A BRIEF INTRODUCTION TO PROPOSITIONAL LOGIC
Peter Millican
Hertford College, Oxford
The aim of these notes is to give a rapid introduction to propositional logic, focusing on the most central notions and techniques, and ignoring many of the complications and subtleties. It is not intended to give a comprehensive guide to the subject, and should not be taken as a substitute for Hodges’ book. References – often very brief – will be made to various sections of that book, and these sections should be studied independently: the absence of detailed discussion in these notes suggests only that the sections in question are less vital to the central logical techniques, not that they are unimportant.
Propositional logic is the study of those arguments and inferences that can be assessed for validity entirely in terms of their propositional constituents. So we shall start by clarifying the notions of a proposition, of an argument, and of validity.

1
What is a Proposition?

There are lots of potential philosophical pitfalls here, some of which are discussed by Hodges (see in particular his sections 3, 4, 5 and 6 on “Declarative Sentences”, “Ambiguity”, “Truth and References”, and “Borderline Cases and Bizarre Situations”). However Hodges himself is not entirely clear on what he takes to be the primary “truth-bearing” objects of logical appraisal, sometimes focusing on “beliefs” (especially in his sections 1 and 2) but mostly on “declarative sentences”. More precisely, his treatment of examples indicates a preference for declarative sentences in a given situation, so that the different sentences within an argument can all be presumed to fall within the same situation, with pronouns such as “I” and “that” referring consistently to the same things (e.g. see his pages 27-8).

For the purpose of these notes, I shall simply ignore most of the potential complications and use proposition as a term of art for whatever it is that can form part of an argument assessable by the techniques of propositional logic. A proposition for these purposes can then be defined rather crudely, in the following way:

A proposition is a statement that some determinate state of affairs is (or is not) the case.
So the following sentences express propositions:

Grass is not white

All politicians are liars

1 + 1 = 23

Some pigs can fly

Whereas the following do not:

Are you feeling unwell?

Go away and never come back!

Aardvark window very looking is

jfk ndvbnvns ytruw hjd shdkl

And the status of the following might be disputed:

(a) Colourless green ideas sleep furiously

(b) The law reflects the General Will

(c) Abortion is morally wrong

(d) He feels hot just now

(e) The big window faces John’s house

(f) Leeds United will win on Saturday

Those in the last group are problematic for a variety of reasons:

(a)
“Colourless green ideas sleep furiously”, although grammatically well-formed, is hard to make sense of, and might accordingly be thought meaningless (Hodges in his section 3 refers to this kind of aberration as a “selection violation”).
(b)
“The law reflects the General Will” is problematic because the notion of the “General Will” is dubious and perhaps incoherent.

(c)
“Abortion is morally wrong” might be disputed because some would claim that moral words merely express attitudes rather than describing states of affairs (cf. Hodges Exercise 3B, no. 6).
(d)
“He feels hot just now” can be used to express some proposition on a particular occasion, but by itself does not make clear which determinate proposition is intended (which male individual is being referred to, and when is “now”?).
(e)
“The big window faces John’s house” is another illustration of context-relativity (which indeed probably affects most utterances): here we have a definite description and a name which can be used to speak of different windows and different Johns.

(f) “Leeds United will win on Saturday” is likewise context-relative (which “Saturday” is involved?), and also raises questions about the future: some philosophers claim that a statement about what will happen must be a judgement rather than a proposition (involving an act of prediction or conjecture rather than assertion), and so cannot be literally true or false.
In what follows, for the sake of simplicity, I shall be very liberal regarding what counts as a proposition: any sentence which has the grammatical form of a statement will do (so all of this last group will be allowed). However like Hodges I shall presume that any argument is to be assessed in relation to a single situation: all referring expressions, including both token-reflexives (“I”, “now” etc. – see Hodges p. 14) and demonstratives (“he”, “that” etc.) will be assumed to refer consistently throughout the argument as far as possible.

1.1
The Negation of a Proposition
The negation or contradictory of a proposition (cf. Hodges pp. 70‑2) is that proposition which denies precisely what the first asserts (and, therefore, asserts precisely what the first denies). So if P is a true proposition, it follows on pain of contradiction that the negation of P must be false, and likewise, if P is false, then the negation of P must be true. The negation of P is most commonly represented symbolically as “¬P”, (pronounced “not P”; alternative notations include “~P” and “–P”). Making use of this notation, we can summarise the relationship between a proposition and its negation in a truth-table:
Truth-table for “¬”

	P
	¬P

	T

F
	F

T

Here are some examples of negating (or contradictory) pairs:

 P

Snow is white

P

Snow is not white

 Q

All cows eat grass

Q

Some cow does not eat grass

 R

Some politicians tell the truth

R

It is not the case that some politicians tell the truth

(R would be more elegantly expressed as “No politicians tell the truth”, but note that almost any proposition can be “negated” – made into its negation – by preceding it with “It is not the case that”.)

Now we must take note of two important (and distinct) principles:
Law of Non-Contradiction:

A proposition and its negation cannot both be true.
Law of Excluded Middle:

At least one of a proposition and its negation must be true.
So a proposition and its negation cannot both be true, but also, and equally importantly, they cannot both be false either. Bearing this second point in mind, we can see that the following pairs of propositions are not mutually negating:

 P

Snow is white

 S

Snow is green

(Snow could be purple, in which case both P and S are false)

 Q

All cows eat grass

 T

No cows eat grass

(It could be that some cows do eat grass, and some don’t)

 R

Some politicians tell the truth

 U

Some politicians do not tell the truth

(Maybe some politicians tell the truth, while others don’t; also, if

there were no politicians at all, both R and U would be false)
The best test for whether one proposition is the negation of another is to ask yourself first whether you can imagine a possible situation in which they would both be true, and secondly, whether you can imagine a possible situation in which they would both be false. If you cannot imagine either of these, then the two propositions are probably genuine negations, but otherwise not.

Hodges introduces the notion of a negation at the beginning of his section 17, but I think gives it far too little prominence and insufficient discussion. It is crucial to have a secure grasp of the notion, and to be able to identify when two propositions are genuine negations of each other, and when they are not.

2
What is an Argument?

The logical notion of an argument is, of course, quite different from the conversational notion (of a row, or heated dispute, or disagreement). One of the speakers in Monty Python’s famous argument sketch was nearer the mark: “An argument is a connected series of statements intended to establish a proposition”. So here is an example of an argument in this sense (cf. Hodges pp. 36‑8):

(a)
Fred is studying in the Mathematical Institute
(b)
So Fred must be a student at Oxford University

(c)
Every Oxford student either has ‘A’ levels or is a mature student

(d)
So Fred must either have ‘A’ levels or be a mature student

(e)
But Fred has a young person’s railcard

(f)
And nobody with a young person’s railcard can be a mature student

(g)
So Fred cannot be a mature student

(h)
Hence Fred must have ‘A’ levels

(i)
Everyone studying Mathematics at Oxford University who has any ‘A’ levels at all has at least one Mathematics ‘A’ level

(j)
So if Fred studies Mathematics at Oxford University and has ‘A’ levels, he must have a Mathematics ‘A’ level

(k)
Therefore Fred must have a Mathematics ‘A’ level

Within this argument the various “steps” perform different roles:


(a), (c), (e), (f) and (i) state propositions which are here taken for granted rather than being themselves supported by argument: these are called the “premises” of the argument.


(k) is the proposition which the argument is put forward to establish: this is called the argument’s “conclusion”.


(b), (d), (g), (h) and (j) are intermediate conclusions, which are (or purport to be) established from the premises on the way to, and as a means of, establishing the final conclusion.

In the study of logic we usually simplify matters by analysing arguments purely in terms of their premises and conclusions, ignoring all intermediate steps and all words used to indicate the flow of the argument such as “so”, “but then”, “must”, “hence” and so on. We could therefore represent the argument above in the following simplified form:

1.
Fred is studying in the Mathematical Institute
2.
Every Oxford student either has ‘A’ levels or is a mature student

3.
Fred has a young person’s railcard

4.
Nobody with a young person’s railcard can be a mature student

5.
Everyone studying Mathematics at Oxford University who has any ‘A’ levels at all has at least one Mathematics ‘A’ level

──

Fred has a Mathematics ‘A’ level

Hodges simplifies things even more than this, not even numbering the premises (though I’d advise you to do so for the sake of neatness). This reflects the fact that logicians don’t normally take any notice of the ordering of the premises: all that matters, in identifying or assessing an argument, is what the premises are and what is the conclusion. Accordingly, when we speak of an “argument” here, we shall usually understand this term as follows:

An argument is a set of propositions, which constitute the premises of the argument, together with one particular proposition, the argument’s conclusion.

To make sure that you understand the implications of this, take a look at Appendix S to this document, on set theory (though you do not need to learn all of it: the important thing is simply to grasp the basic notions of a set and its identity conditions: if sets A and B have the same elements, then A and B are one and the same set).

3
Consistency

We have seen that an argument can be viewed as a set of propositions (the premises) together with one other proposition, identified as the conclusion. It is therefore not surprising that one of the key concepts of logic, namely that of consistency, is one which is defined as applying to sets of propositions (cf. Hodges pp. 1‑3, 26‑9).

A set of propositions is consistent if it is logically possible for all of the propositions in the set to be true together.

and correspondingly

A set of propositions is inconsistent if it is not logically possible for all of the propositions in the set to be true together.
Thus the following set of propositions is consistent:

 {
The moon is inhabited by spiders ,

Some man can jump over 100 metres ,

Tony Blair is Prime Minister ,

The Monster Raving Loony Party is in government }

Though it is perhaps unlikely that all four should be true together, it is nevertheless logically possible (one can coherently imagine, without contradiction, a single scenario in which they would all be true: it is irrelevant that the first two are probably physically impossible).

By contrast, the following set of propositions is inconsistent:

 {
No cow eats aubergines ,

Buttercup is a cow ,

Buttercup eats aubergines }

Each individual proposition here may be relatively plausible compared with some of those in the previous set, but clearly they cannot all be true together on pain of contradiction.

4
Validity

Sets of propositions are consistent or inconsistent. Arguments are valid or invalid. The notion of validity, however, is far harder to pin down than that of consistency, and it is worth taking the definition in stages (cf. Hodges pp. 38‑42). The intuitive notion of a valid argument is something like this:

1.
An argument is valid if, and only if, its conclusion follows from its premises.

But such a definition is far too vague for the purposes of logic: what exactly does “follows from” mean here? If we’re trying to define a purely logical notion we obviously don’t want it to mean anything psychological such as “is brought to mind by”. Surely the point is that the truth of the conclusion should be guaranteed by the truth of the premises:

2.
An argument is valid if, and only if, whenever all of its premises are true, its conclusion must also be true.

This is unfortunately difficult both to apply and to understand because of the word “whenever”. For example it seems to give no ruling about arguments whose premises are never true. We might be tempted to say that such an argument cannot be valid, but this would be a major drawback, since it would mean that we could never know whether an argument was valid without knowing whether its premises were ever in fact true together. It would also imply that a valid argument could be made invalid by the addition of further premises, which seems slightly problematic (since if T “follows from” P and Q, then T should also “follow from” P, Q and R). We can deal with both problems at the same time by focussing on the existence of possible situations in which the premises are true together, and expressing the condition not in terms of the conclusion’s truth, but instead its falsity:

3.
An argument is valid if, and only if, there is no possible situation in which its premises are all true whereas its conclusion is false.

