.

The left side of the YC Waveform shows a scale marked according to your project standard, NTSC or PAL. NTSC video is measured in IRE units: 0% black is commonly at 7.5 IRE (except in Japan), and 100% white is at 100 IRE. PAL video is measured in millivolts: 0% black is at 0 mV, and 100% white is at 700 mV.

[image: image22]
Scope - Vectorscope graticules - PAL and NTSC

Phase 2 Deliverables

To ensure all development occurs as planned, a schedule of the core deliverables is detailed below:

	Deliverable
	Responsibility
	Completion Date

	Generic jahplayer test application
	Lead Application Developer
	August 15th 2006

	Asset management system
	Lead Library Developers
	August 15th 2006

	Media playback
	Lead Developers
	August 15th 2006

	Sequence playback
	Lead Developers
	August 15th 2006

	Full application Skin
	Lead QT Developer
	August 25th 2006

	Jahplayer release
	CTO
	September 1st 2006

5.3 Phase 3 – Desktop & Library
In this phase the application development focus turns towards the features and functionality necessary for the Jahshaka multi media desktop and library management system. This is an extension of the reel and reel manager developed as a part of phase 2, however they are broken out as individual modules and additional features and functionality are added to them in order to use them in a professional environment.
For a visual representation of the multimedia desktop see appendix c
Features and Functionality
The following features and functionality will be available at the end of the framework release phase:

5.3.1 Desktop Module

	Fixed Desktop
	Freeform Desktop

	[image: image23.jpg])
00:00:02:02

N o

Tom save

JAHSHAKA

o0:0008:12

JAHSHAKA JAHSHAKA

RULES

00000823 00000823 00000823 00000823 00000823 00000823
= 4 e 4 o 4 = 4 %= g %= g =
: . |
i i

i i i i

00:00:00:02 00:00:00:03

G NTSC, NTSC D1 - 24fps

1 CLIP COPIED COLLAPSE EXPAND SHARE COPY DELETE TCFR INFO GROUP 0 NAME LOCK SAVE UNDO REDO Lo) DESKTOP 1 2 3 4

DESKTOP. ANIMATION EFFECTS EDITING PAINT TEXT PREFERENCES PLUGINS HELP

	[image: image24.jpg]o0:0008:12

JAHSHAKA

i i i i i i i

00:00:00:02 00:00:00:03

v “ -
NTSC, NTSG D1 - 24158
1 CLIP COPIED COLLAPSE EXPAND SHARE COPY DELETE TC/FR INFO GROUP O NAME LOCK SAVE UNDO REDO LT *) DESKTOP 1 2 3 4

DESKTOP. ANIMATION EFFECTS EDITING PAINT TEXT PREFERENCES PLUGINS HELP

	1. A desktop view that can provide horizontal or vertical or based layouts
	A desktop view that can provide non-uniform or grid based asset layouts

· The desktop is a visual asset management system made up of multiple reels, with each reel containing multiple assets.

· Reel support at the desktop level is identical to reel support in jahplayer
· the user will be able to expand individual assets in the reel within the reel itself (similar filmstrip view in the player)
· The desktop will have different display modes which will need to be take into account including horizontal, vertical, free form and text based

· Assets on the desktop will be scrubable and playable
· users will be able to reorganize assets using drag and drop functionality in a reel and also from reel to reel

· Users will be able to send any asset on the desktop to the player module for playback, the player will retain the calling reel

· The desktop will be able to display both 2D and 3D assets, however the immediate focus is on 2D assets only
Development Notes

· Thumbnail representation of every element referenced in the Asset

· Multiple copies of the same Source can exist, each with a different Meta-name

· Thumbnails can be scrubbed

· Thumbnail can be interrogated to discover and edit Metadata information

· Thumbnails can FREELY be dragged around the desktop

· Thumbnails can be banded and Grouped

· Groups can be expanded / collapsed

· Thumbnails can be arranged on the Desktop, banded and sent to start a new project

· Banded thumbnails can be dragged into existing Projects (optionally adding as above)

· Project / [ImgSeq] elements appear as single entities, but can be “expanded”

· Select file and view / cut in Audition tool

· Drag and drop onto Module buttons

· Right-click for a context menu of possible actions

· Group / Ungroup selection

· Expand / Collapse group

· Create new Edit Project

· Create new Composite Project

· Delete selected file(s)

· Add “Notes” as small text files on the Desktop

5.3.2 Library Module

	library
	Library & reel

	[image: image25.jpg]NTSC D1 - 24fps - injection.mov -
Narne, ¥
Jahshaka Lib
W Jahshaka Libraries matte demo
ill matte_dermo ()
W Jahshaka Libraries ’ ’ Y ’
w& Iogo_02 0000150 lego_IgH{s0360jpg. redness_ 30000+
W Jahshaka Libraries
il matte_dermo ()
logo_02_00001tga logo_lghts0360jpg redness 00000+
o
BINDISPLAY
{ £ M wu Description:
JAHSHAKA
CC o h) ;
INSERT POINT LUT RANGE LEVELS HISTOGRAMM _ SURPRESS
DESKTOP. ANIMATION EFFECTS EDITING

Date Created: - size:

File Type: -
TRT:
Frame Size: -

Compression

Method:
MATCH MASK RESET(home) LOCK SAVE UNDO REDO
PAINT TEXT PREFERENCES

Tags:
Format:
Audio:

Licence:

OPTIONS

PLUGINS

00:00:10:23

DESKTOP.

