Lickity Split
(a split timer for the Palm Pilot)

Submitted to

Professor Larry Gordon and Professor Jim Jacobs

Instructors of Computer Science

at

University of Alaska, Anchorage

by

Kc Brock and Henry Hedberg

April 26, 1999

Table of Contents

2Table of Contents

Section 1: Introduction
8
Finding a project
8
Birth of Lickity Split and first proposal
8
Research
8
PalmPilot
8
OS and software development kit
8
Environmental conditions
9
More specific proposal
9
Big snag
9
CodeWarrior difficulties
9
First prototypes
9
Still slow
10
Henry Hedberg comes on board
10
Brock / Hedberg Proposal
10
Weekly meetings to Weekly Reports on the web
10
Functional prototype for NCAA championships
11
Schedule
11
Remaining Tasks
12
Next version and essential tasks
13
What Kc Learned
14
What Henry Learned
14
Section 2: Nordic Version 4.2
15
What is Nordic?
15
Main Menu
16
StartList
16
Timing Screen
18
Help Screen
19
Status of Nordic
19
Section 3: Program Justification
20
Purpose of the Ski Timer Program, Lickity Split
20
Race Terms and Definitions
20
Description of Race and Justification of Lickity Split
21
Sample Race Data Chart and Diagram
21
Visual Diagram
22
Section 4: Other Timing Products
23
Existing Solutions
23
Pen, paper and a stopwatch
23
Nordic
23
Receipt printing split timers
24
SR1000
25
PocketTimer
26
WindowsCE database
26
Section 5: Proposal
27
Computer Science Senior Project Proposal: Update the University of Alaska Ski Team Race Program
27
Summary
27
The Program – see Menu Options page for details
27
The Palmtop
27
Faculty Signatures and Comments
28
Menu options
29
Edit Race List
29
Race
29
Other options
30
Section 6: PalmOS
31
Popularity
31
Challenges
32
Heap Space
32
Speed
32
Code Size
32
Interface
32
Section 7: Scope and Specifications Proposal
34
Overview of the scope and specifications of the timer written for Coach Bill Spencer
34
Specifications
34
Program Parts
34
Start List Entry Mode
34
Race Timing Mode
34
Lap View
35
Non-essential items
35
Section 8: Screen Prototype
36
Lickity Split General Description
36
Lickity Split Screen Forms and Operation
36
A. StartList form detail
39
B.Timing form detail
44
C. Detail form detail
47
D. Results form detail
49
Section 9: Brock / Hedberg Proposal
50
Summary
50
Completed
50
Remaining
50
Responsibilities
51
Signatures
51
Section 10: Lickity Split Prototype
52
Note
52
Icon
53
Empty Timing Form
53
Help Menu
54
Start List Form
55
Full Timing Form
56
Section 11: Code
57
The Code or “The Mud, Blood, Guts, and The Beer”
57
Form Based, Event Driven Programming
57
Pilot Memory Space Overview
57
Dynamic Memory Heap
57
Filesystem IS Memory
58
Limited Application Stack Size
58
Global vs. Local Variables
58
Algorithm Development
58
Classes created for the project
58
Timing Algorithm Overview
59
Pilot Database System
60
Databases Created For the Application
60
Testing – Letting the Gremlins Run Free
61
The Old Fashioned Way
61
The Gremlins
61
Data Integrity
61
Section 12: Marketing
62
Do we need a business license?
62
Should we copyright our product?
62
Should we market it as shareware?
62
What should we charge for our product?
62
Where should we put it on the web?
63
How do we fill an order?
63
What about doing something like careware?
63
We have to register a creator ID for a Palm Product.
64
What does it cost to have our own domain and how would it serve our purposes?
64
What about producing a product with the Academic version of CodeWarrior?
65
Copyright forms
66
Shareware sites
67
Section 13: User Manual
68
Lickity Split
69
Table of Contents
70
Section 1: Installing Lickity Split
71
Using a Windows PC
71
Using a Macintosh
72
To Run Lickity Split
73
Section 2: Creating a StartList
74
Creating a New StartList in Lickity Split
74
Creating a New StartList on the PalmPilot MemoPad
78
Import StartList
79
Creating a New StartList with the Palm Desktop
80
Exporting (Saving) a StartList to MemoPad
82
Section 3: Timing a Race
84
Entering Bib Numbers
84
Show
85
Viewing laps
86
Time
87
Section 4: Exporting Race Results
88
Section 5: Starting Another Race
90
Section 6: Limitations and Tips
91
Appendix A: Previous Attempts
93
Click and Count
94
Click and Count
94
Reports generated – currently
96
Business Problem/Need:
97
Solution
97
New Features
98
CS 470 Project Proposal – SMS
100
Proposal
100
Background
100
Scope and Limitations
101
General Method of Attack
101
Specific Method of Attack
101
Requirements:
102
Conclusion
102
Appendix B: Palmtop Comparisons
104
Handheld Computer Comparisons
105
Appendix C: Software Development Kits (SDKs) for the PalmOS
111
Notes
112
CodeWarrior for Palm OS 4.0
112
CodeWarrior in Practice
113
CASL in practice
115
GNU-C-Compiler
120
Satellite Forms 2.0 Developer Edition for Palm Computing
122
PalmPilot Development Tools
128
Appendix D: Environmental Conditions
137
Introduction
137
Actual environmental specifications for the PalmPilot:
137
Discussion Groups
138
Heated Gloves and Socks
138
Heat Packs - Liquid
139
Heat Packs - Dry
140
GPS (Global Positioning System) Case
140
Solution
141
Other Discussion Group Responses …
141
Responses to postings for advice on operating the PalmPilot in the arctic:
141
Appendix E: Letter to CS Department
145
Appendix F: Hours and Investment
147
Appendix G: Senior Project Status Web Pages
148
Senior Project Web: Home Page
149
Senior Project Web: Plan Spring 1999
150
Senior Project Web: Weekly Report February 15, 1999
152
Senior Project Web: Weekly Report February 22, 1999
153
Senior Project Web: Weekly Report March 1, 1999
154
Senior Project Web: Weekly Report March 8, 1999
155
Senior Project Web: Weekly Report March 22, 1999
156
Senior Project Web: Weekly Report March 29, 1999
157
Senior Project Web: Weekly Report April 5, 1999
158
Senior Project Web: Weekly Report April 12, 1999
159
Senior Project Web: Weekly Report April 19, 1999
160
Senior Project Web: Prototype
161
Senior Project Web: History and Development
165
Appendix H: Lickity Split Flyer
167
Appendix I: Debrief with Bill Spencer
168
Bill Spencer’s observations
168
Next Version / Wish List
169
Tasks necessary to complete
169
Appendix J: Next Version
170
Appendix K: Presentation
171
References
191

Section 1: Introduction

Finding a project

In December of 1997, I looked for a new CS 470 senior project. My previous two attempts (see Appendix A, Previous Attempts) were through my employer, ARCO, and both became either obsolete or low priority. Although I had a number of hours already invested (approximately 120 hours), I decided to abandon these projects in favor of one recommended by Professor Ted Gifford.

Birth of Lickity Split and first proposal

This new project was to rewrite "Nordic" (see Section 2: "Nordic"), a DOS ski timer program, to run on a palmtop computer for the UAA ski team coach, Bill Spencer. The timer program keeps track of the progress of multiple skiers in a stagger-start race with splits, the time in seconds from the lead racer (see Section 3: Ski Timer Program Justification). The only other timing products available are quite expensive or don’t record in splits (see Section 4: Other Timing Products). Ted thought I might be able to get the source code for "Nordic" and rewrite it for Windows CE or a newer version of DOS. I wrote up a proposal for the Computer Science department on 3/4/1998. (See Section 5: Proposal.)

Research

In the first phases of research, I found that

· only one of the palmtop computers on the market ran DOS programs,

· the source code for "Nordic" was unavailable,

· WinCE palmtops have a short battery life

· palmtop computers are not typically used to run DOS programs, and

· the palmtop computers I was considering (versions running Windows CE) were not well-suited for a timing application (slow response, hourglass wait).

PalmPilot

As I looked at palmtop machines, I came across the Palm Pilot. It is a popular, inexpensive machine that suits the needs of the timing program better. Its OS has no windows interface, so response time is better. And the Internet seemed to be exploding with amateur and professional programs written for it.

OS and software development kit

I decided the Palm Pilot III was the best fit for a "Nordic" replacement, and with Bill’s agreement, bought a Pilot on 4/28/1998 and ordered the software development kit, CodeWarrior, at academic price on 5/21/1998.

Environmental conditions

I had concerns about how would it operate in a cold environment. I joined a few discussion groups, comp.sys.palmtops.palmpilot, alt.comp.sys.palmtops.palmpilot, and pilot.programmer, to find out if this challenge had been addressed. There were several useful suggestions about heat packs and Pilot cases, along with a person who works in cold storage that said as long as he kept it in his pocket and only took it out for a few minutes at a time that it worked fine. Coach Bill Spencer’s "Nordic" solution ran on a laptop that was kept warm with heat packs. After much discussion and a freezer demonstration with Bill (the Pilot screen froze over but continued running), we decided the same could be done for the Pilot (for more on environmental conditions, see Appendix D, Environmental Conditions).

More specific proposal

I read the CodeWarrior manuals and went through the memo pad tutorial. Bill gave me the old "Nordic" program. Bill and I met and hashed out the requirements for the new program. We came up with a more specific proposal, "Overview of the Scope and Specifications of the Timer written for Coach Bill Spencer" and signed off on it on 7/17/1998. (See Scope and Specs Proposal, Section 7.)

Big snag

Then I got to work on design. I made screen pictures, flowcharts, excel simulations, and looked at other programs. CodeWarrior became a big snag. I couldn’t even get a "hello world" program running on it. The magnitude of the project began to overwhelm me. I met with Professor Gordon a couple of times as Professor Gifford had left UAA. Finally desperate after about 180 hours in and seemingly nothing to show for it, I wrote the CS department (Larry Gordon and Jim Jacobs) a letter asking for regular supervision and help on 8/14/1998 (see Appendix E, Letter to CS Department). The Friday weekly meetings we agreed to were a significant help.

CodeWarrior difficulties

The problems I had with CodeWarrior were not just because it was new and "buggy". I had never used a developer kit (only command-line or plain text programming), never used C++, hardly used C, and normally worked on a PC or Unix machine. Also, CodeWarrior is written for the Macintosh and is quite different from PC or Unix programming. Professor Gordon suggested I contact a student in the department that had used CodeWarrior on other operating systems. Jason Guild offered some keys that gave me a jumpstart. Professor Gordon also lent me a C++ tutorial and another student, Henry Hedberg, and Professor Jacobs lent me C++ books.

First prototypes

With an old copy of Borland Turbo C++ version 3.1 from Matt Guenther, another fellow student, I modeled the data structure that I planned to use in the CodeWarrior program. At Coach Bill Spencer’s suggestion, the program is called "Lickity Split". I sent Bill a copy of the screen prototype on 11/2/1998 (see Section 8: Screen Prototype).

Still slow

As I was building the CodeWarrior version of a code prototype, I found the Palm OS to be challenging and the project would probably take another 2 to 3 months to complete. CodeWarrior for Palm OS release 5 came out and it was an improvement.

Henry Hedberg comes on board

As I was reading the source code for the address book application, Address.c, I noticed that two people authored different functions throughout it. Since I had been working some with Henry Hedberg (mainly as a sounding board) already and now had well over 400 hours into the project, I asked if he would be interested in combining efforts with me for his CS 470 credit as well. It was obvious the project would not be finished by December, but with the both of us working on it, it would surely be done by the next May. On 12/4/98 I mentioned this idea to Professor Gordon and Professor Jacobs and they requested another proposal (see Section 9: Hedberg/Brock Proposal).

Brock / Hedberg Proposal

With this proposal approved by Larry Gordon on 01/15/99 and by Jim Jacobs on 01/22/99, Henry jumped in. We divided the remaining work as follows:

PRIVATE
Henry Hedberg
Kc Brock

Database Class
– sorting
– MemoPad Import
– MemoPad Export
User Interface

Internal Error Checking
External Error Checking

Race Scoring and Biathlon Scoring
Main Program Logic

Simultaneous Race capability
Program Help documentation

Production of fully functional prototype for test phase
Documentation and User Manual

Testing phase for Bill Spencer’s review
– validation
– verification
– modification

Trial version for marketing
Web page for marketing

CS A470 review and grade by CS Department

Weekly meetings to Weekly Reports on the web

The weekly meetings I had begun with Professor Gordon in August – asking questions, getting guidance, and reviewing the week’s progress – this accountability greatly increased focus and consistency. By February, these meetings seemed no longer necessary and instead I set up a web page with weekly reports (see Appendix G, Senior Project Status Web pages).

Functional prototype for NCAA championships

Coach Bill Spencer mentioned in one of our conversations that the last races were during the week before spring break, the NCAA championships. Henry and I decided it would be great to have a prototype for him to try by then. We loosely set up the following schedule:

Schedule

PRIVATE
Week 1
January 18, 1999
General Design Review – Walkthrough database code, screen prototype code, classes, set algorithm, get some granularity for following weeks

Week 2
January 25, 1999
Database Routines - sorting, list by category, etc. / Interface Routines - fields, tables, etc.

Week 3
February 1, 1999
Database Routines - sorting, list by category, etc. / Interface Routines - fields, tables, etc.

Week 4
February 8, 1999
Join Efforts

Week 5
February 15, 1999
Timing Routines

Week 6
February 22, 1999
Timing Routines

Week 7
March 1, 1999
Make "Bill-ready"

March 6, 1999
give to Bill for NCAA champs

Week 8
March 8, 1999
break

March 8, 1999
Race - NCAA championships

Week 9
March 15, 1999
Memopad import / Documentation

Week 10
March 22, 1999
Memopad import / Documentation

Week 11
March 29, 1999
Memopad import / Documentation

Week 12
April 5, 1999
Memopad import / Web site / forms - detail, help, menu options

Week 13
April 12, 1999
Memopad export / Web site

Week 14
April 19, 1999
Pull together for final presentation

Week 15
April 26, 1999
Present

By 03/05/99 we had a working prototype and gave it to Bill (see Section 10: Lickity Split Prototype). He brought it with him to the NCAA championships and used it to time two races. He said it worked. Another coach had bought a larger-sized Toshiba palmtop and was running a timer on a database he had built. Bill said it was pretty slick except he had a hard time keeping the display from freezing up and his unit cost $2500. He said the Palm worked like a champ – he didn’t even bother to put it in a plastic bag. There was a lot of interest from other coaches and he handed out the flyers we gave him (see Appendix H: Flyer).

Remaining Tasks

The week of March 15 we broke down what we felt like were the essential remaining tasks:

PRIVATE
Timing form – scroll up and down, number buttons
Kc

Forms to Import/Export to MemoPad
Kc

Import/Export to MemoPad
Henry

Question mark entries
Kc and Henry

Save application state
Henry

Stay powered on
Kc

Help screens
Kc

Multiple races
Henry

Detail racer
Kc and Henry

Scoring?
Henry, not sure of necessity

Find by name/affil?
Not sure of necessity

Next version and essential tasks

By the Week of March 29, 1999, we realized we only had about three weeks left. We wanted to present our project on Monday, April 26. Because the import and export handling routines were going to take Henry two weeks and I had more documentation to write and clean up and web site and marketing stuff to start up, we decided to cut out the following parts (see Appendix J: Next Version):

1. Multiple race capability

2. Biathlon

3. Scorings

4. Find by name / affiliation

5. View two laps at a time

6. Detail racer form - need more solid idea of the information to display on such a form

7. Import racers discriminately

8. Stay powered on (because it is not needed)

Yet we felt the following tasks were absolutely necessary to complete:

1. Question mark entries

2. Import whole race lists

3. Export race lists

4. Export race results

5. Help screens

6. Web site

7. Documentation

8. User manual

9. Save application state in case of application exit

10. Scroll up and down buttons on Timing form

11. Highlight middle racer as active racer

12. Display time in minutes and seconds

13. Trial version

By the week of April 18, 1999, Henry and I were in our ‘finishing touches’ phase. I had to cut out the Question mark entries task – there was still some design that needed to be done on it and the last week was not the time to be in the design phase. We cleaned up our code, Henry tested the boundaries, I put together the help screens and documentation, and we both prepped our presentation for April 26, 1999.

What Kc Learned

I learned that projects are much, much larger than they look. Even when I would pare things down to the absolute essentials, it seemed this was still too much. Also, focus and consistency are KEY in the completion of a project. It is especially difficult to master a project of this magnitude by myself. Having a partner to help keep me focused, bounce ideas and problems off of, and that was waiting for my part to be done before he could proceed was the fuel that led me to finish this semester.

As far as working with a customer goes, I have a lot to learn. I knew from Clark’s CS 202 class that working with a customer is hairy business and that lesson was confirmed. Coach Bill Spencer was a great first customer experience – he was patient and understanding as the process developed. He articulated his needs well and came up with some good ideas. The problem for me was getting a firm grasp on what the final product would include and distinguishing between the needs and wishes of the customer and myself! I wanted to be creative and include everything. I was aware of the fact that if we made some adjustments and additions, we could market this product to not only skiers, but runners as well. Narrowing focus was very difficult. In the future, keeping the product goal vague (as to actual functions until more about the OS and what is reasonable can be determined) yet focused (on the true needs and core of the project) would be helpful.

Technically, I learned object-oriented programming, the PalmOS, and C++.

What Henry Learned

I learned a great deal on working on this project and these insights can be summed up in two major categories, Resource Management and Group Programming.

The palm pilots limited amount of memory and stack size really taught me the importance of memory management and efficiency. It was startling to realize how much my programming methods came from having an abundance of memory at hand. The challenges raised by this change in thinking were frustrating as well as interesting.

Group programming also provided some interesting challenges to me. Having spent most of my time programming and developing individually it was a challenge to figure out how to maintain source code usable by both Kc and I while dealing with the issues of concurrent usage.
Section 2: Nordic Version 4.2

What is Nordic?

The solution Coach Bill Spencer has been using to track splits is software called "Nordic" Version 4.2. It is written by John Ruger (apparently a 1980 Biathlon Olympian) and Karl Winklmann (a CS professor in Colorado), last copyrighted in 1989. Bill runs this software off of diskette on an old Toshiba laptop. It is run under Toshiba MS-DOS version 2.11. The following pages mimic the screens of this program.

[image: image1.png]

Nordic being used at a Cross Country Ski Race.

The program consists of several files, Olym10k.dat, Nordic.exe, Nordic.mes, Nordic.mus, Nordic.lan, and several text files with start lists created by the user, *.LST. The program file is, of course, NORDIC.EXE, and is about 100kb in size. You must boot the computer with the diskette in and then type "nordic" at the A> prompt.

The following chart displays similarly to the program Nordic.

Main Menu

[image: image2.png]Nordic Version 4.2

Main Menu

Create a ew starlst
Edit an existing startlist
Choose language
Run BIATHLON race
Run SPECIAL race
Display resuls on creen
Priat results on paper

Quit

T4 <Home> <End> <Enter>

‘Copyrght 1988, 1989 by John Rugerand K] Winkimamn,

Here the user may choose to create or edit a start list, change the program language (English, German, or French), run a Biathlon (regular races can be run here as well), run a special race, display race results, print them, or quit out of the program Nordic.

StartList

For a typical race, Bill would likely enter a start list the night before the race. So he would choose "Create a new startlist". Nordic prompts the user to enter a filename for this start list. Here we use the name "TEST.LST".

"Type new file name, up to eight letters or digits. ______TEST_______.LST"

The following screen appears, allowing easy entry of names and automatic generation of bibs and start times.

[image: image3.png]Tye.. ndhuge
v b

suime
Fil» [soim
Tl

Bgmning it b ¢

Sunbiy
Nk

sun

BN Nene SetTme
| U84 Wi o0
2 om0

A9
s
frwame

Timing Screen

After the start list is completed, the user can start the race at anytime. As the following ten racers complete lap 1, their splits are calculated and shown in the lap 1 box. Here it can be seen that racer Burgos is in the lead (split is 0), and racer Titas is 13 seconds behind in second place. The user only needs to type the bib number and hit enter to record the racer as he passes the marker.

[image: image4.png]“Acual sk tine

S EETL AN e [
ETor ST | [Gomaame T Pon A P
0B Bt pan || samenm 001
26 Crore RO || G @ w2
frots R || onceke e s 3
e Puw || G 7 @ 4
SR Rren Baw || e & 4 5
o oww T
S ha o G
£ e i kol
OB R oo eyt
bm7row
T
Remnos .
Wit om0 o 1 I
it e
i oRkos B i 3

e sou e

i

e s
| o rme evughns

Help Screen

The following help screen shows more options for the user during the race. (You hit F7 to get there.)

[image: image5.png]Timing.
10 time front of ueue
FL - undo timing of current bib

Enter time current bib
AP posipone ruce
AT edit ki time.

Queve

Spucchur add current bib at end
Ins add current bib at ot
Dol remove current bib

Tib numbers

0.9 form new bib number
Backspace crase bib number

oFleaderboards

Home T paUp
- -
tnd 4 e

Shooting penaltics

G.K__for up/down, then Spaccbar

Serolling of skier's board

Quitting, and miscellancous

AIQ, then password (0 quit
AIS togale sound switeh
S showinformation on skier

Don’t bother with the ‘SHIT” ey, it never makes any diflerence.
Hit any kev 10 st hack to race.

Status of Nordic

This program is no longer maintained. Also, it is quite difficult to run on more contemporary machines, because of operating under DOS 2.11. It is copy protected and won’t allow itself to be run from a DOS window in Windows 95.

It is cumbersome to bring a laptop to the track with heatpacks to keep the display from freezing. The large keyboard is nice for data entry, however, it is easy to get snow all over and risk shorting it out.

Section 3: Program Justification

Purpose of the Ski Timer Program, Lickity Split

The purpose of the program, Lickity Split, is to help coaches keep track of their racers’ progress throughout a stagger-start race. In the case of Coach Bill Spencer, skiers start at intervals of 5-30 seconds at a track. Racers complete the race by skiing a pre-determined number of laps on the track. This results in widely scattered finishing times. Coach Spencer monitors races by setting a marker somewhere along the track and records the time as each racer passes it. The program, Lickity Split, calculates and sorts progress of the racers as the coach records their marker passing time. This allows the coach to give the racer pertinent information, such as, "You’re 5 seconds behind the lead!" to encourage the racer to increase pace.

Race Terms and Definitions

Stagger-start: Not an official term but meant here as a race in which all racers do not begin at the same time. Rather, racers each have their own start times and must race based on clock information rather than the physical appearance of progress against other racers.

Bib Number: The number assigned to a racer to wear throughout a race. Usually this number corresponds in some way to the order in which racers start a race.

Start List: The day before the race the coach is given this list of racers’ Names, Affiliations, Bib numbers, and Start Times.

Start Time: Since the racers start at different times, the ‘Start Time’ is the time at which a specific racer begins skiing the track course. This is not necessarily an exact time as there is sometimes a 5-second start leeway given to the racer. The race officials do keep the actual start time, but the start list start time is sufficient for Lickity Split .

Split: The time by which a racer is ahead or behind other racers. For example, suppose the lead’s actual clock time is 00:45:09. The lead’s time is listed as 00:00:00. Another racer with an actual time of 00:59:32 would have a split of 00:14:23 (00:59:32 – 00:45:09) in comparison to the lead.

