Student projects for
Murach’s JavaScript and DOM Scripting
The projects in this document give you a chance to apply your JavaScript and DOM scripting skills to new applications. This is the true test of your skills. If you review these projects, you’ll see that they move from the simple to complex, and project 18-2 is demanding enough to challenge any programmer.

For each project, you’ll start with a folder that contains all of the files that you’ll need for developing the application. At the least, this will include the XHTML and CSS files for the application so you won’t have to write that code. In addition, the folder will contain the JavaScript files that you’ll need, although they will usually be empty or contain just a function or two. Then, your job is to write the code for the JavaScript files.

For instance, the folder named project_08_01 is the folder for project 8-1. It contains the XHTML file, the CSS file, and a JavaScript file that contains just the $ function that is used in all of the book applications. In contrast, the folder for project 12-1 contains the XHTML file, the CSS file, a JavaScript file that contains two functions that you can use, and three empty JavaScript files that you will need to write the code for.
When you start a project, you should first read its description. But then, you should review the files that are in its folder so you know what you’re going to start with. You may even want to open the XHTML file to see what it looks like in your browser. At that point, you’re ready to start developing the solution.
2Project 2-1: Area and Perimeter Calculator

3Project 7-1: Change Calculator

4Project 8-1: Table of Powers

5Project 8-2: Temperature Converter

6Project 9-1: Student Scores

7Project 10-1: Monthly Balance Calculator

8Project 11-1: Dice Roller

9Project 12-1: Monthly Balance Calculator with Validation

10Project 13-1: Vending Machine

11Project 15-1: Team Roster

12Project 16-1: Progress Bar

13Project 17-1: Sort Quarterly Report

14Project 18-1: Card Dealer

15Project 18-2: Video Poker

17Project 19-1: Contact Manager

Project 2-1: Area and Perimeter Calculator
User interface

[image: image1.png]Area and Perimeter Calculator

Enter the values below and click "Calculate”

Length: [105
Width: 2065
Area: 21682
Perimeter: |62.30
Calcuiate

Operation

· This application allows the user to enter values for the length and width of a rectangle.

· This application displays the area and perimeter of the rectangle after the user clicks on the Calculate button.

Specifications

· The formulas for calculating area and perimeter are:

area = width * length
perimeter = 2 * width + 2 * length

· This application should make sure that the user enters a positive number for the length and width.

· This application should accept decimal entries like 10.5 and 20.65 for the length and width.

· This application should round the area and perimeter to 2 decimal places.

Project 7-1: Change Calculator
User interface

[image: image2.png]Change Calculator
Enternumber of cents (099): 5 | [Calculate |

Quarters
Dimes
Nickels:
Pennies:

Operation

· This application allows the user to enter a number of cents from 0 to 99.

· This application displays the minimum number of quarters, dimes, nickels, and pennies that represent the coins that make up the specified number of cents.

Specifications

· Assume that the user will enter a valid integer for the number of cents.

Project 8-1: Table of Powers

User interface

[image: image3.png]Table of Powers

Enter an integer from 1 to 10 in the text box and click the Powers
button to see the square and cube of the numbers from 1 to the

value entered.

Operation

· The user can enter an integer and click on the Powers button to display a table of squares and cubes from 1 to the value entered by the user.

Specifications

· The formulas for calculating squares and cubes are:

square = x * x
cube = x * x * x

· Assume that the user will enter a valid integer.

Project 8-2: Temperature Converter
User interface

[image: image4.png]Convert temperature

© From Fahrenheit to Celcius
O From Celcius to Fahrenheit

Degrees Fahrenheit
Degrees Celcius

212

100

Operation

· This application allows the user to select the type of temperature conversion.

· If the user selects one of the radio buttons, this application disables the text box that’s used to display the results of the calculation, it enables the text box that’s used to get data from the user, and it removes any data from both text boxes.

· This application displays the converted temperature in the disabled text box when the user clicks on the Convert button.

Specifications

· The formula for converting temperatures from Fahrenheit to Celsius is:

c = (f-32) * 5/9

· The formula for converting temperatures from Celsius to Fahrenheit is:

f = c * 9/5 + 32

· This application should accept decimal entries like 77.5, but it should round the result of the conversion to the nearest integer value.

· This application should validate data to make sure that the user enters a valid number for the conversion.

Note

· To disable or enable a text box, you can set its disabled property to true or false.