We shall need this definition later when using truth-table methods. But note now that it can be expressed using the notion of consistency:

4.
An argument is valid if, and only if, the truth of its premises is inconsistent with the falsity of its conclusion.

Now the negation of the conclusion is true if, and only if, the conclusion itself is false. So we can rephrase this definition:

5.
An argument is valid if, and only if, its premises, taken together with the negation of its conclusion, form an inconsistent set.

One important consequence of this definition is that any method of testing propositions for consistency (such as the method of tableaux to be discussed later) will now automatically provide us with a means of testing for validity. Note also that we now have a ruling on arguments with inconsistent premises: they are one and all valid!

4.1
Defence of the Standard Notion of Validity

(An interlude of purely philosophical interest)

First, it is difficult to see any alternative which is simple, straightforward to apply, unambiguous, and which gives a determinate decision in all cases. If it is to form the basis of logic then obviously any definition of validity must be unambiguous and determinate. This does not rule out all alternatives, but no other candidate definition is anything like as simple.

The obvious objection to the definition is that it can give intuitively implausible consequences when the premises of an argument are themselves inconsistent. In some cases this certainly seems very odd:

(1)

7 is greater than 5

(2)

7 is not greater than 5

───────────────

(
(3)

God exists

Here we don’t really want to say that (3) “follows from” (1) and (2). So this might suggest the following definition:

An argument is valid if, and only if, the premises are themselves consistent, but they are inconsistent with the negation of the conclusion.

This is already twice as complicated as the recommended definition 5, since it requires two tests of consistency in order to be applied. But it is still perhaps sufficiently simple to be workable. However it is not adequate, since in many cases we clearly do want to allow a valid argument from inconsistent premises:

(1)

1234567 is the largest prime number

─────────────────────────

(
(2)

1234567 is a prime number

Here (2) clearly follows from (1) in any sensible sense of “follows from”, though in fact (1) is inconsistent (the existence of a largest prime number can be shown to imply a contradiction, using an ancient argument sketched below, attributed to the Greek mathematician Euclid). Note, moreover, that arguments from inconsistent premises are essential to a great deal of mathematics, since they form the basis of the method of proof known as reductio ad absurdum: first assume that P is true, then demonstrate that a contradiction follows from this assumption, and hence conclude that P must be false.

An example: Assume that there is a largest prime number, and call it n. Now consider the number n!+1 (where “5!”, for example, means 5×4×3×2×1). This number is not divisible by any factor less than or equal to n (since n! is the product of all such factors and is therefore divisible by all of them), so either n!+1 is a prime number, or else it must be divisible by some number greater than n, which number is itself not divisible by any factor less than or equal to n. Either way, there must be a prime number greater than n, which is a contradiction, since our initial assumption was that n is the largest prime. Therefore there is no largest prime.
To capture the intuitive notion of “validity” in these cases, we would probably have to include in our definition that the premises should be “relevant” to the conclusion. This, however, is itself a very imprecise notion, so it does not really help us in our search for a clear and unambiguous definition.

Maybe, then, we should give up any attempt to define validity in terms of the premises and conclusion of an argument. Perhaps we should go instead for something like this:

An argument is valid if, and only if, its conclusion is reached from its premises by “valid” steps, that is, by steps each of which is truth-preserving.

This is a bit vague, and needs expanding, but the general idea should be clear enough. An argument is valid if every “line” that follows the premises is derived by a “truth-preserving” step from previous lines, where a step is truth-preserving if it couldn’t possibly yield falsehood from truth (e.g. if lines 1 to 8 are all true, and line 9 is derived from them by a truth-preserving step, then line 9 must be true too).

This new definition makes testing for validity a far more complicated business, since every step in an argument must be checked. But this might be worth it if the definition is significantly less objectionable on other grounds. Unfortunately, however, it still seems to let in arguments with inconsistent premises and “irrelevant” conclusions. Because (bearing in mind that “P or Q” is standardly interpreted in logical contexts to mean “P and/or Q”) both of the following “steps” seem to be clearly “truth-preserving”:

(1)

P

(1)

P or Q

(
(2)

P or Q

(2)

not P

(
(3)

Q

And yet these enable us to deduce any conclusion Q from P and not P by a short sequence of truth-preserving steps:

(1)

P

premise

(2)

not P

premise

(3)

P or Q

from 1

(4)

Q

from 2 and 3

Here we have what looks like a good argument for an arbitrary conclusion, Q, from the inconsistent premises P and not P. Thus our new definition of validity has exactly the same objection as the old one, and is, besides, a lot more complicated to use and to test!

4.2
A Possible but Complex Alternative: Relevance Logic

This is not quite the end of the matter, since it is still possible to resist this conclusion by denying that one of the two “steps” given above is truth-preserving or, if this is thought to be different, validity- preserving. This might seem rather a desperate move, but some logicians, called relevance logicians, have taken this line. They deny that the two steps just described can both be validity-preserving (e.g. by forbidding the second step if “or” is interpreted truth-functionally), but this leaves them with a far more complicated logical system. You may think this kind of non-standard system is something to look forward to, but you need to be able to walk before you can run!

5
Propositional Connectives

There are many propositional connectives in English, for example:

and because but if nevertheless only if or unless

These are all binary connectives, because each can be used to connect together two propositions to create a third proposition.
 For example:

	proposition 1
	connective
	proposition 2
	proposition 3

(the result of the combination)

	Snow is white.
	and
	Grass is green.
	Snow is white and grass is green.

	Coal is yellow.
	because
	The world is round.
	Coal is yellow because the world is round.

	It is raining.
	but
	It is not raining.
	It is raining but it is not raining.

	It is cold.
	if
	It is snowing.
	It is cold if it is snowing.

	I am a man.
	implies
	I am human.
	I am a man implies
I am human.

	He is talented.
	nevertheless
	He will fail.
	He is talented nevertheless he will fail.

	It is cold.
	only if
	It is snowing.
	It is cold only if it is snowing.

	She is at home.
	or
	She is a liar.
	She is at home or she is a liar.

	Unemployment is low.
	suggests
	Labour will win.
	Unemployment is low suggests Labour will win.

	White will win.
	unless
	Black will take the rook.
	White will win unless black will take the rook.

English also has many unary connectives, which “operate on” a single proposition to produce another (it may seem odd to call these “connectives”, since they don’t connect anything, so “unary propositional operators” might be a better term!):

	proposition 1
	 connective
	proposition 2 (the result of the combination)

	London is small.
	it is not the case that
	It is not the case that London is small.

	Pluto is rocky.
	possibly
	Possibly Pluto is rocky.

	All men are mortal.
	it is necessarily true that
	It is necessarily true that all men are mortal.

	Mozart was a genius.
	I believe that
	I believe that Mozart was a genius.

	Pi is irrational.
	I know that
	I know that pi is irrational.

	The train is late.
	We regret that
	We regret that the train is late.

	That’s cool
	Like, I mean, you know,
	Like, I mean, you know, that’s cool

5.1
Truth-Functionality

Suppose you are told on good authority that P is a true proposition and that Q is also true, but you have no idea what these propositions mean (perhaps they have been written in a technical jargon you don’t understand). Do you then have sufficient information to tell whether the following are true or false?

P or Q

P but Q

P because Q

P implies Q

In the first two cases, you do seem to have enough information: if P and Q are each individually true, then both “P or Q” and “P but Q” will also be true (even though the “but”, which seems to suggest an element of contrast or unexpectedness, may be inappropriate). In the last two cases, however, we need to know more before we can determine whether the “compound” propositions are true or false: we need to know in each case whether P and Q (the “atomic” propositions from which the “compound” is constructed) are in fact connected, which goes beyond their individual truth or falsehood.
Now suppose we are told that both P and Q are in fact false – is this sufficient to tell us the truth-value of the compound propositions above? In this case, we can say rather more: the first three will all be false in this situation, but we still cannot determine the truth-value of “P implies Q”.

We can then consider the two remaining possibilities: (P true Q false) and (P false Q true) and ask the same question. The results of this enquiry can be summarised as follows, in a truth table:

	P
	Q
	P but Q
	P or Q
	P because Q
	P implies Q

	T
	T
	T
	T
	?
	?

	T
	F
	F
	T
	F
	F

	F
	T
	F
	T
	F
	?

	F
	F
	F
	F
	F
	?

Check that you agree with this, and fully understand what’s going on, before proceeding! If you do not, then try working through each of the four cases in the table above, replacing “P” and “Q” in turn with actual propositions (such as those mentioned in §5 above) that you know to be true or false, and in the last two cases that you know to be either causally related or else quite independent of each other (work through as many different kinds of example as you can).

This table indicates that the first two of the four connectives here are truth-functional, where “P*Q is truth-functional” means that:

The truth-value of P*Q is determined entirely by the truth values of P and Q (so in order to work out the truth-value of P*Q, one only has to be told the truth-values of P and Q individually).

Any connective for which a complete truth-table can be specified (that is, a table containing no “?”s) is truth-functional.

Note that although for simplicity the definition given above speaks only of binary connectives, truth-tables can be also drawn up for unary and multi-place connectives, and so the concept of truth-functionality can be applied equally to any of these. Thus the unary connective “” (“it is not the case that ···”) is also truth-functional, since as we have seen previously its behaviour is completely specified by the truth-table:

	P
	¬P

	T

F
	F

T

Truth-table for “¬”

Hodges’ Terminology

As already noted in §1, Hodges speaks of “declarative sentences” rather than “propositions”, and he accordingly calls propositional connectives sentence-functors, with the following definition (p. 66):

a sentence-functor is defined to be a string of English words and sentence variables, such that if the sentence variables are replaced by declarative sentences, then the whole becomes a declarative sentence with the inserted sentences as constituents.

In applying this definition, it’s helpful to keep in mind Hodges’ suggested test for a declarative sentence: “a grammatical English sentence which can be put in place of ‘x’ in ‘Is it true that x?’ so as to yield a grammatical English question.” (pp. 5-6).
Hodges’ term for a truth-functional connective is truth-functor, defined as follows (p. 69):

A sentence-functor which has a [complete] truth-table is called a truth-functor.

5.2
The Four Main Truth-Functional Binary Connectives

There are four binary connectives that are used particularly frequently, because each corresponds reasonably closely to one of the standard connectives of English and other languages, and they can therefore be used to express compound propositions in a relatively natural and intuitive way. These four connectives, their approximate English equivalents, and their truth-tables, are as follows:

	
	
	
	P and Q
	P or Q
	if P
then Q
	P if and
only if Q

	P
	Q
	
	(P  Q)
	(P  Q)
	(P  Q)
	(P (Q)

	T
	T
	
	T
	T
	T
	T

	T
	F
	
	F
	T
	F
	F

	F
	T
	
	F
	T
	T
	F

	F
	F
	
	F
	F
	T
	T

Note that “(P  Q)” can be true only if both P and Q individually are true (as one would expect from a connective meaning “and”), whereas “(P  Q)” can be false only if P and Q are both individually false (as one might expect from a connective meaning “or”, but note that in logic we interpret “or” inclusively rather than exclusively, so that “P or Q” comes out unambiguously true if both P and Q are true – Hodges pp. 22, 74 calls this the “weak” reading of “or”). Regarding “(”, If you find it stilted to use language such as “P if and only if Q” (often abbreviated to “P iff Q”, then think of “(P (Q)” as simply asserting that P and Q have the same “truth-value” (i.e. as asserting that P and Q are either both true or both false).

