PAGE  
51

Lecture 1: Introduction (Sept 7)
Depending on enrollment, discuss pre-requisites, etc.  (201, 202, 223)
Mention YalMusT lab and CS Music Lab (307a).  Our PC’s will have:
1. Ozonic keyboard / midi controller

2. Edirol Sound Modules

3. Amplifiers, headphones, foot pedal, etc.

4. CuBase digital audio software

5. Haskore/HasSound/csound.

6. Other software goodies.

The intent is that these will be open platforms on which we can install new software that might be needed, for example, for a student’s project.

Discuss Kathryn Alexander’s technology sequence in the Music Dept (CS295 and CS390) and how it differs from what we’re going to do.

Mention textbook and other resources.

Discuss Haskore and HasSound.

Course structure: Readings, homework assignments (some programming, some math), final project (no mid-term of final exam).  For project:

1. Can be a software tool (e.g. a graphical front-end to HasSound).

2. Can be algorithmic composition of some sort.

3. Can be a novel synthesis method / algorithm / whatever.

If you generate some music, put in as much artistic effort as you can – we want it to sound good!  And I’d like to have a concert during exam week.  But there should be CS content too, o/w it’s hard to justify as a CS course…
Today:  A broad overview of computer music research (quite large), with asterisks on what we will focus on, because either (a) I know it better than other stuff, or (b) it’s stuff I want to learn!
What is sound?
(Digital Audio: Representations of sound in a computer)

Digitization

Nyquist sampling theorem

Alisasing, filtering, etc.

File formats (.aiff, .wav, .snd, .mp3, etc)

Compression

What is music?
(Representations of music in a computer)

Scales, chords, etc

MIDI, MusiXML, etc

Non-standard representations


Computer music languages

What makes a clarinet sound like a clarinet?
(Spectrum analysis)

Fourier Transform and FFT


Wavelets


Time-varying analysis

What makes Mozart sound like Mozart?

(Music analysis)


Statistical modeling


Machine learning

Conventional analysis (Schenkerian, etc.)
How do we create an artificial clarinet? (or piano, or clari-phone, or saxa-net…)

(Synthesis)

Additive synthesis


Subtractive synthesis


FM synthesis


Granular synthesis


Physical modeling


Acoustics (reverberation, etc)

How do we create artificial music?

(Algorithmic music)

Chaos and fractals


Probabilistic methods (Cope, “recombinant music”, EMI)

Ad-hoc algorithms


Music-theory-based algorithms (e.g. species counterpoint)

AI techniques


Soundscape vs. discrete


Simulating performance (articulation, etc)
-- for existing or computer-generated compositions

Automatic accompaniment


Improvisation (whether real-time or not)

Miscellany


Electronic interfaces (including conducting)

Real-time issues in performance


Music information retrieval (cataloguing and searching music) 

-- see songtapper.com

Notation (reading scores, printing, editing, etc)


Sampling techniques

Rough Syllabus:
1. Digital Audio

2. Synthesis (HasSound and csound)

3. Music representation

4. Algorithmic Music (Haskore and MAX/MSP)

Homework Assignment:
1. Send email to Paul (Hai) Liu (hai.liu@yale.edu) to inform him of your intent to take the course.  Mention Grad or Undergrad

2. Read Chapter 1 in Roads
Software installation instructions will be sent out shortly.

Lecture 2 (Sept 12)

What is Sound, and Digital Audio, from:

· Chapter 2 of the text, and

· Link to Blair School of Music (BSoM):
www.ec.vanderbilt.edu/computermusic/musc216site
Before looking at digital sound, it’s important that we know what sound is, and the general phenomenon of acoustics.
Physically, sound is the compression and relaxation of air waves.  It is different from waves in water, or a rope, but more like the waves in a coiled spring.

[see BSoM animations at
http://www.ec.vanderbilt.edu/computermusic/musc216site/what.is.sound.html]
If the rate and amplitude are suitable, we can hear the sound – i.e. audible sound.  “Hearing” results when the vibrating air waves cause our ear drum to vibrate, in turn stimulating nerves that enter our brain.  Sound above oour hearing range is called ultrasonic, and below is called infrasonic.
Staying within the analog world, sound can also be turned into an electrical signal using a microphone.  Several common kinds:
1. Carbon mic – based on resistance.
2. Condenser mic – based on capacitance.
3. Dynamic mic – based on inductance (the reverse of a speaker).
4. Ribbon mic – variation of dynamic mic.
5. Piezoelectric mic – based on property of certain crystals to induce current when they are bent.
Indeed, the most natural way to draw sound is the same as for an electrical signal – i.e. as a graph of amplitude vs. time.
[see BSoM animation]

Acoustics: the study of the properties of, in particular the propagation of, sound.

(By the way, sound travels at 1100 ft. per second, or ~760 miles per hour.)
Psychoacoustics: the study of the mind’s interpretation of sound.

(Chapter 23 in the text is about psychoacoustics.)

Since music depends critically on psychoacoustics, it is an important aspect of our studies.  With respect to music, sound has three key properties:
1. Frequency (perceived as pitch).

2. Amplitude (perceived as loudness).

3. Spectrum (perceived as timbre).

Frequency is simply the rate of repetitions, and is the inverse of the duration:

f = 1/d

The duration is also called the wavelength.  Frequency is measured in Hertz, where one Hertz is 1 cycle per second.  A sine wave sin(t) has duration 2π and frequency 1/(2π).  But it’s easier to do things this way:
signal(t) = sin(2πft)

where f is the frequency.  Alternative, we can use radians for frequency, and write sin(ωt) instead.
Amplitude can be measured in several ways.  The peak amplitude of a sine wave is obvious.  But many other signals have more or less “energy” [draw picture], and thus engineers often refer to the root-mean-square amplitude, or RMS.  The root-mean-square is the square root of the mean squared values of a variate x:
	[image: image1.png]



	[image: image2.png]



	[image: image3.png]&




	(1) 

	[image: image4.png]



	[image: image5.png]



	[image: image6.png]0
B
for discrete distribution

[Pddx
[Pwdx

for & continuous distribution.




	(2) 


For a sine wave, the RMS values work out to be .707 of the peak.
Dynamic range: the difference between the smallest and largest values that a system can process / produce.  Because this range is often very large, it is usually measured in decibels:

decibels = 10 * log10 (level / reference-level)

The ear has a truly remarkable dynamic range – see Figure 1.22 in text.  The reference level for the ear is 10-12 watts per square meter, which is the threshold for hearing.
[draw on board pieces of the diagram]

Note that if you double the absolute level, the decibels increase about 3 dB.  A million-fold increase corresponds to 60 dB.  So the ear is truly adaptive.
(The eye is also adaptive, but not quite as much, and is much slower.)

This all relates to the Weber-Fechner Law, which states that the just noticeable difference (jnd) in a quantity – i.e. the minimal change necessary for humans to notice – is a relative constant.  That is, the ratio of the change to the absolute measure of that quantity is constant:

Δq / q = k

Loudness is the perceived measure of amplitude, or volume, and is thus subjective.  It is most closely aligned with RMS amplitude, with one important exception: loudness depends somewhat on frequency!  Of course that’s obvious for really high and really low frequencies (since at some point we can’t hear them at all), but in between things aren’t constant.
[see Fletcher-Munson Equal Loudness Contour:

http://www2.sfu.ca/sonic-studio/handbook/Equal_Loudness_Contours.html]
Humans can hear, at best, 20 Hertz to 20,000 Hertz (above and below that is called ultrasonic and infrasonic, resp.).  This is a dynamic range in frequency of a factor of 1000, or 30 dB.  Different people can hear different degrees of this range (I can hear very low tones, but not very high tones; cell phone ringers in classrooms).  On a piano:
Lowest note: 27.5 Hz

Middle (concert) A: 440 Hz

Top C: ~4 kHz

Phase is important too, and comes into play when we start mixing signals together, which can happen deliberately, or from reverberations (room acoustics).  Have you heard the phrase phase distortion?

We can add phase mathematically easily: sin(ωt + Φ), where Φ is the phase angle.  This can result in “beating” and other effects, ultimately resulting in additive synthesis and amplitude modulation.
[see BSoM animations]

Finally, let’s talk about the sound spectrum, or the spectral content of a sound.  If we have a regular repetitive sound we can plot its spectral content instead of its time-varying graph.  For a pure sine wave, this looks like an impulse function. [draw picture]
But for a more complex sound, it gets more complicated.  First, the distribution of the energy is not an impulse [draw picture; pulse widens].
But also, a typical sound has many different frequencies associated with it.  For an instrument playing a single note, this will include not just the fundamental, but also the harmonics (or partials or overtones) [draw picture].

The natural harmonic series is one that is approximated often in nature, and has an exponentially increasing attenuation of the overtones. [see BSoM]
What’s more, the articulation of a note on an instrument causes these overtones to vary in relative size over time.  A three dimensional graph is helpful in visualizing this.
[see BSoM pictures at http://www.ec.vanderbilt.edu/computermusic/musc216site/spectrum.html]
This also relates to the envelope that “shapes” a sound. [see BSoM]
Lecture 3 (Sept 14)

Digital Audio

We now turn to the digitization process, and representing sounds in a computer.
Draw basic block diagram: mic, ADC, computer, DAC, amplifier, and speakers.

A key issue is the sampling rate of the digitization process.  Consider a sine wave.  Intuitively, it seems that we need to sample at a rate higher than that of the sine wave. [picture showing what happens if we sample at exactly the same rate]  Indeed, intuition tells that perhaps we should sample at least twice the frequency of the sine wave. [picture]  This is captured formally in Nyquist’s Sampling Theorm, which I state here informally:
The accurate reproduction of an analog signal (no matter how
complicated) requires a sampling rate no higher than twice the
highest frequency in the signal.

For example, with respect to audio signals, if the highest frequency humans can hear is 20 kHz, then we need to sample at no more than 40 kHz to get a faithful reproduction of any audible sound.  In fact, CD’s are recorded at 44.1 kHz.  But note: many people feel that this rate is too low, as some people can hear beyond 20 kHz.  Also note: analog tape recorders from generations ago did better!
Aliasing

What happens if we sample at a rate less than half the highest frequency in a signal?  For simplicity, let’s consider a sine wave.  If we sample at half its frequency, we can reproduce it exactly. [picture]  If we sample it at exactly its frequency, we get zero Hz.  What happens in between?  Consider a sampling rate ever-so-slightly higher or lower than the sine wave’s frequency – it will result in a very low frequency. [see figure 1.16 in text]

[Analogy: spinning objects under fluorescent or LED light, or old motion pictures of horse-drawn carts.]
This suggests the following.  Suppose m is one-half the sampling rate. Then:

0-m

(
0-m

m-2m

(
m-0

2m-3m
(
0-m

and so on.  This is called aliasing or foldover of the signal onto itself.