2

HELP

230

	[image: image26.jpg]NTSC D1 - 24fps

Narme W
W Jahshaka Libraries
ill matte_derno (1)

njection.mov

matte demo

W Jahshaka Libraries
ill matte_derno (0)

W Jahshaka Libraries
ill matte_derno (0)

$ @

o Biod 3] louo_02_00001ga Iogo_liohts0360jpg redness_000001.

BIN DISPLAY L

[£ o

JAHSHAKA

INSERT POINT wr

RANGE

DESKTOP. ANIMATION EFFECTS

LEVELS

a S

a S

HI

TOGRAMM

EDITING

1090_02 000015 Iogo_iohts0380jpg redness_000001.

|

SURPRESS

MATCH

PAINT

MasK

RESET(home)

—

Lock

SAVE

UNDO REDO

PREFERENCES

OPTIONS

PLUG

00:00:10:23

DESKTOP.

s

HELP

	2. A desktop view that can provide horizontal or vertical or based layouts
	A desktop view that can provide non-uniform or grid based asset layouts

The library enables management and selection of assets (Footage, Complete Projects, tracker data files, etc) and allows you to create collections of reels with your assets (a reel is a collection of assets) for playback in the media player. Assets can be either still images, media files or 3d objects.
The library also allows for the management and storage of projects. A project is a collection of reels that has access controls on them and that available to other users via the network. A project contains project related meta data as well, such as the modules that it is involved in, etc. Projects are accessible via a tab panel in the asset managers left menu bar.

The library will also:

· enable “Publishing” and sharing of assets in projects, making them available to other users (locally, internal network, web)

· offer sophisticated browsing filters (search, “sort by”, etc) that work locally as well as across the network
· enable simple in-place auditioning of assets (in the asset manager UI itself), and transfer to the audition tool for more in-depth auditioning

· enable view and editing of metadata associated with assets, which can be used to assist in sorting

· Enable management of the permissions of assets for network collaboration features. Who can see, copy etc.

The library is currently a stand alone module and is accessed via the ‘library’ icon in the Jahshaka module bar. It will have a conventional “file browse” feel – navigation tree on left, folder contents on right. It will display folder contents in a list or thumbnail display mode.

Collections of assets are known as libraries, and a user can create multiple libraries, group and combine libraries.

Users can also create projects in which the media associated with a project is limited in scope to that project only.

· The library is a complete asset management system based around the notion of reels and desktops.

· The Jahshaka Library is extension of the reel manager in jahplayer

· A user will be able to import assets from the library into the desktop with each asset retaining all its metadata

· A user will be able to import reels from the library into the desktop with each asset in the reel retaining all its metadata including position in the reel

· A user will be able to import sets of reels (or complete desktops) from the library into the desktop

· Users will be able to browse assets, search for assets, and update asset metadata including adding tags.

· Different versions of assets will also be tracked as they are modified by the system to allow for easy versioning and asset tracking

List Mode

When displaying folder contents in list mode, the asset manager will display as a grid, with user-definable columns and column sort facility. It will enable column sizing and sorting using “standard” UI methods (separator drag, column click, etc) .It will show “protected” status, and – so long as user permissions allow it – enable changing of this status. It will enable editing of metadata from within the table (if asset is not “protected”).
Thumbnail Mode

When displaying assets in the thumbnail mode, asset manager will:

· display assets as thumbnails to give a visual indication of contents

· enable access to a metadata description of contents (e.g. mouse-over “tool-tip” format)

· allow scrubbing in-place for motion video assets

· enable multiple selection of assets for subsequent action

Asset types

Simple asset types that refer to a single media file

· Footage – a media source

· Single still image

· Video only file

· Audio only file

· A/V file

· 3D scene

· Tracker Data files

Complex types that refer to a group of simple assets, as well as other “structuring” data

· Image Sequence (a special type of Footage file)

· Workspaces (will include details of all Assets referred to (see below))

· Projects (will include details of all Assets referred to)

When a complex Asset is moved to the Workspace (or into a Project) it should prompt to confirm moving all its required simple Assets too. The system should be able to check and make sure it is not copying something already there. If it is, then it would only need to bring the extra metadata for that simple Asset onto the Workspace.
Missing assets

Required - a mechanism to identify (and offer ways to resolve) the situation where a complex Asset is added and one or more of the referenced simple Assets are unavailable. This could be particularly relevant for Modules using specialist (and therefore “subscription”) Plug-ins
Asset Manager as a “Service” creating XML files for folders

A suggestion was made in a conversation that the Asset Manager enable the setting up of a Service that checks folders (as a background task). This Service would create and maintain an XML file that contains the metadata for all files in the folders, assembled in a controlled way.