“(P  Q)” is the most difficult to master, because although it is the closest truth-functional equivalent to the English “if P then Q”, it is also sufficiently distant in meaning to cause real problems if you rely too much on your understanding of “if”. So take care to remember:

“(P  Q)” is false only if P is true and Q is false. In all other cases, “(P  Q)” turns out to be true.

Thus “(P  Q)” can be rendered literally as “It is not the case that P is true and Q false”. Note that this indeed gives it the basic implicative power of the English “if P then Q”, because the following two forms of argument (sufficiently respected to have Latin names) both turn out to be valid as long as “P true and Q false” is ruled out by “(P  Q)”:

Modus Ponens

1.

(P  Q)

2.

P

─────



Q

e.g.
1.

If it is raining then it is wet

2.

It is raining

──────────────────



It is wet

Modus Tollens

1.

(P  Q)

2.

Q

─────



P

e.g.
1.

If it is raining then it is wet

2.

It is not wet

──────────────────



It is not raining

5.3
Translating English Connectives as Truth Functors

First, it must be remembered that (as should have been evident from §5.1 above) most English connectives are not genuinely truth-functional. So although we talk of “translation” here, we must not expect perfect synonymy between each English connective and its truth-functional “equivalent”. This said, and bearing in mind especially the discussion of “(P (Q)” in §5.2, some “nearest truth-functional translations” of English connectives are fairly obvious:

	not P
	P

	P and Q
	(P  Q)

	P but Q
	(P  Q)

	P nevertheless Q
	(P  Q)

	P or Q
	(P  Q)

	if P then Q
	(P  Q)

	P implies Q
	(P  Q)

But others can cause difficulty, and some of these are sufficiently important to be worthy of note:

P because Q
This is roughly equivalent to “Q is true and hence P is true”, and so could be translated as “(Q  (Q  P))”. But since that is logically equivalent to (P  Q), you can if you prefer take this simpler option.

P if Q
It is vital not to overlook the visually deceptive point that “P if Q” is equivalent not to “if P then Q” but rather to “if Q <then> P”, just as the arithmetical expression “+4 (3” is equivalent to “(3 + 4” (the “sign” moves with the term that follows it). So to translate “P if Q”, mentally transpose it into “if Q then P”, when the correct translation (Q  P) is obvious.

P only if Q
There is a strong tendency amongst many people to read “only if” as equivalent to “if” or to “if and only if”. Beware – all three are distinct! If you have this tendency, just remember that “only if” carries an implication in the opposite direction to “if”. But this rule can only applied directly where “if” and “only if” are in corresponding positions:

if P then Q

(P  Q)

only if P <then> Q

(Q  P)

When the “only if” appears instead in the middle of the proposition rather than at its beginning, the implication must also be transposed (compare the discussion of “P if Q” above). So

P only if Q

(“only if” in the middle)

and
if P then Q

(“if” at the beginning)

are equivalent. The opposite “direction” of the connectives is “cancelled out” by the change of position. So the correct translation is (P  Q).

P unless Q
This is roughly equivalent to “P can fail to be true only if Q is true”, which is the same as saying “if P is not true then Q is true” (or equivalently, “if Q is not true then P is true”). This suggests the translation “(P  Q)”, but since this is logically equivalent to (P  Q), it seems simpler just to remember that “unless” is to be treated as another way of saying “or” (which may seem surprising, but that’s probably because “unless” commonly involves as least one negative, i.e. “not(P) unless ...”).

6
Truth Tables for Compound Formulae

A truth table for a compound formula is produced by first “filling in” the truth-assignments for the atomic propositions (i.e. the P’s and Q’s etc.), then using these truth values as a basis for filling in the truth assignments for formulae constructed (using unary or binary connectives) from the atomic propositions, and then working on in the same way to deal with progressively more complicated formulae until the table is finished.

Suppose for example that we are asked to complete a truth table for the following formula:

((P  Q)  ((R  P)  (Q  R)))
First we list the possible truth-assignments for P, Q and R down the left-hand side, and copy them under the atomic propositions. Each line of the truth-table represents a possible situation, defined by the relevant truth-assignment to P, Q and R. Hodges (p. 99) calls a truth-assignment to all relevant atomic propositions a structure, so our truth table represents the eight structures that are possible given three atomic propositions. If there are n atomic propositions, then the number of possible structures will be 2n, and notice how listing these systematically enables us to be sure of covering them all:

P
Q
R

((

P

Q)

((

R

P)

(
Q

R)))

T
T
T

T

T

T

T

T

T

T
T
F

T

T

F

T

T

F

T
F
T

T

F

T

T

F

T

T
F
F

T

F

F

T

F

F

F
T
T

F

T

T

F

T

T

F
T
F

F

T

F

F

T

F

F
F
T

F

F

T

F

F

T

F
F
F

F

F

F

F

F

F

To proceed with our truth table, we now fill in the columns which depend immediately on the assignments to the atomic propositions:

P
Q
R

((

P

Q)

((

R

P)

(
Q

R)))

T
T
T

F
T

T

F
T

T

T
T
T

T
T
F

F
T

T

T
F

T

T
F
F

T
F
T

F
T

F

F
T

T

F
F
T

T
F
F

F
T

F

T
F

T

F
F
F

F
T
T

T
F

T

F
T

F

T
T
T

F
T
F

T
F

T

T
F

F

T
F
F

F
F
T

T
F

F

F
T

F

F
F
T

F
F
F

T
F

F

T
F

F

F
F
F

“A” simply has the opposite truth-assignment to “A”, whereas “(A  B)” is true if both “A” and “B” are true and otherwise false.
Now we can again go on to fill in those columns which depend immediately on those already completed:

P
Q
R

((

P

Q)

((

R

P)

(
Q

R)))

T
T
T

F
T
T
T

F
T
T
T

F
T
T
T

T
T
F

F
T
T
T

T
F
T
T

T
T
F
F

T
F
T

F
T
F
F

F
T
T
T

T
F
F
T

T
F
F

F
T
F
F

T
F
T
T

T
F
F
F

F
T
T

T
F
T
T

F
T
T
F

F
T
T
T

F
T
F

T
F
T
T

T
F
F
F

T
T
F
F

F
F
T

T
F
T
F

F
T
T
F

T
F
F
T

F
F
F

T
F
T
F

T
F
F
F

T
F
F
F

“(A  B)” is false if both “A” and “B” are false, and otherwise true; “(A  B)” is false if “A” is true and “B” is false, and otherwise true.
And again we continue in the same way, filling in the one column which depends immediately on those already completed:

P
Q
R

((

P

Q)

((

R

P)

(
Q

R)))

T
T
T

F
T
T
T

F
T
T
T
F
F
T
T
T

T
T
F

F
T
T
T

T
F
T
T
T
T
T
F
F

T
F
T

F
T
F
F

F
T
T
T
T
T
F
F
T

T
F
F

F
T
F
F

T
F
T
T
T
T
F
F
F

F
T
T

T
F
T
T

F
T
T
F
F
F
T
T
T

F
T
F

T
F
T
T

T
F
F
F
T
T
T
F
F

F
F
T

T
F
T
F

F
T
T
F
T
T
F
F
T

F
F
F

T
F
T
F

T
F
F
F
T
T
F
F
F

Finally, we can fill in the remaining column, since we have now completed the columns on which it itself depends:

P
Q
R

((

P

Q)

((

R

P)

(
Q

R)))

T
T
T

F
T
T
T
F

F
T
T
T
F
F
T
T
T

T
T
F

F
T
T
T
T

T
F
T
T
T
T
T
F
F

T
F
T

F
T
F
F
T

F
T
T
T
T
T
F
F
T

T
F
F

F
T
F
F
T

T
F
T
T
T
T
F
F
F

F
T
T

T
F
T
T
F

F
T
T
F
F
F
T
T
T

F
T
F

T
F
T
T
T

T
F
F
F
T
T
T
F
F

F
F
T

T
F
T
F
T

F
T
T
F
T
T
F
F
T

F
F
F

T
F
T
F
T

T
F
F
F
T
T
F
F
F

Be sure to draw around, or to highlight in some other obvious way, the final column of the table!

6.1
Hints for Quickly Constructing Truth-Tables

· Where there are n atomic propositions, the truth table will have 2n rows, each row representing a possible structure.
· Be sure to list the structures systematically, so that all are included, and always list them in the standard order (so you get used to it). If in doubt, start by listing the atomic propositions you need, then alternate “T F T F T …” in the last atomic proposition’s column:

P
Q
R
S

T

F

T

F

T (and so on for 16 rows, since 16 = 24)

Then fill in the previous column by alternating “T” and “F” with half the frequency (i.e. “T T F F T T F F T …”). Then the column before that, with half that frequency (i.e. “T T T T F F F F T …”). Continue moving back through the columns until all are completed.
· “A” has the opposite truth-assignment to “A”

· “(A  B)” is true if both “A” and “B” are true, and otherwise is false

· “(A  B)” is false if both “A” and “B” are false, and otherwise is true

· “(A  B)” is false if “A” is true and “B” false, and otherwise is true

Thus when filling in a “”, “” or “” column, first scan down looking for the exceptional case (TT, FF and TF respectively) and fill those in (as T, F and F respectively). Then fill in the gaps that are left with the “otherwise” truth value (i.e. F, T and T respectively). This method is very quick and easy, and therefore minimises errors.
· “(A (B)” is true if and only if “A” and “B” have the same truth assignment

7
Translating an Argument into Propositional Notation
It is important to note that not all arguments can be adequately translated into propositional notation. This is because any such translation depends on being able to represent the argument entirely in terms of complete propositions, whereas many arguments cannot properly be represented without consideration of the internal structure of the propositions involved. Take for instance the following (very traditional) example:

1.
Socrates is human

2.
All humans are mortal

───────────────


Socrates is mortal

This consists of just three propositions, none of which is a compound proposition, and so if we try to represent it in propositional notation we cannot do better than:

1.
P

2.
Q

──


R

which clearly does nothing whatever to shed light on the structure of the argument, or on the reason for its validity.

Here, by contrast, is an argument which can reasonably be represented in purely propositional terms:

The men will have gone back to work if agreement has been achieved about wage-claims. But this can have been achieved only if there has been a productivity-deal. So they cannot have gone back to work unless there has been a productivity-deal.

We shall now translate this argument as an illustration of the general method. To translate an argument into propositional notation is to represent it in terms of complete propositions, which may be combined using truth-functional connectives (or “truth-functors”) only. So the job of translation can be divided into two parts: identifying the component propositions, and translating the English connectives (or “sentence-functors”) which combine them.

7.1
Making Propositions Explicit

We start by identifying the conclusion of the argument (the proposition which the argument is endeavouring to establish, usually indicated by words such as “so”, “hence”, “therefore” or “it follows that”), and by identifying and setting out the premises in a neatly numbered format:

1.
The men will have gone back to work if agreement has been achieved about wage-claims.

2.
But this can have been achieved only if there has been a productivity-deal.


They cannot have gone back to work unless there has been a productivity-deal.

We then spell out any “anaphoric” references in the argument (pronouns such as “this” and “they” etc), to make clear where the same things are being referred to:

1.
The men will have gone back to work if agreement has been achieved about wage-claims.

2.
But agreement about wage-claims can have been achieved only if there has been a productivity-deal.


The men cannot have gone back to work unless there has been a productivity-deal.