This is not good!  (Why?  Talk about recording from a mic, but also about synthesis.)
How can we fix this?  Answer: add a low-pass filter in front of the ADC – usually called an anti-aliasing filter.  In practice, this can be tricky.  In particular, a steep analog filter introduces phase distortion (i.e. frequency-dependent time delays), and early digital recordings were notorious in the “harsh sound” that resulted.  This can be fixed by using a filter with less steepness (but resulting in more aliasing), or using a time correlation filter to compensate, or – use oversampling.
Smoothing

A similar problem occurs on the other end of our process – i.e. the reconstruction of an analog signal from a digital signal using a DAC.  Mathematically, our representation is a stepwise approximation of the real signal (see Fig 1.14).  At the highest frequency (i.e. ½ the sampling rate), we get a square wave.  But remember that a square wave is, mathematically, the sum of an infinite sequence of the odd harmonics.  These harmonics can cause problems in an analog system (or in a dog’s ear), so usually another low-pass filter, called an anti-imaging or smoothing filter is added on the output.  In effect, this filter “connects the dots” – the signal in Fig 1.14 is smoothed out, and the square wave turns into a sine wave.
Quantization

In terms of amplitude, remember that we are using digital numbers to represent an analog signal.  For CD’s, 16 bits of precision are used.  If we were to compute and then “listen to” the round-off errors that are induced, we would hear “noise”.  [See Fig 1.18]  This is called quantization error.
One might compare this to “hiss” on a tape recorder, but there are differences: when there’s no music, there’s no quantization error, but there’s still hiss.  When the signal is very low and regular, the quantization error becomes predictable, and audible as something other than noise; it’s only when the signal is loud and complex that quantization compares favorably to tape hiss.

One solution: introduce dither! [explain]

Dynamic Range
What is the dynamic range of an n-bit digital system?  What should the denominator in the equation given earlier be, i.e. the reference level?  The smallest non-zero signal is 1, so perhaps the dynamic range should be:

 10 log10 (2n) = 10n log10 (2) = 10n (.3) = 3n
(The text says 6n, and I’m not sure why… I will find out and get back to you.)
In any case, a 16-bit system results in a dynamic range of 96 dB, which is pretty good, although a 20-bit system yields 120 dB, corresponding to the range of the human ear.

Oversampling

Oversampling is a simple “trick” that improves dynamic range as well as anti-aliasing.  The idea is to interpolate between digital samples.  This became popular in early CD players.
More recently so-called “1-bit oversampling” has become popular.  The idea here is to represent signals using a single bit of quantization, but sample at a much higher rate.  This trade-off in “information content” is well-known mathematically, and in practice it greatly simplifies the anti-aliasing problem, because the filter that is needed can be far less steep (since the higher rate takes us way out of the audible range).
Fourier / Spectrum Analysis

The Appendix is a really good tutorial on Fourier Analysis and the FFT.  However, I don’t plan to cover it in any detail.  Here are some key things to get out of it:

Recall that a sine wave can be represented by:  r sin(ωt + φ), where r is the amplitude, ω is the frequency, t is time, and φ is the phase angle.  But the sine of a sum can be decomposed:

r sin(ωt + φ)   =   A sin(ωt) + B sin(ωt)

for a suitable A and B.  It can also be expressed as a complex exponential, known as Euler’s Relation:
ejθ = cos(θ) + j sin(θ)

cos(θ) = ½ (ejθ + e-jθ)
Fourier showed this amazing result:  Any periodic signal with period T can be represented exactly as:


      inf
X(t) = C0 + Σ Cn cos(n ω0t + θn)


     n=1

where ω0 is 2 π / T, i.e. the fundamental frequency.  This is called the Fourier series.  Note that this equation is the basis of additive synthesis – indeed, it is sometimes called Fourier synthesis.
The trick, of course, is determining what C0, Cn, and θn are – in particular, the Cn -- and that’s exactly what Fourier Analysis does!
For a signal x(t), its Fourier Transform is denoted X(f).  Each point is a complex number that represents the magnitude and phase of that frequency’s presence in x(t).  Figure A.6 shows the magnitude of X(t) for a particular signal.  The formular for X(f) is surprisingly simple:

X(f) = int  x(t) e-jwt dt
(the integral is from –infinity to infinity)  Intuitively, the FT at any particular frequency f is the integral of the product of the signal and a pure tone e-jwt – this latter process is often called convolution of the two signals.  Intuitively, this result will be non-zero when the signal has some content of that pure tone in it.

The rest of the chapter is a discussion of how to do this in the discrete domain (DFT), and how to do it fast (the FFT).  The DFT can be written:
           N-1

X[k] = sum  x[n]WNnk
           n=0
where WN is the complex exponential e-j(2π/N).  So, each element of X is a vector-vector multiplication, and the whole thing is a vector-matrix multiplication, which has complexity O(N2).  FFT is simply a fast way to do this – the complexity is reduced to O(N log N).

Of course, when moving into the discrete domain, the problems we mentioned earlier come into play, and result, for example, in “windowing” effects.  See the text for more detail.

[show on-line demo of FFT]

Lecture 4 (Sept 19)

[Show the course web-page:  Show assignment 1, then go the “readings” and use it to guide the following discussion.]

We’re going to move on now to programming languages targeted for computer music.  There are a ton of such languages.  We are going to study in detail Haskore and HasSound, which are Haskell libraries (DSL’s) for music composition and sound synthesis, respectively.  But we will also look at, in less detail, MAX/MSP and Nyquist.
In order to learn Haskore and HasSound, we first need to learn Haskell.  So after a brief intro to the music / instrument dichotomy, today’s lecture will be on Haskell.  Suggested reading: SOE, Gentle Intro, YAHT.
Haskell

There are several distinguishing features of Haskell:

· Purely functional (effects via monads).

· Typeful (modularity through type classes).

· Lazy (call-by-need evaluation).

· Higher-order (in values and types).

All of these features will help us in writing computer music programs.

I am going to assume that you all are seasoned programmers…

Variables

Variables in Haskell are best thought of as variables in mathematics -- or names, or identifiers – rather than as variables in conventional imperative languages.  In particular, the program fragment:
x = 42

is not the “assignment” of 42 to x, rather it is a “declaration” that x is 42, or x denotes 42.   That means that in scope of x, x always has the value 42, and cannot be changed.
Types

Types are a key idea in Haskell, and need to be embraced – they are a Good Thing.  Type signatures are to be encouraged:

x :: Integer

x = 42

Another common data type in Haskell is the list.  E.g.:
xs  ::  [Integer]

xs = [0,1,2]

The square-bracket syntax for lists is just shorthand for:

0 : (1 : (2 : [])),
or just

0:1:2:[]

In other words, (:) is like Lisp’s “cons”, and [] is like “nil”.

Another important built-in type in Haskell is the tuple:

p :: (Integer, Float)

p = (42, 42.0)

The elements in a list must all have the same type, but the list can be arbitrarily long (even infinite).  The elements in a tuple can be of different types, but the tuple size/structure is fixed.

Functions

Functions are defined via equations.  E.g.:

succ :: Integer -> Integer

succ n = n+1

head :: [Integer] -> Integer

head (x:xs) 
= x

head []
= error “can’t take head of empty list”

Note in the latter example the use of pattern-matching.  This can be done not only for the built-in type of lists, but also for user-defined data types.

Functions can also be polymorphic.  For example, head doesn’t really care about the type of its elements.  So we could write instead:


head :: [a] -> a

head (x:xs) = x

head [] = error “…”

New data types
We can give a new name to an existing type using a type synonym.  E.g.:

type IntList = [ Integer ]

Very common to do things like:

type Duration = Float

type Octave = Integer

But we may wish to introduce a new data type.  For example:

data PitchClass = Cf | C | Cs | Df | D | Ds | … | Bf | B | Bs

Now we can define:

type Pitch = (PitchClass, Octave)
Note on capitalization:  Type constructors (including nullary) and data constructors must be capitalized.  Variables must not be capitalized.
Recursive types

Haskell’s built-in lists are isomorphic to:

data List a = Cons a (List a) | Nil

Note that this is recursive, as well as polymorphic.  Also note that Cons is a data constructor, whereas List is a type constructor (this can be confusing).  Another choice of syntax might have been:

data List a where


Cons :: a -> List a -> List a


Nil :: List a

This is perhaps clearer, although less concise.

Here is a more relevant example:
data Music 
= Note Pitch Duration

-- a single note


 | Rest Duration


-- a rest


 | Music :+: Music


-- sequential composition


 | Music :=: Music


-- parallel composition


 | Tempo (Ratio Integer) Music
-- tempo scaling


 | Transpose Integer Music

-- transposition
This is an overly simplified version of Haskore’s Music type (it’s also a simplified version of SOE’s MDL).  Ratio Integer is basically the type of rational numbers.

Work through examples of SOE, Chapter 20 (MDL):  AbsPitch, absPitch, pitch, and trans.  Explain case, !!, etc.
Lecture 5 (Sept 21)

Mention two corrections to HW assignment.

Review:  type syns, data decls (polymorphic and recursive) – now also mention:

· type classes and deriving clauses (Show and Eq).

· list comprehensions

Analogous to real-estate joke:  The three most important ideas in programming are abstraction, abstraction, and abstraction.  Here’s a simple example.  Recall that the note E-flat in the 4th octave can be written as:

Note (Ef, 4) (1/4)

We can give names to durations, wn, qn, en, etc:
Note (Ef, 4) qn

But we can also “abstract out” the Note and (_,_) stuff (which is the “repeating pattern”):

ef oct dur = Note (Ef, 4) dur

and thus instead “Note (Ef, 4) qn” we can just write “ef 4 qn” instead.
Higher-order functions

A key feature in Haskell (one that I would most hate to lose), is the higher-order function.   It is based, first of all, on the idea that functions are first-class values.  Following the lead of the previous example, a list of the notes in the cMaj triad can be written:
cMaj = [ n 4 qn | n <- [c,e,g] ]

Note that n ranges over functions.