This means that the Asset Manager would only need to look at the XML file, rather than pull the data out of each Asset each time the folder is visited. The Service could be set as an “each visit to folder / scheduled background task / only when told to” option within the Asset Manager itself.

Library Browser View

[image: image27]
This means that the Asset Manager would only need to look at the XML file, rather than pull the data out of each Asset each time the folder is visited. The Service could be set as an “each visit to folder / scheduled background task / only when told to” option within the Asset Manager itself.

Possible Actions for Browser Views

Left Pane

· Navigate the Tree with all standard tools

· Contents shown as a “branch” tree structure, but need to include “leaf” nodes (used the in Asset dialog)

· Click on left to update information in right

· Right-click for a context menu of possible actions

· Image sequences shown as a single “branch”

Right Pane

· Shows content of item selected in Left Pane

· Can identify both “branch” and “leaf” elements

· Can drill into “branch” elements by double-click

· Standard Navigation tools available (up one level)

· Display contents in either “thumbnail” or “list data” modes

· Right-click for a context menu of possible actions

· Default action, action 1, action 2

· Image sequence branch can be expanded to show separate files

View Modes

Thumbnail mode

· Scrub Footage in thumbnails

· Click-hold on image, drag right to scrub forward, left to scrub backwards

· Image Sequences displayed as a single scrubbable thumbnail

· Interrogate Metadata for thumbnails, and edit it on the fly

List mode

· List view displays METADATA associated with the contents

· All Metadata columns can be resized and click-to-sort

· Option to customise the Metadata on display

· Search on Metadata

· Direct editing of Metadata

5.3.3 Features and Upgrades
Ongoing features and upgrades to the Player that will be addressed during this phase of development.
· Drag and drop support from the reel to the workspace
· Implementation of vectorscope

· Support for look up tables for colour calibration

· Multiview playback support for grading (from jplayer)

· Full support for DPX/cineon file types
· Ram usage visualization

· Random playback caching

· HDR image support

· Audio clips in timeline

· Disk array support

· Network file system support
· XML export of reels with in and out points

· Full A/B GUI interface support (drag and rotate)

· DRAC decoding

· Full native QuickTime support

· Scrub and Playback assets

· Command line support

· DirectX support

· Audio Visualisation
Phase 3 Deliverables

To ensure all development occurs as planned, a schedule of the core deliverables is detailed below:
	Deliverable
	Responsibility
	Completion Date

	Desktop design & spec
	CTO
	September 5th

	Library design & spec
	CTO
	September 5th

	Desktop implementation
	Lead developers
	September 25th

	Library implementation
	Lead developers
	September 25th

	Features and upgrades
	Development team
	October 1st

5.4 Phase 4 – Colour correction & Encoding
In this phase the focus of the application development team is on implementing a full colour correction module. This includes both GPU and CPU implementations of primary and secondary colour correction. This also includes the design and implementation of the colour correction widgets and end user experience.
For a visual representation of the colour correction module see appendix d

In this phase work will begin integrating encoding functionality. Much of this work is already in place and will require mostly user interface design work.

In addition, an initial implementation strategy and test cases required for the implementation of the OpenFX effects plug-in standard will be addressed.
Release

Phase 4 also marks a milestone in application development and includes the first of the core Jahshaka v3 application release, including desktop, library and colour correction modules. This is a core release and will be known as Jahshaka 3.0 DI since it will be limited in functionality to the needs of the DI workflow.
5.4.1 Primary Colour Correction

HSV Primary Colour Correction
HSV (Hue Saturation and Value) is a natural and common colour space to use for colour correction. Users manipulate Hue, Saturation and Value controls, which feel intuitive since HSV maps well onto human perceptual models. HSV adjustment controls can usually be set to affect the whole image (master), or just highlights, midtones or shadow tonal ranges individually. The adjustment controls are:
· Hue, Saturation
· Value (or Lightness for HSL)
· Contrast and contrast centre
· RGB gain
· Gamma
· Pedestal
· Hue Offset