Project 9-1: Student Scores

User interface

[image: image5.png]Student Scores

Last Name
First Name:
Seore

Student Scores

Towe, Dosg
Mazach, Joel
Mirach, Mike: 93
Steeiman, Andrea: 95

Average score
Clear Student Scores
SonBy LastName.

Operation

· This application stores the last name, first name, and score for one or more students and it calculates the average score for all of the scores that have been entered.

· When the user clicks on the Clear button, this application clears the score data from this application.

· When the user clicks on the Sort button, this application sorts the data in alphabetical order by last name.

Specifications

· The program should use one or more arrays to store the data.

· Assume that the user will enter valid data.

Project 10-1: Monthly Balance Calculator

User interface

[image: image6.png]Monthly Balance Calculator

Add Transaction

Date: [12/01/2009
Type: [Witdrawal v
Amourt

Add Transaction

Transactions

2200.00
1900.00

Starting Balance:
Total Deposits
Total Withdrawals
Ending Balance

Operation

· This application allows the user to enter deposits and withdrawals for a bank account, and it calculates and displays the deposits and withdrawals with a running balance as well as the starting balance, total deposits, total withdrawals, and ending balance.

Specifications

· Store the transactions in an array of arrays.

· Use functions to organize the code for this application.

· Assume that the account will have a starting balance of 2000.

· Assume that the user will enter valid data.

Project 11-1: Dice Roller
User interface

[image: image7.png]Dice Roller

Die1:6
Die2:6

Message: Box Cars|

Roll the Dice

Operation

· If the user clicks on the Roll button, this application rolls two six-sided dice, displays the results of each, and displays a message for some special dice roll combinations.

Specifications

· Create an object type named Die to store the data for each die. This object type should contain these constructors and methods:

var Die = function(sides) // default to a six-sided die
Die.prototype.roll = function()
Die.prototype.getValue = function()
· Create an object type named PairOfDice to store two dice. This class should refer to the two instances of the Die type and it should include these constructors and methods:

var PairOfDice = function(sides) // default to six-sided dice
PairOfDice.prototype.roll = function()
PairOfDice.prototype.getValue1 = function() // get value of die1
PairOfDice.prototype.getValue2 = function() // get value of die2
PairOfDice.prototype.getSum // get the sum of both dice

· You can use the random method of the Math class to generate a random number from 1 to the number of sides on a die.

· This application should display special messages for craps (sum of both dice is 7), snake eyes (double 1’s), and box cars (double 6’s).

Project 12-1: Monthly Balance Calculator with Validation

User interface

[image: image8.png]Monthly Balance Calculator

Add Transaction

Date Transaction date is not a valid date
Type
Amount [|Transaction amountis required

[JavaScript Application]
Transactions Please correct the errors on the page.

Starting Balance
Total Deposits
Total Withdrawals
Ending Balance:

Operation

· This project works like project 10-1, but it validates the user entries.

· This application allows the user to enter deposits and withdrawals for a bank account, and it calculates and displays the deposits and withdrawals with a running balance as well as the starting balance, total deposits, total withdrawals, and ending balance.

Specifications

· Store the transactions in an array of arrays.

· Use functions to organize the code for this application.

· Assume that the account will have a starting balance of 2,000.

· Validate all user entries:

· For the transaction date, make sure that the user enters a valid date in the mm/dd/yyyy format where the year is between 1,000 and 3,000.

· For the transaction amount, make sure that the user enters a valid number between 0 and 100,000.

Project 13-1: Vending Machine

User interface

[image: image9.png]Vending Machine

[(Doliar] (“Quarter | [Dime] [Nicke! | [Refund]

s oo

[(Coke] 1| ((Mountain Dew] [Dr.Pepper] [RootBeer] [Water |

Please enjoy your Diet Coke and take your $0.25 change

Operation

· This application simulates a vending machine that dispenses soft drinks.

· If the user clicks one of the money deposit buttons, this application adds the amount to the total deposited and updates the display.

· If the user clicks the Refund button, this application displays the amount refunded and resets the amount deposited to zero.

· If the user clicks a drink button and it is the last drink in stock, this application disables the button for that drink to indicate that it is out of stock.

· If the user clicks a drink button, but the user has not deposited enough money, this application displays how much more money needs to be deposited to purchase the drink.