But a more important thing about higher-order functions is that they provide a powerful way to perform abstraction.  For example:

decAbsPitches :: [AbsPitch] -> [AbsPitch}

decAbsPitches (ap:aps)
= (ap-1) : incPitches aps

decAbsPitches []

= []

octIncPitches :: [Pitch] -> [Pitch]

octIncPitches (p:ps)
= (head p, tail p+1) : octIncPitches ps

(octIncPitches ((pc,oct):ps)
= (pc,oct+1) : octIncPitches ps)
octIncPitches []

= []

There is a “repeating pattern” here.  We can abstract out this repeating pattern, as follows:  Underline the things that are different in the above, and make these parameters to a new function that we call map:
map f (x:xs)
= f x : map f xs

map f []
= []

Now we can rewrite the above functions as:

decAbsPitches aps
= map dec aps


where dec ap = ap-1

octIncPitches ps
= map incOct ps


where incOct (pc,oct) = (pc,oct+1)

Now explain currying, and drop the aps and ps above.
Then explain sections (as a variation of currying) and drop the dec above.

Then explain lambda abstractions and drop the incOct above.

Which yields:

decAbsPitches
= map (-1) 

octIncPitches

= map (\(pc,oct) = (pc,oct+1))

Similarly, motivate fold by summing and multiplying all elements in a list (see page 65).  Underline the changing code, and parameterize, yielding fold.  Point out that there are two kinds of fold, one from the left, and one from the right (see page 67-68).

Musical examples:
· line and chord from page 293 (plus cMaj arpeggio and chord examples).
· delay and repeat from page 293 (point out that it is infinite!).
· dur and rev from page 295 (work through these interactively).
Lecture 6 (Sept 26)

The Note / Instrument Dichotomy
Originally Haskore generated MIDI files.  But involvement with Tom Makucevich caused me to write a back-end for csound as well.

A long line of computer music languages that began with a language called Music IV by Max Matthews (a pioneer in CM research) at Bell Labs in 1963, divided a computer music program into two parts: an orchestra file, which describes instruments, and a score file, which describes the playing of the instruments.  csound (1986) is based on this idea (.orc and .sco  files, resp.), and so is Haskore, where a Haskore program generates a score file, and a HasSound program generates an orchestra file.  MIDI can be seen as a format for expressing score files, using a fixed notion of an orchstra.

[draw picture of Haskore, HasSound, csound, MIDI player, sound file player, orc files, sco files, MIDI files, and sound files]

[Give demo of Haskore and HasSound using Example.Miscellaneous and Interface.CSound.Tutorial.]

Explain the file and data type naming conventions used in darcs Haskore, as explained by Henning:

In the style of Modula-3, I define one data type or one type class per module. The module is named after the implemented type or class. Then a type is named T, and a type class C. I use them qualified, e.g. Music.T or Collection.C. Similarly, if a type has only one constructor then I call it Cons and use it qualified MidiFile.Cons. This style also answers the annoying question whether the module name should be in singular or plural form: Always choose singular form! 

[In addition,] many functions can be considered as conversions. So I define functions like Music.toMIDI and Music.fromMIDI and use it in this qualified form. This way I can import all modules qualified, avoiding name clashes and I can provide a consistent naming through all modules. 

The big question remains: In which module shall the conversions reside? Translated to our example: Shall it be Music.toMIDI or MIDI.fromMusic? I suggest the following: Find out which module is the general one, and which is the more specific one. I consider the more specific module as an extension to the general module. When you write a general module you cannot predict all possible extensions. That's why you should put all conversions into the extension modules. How to find out which module is more specific? Imagine module A and module B still don't contain any conversion routine between A.T and B.T. If module B imports A, then B is the more specific one. Put all conversions between A and B into B. If module A and B are mutually recursive or don't import each other, then rethink if one or the other is the more specific one. If they are on the same level of generality you may add a new module dedicated to conversion between A.T and B.T. 

Lecture 7 (Sept 28)
Digital Sound Synthesis and HasSound

A unit generator is the (mostly historical) name given to small signal processing units such as oscillators, filters, amplifiers, and so on.
These can be wired together to form what are called patches (which historically come from the use of “patch cords” to wire together analog oscillators, filters, and so on).
But in HasSound we use the more modern phrase signal.  The HasSound data type that describes a signal is a SigExp (i.e. signal expression).
When signals (patches) describe a complete sound they are called instruments.  
[ Historically, this general approach to sound synthesis goes back to Max Mathews’ Music III language in 1960.  The culmination of his work was Music V in 1968, but most language since then adopted the same idea, including csound, and thus by default, Haskore and HasSound. ]
Wave Tables

One odd thing about the way csound does things (not sure if this is different from the previous “Music N” languages), is that the wave tables are placed in the score file, not the orchestra file.  Haskore/HasSound does not distinguish between the “files”, but there is still a funny disconnect between the two:
> pureToneTN :: Score.Table

> pureToneTN = 1

> pureToneTable :: SigExp

> pureToneTable = tableNumber pureToneTN
The above is our first example of a signal expression, but note that all it does is reference a table number – this is the funny disconnect mentioned above.  The table itself is created as follows:
> pureTone :: Score.Statement

> pureTone = Score.Table pureToneTN 0 8192 True (compSine1 [1.0])
But note that it is “in the score file”.  0 is the start time, 8192 is the number of samples, True is to normalize it, and compSine1 is a “generator routine” from csound, which in this case takes a list of amplitudes of the overtones.

Although pureToneTable is a SigExp, it’s not yet a signal that we would want to output, because we need to cycle through the table in an appropriate way to actually generate a sound.  We do this as follows:

> oscPure :: SigExp -> SigExp -> SigExp

> oscPure = osc AR pureToneTable
osc is curried here:  It takes a rate AR (which designates audio rate, which is usually 44.1kHz), and a wave table as arguments.  That in turn returns a function that takes two other SigExps, one for the amplitude and one for the pitch.

[ Show Figure 3.5 on page 96 in text. ]

Besides compSine1, other things are possible: see CSound.Score.lhs, as well as CSound.Generator.lhs

[ show the code ]

A small diversion, from Chapter 3, “Fixed-Waveform Table-Lookup Synthesis”:
The above table contains 8196 samples.  If the sample rate is 44.1kHz, how do we generate a tone of, say, 440Hz?  In general, if we let:

L  = table length

f = resulting frequency

i = indexing increment

s = sample rate

then we have:
f = i*s / L

So, plugging in the numbers and solving the above equation for i, we get:

440 = i * 44.1kHz / 8196

i = 440 * 8196 / 44.1kHz = 81.77

Let’s call the exact index into a continuous signal the phase, and the index into the corresponding table the phase index.  So the computation for successive values of the output goes something like this:


new_phase = mod_L (old_phase + i)

output = amplitude * wavetable [round (new_phase)]

Note: We can do better by doing a linear interpolation between values in the table, but I will omit the details.
Back to the example:

With this setup we can finally create a full (monophonic) sound:

> oe1 :: Mono

> oe1 = let signal = oscPure (dbToAmp noteVel) (pchToHz notePit)

>       in  Mono signal

noteVel and notePit are essentially “globals” that refer to the volume and pitch.

This can be further packaged into an instrument and orchestra file, as follows:
> hdr = (44100, 4410)
> o1 = let i = (instrNum1, OutFunc0 oe1)

>      in  (hdr, [i])

This is the basis of “tut1” in the Tutorial.
Start showing the code for the following:

· tut2: adds two overtones via:   …  compSine1 [1.0, 0.66, 0.33]  …
· tut3: uses compSine3; also an envelope, so introduce distinction between AR and CR here, and show graphical version.
· tut4: uses envelopes on individual sines to control time-varying spectrum.

· tut5: uses cubic spline, pfields, Stereo, and simple amplitude modulation; show graphical version.  Note:
cos(c)*cos(m) = 0.5 * ( cos(c-m) + cos(c+m) )

· Skip tut6.

· tut7: amplitude modulation; point out vertical shifting of sine wave; show graphical version.

· tut8: frequency modulation.
Lecture 8 (Oct 3)
Mostly from Chapter 6 in the text.  Point out that the mathematics behind synthesis techniques can help the computer musical instrument designer.
Amplitude Modulation (AM) 
AM can be summarized by this trigonometric identity:

cos(C) * cos(M) = 0.5 * (cos(C-M) + cos (C+M))

This demonstrates that AM is really just additive synthesis!  This can be implemented using UG’s in several ways (draw Figs 6.2a and 6.2b, as well as the RHS of the above equation).  Note the following:

· Since multiplication is commutative, the following is also true:


cos(C) * cos(M) = 0.5 * (cos(M-C) + cos (M+C))

which works because cos(t) = cos(-t).

· Scaling the modulating frequency or carrier just scales the entire signal, since multiplication is associative.

· Adding a third modulating frequency yields the following:

cos(C) * cos(M1) * cos(M2) = (0.5 * (cos(C-M1) + cos (C+M1))) * cos(M2)

= 0.5 * (cos(C-M1)*cos(M2) + cos (C+M1)*cos(M2))

= 0.25 * (cos(C-M1-M2) + cos(C-M1+M2) + 


    cos(C+M1-M2) + cos(C+M1+M2))

Generally, combining n signals using AM results in 2n-1 signals (why not 2n?).
Chapter 6 actually refers to the above as ring modulation, since it is the multiplication of two bipolar signals, which have equal positive and negative components (i.e. the integral over one period is zero).  A unipolar signal has only a positive (or negative) component (and can be viewed as a bipolar signal with a “DC offset”, i.e. a constant added to it).
“True” AM involves a bipolar carrier and a unipolar modulating frequency:

cos(C) * (1 + cos(M)) = cos(C) + 0.5 * (cos(C-M) + cos (C+M))

So this yields the carrier plus two “sidebands”.  [draw spectrum]
Mention that this is how AM radio works, and discuss spacing of channels:  to cover audible range, the modulating frequency will be as much as 20kHz, thus yielding sidebands of + or – 20kHz, thus requiring station separation of at least 40 kHz.  Yet AM radio stations are separated by only 10kHz!  What gives??
Now note that the magnitude of the modulating frequency does matter:


cos(C) * (1 + a*cos(M)) = cos(C) + 0.5 * a * (cos(C-M) + cos (C+M))

So “a”, called the modulation index, controls the size of the sidebands.