7.2
Identifying “Atomic” Propositional Components

Next we identify “atomic” propositional components, starting with those that occur more than once, and we choose a capital letter (preferably one that is easily memorable) as shorthand for each of them:

B
The men have gone back to work

A
Agreement has been achieved about wage claims

P
There has been a productivity deal

Note that we express these components as simply as possible, avoiding complicated tenses (such as “... will have gone back ...”) and leaving out any “modal” terms which may be present to indicate the force of the proposition or its connection with other propositions (“... can have been ...”, “... cannot have gone back ...”). Note also that where two atomic components are evident contradictories (i.e. mutual negations), we use only a single letter (thus “The men have not gone back to work” will be represented as “not(B)” rather than as a separate proposition “N”).

Then we rewrite the argument using these capital letters instead of the atomic propositions, preserving for the present the English connectives, but removing all words which merely serve to indicate the flow of the argument (“But agreement ...”):

1.
B if A

2.
A only if P


not B unless P

7.3
Replacing Connectives with Standard Truth-Functors

Drawing on our previous discussion of English connectives (in §5.3), we can now translate the premises and conclusion straightforwardly.

1.
B if A

1.
(A  B)

2.
A only if P

becomes:

2.
(A  P)


not B unless P


B  P)
You are likely to find it more reliable (as well as more illuminating) to remember the processes involved in translating “if” and “only if” rather than trying to remember the translations themselves parrot-fashion. So the train of thought for the premises here might be:

B if A

is equivalent to

if A, (then) B

which yields

(A  B)

A only if P

is equivalent to

only if P, (then) A

which is the reverse of

if P then A

hence the result is

(A  P)

7.4
Setting the Argument out Neatly

Whenever presenting such a translation of an argument, of course, it is essential to lay out clearly the “key” (Hodges p. 91 calls this an “interpretation”) that you are using. So the complete translation might be presented as follows:

Problem:

Translate the following argument into propositional notation

The men will have gone back to work if agreement has been achieved about wage-claims. But this can have been achieved only if there has been a productivity-deal. So they cannot have gone back to work unless there has been a productivity-deal.

Solution:

Interpretation

B
The men have gone back to work

A
Agreement has been achieved about wage claims

P
There has been a productivity deal

1.
(A  B)

2.
(A  P)

─────


B  P)

8
Testing Arguments for Validity Using Truth-Tables

The simplest (though often tedious) method of testing for validity is derived immediately from one of the notion’s standard definitions:

An argument is valid if, and only if, there is no possible situation in which its premises are all true whereas its conclusion is false.

(which as we saw earlier is a more clear and precise expression of the “intuitive” notion of validity: An argument is valid if, and only if, its conclusion follows from its premises, or in other words, whenever all of its premises are true, its conclusion must also be true.)
Now recall that a truth-table aims to calculate the truth value of a given propositional formula for all possible truth-assignments to its atomic propositional variables (all “structures”, where we think of each structure as representing a “possible situation”). So this implies that an argument in propositional logic can be tested for validity by constructing a combined truth-table for all of its premises and its conclusion, and then examining this table to see if there is any row (any truth-assignment to the atomic variables, or “structure”) in which all the premises turn out to be true while the conclusion turns out false. If there is such a row, then the truth-assignment (or “structure”) represented by that row provides a counterexample to the argument, and the argument is invalid. If, on the other hand, there is no such row, then the argument is valid.

As an example, let us take the argument translated above. In propositional notation, this was as follows:

(A  B) , (A  P)  (B  P)
So we now construct a combined truth-table, which with 3 atomic propositional variables will have 8 rows:

A
B
P

 A

B)

A

P)

 ((
B

P)

T
T
T

T
T
T

T
T
T

F
T
T
T

T
T
F

T
T
T

T
F
F

F
T
F
F

T
F
T

T
F
F

T
T
T

T
F
T
T

T
F
F

T
F
F

T
F
F

T
F
T
F

F
T
T

F
T
T

F
T
T

F
T
T
T

F
T
F

F
T
T

F
T
F

F
T
F
F

F
F
T

F
T
F

F
T
T

T
F
T
T

F
F
F

F
T
F

F
T
F

T
F
T
F

Notice that although the truth-tables are constructed on a common grid, a “result” is calculated (and ringed) for each formula separately: each premise, and also the conclusion. We then examine the table to see if there is any row in which all the premises are true and yet the conclusion is nevertheless false. In this case there is such a row – the sixth, which corresponds to the truth-assignment (A false, B true, P false). This truth-assignment is therefore a counterexample to the argument, and the argument is invalid.

It is always a good idea when testing arguments for validity to translate back any counterexamples to ensure that they really are genuine: this serves to check both your translation and your truth- tables. In the case we have been examining, our original argument was:

The men will have gone back to work if agreement has been achieved about wage-claims. But this can have been achieved only if there has been a productivity-deal. So they cannot have gone back to work unless there has been a productivity-deal.

Here the counterexample we have identified (A false, B true, P false) translates back to the situation:

 B
The men have gone back to work

A
Agreement has not been achieved about wage claims

P
There has not been a productivity deal

And we can see by inspecting the argument that this situation, while certainly rendering the conclusion false, is indeed consistent with the premises of the argument (there’s nothing in the premises to say that the men can only have gone back to work if agreement is reached about wage-claims: perhaps they were threatened with death by the local gang boss if they didn’t end their strike). So it is indeed possible for the premises to be true while the conclusion is false, and this implies that the argument is indeed invalid, just as was calculated.

9
Testing Arguments for Validity Using Sentence Tableaux
The truth-table method of testing arguments for validity made use of our penultimate definition of that notion (from §4):

An argument is valid if, and only if, there is no possible situation in which its premises are all true whereas its conclusion is false.

By contrast, the method of testing arguments using sentence tableaux is one of an important class of methods which instead make use of our final definition of validity:

An argument is valid if, and only if, its premises, taken together with the negation of its conclusion, form an inconsistent set.

This definition implies that the validity of an argument can be assessed by performing a consistency test on its “counterexample set”, which is the set formed by taking the argument’s premises and adding to them the negation of the argument’s conclusion. In our worked example above, for instance, the formalised argument was:

(A  B) , (A  P)  (B  P)
and so its counterexample set would be:

{ (A  B) , (A  P) , (B  P) }

Having derived the counterexample set, note that if this set is consistent then the argument is invalid. For the argument to be valid, this set must be inconsistent.

Remember – validity of an argument goes with inconsistency of its counterexample set: such inconsistency guarantees that the argument cannot have a counterexample.
Before explaining the tableau method in detail, let us take a quick look at how it would work with our worked example. Having derived the counterexample set as above, we then list its members vertically:

 (A  B)

 (A  P)

(B  P)

What we want to do in our tableau is to explore the possible ways in which these sentences (or propositions) could turn out to be all true together. If, through this exploration, we find that there is such a possibility – i.e. there is indeed a possible situation in which they would all be true together – then this indicates that the counterexample set is consistent and hence that the original argument is invalid (since in the identified situation, its premises would be true but its conclusion false).
Consider first the proposition:

 (A  B)
There are two ways in which this can be true: either by A’s being false or by B’s being true, as we see from the truth-table:
	A
	B
	
	(A  B)
	A is false
	B is true

	T
	T
	
	T
	
	(

	T
	F
	
	F
	
	

	F
	T
	
	T
	(
	(

	F
	F
	
	T
	(
	

These two ways in which (A  B) can turn out to be true are not, of course, mutually exclusive: in the third row of the truth-table, we have both that A is false and that B is true. But this doesn’t matter, because if A is false then B’s truth-value is irrelevant, and if B is true then A’s truth-value is irrelevant. So in exploring these two possible ways in which (A  B) can turn out to be true (namely A false, and B true), we are covering all relevant possibilities.
Another approach to this is to consider that in allowing these two possible ways in which (A  B) can turn out to be true:

either

A is false

or

B is true

the only possible situation which we are disallowing is:

A is true and B is false
and this makes perfect sense given the truth-table, in which the only “F” entry occurs in the structure {A true, B false}.

To represent these two possible ways in which (A  B) can turn out to be true, we show them diagrammatically as “branches” from a tree (note that often in logic, as in many formal disciplines, “trees” are characteristically upside-down with the “root” at the top):

((A  B)

 (A  P)

(B  P)

 A

 B
So here the left branch represents the situation in which A is false, and the right branch the situation in which B is true. We put a tick by the formula A  B, to show that this has been “dealt with”.
We then do the same with the formula (A  P), which can likewise turn out true either by A’s being false, or P’s being true. If we apply this to the two branches of our existing tableau, we get:

((A  B)

((A  P)

(B  P)

 A

 B

 A

 P

A

P
You might notice here that, in a sense, there’s no point in applying it to the left-hand branch, because there we already have that A is false, so (A  P) is already guaranteed to be true “in that branch”, and hence applying the tableau rule cannot possibly yield any more relevant information. However when doing tableaux we’re expected to apply the rules mechanically, to every branch that remains open, and a strict marker could penalise failure to do so.
Finally, we come to the formula (B  P). If this is to be true, then (B  P) must be false, and the only way in which an “or” proposition can be false is if both of its constituents (in this case, B and P) are false. Putting this together, (B  P) can be true only if both B and P are false:

(B  P)

B

 P

And since the formula (B  P) is present in every branch of our tableau (because it’s in the “trunk”), we accordingly add B and P to every branch:

((A  B)

((A  P)

 ((B  P)

 A

B



A

P

 A

 P

B

 BB

 B

P

 P
P

 P

Having done this, we draw a line (as shown) under the second and fourth branches to “close them off”, because in these branches we have the two contradictory (mutually negating) formulae P and P, and there’s no way that two contradictory formulae can both be true. Recall that the aim of doing a tableau is to explore the possible ways in which the initial formulae could turn out to be all true together. These two branches have been shown to no longer represent such a possible way, because it’s impossible for P and P both to be true.
Note that the rule of “closing off” branches containing contradictory formulae is not restricted to atomic formulae. If you were ever to get the two formulae ((A  P) (B  P)) and ((A  P) (B  P)) in the same branch you could close that off too. So whenever a formula preceded by “” shows up in your tableau, it’s worth checking!

Going back to our tableau, the only non-atomic formulae that remain unticked within “open” branches are the two occurrences of B. We deal with those using the “double negation” rule, whereby two adjacent “nots” cancel each other out:

B

B

The resulting complete tableau is as follows:

((A  B)

((A  P)

 ((B  P)

 A

B



A

P

 A

 P

(B

 B(B

 B

P

 P
P

 P

 B

B

This is an “open” tableau – a tableau that remains with open branches, meaning that our exploration of the possible ways in which the initial formulae could turn out to be all true together has in fact revealed one or more possible ways in which they could all be true together. Reading down the left-hand branch, and ignoring formulae that we’ve ticked, we find in that branch that A, P and B are all true. Likewise in the third branch we find that B, A, P and B are all true (here B appears twice, but that doesn’t matter). Hence it turns out that both of our open branches represent the very same possible situation or structure:

A false, B true, P false,

which is exactly the same conclusion that we drew from our truth-table analysis of the same argument. That is, in the possible situation:

 B
The men have gone back to work

A
Agreement has not been achieved about wage claims

P
There has not been a productivity deal

both of the premises of our argument would be true but the conclusion false. Hence the argument is invalid.