· If the user clicks a drink button, and the user has deposited enough money, this application displays a message to enjoy the drink. In addition, if the user has deposited too much money, this application displays how much change is being returned.
Specifications

· The drinks cost $0.75.

· When this application is started, the vending machine has 2 of each drink in stock, and the buttons for all drinks are enabled.
Project 15-1: Team Roster

User interface

[image: image10.png]Team Roster

Team name

Add Member: [S. Palmare | [Secand Base v | [_Add |
Second Base

Right Field

Sharks

H. Perkins - Center Field
C. Cousins - Pitcher

J. Johnson - Catcher

B. Lowe - First Base
A.Licouris - Left Field
N. Shrey - Short Stop

Operation

· This application lets the user enter the batting lineup for a baseball or softball team.

· To display the team name in the roster, the user can enter a team name and click the Set button.

· To enter a player, the user can enter the player’s name in the text field, select the member’s position from the drop-down list, and click the Add button.

· If the user clicks the Reset button, the roster and form fields are cleared.

Specifications
· When this application starts or is reset, move the focus to the Team Name field.

· When the user sets the team name, move the focus to the Add Member field.

· When the user adds a team member, clear the Add Member field and move the focus back to that field.

· When the user adds a team member, remove the position from the drop-down list. For example, in the screen shot above, this application should remove the Third Base position after Palmore is added to the roster.

· Use the jslib_dom_ready.js and jslib_event.js libraries from chapter 14.
Project 16-1: Progress Bar

User interface

[image: image11.png]Progress Bar

Operation

· This application implements a progress bar.
· When the page loads, the progress bar is at 0% and the button reads “Go to 100%”.
· If the progress bar is at 0% and the user clicks on the button, this application moves the progress bar from 0% to 100%. Then, it changes the text on the button so it reads “Go to 0%”.
· If the progress bar is at 100% and the user clicks the button, this application moves the progress bar from 100% to 0%. Then, it changes the text on the button so it reads “Go to 100%”.
Specifications

· The width of the progress bar is set by CSS.

· The progress bar should be updated every 40ms. The progress bar should take approximately four seconds to go from 0% to 100%.

· When the progress is between 0% and 39%, the bar should be red. Between 40% and 79%, it should be yellow. At 80% and above, it should be green.

· Use the jslib_dom_ready.js and jslib_event.js libraries from chapter 14.
Hint

· When updating the progress bar, you’ll need to check to see if the progress bar is at its goal. If it is, the update function has finished. If it’s not, the update function moves the progress bar in the direction of the goal and then calls itself again after a short delay.
Project 17-1: Sort Quarterly Report

User interface

[image: image12.png]Sort Quarterly Report

Region

IS

Q2%

Q3%

Q4%

East

North
South
West
Totals

$1,580.00
$1,540.00
$1,130.00
$1,105.00
$5,355.00

$2,305.00
$2,010.00
$1,168.00
$4,102.00
$9,585.00

$2,710.00
$2.450.00
$1,847.00
$2,391.00
$9,398.00

$1,284,00
$1,845.00
$2,710,00
$1,576.00
$6,196.00

Operation

· This application sorts a quarterly report with a totals row.

· When the user clicks one of the sorting arrows, the rows of the table are sorted except for the header row and the totals row.

Specifications

· Add the totals row to the XHTML file.

· Use the jslib_dom_ready.js and jslib_event.js libraries from chapter 14 and the tablesort_library.js file from chapter 17.
· Modify the tablesort_library.js file to add a lastRow parameter to the constructor for the TableSort object type. When this parameter is set to false, the last row of the table is not sorted. Provide a default value of true for this parameter.

· Modify the remaining code in the tablesort_library.js file to implement the functionality of the lastRow parameter.

· Modify the report.js file to pass a value of false for the lastRow parameter to the TableSort constructor.
Project 18-1: Card Dealer

User interface

[image: image13.png]Card Dealer

Click the button to deal a new hand

Operation

· This application deals five cards from a deck of fifty-two playing cards.

· When the user clicks on the Deal button, the deck is shuffled and five cards are dealt one at a time from the deck to the next empty slot.

Specifications

· The cards should be animated from the deck to the card slot.

Hints
· When animating a card, you can use a flag to indicate that an animation is in progress. Then, other card animation functions can poll this flag and not start until the previous animation is complete.