Frequency Modulation (FM)
FM results in a much richer sound, and we will try to understand why.
FM = a * cos(C + d * cos(M))
[Draw Fig 6.9] 
Note the effect of d, the amplitude of the modulator – it controls how much the signal “deviates” from the carrier frequency, and M controls the frequency of that deviation.
The result of FM is a carrier plus a large number of sidebands that are integer multiples of the difference between C and M.  But how many and how large are these sidebands?

Define the FM modulation index as:


I = D / M

where D is the amount of deviation in Hz of the carrier (related to d above).
[Show overhead slide of Fig 6.11 form text.]
Mathematically, the equation that describes this effect is:



00

FM = Sum   Jn(I) * sin[2π * (fc ± (n*fm))]  
        n= -00

where J(I) is the ith Bessel Function.  Note that n is the number of the sideband, and I is the modulation index.  So the sidebands are scaled by the family of Bessel functions, which are indexed by both n and I.

[Show overhead of Fig 6.13.]

Generally speaking:

· A low modulation index results in sidebands that are “tight” near the carrier, but the variations between them can be large.

· A higher mod index results in more sidebands at a greater distance from carrier, but they are more uniform in size.
· In addition, as I increases, the drop-off in sidebands is not uniform, in fact it is sinusoidal, so there are regions where the sidebands drop out completely, then reappear further away from carrier.

Rule of thumb:  The number of sidebands that are > 1% of the carrier amplitude is approximately I + 1.  And the total bandwidth is approximately:


FM_bandwidth  =~  2 * (D+M)

FM radio stations are separated by about 200 kHz at carrier frequencies at about 100 mHz.  So if M is 20 kHz then D is about 80 kHz and I is about 4.
For musical instruments, it turns out that louder sounds usually create richer overtones and other ancillary tones.  So this is a good match for FM instruments.  In particular, the same envelope is used to gate the carrier and the modulation index.   See Fig 6.14 for a more general FM instrument.
Other points:

· If the C:M ratio is 1:2, odd harmonics are generated, like a square wave, which is clarinet-like.

· Choosing an irrational C:M ratio (such as C:sqrt(2*C)) can be used to create percussive and bell-like sounds.

The text also talks about several variations of FM:

· Multiple-Carrier FM – in which one oscillator modulates several carriers (kind of a combination of additive and FM synthesis).  (See “tut11” in the HasSound Tutorial).
· Multiple-Modulator FM – in which more than one oscillator modulates a single carrier.  This can be done in two ways: series and parallel.


par  =  sin (C + d1 * sin(M1) + d2 * sin(M2))

ser  =  sin (C + d1 * sin(M1 +  d2 * sin(M2)))

(See ”tut12” in the HasSound Tutorial.)
Feedback FM

Provides interesting effects, and can be used to ”smooth out” the non-linear way in which sidebands change as the modulation index changes.  The text describes three kinds: one-oscillator feedback, two-oscillator feedback, and three-oscillator indirect feedback.
One-oscillator feedback looks like this:
[Draw Fig 6.20.]

Note the new “modulation index” (β) – its effect is shown in Fig 6.21 – note the smooth way in which the sidebands appear.

[Show overheads of Figs 6.21 through 6.24 from text.]
Waveshaping Synthesis

[Show overheads of Figs 6.26 and 6.28 from text.]
Lecture 9 (Oct 5)
A SigExp in HasSound is meant to truly represent a signal.  But it is not really a signal, it is a Haskell value that denotes a signal.  The fact that we can, for example, add SigExp’s by writing “s1 + s2”, is because of type class trickery.

What are type classes?

[Give explanation of type classes, using Chapter 12 in SOE as a guide.  But also show them the code for SigExp below.]

Physical Modelling

Chapter 7 is another decent chapter in the text.  It’s titled, Physical Modeling and Formant Synthesis.
Basic idea: directly model the physical attributes of an instrument, rather than indirectly trying to model the spectrum that it produces.

Advantages of physical modeling:

· Results in a sound that more closely matches that of the real instrument.  This is because:

· The physical model better captures the overtones.

· It also more accurately models differences in the overtones due to the volume of the sound, including very low volumes, where more “noise” is present (such as “breath-like” sounds).

· It also better simulates time-varying changes in the spectrum.
· Because of all of the above, it better models transitions between notes, and more generally any performer-induced artifacts.

· Can simulate “impractical” physical instruments, such as a guitar with strings that are 20 feet long; a saxophone as large as a house or as small as a baseball; a wind instrument made of gold, glass, titanium, or whatever; and a drum whose surface cannot be punctured.

· Can simulate instruments that are purely the invention of the composer.

The one (but significant) downside of physical modeling is that it is computationally expensive:

· Thousands of particles may need to be simulated in order to generate one sample of output.
· Real-time synthesizers incorporating physical modeling have appeared only in recent years.
· Because of the computational overhead, physical models are not completely accurate, and thus one of the goals is to find approximations that “work” well.

Question: why does a trumpet (say) sound really different from a snare drum?  Aside from the differences in the materials and the method of resonance, there is also the form of excitation.  If you hit a trumpet with a hammer you will get a percussive sound; if you excite a snare drum with a vibrator you will get a harmonious sound.

So a distinguishing (perhaps defining) aspect of physical modeling is that you have a resonator and an exciter.  From a signal processing point of view, the resonator acts as a filter to the signal injected by the exciter.

The text describes in detail three kinds of physical modeling:
1. Classic physical modeling:

a. The mass-spring paradigm.

b. Modal synthesis.

c. MSW synthesis.

d. Waveguide synthesis.

2. Karplus-Strong Synthesis

3. Formant Synthesis

We will look at (2) in detail.

Karplus-Strong

This is a relatively simple (and therefore very efficient) synthesis technique that is good for generating plucked string and percussion/drum sounds.  It’s based on the use of a delay line (also used in wave guides).

Basic idea: Start with a delay line containing some arbitrary waveform, and even random numbers (which work well for stringed instruments).  Then shift them out, perform some calculation, and feed them back.  (Almost seems too simplistic.)

[Draw Fig 7.12 from text.]
The question is, what does the “modifier” do?  Some possibilities:

1. Simple averaging of successive samples (which is the core operation of a low-pass filter).  This gives a “plucked string” sound. 
2. Each successive signal is defined by:
s(t)   = 
+ ½ (s(t-p) + s(t-p-1)) with probability b, and


- ½ (s(t-p) + s(t-p-1)) with probability 1-b.
where p is the length of the delay line.  When b is 1 it is like (1) above and when b is 0 it is the inverse of (1) and leaves only odd harmonics, generating a harp-like sound.  In between, say around 0.5, it sounds like a snare drum.  

3. Note that the decay time is proportional to the length p of the delay line.  Indeed, for (2) above, a large p creates a “noisy” snare and a small p creates brushed tom-tom (for resonant drum, pre-load the delay line with something other than noise).  One could eliminate this dependence as follows:
s(t)   =
s(t-p) with probability 1-(1/s), and


½ (s(t-p) + s(t-p-1) with probability 1/s.
So if s=1 we have (1) above, and if s=0 there is no averaging; in between we get various amounts of averaging, effectively stretching out the decay time.  The same idea can be applied to (2) above.
In HasSound, the K-P algorithm is pre-packaged into something called pluck, which takes a table number (to initialize the delay line, and if 0 denotes random noise), a pitch, volume, etc.  It also takes a smoothing method:
· PluckSimpleSmooth is like (1) above.
· PlucksimpleDrum is like (2) above.
· PluckStretchSmooth and PluckStretchDrum are like (3) above.
· PluckWeightedSmooth and PluckFilterSmooth are other options (not sure what they do – see CSound manual).
[Go through tutorial examples tut15, tut16, tut17, tut18, tut19, and tut20, and also show the “Alternative CSound Manual” on-line.]
Lecture 10 (Oct 10)
The last assignment seemed to have rocked people…  The problem apparently had more to do with a lack of understanding of HasSound and csound, rather than of Haskell itself.  So:

1. I will back up and spend more time explaining HasSound and csound.

2. You all need to speak up when I ask simple questions like, “How are you doing”?

HasSound “mimicks” csound (more than it should), so perhaps the best way forward is to understand csound first.

Recall that csound has two kinds of file types: scores (.sco file) and orchestras (.orc files).  The score contains the notes, and the orchestra contains the instruments.  Oddly enough, the score also contains wave tables.

Score Files

Let’s first look at a score file.  The note statements (or i-statements) look like this:

;   1st p-field
                 2nd p-field     3rd p-field

i <instrument-number> <start-time> <duration>

The first three p-fields are reserved, and carry the above semantics.  There can be more p-fields, but their purpose depends on the instrument.  By convention, the 4th and 5th p-fields refer to amplitude and frequency, respectively.
(I don’t know why they didn’t use “n” instead of “I” in the first column.)

The instrument number refers to the corresponding instrument number in the orchestra file.

By convention the note statements should occur in increasing order of the start times.  There is also a way to group note statements together in different parts of the score.  But in any case what csound does is sort the entire set of note-statements based on the start-time.  It then processes them one-by-one, but several notes may be “on” at the same time, so it processes them in parallel.

The score file also contains function tables, which are defined using function statement (or f-statements), which must appear before all note statements:

f <table-number> <load-time> <table-size> <gen-routine-#> <param1> … <paramn>
The <gen-routine-#> refers to a so-called GEN routine, which is a canned algorithm for generating a table of numbers.  Each gen routing takes however many parameters it needs to do its job.
Note that there is no duration, no sampling rate, no pitch, etc.  It’s just a table of numbers, that can later be used in a variety of ways.

There are over 20 GEN routines – see on-line documentation of them.

Haskore generated score files long before HasSound came along (say why, and note that score files are not that different from MIDI).  This was awkward, since it meant having to know two languages.  In addition, we felt that we could do “better”.  Thus along came HasSound.
Orchestra Files

An orchestra file defines a bunch of instruments.  Each instrument is defined like this:



instr

<instrument-number>

<var1>
<ug>

<arg1>, <arg2>, …, <argn>

…

<varn>
<ug>

<arg1>, <arg2>, …, <argn>

Note: “instr” is a keyword.  The <ug>’s are unit generators – there are hundreds of them (see on-line list).  The <vari> are variables that are named as follows:

· Audio rate: must begin with an “a”.