Remember – invalidity of an argument goes together with open branches remaining in the completed tableau of its counterexample set, because such open branches represent possible situations in which the premises of the argument, and the negation of the conclusion, are all true.

9.1
Propositional Tableau Rules

So far we’ve only seen a few of the rules involved in propositional tableaux, namely those that deal with

(φ  ψ)

(φ  ψ)

φ

For completeness, here are all of the rules:



Double Negation “Not not”

 φ

φ



Conjunction
“And”

 (φ ψ)

(φ ψ)

φ

 ψ

 φ

ψ


Disjunction “Or”

 (φ ψ)

 (φ ψ)



φ

φ

 ψ

ψ



Material Implication “Arrow”

 (φ ψ)

 (φ ψ)



φ

 φ

 ψ

ψ

(

Biconditional “If and only if”

 (φ (ψ)

 (φ (ψ)





φ

 φ

φ

 φ

 ψ

 ψ

 ψ

 ψ

Closure

 φ , φ (anywhere on the same branch)
9.2
Efficient Tableau Construction

Note that some of the rules involve branching (i.e. division of the existing branch into two), whereas four of them do not:

φ

 (φ ψ)

(φ ψ)

(φ ψ)

φ

φ

φ

 φ

 ψ

ψ

ψ

Hence it is always sensible to apply these non-branching rules as early as possible, because by doing so you only need to apply them on a single branch, and you also derive maximum information as soon as it becomes available, enabling future branches to be closed more quickly. This last point suggests two other pieces of advice: first, always close a branch as soon as a contradictory pair of formulae appears; secondly, when you have used all the non-branching rules available, and are left with a choice of branching rules, use first any rule which generates a branch that can be closed immediately. Here is the result of applying these policies to our example tableau, giving the same result as before, but more quickly:

((A  B)

((A  P)

 ((B  P)

 (
B

 P

 B

 A

 P

A

B

9.3
Another Example

Let us quickly run through another example, but this time with a different result. With fairly obvious “translations”, the following argument:

If God exists, then He is omnipotent (i.e. all-powerful) and perfectly benevolent. But if God is benevolent then He will try to eliminate evil, while if He is omnipotent and tries to eliminate evil, He will succeed. But evil nevertheless exists, therefore God does not.
can be represented as follows:

(G ((O (B))

(B (T)

((O (T) ((E)

E

─────


G

Now recall from the previous example that to test such a formalised argument using a propositional tableau, we must perform two steps:

1.
Derive the argument’s counterexample set

2.
Construct a tableau from that counterexample set, to see if there are any possible situations in which all of the formulae in the set would be true.

The first step is easy, since this involves just listing the premises of the argument, together with the negation of its conclusion:

{ (G ((O (B)) , (B (T) , ((O (T) ((E) , E , G }

Now we construct the corresponding tableau, taking into account the advice given in the previous section:

(
(G ((O (B))

(
(B (T)

(
((O (T) ((E)

E

(
G

 G

 G

((O (B)

 O

 B

 B

T

 (
(O (T)

(E

 O

 T

This time, the tableau completely closes, thus demonstrating that there is no possible situation remaining in which the formulae in the counterexample set could all be true together. The tableau closes, and hence the counterexample set is inconsistent. The counterexample set is inconsistent, and hence the original argument is valid.

9.4
Arguments, Sequents, and Counterexamples
We have now seen one example each of an invalid and a valid argument. In the first case, we used both the truth-table method and the tableau method to find a counterexample to the argument. In the second case, we used just the tableau method, and proved that the argument was indeed valid (hence it has no counterexamples).

It is usual to express the validity of an argument by writing it as a sequent. For example the validity of our second formalised argument:

(G ((O (B)) , (B (T) , ((O (T) ((E) , E  G

would be expressed by the semantic sequent:

(G ((O (B)) , (B (T) , ((O (T) ((E) , E ╞ G

where the ╞ symbol indicates a semantic entailment (i.e. the truth of the formulae on the left entails the truth of the formula on the right). We can also write a corresponding syntactic sequent:

(G ((O (B)) , (B (T) , ((O (T) ((E) , E ├ G

which expresses a syntactic entailment (i.e. the corresponding argument generates a closed tableau. Both of these sequents are correct, because the entailments genuinely hold. But the following:

(A  B) , (A  P) ├ (B  P)

is an incorrect sequent, because there is no such syntactic entailment: the corresponding argument cannot generate a closed tableau. A sequent can be shown to be correct by means of a closed tableau, or incorrect by demonstrating a counterexample. Counterexamples can sometimes be found by inspection, or more systematically using either a truth-table method (see §8 above) or tableaux (§9 above).
Because our propositional logic system is sound and complete, any semantically correct sequent within it corresponds to a syntactically correct sequent, and vice-versa (see the end of §10 below).
10
Review of Propositional Logic, and Some Important Concepts

The booklet Doing Logic by Chris Slocombe (available from the Philosophy Centre) provides a useful summary of fundamental concepts on pp. 4-5. Many of the definitions below are similar to Slocombe’s, but have also been augmented with material from Volker Halbach’s Logic Manual.
A declarative sentence (often just sentence for short) is a grammatical English sentence which can be put in place of “x” in “Is it true that x?” so as to yield a grammatical English question. (see §1 and p. 16 above).
The negation or contradictory of a sentence is another sentence which is true if, and only if, the original sentence is false. So a sentence and its negation cannot both be true together, and cannot both be false together (see §1.1).

Standardly, the negation of a sentence can be created by prefixing the sentence with “It is not the case that …”, but it is often possible to express the same more elegantly and, in doing so, to evince more understanding of the original sentence.

A set of sentences is consistent if and only if there is a possible situation in which they are all true; in other words, it is possible for them all to be true together. A set of sentences is inconsistent if there is no possible situation in which they are all true; in other words, it is not possible for them all to be true together (see §3).

A single sentence may be called “consistent” if and only if it is true in at least one possible situation [Halbach, p. 6] (which is the same as saying that the set containing only that sentence is consistent).

A single sentence may be called “inconsistent” if and only if there is no possible situation in which it is true [Halbach, p. 6] (which is the same as saying that the set containing only that sentence is inconsistent).

However it is generally advisable to reserve the words “consistent” and “inconsistent” for application to sets of sentences, in order to avoid confusion. To express the inconsistency of a single sentence, it’s better to use one of the terms “contradiction” or “self-contradictory”:
A sentence is a contradiction or self-contradictory if and only if there is no possible situation in which it is true. (This is equivalent to saying that the set containing only that sentence is inconsistent.)
A sentence is a necessary truth if and only if it is true in all possible situations. (This is equivalent to saying that the sentence’s negation is self-contradictory).

A sentence is contingent if and only if it is true in at least one possible situation and false in at least one possible situation. (This is equivalent to saying that neither the sentence nor its negation is self-contradictory).
An argument is a set of English declarative sentences: a conclusion and the premise(s), the latter typically purporting to be “reason(s) for believing” [Hodges p. 36] the conclusion (see §2).

An argument may feature just one premise or, as a degenerate case, no premise at all. [Halbach, p. 6]
The counterexample set of an argument is the set of sentences consisting of the argument’s premises together with the negation of the argument’s conclusion (see §4, §9).
An argument is valid if and only if:

there is no possible situation in which the argument’s premises are all true and its conclusion false

the argument’s counterexample set is inconsistent
An argument is invalid if and only if:

there is at least one possible situation in which the argument’s premises are all true and its conclusion false

the argument’s counterexample set is consistent
(see §4, §9)
An argument is sound if it valid and has true premises (in which case, by the definition of validity, it of course follows that its conclusion must be true also). An argument is unsound if it is not sound (and hence an argument can be unsound either because it is invalid, or because one or more or its premises are false). The main point of introducing the notion of soundness here is to contrast it with validity. Always remember than an argument can be perfectly valid but fail to be sound, because its premises are not all true.
A sentence-functor is a string of English words and sentence variables, such that if the sentence variables are replaced by declarative sentences, then the whole becomes a declarative sentence with the inserted sentences as constituents (see §5 and p. 16 above).
A truth-functor is a sentence-functor that has a complete truth-table (see §5.1)

An interpretation is a list of capital letters, in which each letter has one (and only one) declarative sentence assigned to it (see §7.4 and Hodges p. 91).

A propositional structure is an assignment of truth-values to sentence letters, e.g. “P is true, Q is false, …” (see §8).

A formula is a tautology if and only if it is true in every propositional structure involving the sentence letters that it contains (i.e. there are only Ts in the main column of its truth-table [Halbach p. 9]).
A formula is semantically inconsistent if and only if it is false in every propositional structure involving the sentence letters that it contains (i.e. there are only Fs in the main column of its truth-table [Halbach p. 9]).
A formula is propositionally contingent if and only if it is true in at least one propositional structure involving the sentence letters that it contains, and also false in at least one such structure (i.e. there are both Ts and Fs in the main column of its truth-table [Halbach p. 9]).
A counterexample to a formalised argument is a propositional structure in which the premises of the argument are true and the conclusion of the argument is false; this can be expressed either in the form “P is true, Q is false, …” or “P, (Q, …” (see §8).

A formalised argument in propositional logic is formally valid if, and only if, the argument has no counterexample (i.e. there is no structure – no assignment of truth-values to the sentence letters involved in the argument – according to which the premises come out true and the conclusion false). Given that the tableau system is sound and complete (see next page), this is equivalent to saying that its counterexample set can generate a closed tableau. However it is important to note that the semantics (i.e. the real meaning of the sentences) of many arguments cannot be fully captured in propositional logic, so the formal validity or invalidity of the formalised argument does not necessarily reflect the validity or invalidity of the original English argument (see §7).

If an argument from premises P1, P2 … Pn to conclusion C is valid, we say that P1, P2 … Pn semantically entail C, and we write:

P1, P2 … Pn ╞ C
Such an expression is called a semantic sequent. Note that the following:

P1, P2 … Pn ╞

is used to mean that the set {P1, P2 … Pn} is inconsistent (since in that case, any semantic sequent of the form “P1, P2 … Pn ╞ X” will be true, as any argument with inconsistent premises must be valid).

If a tableau formed from the formulae P1, P2 … Pn, (C closes, we say that P1, P2 … Pn syntactically entail C, and we write:

P1, P2 … Pn ├ C
Such an expression is called a syntactic sequent. Note that the following:

P1, P2 … Pn ├

is used to mean that the set {P1, P2 … Pn} generates a closed tableau (since then any syntactic sequent of the form “P1, P2 … Pn ├ X” will be true, as any tableau that closes will continue to close even if more formulae are added).

If a sequent expresses a true entailment (i.e. has no counterexamples), then it is called correct. Otherwise it is incorrect.
Propositional logic is said to be sound, because any formal argument which is syntactically valid is also semantically valid (i.e. if you can formally “prove” an argument to be valid, then it really is so). Propositional logic is said to be complete, because any semantically valid argument that can be fully represented within it will also be syntactically valid (i.e. if such an argument is in fact semantically valid, then it can be proved formally to be so).
A BRIEF INTRODUCTION TO
PREDICATE LOGIC

Predicate logic is an extension of propositional logic which enables us to deal with a much wider range of arguments. Propositional logic by itself, as we have seen, can handle only arguments that can be analysed purely in terms of relations between the “atomic” propositions which they contain; predicate logic extends this by providing a way of representing the internal structure of many such atomic propositions. The vocabulary of predicate logic enables it to deal with propositions which attribute properties (predicates) to individuals, and also, crucially, with “universal” and “existential” propositions such as “All A’s are B’s”, “There is some C which is D” etc. This vocabulary is as follows:

A, B, C ... Z

Predicates (including Propositions)

, , , , (

Propositional connectives

a, b, c ... t

Names of individuals

u, v, w, x, y, z

Individual variables

x (or y etc.)

