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Abstract

Over the years, outlier detection has evolved into a separate discipline and relies heavily on Computer Science and Statistics. Several algorithms have been proposed for performing this task. This paper provides a critical analysis of the LOADED algorithm through thorough experimentations. Some modifications in the design of LOADED algorithm have been proposed and results have been collected.
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1. INTRODUCTION

Outlier Detection, also commonly known as anomaly or noise detection, finds its applications in domains ranging from Network Security to Fraud Detection. The oldest reference found states that: “An outlying observation, or outlier, is one that appears to deviate markedly from other members of the sample in which it occurs” [1, 2].
Outlier detection has become a critical part of several real-world applications. With the advancement in networking technology, it has become highly essential to perform anomaly detection on data streams that are being generated in real-time.

Most algorithms in existence detect anomalies from data that has already been collected at a single site – any updates in the data require the algorithms to be run over the entire data again. Furthermore, these algorithms are too slow for real-time result generation. LOADED belongs to a relatively new breed of algorithms that work in an incremental fashion and in a lesser amount of time as compared to contemporary algorithms [3].

Numerous real-world applications exist that require the use of outlier detection techniques. Some of them include Fraud detection and Prevention [4], Loan Application processing, Intrusion detection [5, 6], Activity monitoring, Network performance monitoring, Fault Diagnosis, Structural defect detection, Image analysis, Time-series monitoring, and Medical condition monitoring.

Outlier Detection algorithms that have been proposed as yet follow some specific approaches for detecting outliers. A survey of outlier detection techniques proposes three fundamental approaches to outlier detection; Unsupervised learning, Supervised learning, and Semi-supervised detection or recognition [7, 8]. 

Outlier detection algorithms in existence today can be categorized into classes based on the underlying techniques they use. The first set uses Proximity or Distance based Methods, and includes the use of distance metrics such as Euclidean and k-Nearest Neighbors (k-NN) [9]. Algorithms based on Parametric Methods use techniques such as Principal Component Analysis (PCA) to find outliers [10]. Another breed of algorithms uses Non-parametric Methods for detection of novel patterns in data [11]. The Semi-parametric Algorithms employ techniques including Gaussian Mixture Models to break the dataset into concentration areas or kernels for further processing [12]. 

All the algorithms discussed above rely heavily on statistical methods, which is probably the oldest and most widely used methodology for implementing Outlier Detection systems. Detailed discussion on other approaches that are used is beyond the scope of this paper, however, they are just listed for further reference: Machine Learning [13 - 15], Neural Networks [16, 17], and other Hybrid approaches [18, 19].
This paper is organized into five sections. The first section is dedicated to the introduction. Section 2 deals with the LOADED algorithm, followed by the MAXLEVEL approximation in section 3. Section 4 shows the results of experimentation followed by the conclusion in section 5.
2. LOADED – THE ORIGINAL ALGORITHM

The most common problem with existing approaches is that the response time is quite high. Evolving datasets are generally being populated by real-time data streams which need to be analyzed on the fly. Most conventional approaches require multiple passes and need to read the dataset quite a number of times.  LOADED is a state-of- the-art algorithm that enables us to find outliers from evolving datasets [3, 20].

2.1. The Score Function

Formally speaking, a point shares a link with another point if both points are significantly similar to each other. Let a point pi be an instance in the dataset. This instance is recognized by the identifier i, and the data it contains. The data in pi can be visualized as a collection of attribute-value pairs, e.g.  pi = {(attribute1,value1), (attribute2,value2), …, (attributeN,valueN)}. A similarity function sim (pi, pj) can be defined as a function that captures similarity between two data points pi and pj. There is also a need to define a threshold t for this similarity such that the two points are termed similar if sim (pi, pj) > t. 

A better representation of similarity for the point defined earlier would be,
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In order to estimate an outlier score for a point P, one needs to look at how many other points P is linked to. Also, every link shared with another point is not the same. Taking this fact into account, the link strength between two points is defined as the number of (attribute, value) pairs that are common to the two points which is same as 
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On the basis of this, a score function is also defined, that captures the degree to which a point is an outlier, based on links and link strengths. Let li (j) be defined as the number of points that link to a point pi with a link strength of at least j. 
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where a is a user-defined threshold. The score function has the following properties [20]:

· A point  with no links to other points will have the highest possible score

· A point that shares only a few links, each with a low strength, will have a high score

· A point that shares only a few links, some with a high link strength, will have a moderately high score

· A point that shares several links but each with a low link strength, will have a moderately high score

· Every other point will have a low to moderate score

An important observation at this point is to note that if li(k) > a, then li (j) > a, for all j<k. Relationship between this score function and Frequent Itemset Mining is defined in the following lines [21].