Relative Split: A split calculated in comparison to a racer other than the lead. Other racers ahead of this racer have a negative time, this racer is 00:00:00, and those racers behind have positive time.

Description of Race and Justification of Lickity Split

It is difficult and confusing to keep track of racers’ progress a stagger-start race. To illustrate the confusion of such a race without the help of something like Lickity Split, here is some sample race data. The chart and diagram below represent a small race: 10 racers, 5 laps. The Sample Race Data Chart shows bib numbers 1-10 with a 30-second start gap. In the Racer Place Progress Diagram at lap 0 (start time), place 1 represents bib #1 starting his or her first lap. Bib #1 completes lap 1 at time 56.34 seconds, almost 4 seconds before bib #3 even begins the race at 60 seconds. But when all bibs have completed lap 1, bib #1 is in 6th place in this lap, as seen in the Racer Place Progress Diagram.

Sample Race Data Chart and Diagram

PRIVATE
bib#
Start time
lap 1
lap 2
lap 3
Lap 4
stop time

1
0.00
56.34
107.72
157.52
210.79
258.28

2
30.00
86.58
134.01
184.42
243.95
298.11

3
60.00
108.13
165.84
217.68
274.71
327.91

4
90.00
148.46
204.73
257.30
315.65
360.77

5
120.00
179.65
235.37
288.62
346.78
406.44

6
150.00
195.07
252.35
305.51
351.44
407.86

7
180.00
239.15
287.31
339.27
392.95
438.85

8
210.00
266.25
325.61
380.25
436.92
493.36

9
240.00
290.74
335.81
395.44
454.21
499.46

10
270.00
318.17
374.05
423.25
471.25
523.67

[image: image6.png]Racer Place Progress Diagram

The following is a visual diagram of the same race at the time of Bib 1’s finish of the last lap. Physically looking at the race it would appear as though bibs 8 and 1 are competing for first place. In actuality, racer 8 has one more lap to go. And it is not apparent at all that racer 10 will win the race.

Visual Diagram

[image: image7.png]oacl
and
timer,

:Marker

Time

Dimensional
Laps

The only way to know what is happening during a stagger start race is to record all the racers’ times and calculate their splits as they complete each lap. With 10 racers this is not impossible, but as the number or racers is increased, it becomes more and more difficult without some kind of help.

Section 4: Other Timing Products

Existing Solutions

A coach is not completely helpless in timing these races. The old-fashioned pen, paper, and stopwatch solution is complicated, but cheap. There are a few tools out there that lessen complexity. Timers that print a ‘receipt’ and other timing devices that record ‘real’ times rather than splits are available.

Pen, paper and a stopwatch

This is a cheap but often inaccurate and inefficient solution. In a pinch, it is better than nothing.

[image: image8.png]

Two coaches, one with pen and paper (left), the other with Nordic (Bill Spencer)

Nordic

This solution was discussed in the previous section.

Receipt printing split timers

These are timers that print out times as they record so that they can be seen in a list without the need for much of a display. Here’s one I found on the web called TAG-HEUER Chronoprinter. It comes with or without computer serial port and ranges from $530 - $1490. It is not very versatile or user-friendly. However, these timers are pretty accurate and can be efficient once you learn them well. Normally, they are used for official race timing.

[image: image9.png]TAG-HEUER Chronoprirter

SR1000

Another product similar to the Chronoprinter is called the SR1000. TimeTech claims it’s "the most affordable timer on the market in its class" starting at $1895.00. This is also a timer that is typically used for official race timing.

[image: image10.png]o)
SR Ioee"

Jo o)

17 8 (o

))
N
Olw1O |)l i i |

Gl i

B

PocketTimer

Here’s a pilot timer, PocketTimer Pro by Stevens Creek Software, I found on the web this summer that does not record splits, but records actual time. It was re-affirming to see that an experienced programmer (Stevens Creek Software has been producing Mac, DOS, Windows and now Pilot programs for 10 years) chose the Palm Pilot for coach timing as well. They sell a complete bundle of coaching, timing, pace, announcing – just about everything you would need for a race and coaching. Because his product does not calculate splits, it is not as helpful to a ski coach as the printout timers are.

PRIVATE
Entry Screen
Results Screen

[image: image11.png]

[image: image12.png]

WindowsCE database

Bill Spencer mentioned a database timer another coach had written for a Toshiba large-sized palmtop that he had seen at the NCAA championships. He said it was pretty slick, except that the coach had trouble keeping the display screen warm enough. Also, the Toshiba had cost him $2500.

Section 5: Proposal

Kc Brock

3/4/98

CS Department

Computer Science Senior Project Proposal: Update the University of Alaska Ski Team Race Program

Summary

At the end of last semester, Professor Ted Gifford approached me with a potential senior project: rewriting the UAA ski team’s race program to run on a palmtop. The UAA ski coach, Bill Spencer, has an old laptop he currently uses to run a DOS program tracking the position of his skiers in a race. Because the racers have a stagger start, without this program he could not effectively know the status of his racers. The program is designed to give a coach standing by the course instant information on how individual racers are doing relative to each other as they come by during an interval start.

The Program – see Menu Options page for details

· Create a password-protected text file of racers, including name, affiliation, bib number, and start times.

· Using the text file, keep track of the racers’ progress allowing the user to view six laps and about twenty racers at a time. Keep track of time and order of the racers.

The Palmtop

There are three basic types of palmtops: Windows CE machines, DOS machines, and PalmPilots. The Windows CE programs must be written in Visual C++ or Visual Basic and be recompiled for the palmtop. Windows CE machines are a scaled down version of Windows95. There is only one DOS palmtop I am aware of – the HP 200LX Palmtop PC that runs MS DOS V5.0. PalmPilots have their own development language, CASLsoft. PalmPilots take touch-screen input only, there is no keyboard input, and they do not contain as many functions. In considering which palmtop should be used for this product, the following must be decided:

· Discover which palmtop will be most suitable for the weather conditions – display, keyboard, touch-screen input, and battery life.

· Determine which palmtop will be more marketable for ski coaches, e.g. market-life and extra functions like a scheduler, address book, e-mail, and Internet; also consider portability.

· Develop a way to view enough information on a small screen.

Faculty Signatures and Comments

Bill Clark __

Ted Gifford __

Larry Gordon __

Jim Jacobs __

Bill Spencer, Ski Coach

__

Menu options

Edit Race List

a text file of racers’ names, bib numbers, and affiliation (school).

· The file will be sortable by each field. Example file:

PRIVATE
Bib Number
Name
Affiliation

1
Joe Johnson
UAA

2
Rheba Roy
PLU

3
Winston Williams
UC

4
Ann Anderson
APU

5
Charles Chase
UAF

6
Michael Moore
UW

7
Sally Steel
AU

· The user will also be able to suggest from a frequently used names file so that as you type you can hit enter to accept the suggestion. For example, if ‘r’ is typed and the previous list had already been entered, Rheba Roy would come up – the choice then would be to either continue typing or to press another key (to be determined) to accept the choice. This will greatly aid data entry on the restricted keyboard of a palmtop.

· Bib numbers will be automatically entered starting with an initially input bib number.

Race

a program to keep track of the racers’ progress.

· A clock starts as the first racer comes by a timing point. All racers’ times will be relative to the first racer until another racer takes the lead – then times will be relative to the lead racer.

· Start racers, option for x racers (default is 1) every y seconds (default is 30) in bib number or specified order (default is bib number).

· Display first x racers (default is 20) by affiliation (school), lap number, or time (default is time order). The problem of display will need to be determined with some testing on an actual Palmtop. Here is a possibility for display:

Start List LAP 1 LAP 2

PRIVATE
Bib
Name
Affil
Start time

Bib
Name
Affil
Time back

Bib
Name
Affil
Time back

1
Johnson
UA
0:00

2
Will
CU
0:00

3
Roy
APU
0:00

2
Will
CU
0:30

3
Roy
UU
0:16

2
Will
UAF
0:05

3
Roy
UU
1:00

1
Johnson
UA
0:22

1
Johnson
AU
1:14

· Within each lap the results will automatically be listed in descending order from fastest to slowest.

· Edit display options (the default options listed previously).

· Time lap. Enter the bib number to have time and lap number automatically recorded.

· Manual entry. Manually enter the time and lap for a racer in case of accidental omission.

· Stop race.

· Display final race results.

Other options

Once the main program is established, there are several options that could be added.

· Run two races simultaneously.

· Run a biathlon race.

· Interface for timing a race with start switches and finishing lights.

Section 6: PalmOS

Palm Pilot Popularity and Challenges of the Palm OS

[image: image13.png]

Popularity

The Palm Pilot runs its own operating system, Palm OS. It doesn’t use the "standard" palmtop OS, Windows CE. It’s designed to be an organizer, including scheduler, address book, to do list, memo pad, and calculator, but because of its open architecture, 3COM left it flexible enough for developers to write plenty of custom applications. The first Pilots were released in 1996, Pilot 1000 and Pilot 5000. In 1997, Palm Computing sold 3,058,000 units. According to O’Reilly’s PalmPilot book, Pilot sales represent 70% of all palmtop sales. I borrowed a Windows CE machine from someone at work to test it out, so I decided to seek out a Pilot. The person that lent me the Windows CE machine let me have it for 3 weeks. The people with Pilots would only allow me to look at them. They used them so much they were dependent on them!

It’s an appealing platform:

· small – truly shirt-pocket size,

· light – 6 ounces including batteries,

· batteries are cheap and easy – 2 AAAs,

· batteries generally last most people three months,

· it’s inexpensive – less than $400 for the Palm III,

· synching with the PC is simple – one button push and it’s done,

· the software is efficient and intuitive – most things are quick and accessible with one or two button pushes,

· the list goes on…(see Appendix B, Palmtop Comparisons)

More curious, I began browsing the Web for programs written for Palm OS. As of the writing of the O’Reilly book, there are over 3,000 amateur and professional programs for the Pilot. There are several developing platforms, the three main ones being CodeWarrior, GNU C, and Satellite Forms. Source code for the resident applications was included in the CodeWarrior package, along with a software development kit and tutorial creating a notepad type program. GNU C didn’t have much support but it is free, Satellite Forms was expensive ($595) but very elegant, and people complained about the complexity and "buggy-ness" of CodeWarrior (for more on developer comparisons, see Appendix C, Software Development Kit Comparisons). Most professional products were written in CodeWarrior, however, and they have a significant student discount.

Challenges

Because the Pilot was intended for immediate data accessibility, the Pilot does not have an hourglass wait icon. PC users will often put up with the wait icon as they switch screens, save, load, etc., because they intend to use the application for a long time period, but Pilot users want their data to be readily available, like looking at your watch. This means optimization for speed in application design is quite important. Also, the Palm III has limited memory available – 96 KB of dynamic heap space. Therefore, optimization for memory is essential. And, the Pilot screen is quite small and input is with the Stylus pen and/or finger, so user interface design must be done with careful consideration. All these characteristics: speed (immediate access to information), memory optimization (limited memory for applications), screen size (160 X 160 pixels), and interface (pen and touch input) – combine for a challenging environment that is quite different from a desktop computer.

According to the Palm OS 3.0 Cookbook for Windows, to make an application as fast as possible, the developer needs to optimize for heap space first (memory), speed second, and code size third.

Heap Space

To optimize memory use, handles should be allocated for memory, lists should be sorted on demand rather than keeping several sort lists around, large structures shouldn’t be put on a stack, subroutines need to be arranged to about 32K jumps, and because the application has only 2K of stack space, memory chunks are preferable to global variables, and global variables are preferable to local variables.

Speed

As the developer programs, execution speed should be kept in mind. Pilots were meant for data viewing and gathering, not intensive processing. Heavy-duty processing can be done on the computer after the user synchs the Pilot with the desktop, if need be.

Code Size

The most common size of an application on the Palm is under 64K in size. It is stored in a single code segment so there is no need for jump tables. If the application is more than 32K, the subroutines need to be carefully managed because a routine cannot refer to another routine more than 32K away.

Interface

Not only should the program execute quickly, but navigation should be quick and easy, and finding and selecting data should be fast and painless. Most applications have a ‘base’ screen that the user comes back to and remains in for the majority of its operation. The screens must be stripped of complexity so that the user interface is simple and easy to learn. Most screens allow for editing data in place by one tap of the Stylus pen or finger. The designer should keep in mind that the more the program looks and acts like other Pilot programs, the easier it will be to use. The consistency will allow the user to learn the new program more quickly and allow him or her to rely on intuition and expectation as to how it will work.

The recommended application design process is similar to other design processes:

1. Design the preliminary user interface

2. Create a user interface prototype

3. Design a program prototype

4. Perform preliminary user testing

5. Localize if desired

6. Find tune performance and prepare for quality assessment testing

Familiarity with other Palm Pilot programs, the Palm OS SDK Documentation: Palm OS 3.0 Tutorial, Developing Palm OS 3.0 Applications Parts I, II, and III, the Palm OS 3.0 Cookbook, and experience with the language C and/or C++ will aid tremendously in application design. O’Reilly also recently came out with a helpful book, Palm Pilot Programming.

Section 7: Scope and Specifications Proposal

Overview of the scope and specifications of the timer written for Coach Bill Spencer

The program will be an easy and effective solution to the problem of tracking several stagger-start racers, will replace the existing DOS program used on a laptop, and will run on a Palm III by US Robotics.

Specifications

· Will operate in snowy (& wet), cold conditions (with heat pack if necessary)

· Will not time out and turn off during a race

· Enough battery power to last entire race

· Accurate to nearest second

· Adequate memory to store at least 30 start lists

Program Parts

Start List Entry Mode

· Enter start list, name, affiliation, bib# on Palm and by Palm desktop on computer

· Choose a saved start list to use

· Make a start list by touching names from a previous start list -- order names are chosen assigns bib#

· In case of skipped bib#, be able to remove a bib# and have everything move up one or turn bib# into another bib#

Race Timing Mode

· Track up to at least 500 racers

· Track up to at least 10 laps

· Automatic split times assigned to racers according to start list (or just in bib # order starting with #1 and ending with #500 when no start list is selected) at clock start
· Adjustable stagger-start: Start 1 racer every 30 seconds

· Clock and entries are 'safety' protected, manual start and stop, edit

· Times listed as split times
· Easy-enter Bib#: quickly, accurately, with gloves on

· Enter bib# by graffiti and/or touching bib# and/or dial-type touch entry, then hit record at time of passing timer-marker

· Immediately vital racer lap info is displayed in a visible way (perhaps toggles straight into Lap View)

· Uncertain bib# where you can temporarily enter bib? with actual time and go in and edit with proper bib# later (FLUFF)

· Edit record - right time, wrong bib# or right bib#, wrong time - be able to edit bib#, scroll time to fix split, or delete entry altogether

Lap View

· View 2 laps at a time, any 2 consecutive recorded laps (last and current); view name once on the screen, place in every lap, bib# in every lap

· Last bib# entered is quick to find and easy to see (centered and highlighted) for current lap and last lap

· Can scroll to or find a bib#

· Can go into a "show-me" function where detailed data for bib# is shown: bib#, name, affiliation, every lap data with + and  from significant places in each lap (racer is zero and 3 racers on either side with 1st, 3rd, 10th, 20th, 30th, etc. listed)
example:
[image: image14.png]Bib# rel place
139
3 42
5 40
10 25

30 423
40 430
50 431

· Race summary, sortable by fields:
PlaceNameAffil. Bib#Start SplitSplit…SplitFinish Split

These are the problems agreed upon by Coach Bill Spencer and Kc Brock which must be addressed and solved by the program.

__

Bill Spencer

date

__

Kc Brock

date

Non-essential items

The following are non-essential items - may or may not be easy add-ins, not to delay project

· Race points calculated
points per place (3X#of schools for first, 3X#-1 for second, etc.)
OR average split per school

· Biathlon penalty box could be included in the "show-me" function

Section 8: Screen Prototype

Lickity Split General Description

Lickity Split does not require multiple assistants, printouts, or a laptop. It is a program designed to run on the Palm Pilot III. It allows the user to enter start list names and affiliations manually and generate bibs and start times automatically. It displays splits, bibs and places for two laps at a time with the ability to scroll from lap to lap and down or up the racer list. It also includes a detail screen from which the user can see splits relative to a particular racer instead of relative to the lead. Time is recorded to the nearest second. The Palm Pilot must be insulated from the weather by either a GPS case or ziplock bag and a heat pack. Batteries will easily last through a several hour race if kept warm. Limits are as follows: bib numbers ranging 1-999, laps up to 15, names up to 8 characters, and practically unlimited time (until the battery runs out).

Lickity Split Screen Forms and Operation

The main four screens, called forms on the Palm Pilot, the user will see through the course of the race are

G. StartList form
[image: image15.png]B Mome A storttime

sl Y |
[]

(7]
O Ea)

The StartList form is the form where the user's race list will be edited and/or imported from the PalmPilot MemoPad program. This form is the default start form as the user needs to have a start list to begin the race.

H. Timing form
[image: image16.png]

The Timing form will be used for the majority of the program. It is the form where the user will enter bib numbers and record times throughout the race.

I. Detail form
[image: image17.png]

The Detail form is a form to which the user can quickly switch to see splits relative to a specific racer instead of splits relative to the lead.

J. Results form
[image: image18.png]

The Results form will display race results when the race is completed.

A. StartList form detail

The StartList form is the default form of Lickity Split. This means whenever Lickity Split is selected from the Pilot Menu, the StartList form is the first form to appear.

There are three main functions of the StartList form: 1) either enter names and affiliations of racers or, if names are not to be used, specify the number of racers 2) assign bib numbers 3) generate start times. There is also a set of menus available.

1. Enter names or number of racers.
There are four ways this can be done.

a. Enter names by Palm Desktop MemoPad (this is the PC portion of the Palm software).

The Palm Desktop is the PC portion of the Palm Pilot. It is an application that can be used to backup, edit and enter Pilot data.

Here is a screen shot of the MemoPad portion of the Palm Desktop on a PC.

[image: image19.png]Categaryin
MemoPad

& Paim Desktop
Fie Edt View Ioos HoSync Help

EE I e R o —

& | | Memo [Fecetin 7 =] || S “
22 | | 5] Face 100690 e [v =
Q B [Facs 10.05.98 - Women Uaa, || encersen
i o
Address cu apu gerard Racer last
apu harrisor neme-—glus | =
@ uremilon | i s
200 o vidns | inieL i
i cu st needed.

Category: [Racelist

Private: [~

ply

Two sample cu barkley

Application
Expense MemoPad

Diaglo

[Ready Bof2

The Memo titles show up in the Memo box on the left. The first line of the Memo is used as the title. In this case the title of the selected Memo is ‘Race 10-05-98 – Women’. With the exception of the first line, each line contains information for one racer, affiliation first, then last name. The MemoPad application has no limit on the way this data is entered so the user should follow a specific format or Lickity Split will import the data incorrectly.

After the user enters the StartList into the computer using the Palm Desktop, the Pilot can be hot-synched and the list will show in the MemoPad application under the category StartList.

b. Enter names on the Palm Pilot with the Palm Pilot MemoPad.

The MemoPad application is shown below in the main menu of the Pilot:

[image: image20.png]Palm OS™ Emulator

The names and affiliations are entered here just as with the Palm Desktop MemoPad, except the user will enter the data using the graffiti pad rather than the PC or Mac keyboard.

c. The start list can also be entered entirely within the program Lickity Split on the Pilot using the StartList form.

[image: image21.png]B Mome A storttime

sl Y |
[]

(7]
O Ea)

· Type with the Keyboard or enter with Grafitti using the space to tab from Name to Affil. Sections. It will skip over bib and start times to be generated later.

· [SHOW PICTURES OF GRAFFITI ENTRY]

· Import from a previous start list stored in MemoPad. This option will bring up a dialog box. The user will tap on whichever names he wants to include in the order he wants to include them, allowing for a blank for other racers not listed (edit later after done importing).

· [SHOW PICTURES OF IMPORT DIALOG BOX]

· The new list can be saved to MemoPad

· [SHOW PICTURES OF SAVING LIST TO MEMOPAD]

d. The user can leave a blank start list and merely specify the number of racers.

[SHOW PICTURE OF BLANK START LIST WITH NUMBER OF RACERS SELECTED]

2. Assign bib numbers.
For the bib numbers, the user will be able to enter the first bib number and the rest will be assigned according to the order the racers are listed. If a bib number is missing, the user can scroll down to it, change it to the next available bib, and the following numbers will be re-assigned accordingly.
3. Generate start times.
For the start times, the user will tap the Generate Starts button and the application will ask the user what start gap is to be used. Then it will automatically assign the start times according to the order the race list was entered.

· EXCEL MACRO TO HELP ENTRY?

· MANUAL ENTRY IS MORE IMPORTANT

· AFFILIATION ALL CAPS

· NAME 7 LETTERS, ALWAYS KEEP LAST LETTER IN CASE USED FOR INITIAL

· AUTOTAB WITH SPACE BAR

· AUTOCAPITAL FIRST LETTER OF LAST NAME

· EDIT ONLY MODE OF SOME SORT TO PREVENT ACCIDENTAL EDIT DURING RACE

· SCROLL SELECT FOR BIBS?

· SCROLL SELECT FOR GENERATION OF START GAP??? 05, 10, 15 ETC.

· SORT BY EACH COLUMN TITLE? BIB, NAME, AFFIL

4. Menus and other functions available on the StartList form.

The Edit menu includes

1. basic editing capabilities

2. the option to go to the Timing and Detail forms

3. get or save the start list in MemoPad

4. generate start times

5. record a racer’s time

6. the Keyboard and Graffiti functions

[image: image22.png]cur
copy
Paste
Undo
Setect Al

Get/SaveintemoPad
Generate Starts
Record Time.

To Timing
Tobetai

Keyboard
Gratfiti

%
<
e
v
n

m
s
T

~
o

x
/6

The Help menu includes

1. The other menu is a help menu that will be similar for all forms. Help for the current screen will be detailed enough to allow a novice to use Lickity Split without a manual. There will be a help option like this for each form.

2. There will also be an option to see general information about the program Lickity Split .

[image: image23.png]Help on RaceList
About LapCoach

The About Lickity Split gives the title and version of the application and an information button that will contain author and contact information.

[image: image24.png]About Lickity Spiit @

Lickity Splic Version 0.1
PROTOTYPE

B.Timing form detail

After the user has completed the information required in the StartList form, the user will proceed to the Timing form. The majority of the race should be spent here, recording and viewing racers’ progress.

[image: image25.png]

The operation of theTiming form will be as follows:

1. The user has five choices on how to enter the racer’s bib number from the Timing form into the bib field (the bib field will only accept numbers and has a maximum capacity of three digits):
a. tap the boxed numbers with the graffiti pen
b. highlight the racer in the Lap Table and his or her bib number will appear in the bib field
c. enter the bib number with the graffiti alphabet in the number graffiti area
d. enter using the numberpad function
e. leave the field blank and/or use the "?" entry (to be explained in step 3)

2. The user will start recording time as the first racer passes the track marker for the first time. The actual race time is not needed because we are only interested in splits – relative race times. There are three ways to enter time:
a. depressing the left ‘schedule’ button

b. using the /T shortcut from the TimeEdit menu (see menu choices in the menu section following)

c. tapping the ‘Time’ button

3. If a racer comes by too quickly, or for some reason the bib number is not known, then the user has the option to not enter a bib number and just record the time. This time will be recorded under a mystery bib number "?" to be edited later when the bib number is known. If the field has a number in it, the user can tap the "?" or "C" button to clear it and ensure a "?" entry.