Universal quantifier

x (or y etc.)

Existential quantifier

The universal and existential quantifiers, as indicated, always combine with some individual variable, and are not meaningful unless so combined. “x” can be roughly translated as “For all x ...” or “No matter which individual x is chosen ...”, whereas “x” can be translated as “There is an x such that ...” or “There is some individual x of which it can truly be said that ...”. To see how these combine with predicates to express complete propositions, it is simplest to consider some examples.

11
Introduction to Predicate Formulae through Examples

Suppose we wish to consider some propositions about football teams (so football teams will be the only items we consider – our “domain of quantification” is the set of all football teams). Then we may choose to use the following “interpretation”:

Domain of quantification:
Football teams

Names:

g

Gillingham

o

Oxford United

m

Manchester United

n

Newcastle United

Predicates:

R

It will rain

Px

x is in the Premier league

Wxy

x will win against y

Lxy

x will lose against y

Bxy

x is better than y
We can then use this range of names and predicates to translate propositions such as the following:

Oxford United is in the Premier league

Po

Gillingham will win against Manchester United

Wgm

Newcastle United will lose against Oxford United

Lno

If it rains then Manchester will win against Oxford
(R  Wmo)

If Oxford wins against Manchester, then Oxford is

better than Manchester

(Wom  Bom)

But we can also add the two quantifiers to express universal and existential propositions such as the following:

Every team in the Premier league will

win against Newcastle United

x (Px  Wxn)

If one team wins against another, then

it is better than the other

xy (Wxy  Bxy)

If one team wins against another, then

the other loses against it

xy (Wxy  Lyx)

There is at least one team in the

Premier league

x Px

There is some team in the Premier league

which will lose against Gillingham

x (Px  Lxg)

Any team in the Premier league will

win against any team that is

not in the Premier league

xy ((Px  Py)  Wxy)

Every team outside the Premier league

will lose to some team that is in the

Premier league

x (Px  y (Py  Lxy))

Note that in the above examples “Px” is a one-place predicate (it requires a single “argument” to turn it into a complete proposition), whereas “Wxy”, “Lxy” and “Bxy” are all two-place predicates (they require two arguments). “R” can be called a zero-place predicate, because it is a predicate which takes no arguments at all (in other words, it is a complete atomic proposition by itself).

One way of making this point about the number of arguments that predicates take is to think of the interpretation as follows:

R

It will rain

P(···)

··· is in the Premier league

W(···,---)

··· will win against ---

L(···,---)

··· will lose against ---

B(···,---)

··· is better than ---

which makes clear than predicates (other than zero-place predicates) are “gappy” – they don’t say anything determinate until they are completed with an appropriate number of names (or quantified variables).

Quantification can best be understood by comparison with the use of pronouns in English. Consider the following Biblical-Homeric style sentence:

He smote him with the edge of his sword, he crashed

to the ground, and his armour clanged about him

As it stands this is obviously highly ambiguous, though the context will normally make clear what’s going on. (Is it one person committing suicide, or one slashing at another who then falls to the ground, or one contriving to injure another with the other’s sword, or one hitting the other and then overbalancing, or ... !?) A useful way of making the meaning more clear is to use different “pronouns” for different individuals:

Suicide:
x smote x with the edge of x’s sword, x crashed to the ground, and x’s armour clanged about x
Mortal slash:
x smote y with the edge of x’s sword, y crashed to the ground, and y’s armour clanged about y

Other’s sword:
x smote y with the edge of y’s sword, y crashed to the ground, and y’s armour clanged about y
Overbalancing:
x smote y with the edge of x’s sword, x crashed to the ground, and x’s armour clanged about x

This helps to explain why variable letters are used in predicate logic: not to make things look technical, but purely to provide a simple kind of unambiguous pronoun. But of course we would not use variable letters in straightforward propositions about known individuals – there we would use individual names instead, for example if “a” is Achilles, “h” is Hector, and “p” is Patroclus, then we might have the proposition:

h smote p with the edge of h’s sword, p crashed to

the ground, and a’s armour clanged about p

(classical note – Patroclus was wearing Achilles’ armour to

inspire the Greek troops, but the Trojan Hector killed him)

Variables come in when we want to say something like “someone smote Patroclus with the edge of his (the assailant’s) sword”:

Some person x is such that x smote p with the edge of x’s

sword
or, less plausibly, “everyone smote Patroclus ...”:

For all people x, x smote p with the edge of x’s sword
The reason for this rather stilted expression becomes clearer when we combine more than one quantified variable together in the same proposition (in the formulae below, “Sxy” means “x smote y”):

Some person x is such that for all people y, x smote y

(some violent individual smote everyone, including himself!)

xy Sxy

Some person x is such that for all people y, y smote x

(some poor chap got smitten by everyone, including himself!)

xy Syx

For all people x, there is some person y such that x smote y

(everybody had a go at smiting someone or other)

xy Sxy

For all people x, there is some person y such that y smote x

(everybody got smitten by someone or other)

xy Syx

It is important to appreciate that for a complete proposition to be expressed, all occurrences of all variables must be “bound” by a quantifier (i.e. there must be an appropriate quantifier earlier in the formula which “governs” the variable, or within whose “scope” the variable occurs). A variable which is not bound by a quantifier (called a “free” variable) is rather like a pronoun whose reference is not specified:

Fx

It is F (what is?)

(Fy  Gy)

If it is F then it is G (what is “it”?)

On the other hand, names of individuals cannot be quantified. If as before “Sxy” means x smote y, “p” is a name of Patroclus and “h” of Hector, then

Shp

would represent the proposition that Hector smote Patroclus, but

h Shp
would be quite incoherent (“there is some person h who is such that h smote Patroclus” is ill-formed because “h” is a name and not a variable).

12
Tips for Translation into Predicate Notation

When translating between English and predicate notation, it is a good idea always to go through an intermediate stage of regimented “predicate English” (let’s call this “Prenglish”) which is sufficiently close to English to be relatively easy to understand, but which at the same time has a structure corresponding closely to predicate notation. Thus, for example, suppose we were asked to translate the following into predicate notation:

John loves Mary

Some girl loves John

Every girl loves John

Every boy loves some girl

Some girl is loved by every boy

First we must decide on our “domain of quantification” (sometimes also called our “universe of discourse”). In this case we shall probably wish our domain to be that of people. We then write out an interpretation specifying both the domain and also our names and predicates:

Interpretation

Bx:

x is a boy

j:

John

Domain:
people

Gx:

x is a girl

m:

Mary

Lxy:

x loves y

Our translations will then be as follows:

John loves Mary

Ljm

Some girl loves John

x (Gx  Lxj)

(There is some person x such that x is a girl and x loves John)

Every girl loves John

x (Gx  Lxj)

(For all people x, if x is a girl then x loves John)

Every boy loves some girl

x (Bx  y (Gy  Lxy))

(For all x, if x is a boy then there is some y s.t. y is a girl and x loves y)

Some girl is loved by every boy
x (Gx  y (By  Lyx))

(There is some x s.t. x is a girl and for all y, if y is a boy then y loves x)

The Two Most Common Cases

Many of the predicate translations that you are likely to meet will involve only a single quantifier, and the majority of such cases will take one of the following two forms:

All A’s are B’s

x (Ax  Bx)

Some A is a B

x (Ax  Bx)

So it is worth taking the trouble to remember these two forms.


First, then, any simple universal proposition is almost always to be translated as a universally quantified conditional (an “if...then” proposition), and this applies also to more complicated cases.

For example

All amorous black cows are direct and earnest

is of the form:

All A B C’s are D and E

paraphrased:

Anything which is A and B and C

is also D and E

and in Prenglish:
For all x, if x is A and B and C

then x is D and E

fully translated:

x ((Ax  Bx  Cx)  (Dx  Ex))

or strictly:

x (((Ax  Bx)  Cx)  (Dx  Ex))

It’s helpful to view the “antecedent” of the conditional (the bit before the “”) as picking out the range of objects being talked about (All A B C’s), and the “consequent” (the bit after the “”) as saying something about them (that they’re D and E).


Secondly, any simple existential proposition is almost always to be translated as an existentially quantified conjunction (an “and” proposition), and this applies also to more complicated cases.

For example

Some amorous black cow is direct and earnest

is of the form:

Some A B C is D and E

paraphrased:

Something is A, B, C, D and E

and in Prenglish:
For some x, x is A and B and C and D and E

fully translated:

x (Ax  Bx  Cx  Dx  Ex)

or strictly:

x ((((Ax  Bx)  Cx)  Dx)  Ex)

Note that this type of translation draws no distinction between the “subject” and the “predicate” of the original proposition – so for example the translation of “Some A is B, C, D and E” will be identical to the above, and only differs trivially (in the order of the predicates) from the translation of “Some D B C is E and A”:

Some D B C is E and A

fully translated:

x (Dx  Bx  Cx  Ex  Ax)
or strictly:

x ((((Dx  Bx)  Cx)  Ex)  Ax)

13
Properties and Relations
In predicate logic, we can make use of one-place, two-place or multi-place predicates. Reasoning involving numbers, for example, might make use of the following:

Px

x is prime

1-place

Gxy

x is greater than y

2-place

Cxyz

x is a common factor of y and z

3-place

One-place predicates correspond to properties of individual things, whereas predicates with more “argument-places” correspond to relations (the arguments of a predicate or function are the values which are substituted for the variables x, y, z etc: thus we might say “Cxyz takes the value TRUE for the arguments 3, 9 and 15”, because 3 is indeed a common factor of 9 and 15). Two-place predicates correspond to binary relations, which are of particular interest.

14
Representing Properties

We normally consider a property to be quite distinct from the set of objects to which it applies. But in formal reasoning it is convenient to think of these as being the same. Suppose for example our “domain” or “universe” is the set N8 (i.e. {0,1,2,3,4,5,6,7}). If we count 1 as a prime number, then the predicate “Px” applies to five elements of this set: 1, 2, 3, 5 and 7. So we can think of the property “x is prime”, defined on this set, as itself equivalent to (or, if you prefer, “represented by”) the subset {1,2,3,5,7} of N8. Here are some other properties defined on the same set:

Property

Subset of N8

x is odd

 {1, 3, 5, 7}

x is even

 {0, 2, 4, 6}

x is greater than 6

 {7}

x is less than 0

 

(i.e. the null set)

x is a prime other than 2

 {1, 3, 5, 7}

x is greater than 7

 
Note that if we treat each property as identical to (or, if you prefer, fully represented by) its corresponding subset, then the properties “x is odd” and “x is a prime other than 2” turn out to be identical, as do the properties “x is less than 0” and “x is greater than 7”! Do not let this worry you at all – think of it as simply a formal convenience.