[image: image28]
Primary Colour Corrector – HSV
Hue

Hue control changes the images hue without changing saturation and value. The hue of all colours in the image is rotated by the given hue angle +/-180degrees
Saturation
Saturation control controls the colour saturation or “intensity” of colour. A default value of 100 means no change. At a value of zero, all colour is removed.
Value / (Lightness (HLS))
The value control changes the value/lightness of the image without changing hue or saturation.
Contrast and Contrast Centre
Contrast and Contrast Centre controls alter the spread of image values between black and white, thus adjusting the contrast in the image. The contrast centre control adjusts the bias point for the contrast adjustment.
RGB Gain
RGB Gain control controls image brightness by performing a multiplicative gain adjustment. Lighter pixels are affected more than darker pixels. This control effectively shifts the white point of an image.
Gamma
Gamma control applies a gamma correction curve to the image, which affects middle-tones of an image without affecting the black and white point. This effectively lightens or darkens an image with limited effect on highlights and shadow.
Pedestal
Pedestal adjustment adds a fixed offset to image values. This makes an image brighter, but will lift everything, making blacks turn grey.
Hue Offset Controls
The hue offset controls allow a user to adjust hue and saturation values via a colour wheel control or directly sliders. Like most other adjustments, these are provided separately for master (the whole image), and for highlights, midtones and shadow tonal ranges separately. The centre point of the colour wheel represents no colour adjustment. The distance from the centre of the colour wheel represents the “strength” of the hue adjustment. The vector described by the hue offset control is added to each colour value in the image. Hue offset is often called “tint”.
Curves
Curves define I/O mappings for master and R G B components separately

User sets one or more control points on the curve, and adjusts curve shape by moving the control points on the GUI. Black point and White point are not changed by curves.

[image: image29]
Primary Colour Corrector - Curves Control
Levels
The levels correction tool allows the adjustment of “black point”, “white point”, and “grey point” of both the incoming image (before any correction has been applied), and the output image (just ahead of any secondary correction or illegal colour limit function) separately.

Levels correction is a mapping of image values into a different range of image values. By adjusting the black and white point sliders, you are defining the points within the black to white range which are to be considered the extremes of the range. Any pixel value which falls outside on or below the black point will be converted to black. Similarly, any pixel which falls on or above the white point will be converted to pure white. Values which fall between will be stretched so that the image contains a full range of values between black and white. Adjustment of the input image allows the range of image values present in an image to be mapped into the full range of image values possible, thus maximizing dynamic range, and preserving image detail during processing. This has the effect of maximizing contrast. If the image is not intended to have much contrast, the input levels would still typically be adjusted as described, but the output levels would also be adjusted to remap the processed image back into the desired range, thus ensuring that as much dynamic range as possible is preserved during processing.

[image: image30]
Primary Colour Corrector - Levels Controls
Ranges
Defining individual tonal ranges (“Highlights”, “Midtones” and “Shadows”)

Since colour correction will be applied to the whole image (master) or separately to each of three tonal ranges; “highlights”, “midtones” and “shadows”, a colour corrector may provide a tool to allow the user to define custom tonal ranges for each of these bands. The colour corrector will normally provide a default set of ranges that the user can adjust. The user normally adjusts only the “highlights” and “shadows” curves, and then, by definition, the “midtones” range is the remaining range. Usually this tool consists of a luminance histogram with three curves defining highlights, midtones and shadows; as shown below. Tonal range curves are adjusted using spline type “adjustment handles” on the GUI.

[image: image31]
Figure 3: Primary Colour Corrector - Ranges Control
Tools
The toolset available from the drop-down box in the Viewport
	[image: image32.png]

	Pointer

	Used for general purpose work

	[image: image33.png]

	Drag
	For pulling the picture around in the Viewport

	[image: image34.png]

	Comparison
	To implement the Comparison mode, where the left of the screen shows the image after the effect of the Colour Corrector, and the right shows the reference image.

There is a call-out to choose whether the reference image is the PRE-effect, or the image set as Reference in the GUI.

NB. When either of the Colour-pickers is active, it will override the setting of the Tool from the Viewport.
5.4.2 Features and Functionality
The following features and functionality will be available at the end of the framework release phase:

· Basic node effects

· Initial effects tree support

· Necessary for color correction effects

· Necessary to understand plugin effects

· Colour correction

· Primary and secondary colour correction

· Third party lookup tables

· CPU and GPU based models

· OpenFX plug-in standard

· Initial implementation strategy

· Test cases

· Encoding

· FFmpeg wrappers

· QuickTime wrappers

· DRAC
· Ongoing features and upgrades to the Player and application framework
· 4k support and testing

· Optimized playback on cpu and gpu

· EDL support

· XML import

· Shake integration

· Mainconcept codec integration

· HDV support

Note that ongoing development of jahplayer will affect resources and feature development needs of this phase.