4. The racer will be highlighted with his new information displayed in the middle of the current lap table along with whatever other racers have information for that lap. The list in the current lap table will be re-sorted and place numbers will be re-assigned after every entry, except for "?" entries. The racer will also be displayed in the middle of the previous lap table, but not highlighted.

5. The active table will be the one with a highlighted racer in the middle of the screen. The highlighted racer’s bib will appear in the bib field. The active table will scroll up and down through the racer list with the up/down scroll button.

6. The user can scroll back and view previous laps using the ‘address book’ and ‘to do list’ buttons or the left and right arrows at the top of the tables.

7. The user can scroll up and down in the active table using the scroll bar on the table, or the up/down scroll button.

8. The user can toggle to the Detail or StartList form from here by either tapping the Detail or StartList logical buttons or by using the shortcuts provided in the Menu.

· BIB SPLIT PLACE

· MIN:SEC ENOUGH FOR SPLIT

· NO TITLES ON TABLES

· ADD "?" TO 0123456789

· TRY BIB DISPLAY IN THE MIDDLE

· LEFT AND RIGHT ARROWS TO MOVE TO OTHER LAPS

· ‘ADDRESS’ AND ‘TODO’ BUTTONS MOVE TO OTHER LAPS

TimeEdit menu includes the following options:

1. undo or edit the last time entry

2. list all "?" entries

3. view previous laps not currently displayed

4. record time for current bib number or mystery ("?") bib

5. find and highlight a different racer

6. toggle to the Detail or StartList forms

7. bring up the Keyboard

8. or show the Graffiti alphabet.

[image: image26.png]Undo Last Time Entry.
Edit Last Time Entry
See AT Entries
ViewPrevious Laps

Record Time
FindRacer

Tobetai
TostartList

Keyboard
Gratfiti

7u
e
e
~n

Pal
e

o
s

x
/6

Help menu:

[image: image27.png]Help on LapCoach
About LapCoach

C. Detail form detail

The Detail form is meant to display splits relative to a specific racer and significant places around that racer. Significant places are the three racers ahead and behind the racer, the lead racer, and two of the nearest of 2nd, 3rd, 5th, 10th, 15th, 20th, 25th, 30th, 40th, 50th, etc.

The other information displayed:

1. the racer's affiliation

2. the racer's last name (up to a certain number of characters)

3. the racer's bib number

4. the racer's last split

5. the racer's place

6. the racer's current lap

7. the racer's start time

8. the Place, Split and Bib# of the significant places around that racer, such as Place 1, 2, and 3, the three places before the racer, the racer's information, and the three places behind that racer

9. logical buttons to toggle the user back to the Timing and StartList forms

10. a Time button to allow the user to record the time for the racer

[image: image28.png]

· BIB NAME TIME PLACE TIME PLACE

· +/- RELATIVE SPLITS

· SORT ON CURRENT LAP

· LEADER, 2 RELEVANT PLACES (1,2,3,5,10,15,20,30,40,50, ETC.), 4 IN FRONT, 4 BEHIND

· DON’T DISPLAY LEADING 0’S

· MAYBE TOGGLE TO THIS BY DEPRESSING A BUTTON AND GO BACK BY RELEASING?

· FIND RACER BY NAME – CAN WE DO IT LIKE THE FIND IN ADDRESS BOOK?

Options menu includes

1. edit the racer's information

2. select another racer based on name, bib or place

3. record time

4. go back to the Timingor StartList forms

5. use the Keyboard

6. display the Graffiti alphabet.

[image: image29.png]Edit Racer
Select Another Name
Select Another Bibsk
Select Another Place

Record Time

To Timing
Tostarttist

Keyboard
Gratfiti

e
o~
8
e

Pal

~
s

x
6

Help menu

[image: image30.png]Help on DetailRacer
About LapCoach

D. Results form detail

This form has yet to be created. It will display Place, Name, Affiliation, Bib#, Start Time, and all splits for each lap for each racer. It should also be exportable to MemoPad.

· PLACE, BIB, NAME, SPLIT & PLACE FOR EVERY LAP STARTING WITH FIRST LAP TO FINISH

[image: image31.png]

Section 9: Brock / Hedberg Proposal

(an Addendum to Kc Brock’s earlier "Computer Science Senior Project Proposal: Update the University of Alaska Ski Team Race Program")

Summary

This is a proposal to add Henry Hedberg as a partner to Kc Brock’s previous CS A470 proposal. There are three reasons for this addition:

11. There is too much work left to be done on the project to guarantee completion by the May graduation deadline,

12. There is valuable experience to be gained in a partnership because ‘real-world’ development is normally dependent on teamwork, and

13. A better quality project can be obtained by assigning responsibilities, allowing for more attention and concentration to those parts.

Completed

In the last year, Kc Brock has completed the following tasks toward the completion of this senior project:

· Research, selection, and purchase of Palmtop platform (Palm Pilot III)

· Research, selection, and purchase of Development Kit (CodeWarrior)

· Design of program logic and data flow

· Proficiency in C and C++

· Familiarity with CodeWarrior

· Simulation and modeling of project

· Screen prototype of project, "Lickity Split"

Remaining

The main tasks left to complete "Lickity Split":

· Development of the user interface

· Investigation and development of database to store and sort skiers, also MemoPad relationship

· Main logic must be written on CodeWarrior

· Addition of Race Scoring and Biathlon Scoring

· Addition of Simultaneous Race capability

· Production of a fully functional program prototype for testing

· Testing phase for Bill Spencer’s review

· Repair from testing phase

· User Manual and Documentation

· Marketing of shareware product: trial version, web page

· CS A470 review by CS Department

Responsibilities

PRIVATE
Henry Hedberg
Kc Brock

Database Class
– sorting
– MemoPad Import
– MemoPad Export
User Interface

Internal Error Checking
External Error Checking

Race Scoring and Biathlon Scoring
Main Program Logic

Simultaneous Race capability
Program Help documentation

Production of fully functional prototype for test phase
Documentation and User Manual

Testing phase for Bill Spencer’s review
– validation
– verification
– modification

Trial version for marketing
Web page for marketing

CS A470 review and grade by CS Department

Signatures

Kc Brock

date _____________

Larry Gordon __________________________________
date _____________

Henry Hedberg_________________________________
date _____________

Jim Jacobs

date _____________

Bill Spencer

date _____________

Section 10: Lickity Split Prototype

This particular piece of verbage is to document Henry’s and my prototype version of Lickity Split, released March 5, 1999. A few things to note at the outset.

Note

· This is a limited version of the intended final Lickity Split.

· At NO TIME can the user exit the application by tapping the hardware buttons or by tapping the silkscreen Calculator or Applications button. The data for the race will be lost.

· Limits are

· 250 racers

· 19 laps

· 8-character name

· 3-character affiliation

· 3-character bib: numbers ranging from 1 to 250? (won’t take over 250 right now …)

· The power save function may power the Pilot off after a few minutes. This can be adjusted by going to the Preferences and changing the auto-off setting. Also, if it goes off during the race, don’t panic, just push the power button back on and the race should be at the state in which it was left.

· Coach Bill Spencer will be taking this version of the prototype to the NCAA championships the week of March 7, 1999 for testing. When he returns, Henry and I and Bill will find time to meet and debrief on its usefulness, efficiency, accuracy, etc.

Icon

Here is what the Lickity Split prototype will look like when loaded onto the Pilot. The user will tap the Lickity Split skier icon to start the application.

[image: image32.png]Palm OS™ Emulator

L)
r
®
¢

Empty Timing Form

The first screen the user will see is the Timing form – this form is "home base" for the application.

Currently, the user will see only five racers and one lap at a time. The bib, place, name, affiliation, and split are shown. At entry, the fields are blank.

Before the user starts a race, a Start List must be entered. This can be done by going to the Lickity Split menu.

The menu is accessed by tapping the Menu silkscreen button in the lower left-hand corner.

Help Menu

[image: image33.png]Palm OS™ Emulator

i

RO

L)
r
®
¢

Here the Help Menu is displayed. The user will tap on "New StartList" or do a slash N to load a new Start List.

Start List Form

[image: image34.png]

The defaults on the start list screen are to start with a Start Gap of 5 seconds and bib of 1 with that bib starting at zero. It is not required to have a name or affiliation entered.

If the user would like to change the Start Gap, a pen can be placed at the 5 and it can be deleted and another number entered. This field is only editable at the first entry. From then on it is locked.

The Racer Number field merely keeps a count of the racers entered.

The Name field will accept a name of up to 8 characters. It will auto-capitalize the first letter and won’t accept anything over 8.

The Affil field will accept a 3-character affiliation.

The bib can be edited. The next bib default will always be one plus the previously entered bib number.

The Start time is automatically generated from the start gap.

The user MUST TAP THE OK button after every racer entry. When all racers have been entered, the user will tap the Done button. This will store all the racers in a race list to be used for the race.

Full Timing Form

[image: image35.png]Palm OS™ Emulator

Here is an example of how a screen might look while timing.

Enter a bib number by tapping in the Bib # area and entering the number.

Tap the Time button to time this racer. The racer’s split is calculated and the just completed lap information is displayed in the middle of the list.

Tap the Show button to show the racer’s most recently completed lap information with that racer in the middle.

Tap the left and right arrows to display the available information for previous and next laps for the middle racer.

To quit the race and re-initialize, the user can exit the application by tapping any of the buttons to go to another application or by tapping the application silkscreen button.

Section 11: Code

The Code or “The Mud, Blood, Guts, and The Beer”

by Henry Hedberg

Form Based, Event Driven Programming

The palmpilot uses the basic concept of a form much like Visual Basic in which each form is basically a separate application that has access to a common memory space and functions, running until it is closed or terminates. Form based programming provides special consideration as no portion of the whole program is always active just specific parts at different times. The use of persistent data is one of the ways in which the palmpilot gets around this problem. The palmpilot’s heavy use of databases to contain data easily deals with the need for persistent data.

Each form is responsible for handling all relevant events that occur while the form is active. An event is anything that could cause a change of state in the device. Usually an event is created by user interaction with the pilot. The form needs to handle all appropriate events and if it doesn’t handle the event then it is passed on to the system to be handled. In this way normal system events can be intercepted by the form event handler to be used in a new way. An example of this is our interception of the datebook hardware button on the pilot as a time button. It also allows an easy way to eliminate system level functionality for testing.

Pilot Memory Space Overview

The memory space of the palmpilot is one of the major restrictions in developing applications for it. The Palm has 2048 KB of contiguous memory that is allocated into two sections. The first section is the application runtime space and consists of 96K of memory. Of this, 64K is restricted for actual program space and the rest is allocated to the execution stack. Programs must avoid making jumps of greater then 64K to prevent jumping outside the currently loaded program space.

The rest of the 2M of memory is dedicated to database storage. Everything stored on the pilot is stored in database records of one form or another. Even applications are just records of type ‘Application’. This methodology of database and record management makes the palmpilot perfect for most PDA applications such as the calendar and contact applications.

Dynamic Memory Heap

The palmpilot OS employs a dynamic heap of all memory on the system to keep the largest contiguous chunks of memory together. To do this the palmpilot OS uses the handle -> pointer -> memory system of allocation. To allocate a new piece of memory for use the application must first request a handle to a free chunk of memory of the requested size. If enough contiguous memory is available the OS returns a handle to that chunk. When the application needs to read or write to the new chunk it must call MemHandleLock on the handle to lock the chunk in place in the heap and get a pointer to its location in memory. Once the program is done using the memory chunk it must call MemHandleUnlock to free up the chunk back into the dynamic heap. All memory outside of the application space is restricted from direct access by the Memory Manager Subsystem of the OS.

Filesystem IS Memory

A drawback of the palmpilot’s style of memory allocation is that there is no true filesystem or separate storage for applications. Because all the applications are kept as database records in the application database, the number and size of applications installed on a palmpilot reduce the amount of available memory that an application can request to use outside the application space. Even if there is enough total free memory available to fill a request by an application there may not be enough contiguous free memory. Currently no method is provided to guarantee that needed memory will always be available.

Limited Application Stack Size

Another limitation to the memory management style of the pilot is the small execution stack size. The small size prevents the instantiation of large classes and variables in local memory. It also limits the number of in-line and nested function calls that can be made as each one places more data on the stack until control returns to the calling function. To overcome this limitation we had to make extensive us of free memory chunks to temporarily hold class instances and large strings. The draw back on this method is that we are counting on a specific amount of available memory to be present. Because of the dynamic nature of the memory heap there is no way to guarantee that this memory will always be available when asked for. The best that can be done is to gracefully fail when memory cannot be allocated. Because of the interaction of the OS in so much of the memory management, even graceful failure is not sometimes possible as a failure in an API call such as MemHandleNew is not readily intercepted by the running application.
Global vs. Local Variables

Given that execution stack is so small it naturally follows that global variables which are instantiated once and then re-sorted use much less space than passed local variables which are added onto the stack for each time they are used in a function call. This can be avoided by the practice of pass-by-reference in function calls but because of the event style of execution no main application is ever continuously running. Thus there is no place for the first instantiating and then pass of reference to. The choices to use global variables in several key areas of the application were based on these factors as well as performance issues.

Algorithm Development

The main portion of the code revolves around the timing of the racers and maintaining the proper places and splits of each racer. The challenges included providing an algorithm that would grant fast performance while still using as little memory as possible. Because of the slow speed of the Dragonball processor in the palm pilot, size was sometimes sacrificed in the name of speed.

Classes created for the project

We decided that three classes would be needed to efficiently implement a timing algorithm. They are the racer class (Racr), the lap class (LpRc), and the timer class (Timer). The name of the racer and lap classes are limited to 4 chars because a database of records is created for each class and the palmpilot limits database record type names to 4 characters. The timer class is instantiated globally in the application.

The racer class (Racr) includes all the biographical information (bib number, name, affiliation) as well as methods to set and retrieve this data. In addition, the racer class also includes an array which holds the time of each racer as they complete each lap, a variable that holds the initial start time of that racer, and a variable that holds the current lap the racer is on.

The lap class (LpRc) contains arrays for indexing the various data of a racer and their status for a given lap. This class is relatively large as the arrays do a direct indexing of bib number or racer place to other data. Instantiating this class in memory when it is needed called for use of the external free memory to obtain chunks large enough. The benefit of this size is that with only a few direct array lookups any racer, his split and place in a given lap can be found immediately. Given that each lap has to be re-sorted to reflect the addition of a new time for a racer, this speed was a necessity.

The timer class (Timer) is small and straightforward. It contains methods to get the current time from the Palm OS and return an elapsed time since the first time it was called. This returned time is the time that is put into the racer records and is used to calculate their current split in the current lap. The timer class is reset every time the racer and lap databases are cleared. The OS time function returns the number of seconds from a preset date. To allow this date to change and to prevent buffer overflows the timer class records a initial start time and then returns the difference from that start time to the current time when the appropriate method is called.

Timing Algorithm Overview

The guts of the whole program is the timing algorithm. A step by step walk through of the timing algorithm follows:

1. A bib number is entered on the timing form and the time button is pressed.

2. The record number that corresponds to that bib number is looked up in the global array Bib2Rec. Without this array the only way to find the proper record would be to walk the list of database records. This is an unacceptable performance loss.

3. The racer record is found and a pointer to the appropriate location in memory is obtained. The racer record is needed to obtain the start time of the racer and the lap just completed. Once this information is obtained the racer record is released.

4. The spantime of the racer is calculated. Spantime is the length of time from the start to the current time. Each racer has a different start time so the only way to compare the performance of different racers is by their spantimes which negates the differences in start times.

5. The lap record for the lap the racer just completed is loaded from the lap record database. These records are indexed by lap number so the current lap is also the index of the lap record. Once the lap is loaded then the various arrays must be re-sorted to reflect the addition of the racer’s time. This involves calculation of the racer’s split which is a referential comparison to the other racers in the same lap. If the racer being added to the lap record has a spantime shorter then all the others (the shortest spantime is kept in a variable for easy comparison) then the racers split is set to 0. The difference between the old shortest time and the new is added to each racers split. The place of each racer is incremented by one.

6. If the racer’s spantime is not the shortest then the split is calculated to be the difference between the new racers spantime and the shortest spantime. A method of the lap class is called to locate the new place of the racer in the lap using the calculated split. Once the new place is found another method is called that uses a bubble sort to insert the new racer in Place2Split, Bib2Place, and Place2Bib arrays and push all the racers with larger splits down one place.

7. Once the new racer is inserted and all the index arrays have been sorted the lap record is released.

Pilot Database System

A palmpilot database is just a linked list implementation that allows the direct access of records if you know their position in the linked list. All of the overhead for locating the records in a database are handled by the Database Manager system of the OS. The database records are re-sorted every time a record is deleted and if a record is added to the beginning of the list all the rest of the indexes are moved down. A record is a chunk of memory to a maximum of 64K. The records can be cast into any data type and separate records can even be of different sizes and types. Each record also includes a header info block which contains the database ID to which it belongs and the category that the record has been assigned to. Categories are the palm pilot’s method for filtering the records. In a future version of Lickity Split the category feature will be used to allow multiple separate races to be timed at the same time. The race records would be assigned to categories that reflect the separate races occurring at the same time. This would bring LickitySplit in line with the standard functions that can be found in most palm pilot applications.

To deal with all of the data from the racers and the lap records, two separate databases were created for the program.

Databases Created For the Application

To facilitate performance the lap records were kept in a separate database because their linear incremental nature would allow the use of the index of the lap records to indicate the lap for which they hold data. This made locating the correct record for a specific lap very easy and quick. The racer database on the other hand was a different matter. Because the only unique identifier for a racer is their bib number and the bib number were not necessarily consecutive (which the database record indexes must be) the solution was to provide an index array that would hold the bib number and the index of the record for that bib number. This allowed simply direct lookups of record indexes from bib number at the cost of a large chunk of local memory.

Each time a racer enters a new lap the database record for that lap is created (if it doesn’t already exist). In this manner lap records are only generated as they are needed. Previous versions of the program created the maximum number of lap records and let them sit empty until they were needed.

Testing – Letting the Gremlins Run Free

Testing of the application was done with automated tools as well as standard boundary testing.

The Old Fashioned Way

The first round of testing involved running the application with each of the major limitations (number of laps, number of racers, length of data strings, etc.) set to their respective limits. A number of boundary errors were found as well as a few memory leaks. These were all successful resolved and we continued on to the next round of testing.

The Gremlins

Included with the palmpilot emulator we used was a feature called gremlins. Basically the gremlins are just automated event generators that exercise the application. After several initial runs and debugging of found errors the application withstood 3hrs and 136,752 consecutive events without a reported error.

Data Integrity

To test the actual timing systems a prototype of the application was given to Bill Spencer to take to an actual race and test. He reported no flaws in the timing data or any of the event handling systems. Small-scale local tests have also confirmed this report.

Section 12: Marketing

There are several things we discussed when we began to research marketing Lickity Split.

1. Do we need a business license?

2. Should we copyright our product?

3. Should we market it as shareware?

4. What should we charge for our product?

5. Where should we put it on the web?

6. How do we fill an order?

7. What about doing something like careware?

8. We have to register a creator ID for a Palm Product.

9. What does it cost to have our own domain and how would it serve our purposes?

10. What about producing a product with the Academic version of CodeWarrior?

Do we need a business license?

At this time, we don't think we need a business license. The cost for a business license is $50 and you must register with a company name. This is something we might do in the future if we want to create a Lickity Split version 2.0, or another product. Specific information about business licenses can be found at the Alaska Division of Occupational Licensing.

Should we copyright our product?

We decided that yes, we should copyright our product. We've put so much effort into it that we're proud. And copyrighting is affordable. We fill out several forms and mail them with a check for $20 to the Library of Congress. The forms we need, recommended by the ASP, are FormTX, Circular1, Circular 61, and the infamous Circular 92 which I have yet to find.

Should we market it as shareware?

Again, we decided yes, we should market it as shareware. We don't have a business license, so we cannot market it professional. And we don't feel as though our product is "pro"-fessional. We are students completing our first product for a customer so shareware seems appropriate. The Association of Shareware Professionals (ASP) provides a good FAQ about shareware. They also have a tips page for shareware authors.

What should we charge for our product?

We really went back and forth on this one. Henry felt there was no way he could charge anything over $30 for the product because we are amateurs. I understand that as amateurs, we can't really take the actual time it took us to produce Lickity Split as seriously as we could if we were professionals. But, we've come up with a efficient and reliable solution for a small market of ski coaches, with virtually no competition product. So how can we gauge what our product is worth? Well, a product I mention in section 4, called PocketTimer, is sold for $49.95. I did some more searching and found sports software ranging in price from $25 for a program that tests you on rules for a specific sport, to a product that calculates and manages an entire track meet for $249. It seems like $50 is very reasonable. And considering other split timing options that are available, $50 for Lickity Split + a PalmPilot for around $250 is a steal of a deal for cross country ski coaches. Henry finally gave up and said he didn't care what we charged.

Where should we put it on the web?

The problem here is that we cannot market a product on the school web pages. So we thought we can put our documentation and a limited version on our university web site, then put the actual version out on different shareware sites. The ASP has a listing of several of these sites.

How do we fill an order?

Here is a problem. As students, we are both very transient. It's possible that we could get a PO Box so that we could have a stable address for customers to write for information. But that costs money and that means someone would have to be around enough to maintain it. That means checking the box or having it forwarded somewhere, filling orders, making diskettes, depositing check, etc. A business friend of mine recommended a site called Wave Commerce that markets your product for you, charges you $25 a year and 20% of every sale for this service. They have no rights to your product and take care of credit card sales and delivery of your file. I was about ready to sign up when Henry found a site called PilotGear that has the same service with no $25 fee. And they only market products for the Pilot. This seems the most suitable place. Anywhere else we advertise can point to PilotGear.

What about doing something like careware?

We talked about making the product free to the public for other students and Palm developers. This has been the best way for us to learn about programming on the Palm. Also, it takes out any hassle for filling orders, people haggling for a new version, and you don't care if folks pirate it. But it seems like that route has no future. If we wanted to wash our hands of it, then careware is the way to go. However, it is possible that we'd like to continue the saga, and it would be fun to make a few bucks off of our har work. We might form a company, call it SpareTime, hire folks to write a version 2, and retire in Maui. You just never know.

We have to register a creator ID for a Palm Product.

Like the Mac world, Palm applications have to have a creator ID. To find out more about creator IDs go to Palm's Development zone. Henry registered us for one. Here's a screen shot of our registration.

[image: image36.png]Stop Refiesh Home | Seach Favories Histoy | Ml

|| Adtes [/v il comidevacne/orornt.c

Lins 7|

More connected:

Your Creator ID has been successfully
registered.
Creator ID: LSPT
Application Name: Lickity Split
Description: Ski Race Timing Application
Contact Name: Henry Hedberg & Kc Brock
E-mail Address: hhedbergh@acm.org
Company. nia
Confidential: No

‘You may submit another Creator ID with the form
below

Palm OS Application Creator ID
Registration

Eoore

[[@ et

PRIVATE "TYPE=PICT;ALT=RegCreatorID.gif (63892 bytes)"
What does it cost to have our own domain and how would it serve our purposes?