15
Representing Relations

15.1
Binary Relations

Just as a property can be treated for formal purposes as identical to the set of elements which has that property, so a binary relation can be treated as identical to the set of ordered pairs of elements which satisfy that relation (i.e. which are related in the appropriate way). Here are some examples, this time taking our “domain” to be the set {1, 2, 3, 4}. Hence the relations will correspond to sets of ordered pairs whose two components are taken from the set {1, 2, 3, 4}, so that each ordered pair will be an element of the set:

{<1,1>, <1,2>, <1,3>, <1,4>, <2,1>, <2,2>, <2,3>, <2,4>,

 <3,1>, <3,2>, <3,3>, <3,4>, <4,1>, <4,2>, <4,3>, <4,4>}

A set of ordered pairs, with the first of each pair taken from set A and the second from set B, is called a “Cartesian product set”, written “AB”. So this is the set {1, 2, 3, 4}{1, 2, 3, 4} or {1, 2, 3, 4}2.

Relation

Subset of {1,2,3,4}2

x = y

{<1,1>, <2,2>, <3,3>, <4,4>}

y = x + 1

{<1,2>, <2,3>, <3,4>}

x + y = 5

{<1,4>, <2,3>, <3,2>, <4,1>}

x + y = 9



x = 6y



x  y = 4

{<1,4>, <2,2>, <4,1>}

x = 3y – 1

{<2,1>}

x2 – y = 3

{<2,1>}

Again we see that some of these subsets coincide, even though the relations which they “represent” seem to be very different. And again, for formal purposes, it is convenient to treat relations as “defined by” their corresponding sets and hence as identical if and only if those sets are. So as defined on this particular domain, the relations “x + y = 9” and “x = 6y” turn out to be formally identical, as do “x = 3y – 1” and “x2 – y = 3”.

15.2
Multi-Place Relations

Multi-place relations can be dealt with in a precisely analogous way. Here are some examples of 3-place (i.e. “ternary”) relations on the set {1, 2, 3, 4}:

Relation

Subset of {1,2,3,4}3

x < y < z

{<1,2,3>, <1,2,4>, <1,3,4>, <2,3,4>}

x = y = z

{<1,1,1>, <2,2,2>, <3,3,3>, <4,4,4>}

x + y + z = 0

 

x > y + z

{<3,1,1>, <4,1,1>, <4,1,2>, <4,2,1>}

Thus in general, an n-place relation defined on set A will be represented by a set of ordered n-tuples which is a subset of the Cartesian product An.

15.3
Relations Across Sets

We have so far only considered relations between elements of a single “domain” (the set(s) from which the related elements are taken), but the same treatment can be extended to relations which hold between elements of different sets. If for example relation R applies between elements of set A and elements of set B, then R can be treated (or “represented”) as a set of ordered pairs whose first component is in A and whose second component is in B (i.e. R will be treated as a subset of AB). In practice this matters most when dealing with functions (which go beyond the scope of the course).

16
Properties of Binary Relations

In terms of the richness of properties which they can display, by far the most interesting relations with which we have to deal are binary relations on a single domain. Here are some more examples:

Domain A

Relation R

 Corresponding Set of Pairs
(a)

{1,2,3}

x < y

{<1,2>, <1,3>, <2,3>}

(b)

{1,2,3,4}

x  y

{<1,1>, <1,2>, <1,3>, <1,4>, <2,2>,

 <2,3>, <2,4>, <3,3>, <3,4>, <4,4>}

(c)

{1,2,3,5,7}

0 < x–y < 3

{<1,2>, <1,3>, <2,1>, <2,3>, <3,1>,

 <3,2>, <3,5>, <5,3>, <5,7>, <7,5>}

(d)

{1,4,5,6,9,10}
 x mod 3
 {<1,1>, <1,4>, <1,10>, <4,1>, <4,4>,

 = y mod 3

 <4,10>, <5,5>, <6,6>, <6,9>, <9,6>,

 <9,9>, <10,1>, <10,4>, <10,10>}

(e)

{1,2,3,4}

 x + y = 5

{<1,4>, <2,3>, <3,2>, <4,1>}

(f)

{1,2,3}

 x2 + y < 6

{<1,1>, <1,2>, <1,3>, <2,1>}

Relations (b) and (d) here are reflexive, since for any  in the domain, <,> is a member of the relation (i.e. R is true). By contrast (a), (c) and (e) are irreflexive, since for any  in the domain, <,> is not a member of the relation (i.e. R is false). Relation (f) is neither reflexive nor irreflexive, and we therefore call it non-reflexive.

Relations (c), (d) and (e) are symmetric, since for any  and  in the domain, if <,> is a member of the relation then <,> is too, i.e. (R (R). By contrast, (a) is asymmetric, because if <,> is a member of the relation then <,> is not, i.e. (R  R). Relations (b) and (f) are neither symmetric nor asymmetric, and so are non-symmetric. But (b) fails to be asymmetric only in virtue of its containing the “reflexive” pairs <1,1> ... <4,4>, and it is therefore antisymmetric: this means that although it may be possible for both <,> and <,> to be members of the relation, this can happen only if  and  are identical, i.e. ((R  R)  =). (Think of an antisymmetric relation as being either asymmetric or very nearly so: its asymmetry can only “break down” in the special case when the relation applies between an object and itself. Hodges doesn’t mention antisymmetry, though it is important in mathematical applications.)
Relations (a), (b) and (d) are transitive, since for any ,  and  in the domain, if both <,> and <,> are members of the relation, then <,> is too, i.e. ((R  R)  R). By contrast, Relation (e) is intransitive, since for any ,  and  in the domain, if both <,> and <,> are members of the relation, then <,> is not a member of it, i.e. ((R  R)  R). (c) and (f) are neither transitive nor intransitive, and are accordingly said to be non-transitive.

Relations (a) and (b) are both connected, because for any distinct  and  in the domain, at least one of <,> and <,> is a member of the relation, i.e. (  (R  R)). (Note – the terms “total” and “comparable” are sometimes used instead of “connected”).

16.1
Predicate Formulae for the Properties of Binary Relations

Suppose that we have a relation R defined on the elements of a set A. Then the principal properties above can be specified formally as follows:

R is reflexive

iff

xA, Rxx

R is irreflexive

iff

xA, Rxx

R is symmetric

iff

x,yA, (Rxy  Ryx)

R is asymmetric

iff

x,yA, (Rxy  Ryx)

R is antisymmetric

iff

x,yA, ((Rxy  Ryx)  x=y)

R is transitive

iff

x,y,zA, ((Rxy  Ryz)  Rxz)

R is intransitive

iff

x,y,xA, ((Rxy  Ryz)  Rxz)

R is connected

iff

x,yA, (x=y  (Rxy  Ryx))

16.2
Arrow Diagrams and Properties of Binary Relations

Binary relations on a single set can be represented using an arrow diagram, in which the domain is represented by a circle or similar shape (as in a Venn diagram), the domain’s elements are represented by labelled points or crosses, and the elements of the relation (i.e. the ordered pairs) are represented using arrows which join the domain’s elements, as follows: a single arrow from  to  indicates that the relation holds between  and  (in that order), a two-way “double arrow” between  and  indicates that the relation holds both between  and  and between  and , and a (doubly-arrowed) “loop” attached to  indicates that the relation holds between  and itself.

Note that whenever any elements  and  are mutually related (i.e. both R and R obtain), then the arrow between  and  must be a double arrow. Thus, in particular, when any element  is related to itself (think of this as the case when =), the loop which indicates this is deemed to be a double arrow (this does make sense, because just like in the case of an ordinary double arrow, the element at each end of the loop is indeed related to the element at the other end).

Using arrow diagrams to represent binary relations can help to make clear the significance of the various properties defined above:

R is reflexive iff
Every point in R’s arrow diagram has a loop attached. That is, there is no point which lacks a loop.

R is irreflexive
iff
No point in R’s arrow diagram has a loop attached.

R is symmetric
iff
No arrow in R’s arrow diagram is single (i.e. one-way).

R is asymmetric
iff
No arrow in R’s arrow diagram is double (and hence there must be no loops).

R is antisymmetric
iff
The only double arrows (if any) in R’s arrow diagram are loops. That is, there are no double arrows which are not loops.

R is transitive
iff
Every “two-step journey” in R’s arrow diagram has a direct “short cut”. That is, there are no two-step journeys which lack a short cut.

R is intransitive
iff
No “two-step journey” in R’s arrow diagram has a direct “short cut”.

R is connected
 iff
Every pair of distinct points in R’s arrow diagram is joined by some arrow (either double, or single in either direction).

17
Some Genuine Connections between the Properties of Relations


Any relation which is asymmetric is irreflexive

If there are no double arrows whatever, then there are no loops.


Any relation which is asymmetric is antisymmetric

If there are no double arrows whatever, then there are no double arrows which are not loops.


Any relation which is intransitive is irreflexive

Let R be an intransitive relation. Now suppose that R were to obtain for some  (i.e. that  had a loop attached). Then there would be a “two-step journey” in R’s arrow diagram from  to  via a journey having a “short cut” (i.e. the loop from  to But this would contradict R’s intransitivity, since an intransitive relation can have no such short cuts. Thus if R is intransitive, no point can have a loop attached, so R must be irreflexive too.


No relation which is non-symmetric and transitive is irreflexive

If R is non-symmetric (recall – this means that it’s neither symmetric nor asymmetric), then it is not asymmetric, and so there must be some  and  (where possibly =) which are joined by a double arrow. But this implies that there is a two-step journey from  to  via  (and indeed from  to  via ), and if the relation is transitive, this journey must have a direct short cut from  to  (and indeed likewise from  to ). So there must be at least one loop, and hence the relation R cannot be irreflexive.

17.1
Some Tempting but False Apparent Connections


No relation which is transitive can be intransitive:

FALSE

The relation “x is the husband of y”, on the domain of Oxford students, is both transitive and intransitive, because there are no individuals ,  and  such that  is the husband of  and  is the husband of  ( cannot be both male and female!). So there are no two-step journeys at all and hence none which either lack, or have, a direct short cut. To put this another way, all of the two-step journeys that there are (all none of them!) both have, and don’t have, a short cut. (Keep in mind some absurd but perhaps convincing example such as the following: “All round squares are round” and “All round squares are square” are both true “by definition” – hence all round squares, all none of them, are both round and square.)


No relation which is symmetric can be asymmetric:

FALSE

The relation “x is a remote ancestor of y”, on the domain of current Oxford students, is both symmetric and asymmetric, because the relation does not obtain between any individuals at all in the domain. So there are no single arrows in the diagram, and no double arrows either.


No relation which is reflexive can be irreflexive:

FALSE

The relation “x is taller than y”, on the domain of living unicorns, is both reflexive and irreflexive, because there are no individuals whatever in the domain, and hence there is no point in the arrow diagram which either has, or lacks, a loop.

These examples should make one wary about jumping to “obvious” conclusions regarding the logic of relations. Whenever attempting to draw such conclusions, always bear in mind the following “pathological” cases:

17.2
“Pathological” Relations


The null relation

The null relation, which holds between no pairs whatever, is:

Irreflexive

Symmetric

Asymmetric

Antisymmetric

Transitive

Intransitive


The null domain

Any relation defined over the null domain must itself be the null relation (if there are no points, there can be no arrows), and this relation is:

Reflexive

Irreflexive

Symmetric

Asymmetric

Antisymmetric

Transitive

Intransitive

Connected

18
Equivalence Relations

Any relation which is reflexive, symmetric and transitive is known as an equivalence relation. Any equivalence relation has the effect of partitioning its domain into disjoint (i.e. non-overlapping) subsets called equivalence classes, such that each member of any equivalence class bears the relation to any member of that same equivalence class (including itself), but bears the relation to nothing outside that class.