Phase 4 Deliverables

To ensure all development occurs as planned, a schedule of the core deliverables is detailed below:
	Deliverable
	Responsibility
	Completion Date

	Colour correction GUI
	Qt Lead Developer
	October 10th

	Colour correction logic
	Lead Developer
	October 25th

	OpenFX review
	Lead Developers
	November 1st

	Features and upgrades
	Development team
	November 1st

	Application release
	Development team
	November 1st

5.5 Phase 5 – Compositing & Effects
In this phase the focus of the application development team is on implementing node based compositing. While the full implementation of a node based compositing system is beyond the scope of development at this point in time, the focus will be on initial node based compositing features and functionality based around the use of the OpenFX plug-ins..

In addition, the team will be focused on completing the implementation of the OpenFX plug-in standard and will be working with The Foundry to implement use side controls necessary for the full use of their plug-ins with in the application itself.

For a visual representation of the multimedia desktop see appendix e
The following features and functionality will be available at the end of the framework release phase:

· Node based compositing
· Node based GUI

· Initial scene graph support for 2D compositing
· OpenFX plug-in integration
· Implementation of OpenFX plug-in standard

· testing of OpenFX plug-in standard
· Ongoing features and upgrades to the Player and application framework

· Video IO – firewire
· Video IO – SDI (bluefish or blackmagic)

· 3D asset playback

· 3D model support and playback

· 3D playback modes
· Support for collada and fbx models

· Command line rendering

Note that ongoing development of jahplayer will affect resources and feature development needs of this phase.

Phase 5 Deliverables

To ensure all development occurs as planned, a schedule of the core deliverables is detailed below:

	Deliverable
	Responsibility
	Completion Date

	Node GUI
	Qt Lead Developer
	November 10th

	Node logic
	Lead Developer
	November 25th

	OpenFX implementation
	Lead Developers
	December 1st

	Features and upgrades
	Development team
	December 1st

5.6 Phase 6 – Editing functionality
In this phase the focus of the application development team is on implementing non linear editing. While the full implementation of editing system is beyond the scope of development at this point in time, the focus will be on initial horizontal and vertical editing engines and the implementation of real time GPU based effects.
In addition, the team will be focused on the implementation of a full encoding module necessary for the rendering and distribution of edited content.
Phase 6 also marks a milestone in application development and includes the second core Jahshaka v3 application release, including desktop, library, colour correction, compositing and editing modules.

The following features and functionality will be available at the end of the framework release phase:

· Non linear editing
· Initial support for non linear editing including both horizontal and vertical editing
· Gpu based editing effects

· Encoding
· Implementation of encoding module

· Ongoing features and upgrades to the Player and application framework

· Maya playback integration

· 3d folder render watch

· Nuke playback integration

· Fusion playback integration

· Keying (TBD)

· Tracking (TBD)
Note that ongoing development of jahplayer will affect resources and feature development needs of this phase.
Phase 6 Deliverables

To ensure all development occurs as planned, a schedule of the core deliverables is detailed below:

	Deliverable
	Responsibility
	Completion Date

	Editing GUI
	Qt Lead Developer
	December 10th

	Editing logic
	Lead Developer
	December 25th

	Encoding GUI
	Qt Lead Developer
	December 10th

	Encoding logic
	Lead Developer
	December 25th

	Application release
	Development team
	January 1st

5.7 Phase 7 – Paint & Rotoscoping

In this phase the focus of the application development team is on implementing a paint and rotoscoping system. While the full implementation of a complete paint system is beyond the scope of development at this point in time, the focus will be on the features and functionality necessary to fulfil the needs of the rotoscoping pipeline

The following features and functionality will be available at the end of the paint and rotoscoping release phase:

· Paint Module
· Initial paint module with basic tools and 32/64bit dynamic range
· Rotoscoping Tools
· Initial rotoscoping tools
· Ongoing features and upgrades to the Player and application framework

· Synchronized network playback among multiple users

Note that ongoing development of jahplayer will affect resources and feature development needs of this phase.

Phase 6 Deliverables

To ensure all development occurs as planned, a schedule of the core deliverables is detailed below:

	Deliverable
	Responsibility
	Completion Date

	Paint GUI
	Qt Lead Developer
	January 10th

	Paint logic
	Lead Developer
	January 25th

	Rotoscoping Tools
	Qt Lead Developer
	January 10th

	Rotoscoping logic
	Lead Developer
	January 25th

	Network playback
	Lead Developer
	January 25th

6 Test Approach

Test cycles and test conditions define the test model suggested for jahshaka. The diagram below represents these elements:

[image: image51.png][Timesine | Effects | Tracker [Browser || Audio | Audition

(Girvee>) (Srodons
oo) (o
[Cranges>] (1o]

e 000

sounton QB0
Lol 1050

Conrast 00
Gont. Cone 010 Pecesi 0G0

Basic Colour Corrector

Hue Offset

2

2

‘SOURGE. || RESULT || ReF
Rass | Rass | R2%S
I R
5255 | 255 | B35

Colour Match | [RGB

00 Reforence Image
RGBGan ‘000" camma-0QD [7e5et] Sengen 0G0 [ThsRefimage.pmg

]