Let 
[image: image6.wmf]}

,...,

,

,

{

3

2

1

M

i

i

i

i

F

=

 be a set of items with cardinality M such that each item in F maps to a (attribute, value) pair from all possible valid pairs in the dataset. Let 
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Set S is a set of itemsets such that every item in an itemset has a distinct attribute (i.e. each attribute is present at most once in an itemset and cannot be repeated). The maximum itemset in S, thus, will be of size N; the number of attributes in the dataset. 

To calculate the score for a point (pi), find out the value of 
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 is the number of points that link to a point pi with a link strength of at least j. Finding 
[image: image10.wmf])

(

j

l

i

reduces to the problem of finding the sum of frequency counts for all itemsets that have j (attribute, value) pairs in common with pi. Now define
[image: image11.wmf]}

:

{

)

(

i

i

p

s

j

s

S

s

s

j

S

Í

Ù

=

Ù

Î

=

. where 
[image: image12.wmf])

(

j

S

i

 is the set of all possible subsets of S with a size of j, with exactly j (attribute, value) pairs in common with pi. Let freq(s) be the frequency of occurrence of itemset s in the dataset. The score estimation function that uses itemset frequency counts is defined as follows:
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This reduces the original problem of estimating the score to that of finding frequency counts for all itemsets that have at least N, N-1, N-2,…,1 (attribute, value) pairs in common with point pi. This can simplify score function even more as:
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where b is a user defined threshold.

2.2. Hash Table Management

Data in the current scenario changes rapidly. Changes has to be managed over a specified time period. In order to cater for dynamic data, LOADED keeps at most two hash tables in memory simultaneously. Each hash table has an identifier associated to it. A hash table is created in memory after every W points – this W is also called the window size. This hash table is assigned a hash table index for an incoming point with an index i. The oldest hash table with index (i div W – 2) is deleted entirely from memory. Such a scheme ensures that the data for a particular point is stored in memory only for a finite amount of time (i.e. until a data point with index i + 2W comes in for processing) thus eliminating any stale data from occupying unnecessary memory. 
2.3. Frequency Estimation 

Hashing and frequency estimation go hand in hand. The frequency for each data points needs to be estimated. This frequency has to be calculated in such a way that one can monitor the most recent trends in the data. This can be done by introducing a bias towards recent data points. 
The hash table includes itemsets for a point, along with their frequencies only if it appears at least once every W points. The frequency for all itemsets in the hash table is decremented by 
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every W points. Whenever there is a need to estimate the frequency of an itemset for a point with an index i, check if it is present in the new hash table (with index i div W). If it is, just increment its frequency by 1. On the other hand, if it is found to be present in the old hash table (with index i div W–1), hash it into the new table and increment its frequency by 
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(from this point onwards, use the new frequency). Finally, if the itemset is not found in any of the tables, hash it into the new hash table with frequency = 1.

2.4. The Algorithm

The algorithm uses the score function Score3 presented in section 4.1. It iterates over all possible subsets of a point p. The score of a point is calculated by checking and counting all its infrequent sub-itemsets. The algorithm begins by checking whether the old hash table has to be destroyed or not. It uses hash table management as defined in section 4.2 for this task. For each of the itemsets 
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, update their frequencies in the hash table using Estimate Frequency in section 4.3, then check if g’s frequency is less than the FrequencyThreshold. If it is, then the itemset in g is not frequent. Update the score by adding a reciprocal of the itemset length to the score. This ensures that the score for points which have non-frequent itemsets in their deeper levels have a higher score value. Also add itemsets of size itemsetsize(g) – 1 to the set G. Using the apriori property, if an itemset is not frequent, then its subsets may or may not be frequent. After adding the sub itemsets to G, search for the recently added sub-itemsets in the hash table. All those that are not found in the hash table are inserted into the table with the frequency count of the point p itself. Keep on doing this until G is completely exhausted. The score is then checked against a ScoreThreshold. If the score is higher than the threshold, the point is termed as an outlier. However if it is not, then it is said to be Normal. The next point is then allowed to enter for processing.