Wouldn't it be great to be masters of our own domain? That way, we could create a www.sparetime.com and folks could easily come find us. We could have email addresses, kbrock@sparetime.com and hhedberg@sparetime.com and those could forward to whatever email address we had at the time. But this service is a bit of a luxury for us. It would cost a minimum of $120. Once the cash starts rolling in, we can consider this option. Until then, the university site, distributing our limited version, and hooking up with PilotGear.com is our best bet. If we were to create our own domain, we'd most likely go with Domain Direct. They seem to be the best deal out there.

What about producing a product with the Academic version of CodeWarrior?

Here's a direct quote from the CodeWarrior documentation:

"2. Restrictions. The Software contains copyrighted material, trade secrets, and other proprietary material. In order to protect them, and except as permitted by applicable legislation, you may not decompile, reverse engineer, disassemble or otherwise reduce the Software to a human-perceivable form. You may not modify, rent, lease, loan, distribute or create derivative works based upon the Software in whole or in part. If the Software was licensed to you for academic use, you may not use the Software for commercial product development. You may use the Software to develop freeware or shareware."

Whew! I called and found out that if we upgrade to the professional version of CodeWarrior, we can then market a commercial product.

Copyright forms

Shareware sites

Section 13: User Manual

Lickity Split

A split timer for the Palm Pilot

User Manual

Version 1.0

April 26, 1999

Copyright (1999 by Kc Brock and Henry Hedberg

All Rights Reserved

Table of Contents
Table of Contents
252
Section 1: Installing Lickity Split
253
Using a Windows PC
253
Using a Macintosh
256
To Run Lickity Split
257
Section 2: Creating a StartList
258
Creating a New StartList in Lickity Split
258
Creating a New StartList on the PalmPilot MemoPad
263
Import StartList
264
Creating a New StartList with the Palm Desktop
266
Exporting (Saving) a StartList to MemoPad
269
Section 3: Timing a Race
271
Entering Bib Numbers
271
Show
273
Time
275
Section 4: Exporting Race Results
276
Section 5: Starting Another Race
278
Section 6: Limitations and Tips
280

Section 1: Installing Lickity Split

First the file Lickity Split.prc must exist on your PC. It can be acquired at various shareware sites.

Using a Windows PC

Run the Palm Install Tool (C:\Palm\Instapp.exe).

[image: image37.png]. Palm Install Tool
Uset: [ke Brosk. =

Fie() fsted below will e instale on your Paim orgarizer the.
et time you HotSync:

Fil Name File Sze Add

Dore

Tips:

Find cther applications to nstal an your Palm
oiganizer at it/ palm com

The (Add button loaks fistin the \ADD-ON folder
inside your CAPALM folder. Thisfolderis 2
convenient place {0 store dowrloadied Pain
orgarizer fes.

Click on Add and browse to the location of the Lickity Split.prc file and click Open.

[image: image38.png][

P T

(S Compurer
Netwerk Neighahaod
oo i cocs for ference 5. Shonou 1o Pt
My Boase
pbisting 5p
waing

Flename: [Lickiy Spitpre Open
Files of type: [All Paim Drgarizer Fi Types < o]

Click Done.

[image: image39.png]. Palm Install Tool
Uset: [ke Brosk. =

Fie() fsted below will e instale on your Paim orgarizer the.
et time you HotSync:

File Name File Sze Add
i3
Remove.
Dore
Tips:

Find cther applications to nstal an your Palm
oiganizer at it/ palm com

The (Add button loaks fistin the \ADD-ON folder
inside your CAPALM folder. Thisfolderis 2
convenient place {0 store dowrloadied Pain
orgarizer fes.

Next time you Hotsync with your Pilot, Lickity Split will be installed.

[image: image40.png]im Install Tool

Next ime you perform HotSync, the
listed fles il be installd on your Palm orgarizer.

(K] cancel|

Using a Macintosh

Procedure is similar. Run the program InstallApp. Click on the Select button. Set the List Files of Type to All Files, locate and select the Lickity Split.prc file and click Open. Click Install. Again, the application will install at the next Hotsync.

To Run Lickity Split

Simply tap the new icon on your Pilot after the application is loaded to start Lickity Split.

[image: image41.png]Lickity Split

Lickity Split Icon

The first screen you see will be the Lickity Split Timing Screen. From here, you need to create or import a Start List. See the next section for how to create Start Lists.

[image: image42.png]Palm OS™ Emulator

Section 2: Creating a StartList

Creating a New StartList in Lickity Split

To get to the StartList screen to create a new StartList using Lickity Split on the Pilot, use a shortcut N, or go to the Menu (by tapping the silkscreen Menu button) and select New StartList.

[image: image43.png]Palm OS™ Emulator

[image: image44.png]NewStareList
import Star

Euporc Start
Export Race Results
Keyboord K
Graficei 7

_—
b

|

=

Click OK to continue. This will erase any StartList data that may exist in the database (but not the ones that may be stored in the MemoPad).

[image: image45.png]Palm OS™ Emulator

This is the StartList Screen. The default StartGap is 5 seconds. This can be changed before you begin to enter racers by tapping the five, erasing it with a backspace, and entering the desired StartGap.

[image: image46.png]Palm OS™ Emulator

Enter Name and Affiliation by tapping in the space next to them. It is not required to enter the Name or Affiliation. You are limited to 8 characters to represent the Name, 3 characters to represent Affiliation.

You may change the Bib to any three-digit number. It will automatically increment by one for the next racer. The StartGap always begins with zero and will also automatically increment by the StartGap amount for the next racer. When you are done entering a racer, tap the Accept button and the # Racers Entered will increment so you know how many racers have been created in the database.

[image: image47.wmf]
When you have finished entering the StartList, tap the Done button to return to the Timing Screen.

[image: image48.png]Palm 0S™ Emulator

Creating a New StartList on the PalmPilot MemoPad

You may also create a StartList using MemoPad on the Pilot. Tap on the MemoPad icon and tap New. The memo can have any name on the first line. The second line must contain the word Start. The next lines must have the bib number, dash, Name, dash, Affiliation, and return. Below is an example StartList in MemoPad.

[image: image49.png]Palm OS™ Emulator

Import StartList

After the memo is created, you can start Lickity Split and select Import StartList from the Timing screen menu. Select the correct memo, note you can choose different categories of memos in the upper right corner. Enter the StartGap and click OK. These racers will be loaded into the Timing form unless there are problems with the format of the memo.

[image: image50.wmf]

[image: image51.wmf]

[image: image52.wmf]
Creating a New StartList with the Palm Desktop

Similarly to creating a StartList in MemoPad on the Pilot, a StartList can be created in MemoPad with th Palm Desktop. Create a new memo with the following format:

Name of Memo

Start

Bib-Name-Aff

Bib-Name-Aff

Bib-Name-Aff

Here is a screen shot of what the memo will look like in Palm Desktop:

[image: image53.png]im Desktop

File Edit View Tools HotSync Help

Q8| &[]] of 2 User. [KeBrack
& Wemo Pad Al
Date
=— 041533 Uan =
W Stert =
pat—
Address e Eracic Lo
4o LaicUsa
@ 50 6yron-Usa
51 Menaker-Usa
00 526l Lse
55 Nokin-Use
<] Siaon
Memo
nstall Categary: [Unfiled =
Private: - Apply
Dragto
Listby. New
Ready [of 1

The next time you HotSync, the memo will be loaded onto your Pilot. Then you will be able to import it when you run Lickity Split. See the page 9 for how to use the Import StartList menu option.

Exporting (Saving) a StartList to MemoPad

After creating a StartList from the New StartList menu option, you may wish to save this list to MemoPad. To do this, go to the menu option Export StartList, or do a shortcut E.

[image: image54.wmf]

You will be given the opportunity to name the list. You may enter any name you want up to 35 characters (do not use the word Start by itself – this is a reserved word) – this name will be recorded on the first line of the memo in MemoPad.

Tap OK and you will return to the Timing screen. A StartList in the appropriate format will be created in MemoPad for later import.

 Export in Lickity Spli
t
MemoList in MemoPad
 StartList Memo

[image: image55.png]Palm OS™ Emulator

[image: image56.png]Palm OS™ Emulator

 [image: image57.png]Palm OS™ Emulator

Section 3: Timing a Race

After you have created or imported a StartList, you can begin to time racers.

Entering Bib Numbers

You can tap the Number buttons or enter graffiti bib numbers in the Number graffiti box to put a bib number in the Bib entry section. You may need to tap on this section to activate it for entry.

[image: image58.wmf]Number

buttons

Splits

Lap #

Bib entry

Timing

buttons

Number

graffiti box

With a valid bib number entered, you can either Show that racer’s most current lap information, or you can Time the racer by tapping either of the Timing buttons.

Show

To show the latest information for a racer, enter the racer’s bib number and tap Show.

Here is an example of tapping in 51 and tapping the Show button. Racer 51 is moved to the middle of the list, and this racer’s most recently completed lap is lap 0, meaning 51 has not completed the first lap yet and the StartList information is showing.

[image: image59.png]Palm 0S™ Emulator

Viewing laps

All the completed laps for different racers can be shown by using the Browse forward and back buttons. The Lap # is displayed in the upper right hand corner and the current racer is highlighted. Lap 0 is the StartList.

[image: image110.png]pilot
Detivery nformation BN

Narne_ MagTronis orp.
Aaesz 123 Palmetto Road
Gty Boston Phone 555-1237

[image: image111.png]Delivery Information

| Name zookup
Rddress zookup
City Zookup Phone tookup
Item List

v

Status: @ Deliverad @ Not Deli

 EMBED MSPhotoEd.3
[image: image60.png]2 548 v 0004)
20 o B oo R0 0 |

Time

To time a racer, enter the bib number and tap either of the Time buttons.

Here is an example of entering bib 52 and tapping the Time button. Racer 52 has just completed lap 1 and the split calculated is 3 minutes and 54 seconds (behind the current leader for lap 1). Racer 52 is in 5th place in comparison to all the racers that have completed lap 1 so far.

[image: image61.png]Palm 0S” Emulator

Section 4: Exporting Race Results

At any time during the race, the race results (Bib, Racer Name, Racer Affiliation, Lap, Place, and Split information for each lap) can be exported to MemoPad. This functionality was designed for the end of the race so that if there are discrepancies in timing information, they can be challenged directly after the race is over.

Go to the menu options for the Timing Screen and select Export Race Results or do a shortcut R.

[image: image62.png]Palm 0S™ Emulator

You may enter any name you want up to 35 characters– this name will be recorded on the first line of the memo in MemoPad.

[image: image63.png]Palm 0S” Emulator

Here is what the exported Race Results will look like. The first line is the name of the memo. The second line is blank. The lines that follow are the records for each racer: Bib-Name-Aff-Lap0-Place-Split-Lap1-Place-Split-Lap2-Place-Split, etc. The splits are all in seconds.

[image: image64.png]Palm 0S” Emulator

Section 5: Starting Another Race

To end the current race and start another, either clear the database by choosing New StartList from the Timing Screen menu, or by importing a StartList. This will clear the other database information and all the new splits will be relative to the new leader.

[image: image65.png]Palm 0S™ Emulator

Section 6: Limitations and Tips

This product has only been tested on the Palm III organizer. There are no guarantees for operation on earlier or later Palms. Please let us know the results if you decide to test it.

Limit on number of laps: 20 laps.

Limit on number of racers: 250 racers.

Limit on Bib numbers: 3 digits, 1-999.

Limit on Name: 8 characters.

Limit on Affiliation: 3 characters.

Limit on Export filename: 35 characters, do not use the word Start by itself for the Export StartList filename. Start is a reserved word used when importing the list.

3Com Palm III Battery Life: Typically 2-3 months on two AAA batteries, according to 3Com.

You may leave the Lickity Split application or power off your Pilot at any time and return to time racers. The clock will remain accurate to the nearest second.

In cold weather, you may want to use a chemical heat pack to keep the screen dark – it gets lighter as it gets colder.

In wet weather, you may consider operating your Pilot inside of a ziplock bag. Another option is a GPS case – REI has one in which the touch screen continues to work pretty well. The bag is a little tacky to the touch of the graffiti pen. The bag remains flexible in cold weather. See http://www.rei.com/ and search REI’s site for WaterProof GPS case. At the time of this writing it lists for $22.95. The bag has a blue backing, but clear front. (Lickity Split is not affiliated with REI.)

Questions or Comments: contact Kc Brock at kcbrock@hey.to or Henry Hedberg at hhedberg@acm.org.

Also, you can visit our web site at http://hey.to/SpareTime.

Appendix

Appendix A: Previous Attempts

I enrolled for CS 470 in the spring of 1997. In November of 1996 I had arranged with my employer, ARCO Alaska, to create a piece of call tracking software for our help desk. We had one for the Mac that was called "Click and Count" written by one of the analysts there. ARCO at that time was beginning a migration to PCs and we would need a PC version. Because of the immensity of the Mac to PC migration, this project was soon abandoned.

The project for the migration was overwhelming. There were no complete records for the Macs that we had. The Mac world is a democracy, so there was a din of software, hardware, and files. This inspired us to do things right in the PC world, so I took on a different project for CS 470 starting January 1997: analyzing our assets and working with Microsoft Systems Management Solutions to manage them. I was also taking Engl 312, technical writing with Bernard, and wrote a few papers regarding asset management: CS 470 Project Proposal, Problem Solving Report for ARCO, and an article called Asset Agony.

After several months of work, this project was abandoned as well. Alas, the nature of a help desk is to put out fires, not prevent them. At this point I had approximately 120 hours of work into my senior project attempts.

Click and Count

Click and Count

Clicks – click on the square to enter data.

[image: image66.png]*January *

Click

Count

Macintosh
Unix
MainFrame
Netwark
Phone
PC
@ Counts.
(O Percents
) 6raph

s
c E T o
K X R L
T o
6 IFE oA A e
PP N N P X 00T A L or
B M S L & P H R A F N
U A K T C LRGP I F C 1
s[2 1 i 2
T
I
T
T T 2[1
7 4 2 0 2 2 2 1 0 0 0 0

Corporate = Legal, Tax, Aviation
Option Click To Subtract

20

Percents – shows percentage of calls for each category.

[image: image67.png]*+ January *

s
c E T o
Click K xRt
5 T h
6 IFE oA A e
(i PP N N P X 00T A L or
B M S L & P H R A F N
U A K T C LRGP I F C 1
Macintosh 25[10] s 5[10 55
Unix S E
HMainFrame S| S 10
Netwark o
Phone 5 E
PC E E o] 5 25
OCounts 35 20 10 ©0 10 10 10 5 0 0 0 0100
® Percents Corporate = Legal, Ta, Avistion

O 6raph Option Click To Subtract

Graphic – shows graphically the percentage of calls per category.

[image: image68.png]*January *

Click

Count

Macintosh
Unix
MainFrame
Netwark
Phone
PC
O Counts.
(O Percents
@ Graph

s
c E T o0
K X ROt
T h
6 P E coa A e
PP N N P X 00T A L or
B M S L & P H R AF N
U A K T Cc LR P F T
| 55
5
10
o
5
25
35 20 10 0 10 10 10 5 0 0 0 0100

Corporate = Legal, Tax, Aviation
Option Click To Subtract

Excel spreadsheets are generated.

[image: image69.png]Clicks

2 9 5 T
[y

]

=i IEE

This is a sample spreadsheet generated by Click & Count... (row 1 was adjusted - left one cell and the cell between UNIX and Mainframe was deleted) [image: image70.png]January

T

D

E

F

it

15

peu
GPMA

s

ock inLT
Frac
ExpL

HR

coe.

a7l

EqT AFF
DSTRALNC
other 1

T B
[Cecintosh

Tinix

FainFrame

Thetwork

Phone.

e

Reports generated – currently

Brian Donnelly generates a Quarterly Report including

· Total requests received during the quarter

· Average monthly and daily call volumes for

· this quarter

· previous quarter

· same quarter last year

· last 12 months

· Percentage of calls by BUB for the quarter and last 12 months
· Percentage of calls by platform for the quarter and last 12 months
· Bar graph representation of ISC & Security requests by BUB for last 12 months, with actual request line

· Security requests for this quarter and last two quarters for mainframe, UNIX & Oracle, and Network

For his own records, Brian collects

· Average incoming ISC requests per work day (does that come from phone calls and e-mail?) for each month for the last 12 months

· Bar graph representation of ISC & Security requests by platform for last 12 months, with actual request line

· total phone calls / hang ups / e-mail incoming / e-mail outgoing per dayExisting unobtrusive mechanisms should be used wherever possible (phone mail stats - that along with incoming email counts is where I get the average incoming requests per day.
Estimates of work loads are sufficient (ie clicks at the end of the day (or week -gasp!) are good enough- or creativity in some other way (ie indirect measure of workload (not sure what that might be - I am always looking for something that is easy to measure which has a clear consistent relationship to work load so I can just estimate workload)

Business Problem/Need:

In order to effectively market the help services provided by the ISC and to adequately establish service expectations, a measure of the daily work load carried by the ISC is needed. This project would develop a way to characterize or measure the workload in such a manner as to minimize time involvement of the ISC staff and secondarily to streamline the reporting of the data to management.

An application for NT 4.0 workstations is needed as the current application is Mac-specific..
Solution

Create a click-able, password-accessible, NT 4.0 or Intranet(Java? C++?)-delivered (advantages of using Intranet would be immediate access to data – no need to mail data as attachment at the end of the month – and inter-platform capability; disadvantage may be time-delay ... need to run some tests to determine differences) application that will tie to an MS Access database. Reports can then be automatically generated through MS Access???

Since fewer than 10 individuals will utilize any tool that is developed, bells and whistles are largely unimportant.

Whatever is coded needs to be straight-forward so that it can be easily maintained.

New Features

· Automatic compilation, graphs ...

· Connection to phone system? Enter extension and name is returned ...

· Connection to Org charts? Given name, department is returned ...

· Adjustment to categories ... ? Is that needed? Current categories are insufficient so we do need to make a change.

Current categories – add – ???

· Mac

· UNIX

· mainframe

· Network

· Phone

· PC

· Mail

· Internet/Intranet

· Server

· Application

· password

· Reminder for ISC to turn in clicks? Remote screen flash from Brian?

· Programmable reminder to return to unfinished call

· Automatic up to date compilation would be wonderful. Doesn't necessarily have to be up to the minute - a script could do an update daily??
· I send out surveys 1 or 2 times a year. For those it would be nice to have a record of which individuals had requested service. (again only if it is unobtrusive)
· Another problem today is that I think individuals are pretty inconsistent in the way they click. When its busy I may actually get far fewer clicks. Those people who are not specifically on the phones (Clementson, Bentley) really dont click at all. Some people update daily, others weekly and wouldn't surprise me if I get an occassional monthly - so month to month comparisons are probably pretty weak.

· The phone tracking system that Ollie kirkendall runs only ties to the voice mail phone (x1111) so 1198 and Jim or Dave's phones are not included in those stats - once again I end up with inconsistent stats.

 CS 470 Project Proposal – SMS

CS470 Proposal: Asset Management

Proposal

We, the ARCO Alaska Information Systems Center (ISC), propose that I, Kc Brock, implement a software and hardware asset management database for all ARCO Alaska Incorporated (AAI) IBM-compatible PCs entering the new AAI-LOGIN NT domain.

Background

In the largely distributed network, it is not easy to keep track of what hardware is on the network, much less what software has been installed. Mandeep Khera, a writer for HP Professional, claimed in an article called ‘Get Smart, Defeat Chaos’, that most companies underestimate their technology assets by between 50% and 75%. Khera sites an example where a major U.S. bank estimated they had 1200 desktops and 40 servers, only to find in an actual audit that they had 1850 desktops and 143 servers1. More conservative claims of technology asset underestimates from Gordon Rielly, chief executive officer of Asset Software International and John Hargreaves, managing director of PC audit software vendor Print are 30-35% and 20%, respectively2. Hargreaves adds that not only are the numbers underestimated, often the computing power of those assets is overestimated. But even with the most conservative predictions, these inaccuracies can be costly.

Gartner group approximates the total cost of ownership of a PC LAN is $11,889 per node per year for environments of 2,500 nodes3. At the most conservative figure of a 20% underestimation on this type of network would result in an unexpected maintenance cost of $5,944,500 per year, assuming those costs don’t go up.

The mismanagement of software licenses on these computers makes the problem even more complex. There are two main hazards with software mismanagement: illegal licenses and too many licenses.

For each copy of an application there must be a license purchased to validate the legality of that application. Reproducing software without authorization is a direct violation of the US Copyright Law. Since applications are usually quite easy to copy, there is a high probability that in a network of mismanaged PCs illegal copies of software applications exist.

Software Publishers Association (SPA) estimates that in 1996, $13.2 billion was lost to the software industry through piracy4. Organizations such as SPA and Business Software Association (BSA) have recently stepped up their efforts to catch software ‘pirates’. The BSA ordered six firms to pay a total of $700,000 in out-of-court settlements in 1996 and as of December of 1996 was conducting 300 investigations or ‘software raids’.5
Naturally, all this action has alarmed businesses, and as a result, many have bought too many software licenses for their computers. Gartner Group estimates that corporations spend as much as 7% of their software budgets on products they will never use6. George Black, a writer for Datamation, claimed that “the majority of organizations are over-licensed ... some overspending as much as $100,000 a year for needless licenses.”7
Other software mismanagement problems result in more minor offenses like inefficient disk usage because of multiple versions of an application residing on the hard drive, or even multiple copies of the same version may be installed when the computer switches hands from one employee to another. Since the average product cycle is 16 months according to Microsoft8 and Windows95 PCs usually have 10 or more applications as compared to the average of four or five on the old DOS PCs9, the problems of software management are becoming increasingly more difficult.

Scope and Limitations

The solution will track IBM-compatible PCs hardware and software licensing. It will not include AAI Macintoshes or PCs in the old AAI-ANC-MASTER domain. WinInstall will be used to distribute updates and approved discretionary software through the network.

General Method of Attack

The solution I propose will use Microsoft® Systems Management Server (SMS) to assign each PC a unique SMS number. Queries will be built with SMS to gather hardware, software, and user specifications for each PC. A database containing software purchase and licensing information along with hardware maintenance contracts will be constructed. A Microsoft® Access Database front-end will manage all this information and conduct passive metering of software licenses.

In addition, WinInstall software installation packages will be built and the procedures will be documented. WinInstall packages will push out any new applications or updates through the network to the user’s machine at the user’s request or the administrator’s discretion.

Specific Method of Attack

1) Build databases in Microsoft Access for software license and hardware maintenance managing;

2) Build useful SQL queries with SMS;

3) Import the SQL (Structured Query Language - database language) database information in the SMS server using ODBC (Open Database Connectivity) with Microsoft Access as a front-end manager;

4) Decipher the cryptic SQL SMS database code to make it useful to the asset manager;

5) Generate the following reports with SMS and the software license and hardware maintenance database using Microsoft Access as a front-end:
 Exception report for licenses by department charge code or machine name,
 Detail report for products by department charge code or machine name (hardware
 and software),
 Summary report by products, and
 Spare licenses and illegal licenses;

6) Develop WinInstall packages to distribute discretionary software

7) Document the procedure for developing WinInstall packages.

Requirements:

Manpower

The primary laborer on this project will be myself. I will consult with Jim Clementson in the ISC on technical matters as he is familiar with SMS and SQL. Steve Jordan, asset manager, will consult me as to what report properties will be most useful for him.

Equipment

We already have the following equipment which will be used extensively in this project: NT server, NT workstations, SMS server, WinInstall, Microsoft Access, Microsoft Word for documentation. Some Microsoft Access training would be useful, whether by class or book.