[image: image52.png]s || :
CURRENT] 00:00:30.00 END
}—sarT 00:00:00.00 Toams
TRANSPORT CONTROLS
Q=
—our) S

7 5 / 1

[image: image53.jpg]NTSC D1 - 24fps - injection.mov 00:00:10:23

00:00:23:22] 4 4 - » » » o— 0] 9
0y ' == ' 230
BIN DISPLAY LieRARY OPTIONS DESKTOP 1 2 3 4

JAHSHAKA ; =

DESKTOP ANIMATION EFFECTS EDITING PAINT TEXT PREFERENCES PLUGINS HELP

[image: image54.png]| Basic Colour Corrector

12 2

e
= SOuRCE [RESULT | e
] (e Y e
== Gz | o [

CE W
Craner] [g

[Timesine | Effects | Tracker | Browser || Audio | Auditior

Reference Image
ThsReimage. o

[image: image55.png][Timesine | Effects | Tracker | Browser || Audio | Auditior

12 2

‘SOURGE. || RESULT || ReF
Rass | Rass | R2%S
I R
5255 | 255 | B35

Reference Image

Thiskefimage.png

[image: image56.png]PAL Graticule NTSC Graticule

[image: image57.png]Jahshaka Application Development

Timelines and core functionality

‘August Tst, 2006

0.1: Sept st 0.2 Oct Ist 0.3 Nov 1st 0.4 Dec st 0.5 jan st 0.6 feb st
JahPlayer v3
Core functionality y |reel manager encoding video i/o firewire maya player integration syncronized playback
python architecture y |drag and drop 4k support ideo ifo sdi 34 folder render watch
GUI design y [visualization - vectorscope optimized playback cpuigpu 34 model playback nuke player integration
media playback ¥ [look up tables EDL suppart 34 playback modes fusion player integration
sequence playback v |muttiview player) - grading v import
asset management v [full dpxicineon shake integration
e loader b |ram visualization mainconcept code integration
sl database support y |playback caching command line encoding
zation - histograrm y [HOR support full HOV support
zationpicker - rgb b [audio clips in timefine sync) DRAC encading
aspect ratio control b [disk amay support
b mutiview y [network flesystem support
a-+b muttiview v XML export
2k support v [afb gui interface (dragable)
multi channel preview (RGE) | . |drac decoding (bbe)
in and out points b [auicktime support
multi speed playback b [scrubiplay assets
core fle format support y [command line
EXR support v [direct x support
rarm caching v [audio visualization
packaging & installation 3
Jahshaka v3
Core functionality y |desktop asset management| [color correction 272)
python architecture y [ibrary management system color correction GUI full node based corpositing gpu efects
GUI design y |packaging & installation basic nodes (effects) 34 suport (colladalby) keying
GUI design openf support (basic) node GUI tracking
on screen bezier selection openf support (integrated) editing GUI

command line rendering

[image: image58.jpg]Tom save

JAHSHAKA

00:00:03:23 0000812

Y. W3 >N

JAHSHAKA 3 JAHSHAKA

RULES

00:00:06:23 00:00:06:23 00:00:06:23 00:00:06:23 00:00:06:23 00:00:06:23 00:00:06:23

= = g =@ =@ =®=_ =@ -

i i i i i i

‘ 00:00:00:01 m
7

M,
PRt
b d

T swE W 4 ED NTSC, NTSC D1 - 24fps

00:00:00:02 00:00:00:03

1 CLIP COPIED COLLAPSE EXPAND SHARE COPY DELETE TC/FR INFO GROUP /0 NAME LOCK SAVE UNDO REDO % LW DESKTOP 1 2 3 4

DESKTOP. ANIMATION EFFECTS EDITING PAINT TEXT PREFERENCES PLUGINS HELP

[image: image59.jpg]NTSC D1 - 24fps - injection.mov

CORRECT WARP

SUPPRESS BALANCE
MASTERS

RANGES AUTO
HIGHLIGHTS MID

ONES SHADOWS.