2.5. Score Approximation using Average Scores

The scoring scheme used in section 4.4. is useful in cases where the data coming in is consistent with the old data. However if the data coming in is frequently changing and unpredictable, one may need to update the score threshold according to the current trends in the data.

Add two parameters in the original scheme: a) ScoreWindowSize and b) 
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Score. ScoreWindowSize can specify a number of points whose scores are saved at a particular time in memory. 
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Score specifies a parameter that enables us to refine this search – varying 
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Score has a direct impact on the number of outliers detected by the algorithm. The ScoreThreshold parameter used in the algorithm earlier will not be used here. 

The score of each point is stored in a vector of size ScoreWindowSize. In order to check if a point is an outlier or not, just retrieve all the scores stored in the vector and take their average. This average score will reflect current data more than the ScoreThreshold parameter. This average score is multiplied by
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Score (has a value greater than or equal to zero) to get a NewScoreThreshold. The NewScoreThreshold for a point p is computed using the scores from the last ScoreWindowSize points. 

2.6. STHRESH versus AverageScore

The original algorithm proposes the use of AverageScore and 
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Score. These parameters are good where the data coming in is highly variable (i.e. the values in some or all the attributes of the dataset are unpredictable) and the algorithm needs to be able to adapt the score thresholds according to this variance. 

Analysis of data being obtained in real time is time-critical and even a small change in the algorithm that might look insignificant can be crucial in the overall performance of the application in which it is being used. The computation overhead of the algorithm can be reduced if the data coming in has a low variability (i.e. whose possible attribute value ranges are small and previously known). One will neither need to manage the scores for a given ScoreWindowSize no. of points nor will one have to compute the averages for each incoming point. Also, the user who already has a lot of parameters to enter for this algorithm will need one less parameter to think about. It is therefore better to look at the type of data being analyzed for anomalies before applying the algorithm on it. Table 1 shows the differences between these two thresholding approaches.
3. MAXLEVEL APPROXIMATION ALGORITHM

In the original algorithm discussed in section 4 of this paper, each point is taken as it comes and is processed in its entirety. This process, for datasets with a large number of attributes, is quite time consuming and cannot be done in real time. Also, the memory required to store sub-itemsets gets quite large as the number of attributes increases. The following equation shows the maximum number of itemsets needed to be stored in memory for a single point (with an N-attribute dataset):


[image: image23.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

-

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

+

÷

÷

ø

ö

ç

ç

è

æ

1

2

...

1

...

2

1

N

N

k

N

k

N

N

N

N

N

N

N


To resolve this issue, a new parameter is introduced in the algorithm. This parameter, called MAXLEVEL, determines the lattice level at which the processing should start. 

Table 1: Differences between STHRESH and AverageScore

	Characteristics
	STHRESH
	AverageScore

	Parameters
	User friendly as only one parameter needs to be set
	Needs two parameters; ScoreWindowSize and 
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Score

	Usefulness
	When data that is coming in has a consistency throughout and has low variability
	When data that is coming in is of a dynamic nature – changing rapidly (e.g. self-similar data)

	Parameters Needed
	STHRESH
	ScoreWindowSize and 
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Score

	Underlying Concept
	Using a single cut-off for slowly consistent data
	Using average scores from past points within a particular window


Using this approximation scheme, just start by finding all possible MAXLEVEL-sized combinations of the incoming point. E.g. a point having value ABCDE (5 attributes) will have ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE and CDE as its sub-itemsets when the MAXLEVEL is set to 3. Now each of these subsets is treated as a single point and the original algorithm is run on them. The score is computed by summing up the scores for all the sub-itemsets. The maximum number of itemsets stored for a particular point now reduces to:
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Although this approximation is more time efficient, the accuracy of the results starts suffering – decreasing the MAXLEVEL has an adverse effect on the accuracy.
4. EXPERIMENTS

This section summarizes the execution results of the LOADED algorithm with different parameters. Datasets with different number of attributes have been used to demonstrate the effect of various parameters.