Timeline

Task
Week1
Week2
Week3
Week4
Week5
Week6
Week7
Week8

1) Build software and hardware databases

2) Build SQL queries

3) Import the SQL database

4) Decipher SMS database code

5) Generate the following reports:

 Exception report for licenses by dept charge code or machine SMS number

 Detail report for products by dept charge code or SMS number

 Summary report by products

 Spare licenses

6) Develop WinInstall packages

7) Document WinInstall procedure

8) Document project

Costs

200 hours of labor

$3,500

Microsoft Access / Microsoft SMS books

 $100

class on Microsoft Access

 $200

$3,800

Conclusion

As ARCO Alaska migrates from Macintosh to WinNT PCs, this is a unique opportunity to establish software procedures that will:

· Simplify and improve compliance with software licensing legalities - help to avoid too many licenses and piracy (fines up to $100,000 per offense10)

· Provide the end user with timely access to commonly used business software

· Better allocate costs - allows IT to charge back costs to departments or groups

· Minimize support efforts related to distribution and maintenance of software

· Minimize costs associated with computer software lower taxes - reduce property taxes and depreciation on unused assets

· Optimize asset use - determine whether too much or too little desktop processing power

· Lower maintenance costs by 25-50% by avoiding maintenance contracts on idle assets or assets under warranty

Asset management will streamline assets, make them work for us, boost productivity, and improve overall return.

1. Khera, Mandeep. Get Smart, Defeat Choas HP Professional June 96, p.48.

2. Black, George. Save Money through Asset Management Datamation April 1, 1996, p.62.

3. Bort, Julie. Curing the Asset Management Liability InfoWorld April 8, 1996, p.53.

4. Kay, Alan S. Little License Left for Software CommunicationsWeek January 6, 1997, p.50.

5. Callaway, Erin. Cleaning up Your Act PC Week December 9, 1996, p.E1.

6. Appleton, Elaine. Stop Buying Extra Software Datamation November 1996, p.72.

7. Ibid., 2.

8. Ibid., 6.

9. Ibid., 2.

10. http://gnv.ifas.ufl.edu/WWW/PIRATE/TRAINING.HTM

Appendix B: Palmtop Comparisons

Initially, Coach Bill Spencer, Professor Ted Gifford, and I thought that we would rewrite Nordic in DOS for a WinCE machine. After a lot of research and comparison, the PalmOS came out on top. This was because of its long battery life, its affordability, its simplicity and efficiency, no hourglass wait, and resistance to the elements. Also, it was apparent that more amatuer developers were writing for the PalmOS than WinCE.

I wrote up a quick document with a table comparing the features of the different palmtops available along with some detailed descriptions of the best ones, to help convince the coach that the PalmPilot was the way to go. I borrowed a WinCE machine and purchased a Pilot to show him the difference.

Handheld Computer Comparisons

Handheld Computer Comparison Table

PRIVATE

Apple MessagePad 2000
Casio Cassiopeia A-11 Plus
Compaq PC companion C140
HP 320LX palmtop-PC
Hitachi HPW10E4
NEC MobilePro 450 H/PC
Philips Velo 1
Psion Series 5
Sharp Zaurus ZR-3500X
3Com PalmPilot Professional

Est. price
$1,099
$499
$399
$599
$599.95
$199
$640
$699
$399
$369

Weight w/ batteries
22.1 oz.
13.4 oz.
13.8 oz.
15.6 oz.
13.6 oz.
12.8 oz.
14.8 oz.
12.5 oz.
12 oz.
5.7 oz.

Processor
RISC StrongARM SA-110
Hitachi SH
Hitachi SH
Hitachi CPU SH3 based/44 MHz
Hitachi SuperH
NEC Vr410
MIPS R3910 RISC
RISC ARM 7100
Sharp Proprietary
Motorola Dragonball 68328

ROM/RAM
8MB/5MB
34MB/6MB
34MB/4MB
5MB/4MB
4MB/4MB
18MB/4MB
4MB/4MB
6MB/8MB
1MB/1MB
1MB/1MB

incl. Keyboard
no
yes
yes
yes
yes
yes
yes
yes
yes
No

Handwriting recognition
yes
no
no
no
no
no
no
no
no
Yes

PC Card slots (Type II)
2
1
1
1
1
1
0
1
0
0

User-upgradable ROM/RAM
yes/yes
no/no
yes/yes
yes/no
no/yes
yes/no
yes/yes
no/yes
no/no
no/no

No. of RAM slots/no. avail.
0/0
1/0
1/0
0/0
1/0
1/0
1/1
1/1
0/0
1/0

Desktop cradle
no
yes
no
yes
no
yes
yes
no
none
yes

Modem
optional
no
Optional
optional
28.8 kbps
no
19.2 kbps
optional
14.4 kbps
optional

No. of serial ports
1
1
1
1
1
1
1
1
1
0

Claimed battery life
24 hr.
20 hr.
20 hr.
720 hr.
10-15 hr.
30-40 hr.
15 hr.
35 hr.
100 hr.
1,344 hr.

No. of batteries
4
2
2
2
2
2
2
2
3
2

Battery type
alkaline, Ni-MH
alkaline
Ni-MH, alkaline
alkaline
alkaline
alkaline
alkaline, Ni-MH, rechargeable
alkaline, Li-Ion
VDC alkaline
alkaline

Backup battery life
0
5 yr.
14 hr.
672-1,008 hr.
840 hr.
10 hr.
336-504 hr.
1 year
5 yr.
0

Cradle recharges battery
no
yes
Yes
no
no
yes
yes
no
no
no

software included
no
no
No
no
no
no
no
yes
yes
yes

http://www.computers.com/reviews/comparative/guide/0,28,0-1084-257773-352157,00.html
speed test results of Windows CE Hand-Helds (based on percentage, Philips being best at 100%):

[image: image71.png]Windows CE performance

a
Compag P sompanion €140 a
a
Hitaohi HPY1 0E4 a8
s
Phitips veto 1 100
o 20 0 EJ 0 100

CHET porformance index:
Soares narmalizad 19 144155 Sactom

Programming on the different Operating Systems

Windows CE:

In late September, Microsoft plans to introduce version 2.0 of its Windows CE OS. Around the same time, Microsoft officials also plan to introduce Visual Basic for Windows CE, which could spur applications development. Currently, the only way to build CE apps is with Visual C++, then to recompile them for each of the CPUs that run CE--a slow and clumsy process.

http://www.computers.com/reviews/comparative/substory/0,29,0-1084-257773-257789-1,00.html
PalmPilot:

CASL (Compact Application Solution Language) is a tool to enable you to use your Windows PC to quickly create software for the PalmPilot. CASLsoft is a development environment including HotSync conduit, symbolic debugger, and sample programs with source code examples. The cost of the full compiler is $64.95.

CASL programs can be compiled to run either under Windows or on the PalmPilot. For example, a CASL program can save information in a database on the PalmPilot, and after HotSyncing (which will make use of the generic CASL database conduit), the same program (compiled for Windows) can modify the same database on the Windows PC.

The language is easy to learn, and can be used to make programs that interact with the user in the familiar PalmPilot look and feel. Menus, selection lists, buttons, and text fields are all objects that can be displayed and manipulated by CASL programs. Non-visual objects (like files, databases, and the serial port) can also be accessed by CASL applications. Both visual and data objects are defined by statements in the language, as are their attributes (such as size, location, or database fields). The interaction between the PalmPilot user and the displayed objects (the press of a button, or the choice of a menu item, for example) cause CASL functions (groups of instructions) associated with the objects to be executed by the PalmPilot.

The CASL development environment produces p-code, which runs under control of the CASL runtime interpreter (CASLrt). CASLrt must be loaded into your PalmPilot in order to execute compiled CASL programs. The CASL runtime interpreter can be distributed as freeware, since it is needed by anyone who wants to run a CASL program, not just developers.

http://www.caslsoft.com/overview.html
3Com PalmPilot Professional

[image: image72.png]

Snapshot

It's no wonder that the PalmPilot is creating a bit of a sensation. The device is oh-so-tiny. Its interface is straightforward, its design is elegant. But you'll have to teach yourself a new kind of handwriting to use this pen-based device.

Review

It's hard to argue with success. If you want to know why the 3Com PalmPilot is roaring through the handheld PC market, simply pick one up. Its diminutive size is utterly irresistible: it disappears into your shirt pocket and weighs less than your wallet.

Simplicity, elegance, and efficiency--these are the elements that set the PalmPilot apart. Icons for its apps are right there on the backlit screen: Addresses, Expenses, Mail, Calculator, To-Do, Memo, Date Book, and so forth. There's no keyboard to fuss with; just scribble on the screen. And when you're ready to synchronize the PalmPilot's files with those on your desktop PC, simply drop it into its cradle and press a single button. The whole show is completely automatic.

The perfect handheld computer? Beware its learning curveball: you have to learn to write with the PalmPilot's own form of shorthand called Graffiti. Though it's very close to the alphabet you already know, there are important differences, especially where punctuation is concerned.

Millions of people consider this to be a small price to pay for the high utility of the device. It's easy to see why the first time you try to tap out the preceding two sentences on a tiny QWERTY keyboard--efficient, it isn't. The ability to enter information quickly and accurately into a handheld computer is essential to the success of the technology.

This is the PalmPilot's greatest strength, but not its only one. Its unobtrusive small size, excellent data synchronization, and modest but capable features explain its soaring sales. Grab one, and you'll understand why.

•

Facts

(more information)>

Product: 3Com PalmPilot Professional

Mfr. URL: http://www.palmpilot.com/
Est. price: $369

http://www.computers.com/reviews/comparative/capsule/0,26,0-1084-257773-257785,00.html
Philips Velo 1

[image: image73.png]

Snapshot

As Windows CE devices go, the Philips Velo is $100 more than the HP, Casio, or Compaq. The Hitachi's integrated modem is faster, but the Velo has top-drawer performance, superb ergonomics, and rechargeable batteries.

Review

Draw up your wish list for a handheld PC, and the Philips Velo will fill most of the bill. But don't get haughty if you just purchased one. The device's battery life is unimpressive, its integrated fax-modem is slower than the Hitachi's, and the machine is priced at 100 smackaroos more than the Compaq.

In other words, this is the best Windows CE device around.

Expect blazingly fast performance (for a handheld), an integrated fax-modem, and rechargeable batteries. Not satisfied? The Velo ships with 8MB of ROM (OK, only 4MB of RAM, but a little extra cash will bump it up to 8MB), a fine backlit screen, and a digital voice recorder with an integrated microphone that can capture up to 16 minutes of speech for every megabyte of storage. That's enough to give all your colleagues an earful.

The Velo's batteries are rechargeable--tiny NiMHs that are both a curse and a blessing. Thank goodness you don't have to schlep down to buy new ones every six weeks. But their charge life is fleeting...worse so as they age. Over the long run, they'll save you time (and money), but when it's time to replace them, be prepared for $49.99 worth of pecuniary pain.

The QWERTY keyboard layout--big, Cheerios-size ovals--performs its duty sullenly, offering little tactile feedback. On the other hand, the RJ-11 jack that pops right out from the Velo's screen bezel is a model for other handheld systems.

The Velo serves up all the features you should expect from a Windows CE device. If you're looking for a companion to your desktop system with a short learning curve, this is the gadget to get.

Product: Philips Velo 1

Mfr. URL: http://www.velo1.com/
Mfr. toll sales/info. no.: 408/558-2200

Est. price: $640

http://www.computers.com/reviews/comparative/capsule/0,26,0-1084-257773-257782,00.html
HP 320LX palmtop-PC

[image: image74.png]

Snapshot

You'll like what you see with the HP 320LX, thanks to a display that's considerably bigger than any of the other Windows CE devices. It has PC Card and CompactFlash slots, and its performance is impressive, too. It definitely gives the Philips Velo a run for its money.

Review

Who should know better how to shrink a PC than the company that introduced the first DOS computer small enough to tuck inside a fanny pack? In fact, Hewlett-Packard has produced handheld PCs for more than a decade. Its latest--the HP 320LX--hops aboard the Windows CE trolley after months of industry speculation.

There's plenty to like about the 320LX, not the least of which are its screen and keyboard, which are considerably larger than those of other CE devices. With a viewable area of 6.75 inches and a resolution of 640 by 240, the display removes some of the farce from viewing Web pages or graphics on a handheld unit.

With the extra screen size you also get the luxury of a larger keyboard. Can you touch-type on the HP? Don't kid yourself. But at least you can hunt and peck with fewer typos since your pudgy fingers won't inadvertently tap neighboring keys (there's fine tactile feedback from the keyboard as well).

Roominess has its price, of course, and in the case of the HP you certainly won't be squeezing it into shirt pockets without tearing them. Even the inside pocket of your suit may not be able to accomodate the unit: at 7.2 by 3.7 by 1.1 inches, it's not as big as the Newton, but it's big.

Performance was considerably better than the Casio, the Compaq, the Hitachi, and the NEC (though the Philips blew it away). Unlike the other CE devices, the HP 320LX has separate PC Card and CompactFlash slots. Also, the ROM chip is user-upgradable; simply swap it out when a new version of Windows CE arrives. In other words, the design and ergonomics are excellent.

The major differences between the HP 300LX and the 320LX reviewed here, are that the former lacks the CompactFlash slot, backlighting, and cradle, and comes with only 2MB of RAM, rather than 4MB. Given a choice, it's well worth the extra $100 to get the 320LX. This CE device's excellent ergonomics and fine performance should definitely put this PC on your shortlist.

Product: HP 320LX palmtop-PC

Mfr. URL: http://www.hp.com/
Est. price: $599

http://www.computers.com/reviews/comparative/capsule/0,26,0-1084-257773-257779,00.html
Sharp Zaurus ZR-3500X

[image: image75.png]

Snapshot

As goodies go, the Sharp is loaded: plenty of memory and an integrated modem, not to mention the bundle of connectivity software that comes with the device. But its apps and OS are proprietary, which means you should plan on spending some time with the manual.

Review

Look no further than Sharp's latest Zaurus 3500X for evidence of the competition among handheld PCs. Sharp poured as much into its latest device as it could...perhaps too much.

Its resume is certainly impressive: 1MB of RAM, 1MB of flash memory, an integrated 14.4-kbps fax-modem, a bright backlit display, and more integrated apps than any other device. The downside to these wide-ranging capabilities lies in the hours you'll have to spend with the manual trying to understand how they come together.

To its credit, communications are central to the Zaurus. Not only is email hardwired into the device, but so is connectivity to desktop PCs. File synchronization with a broad range of Windows apps is a breeze. In addition to a serial connector, there's also infrared.

Applications include the standard fare of word processor, spreadsheet, calculator, contact manager, and database. There's also an outliner, an activities list, a "scrapbook," and a search tool. You launch apps right from the screen, but multitasking among them and using their advanced functions isn't for sissies: they don't conform to Windows conventions and they tend to suffer from feature-itis. Likewise, the keyboard's layout and dual functions are just downright confusing.

The Zaurus 3500X should come as a welcome upgrade to those already familiar with the intricacies of the device's operating system and applications. But for those seeking their first handheld PC, it attempts to do too much.

Product: Sharp Zaurus ZR-3500X

Mfr. URL: http://www.sharp-usa.com/
Est. price: $399

http://www.computers.com/reviews/comparative/capsule/0,26,0-1084-257773-257784,00.html
Appendix C: Software Development Kits (SDKs) for the PalmOS

There are now several SDKs available for programming in the Palm environment. The ones recommended for the Pilot can be found at the Palm's Development zone.

Essentially, I looked at 4 products:

1. CASLsoft
CASLsoft was pretty easy to use and inexpensive ($64.95) but the trial version didn't look powerful enough to create anything more than simple games and programs.

2. MetroWerks CodeWarrior
MetroWerks CodeWarrior had a reputation for being difficult to learn. I wrote a few developers of professional products and most of them were using CodeWarrior. The academic price for CodeWarrior was $134. Source code for the programs that come with the PalmPilot was included.

3. GNU C
GNU C looked like a nightmare. It's one advantage was that it was free. But there was very little documentation on how it worked, not much of a screen development utility, and no support.

4. Satellite Forms
Satellite Forms looked like a dream. The trial version looked straight-forward and powerful. It seemed built to keep track of databases. However, the commercial price was ridiculous and the academic discount was only about 20% off.

Here are some notes I took when comparing CASLsoft and CodeWarrior

· notes

Here are couple of good articles about the different SDKs:

· PalmPilot development tools

· A Desktop in Your Palm

Notes

CodeWarrior for Palm OS 4.0

$339.95

http://srch.outpost.com/search/proddesc.cfm?item=47997
Description

CodeWarrior for Palm OS offers you a complete set of development tools for building Palm OS applications. You can create software programs that will run directly on a Palm OS device from the comfort of your Windows 95/NT or Mac OS computer using the award-winning CodeWarrior Integrated Development Environment (IDE). Take advantage of the enhanced TCP/IP support in the Palm OS 2.0 and design your application to quickly and easily synchronize Palm OS data over corporate intranets and in-house networks.

Building Palm OS-based Applications is a Breeze

The CodeWarrior IDE puts everything you need to create Palm OS 1.0 and 2.0 applications right at your fingertips: a GUI layout tool (Constructor for Palm OS), editor, project manager, C/C++ compiler, source- and assembly-level debugger, direct-to-device debugger, stand-alone assembler, and linker. The tightly integrated CodeWarrior development environment offers unsurpassed ease-of-use. With the CodeWarrior IDE you'll spend less time switching between tools and more time generating code.

Languages Supported

•C / C++

Host Operating Systems

•Windows 95/NT •Mac OS

Target Operating System

•Palm OS 1.0 and 2.0 SDK

Target Processor

•Motorola? 68328 Dragonball

Target Devices

•3Com Palm Pilot •IBM WorkPad

Compilers

•C Compiler

•ANSI C compliant for Windows •NIST Certified ANSI C for •Mac OS

•C++ Compiler

•Follows emerging •ANSI/ISO standard

Debugger

•Direct-to-device, source-level debugger for Palm OS applications •Palm OS device simulator (Mac only) •Compatible with CoPilot emulator (Windows 95/NT only)

Features

•Award-winning CodeWarrior IDE •Constructor for Palm OS •Windows-based Conduit SDK (needed to build Palm OS conduit applications) •CodeWarrior documentation and documentation viewing applications •Palm OS documentation and tutorials •Examples of Palm OS applications •Free technical support with registration •Next CD update free with registration •30 day money-back guarantee

--

Product Requirements

WINDOWS

•486 processor or higher, or •Pentium? processor or higher •PC running Windows 95 or •Windows NT 4.0 or higher •24 MB of RAM •CD-ROM drive for installation •90 MB of free hard disk space

MACINTOSH

•Motorola 68020 processor or higher, or PowerPC? 601 processor or higher •24 MB of RAM •System 7.1 or later •CD-ROM drive for installation •90 MB of free hard disk space

CodeWarrior in Practice

I downloaded a trial version of CodeWarrior and it looks quite complex. There will be a significant learning curve to use it. It is also expensive. But it is very powerful and seems to be the serious industry standard.

CASL (Compact Application Solution Language)

$64.95

http://www.caslsoft.com/overview.html
Description

CASL is a tool to enable you to use your Windows PC to quickly create software for the PalmPilot. CASL will let you turn your ideas into applications in a matter of minutes. CASL is the second PDA development tool from Feras Information Technologies (our first for the PalmPilot). CASL programs can be compiled to run either under Windows or on the PalmPilot. In fact, a CASL program can save information in a database on the PalmPilot, and after HotSyncing (which will make use of the generic CASL database conduit), the same program (compiled for Windows) can modify the same database on the Windows PC. The language is easy to learn, and can be used to make programs that interact with the user in the familiar PalmPilot look and feel. Menus, selection lists, buttons, and text fields are all objects that can be displayed and manipulated by CASL programs. Non-visual objects (like files, databases, and the serial port) can also be accessed by CASL applications. Both visual and data objects are defined by statements in the language, as are their attributes (such as size, location, or database fields). The interaction between the PalmPilot user and the displayed objects (the press of a button, or the choice of a menu item, for example) cause CASL functions (groups of instructions) associated with the objects to be executed by the PalmPilot. In syntax, the language is very similar to IZL, our development tool for GEOS based PDAs (OmniGo and Zoomer).

CASLide

· The CASL Interactive Development Environment (CASLide) contains tools that allow the developer to

· Edit CASL source files.

· Compile CASL programs.

· Run CASL programs under Windows.

· Interactively debug and display program variables.

· Convert compiled CASL programs into PRC files (PalmPilot executables).

· Install CASL programs into the PalmPilot.

A later release of CASLide will provide a "drag and drop" approach to creating CASL the visual objects of the user interface, allowing the developer to layout the display to be produced by CASL programs.

How it works

The CASL development environment produces p-code, which runs under control of the CASL runtime interpreter (CASLrt). CASLrt must be loaded into your PalmPilot in order to execute compiled CASL programs. The CASL runtime interpreter can be distributed as freeware, since it is needed by anyone who wants to run a CASL program, not just developers. The use of interpreted p-code allows us to look to a long term future for CASL as a multi-platform PDA development tool. We are aiming to port the CASL runtime interpreter to other PDA operating systems, with Windows CE being the next target in our sights. Our goal is to provide an easy-to-use tool that allows PDA developers to focus on the solutions they want to build rather than the idiosyncrasies of the PDAs they are targeting.

sales@CASLsoft.com

CASL in practice

CASL is very simple. I downloaded the shareware trial version and was able to produce a simple program in an afternoon. However, CASL seems limited. With all the restraints I have of the small screen to display data, I will have to have a lot of control over how the output looks. It appears that the on-screen buttons you can create are defaulted to be a default size. Also, you have to load a CASL run-time reader on the Pilot to actually be able to execute the program. This seems clunky to me. It is cheap and easy, but not ideal for my project. Here is a screen shot of the trial CASL and the CASL program I created.
[image: image112.png]|| e et yew fmert Famat Recocs Tods Window tob

M- né@v pmRY o Eeisivian

3 Tatles | 68 Queries|| B8 Forms || 8 Reperts|| 22 acros | 48 odes]

B tems open

B Locstors =
i teite P L Tl DLVTERS
e

IodB satelite Forms Linked Table: DLVLOCAT

 Satellite Forms Linked Table: DLVITEMS - Table
COMPANYID TTEM

2 Laser pointer
3 Sound System Rack
3_Party Speakers
P T |

Datasheet View

Test CASL Pilot Program

#
05-12-98

#

#
Declarations

variables;

greetings[3] = "'Sup?" , "Peace Out!", "Yo";

i = 0;

c = 0;

end;

#

Frame to display Title Window

#

frame main;

display "GREETINGS";

end;

#

Label to hold sentence before startup

#

label greet, main;

display "Here is your greeting";

position 75,500;

end;

#

Label to hold the place for "REALLY, it's true." when This button does nothing is pushed.

#

label nada, main;

display " ";

position 300,230;

end;

#

Greeting button to click to get your greeting

#

button greeting, main;

display "greeting";

position 250,600;

end;

#

Button that does practically nothing

#

button nothing, main;

display "This button does nothing.";

position 300,300;

end;

#

This is the program that calls the other subs

#

function greeting;

if c<6;

i = randomn(3);

put greet, greetings[i];

c = c + 1;

else;

put greet, "Enough already!!! You been greeted!";

end_if;

end;

function nothing;

put nada, "REALLY, it's true.";

end;

[image: image113.png]REETINGS

This button does nothing.