· Control rate: must begin with a “k”.

· Note rate: must begin with an “I”.

The <argn> can be constants, variables, and can have simple arithmetic in them.  In addition, they can refer to p-fields, simply as p1, p2, etc.

Note that this has a fairly functional/declarative feel!  However, it is a little misleading… and if you use delay lines, it becomes completely imperative.
Lecture 11 (Oct 12)

[Go through PPT talk, which covers delay lines, global variables, and recursive SigExps.]

[Remind about examples in Tutorial on these issues.]

Recursive Values and Types
[Go through the standard explanation of recursion and fixed points in Haskell / lambda calculus.]

Recursion and fixed points also occur at the type level.  Consider, for example:
> data Exp = Const Int

>
| Plus Exp Exp

Note that Exp is recursive.  But we can isolate the recursive stuff like this:

> data Exp’ t = Const Int

>
| Plus t t

Note that Exp’ is not recursive.  What we want is the fixpoint of Exp’.  So we do:
> type Exp = Rec Exp’

> data Rec t = Rec ( t (Rec t) )
-- unfortunately, can’t avoid data constructor
In other words :

> Exp = Rec Exp’ = Rec ( Exp’ (Rec Exp’) ) = Rec (Exp’ Exp)
The extra "Rec" constructor is an artifact of the type system, and in a sense can be ignored.  So what we really have is that Exp = Exp’ Exp – i.e. Exp is the fixpoint that we desire!
So this is what’s going on in HasSound, except that the recursion scheme is more complex – which is one of the nice things about  isolating it the way we did above.  In particular, we also want to allow for an explicit fixpoint generator at the type level (for reasons explained in the PPT slides).  So we do:
> type SigExp = TreeRec.T SigTerm

> data TreeRec.T coll =

>      Node (coll (T coll))
-- this is like “Rec” above
>    | Recurse (Fix (T coll)) -- function with a fix-point

>    | Loop Tag               -- tag needed for resolving Recurse by 'unwind'

>

> type Fix a = a -> a

> type Tag   = Int

> data SigTerm tree =  Const Float Float

>             | Infix  Function tree tree

>             | … etc.
Lecture 12 (Oct 17)
Mention problem with homework (loops with two outputs).
Go over the Darcs Haskore Structure hand-out.

Present PADL talk on PTM.

Lecture 13 (Oct 19)

Finish PTM talk.

Go over the structure of Haskore on-line, in the following order:
· Transition – recall that this is the “bridge” between the original Haskore 2000 design, and the new design.

· Basics.lhs is the “original Haskore”, or “Haskore 2000”.
· Translate.lhs translates between Haskore 2000 and Music.T.  That is:
music :: Basics.Music -> Music.T (Melody.Note [Basics.NoteAttribute])

· So to understand this we need to understand the latter types.

· Music.lhs – the top-level interface for the Music datatypes, and a key “entry point” for using Haskore

· The distinction between note and rest if via the “Maybe” type..

· The Primitive type adds “control” – see Control data type, as well as the functions that make it more abstract.

· type Music.T note = Media.List.T (Primitive note)
· There’s also a bunch of auxiliary stuff.

· Media.hs uses the type class Media.C to capture the “media” concept.
· Note that Media.Temporal is imported – briefly look at it.

· There are two thoughts on serial / parallel, so the Media class factors them out.

· The Media class also has a variety of fold-like operations for transforming Media values.

· Look at Media.Binary and Media.List for the two versions of serial / parallel.  Here, finally, are recursive types.  Also check out the instance decls.
· Melody.lhs deals with notes.

· Although there is no duration, there are (polymorphic) note attributes: data Note attr = Note attr Pitch.T

· The main data type is then:
type T attr = Music.T (Note attr)
So music also has type: Basics.Music -> Melody.T [Basics.NoteAttribute]

Note:

Melody.T [Basics.NoteAttribute]

= Music.T (Melody.Note [Basics.NoteAttribute])

= Media.List.T (Music.Primitive (Melody.Note [Basics.NoteAttribute])

         (1)                     (2)                (3)                     (4)

(1) introduces Prim, Serial, and Parallel

(2) introduces rests and control

(3) introduces pitches and note attributes

(4) is the note attributes themselves
· An alternative, and considerably simpler, set of note attributes is contained in Melody.Standard.lhs.
· Alternative instances of Music.T are Music.Rhythmic.lhs, Music.Standard.lhs, and Music.GeneralMIDI.lhs.
· The latter two import the first one, so looking at Rhythmic first:
type Rhythmic.T drum instr = Music.T (Rhythmic.Note drum instr)
Look at Rhythmic.Note to see differences from Melody.Note.
· In GeneralMIDI we see:
type T = RhyMusic.T  GM.Drum GM.Instr
· In Standard we see:
type T = RhyMusic.T String String

Lecture 14 (Oct 24)

Tapped Delay Lines

Something I forgot to mention regarding delay lines:

Note that Orchestra.delay has type SigExp -> SigExp -> SigExp,

and "delay dtime sig" delays "sig" by "dtime" seconds.
This is all explained fairly well in the tutorial.

But sometimes we need to delay a signal by differing amounts – i.e. we’d like to “tap” a delay line.  Doing this in csound is very imperative.  But you can do it in HasSound as follows:

First, create a “first class” delay line, using:

mkDelayLine :: SigExp -> SigExp -> DelayLine

"mkDelayLine dtime sig" creates a value of type DelayLine that can subsequently be "tapped" at any points in time less than or equal to dtime (so you can have multiple taps).  To tap a DelayLine, use:

delTap :: DelayLine -> SigExp -> SigExp

For example:

let dl = mkDelayLine 3 sig
     sig1 = delTap dl 1
     sig2 = delTap dl 2
     sig3 = delTap dl 3
in ...

Here sig1, sig2, and sig3 are 1, 2, and 3 seconds delays, respectively, of sig.
Note that you could also use three calls to "delay" to get the same effect, but that would be less efficient, since it would result in three delay lines, whereas here we only have one delay line with three taps.
Only one problem: mkDelayLine is not properly exported from Orchestra!  We will fix this…

Gardner Reverbs in HasSound
I implemented the ideas in Chapter 24 of the handout, since I thought it had a cool highly-recursive structure.  It’s all based on the allpass filter:
[Show transparency of Fig 24.1]

This diagram can be written as a recursive equation:

aout = (delay itime (ain + igain * aout)) – igain * ain

which we can “decurse” by:

aout = rec $ \aout-> (delay itime (ain + igain * aout)) – igain * ain

But actually what we’d like is a function that “generates” one of these filters, given some parameters.  So we write:

mkAPF gain time ain =
rec $ \aout-> (delay time (ain + gain * aout)) – gain * ain

[explain $]

But note in Figs 24.2 and 24.3 that circuits are being added right after the delay line, in order to build larger, nested filters.  So let’s parameterize that, and define:

mkGenAPF f gain time ain =
rec $ \aout-> f (delay time (ain + gain * aout)) – gain * ain

Q: How do we generate a single allpass filter?
A: mkAPF = mkGenAPF id

[explain id and currying]

Ok, now moving on to a single nested allpass filter (Fig 24.2), we do this:
mkSNAPF gain2 time2 gain1 time1 =

mkGenAPF (mkAPF gain2 time2) gain1 time1

But note that we could simplify this:

 mkSNAPF gain2 time2 = mkGenAPF (mkAPF gain2 time2)

 mkSNAPF = curry (mkGenAPF . uncurry mkAPF)

[explain curry and uncurry]
Moving on, here is a double nested allpass filter (see Fig 24.4):
mkDNAPF gain3 time3 gain2 time2 gain1 time1 =

mkGenAPF (mkAPF gain3 time3 . mkAPF gain2 time2) gain1 time1
[explain composition . ]

We can also simplify this:
 mkDNAPF gain3 time3 gain2 time2 =

     mkGenAPF (mkAPF gain3 time3 . mkAPF gain2 time2)

Finally, we can define a small-room reverberator from Fig. 24.6.  Note the use of a short-hand graphic for the various allpass filters.  First we write our solution with recursion:

smallRmRvb g g5 t5 g4 t4 g3 t3 g2 t2 g1 t1 ain =

    let 
mid = mkDNAPF g3 t3 g2 t2 g1 t1 (butterlp 600 ain + fbk)

 
end = mkSNAPF g5 t5 g4 t4 mid

fbk = g * butterbp 1600 800 (end * 0.5)

end' = mkSNAPF g5 t5 g4 t4 mid -- to avoid two results in loop

    in
mid*0.5 + end'*0.5

And then without recursion:

smallRmRvb g g5 t5 g4 t4 g3 t3 g2 t2 g1 t1 ain =

    let
mid = rec $ \mid ->

let fbk = g * butterbp 1600 800 (end * 0.5)

     end = mkSNAPF g5 t5 g4 t4 mid

in mkDNAPF g3 t3 g2 t2 g1 t1 (butterlp 600 ain + fbk)

end' = mkSNAPF g5 t5 g4 t4 mid -- to avoid two results in loop

    in mid*0.5 + end'*0.5

The two primitive filters, butterlp and butterbp, I ”imported” using ”sigGen”:
butterlp :: SigExp -> SigExp -> SigExp

butterlp cutoff sig = sigGen "butterlp" AR 1 [sig, cutoff]

butterbp :: SigExp -> SigExp -> SigExp -> SigExp

butterbp low hi sig = sigGen "butterbp" AR 1 [sig, low, hi]

Performance

Recall that in the PMT paper there is a “meaning” function with type:

meaning :: Music -> Performance

where:

type Music = Media Note

type Performance = (Dur, [Event])

data Event = Event Time Pitch Dur

In the case of Haskore, the situation is more complex (i.e. sophisticated, advanced, enriched, more expressive, …().  Also instead of “meaning”, we call the interpretation function “fromMusic”; but I used to call it “perform”.  We can motivate this pictorially:

[Draw a Music type, fed as input to a box called “perform”, which takes additionally a “context”:  the key, tempo, loudness, and start time.

Then feed this into a “backend” for, say, csound or MIDI, which then takes backend-specific stuff, including an instrument map (or imap).