4.1. Effects of Increasing Number of Attributes

The graph in Figure 1 shows that LOADED has a pretty good time both for with approximation and without approximation as long as the number of attributes is less than or equal to 6. As soon as a 7 or more attribute dataset is used, a sharp rise is observed in the time taken. Another interesting observation is that up till 6 attribute datasets, both the algorithms have almost same execution times, but that the approximation scheme gives the results faster when number of attributes is greater than 6. For this plot, take N-1 attributes for approximation (where N is the total number of attributes in the dataset).
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Figure 1: Effect of increasing number of Attributes

4.2. Results of Execution

Figure 2 shows a graph demonstrating the results of the algorithm (without the approximation) using the 4-attribute dataset (STHRESH = 7, FTHRESH = 3, W = 7, DELTAF = 0.5). The bold line shows the STHRESH. All points above the STHRESH are Outliers. 

A key thing to note here is that the algorithm gives a few outliers at the very beginning. This is because the algorithm has no previous data to get for the initial points from the hash tables. Also, the STHRESH parameter has to be set according to the user’s interestingness and the domain it is being used in.
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Figure 2: Execution Results using STHRESH

4.3. Effects of MAXLEVEL on Execution Time 

For observing this, the 7-attribute dataset (FTHRESH = 3, W = 7, DELTAF = 0.5, BUCKETS = 7) is used with the LOADED approximation algorithm. The graph in Figure 3 shows that the time taken for the algorithm using lower MAXLEVEL is very good but increases steadily after MAXLEVEL = 3. It should also be observed that there is a trade-off between time and accuracy of results; where MAXLEVEL is low, accuracy of results suffers. One needs to see how much accuracy is required over a given time. This varies from one domain area to another and is rather user-centric.
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Figure 3: Effects of MAXLEVEL

4.4. Effects of Frequency Threshold (FTHRESH) on Execution Time

To evaluate this, the LOADED without the approximation scheme is used. Only 6, 7 and 8-attribute datasets (BUCKETS = 7, W = 7) have been included in the results as the rest of the smaller datasets give almost same time for all tested frequencies. Figure 4 shows the results obtained.

Observe the fact that after the FTHRESH value goes beyond 3, there is a sharp rise (almost linear) in the execution times. An increase in the FTHRESH value causes the algorithm to explore the lattice for each point at greater depths thus causing a sharp rise in execution time.

A larger number of outliers is observed as the frequency threshold is increased. The main reason behind this is the fact that more points start going below the thresholds thus resulting in higher scores and consequently greater number of outliers. 

4.5. Effect of Window Size (W) on Execution Time 

The 7-attribute dataset is used for this task (STHRESH = 37, FTHRESH = 4, BUCKETS = 7) with the no-approximation algorithm. Figure 5 shows the results. It is evident that there is a lot of variation in the graph. This is due to the fact that W is data-dependent; i.e. it will vary with the dataset. For a particular value of W, the frequency of similar points may exist in one of the two hash tables maintained in memory – the demarcation of the dataset is in favor of the data. On the other hand, a value of W may be such that similar points are cut out of the hash tables at boundaries – this demarcation however is not favorable for the dataset.  
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Figure 4: Effects of Frequency Threshold

4.6. Effect of Score Threshold (STHRESH) on Execution Time

STHRESH has almost negligible effect on the execution time of LOADED. The time consuming code is executed based mainly on the provided FTHRESH. 
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Figure 5: Effect of Window Size
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Figure 6: Effect of Hash Table Size

4.7. Effect of Hash Table Size (BUCKETS) on Execution Time

The 7-attribute dataset for this task (STHRESH = 37, FTHRESH = 4, W = 7) with LOADED no-approximation algorithm is used. Figure 6 shows the results. Increasing the BUCKETS clearly indicates a decrease in search time within the hash tables as each bucket contains lesser elements than before. The graph verifies this result. 

Initially, when the BUCKETS are increased, the execution time drops very rapidly, but after some time, increasing the BUCKETS doesn’t have any significant effect on the execution time. This is due to the fact that the reduction in search time during each iteration keeps getting smaller and smaller.

4.8. Effect of Score Threshold (STHRESH) on Outliers

As mentioned earlier, the STHRESH affects the number of outliers that are detected. Figure 7 was generated using the no-approximation LOADED (FTHRESH = 4, W = 7, BUCKETS = 7) on the 7-attribute dataset. There are 200 records in the dataset. 

