CS 30 Lab 5 — Higher-Order Procedures

This lab gives you more practice with higher-order procedures. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. Copy the Labs/Lab05 folder from the CS 30 class folder to your Userspace or Desktop. In this folder you will find the file svnums.scm, which contains the code for checking self-verifying numbers discussed in today's lecture. Read the first few paragraphs of Section 5.4 (pages 120-122) of Concrete Abstractions for a general overview of self-verifying numbers.

All that is different between a credit card number and a Universal Product Code (UPC) number, or between an ISBN book number and a money order serial number, is the specific function f and the divisor m. For example, ISBN numbers use a divisor of 11 and the function is simply f(i, di) = i * di, where i refers to the ith digit position (counting from the right) and di is the actual digit in that position. Actually, ISBN numbers sometimes use an extra digit X, which is interpreted as the value 10.

2. svnums.scm contains three versions of verify-isbn, which can be used to check whether an ISBN number is valid when given a list of its digits. Notice that the second version uses a let expression to give names to the digit function f and the divisor m. This version is equivalent to version 1, but is closer in spirit to version 3. Study all three versions until you understand how they work, then test them out in Scheme with some real ISBN numbers.

3. Other kinds of numbers use slightly more complicated functions, but you can still create a verifier for each kind of number using make-verifier. For example, for UPC codes (the barcodes on grocery items), the divisor is 10 and the function f(i, di) is equal to di itself when i is odd, or to 3di when i is even. Build a verifier for UPC codes using make-verifier, and test it out on the barcodes on the back of your textbooks. (The UPC number consists of all of the digits underneath the bars, including the one to the left.) Try making some mistakes, like switching or changing digits. Does your verifier catch them?

4. Credit card numbers also use a divisor of 10 and also use a function that yields di itself when i is odd. However, when i is even, the function is a bit fancier: It is 2di if di < 5, and 2di + 1 if di > 5. Build a verifier for credit card numbers using make-verifier, and test it out on some real credit cards. Is the number 6011302631452178 a valid credit card number?

5. The serial number on U.S. postal money orders is self-verifying with a divisor of 9 and a very simple function: f(i, di) = di, with only one exception: f(1, d1) = -d1. Build a verifier for these numbers, and find out which of these two money orders is mistyped: 48077469777 or 48077462766.

Actually, both of those money orders were mistyped. In one case the error was that a 0 was replaced by a 7, and in the other case two digits were reversed. Can you figure out which kind of error got caught and which didn't? Does this help explain why the other kinds of numbers use fancier functions?

 (continued on back)
6. Write a function called make-function-with-exception that takes two values x and y and a one-argument function f, and returns a new function that has the same behavior as f except when given the special value x. In that case the new function should return y instead. For example, we could define the function usually-sqrt as follows:

(define usually-sqrt
 (make-function-with-exception 2 'sorry-out-of-order sqrt))

(usually-sqrt 16) => 4
(usually-sqrt 10) => 3.1622776601683795
(usually-sqrt 2) => sorry-out-of-order

7. Write a function called make-averager which takes two one-argument functions f and g and creates a new function that takes some input value x and returns the average of f(x) and g(x). For example:

(define double (lambda (n) (* n 2)))
(define square (lambda (n) (* n n)))
(define averager (make-averager double square))

(averager 4) => 12
(averager 6) => 24

In the first example, averager returned 12 because 12 is the average of 8 (the double of 4) and 16 (the square of 4). In the second example, it returned 24 because 24 is the average of 12 (the double of 6) and 36 (the square of 6).

8. The file compose.scm contains the definition of compose from lecture. Suppose we wish to compose more than two functions. The function compose-all will do this for us, if we give it a list of functions to compose. For example:

(define double (lambda (n) (* n 2)))
(define square (lambda (n) (* n n)))
(define add1 (lambda (n) (+ n 1)))

(define bigfun (compose-all (list add1 square double)))
(bigfun 3) => 37

(define morefun (compose-all (list double add1 square)))
(morefun 3) => 20

Write the function compose-all. HINT: If given an empty list, compose-all should return the identity function, which simply returns whatever it is given: (lambda (x) x). If the list is not empty, compose-all should use compose as a helping function.