Finally, add the player map as an input to “perform”.]
Recall in Music.lhs that:

> data Primitive note =

>          Atom    Dur     (Atom note) -- a note or a rest

>        | Control Control (T    note) -- control a sub-structure

> data Control =

>          Tempo      DurRatio        -- scale the tempo

>        | Transpose  Pitch.Relative  -- transposition

>        | Player     PlayerName      -- player label
>        | Phrase     PhraseAttribute -- phrase attribute

Note:
· an instrument map maps instruments names to actual instruments

· a player map maps player names to actual players.
Actual instruments are platform-dependent – i.e. csound or MIDI or whatever.  The players, however, are just collections of Haskell functions.  Specifically:
> data Player quant note =

>         PlayerCons { name            :: PlayerName,

>                      playNote        :: NoteFun quant note,

>                      interpretPhrase :: PhraseFun quant note,

>                      notatePlayer    :: NotateFun }

>

> type NoteFun quant note =

>      Context quant note -> Music.Dur -> note -> T quant note

> type PhraseFun quant note =

>      PhraseAttribute -> PState quant note -> PState quant note

> type NotateFun = ( )
playNote describes how a player plays a single note, whereas interpretPhrase describes the interpretation of an entire phrase – and thus might involve restructuring of the phrase (in order to achieve legato on a piano, for example).

PMT uses what I call a literal interpretation of music – it doesn’t even distinguish between eighth notes grouped in threes vs. twos, for example.  It is a technically perfect player that is unfortunately devoid of all expression.

In Performance.Player a default player is defined, that responds in a reasonable way to simple things like velocity, Staccato, and Legato.  Because of the way Players are constructed, they may inherit behaviors of other players.

[See Performance.Player for details.]

Lecture 15 (Oct 26)

Paul added a module “Transition.Tutorial” that contains simple routine for using Midi to play your compositions instead of csound.
[Have Paul Liu demonstrate on-line.]

Chapter 18: Algorithmic Composition Systems
An interesting, mostly historical, overview of algorithmic composition:  using the computer to compose music at a fairly high level.  Issues that surface:

1. Digital computer vs. other means (playing cards, throwing dice [e.g. Mozart’s “Musical Dice Game”, with numeric tables indicating entry points, etc.], analog computers, GENIAC Electric Brain (1958), etc.).

2. Encoding conventional wisdom, i.e. rules of harmonization, voice-leading, etc.  Examples include mimicking a “style”, such as Bach Chorales, or species counterpoint of various numbers of voices.

3. Modern (20th century) music, including serial composition (tone-row composition [Arnold Schoenberg, Anton Webern]) as well as aleatoric composition [John Cage and others], which introduced randomness.
4. Deterministic vs. stochastic.  One could have a completely deterministic algorithm: given certain input parameters, a composition is fully determined.  Alternatively, randomness can be explicitly introduced, in a number of different ways.  Often both techniques are combined.
5. Batch vs. interactive.
Chapter 19: Representations and Strategies for Algorithmic Composition
Contains much more technical meat for specific algorithmic composition methods.
Automata

Automata are simple computational models, some of which are well-studied in computer science.  The ones discussed in the text include:

· Deterministic finite-state automata (DFA).
· Stochastic finite-state automata (not to be confused with NFAs!).
· Cellular automaton (like in the game of Life) – deterministic but surprisingly rich in behavior.

Stochastic Processes

An overly simple way to generate music is to generate each note randomly, but using a probability distribution for each note (say, stored in a table). 

A uniform random distribution yields fairly random and uninteresting music, as you might imagine!  More interesting music results from non-uniform distribution.

[Draw overhead slide of table of chromatic notes, as in Fig 19.10]

Q: How do we select a note based on this table:
A; Turn it into a cumulative distribution table – then generate a number randomly, and find closest match.

Many variations on this idea can be employed.  For example, could sequence through a series of probability distributions by interpolating between gradually over time.

The distribution itself can take many forms.

[Show Fig 19.12 and Table 19.1.]
Markov Chains
One obvious problem with the previous method is that each note is completely independent of previous notes.  A way around this is to use the mathematics of Markov Chains which are stochastic systems in which new events depend on a certain amount of previous state:
· Zeroth-order Markov chain doesn’t use any history.

· First-order looks back one event.

· Second-order looks back two events.

· And so on.

[Draw table like in Fig. 19.13 for a first-order Markov chain.]

Extensions:

· Incorporate duration or other attributes into the history.

· Arrange into a hierarchy (e.g. one for sections, one for phrases, one for notes).
Also note that, although the text presents everything in terms of tables, the computation of the next note could be done via an algorithm of some sort.

Fractals
This is a very big area, too big to cover in detail.  I will sketch through a couple of simple ideas.
1/f noise
Fractional noise has a spectrum that diminishes as 1/fg, where g is (typically?) between 0 and 2.  For white noise, g=0, meaning the spectrum is 1 – i.e. it is independent of noise.  For g=1, the probability of a given frequency occurring diminishes as the frequency increases.

1/f processes have a relatively long “history”, which is good for music generation.

For melody generation, the “frequency” doesn’t refer to the pitch, but rather to the intervals of change – larger intervals correspond to higher frequencies, and lower intervals to lower frequencies.  Thus by changing g above, we can affect the degree of chaos in the music.

An algorithm to do this is given in the text.  I may assign this as a homework problem in Haskore!

Extensions to the 1/f idea are also discussed in the text.

Self-Similar Algorithms

I will describe a fractal-like algorithm that appears in SOE.  Tom Makucevich first gave me the idea for this, although from reading the text it may be due to [Dodge 1988] or [Thomas 1991].

[Go through the development from Chapter 20 of SOE, including the code.]

Lecture 15 (Oct 31)

Random number in Haskell

In order to generate random numbers in Haskell, we need to understand monads, or at least monadic IO.  Go through the Random library:
module Random (
RandomGen(next, split, genRange),
StdGen, mkStdGen,
Random( random,randomR,randoms,randomRs,randomIO,randomRIO ),
getStdRandom, getStdGen, setStdGen, newStdGen
  ) where

---------------- The RandomGen class ------------------------

class RandomGen g where
  genRange :: g -> (Int, Int)
  next     :: g -> (Int, g)
  split    :: g -> (g, g)

---------------- A standard instance of RandomGen -----------
data StdGen = ... -- Abstract

instance RandomGen StdGen where ...
instance Read      StdGen where ...
instance Show      StdGen where ...

mkStdGen :: Int -> StdGen

---------------- The Random class ---------------------------
class Random a where
   randomR :: RandomGen g => (a, a) -> g -> (a, g)
   random  :: RandomGen g => g -> (a, g)

   randomRs :: RandomGen g => (a, a) -> g -> [a]
   randoms  :: RandomGen g => g -> [a]

   randomRIO :: (a,a) -> IO a
   randomIO  :: IO a


instance Random Int     where ...
instance Random Integer where ...
instance Random Float   where ...
instance Random Double  where ...
instance Random Bool    where ...
instance Random Char    where ...

---------------- The global random generator ----------------
newStdGen    :: IO StdGen
setStdGen    :: StdGen -> IO ()
getStdGen    :: IO StdGen 
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a
A typical way to use all this is to first create a StdGen by either:
· Using mkStdGen :: Int -> StdGen
So mkStdGen n will yield a StdGen seeded with the integer n.  This will be the same generator every time the program is run.

· Using getStdGen    :: IO StdGen 
So, for example:
do
g <- getStdGen

…
This will create a new StdGen that has been seeded with a random derived from the time of day or some other time-dependent parameter, so it will be different every time the program is run.

Once you have a random number generator g, it can be used in a variety of ways.  For example:

· randNums :: [Int]
randNums = randomRs (1,12) g
-- yields an infinite list of random Ints in the range 1 to 12
· randNums :: [Float]
randNums = randomRs (0,1) g
-- yields an infinite list of random Floats in the range 0 to 1

· and so on

Alternatively, a more imperative approach can be taken, where we don’t mess with generators at all, and just use:

randomRIO :: (a,a) -> IO a

randomIO  :: IO a
instead.  [Explain this.]
This has the downside that the IO will “contaminate” every part of our program – there is no way to convert from a type “IO a” to a type “a”, without being “unsafe”.  Using one of the other approaches allows us to be more functional (although the threading of an infinite list may encourage us to write our own monad!).

Algorithms for 1/f-noise-based composition

The algorithm in the text generates 2 N numbers based on the following idea:

1. Create an empty array of N numbers.

2. Initialize a counter i=0 that refers to the note number, as well as a counter lasti that refers to the previous note number, which initially we set to 2 N -1.
3. Compare each bit in i pair-wise with each bit in lasti.  Wherever they differ, generate a new random number for that position in the array.  (So initially, since i is all zeros and lasti is all ones, every entry gets a new random number.)

4. The value of the current note is the sum of all the random numbers in the array.
5. Now increment i and lasti.

6. Do steps 3-5, 2 N times.
So, the “history” of this algorithm is N bits.  The amount of change depends on how many random variables are changed:
lasti
I
XOR
changes
1111
0000
1111
4
0000
0001
0001
1
0001
0010
0011
2
0010
0011
0001
1
0011
0100
0111
3
0100
0101
0001
1
0101
0110
0011
2
0110
0111
0001
1
0111
1000
1111
4
1000
1001
0001
1
1001
1010
0011
2
1010
1011
0001
1
1011
1100
0111
3
1100
1101
0001
1
1101
1110
0011
2
1110
1111
0001
1
Note that there is an exponential bias toward a small number of changes.
Here’s an alternative (simpler?) algorithm, as stated in the homework assignment:

Generate an infinite list of random numbers.  The sum of the first N of them forms the first note.  Now choose a random number d (according to some distribution), and drop the first d random numbers from the list.  The next number is also the sum of the first N numbers in the resulting list.  Repeat ad nauseum.

Claim:  If N here is the same as N above, and the random number to drop is chosen in the range 1 to N with an exponential distribution biased toward the lower numbers, then these algorithms are equivalent.

But now we can more easily play with the length of the history (i.e. N), the distribution of changes (i.e. the number of elements dropped), and the degree of change (i.e. the range of the random numbers in the list).  I don’t know exactly which of these would correspond to 1/f noise, but have fun with it!
Finish Chapter 19
· Chaos.  I don’t know much about this.  The text gives one chaotic equation, and I assume that there are many more.  They can be used in composing music in any number of ways, just as with stochastic processes, I would think.