MODIEY PICK AREA

w3
-
[——
"
e —
BRIGHTNESS E—
e —
opaciTY |
comRECT ik
MIDTONES
30 -8
1o
/(55
WARW,
Rpp—
| KT «] - »
=0s i | i L i | (] i | i v i i | 230
aoispLAY LoRaRY ViEwopTions
pp—
HIGHLIGHTS (CONTRAST |BRIGHTNESS
20 HisTOGRAMM 4 4 P g e
MIDTONES O VECTORSGOPE
SHADOWS o waveronu
100
A A
i — e — LR, H W o
INSERT POINT. | LUT RANGE LEVELS HISTOGRAMM SURPRESS MATCH MASK RESET(home) LOCK SAVE UNDO REDO | OPTIONS | DESKTOP 1 2 3 4
DESKTOP ANIMATION errecTs EoimiNG PAINT Text

PREFERENCES PLUGINS HELP

[image: image60.png]D |TaskName [Mar06__|Apr'o6 May'06 _ [Jun'06 | Jul 06 [Aug06_ [Sep06 |Oct'06 _ [Nov'D6 |Dec6 _ [Jan'07 _ |Feb)
20127/06[13[20(27(03[10[17124(01[0815[22[29[05 11 2(18[26[03[10[17[2413107]14[21128(04/11 18 [25[02[08[16/23[30[06]13[20[27[04[11[18[25 |01 [08[15[22[29]05

7 |jahshaka2.0

2 2w -3

4 2.0rcs eol !

5 | jahshaka 3.0 architecture P—

6 framework design [

7 framework development e

8 | jahplayer3.o O ————

El core functionaliy I

0 application release player [

il maintenance release [

2 application feature release .

13 maintenanace [

14 application feature release !

15 maintenanace E

6 |jahshaka3.0 A ———

17 core functionality I

78 appliction development - desktop [

9 appliction release - color .

20 application development - effects [

21 application release - editing !

2 application development - roto/paint E

23| jahtools A ———

24 core functionality Bl

B e = g

B o T

27 jmusic [

B | nove 5

29 maintenance I

Tas EEEEE e @ E—
Split Summary P cxiemal Milestone @
Progress S Froject Summary (PESSGY Deadine L

Project jahnet_master
Date: Tue 29/08/08

Page 1

[image: image61.jpg]o

-
NTSC D1

hospital scene, take 14, 24ips :23:22 NTSC D1 sequence, take 2, 24fps

Ll « 4 - 4 » » Y} 2 Al « 4 L 4 » » Y} o)

1 1
FX OPTIONS BIN [&]

FILMFADE
CLIPA 5 frames transition
O _ |
| 4 4 4 - » » » | o [¢] 9
o 230
g8 1T o @ z A g

DESKTOP. ANIMATION EFFECTS EDITING PAINT TEXT PREFERENCES PLUGINS HELP

Figure 1. The Test Flow
Functional testing for jahshaka serves the following purposes:

· Ensures all current and new technical features perform properly prior to release

· Allows for further application feature scalability

· Provides benchmark status for application versioning and new design scope

User acceptance testing for Jahshaka 3.0 serves the following purposes:

· To confirm and accept programmatic elements into BAU service management for Application support.

· Ensure user suggested features remain relevant and successfully integrate into the current application functionality.

· To provide user/administration confidence and a channel for feedback.

6.1 Jahshaka Testing

Testing jahshaka 3.0 is required to:

· To find and correct any major application problems;

· Discover and address any application support issues;

· To find any integration issues with existing functionality and standards
· To ensure that all necessary security management is in place;

· To ensure jahshaka functionality is portable

This iterative test methodology is encompassed within the Three-Pass Testing Approach model. In this model, test cycles are developed, and represent the logical groups of test conditions that facilitate the preparation and execution of this instance of the test model. Each cycle will follow the three-pass testing approach. A single pass will be constituted by the complete execution of each test cycle.

6.2 Three-Pass Testing Approach

The three-pass approach is defined below:

Pass 1:

· All application errors reported for correction.
· All defect category 1 errors reported for resolution
· All expected processing paths followed in order to uncover all errors as early as possible

· Defect category 1 errors that mean that the cycle cannot be run in its entirety must be re-tested before this pass is considered complete.

Pass 2:

· Remaining errors identified and logged for resolution.

· This pass will regression test the fixes implemented as a result of the first pass of testing.

· The executor must have successfully run the cycle and produced correct outputs.

· It is possible that additional faults will emerge which had been masked by the more serious problems in the first pass. If this is the case, major faults must again be re-tested before the pass is considered complete.

· All defect Category 1 and 2 defects shall be closed. The only defects left untested at the completion of the second pass should be category 3 and 4 issues.

· The second pass is complete when the cycle can be executed without functional faults.

Pass 3:

· Regression test the fixes made as a result of previous passes.

· Re-test any remaining cosmetic fixes, producing a clean result.

· All remaining errors from Pass 2 resolved.

· Representative available to oversee execution of on-line test cycles.

· The third pass is complete when the cycle has been run completely without faults and producing the expected output, this is known as a clean run.

· Resolution of all errors confirmed by final review and sign-off.