Here is your greeting

greeting

CASL has a mock Pilot window to run your program.

When the top button is pressed, you get a message.

[image: image114.png]REETINGS

REALLY, it's true.
{This button does nothing.|

Here is your greeting

greeting

[image: image115.png]REETINGS

REALLY, it's true.
This button does nothing.

Peace Out!

greeting]

[image: image116.png]REETINGS

REALLY, it's true.
This button does nothing.

'Sup?

greeting]

When the bottom button is pressed, you get a random greeting until the counter is full.

[image: image117.png]REETINGS

REALLY, it's true.
This button does nothing.

Enough already!!! You been greeted!

greeting]

GNU-C-Compiler

This Compiler uses PilotGCC to develop Pilot Applications. It seems to be coming out of vogue. I wrote a professional developer, John J. Lehett with Land-J Technologies, and asked him what he used:

On Tue, 12 May 1998 09:39:34 -0800 (AKDT), you wrote:

>Good morning,

>

>I am a senior computer science student at the University of Alaska

>Anchorage working on my final project. I will be writing a program for a

>PalmPilot and am determining what development package I should use. Could

>you please tell me what you all use to develop? CodeWarrior for Palm OS

>v4, from Metrowerks? CASL Tools for Windows?

>

>Thanks for your time,

>

>Kc Brock

>kc@saturn.math.uaa.alaska.edu

Sure, I used to use GCC, although lately I have moved to Metroworks to

be more in line with the official releases from Palm. Either is a

good environment in my opinion, its just what feels more comfortable

for you to work with.

J.J. Lehett

John J. Lehett

Land-J Technologies

jlehett@iag.net http://www.land-j.com

And here is another response (to the same question) from Stevens Creek Software, who develops sports and timing applications for swimmers:

Date: Wed, 13 May 98 16:13:30 -0700

From: Stevens Creek Software <sales@stevenscreek.com>

To: Kc Brock <kc@saturn.math.uaa.alaska.edu>

Subject: Re: PalmPilot development

CodeWarrior on a Mac

Several other shareware sites use GCC to develop, but the more professional sites seem to be using CodeWarrior. Also, GCC is not mentioned as an SDK on the "Software Development Kits (SDKs) page" on the official PalmPilot developer's pages (http://www.palm.com/devzone/sdks.html).

Satellite Forms 2.0 Developer Edition for Palm Computing

http://www.softmagic.com/Pages/prod_satforms.html
Satellite Forms: custom electronic forms for PalmPilot and WorkPad

[image: image118.png]- CASLide2 - greet.cs!
Fle Edt View Proect Buld Egecute Took Window Help

[_[CIx]

[EEDSE = @& 2K ||Wniwoow 1| &|EH S ® |

Test CAGL Pilat Program

greet # 0512798
res :

areet Declarstions

[Inages variables:

grestings{3] = "'Sup?" . "Peace Out
i=0

end;

0

+
Frame to display Title Window
¥

Erane main;

display "GREETINGS":

end:

+
Label to hold sentence before startup
¥

label grest. main:

display 'Here is your gresting”:
position 75.500;

end;

BProectWor [greetost

M[Conpiling: C.\Frogran Files\CASLsof t\CASLZ\Ganmples\grest.CoL
CASL compiler version 2.01 (linited for dema)

Total errors = 0

TR, buie

For Help, press F1

[reBCai0s |

Use Satellite Forms to develop multi-form applications for 3Com® PalmPilot and WorkPad that seamlessly integrate with your enterprise data, stored in DB2, Oracle®, Lotus Notes®, Microsoft® Access® and other databases. Satellite Forms' exclusive multi-form technology and powerful filtering features combined with PalmPilot's one-touch connectivity lets developers create integrated applications easily and with unparalleled versatility.

Customized forms are created on the desktop with the easy to use App Designer. Transfer of information between the database and PalmPilot is managed by the database application through the Satellite Forms HotSync™ Extension ActiveX control. Customized forms are created on the desktop with the easy to use App Designer.

Transfer of information between the database and PalmPilot is managed by the database application through the Satellite Forms HotSync™ Extension ActiveX control. The ActiveX control, combined with PalmPilot's powerful HotSync technology, allows developers to provide effortless synchronization with database applications. Complex synchronization tasks can be performed between PalmPilot and the desktop database with the simple press of a button by the end-user. Satellite Forms also provides a DLL API to use with database applications that don't support ActiveX controls.

Satellite Forms is designed to allow for the rapid development of custom PalmPilot and WorkPad applications that integrate with your existing data. Satellite Forms' multi-form technology and easy database integration is a great fit with PalmPilot's portability and powerful HotSync functionality. Satellite Forms and PalmPilot allow for a mobile solution that is affordable, quick to implement and a highly effective way of keeping your mobile workforce connected.

Create Applications For

•Sales Automation

•Inspections

•Marketing Research

•Collections

•Patient Records

•Repair Service Reports

•Inventory Control

•Field Service

•Pharmaceutical Detailing and More!

Features

•App Designer lets you create forms on the desktop with drag and drop ease.

•Satellite Forms' exclusive multi-form technology allows the development of multi-form applications with linked forms that share information.

•Satellite Forms' HotSync Extension ActiveX control and PalmPilot's HotSync Technology make integration with the desktop seamless, fast, and easy.

•Uses the popular dBase format to transfer information between PalmPilots and the PC, making Satellite Forms compatible with the leading database products.

Forms are custom designed and can have:

•Text and numeric input fields, as well as...

•Paragraph, graphics, ink fields, and time/stamp controls;

•Buttons, drop lists, radio buttons, check boxes, and more!

Benefits

•Access:

- Provide data access to your mobile workforce anywhere, anytime.

•Speed and Accuracy:

- Help your clients meet their demands for rapid turnaround and accuracy by eliminating the need for re-entry and verification.

- Achieve faster and more accurate results using electronic forms with drop lists and required fields.

•Ease of Use:

- Create "pen friendly" forms with an easy-to-use interface that does not require computer experience from the end-user.

- Synchronize data with the main database at the press of a button.

•Cost Reduction

- Eliminate the need for expensive paper forms, duplication, re-entry, verification, and overnight shipping.

- Integrates seamlessly with existing systems.

•Revenue Enhancing:

- Your more efficient and effective workforce can see more clients, take more orders, perform more jobs.

Requirements:

•IBM PC and Compatibles, 386 and higher

•Windows 95 or Windows NT 4.0

•Pilot, PalmPilot or WorkPad

•Database Product such as Microsoft Access

Satellite Forms Includes:

•App Designer - Visual Development Environment

•PalmPilot Conduit

•Satellite Forms HotSync Extension ActiveX Control and DLL API

•Satellite Forms Engine

•Manual

http://www.softmagic.com/
===

Satellite Forms DE 2.0 enables organizations to quickly create sophisticated handheld applications for the 3Com PalmPilot™ connected organizer, the IBM WorkPad™ PC Companion, and the Franklin Day Planner. These applications can work in conjunction with Oracle , DB2, Lotus Approach , Lotus Notes, Microsoft Access and many other database management systems. Extending enterprise applications to handheld computers reduces data collection errors, streamlines data processing, gives mobile professionals timely, up-to-date information, and helps organizations more effectively allocate and deploy hardware and human resources. Leading organizations use Palm Computing platform compatible handhelds to automate business functions ranging from sales order processing to home health care delivery, field service, and inventory control.

With Satellite Forms DE 2.0, corporations can cost-effectively deploy handheld applications that are much more powerful and flexible than ever before. These applications can incorporate business rules, complex logic, and validation, ensuring accurate data collection, and reducing the need for re-keying data or performing time-consuming quality assurance. Developers build validation logic into their Satellite Forms applications using event-driven scripts written in a scripting language similar to Visual Basic .

Solutions, created with Satellite Forms DE 2.0, can now be even easier to use, reducing training costs and eliminating the need for any computer experience among end-users. Mobile workers can learn an application’s user-interface quickly and use the application much more efficiently because they can now be guided by dialog boxes, automatic calculations, pop-up keypads, varied fonts, sound, graphics, and new user-interface controls. Developers can incorporate these features through new control attributes, additional data filtering capabilities, advanced keywords in the scripting language, and the Satellite Forms application programming interface (API).

Satellite Forms DE 2.0 can support the many solutions that require barcode readers, printers, and infrared communication. Drivers for these devices are available on the SoftMagic web site. Additional drivers and custom user-interface controls can be created with the Satellite Forms API. The API enables developers to enhance Satellite Forms by writing "C" programs called SFX plug-ins and SFX controls (e.g., using Metrowerks® CodeWarrior®). Through the API, developers can extend the Satellite Forms Scripting Language, build additional hardware device drivers, and create custom Satellite Forms user-interface controls. Satellite Forms developers can create their own controls or use controls created by 3rd parties.

"Satellite Forms extension technology will enable corporations to rapidly develop sophisticated, mission-critical applications. We are excited about the increased versatility that SoftMagic’s extension technology brings to the Palm Computing® Platform." said Mark Bercow, vice president of strategic alliances and platform development for Palm Computing, Inc. a 3Com Company.

Greg Galanos, president and chief technology officer of Metrowerks added, "Now developers can leverage the power of CodeWarrior within their Satellite Forms applications, enabling them to quickly build highly versatile applications."

Satellite Forms applications are created on the PC desktop using App Designer, a visual development environment. Developers drag and drop Satellite Forms visual controls onto forms for complete flexibility over the appearance of the user-interface. They can even enhance their applications by adding advanced functionality including control actions, filters, scripts, and extensions. Satellite Forms applications interface with databases through the Satellite Forms ActiveX control and integration tables, making corporate data readily available to mobile workers. The Satellite Forms ActiveX control extends Palm Computing’s HotSync® technology and gives developers complete control over the data transfer between the desktop or server and the handheld computer.

Pricing and Availability

Satellite Forms Developer Edition 2.0 is available from SoftMagic Corp. by calling 1-561-995-8920. International customers can visit the SoftMagic web site, www.softmagic.com, for a listing of local distributors. The Satellite Forms DE 2.0 is priced at US$595.00 per developer and includes a 30 day money back guarantee and unlimited application distribution rights. Registered users of Satellite Forms version 1.0 will receive a free upgrade to Satellite Forms DE 2.0.

Satellite Forms works with Pilot 1000, Pilot 5000, PalmPilot Personal, PalmPilot Professional, and Palm III organizer editions, as well as the IBM WorkPad PC Companion and Franklin Day Planner. An IBM PC or compatible with Windows 95 or Windows NT 4.0 is required to run the Satellite Forms App Designer. To create integrated database applications, a database product such as Microsoft Access or Oracle is also required. Visit SoftMagic’s web site for additional product information and links to other Palm Computing platform related sites.

SoftMagic Corp. provides software and services for the mobile computing market. The company’s software enables handheld computers to play an integral role in enterprise information systems, both as platforms for data collection and as windows into corporate databases. SoftMagic’s development tools facilitate the rapid development, easy deployment, and cost-effective maintenance of powerful mobile solutions. SoftMagic Corp. is located at 6421 Congress Avenue, Suite 114, Boca Raton, FL 33487; phone: 1-561-995-8920; fax: 1-561-995-8921; web address: http://www.softmagic.com. SoftMagic was founded in 1993 and is privately held.

PalmPilot Development Tools

A Desktop in Your Palm

(http://techweb.cmp.com/iw/645/45olplm.htm)

PRIVATE
August 25, 1997

A Desktop In Your Palm
The PalmPilot helps track appointments and phone lists-and lets companies deploy portable business apps

By Andy Feibus

That weighs 5.7 ounces, fits in your pocket, helps you keep track of appointments and phone lists, as well as jot down meeting notes-and is Internet ready? The PalmPilot from 3Com's palm computing division is all of the above and more. This flexible personal digital assistant is one of the best desktops-on-the-go you'll find. Beyond that, the PalmPilot is also an opportunity for corporate IT organizations to deploy truly portable business applications. A number of application development tools are available for the device, as are a host of shareware and freeware applications.

The PalmPilot, which can be purchased in many office-supply and consumer technology stores, comes in two flavors. The base product is the PalmPilot Personal Edition, which is priced at $299. It includes 512 Kbytes of static RAM, a backlit screen, several personal-information-management software applications, a few games, TCP/IP support, a stylus for entering information, and a cool HotSync desktop cradle for synchronizing your PalmPilot data with your desktop computer's PIM. The PalmPilot Professional Edition costs $399 and includes the above features plus an E-mail application and 1 Mbyte of memory.

In addition to having only a relatively small amount of memory, the PalmPilot is based on a Motorola 68000 CPU and the PalmOS operating system, so those looking for Wintel binary compatibility or distributed component architectures should look elsewhere. The PalmPilot is a great tool if you are looking to take your PIM data on the road and don't want to lug a portable computer.

The PalmPilot's PIM tools will do the trick for most users. Included are an address book, a to-do list, an appointment calendar, a calculator, and a notepad. Also included is an expense-reporting application that synchronizes with an included Microsoft Excel spreadsheet. The appointment calendar works even if the PalmPilot is turned off: When a scheduled appointment time arrives, the PalmPilot turns itself on, plays a few tones, and displays the appointment on the screen.

The PalmPilot does not include a keyboard. It's a pen-based computer, equipped with a stylus to select applications and options as well as enter information.

Unlike bulkier pen computers such as the Newton, PalmPilot does not "learn" the user's handwriting. Written input must be entered using Graffiti, a symbol set similar to standard letters and punctuation, except that each character is formed from a single pen stroke. For example, when writing an A, you don't draw the crossbar but draw the letter like an upside down V.

The area where writing recognition occurs is a small block at the bottom of the PalmPilot's screen. The block is divided into two parts, one for characters and one for numbers. To insert punctuation, you can tap the stylus once on either side of the recognition area and then write the Graffiti form of the punctuation. It took me about two hours of writing to learn most of the Graffiti character set. A game is included on the PalmPilot to sharpen your Graffiti skills.

Users will probably have a hard time remembering all of Graffiti's characters and punctuation. But the PalmPilot's interface includes a virtual keyboard you can use to tap out the characters you're having trouble writing. For the first few hours of use, the on-screen keyboard is a lot easier than Graffiti, but learning Graffiti will be faster in the long run.

Getting Data In Sync

The major improvement in the PalmPilot over other portable PIM devices is its HotSync cradle. When the PalmPilot is placed in the cradle-which is plugged into a desktop computer's serial port-and a button on the front of the cradle is pressed, the PalmPilot will automatically synchronize its PIM data with data stored in the desktop's PIM applications. The user can configure this synchronization to be either unidirectional or bidirectional with the HotSync Manager software on the desktop PC.

Out of the box, the PalmPilot synchronizes its PIM data with only the PalmPilot desktop, which is a set of simple PIM applications that run on a Macintosh or Windows PC desktop. However, PalmPilot Professional's E-mail facility will exchange messages with a number of common E-mail programs, including Lotus cc:Mail, Microsoft Mail, Microsoft Outlook, Microsoft Exchange, Windows Messaging, Windows for Workgroup Mail, and Qualcomm's Eudora 3.0. This feature lets you read, delete, and forward E-mail that's in your desktop mailer, as well as create mail and reply to existing mail. However, HotSync leaves it up to the desktop mailer to send and route your E-mail.

The HotSync feature also lets you download additional programs to your PalmPilot. The PalmPilot software CD includes four games that you can download to your PalmPilot. The 512-Kbyte memory size seems small until you download PalmPilot programs and find that even the most complex one takes no more than 30 Kbytes of memory.

More Power In Your Palm
For an extra $129, you can purchase a PalmPilot 14.4-Kbps modem, which attaches to the base of the PalmPilot and extends its length by 2 inches. With the modem, you can HotSync over a phone line to your PC without needing the cradle. For an additional $69, you can purchase the Network HotSync product from 3Com and synchronize with your PC via a network. If you use the PalmPilot modem to dial into and join your LAN, then Network HotSync lets you synchronize your information with your networked PC. Network HotSync works only with Windows 95 and NT 4.0 systems.

You can also use the modem to connect to your Internet service provider and link up with the Internet. However, the PalmPilot does not include Internet-ready software; for that, you'll have to head to the Net for freeware and shareware packages, such as an SMTP mailer and a telnet terminal emulator.

During my evaluation, I took the PalmPilot Professional and modem on the road with a copy of Ian Goldberg's freeware program Top Gun Postman (TGP) that I downloaded from the Internet (www. isaac.cs.berkeley.edu/pilot). From my remote location, I dialed into my ISP's local access number, connected using the PalmPilot's TCP/IP software, and downloaded my E-mail using TGP. The E-mail that I elected to download from the server was routed into the PalmPilot's E-mailer for me to view, edit, and formulate responses. Responses were routed back to the Internet using TGP.

The PalmPilot's Internet functionality would be considerably better if a faster modem were available. And the PalmPilot would be a truly mobile application platform if it could use wireless or cellular modems-but they aren't available yet.

The quantity and range of commercial, shareware, and freeware applications already available for the PalmPilot surprised me. For example, if you use Microsoft Outlook for your desktop PIM, DataViz offers a HotSync conduit product called Desktop To Go for $49 that will synchronize your PalmPilot with your Outlook E-mail, contact information, to-do list, and appointment databases. Other third-party vendors offer products to synchronize with other common PIMs, including Starfish Software's Sidekick, Symantec's Act!, Lotus Organizer, and Day-Timer Organizer.

A number of Web sites track PalmPilot freeware and shareware software. The best place to start is www.usr.com/palm/software.html; it provides Web links for both commercial and freeware or shareware PalmPilot tools.

My biggest complaint with the PalmPilot is the 160-by-160 pixel monochrome screen, which is a bit smaller than other portable PIM devices on the market and has a terrible glare problem in bright light. My next biggest complaint is environmental: The PalmPilot lacks an A/C adapter and battery charger; instead, it relies on standard disposable alkaline batteries. An A/C adapter and battery charger should have been built into the HotSync cradle.

Development Tools
There are three things to consider when you evaluate a portable, connected PIM device such as the PalmPilot:

· Decide whether you need a PIM device at all or whether a fully functional notebook computer best meets your needs.
· Determine how well the applications that are included with and available for the PIM device interact with your office's existing productivity applications.
· Estimate the product's potential longevity in the marketplace. 3Com has sold nearly 1 million PalmPilot units and has a huge lead over Windows CE-based computers. Is this enough units for 3Com to stay in the PIM-device market? The answer is most likely yes.
The tools market for the PalmPilot is quite active, with numerous development languages, including products for writing code in Java, Basic, and C/C++. There are also higher-level development tools to let you create data forms, and even a PalmPilot emulator that lets you debug and test your PalmPilot code right on your Windows PC. Many of these development tools are inexpensive or freeware.

The primary package for PalmPilot application development is CodeWarrior from Metrowerks Inc. It's an integrated development environment that includes a form builder, a C compiler and linker, and the 3Com development libraries and headers for creating PalmPilot applications. For developers using a Mac, CodeWarrior includes Pilot-Simulator, which simulates a running PalmPilot and provides a test bed for debugging your applications. On Windows 95 and NT systems, CodeWarrior uses the PalmPilot itself as the debugging test bed.

Creating applications with CodeWarrior is similar to using the earlier, non-wizard-bloated releases of the Microsoft Visual C++ compiler. Using a resource editor called the Constructor, you create "resources," which are forms, controls (e.g., buttons, labels, and scrollbars), strings, lists of strings, menus, icons, and bit maps. Then you create your application code that references these resources, and you link the code and resources together at the end to create your application.

CodeWarrior is a great first choice for learning PalmPilot development, not only because it comes with the standard PalmOS development libraries and headers from 3Com, but also because it includes source code for the standard PalmPilot applications and a few others as well. One of the additional applications is the TCP/IP-standard program "finger," which shows you everything you need to know about creating an Internet-ready program with the PalmPilot. With the source code and documentation for applications you already know, you're ready to begin developing for the PalmPilot.

Simulated Pilot
For those who want a PalmPilot simulator on a Windows 95 or NT platform, there's Copilot, a freeware application by Greg Hewgill (userz web.lightspeed.net/~gregh/pilot).

Copilot simulates an actual running PalmPilot. It requires that the ROM of a PalmPilot be downloaded into the PC where it will run. Be forewarned: This is a technical violation of the PalmPilot firmware copyright, although the likelihood of your being being sued by 3Com is slim. Copilot emulates the PalmPilot CPU as well as the buttons and screen. It even simulates the PalmPilot power button and the backlit screen. But it doesn't do a good job emulating Graffiti; use your PC keyboard instead to enter text.

From within Copilot, you can also debug an application in case it gets stuck. However, your debugging ability is limited to debugging the machine code, which can be painful for those unfamiliar with the intricacies of the Motorola 68000 CPU. You can also test HotSync synchronization with Copilot. If an actual PalmPilot is not available for direct debugging with CodeWarrior, Copilot is an excellent alternative, provided you're not uncomfortable about violating 3Com's PalmPilot copyright.

The PalmPilot doesn't support creating applications that can directly connect to your enterprise databases; instead, you synchronize your PalmPilot data to an application on your PC or Mac that's connected to your database. Two forms applications are available to help: PilotForms from Pendragon Software, and Satellite Forms from Soft Magic.

PilotForms has three components: a form-builder tool that runs on your Windows 95 or Windows NT system, a run-time component that runs on the PalmPilot, and the HotSync conduit program that synchronizes the PalmPilot data with the PC's database. The forms builder is actually an Access 95 or 97 database application into which you describe the different fields-called questions in the PilotForms vernacular-on your data entry form. PilotForms questions include a short heading (e.g., Name), a long descriptive question (such as: What is your name?), and the data entry portion of the field. The latter contains free-form text, option boxes, selection lists, yes/no buttons, and numeric, date, or time fields. Once you describe the questions to PilotForms, you use the PalmPilot HotSync feature to download the form into your PalmPilot.

On the PalmPilot, the PilotForms run-time component runs the form, either showing all of the questions in a single page or showing each question on a single page. As the user fills in each field, the run-time component stores the information in a local PalmPilot database. With the HotSync conduit, the user transfers the stored records back to the PilotForms Access 95 or 97 database, optionally purging them on the PalmPilot. With a bit of programming or manual intervention, the user can then transfer the records into the target enterprise database.

Satellite Forms from SoftMagic is priced at $495-10 times the price of PilotForms-but many developers will find that it provides 10 times the functionality. Satellite Forms not only lets you create PalmPilot forms for entering data, but also provides a path for automatically copying this data into databases.

Satellite Forms includes a Windows-based form and table development application, a run-time component for the PalmPilot to operate the forms and handle HotSync requests, and a HotSync-aware ActiveX control that lets you automatically copy data received from the PalmPilot into your desktop or enterprise database.

Form Organizer
Unlike Pilot Forms-which lets you specify only the fields for data entry and not their location on the PalmPilot form-the Satellite Forms App Designer lets you organize your forms to look like a real application. Input fields, buttons, check boxes, radio boxes, list boxes, and other user-interface controls can be placed anywhere you want on the PalmPilot screen. With the App Designer, you also design tables that you want to use to store the form information. These tables are kept on a PC as dBase files. When you use HotSync, the data entered on the PalmPilot is copied into these dBase files.

Satellite Forms also includes an ActiveX control that is notified when you synchronize your data. If you embed this control in an application, you can use the application to copy the data from the dBase files on your PC into your desktop or database. But to deploy this application around your enterprise, you'll need to purchase the run-time kit from SoftMagic. Pricing starts at $80 per user. The overall pricing for Satellite Forms is steep, but for remote data collection, the total price is cheaper than for specialized data collection devices or notebook computers.