· Grammars.  The text’s treatment of grammar-based systems is pretty elementary.  As a CS major, you already know more about grammars than is expressed here.  Some key points:

· Grammars are hierarchical, which is very useful for musical structures.

· Grammars can be used at various levels, and can capture harmonic structure as well as syntactic structure.

· Grammars can be used in two ways: generation and parsing.  Generation does the obvious thing – parsing can be used for analysis, and when done real-time, can be come part of the composition activity.

· Generate and test.  The idea here is to generate notes or phrases by some means, and then test them based on some notion of acceptability (presumably aesthetically motivated).

· The general idea can be combined with any of the stochastic mechanisms that we discussed – if you don’t like something that’s been generated, throw it out and try something else.

· But it can also be used in situations where you have a limited number of choices – and if you run out of choices, you could do back-tracking.

· Constraints.  Relates to constraint languages – may involve search to find a solution that satisfies a particular set of constraints.
· Expert systems.  AI.

· Neural nets.  Can be trained to recognize a certain style of music, for example, and then inverted to generate (i.e. hallucinate) that style.

· Patter-matching and search.  This is wide-open area.  I will describe something that I’ve done.

Makucevich Matching Algorithm

Suppose we want to generate a composition of n voices.  Start with:

· A circular list of chords cList, each chord expressed intervallically – i.e. the absolute pitches do not matter.
· A rhythm (i.e. notes with duration but no pitch) for each of the n voices.

· n starting pitches.

The voices are then generated as follows:

· Choose the first chord c from cList.

· The pitches of the first note in each voice are the pitches of c.

· (The durations of the first note in each voice are given.)

· Now determine which note will change next (i.e. the one with the shortest duration).

· Search the chord list for a chord that (relatively) matches the current harmony, but with that one note missing.  Say that chord is c’.

· The note that needs to change thus takes on the corresponding note in c’.

· Repeat ad nauseum.

Note:

· The “composer” has control over the number of voices, the particular chords, the number of chords, and the particular rhythms.

· For a given set of initial conditions, there may be no solution, one solution, a finite number of solutions, or an infinite number of solutions.

· Requires back-tracking in the general case – if no chord is matched from a given “position”, need to back-track to a previous condition.

· When multiple solutions exist, we can listen to them and choose one that we like – for this purpose, a breadth-first search is preferred.

This would make a great course project, in case anyone is interested!  Many variations are possible.
Lecture 15 (Nov 2)

Michael Klingbeil (a recent PhD from Columbia, and a visiting Asst Prof in the Yale Music Department) will lecture on his analysis and synthesis project.
Lecture 16 (Nov 7)

Scales
[Handout from http://thinkzone.wlonk.com/Music/12Tone.htm ]

Q: How did we end up with the 12-tone equal-tempered scale?

A: Physics and luck.

We already discussed the fact that instruments generate notes consisting of a fundamental and many partials.  This is because of the physics of sound resonance – the partials are natural.

But, interestingly, the mind also likes notes that support one another (consonant) rather than ones that don’t (dissonant).  The partials are all whole number multiples of the fundamental.  The next best thing is tones that are in a whole number ratio of each other.
To see this, let’s try constructing a scale.  The properties we want are:

1. It should repeat itself every octave.

2. It should be reasonably well distributed (perceptually – so on a log scale).
3. It should support partials – i.e. a note’s partials should be in the scale as often as possible.

Just Intonation

So how do we do this?  Our strategy will be to start with some note N, generate its partials, and then reflect those partials back into the range N to 2N, and delete duplicates.  Here’s what we get:

N   2N   3N   4N   5N           6N   7N                    8N          9N
1           3/2   4/3   5/3   5/4  6/5   7/4   7/5   7/6   8/5   8/7  9/5   9/7   9/8
Or, written in increasing order:

1  9/8  8/7  7/6  6/5  5/4  4/3  7/5  3/2  8/5  5/3  7/4  9/5
C   D    ?     ?    D#   E     F     F#   G   G#   A      ?   A#
Of these, the intervals from C in bold are usually described as consonant intervals; the rest are (to varying degrees) dissonant, except that I don’t know how consonant the ones with ?’s are…
One way to think of the consonance of an interval is the degree to which the two notes “support” one another – G’s 2nd partial is the same as C’s 3rd, F’s 3rd partial is the same as C’s 4th, and so on.  Because there is more energy in the lower partials, the lower these supporting partials are, the more consonant the interval is.  Indeed that’s true in practice.
The only thing missing to make the “perceptual distribution” work out is C# and B.  It turns out that the ratios 16/15 and 15/8, respectively, do well for these.  This results in (one form of) the so-called “just intonation” scales, as shown on p2 of one of the handout:
1  16/15  9/8  6/5  5/4  4/3  7/5  3/2  8/5  5/3  9/5  15/8  2
C     C#    D   D#   E     F     F#   G   G#   A    A#    B     C’
It is interesting to note that these ratios pair up (almost) in “harmonic inverses”:

· 1 and 2

· 16/15 and 15/8

· 9/8 and 9/5
-- oops!!  Perhaps 9/8 should be 10/9, or 9/5 should be 16/9?
· 6/5 and 5/3

· 5/4 and 8/5

· 4/3 and 3/2
There are two ways to view this: (1) the product of the two ratios is 2, or (2) the interval between C and the first note is the same as between the 2nd note and C’.
All of this is fine and dandy, and gives a physical / perceptual basis for the historical development of the 12-note just intonation scale.

Equal Temperament

But there is a problem:  Consider the note D, having ratio 9/8 with respect to C.  Suppose we take the third partial, and reflect this back into the range of the octave.  Ideally, this should yield the note A (right?).  But it doesn’t:

3*(9/8)/2 = 27/16 = 81/48  ≠  80/48 = 5/3  
 (an error of about 2%)
This problem is pervasive – most of the notes have this problem.
So, what to do?  Here’s where the luck comes in… 

The just intonation scale matches within 1% a scale based on
a logarithmic distribution of 12 notes through the octave.
This is actually a fairly amazing fact.  The resultant scale is called the 12-note equal-tempered scale, because you can look at it as an attempt to “tweak” (i.e. temper) the just-intonation scale so that everything is perfectly distributed.  The amazing thing is that it smoothes out some of the rough edges in the process.

[Review the comments in the handout to see just how amazing it is.]
Consider also the error above.  Using an equal-tempered scale, we get:

1.5*1.122 = 1.683  ≠  1.682

(an error of only about 0.1%)
Another good reference to the mathematics of musical scales is Wikipedia!  The remainder of this lecture is a summary of some key points taken from:

http://en.wikipedia.org/wiki/Mathematics_of_musical_scales 
which has further links to: …/Pythagorian_tuning, …/Just_intonation, …/Musical_temperament, and Equal_temperament.

Pythagorean Tuning

This scale is a kind of just intonation in which all ratios are exponents of 3/2 (i.e. everything is based on the fifth, and in essence reproduces the “circle of fifths”).  So, starting with C, we have 1.  G will be 3/2 above that.  D will be at (3/2)2/2 (we divide by two to keep the ratio between one and 2).  A will be (3/2)3/2, and so.
To make the ratios more manageable, we can also work down from C in 4ths, as follows:  F will be (2/3)*2 from C (because we’re going downward, we need to occasionally multiply the ratio to get back into the range 1-2), Bb will be (2/3)2*4, and so on.  This process yields the following ratios:

1   256/243  9/8   32/27  81/64    4/3   729/512  3/2  128/81 27/16  16/9   243/128
C
C#
D
D#
E
F
F#
G
G#
A
A#
B
If we do the forward process 12 times, however, we don’t end up exactly on C.  Using GHCi to help us out, we find that ((3/2)12)/128 = 531441 / 524288, or 1.0136433.  So we see that the result is slightly sharp, thus leading to the usual problems with just intonation.

Indeed, there are no non-zero integers n and m such that ((3/2)n)/m is equal to 1, or stated another way, there is no non-zero integer n such that (3/2)n is a whole number.

To get around this problem, Pythagorean proposed using this process for half of the scale, and then “starting over” at a new note.  This results in one of the fifths being badly out of tune – this is called a “wolf note”, because the beating that resulted from the out-of-tune fifth was likened to a wolf’s howling.
Tempered Scales
There are many tuning schemes based on temperament – adjusting the notes away from simple whole note ratios.

· Well temperament refers to a family of tuning schemes dictated more by practice than by anything else – each of the fifths is flattened somewhat, but not all keys are treated equally.
· Meantone temperament is a uniform kind of well-tempering that does not give preference to any particular key, but may have a break in the circle of fifths.  Pythagorean’s “hack” mentioned above is a form of meantone temperament.
· In Equal temperament all of the ratios are spread evenly across the octave.  The obvious thing to do for a scale of n notes is to base it on powers of 1/n, but other possibilities also exist.
Equal Temperament
For an n-note equal-tempered scale, each interval, expressed as a ratio, is the same.  If we multiply that ratio by itself n times, we should get 2.  That is:

r n = 2

i.e.
r = nth-root of 2

(Non-octave schemes are possible by choosing something other than 2.)  For a 12-tone scale, r = 1.05946309.

It is easy to see that the pitch p (i.e. absolute frequency) of a note can be computed via its distance d in semitones from a reference pitch q as follows:

p = q * 2 d/12

Scales are also often measured in cents, which divides the octave into 1200 equal (logarithmic) intervals.  For a 12-tone scale this amounts to 100 cents per interval, which facilitates comparing 12-tone systems.

Equal temperament scales other than 12-tone have been used:
· 5-, 7-, and 9-TET can be found in ethnomusicology.

· 19- and 31-TET have been used in Western music since the 16th century.

· Once 12-TET came into practice, 24-TET became a natural alternative.

· 53-TET does well with approximating just intonation, but is rarely used.

· 55-TET was closer to “common practice” and preferred by some.

· 72-TET has been written, taught, and performed by at least one nut-case (Joe Maneri) in atonal music.

· Other ET scales that have been used: 15, 34, 41, 46, 48, 99, and 171.  Not sure why…

Systems higher than 12-TET are often called microtonal.
Another idea is to base the scale on something other than an octave.  For example, one could base it on a 3:1 ratio (i.e. 1 ½ octaves, 1900 cents), which is called a tritave.  One effort divided this into 13 equal parts, i.e. each interval is a ratio 13th-root-of(3), or 1900/13 = 146.15 cents.