The number of outliers found decrease as STHRESH is increased. The STHRESH parameter can be used to refine this analysis. That is why it is imperative that the user analyze the output before setting the STHRESH.
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Figure 7: Effect of Score Threshold

4.9. Effect of Dataset Size on Execution Time

The graph in figure 8 tries to establish a concrete relationship between the dataset size and execution time. It is observed that the relationship is almost linear although it tends to become sub-linear towards the high side. For this, a 5-attribute dataset with the non-approximation LOADED algorithm (STHRESH = 11, FTHRESH = 3, DELTAF = 0.5, BUCKETS = 7 and W = 7) was used.

4.10. Effect of using ScoreWindowSize and 
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Score 

Instead of using STHRESH, the average scores of ScoreWindowSize points multiplied by 
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Score can also be used to make a new score threshold. The graph in figure 9 shows that this technique updates the threshold based on information collected from current data points rather than hard-coding the threshold (as it was done in STHRESH). 
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Figure 8: Effect of Dataset Size
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Figure 9: Using Average Score for Thresholds

The average scoring without approximation algorithm on the 5-attribute dataset was used for this experiment (DELTAS = 1.2, SCOREWIN = 20, FTHRESH = 3, DELTAF = 0.5, BUCKETS = 7 and W = 7). 

4.11. Effect of 
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Score on Outliers

Figure 10 shows the results of this experiment. The average scoring without approximation algorithm was used on the 5-attribute dataset for this experiment (DELTAS = 1.2, SCOREWIN = 20, FTHRESH = 3, DELTAF = 0.5, BUCKETS = 7 and W = 7). It was seen that a slight change in 
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Score has a huge effect on the number of outliers generated. After the increase in 
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Score from 0.8 to 1, a sharp decrease in the outliers is seen. 
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Figure 10: Effect of Delta Score

5. CONCLUSIONS AND FUTURE WORK
Outlier detection schemes that have been proposed up till now have mostly been for data that has already been amassed at a particular site. Only recently, development has started on algorithms that work on incremental data as well as data being generated in real time. LOADED is one of the best algorithms available for this. Results that have been published in [3, 20] show that LOADED is a better algorithm than other similar algorithms such as ORCA [22]. Experimental results demonstrate the fact that LOADED is up to 26 times better than ORCA.

5.1. Conclusive remarks on Parameters used by LOADED

LOADED relies on quite a few user-specified parameters: FTHRESH, W, STHRESH, BUCKETS and
[image: image42.wmf]Δ

Score. Let us summarize the effects of each of these parameters on the algorithm:

· FTHRESH: This parameter has a direct effect on the execution time of the algorithm. Increasing this parameter beyond a certain limit linearly increases the execution time.

· W: Increasing the value of this parameter may increase or decrease the execution time. The behavior is quite unpredictable and is caused by values being flushed out of the hash tables.

· STHRESH: This parameter has no effect on the execution time taken by LOADED. This however affects the number of outliers that are detected by the algorithm. 

· BUCKETS: Increasing the number of buckets in a hash table certainly improves the time required by the algorithm to execute. This is because a large number of buckets result in each bucket carrying smaller number of itemsets thus reducing searching time greatly.

· 
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Score: This parameter doesn’t affect the execution time of the algorithm. This however determines the amount of outliers detected by the algorithm. Increasing the value reduces the number of outliers found. 

5.2. Improvements to the Original Algorithm

The need to analyze data thoroughly before actually begin searching for outliers is highlighted. It has to be checked whether the data has a high or a low variance. If the data has attributes whose value ranges are small and known previously, there is no need to compute a new score threshold for every incoming point. One can simply rely on STHRESH and save computational overheads. On the other hand, one will need to use the AverageScore if the dataset is highly variable and unpredictable.

The areas which can be further improved are listed below:

· Reduce memory requirements – The current memory requirements for the execution of LOADED are quite large as one need to manage two hash tables in memory simultaneously. This requirement is directly dependent on the primarily on the dimensionality of the data to be analyzed. Work can be done to design a better data structure that is compact. A little accuracy can be sacrificed if the savings in memory are relatively large. 

· Reduce execution time – Execution time of LOADED, although better than other available algorithms, is still quite a lot. One of the most time consuming steps in the algorithm is searching the hash table for the desired itemset. Again, improving the underlying data structure to cut down the execution time needs to be pursued further. 

· Design a better score function – The score function currently used in LOADED requires that lots of itemsets be stored in memory and processed in order to compute the score. If the score function were to be designed such that it could capture the essence of the data points more accurately without requiring too much memory and computations, it would do wonders for this algorithm.
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