Need other PalmPilot development tools? Check out 3Com's Web pages for tools and links to PalmPilot development-tool sites.

Andy Feibus is president of CustomBytes, an automation software consulting firm in Atlanta. He can be reached at amf@mindspring.com.

Appendix D: Environmental Conditions

From the Final Project Specifications proposal document signed by Coach Bill Spencer on July 17, 1998, the PalmPilot

· Will operate in snowy (& wet), cold conditions (with heat pack if necessary)

Introduction

At the time of the signing of the initial proposal, final product specifications, Coach Bill Spencer, expressed concern over the Pilot's ability to operate in cold weather. I had expected this to be a secondary problem that we could solve after the program was written. Bill was skeptical. He said, what good is the program when the Pilot may not be functional? I assured him that cold weather functionality would be part of the solution. He suggested that we put the Pilot in the freezer while we finalized the specifications of the ski timer program. I, with trepidation, agreed (it was my Pilot). We started the PocketTimer, a shareware timer application I had downloaded, and stuck it in the freezer.

We cussed and discussed for probably an hour before we went to check on it. It was completely frosted over and unresponsive to any buttons. When we used the pen on the screen, it clicked like it was receiving input. We wiped the screen and waited. I've heard that Pilots are susceptible to moisture. Eventually, the screen came up, but the 'battery low' indicator kept popping up. Everything recovered back to normal and the PocketTimer kept the time. I decided to do a little research on the environmental obstacles of the PalmPilot.

Actual environmental specifications for the PalmPilot:

http://www.palm.com/devzone/faqs/Hardware.html#a103
What are the Palm III environmental and durability specifications? (6/30/98)

The following are the Palm III environmental specifications:

Operating temperature: 10-45 degrees Celsius
Thermal Shock: 10-50 degree celcius rapid transition
Storage Temperature: 10-60 degrees celcius
Humidity 5% to 90% relative humidity
Quasi-Random Vibration: 3 axis vibration to 20Gs RMS for 4 Hrs
Abrasion Resistance: 15 gallons of sand @ 1750 fpm
Sand/Dust Resistance: 0.3 grams/cubic ft. @ 1750 fpm
Operating Altitude: 0 to 5000 meters
Rain: Moisture resistance for rain 2-4 inches per hour
ESD: 20KV
Unpackaged Drop: 3 ft to indoor tile over concrete (all sides and corners 2 times)

The following are the Palm III durability specifications:

Keypad Life: 1,000,000 keystrokes
On/Off Switch: 500,000 cycles
Dock connection: 3,000 insertions
Serial Connector Contact: 3,000 insertions

Discussion Groups

I didn't have a whole lot of ideas on how to keep it warm, dry and not cumbersome. So at the suggestion of a friend, I tried some Pilot discussion groups, alt.comp.sys.palmtops.pilot and comp.sys.palmtops.pilot.

I submitted the following:

Subject: arctic conditions

From: kbrockdejanews@my-dejanews.com

Date: 1998/07/09

Message-ID: <6o2r1gfuq1@nnrp1.dejanews.com>

Newsgroups: comp.sys.palmtops.pilot, alt.comp.sys.palmtops.pilot

[More Headers]

[Subscribe to comp.sys.palmtops.pilot]

I am developing an application on a Palm3 to be used in an arctic environment (typically 0 degrees Fahrenheit and sometimes snowy). A lot of data has to be collected so it will have to be exposed to these conditions for a long period of time (approx. 1 hour). I have tested my Palm3 in the freezer at zero and found it to be non-functional. Are there any recommendations for what I can do to beef it up? Put it in a ziplock to protect against frost and snow? Use a heat-pack to keep the display visible? Use a lithium version of the AAA battery? Any tips, recommendations, experience would be a blessing!

-----== Posted via Deja News, The Leader in Internet Discussion

http://www.dejanews.com/rg_mkgrp.xp

Create Your Own Free Member Forum

To which I received a lot of information, suggestions, and ideas – here are some of the more useful ones (see Appendix for copies of the actual postings):

· There are three things to worry about in a cold, snowy environment: LCD contrast, battery voltage, and corrosion.

· There was a suggestion to cut up battery-powered "socks" and stick the Pilot in.

· Someone thought building a heated glove box with a fan might be a good idea.

· One could try to use chemical hand warmers attached to the back of the Pilot.

Heated Gloves and Socks

First, I shopped the web for heated gloves and socks. There were not a whole lot of them out there. Gerbing had typical sets of gloves and socks at (http://www.gerbing.com/):

[image: image76.png]

[image: image77.png]

Socks are $59. And the gloves are way too much - $119. Plus, who would want to cut up a pair of Kevlar heated gloves? So I thought about the socks.

I can cut a screen-sized hole in them and make a pocket for the Pilot. The Pilot could go in a custom clear plastic bag and then the sock. I tried to call and ask them what kind of battery pack they sold, but they were out of the office. So I wrote this e-mail on July 13, 1998.

To: sales@gerbing.com

cc: (bcc: Kc Brock/AAI/ARCO)

Subject: Heated Socks

I am interested in purchasing a pair of your heated socks. If I buy just the socks, what do I need as a power source for them? What kind of battery pack do you sell and how much is it? Or can I create my own battery pack and supply the needed amount of voltage? I will be using them to heat a palm-sized computer to be used outdoors that may use a battery pack as well. It would be nice if they could hook up to the same source.

Thanks,

Kc Brock

I received a prompt reply July 14:

To: Kc Brock/AAI/ARCO

cc:

Subject: Re: Heated Socks

Dear Kc, the socks require a 12 volt power supply. They draw 22 watts or 1 amp., they come with a wire harness and the connection to hook up to a battery. We have batteries, which come with a 110 volt plug in charger. The battery will only keep the socks going for 2 hours than needs a recharge. If you look on our web page you'll see the power chords.

Thank You, Jeff Gerbing

The more I thought about this, the more I thought that customized solutions would be hard to maintain if the program is ever marketed. I decided to look for something more generic.

Heat Packs - Liquid

So I continued to shop for other options. There are a variety of different chemically operated heating pads.

Instant Heat International (http://www.heatpack.com/) sells re-usable chemical heaters.

[image: image78.png]

The one pictured goes up to 130 degrees F and will continue to heat for two hours. They come in sizes that range from 3"X4" to 12"X20" and prices that range from $10.95 to $58.95. This may be a good option.

I own a small heat pack of this kind about the size of a PalmPilot, so I put it with the Pilot in a ziplock in the freezer for a 15-minute test. Good things: it kept the display frost-free, the battery power indicator showed a small drain, and the time was kept. Bad things: the screen was cold to touch and was a little sluggish in response.

Then I did a 15-minute test without the heat pack. The screen was barely visible. The ziplock bag frosted over, but the screen did not. It showed slightly more drain on the battery. It seemed to keep the time okay.

A longer and more precise test is needed, but it can be seen that the heat pack was of some help.

Heat Packs - Dry

Another kind of chemical heat pack is much cheaper. REI offers what is called Toe Heater (http://www.rei.com/shopping/store3/CAMPING/FIRST_AID/PERSONAL_CARE)

[image: image79.png]

They sell for $1.80 a pair. When worn in shoes, the average temperature is 100 degrees F, maximum 107, and stays warm for up to 5 hours. I called REI. They don't know how long they will last without body heat, so I will go to REI and purchase a pair to test. It's a cheap investment of $1.80.

GPS (Global Positioning System) Case

Another suggestion I found from the discussion group was a waterproof case (See Appendix for posting).

I went ahead and ordered this case and it does fit the Palm well. The GPS case easily allows for screen tapping, and is okay for using the Graffiti alphabet. The casing is tacky and does not allow the pen to glide, but it does recognize the Graffiti alphabet pretty well. Here is a picture of the case from REI’s site:

[image: image80.png]

Current Price: $ 15.99

Solution

Research on this problem will resume when the application is finished and in testing phase. Bill Spencer has had some experience in this area, being a ski coach and having worked a laptop on the track in severe weather. It seems the solution will most likely be a combination of heat packs and the GPS case.

Other Discussion Group Responses …

Responses to postings for advice on operating the PalmPilot in the arctic:

This one introduced the idea of reusable chemical hand warmers.

Subject: Re: arctic conditions

From: "Joshua C. Ruedin" <jruedin@ix.netcom.com>

Date: 1998/07/09

Message-ID: <35A57CF8.A4AED668@ix.nutcom.com>

Newsgroups: comp.sys.palmtops.pilot

[More Headers]

[Subscribe to comp.sys.palmtops.pilot]

I work in cold testing diesel engines for construction equipment. We typically must test down to -20F for commercial applications and -40F for military apps. We regularly bring laptops into the cold room to take data, and I've whipped my pilot out a few

times while I'm in there, but we're never in there for more than 10-20 minutes in a stint. The electronics are probably fine, as long as you stay below freezing and don't get condensation. I bet your backlight worked, but you couldn't see anything on the screen. The liquid crystal gets too thick to do its thing, so you end up driving blind. With laptops it's not as big a problem because most 200Mhz laptops put out enough heat to roast marshmallows - as long as you close the screen when you aren’t using it there is enough radiant heat to keep the screen juicy.

The pilot operates at such low power levels though, that the screen is much more susceptible to freezing up. The key for you will be keeping it warm somehow. I might try one of those reusable chemical hand warmers held against the back of the case somehow. As long as you stay below ~140F the electronics should be okay, and you'll probably get enough heat to the screen to keep it operable.

Good Luck,

Josh

This one suggested battery-powered "socks".

Subject: Re: arctic conditions

From: "Michael & Emma Compeau" <mcompeau@spacestar.net>

Date: 1998/07/10

Message-ID: <01bdaba9$54d35280$eac2bfce@davaar1>

Newsgroups: comp.sys.palmtops.pilot

[More Headers]

[Subscribe to comp.sys.palmtops.pilot]

What I've seen used in the past for keeping data collection devices warm is to use those battery-powered "socks" they sell in MN and WI sporting goods stores like Cabella's and Gander Mountain and Burger Bros and Holiday Plus.

They will warm to about 90oF or so (in room temp environment), which should serve well to preserve the pilot in frozen northcountry. Cut a hole in one side of the sock and sew it up to prevent fraying. Then make sure the "heat pad" is against the back of the pilot. Tape up the thing until it looks like a bad lab prototype of a pilot. OR order a slightly oversized case and fit the warming pad into the back of it, cutting a hole in the leather front to access the screen and buttons.

My $.02.

 Michael & Emma Compeau

 mcompeau@spacestardotnet

 http://www.spacestar.net/users/mcompeau/

This one suggested building a glove box.

Subject: Re: arctic conditions

From: Dion Hollenbeck <dionh@apprentice.qualcomm.com>

Date: 1998/07/10

Message-ID: <8y9d8bdlm8c.fsf@apprentice.qualcomm.com>

Newsgroups: comp.sys.palmtops.pilot

[More Headers]

[Subscribe to comp.sys.palmtops.pilot]

kbrockdejanews@my-dejanews.com writes:

What about something like a glove box?? You not only want to keep the pilot warm, but you will want to keep you hand warm, right? The glove box would be big enough to contain, hand and PP3 and have an entry with an elastic cuff. Also, you would need to use some sort of fan driver heater to blow warm air into the box.

dion

--

Dion Hollenbeck

x18840, VT100C4

This one summarized the environmental challenges pretty well: LCD contrast, battery voltage, and corrosion.

Subject: Re: arctic conditions

From: Ron Nicholson <rhn@nicholson.com>

Date: 1998/07/10

Message-ID: <35A66D1C.13A1@nicholson.com>

Newsgroups: comp.sys.palmtops.pilot

[More Headers]

[Subscribe to comp.sys.palmtops.pilot]

3 problems you have to watch for in cold conditions.

First the LCD contrast will gradually get so low you

can't see the screen (even though the Pilot is working

perfectly normally.)

Second the battery voltage will decline with cold

temperature. You can look at various manufacturers

data sheets for the details. If the battery voltage

gets low enough, the Pilot's memory could get corrupted.

Last, if you thermal cycle enough, the connectors

inside the unit may start to corrode.

Keep it dry and warm enough that the battery voltage

stays above 2.0V, and then warm it up enough to see

the display when you need to use it.

IMHO. YMMV.

Someone posted this independent of my request for help. Apparently, there are those who cannot live without their PalmPilots while camping, in the rain, even underwater to 20 meters.

Subject: Waterproof Pilot Case Found!

From: Dan Reed <blumax@bellatlantic.net>

Date: 1998/08/10

Message-ID: <35CEF361.7B2C@bellatlantic.net>

Newsgroups: alt.comp.sys.palmtops.pilot

[More Headers]

[Subscribe to alt.comp.sys.palmtops.pilot]

Product Review - waterproof pouch

Manufacturer - Aquapack

Model - aq3 gps (case)

Price Paid - $22.95

Purchased from - REI http://www.rei.com (No WW623955)

For a picture see -

http://www.rei.com/shopping/store3/PADDLING/GENERAL_ACCESSORIES/STORAGE_BAGS/bud/623955.html
Can you use the buttons? - YES

Can you adjust contrast? - NO

Can you get to the styli? - NO

Can you use Graffiti? - YES

Can you see the screen? - YES (Really well too!)

Can you H/S with it? - NO (yes, if you have a lap-top cable and open the pouch)

Can you beam with it? - YES (well, you could IR Sync with it..)

Does it float? - YES (Really! It looks like its on a raft, on its

back..)

PIII - YES (must remove flip-cover)

Pilot/PalmPilot - YES

Specs -

Specially made PVC remains functional in temperatures from -15 to +195 degrees Fahrenheit and resists damage from UV rays and salt water. Waterproof to 10 meters (REI says its good to 20.).

2" x 4" x10.5" Weight 3.5 ounces.

What its really for - A Magellan GPS unit.

OK, first off I’m going to say that this is not a dive case like some people have asked for, but it is however a very useful pouch/case to protect your Pilot, Palm Pilot, or PIII from moisture, dirt, sand, and debris.

I’m one of those people that really wishes that I could take my Pilot with me on all types of adventures, however due to its design (read - gets broken, scratched, whatever.) I don't take it with me. Camping, beaching, sailing, and outdoors stuff all present a hazard to the Pilot.

It's made of soft vinyl on both sides. Seam sealed at the sides and bottom. The top is open so you can insert/remove your Pilot. The front vinyl part is crystal clear. The back of the pouch is a soft (padded) blue vinyl. A PIII slips into the pouch with minimal effort a Pilot/PalmPilot takes some fiddling to squeeze it in to the pouch. However both fit quite nicely and do not slide around in the pouch. The width of the pouch is perfect. The length is a little too long - but only by two inches or so. At the bottom of the pouch is a sealed hole to attach the included tether cord with. The top has small hard plastic parts attached to the pouch that help keep the clamp from sliding around. The clamp is what keeps the unit sealed in and is very

easy to attach and remove. The clamp is two orange cam-locks that snap either open or closed - providing a sealed fit. The camp will NOT come loose, it’s tight!

Access to all the buttons is easy. Graffiti works! My only complaint is that the front clear vinyl is sort of sticky, almost soft. I would not use a normal pen or sharp object against it. The hole at the bottom of the pouch can let you attach another tether with a cheap stylus.

The pouch provides decent protection against the sides and back. The screen is still open to impacts it is however, protected form the entire outdoors. The pouch is a pouch, not a bulletproof case.

The pouch could be worn around your neck, or attached to a belt loop for easy outdoors access. It's not too bulky in my opinion, but lets face it its not going to fit into a suit pocket. But it will fit in a coat, backpack, or fanny pack.

This is by far for the money the most useable outdoors pouch/case for the Pilot, if not the only one ever found! Would I take it diving? No. Would I take it in the snow, rain, sand, or shop area? Yes.

I’m am not affiliated with REI or Auqapack in any way - only a Pilot owner who wants to share info.

-Dan

- Dan at Work -

- blumax@bellatlantic.net -

This E-mail or Post does not reflect the views of the Community College of Philadelphia

Here are the Environmental Specifications according to 3COM:

To: Kc Brock/AAI/ARCO

cc:

Subject: Re: Palm3 arctic conditions

Dear KC, the environment specifications for the PalmPilot are:

Operating Temperature ==> 0(c to 50(c

Thermal Shock ==> 10(c to 50(c rapid transition

Storage Temperature ==> 10(c to 60(c Humidity ==> 5% to 90% RH

non-condensing

Quasi-Random Vibration ==> 3 axis vibration to 20Gs RMS for 4 Hrs

If you need more technical information, you can email our Developer Support

staff at DEVSUPP@palm.com or visit our website at

http://palm.3com.com/devzone/tn_specs.html

Best regards,

DEVINFO

Appendix E: Letter to CS Department

8/14/98

To Larry Gordon and Jim Jacobs:

Re: CS A470

PRIVATE
CS A470
Applied Software Development Project
3.0 CR

Contact Hours: 3 + 0
Registration Restrictions: Senior standing and faculty permission.
Special Fees.
Application of computer programming and system development concepts, principles, and practices to a comprehensive system development project. The student is required to analyze, design, and document a realistic system of moderate complexity under the supervision of his/her committee chairman. Independent study with grade determined by project which the student presents (and defends) to his/her committee.

Supervision: the action, process, or occupation of supervising; especially: a critical watching and directing (as of activities or a course of action)

Supervising: superintend: to have or exercise the charge and oversight of, direct; oversee: to show or point out the way for

The six years I have been at UAA and the four years I have been in the computer science program have not adequately prepared me to manage and complete a project the scope of CS A470 on my own. I am not alone. Of the 9 mostly graduated computer science majors I have known at UAA, six lack the CS A470 requirement: Shirley Tachick, Todd McCarty, Royce Williams, Joe Kalfsbeek, Bob Ferguson ?, and myself. Of three that have completed, Shane Kingry, Brady Clark, and Charles Bailey, all have had significant programming or project experience outside the CS program. This 33.3% rate of graduation is disheartening and seems unfair.

My first two attempts at a 470 project were in the spring of 1997 with my employer. The first attempt was short-lived; I probably spent only 20 hours on it before my manager decided it was not a priority. The second attempt was a larger project involving asset management. I spent approximately 100 hours on research, documentation, and learning SMS, the server software I would have to use and manage. At this point, other projects at work superseded mine, and it was laid aside. In the fall of 1997, I decided to cut my losses and ask the department for help. I met with Ted Gifford and began a new project spring of 1998. As of now I'm sure I've spent at least 200 hours in research on PalmTop computers, the PalmPilot, programming on the PalmPilot, the CodeWarrior tutorial, program design, flowcharting, and several meetings with my customer, Bill Spencer, the UAA ski coach. I have spent approximately $399.99 Pilot + $134.00 CodeWarrior + $103.60 printing of CodeWarrior manuals + $29.90 O'Reilly Pilot Book + $14.00 various heat packs + $42.90 Pilot case + $25.45 Pilot case = $ 749.84. That does not include the ~$240 (tuition waiver) spent on the 3 credit CS A470 course or the $20 for Spring 98 graduation for which I missed the deadline. Total hours so far: 300 hours. Total funds so far: $ 1012.84. I do not have a whole lot more time or money to be spent.

In light of the legendary struggle to complete the CS A470 Senior Project at UAA, and the current desperate lack of Computer Science faculty, I would like to request some services from UAA. I have already paid for the three credits of instruction for this course and applied and missed the deadline for graduation – I have no advisor assigned to me, I have lost time on two previous attempts, and I have received almost no instruction or advising. It has not always been difficult to meet with a professor (I appreciate that Ted Gifford put me in contact with the UAA ski coach for my third project attempt) the difficulty is in getting one to take ownership of this project with me and supervise me.

May I please have the following?

1. An advisor assigned to me and my project
Larry Gordon?

2. Weekly meetings to check up on my progress and help direct me
Fridays at 1PM?

3. Help building flowcharts and breaking them down into ‘child processes’

4. Advice and proofing of my documentation

5. Coaching on project management – setting dates and being accountable for milestones

6. Help debugging code when my progress is significantly hampered by a ‘bug’

7. Preparation for the oral presentation and defense of my project

Thank you. I know this will significantly improve my chances of graduating by December 1998.

Kc Brock

907 349-5310

1180 Golden Dawn #4

Anchorage, AK 99515

(will change to the following as of 8/17/98)

907 562-4823

3631 E 42nd #6

Anchorage, AK 99508

P.S. The CS A470 project is a good idea. It might be more effective if an actual class was made of it. It seems like something in-between a graduate thesis and an upper division CS course would be more appropriate. The pre-requisite to the course would be to have a project assigned or determined in advance. The course could meet once a week and have a loose curricula on project management, proposals and documentation, flowcharts, customer relations, etc. The instruction, camaraderie, and accountability will ensure both more graduating CS seniors and better senior projects.
Appendix F: Hours and Investment

PRIVATE
Labor

Kc's total hours
602
approx

Henry's total hours
160
approx

Total labor
762
rate $15/hour

$11,430

Investments

Pilot
$399.99

CodeWarrior
$134

Manuals
$103.6

O'Reilly Book
$29.9

O'Reilly Book
$29.9

Batteries
$20

Heat Packs
$14

Case
$42.9

GPS case
$25.45

CS 470
$240

CS 470
$240

Spring 98 Grad
$20

Fall 98 Grad
$20

Spring 99 Grad
$20

Web commerce
$25

Henry dropped guitar class
$239

Copyright application
$20

Total investment
$1,623.74

Total cost
$13,053.74

Appendix G: Senior Project Status Web Pages

Senior Project Web: Home Page<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
back to Kc Brock's Home Page...
CS 470 Senior Project: "Lickity Split"
 a split timer for coaches

· Documentation
· Summary of the Project

The purpose of the program, Lickity Split, is to help coaches keep track of their racers’ progress throughout a stagger-start race. Skiers typically start at intervals of 5-30 seconds at a track. Racers complete the race by skiing a pre-determined number of laps on the track. This results in widely scattered finishing times. The coach monitors races by setting a marker somewhere along the track and records the time as each racer passes it. The program, Lickity Split, calculates and sorts progress of the racers as the coach records their marker passing time. This allows the coach to give the racer pertinent information, such as, "You’re 5 seconds behind the lead!" to encourage the racer to increase pace.

[image: image81.png]

for the PalmIII
· Project Plan
Spring 1999

· Weekly Report
February 15, 1999
February 22, 1999
March 1, 1999
March 8, 1999
March 22, 1999
March 29, 1999
April 5, 1999
April 12, 1999
April 19, 1999
· 03/05/1999 Prototype
· History and Development
Senior Project Web: Plan Spring 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
PRIVATE
Week 1
January 18, 1999
General Design Review - Walkthrough database code, screen prototype code, classes, set algorithm, get some granularity for following weeks

Week 2
January 25, 1999
Database Routines - sorting, list by category, etc. / Interface Routines - fields, tables, etc.

Week 3
February 1, 1999
Database Routines - sorting, list by category, etc. / Interface Routines - fields, tables, etc.