It would be fun to base a final project that explored these issues.  For example:

· Design and justify a scale of some sort, equal-temperament or otherwise (recall for example the ratios 7/4, 7/6, and 8/7 which were “rejected” earlier, but might in fact by “consonant” to some degree).
· Do algorithmic composition using a microtonal or some other scale.
Lecture 17 (Nov 9)

Scales vs Tuning
Most of the previous discussion was really about tuning, and what it yields is a 12-tone scale.  But most Western music is based on some form of diatonic scale that is a subset of these 12 notes.  One of the things that made the equal-tempered scale so popular early on was the fact that it permitted transposing the diatonic scale without penalty, and modulating the key within a composition.
(12-tone music is a more recent phenomenon, and is a lynchpin of serial music.)

Specifically, a diatonic scale is a seven note scale consisting of 5 whole steps and 2 half steps, where the half steps are maximally separated.  For example,
2-2-1-2-2-2-1 is a major (Ionian) scale.  Sliding up and down this scale yields seven distinct modes:
Ionian

2-2-1-2-2-2-1
Dorian

2-1-2-2-2-1-2

Phrygian
1-2-2-2-1-2-2

Lydian

2-2-2-1-2-2-1

Mixolydian
2-2-1-2-2-1-2

Aeolian
2-1-2-2-1-2-2

Locrian
1-2-2-1-2-2-2
There is a ton of musically-relevant stuff about these scales, and different styles of music (classical, jazz, etc.) take advantages of different aspects of the scale.  I will not delve into the musical motivation for any of this.
But one can also get quite abstract with the idea of scales, and consider scales other than diatonic ones, and other than ones with 7 notes. 
Generated Scales
One theoretically interesting issue is whether or not a scale can be generated by starting from a fixed interval and simply repeating it over and over, but looping back modulo the size of some underlying “chromatic universe”.

[Most of the following is from Ian Quinn’s course notes and a paper by John Clough et al. – see the handout.]
Let c be the size of an underlying chromatic universe (c=12 for Western music, but as we have seen, chromatic scales can have arbitrary size).  The elements of the chromatic universe are denoted 0, 1, …, (c-1).

The 0 is a relative starting point, and movement within the scale can be done modulo c.  Moving up and down a chromatic scale doesn’t accomplish much, but once we have selected a scale whose size is less than c, then such movement is analogous to the “modes” discussed earlier.
Let d be the size of the scale drawn from the underlying chromatic universe.  A set s of d notes drawn from a chromatic universe of size c is denoted sc, where |s| = d.  If the subscript c is omitted, it is assumed to be 12.

For example: {0, 2, 5, 10} 13.  This can be viewed as a scale or chord or set or collection, whichever is appropriate.

Intervals

We can also speak of intervals within a scale.  For example, the above scale has the “obvious” intervals 2, 5, 10, 3, and 8, but it also intervals that “wrap around” modulo 13.  So it is desirable to “normalize” intervals in some way.
The interval class of an interval i is (i mod c) or c – (i mod c), whichever is smaller.  Thus the interval class is always between 0 and  c/2, inclusive.
(This term is analogous to pitch class.)
For example, the interval classes of 2, 3, and 5 above are just 2, 3, and 5.  But the interval class of 8 is 5, and of 10 is 3.  So the above scale really only has three intervals, 2, 3, and 5.

The cycle length of an interval i is c/gcf(i,c), where gcf is the greatest common factor.  This is a measure of how often an interval can be applied before repeating a note in the underlying chromatic universe.

For example, if c=13 as above, the cycle length of every interval less than 13 is 13, because 13 is prime.  But for c=12, then the cycle length of 2 is 6, of 3 is 4, of 5 is 12, of 6 is 2, of 7 is 12, and so on.
Interval content

The interval vector of a scale of size d is a vector of length d/2, such that the ith entry is the number of interval classes of size i in the scale.

For example, for the above scale the interval vector is [0 1 2 0 2 0].  (I think…)

For any d, i <= c/2, there exists a d-note scale with no occurrences of interval class i.

But when d > c/2, every scale must have at least 2d – c occurrences of every interval class (except that this minimal is halved if c is even).

(Singly) generated scales

A (singly) generated scale is denoted G(c,d,g), where c and d are as before, and g is the generating interval. G is defined by:


G(c,d,g) = {0, g, 2g, …, (d-1)g} c
For example:

G(13,4,5)  =  {0,5,10,15} 13  =  {0,2,5,10} 13
As another example, the usual diatonic scale is generated by:


G(12,7,5)  =  {0, 5, 10, 3, 8, 1, 6}  =  {0, 1, 3, 5, 6, 8, 10}

This is actually the Locrian scale (recall intervals 1-2-2-1-2-2-2), which begins on degree 7 of the major (Ionian) scale.  But remember that we are free to shift our point of reference without penalty – in particular, all of the properties of scales that we are interested in will hold regardless of the “mode”.
How many intervals of size g are there?  If d is 1, there are none.  If d is 2, there is one.  If d is 3, there are two.  In general, there are d-1 of them, as long as d is less than the cycle length of g.

Indeed, it can be shown that in general, if d is less than the cycle length of g, there are d-n occurrences of the interval class corresponding to ng for all 0<n<d.

When d is equal to the cycle length of g, the generated scale contains d occurrences of all interval classes ng (why?), with the following exception: when c is even and some multiple of g is of interval class c/2, there will be d/2 occurrences of that interval class.

If d is greater than the cycle length of g, then the resultant scale is redundant – i.e. it is “over-generated”.

[See page 4 of the handout.]

On the handout, note that the upper regions of the interval vectors are all zeros – this corresponds to the space where there exist scales with no occurrences of a particular interval class.  The un-shaded regions in general indicate the minimal numbers, also as indicated above.  The shaded regions, therefore, correspond to “interesting” scales where more than the minimal number exists.

Doubly generated scales
Singly generated scales are not rich enough for some purposes, so it’s natural to throw in a second generator.  One is called the inner generator (denoted g(in), but I prefer gin) and the other is called the outer generator (g(out) or gout).

The doubly generated scale is denoted DG(c,d,gin,gout).  If l = c/gcf(gin,c) is the cycle-length of gin, then note that a complete cycle of gin divides the chromatic universe into l equal subdivisions of size c/l.  The outer generator gout must, within the subdivision c/l, have a cycle length of c/l.

For example, if c=12, choose gin = 4 (a major 3rd), thus resulting in 3 equal 4-note sub-universes.  This limits our choice of gout to any odd interval.

The scale is then generated as follows: 
· If d<=l, DG(c,d,gin,gout) is the same as G(c,d,gin).

· If d = l+1, start with G(c,d,gin), and add a note gout above the starting point.

· If d > l+1, use the new new note above as the starting point for another round of the inner generator.

· Repeat this process until the size of the generated set is equal to d.

For example:

DG(12,8,3,1) = {0,3,6,9,1,4,7,10} = {0,1,3,4,6,7,9,10}

 = the half-step-whole-step, or diminished, or octatonic, scale

[See page 5 of the handout for some examples of DG scales.]

The interval content of DG scales can also be computed formulaically, although it is a tad more complex – see the handout.

Scale features

Also note on pages 4 and 5 of the handout the columns on the right with two-letter acronyms like “ME”, “DE”, “G”, and so on.  These are features of scales, as defined in John Clough et al.’s fascinating article (seemingly seminal in its thoroughness and the degree to which is ties together many previous efforts).  Although these properties may seem arbitrary, they are (presumably…) based on intuitions about musical properties of scales.
[See page “76” of handout.]

The only new idea here is the notion of “generic interval”, which is the number of steps in a given scale.  The notation <s> denotes the set of intervals that correspond to each step of size s.

For example, in the octatonic scale, <1> = {1,2}, <2> = {3}, and so on.

So the columns on the earlier figures simply indicate which properties each of the generated scales possess.

It turns out that some of these properties imply others.

[See page “78” of the handout.]

Clough et al.’s article proves all of these implications.

Now, if you consider these implications between features, and then form all possible combinations of features, there are 20 unique combinations.  However, some combinations are impossible to populate – i.e. there exists no scale that satisfies them all.  In fact, Clough et al show that 13 of the 20 are non-empty.

Clough et al.’s article is a good read and could lead to an interesting term project.

Lecture 18 (Nov 14)

Go over solutions to Assignment 4 in detail, discussing both musical and programming aspects of the problems.

Lecture 19 (Nov 16)

Fractals

Fractals have been used in interesting ways to compose music, and you have seen one example, the “self-similar music” that I presented a few weeks ago.

To use fractals more generally, it’s helpful to learn a tiny bit about fractal theory.  I will describe a specific kind of fractal, namely that generated by an Iterated Function System, or IFS.  The presentation is usually given in terms of 2D images, but I will gloss over those details [in square brackets below], which will change anyway when applied to other contexts (such as music!).

The following is taken mostly from:



http://chaos.phy.ohiou.edu/~thomas/fractal/ifs.html

http://chaos.phy.ohiou.edu/~thomas/fractal/metricspace.html
An iterated function system, or IFS, consists of two things:

1. A complete metric space (X, d)   [a metric space is one in which you can measure distances between points in a reasonable way, and it is complete if the metric is preserved in the limit]
2. A finite set of strictly contractive transformations wn: X  X   [a transformation is contractive if it brings points closer together]
Images in a metric space (X, d) are “compact subsets” of X that also form a metric space (meaning there is a way to measure distance between subsets, often called the Hausdorf metric).  This metric space of images is denoted (H(X), h).

Now define:

	W(A) = 
	N 

n = 1 
	wn(A),     for any A  H(X).


So A is the “seed image”, and W(A) generates a new image.  The attractor of the IFS is the unique fixed point in H(X) of the transformation W.  That is, it is the solution to the equation:
A = W(A)

[end of definition]
In practice, the contractive transformations are also affine, which lends itself to efficient implementations using matrices.
Also, a popular implementation technique is to choose the contractive transformations randomly, rather than deterministically as implied by the above equations.  This is often called a chaos game.
[show on-line examples of standard images from:


http://ecademy.agnesscott.edu/~lriddle/ifs/siertri/siertri.htm
]
[show on-line Haskore code]
Question:  How can one relate an IFS to music?