6.3 Test Cycles

The Test Cycles are groupings of the test conditions. The approach is for each cycle to represent new features functionality provided by integrating into the application and functional area(s) of the Jashaka.net website. The Test cycles are as follows:

	Cycle 1
	TBD

	Cycle 2
	TBD

	Cycle 3
	TBD

	Cycle 4
	TBD

	Cycle 5
	TBD

	Cycle 6
	TBD

	Cycle 7
	TBD

Figure 2. The jahshaka 3.0 Test Cycles
The details of test requirements to be conducted within each cycle can be gathered from Appendix B and Appendix C.

6.4 Defect Reporting

When test defects are found, the testers will complete a defect report on the agreed upon defect tracking system. The defect tracking results will be accessible by testers, developers and members of the project team. When a defect has been fixed or more information is needed, the Application Team Lead will change the status of the defect to indicate the current state. Once a defect is verified as fixed by the tester (by successfully completing re-testing of the feature), the tester will close the defect report.

Features, which fail testing after at least one test cycle pass may be removed from the requirements test cycle list by the Project Manager until such time as the feature can be developed and retested successfully during the current or future development phase. In some cases the failed feature may be completely removed from the current and future deliverables, which requires approval by the CTO.

7 Appendices

7.1 Appendix A – Project Timeline

[image: image35]
7.2 Appendix B – Jahplayer Screenshot

Jahplayer is a high end media management and playback system

[image: image36]
7.3 Appendix C – desktop
The Jahshaka desktop is the main module which differentiates jahplayer form the Jahshaka application since they both share asset management and media playback functionality.

[image: image37]
7.4 Appendix D – color correction

The Jahshaka desktop is the main module which differentiates jahplayer form the Jahshaka application since they both share asset management and media playback functionality.

[image: image38]
7.5 Appendix E – compositing

The Jahshaka compositing module brings true node based compositing to the Jahshaka application architecture

[image: image39]
7.6 Appendix F – editing

The Jahshaka desktop is the main module which differentiates jahplayer form the Jahshaka application since they both share asset management and media playback functionality.

[image: image40]
7.7 Appendix G - Test Cycle Details

The following section lists summary detail of the user scenario test conditions. The summary definitions of scenarios are those that need to be tested to get as near to 100% functional requirements coverage. The conditions will act as input to the test scripts, which will provide detailed instructions to the test executor in a clear, unambiguous, and repeatable manner:

7.8 Appendix H - Defect Categorisation

	Defect Category
	Priority / Severity Definitions

	1
	Significant error, security breach, performance issue, or major deficiency in Specification that renders the whole solution inoperable, or a significant part inoperable with material business impact, with no means of providing a work around or a operationally sustainable degraded service whilst such fault persists. Testing cannot continue.

	2
	Error or documentation issue that requires significant re-work or manual intervention that would not be sustainable in an operational environment for more than 24 hours. An area of functionality preventing test scripts being run or completed.

	3
	System error or documentation issue that adversely affects operational effectiveness but does not represent a threat to the integrity or reputation of the Visual Media. A fault that does not prevent the completion of a test but does cause the failure of a specific test step.

	4
	Cosmetic error or minor documentation issue. A fault which does not cause a test to be rejected or any test step to fail.

#[image: image41][image: image42][image: image43]
Functional and UAT Testing executed

Test Scripts written

Scripts & Requirements Mapping

Conditions & Requirements Mapping

Test Cycles generated

Test Conditions generated

Requirements Mapping

Functional Specifications Signed Off

Run BACKWARDS at ¼ speed

CONTENT OF SELECTED ITEM IN TREE VIEW

View Option 1 - Thumbnails:

Shows thumbnails with Name.

Thumbnails can be “scrubbed” to view

[ImgSeq####] display as a scrubbable Thumbnail

A single footage file will display on its own

View Option 2 - List:

Metadata column view

Small thumbnail on LHS

Columns are “click to sort”

Possible to edit metadata at this point

A single footage file will display on its own

Notes:

RHS will display the usual “Up One Level” mechanism

TREE STRUCTURE

(library 1

 (Reel 1

 (Reel 2

 ([imgseq1####]

 ([imgseq2####]

 image1.png

(library 2

 (Reel 1

 (Reel 2

 ([imgseq1####]

 ([imgseq3####]

 video1.avi

- - - - - - - - - - - - - - - - -�PROJECTS�(library 1

 (Reel 1

 (Reel 2

 ([imgseq1####]

 ([imgseq3####]

 video1.avi

Run FORWARDS at ¼ speed

C++ Developer

Exit shuttling mode �(i.e. STOP)

SPACE

Python Developer

Qt Developer

Widgets

“pause shuttling”

start reverse playback at 1x speed

start forward playback at 1x speed

Qt Developer

Widgets

Lead Qt developer

Release Manager

Application team lead

Project Manager

� See the openlibraries project breakdown for more information

_1218285033.mpp