· In part 2 of figure 15-4, you can see a polling technique that you can use when animating the deal. Here, the doScrollPoll function calls itself using a setTimeout timer until the doScroll method doesn’t throw an error. Your animation function can call itself after a delay using a timer if the previous animation hasn’t finished.
Project 18-2: Video Poker

User interface

[image: image14.png]Video Poker

Operation

· This application allows the user to play a game of video poker.

· When the page loads, the player starts with 100 credits. The player may bet from one to five credits on each hand.

· When the player clicks the Bet One button, one additional credit is bet, up to the maximum of five.

· When the player clicks the Bet Max button, the maximum bet of five credits is placed and the first five cards are dealt.

· When the player clicks the Deal button, the bet is finished and the first five cards are dealt. If the player has not placed a bet, the bet from the previous hand is used. On the first hand, the “previous bet” is a bet of one credit.

· Once the five cards are dealt, the player may click the Hold button under each card. When a card is held, a red border will appear around the card. Clicking the Hold button again releases the card and removes the red border.

· Once the player is done holding cards, he or she can click the Draw button. This will deal new cards to replace the cards that were not held.

· After the replacement cards are dealt, the type of hand is determined, a message is displayed indicating how many credits (if any) the player won, and the winnings are added to the total number of credits.

· If the player runs out of credits, a message is displayed that tells the player to reload the page to start the game again.

· The payout multiplier for each type of hand is as follows:

· Royal Flush: 800

· Straight Flush: 50

· Four of a Kind: 25

· Full House: 9

· Flush: 6

· Straight: 4

· Three of a Kind: 3

· Two Pair: 2

· Pair of Jacks or Higher: 1

For example, if the player bets 3 credits and gets three of a kind, he or she wins 9 credits.

Specifications

· The cards should be animated from the deck to the card slot.

· The poker hands can be found at http://en.wikipedia.org/wiki/List_of_poker_hands
Hints

· When determining what type of hand the player has, sort the cards in the hand by rank. Then, test for matching cards in adjacent slots. For example, if the hand is sorted before testing for four of a kind, you’ll only need to test the first four cards and the last four cards to see if they have the same rank.

· When animating a card, you can use a flag to indicate that an animation is in progress. Then, other card animation functions can poll this flag and not start until the previous animation is complete.

· In part 2 of figure 15-4, you can see a polling technique that you can use when animating the deal. Here, the doScrollPoll function calls itself using a setTimeout timer until the doScroll method doesn’t throw an error. Your animation function can call itself after a delay using a timer if the previous animation hasn’t finished.
Project 19-1: Contact Manager

User interface

[image: image15.png]Contact Manager

O —
L —
 —

[Pick Contactv|[_Edit Contact | [Delete Contact

Wame Phone Ewail

Ray Harris 919-555-1234 rayBharris.net
2: Hike Hurach 559-555-9876 mikeBurach.com

Operation

· This application implements a contact manager. The contact information is stored by the browser in a cookie.

· When the page loads, this application checks for the existence of the contact list cookie and loads the contacts if it’s present.

· If there are no contacts, the text area displays a message to that effect, and the Pick Contact select list is reduced to one option that states there are no contacts.

· If there are contacts, they are displayed in the text area. The options in the Pick Contact select list are updated to match the number of contacts.

· To add a contact, the user enters the contact information and clicks the Add button.

· To edit a contact, the user selects the contact number from the drop-down list. This loads the contact’s information into the form fields. Then, the user edits the information and clicks the Edit button.

· To delete a contact, the user selects the contact number from the drop-down list. This loads the contact’s information into the form fields. Then, the user clicks the Delete button.

· Whenever the user clicks the Add, Edit, or Delete buttons, the text area, drop-down list, and browser cookie are be updated with the modified contact list information.

Specifications

· Use one object type to store a contact and another object type to store a contact list.

· Store the contact list cookie for one year.

· When this application starts, move the focus to the first form field.

· Whenever the user clicks the Add, Edit, or Delete buttons, clear the form fields and move the focus to the first form field.

· Use 25 characters for the Name field and 12 characters for the Phone field with two spaces between each field.
Hints

· Don’t forget to escape data before storing it in a cookie. And don’t forget to unescape it when extracting it from the cookie.

· The data will need to be escaped (and unescaped twice). Once to escape the individual contact information and a second time to escape the list as a whole.

· To format the data for the text area, you can use a padLeft and padRight function as described in chapter 11.

1