Suppose, for example, that we have:

domain A:

{1,2,3,4,5,6,7,8,9}

relation R:

(x mod 3) = (y mod 3)

then R defines a partition of A as follows:

{{1,4,7}, {2,5,8}, {3,6,9}}.

Thus R partitions A into 3 subsets, such that Rxy is true whenever x and y are in the same subset, and Rxy is false otherwise.

18.1
Recognising Equivalence Relations in English

An equivalence relation is standardly expressed in English using the word “same”, for example:

is the same height as

is in the same class as

costs the same as

lives in the same town as

though you should be aware that such an expression is not an infallible indicator: “went to the same school as” is not an equivalence relation, since it is not transitive – if  went to more than one school, then it might be true that  and  went to the same school, and also true that  and  went to the same school, without it being the case that  and  went to the same school.

19
Orderings (to deepen understanding; beyond syllabus)
Relations which are transitive and antisymmetric (the latter implies that they don’t have to be, but can be, asymmetric) are particularly important, since they can serve to order elements of the domain. For if R is transitive and antisymmetric, then it is possible to organise affected elements of the domain in a strict hierarchy such that:


No two elements occupy the same place in the hierarchy.


The relation R never relates any element to another which is lower in the hierarchy (so any arrow “points upwards” unless it is a loop).

It should thus be obvious why the term “order”, or “ordering”, is applied to such a relation.

19.1
Types of Ordering

Unfortunately the terminology used for orderings is not entirely standard, but two important distinctions can be drawn:

1.
Total
An ordering R is a total ordering if any two distinct elements of the domain,  and , are related by R one way or the other (i.e. R determines either that  comes above  in the hierarchy, or that  comes above ).

Partial
An ordering R which is not total is just a partial ordering (but note – the term “partial” is not contrary to “total”, since all relations are partial. Compare “teacher” and “head”: some teachers are heads, but most are just teachers; likewise some relations are total, but most are just partial).

2.
Strict
An ordering R is a strict ordering if it is irreflexive (and hence asymmetric, given that any ordering is antisymmetric).

Weak
An ordering R is a weak ordering if it is reflexive.

There are thus four possible types of relation, which we can illustrate using standard arithmetical and set-theoretical operators:


Strict total ordering:

transitive, asymmetric, irreflexive, total

“<” defined on the set N

Weak total ordering:

transitive, antisymmetric, reflexive, total

“” defined on the set N

Strict partial ordering:
transitive, asymmetric, irreflexive

“” defined on the set of subsets of N

Weak partial ordering:
transitive, antisymmetric, reflexive

“” defined on the set of subsets of N
The two orderings “<” and “” are strict because they are irreflexive: no natural number is less than itself, and no set is a proper subset of itself. By contrast “” and “” are weak because they are reflexive: every natural number is less than or equal to itself, and every set is a subset of itself.

The two arithmetical orderings “<” and “” are total because any pair of distinct natural numbers  and  are comparable under each relation – it must be the case that either < or <, and likewise that either  or . By contrast the set theoretical operators “” and “” are only partial, because it is possible to have two distinct subsets of N,  and , such that neither is a subset of the other (e.g. the two singleton sets {1} and {2}), so that neither  nor  is the case, and likewise neither  nor .


A strict ordering is standardly expressed in English using phrases of the kind “-er than” or “more ... than”, for example “... is taller than ---”, “... is older than ---”, “... is more expensive than ---”, “... is more distant than ---”.

A weak ordering is standardly expressed in English by negating a strict ordering, or using the phrase “... at least as ---”, for example “... is no taller than ---”, “... is at least as old as ---”, “... is no more expensive than ---”, “... is at least as distant as ---”.
SELF-TEST EXERCISE ON RELATIONS
(a)
Classify the relations listed below by copying and completing (with ticks and crosses) the following table. All of the relations are to be understood as defined on the set of students currently enrolled at Oxford University (undergraduates and graduates, all ages and degree courses). If through lack of knowledge of this domain you are unsure how to classify any of the relations, then add to your answer a brief note to explain any indeterminacy, and any uncertain assumptions you have made.

	
	relation number

	
	1
	2
	3
	4
	5
	6
	7
	8

	Reflexive
	
	
	
	
	
	
	
	

	Irreflexive
	
	
	
	
	
	
	
	

	Symmetric
	
	
	
	
	
	
	
	

	Asymmetric
	
	
	
	
	
	
	
	

	Antisymmetric
	
	
	
	
	
	
	
	

	Transitive
	
	
	
	
	
	
	
	

	Intransitive
	
	
	
	
	
	
	
	

	Total
	
	
	
	
	
	
	
	

1

There is a tutorial group of which both x and y are members.

2.

x has scored higher than y in at least one examination.

3.

x’s highest examination score is higher than y’s highest score.

4.

x likes y, but y does not like x.

5.

x lives less than a mile from y.

6.

x lives in the same postal district as y.

7.

x has spoken to all the students to whom y has spoken.

8.

x is at least as tall as y.

(b)
State, on the basis of your table, whether any of the relations are orderings or equivalence relations, and if an ordering, what kind of ordering (e.g. strict partial ordering etc.).
APPENDIX S: SET THEORY

S.1
What is a Set?

Put crudely, a set is simply a collection of items, each of which is called a member or an element of that set. Thus sets which contain the same items (have the same elements) are one and the same set.

S.1.1
Notation for Sets

A set may be specified extensionally, by listing all of its elements, or intensionally, by giving a rule for determining its elements. All of the following are alternative ways of specifying the very same set – (a) to (d) are extensional specifications, and (e) to (f) intensional:

(a) {1, 2, 3}

(b) {3, 1, 2}

(c) {+4, 1, +9}

(d) {2, 3, 2, 3, 1}

(e) {x : x3 – 6x2 + 11x – 6 = 0}

(f) {x  x is an integer and 1  x  3}

Note that:


We use curly brackets to indicate a set.


The order of elements makes no difference to the set’s identity.


Repetitions in a specification are irrelevant – any element “counts” only once no matter how many times it is specified.


A colon (or sometimes a bar “”) is used to indicate an intensional specification of a set. Read “{x : ...}” as “those items which yield a true proposition when substituted for x in the following: ...”.

S.1.2
The Null Set

The set of aardvarks enrolled at Hertford College, and the set of numbers greater than 3 and less than 1 both have no members whatever. Since their membership is the same, they are therefore one and the same set. This unique set, the set which has no elements, is called the null set. The symbol for the null set is: 

S.2
Basic Concepts and Notation of Set Theory

We conventionally use capital letters for sets and lower case letters for their elements.

mA
m is an element of set A
AB
set A is a subset of set B, i.e. there is no element of set A which is not also an element of set B
It follows from this that every set is a subset of itself. Thus it makes sense to use the sign “” which is somewhat analogous to “(” (the less than or equal to relation, applying to numbers rather than sets). These contrast with their “strict” cousins, “” and “<” respectively:
AB
set A is a proper subset of set B, i.e. A is a subset of B, but is not identical to B:

(AB) and (AB)

All of these three symbols can be negated with a cross-through in the usual way. Thus “A(B” means “A is not a proper subset of B”.

AB
The intersection of set A and set B, i.e. the set of all items which are elements of A and also elements of B:

{x : xA and xB}

AB
The union of set A and set B, i.e. the set of all items which are either elements of A or elements of B (or elements of both):

{x : xA or xB}

A
The cardinality of set A, i.e. the number of elements in A
S.2.1
Relationships Between the Basic Concepts


If A is a subset of B, then every element of A is also in B, and so the union of A and B is identical with B. The converse also holds, thus:

AB (AB = B

but we can also observe that

B  B
(note that “” is used here rather than “=”,

BB  B

to signify a logically necessary identity)

And indeed, as was clear from the subset definition, the null set is a subset of every set, and every set is a subset of itself.


Suppose now that A is a subset of B, and B is also a subset of A. In this case every element of A is also in B, and every element of B is also in A – they must, therefore, have precisely the same elements, and are hence one and the same set:

(AB) and (BA) (A=B

This is an important result, because it indicates the general method of proving that two sets are identical (i.e. that two set specifications denote one and the same set). To prove that A and B are identical, we first show that A is a subset of B (every element of A is in B), and we then show that B is a subset of A (every element of B is in A).


If A and B are disjoint sets (i.e. they have no elements in common), then the cardinality of AB will clearly be the sum of the individual cardinalities of A and B. The converse also holds, so we have:

AB =  (AB = A+ B

If, however, A and B have elements in common, then every element of their intersection will be “counted twice” in the expression “A+ B”. So to derive a more general formula, we take this into account:

AB  A+ B– AB

Obviously if A and B are disjoint, then the last term is zero (since =0), giving us the special case above.


A  
S.2.2
Venn Diagrams

The Cambridge logician John Venn (1834-1923) invented a diagrammatic method of representing sets, which makes them and their relationships far easier to grasp. Thus the formula for AB above can be visualised by example as follows:

A

B

AB

AB
Use the non-branching rule as soon as possible

Of the two available branching formulae, choose first the one that leads to a branch that immediately closes

(Notice that this last rule tells us nothing, since A already guarantees the truth of (A  B). But we’re supposed to do it anyway, to complete the tableau.)

Get rid of double negations as soon as they appear

A

B

×

×

×

×

×

×

×

×

×

×

×

×

×

×

� Strictly, one might prefer to say that the words connect sentences, and express functions that connect the propositions expressed by those sentences. Some of these words, however, have alternative uses (e.g. “He is tired and emotional”, where “and” connects adjectives rather than sentences), and we are concerned here only with their use as propositional connectives. Note also that “implies” and “suggests” both usually require supplementation when used to connect sentences: “I am a man implies I am human” would more naturally be expressed as “The fact that I am a man implies that I am human”, though the additional words can be obviated by the use of quotation marks which make their propositional role clear: “‘I am a man’ implies ‘I am human’”.

� Whenever a binary connective is used to connect two formulae, a set of brackets must be included around the entire formula. Thus a formula containing four binary connectives, for example (((P  Q)  R)  (S  T)), should have four sets of brackets. There is a convention that permits the omission of the outermost pair of brackets, making ((P  Q)  R)  (S  T) acceptable, but you are strongly advised always to include all the brackets, since this makes the rules easier to apply.

� Since “only if” most often occurs “in the middle”, it’s worth remembering that “P only if Q” simply translates as “P Q”. But try also to remember why.

� You are permitted to omit inner brackets in a formula such as (P Q R S), though this should be understood as shorthand for (((P Q) R) S). The same applies with formulae containing only the connective , the point being that  and  are both associative – i.e. ((P Q) R) is logically equivalent to (P Q R)), and ((P Q) R) is logically equivalent to (P Q R)), so that in such formulae the bracketing makes no difference to the truth conditions.

� “x mod 3” means the remainder when x is divided by 3, so for example 5 mod 3 = 2. Hence x mod 3 = y mod 3 if, and only if, x and y differ by a multiple of 3 (i.e. 0, or 3, or 6, or 9, or …).

PAGE
44
Peter Millican, A Brief Introduction to Propositional Logic, 2007-08