Week 4
February 8, 1999
Join Efforts

Week 5
February 15, 1999
Timing Routines

Week 6
February 22, 1999
Timing Routines

Week 7
March 1, 1999
Make "Bill-ready"

March 6, 1999
give to Bill for NCAA champs

Week 8
March 8, 1999
break

March 8, 1999
Race - NCAA championships

Week 9
March 15, 1999
Memopad import / Documentation

Week 10
March 22, 1999
Memopad import / Documentation

Week 11
March 29, 1999
Memopad import / Documentation

Week 12
April 5, 1999
Memopad import / Web site / forms - detail, help, menu options

Week 13
April 12, 1999
Memopad export / Web site

Week 14
April 19, 1999
Pull together for final presentation

Week 15
April 26, 1999
Present

Senior Project Web: Weekly Report February 15, 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
Weekly Report for the week of February 15, 1999:

Last week Henry and I worked on
 - accessing the database records, find by bib/time
 - writing times to database
 - entering startlist information
 - manipulation of fields

This week we plan to work on
 - displaying race information in tables
 - finding a suitable web site to eventually sell Lickity Split
 - finding the difference between shareware and professional product
 - accessing the surrounding racers info to display

We're working hard to have a limited prototype for Coach Bill Spencer for the NCAA championships by March 5, 1999.

Back to Senior Project
Senior Project Web: Weekly Report February 22, 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
Weekly Report

for the week of February 22, 1999:

Last week Henry and I worked on
 - displaying race information in tables
 - finding a suitable web site to eventually sell Lickity Split
 - finding the difference between shareware and professional product
 - accessing the surrounding racers info to display

We found that
 - tables are slow to load
 - for now we will just keep the CS470 page on saturn until we start to sell it
 - we should be able to fit all the racer information neatly into two databases, a record for each racer in one database and a record for each lap in the second database

This week we plan to work on
 - finding a way to speed up tables, or an alternative
 - timing racers and storing the timing information
 - finding the difference between shareware and professional product
 - simple startlist entry screen

We're working hard to have a limited prototype for Coach Bill Spencer for the
NCAA championships by March 5, 1999.

Back to Senior Project
Senior Project Web: Weekly Report March 1, 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
Weekly Report

for the week of March 1, 1999:

Last week Henry and I worked on
 - tables
 - timing and storing racers
 - startlist entry screen

And now
 - timing routines for prototype are done
 - some table functionality accomplished

This week we plan to work on
 - displaying race information
 - putting our prototype pieces together
 - creating a card for Bill to have if any coaches want more information
 - meeting with Bill at the end of the week to give him what we have got, as long as there are no disasters or show-stoppers between this Monday and Friday

Back to Senior Project
Senior Project Web: Weekly Report March 8, 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
Weekly Report

for the week of March 8, 1999:

Last week Henry and I worked on
 - putting together code into a prototype
 - prototype interface
 - debugging

And now
 - we take a break this week while Coach Bill Spencer tests the prototype at the NCAA Championships

Next week we plan to
 - meet with Bill (if he's available) to debrief use of prototype
 - begin work on final product

Back to Senior Project
Senior Project Web: Weekly Report March 22, 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
Weekly Report

for the week of March 22, 1999:

Last week was spring break. We made some progress, but are hoping to hear from Coach Bill Spencer to get feedback on the prototype. We
 - added number buttons for easier bib entry
 - discussed features to add and priority of those features

And now
 - we wait Coach Bill Spencer to contact us
 - we can work on features such as
 + import/export to MemoPad
 + save application state
 + scroll up and down lap list
 + start final documentation

In the next few weeks
 - look seriously into marketing

Back to Senior Project
Senior Project Web: Weekly Report March 29, 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<big>Weekly Report for the week of March 29, 1999:
</big>
Last week's progress:
 - we heard from Coach Bill Spencer. He said
 + the Pilot worked
 it kept the splits for two races (he only entered names and affiliations for UAA racers)
 he didn't need heat packs for it
 + another coach had a Toshiba WinCE machine with a database and timer he had written
 the coach said it cost him $2500
 he struggled to keep the screen warm enough to display the information clearly
 - We added the forms for Import/Export
 - Henry began work on the Import/Export functions
+ Import works, needs parsing
 - I began final documentation

This week:
 - Henry will continue Import/Export work
 - I will continue final documentation

We plan to present our final project somewhere before or during dead week (we'd like to do it Monday, April 26). We have moved a few things to the "Next Version" List for time's sake:
 - Multiple race capability (we know how we'd like to do this, but it is a huge undertaking)
 - Two lap display on the Timing screen (it's very crowded and may not make sense)
 - Power off disable (not needed when we add the save state capability)
 - Import discriminately (also a large undertaking)

Week of April 5:
 - Henry = more work on Import
 - Kc = web site, help and detail screens

Week of April 12:
 - Henry = Export, save state, scroll up/down, detail screen hooks
 - Kc = web site, menu pull downs

Week of April 19:
 - Henry & Kc = pull everything together for final presentation

Back to Senior Project
Senior Project Web: Weekly Report April 5, 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<big>Weekly Report for the week of April 5, 1999:
</big>
Last week's progress:
 - Henry did more Import/Export work
 - Kc compiled much of the final documentation into one file with a table of contents
 - We met with Bill Spencer and debriefed the prototype

This week:
 - Henry finish Import/Export
 - Henry write save state stuff
 - Henry fix scroll on timing form
 - Kc code Time hardware button and connect beeps
 - Kc clean up menus
 - Kc - more documentation and call on web site

Week of April 12:
 - Henry = Database documentation
 - Kc = connect dialog boxes and menus, web site, menu pull downs, select row, min:sec

Week of April 19:
 - Henry & Kc = clean up code and documentation and pull everything together for final presentation

April 26:
 - Final presentation

Back to Senior Project
Senior Project Web: Weekly Report April 12, 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<big>Weekly Report for the week of April 12, 1999:
</big>
Last week's progress:
 - Henry worked more on Import
 - Kc coded Time hardware button and beeps, cleaned up menus

This week:
 - Henry finish Import/Export
 - Henry write save state stuff
 - Henry fix scroll on timing form
 - Kc - more documentation : write user manual, get copyright forms and Pilotgear shareware stuff ready
 - Kc - highlight row, change ints to min:sec

Week of April 19:
 - Henry & Kc = clean up code and documentation, prepare for final presentation, publish and market

April 26:
 - Final presentation

Back to Senior Project
Senior Project Web: Weekly Report April 19, 1999<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<big>Weekly Report for the week of April 19, 1999:
</big>
Last week's progress:
 - Kc - highlight row, change ints to min:sec
 - Kc - finished web documentation, put all documentation into word file
 - Henry finished Import/Export
 - Henry fixed scroll on timing form
 - Henry wrote save state stuff

This week:
 - Henry & Kc = clean up code and documentation, prepare for final presentation, publish and market
 - Henry - testing and debugging
 - Henry - code clean-up
 - Henry - code documentation
 - Kc - more documentation : write user manual
 - Kc - fill out copyright forms and setup sales on shareware sites
 - Kc - question mark entry form
 - Kc - help screens
- Kc - clean up screens

April 25:
 - Final presentation

Back to Senior Project
Senior Project Web: Prototype<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
3/4/1999

Lickity Split Prototype

This particular piece of verbage is to document Henry's and my prototype version of Lickity Split, released March 5, 1999. A few things to note at the outset.

· This is a limited version of the intended final version of Lickity Split.

· At NO TIME can the user exit the application by tapping the hardware buttons or by tapping the silkscreen Calculator or Applications button. The data for the race will be lost.

· Limits are

· 250 racers

· 19 laps

· 8-character name

· 3-character affiliation

· 3-character bib

· The power save function may power the Pilot off after a few minutes. This can be adjusting by going to the Preferences and changing the auto-off after setting. Also, if it goes off during the race, don't panic, just push the power button back on and the race should be at the state in which it was left.

· Coach Bill Spencer will be taking this version of the prototype to the NCAA championships the week of March 7, 1999 for testing. When he returns, Henry and I and Bill will find time to meet and debrief on its usefulness, efficiency, accuracy, etc.

Here is what the Lickity Split prototype will look like when loaded onto the Pilot. The user will tap the Lickity Split skier icon to start the application.

[image: image82.png]Palm OS™ Emulator

L)
r
®
¢

The first screen the user will see is the Timing form - this form is "home base" for the application.

Currently, the user will see only five racers and one lap at a time. The bib, place, name, affiliation, and split are shown. At entry, the fields are blank.

Before the user starts a race, a Start List must be entered. This can be done by going to the Lickity Split menu.

The menu is accessed by tapping the Menu silkscreen button in the lower left-hand corner.

[image: image83.png]Palm OS”Emulator £~

Here the Help Menu is displayed. The user will tap on "New StartList" or do a slash N to load a new Start List.

[image: image84.png]=

Palm OS™ Emulator

The defaults on the start list screen are to start with a Start Gap of 5 seconds and bib of 1 with that bib starting at zero. It is not required to have a name or affiliation entered.

If the user would like to change the Start Gap, a pen can be placed at the 5 and it can be deleted and another number entered. This field is only editable at the first entry. From then on it is locked.

The Racer Number field merely keeps a count of the racers entered.

The Name field will accept a name of up to 8 characters. It will auto-capitalize the first letter and won't accept anything over 8.

The Affil field will accept a 3-character affiliation.

The bib can be edited. The next bib default will always be one plus the previously entered bib number.

The Start time is automatically generated from the start gap.

The user MUST TAP THE OK button after every racer entry. When all racers have been entered, the user will tap the Done button. This will store all the racers in a race list to be used for the race.

[image: image85.png]Palm OS™ Emulator

Here is an example of how a screen might look while timing.

Enter a bib number by tapping in the Bib # area and entering the number.

Tap the Time button to time this racer. The racer's split is calculated and the just completed lap information is displayed in the middle of the list.

Tap the Show button to show the racer's most recently completed lap information with that racer in the middle.

Tap the left and right arrows to display the available information for previous and next laps for the middle racer.

To quit the race and re-initialize, the user can exit the application by tapping any of the buttons to go to another application or by tapping the application silkscreen button.

Senior Project Web: History and Development<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
back to Senior Project Page...
History and Development of the Project

In December of 1997, I looked for a new CS 470 senior project. My previous two attempts were through my employer, ARCO, and both became either obsolete or low priority. Although I had a number of hours already invested (approximately 120 hours), I decided to abandon these projects in favor of one recommended by Professor Ted Gifford.

This new project was to rewrite "Nordic", a DOS ski timer program, to run on a palmtop computer for the UAA ski team coach, Bill Spencer. The timer program keeps track of the progress of multiple skiers in a stagger-start race with splits, the time in seconds from the lead racer. The only other timing products available are quite expensive or don’t record in splits. Ted thought I might be able to get the source code for "Nordic" and rewrite it for Windows CE or a newer version of DOS. I wrote up a proposal for the Computer Science department on 3/4/1998.

In the first phases of research, I found that

· only one of the palmtop computers on the market ran DOS programs,

· the source code for "Nordic" was unavailable,

· palmtop computers are not typically used to run DOS programs, and

· the palmtop computers I was considering (versions running Windows CE) were not well-suited for a timing application (slow response, hourglass wait).

As I looked at palmtop machines, I came across the Palm Pilot. It is a popular, inexpensive machine that suits the needs of the timing program better. Its OS has no windows interface, so response time is better. And the Internet seemed to be exploding with amateur and professional programs written for it.

I decided the Palm Pilot III was the best fit for a "Nordic" replacement, and with Bill’s agreement, bought a Pilot on 4/28/1998 and ordered CodeWarrior on 5/21/1998.

I had concerns about how would it operate in a cold environment. I joined a few discussion groups, comp.sys.palmtops.palmpilot, alt.comp.sys.palmtops.palmpilot, and pilot.programmer, to find out if this challenge had been addressed. There were several useful suggestions about heat packs and Pilot cases, along with a person who works in cold storage that said as long as he kept it in his pocket and only took it out for a few minutes at a time that it worked fine. Coach Bill Spencer’s "Nordic" solution ran on a laptop that was kept warm with heat packs. After much discussion and a freezer demonstration with Bill, we decided the same could be done for the Pilot.

I read the CodeWarrior manuals and went through the memo pad tutorial. Bill gave me the old "Nordic" program. Bill and I met and hashed out the requirements for the new program. We came up with a more specific proposal, "Overview of the Scope and Specifications of the Timer written for Coach Bill Spencer" and signed off on it on 7/17/1998.

Then I got to work on design. I made screen pictures, flowcharts, excel simulations, and looked at other programs. CodeWarrior became a big snag. I couldn’t even get a "hello world" program running on it. The magnitude of the project began to overwhelm me. I met with Professor Gordon a couple of times as Professor Gifford had left UAA. Finally desperate after about 180 hours in and seemingly nothing to show for it, I wrote the CS department (Larry Gordon and Jim Jacobs) a letter asking for regular supervision and help on 8/14/1998. The Friday weekly meetings we agreed to were a significant help.

The problems I had with CodeWarrior were not just because it was new and "buggy". I had never used a developer kit, never used C++, hardly used C, and normally worked on a PC or Unix machine. Also, CodeWarrior is written for the Macintosh and is quite different from PC or Unix programming. Professor Gordon suggested I contact a student in the department that had used CodeWarrior on other operating systems. Jason Guild offered some keys that gave me a jumpstart. Professor Gordon also lent me a C++ tutorial and another student, Henry Hedberg, and Professor Jacobs lent me C++ books.

With an old copy of Borland Turbo C++ version 3.1 from Matt Guenther, another fellow student,

I modeled the data structure that I planned to use in the CodeWarrior program. At Coach Bill Spencer’s suggestion, the program is called "Lickity Split". I sent Bill a copy of the screen prototype on 11/2/1998.

As I was building the CodeWarrior version of a code prototype, I found the Palm OS to be challenging and the project would probably take another 2 to 3 months to complete. CodeWarrior for Palm OS release 5 came out and it was an improvement.

As I was reading the source code for the address book application, Address.c, I noticed that two people authored different functions throughout it. Since I had been working some with Henry Hedberg (mainly as a sounding board) already and now had well over 400 hours into the project, I asked if he would be interested in combining efforts with me for his CS 470 credit as well. It was obvious the project would not be finished by December, but with the both of us working on it, it would surely be done by the next May. On 12/4/98 I mentioned this idea to Professor Gordon and Professor Jacobs and they requested another proposal.

We turned in another proposal and now Henry and I have been working together consistently since the start of the Spring 1999 semester. We plan to finish and market this product by May.

Appendix H: Lickity Split Flyer

[image: image86.png]

[image: image87.png]A splittimer for coaches
by Kc Brock and Henry Hedbery

[image: image88.png]For more information see
htt://www.saturn.math.uaa.alaska.edu/~kc/sp.html
Kc at ke@saturn.math.uaa.alaska.edu
or Henry at henry@saturn.math uaa.alaska.edu

[image: image89.png]Palm OS™ Emulator

Appendix I: Debrief with Bill Spencer

On March 31, 1999 we met with Coach Bill Spencer to debrief on his use of the Lickity Split prototype he used at the NCAA championships. We met from about 2pm-3pm and discussed his observations, our "next version" and essential remaining tasks, and showed him our proposed final version. He seemed pleased with the prototype and said, "If this was all you ever gave me, I’d almost walk away smiling." Following is a summary of our discussion.

Bill Spencer’s observations

· Hitting the silkscreen timing button was awkward. He had to look down to make sure he hit it as the racer passed. He would like it to be a hard key and beep loudly as he hits it.

· Not having the up and down scroll buttons to view racers in a lap was difficult.

· Lockout protection is needed. By this he meant when he accidentally hit the calculator button and exited the application, he didn’t want to lose all his data.

· The StartList entry form OK button is misleading. For both races, the last bib numbered racer won and for both races, he accidentally did not hit OK (instead he hit Done) and therefore it did not save the end racer information. So the splits were based on the racer in second place rather than the leader.

· It worked really well. It was about 25 and slushy and the Pilot worked like a champ. Another coach from Dartmoth had a Toshiba Palmtop that cost $2500 and he couldn’t see the screen outside and it was really susceptible to weather. A lot of people were interested in it.

· The weather did affect the touch screen response. As the Pilot got colder, the screen had to be pushed harder to work.

· It would be nice to have more than 5 lines of racers displayed on the Timing form.

· What we have displayed on the Timing form is a Leader Board (splits relative to the leader). It would be nice to have a Relative Split form where the current racer’s split is zero and everyone else is + or – around them.

· A Detail Racer form would be cool – to have all of one racer’s info (Name, Affiliation, Bib, and Place and Split for each lap) on a form. But the Relative Split form is more useful if he had to choose either that or a Detail Racer form.

· The current racer should be highlighted.

· It would be great to have a form where you could see how one affiliation was doing. The Dartmoth coach had this.

· It might be worth our while to investigate the Biking Race potential for this product. They have similar race setups as Cross Country Skiing and their market is much larger.

We showed Coach Bill our list of "Next Version / Wish List" and what we considered were essential tasks to complete the project.

Next Version / Wish List

· Multiple race capability

· Biathlon

· Scorings

· Detail racer form

· Find by name / affiliation

· View two laps at a time

· Import racers discriminately

· Stay powered on (because it is not needed)

Tasks necessary to complete

· Question mark entries

· Import whole race lists

· Export race lists

· Export race results

· Help screens

· Web site

· Documentation

· User manual

· Save application state in case of application exit

· Scroll up and down buttons on Timing form

· Highlight middle racer as active racer

· Display time in minutes and seconds

· Trial version

Bill agreed to think about what he would want on a Detail Racer form (for our "wish list" write-up, or for addition if it is straightforward and we have time) and how he would like us to solve the StartList "drop last racer" problem.
Appendix J: Next Version

If Lickity Split is a success and Henry and I are inspired to undertake a Lickity Split version 2.0, here is a list of features that we would consider including:

· Multiple race capability
Approach this problem by using the category function included in the databases.
· Biathlon scoring

· Race total scoring

· Detail racer form

· Find by name/affiliation

· View two laps at a time
This problem could be approached using tables.
· Import racers discriminately

· Relative split view
Using a copy of the Timing form, calculate splits relative to the selected racer.
· View how one affiliation’s racers are doing
· Question mark / Unknown racer entry
· Center text in fields
Appendix K: Presentation

[image: image90.jpg]CS A470: Lickity Split

(a split timer for the Palm)

Kc Brock and Henry Hedberg

[image: image91.jpg]Birth of Lickity Split

[image: image92.jpg]Project Goals

e Fulfill CS470
requirement

e Replace Nordic
4.2

e Split timer to
coach skiers on
race progress

[image: image93.jpg]Description

e Purpose of the program
— Time racers throughout a stagger-start race
— Provide splits to coach
e Terms
— Stagger-start
— Split
— Start List

[image: image94.jpg]Other Timing Products

e Pen, paper and a stopwatch
e Receipt printing split timers [o—. —
$500-$2000 3

e PocketTimer
$49.99

[image: image95.jpg]Technology

e Palm Pilot vs. WinCE
— Price
— Battery life
— Environment
— Response time
— Keyboard vs. Graffiti

[image: image96.jpg]Handheld Computer
Comparison

Est. price Weight w/ batteries Claimed battery life

Apple MessagePad 2000 $1,099 221 0z} 24 hr.
Casio Cassiopeia A-11 Plus $499 134 oz. 20 hr.
Compaq PC companion C140 $399 138 0z. 20 hr.
HP 320LX palmtop-PC $599 15.6 oz. 720 hr.
Hitachi HPW10E4 $599.95 136 oz. 10-15 hr.
NEC MobhilePro 450 H/PC $199 128 0z. 3040 hr.
Philips Velo 1 $640 148 0z. 15hr.
Psion Series 5 $699 125 0z. 35 hr.
Sharp Zaurus ZR-3500X $399 12 0z. 100 hr.
3Com PalmPilot Professional $369 5.7 oz. 1,344 hr.

[image: image97.jpg]Programming
e

e Software Development Kit

— CodeWarrior

— CASLsoft, Satellite Forms, GNU C
e Prototypes

— Excel form

—Visual Basic

— Screens

— Full Prototype

[image: image98.jpg]The Code

or
and the Beer”

[image: image99.jpg]Palm Pilot Program
Methodologies

e Form Based

— No main procedure or function running at any
given time

— Each Form handles all Events
e Event Driven
— User interaction creates events

— Currently running form handles all events that
occur including passing on system events

[image: image100.jpg]Memory Space Overview

e Dynamic Heap

— Memory constantly being moved around to
maximize free space

e File System is Memory
— Applications take up usable working memory

e Limited Application Stack Size

— Limits number of nested functions calls and
amount of local variables that can be stored

[image: image101.jpg]Memory Space Overview
Cont.

e Global Vs. Local Variables

— Local variables take up more net memory then
globals

— Form based environment makes it difficult to
instantiate persistent variables

[image: image102.jpg]Palmi Pilot Database System

e Database Overview
— Linked lists
— DataManager
e Databases created for Lickity Split
— Racer Database
— Lap Database

[image: image103.jpg]Algorithm Development

e Classes Created

—Racer Class

» Standard biographical data about racer and
some constant racer data

—Lap Class

* Contains main lap re-ordering and racer
placement methods

— Timer Class
e Overall Timing Algorithm

[image: image104.jpg]Start / Finish

casmi
Reease et Rocer
) Fecord
= s
o
iy Timing Cycle Flow Chart cetRecer

Recard

Spits i
peeded

Get Time.

endLap

from Racer
Recard

nd Racer's)
Place and
SpitinLap

Recard and
GetLap
Recard

[image: image105.jpg]Testing

e The old fashioned way
— Boundary testing
—Inspection

e The Gremlins
— Automated Event Generators

e Data Integrity
— Prototype Testing by Bill Spencer

[image: image106.jpg]Marketing the Sucker

[image: image107.jpg]Marketing

e Copyright
e Web Page
e Shareware
e Demo Version

[image: image108.jpg]What We Learned

[image: image109.jpg]LLessons

e Kc Brock
— Project Management
— Working with customer
- OOP, C++, PalmOS

e Henry Hedberg
— Resource Management
— Group programming

References

Fredlet’s Pilot Pages, Fredlet, http://www.fredlet.com/pilot/pilot.htm
Handheld Development Tools: CodeWarrior for Palm Computing Platform, MetroWerks, http://www.metrowerks.com/pda/palm/
Kendall & Kendall, Systems Analysis and Design, Prentice Hall, 1995.

Palm Computing Platform Development Zone, 3COM, http://www.palm.com/devzone/
PalmPilot Development Resources, RoadCoders, http://www.roadcoders.com/
PalmPower Magazine, Component Enterprises, Inc., http://www.palmpower.com/
PocketTimer Pro, Stevens Creek Software, http://www.stevenscreek.com/pilot/pockettimer.shtml
Pogue, David, PalmPilot: The Ultimate Guide, O’Reilly & Associates, July 1998.

Rhodes, Neil and McKeehan, Julie, Palm Programming: The Developer’s Guide, O’Reilly & Associates, December 1998.

Browse forward button

Browse back button

Lap #

1

_986149437.doc
[image: image1.png]Palm 0S™ Emulator

_986150530.doc
[image: image1.png]Palm OS™ Emulator

_986151816.doc
[image: image1.png]Palm 0S™ Emulator

_986193022.bin

_986151162.doc
[image: image1.png]Palm 0S” Emulator

Number buttons

Splits

Lap #

Bib entry

Timing buttons

Number graffiti box

_986150164.doc
[image: image1.png]Palm 0S™ Emulator

_986148924.doc
[image: image1.png]Palm 0S" Emulator

_986149119.doc
[image: image1.png]Palm 0S" Emulator

_986144850.doc
[image: image1.png]ar: Usa
o 47

E—
e e 0
Nam: Hecber
i

