Steven M. Thompson
Page 5
5/19/05

BioInformatics: A SeqLab Introduction
Bioinformatics is tough — use a comprehensive, server-based technology to cope with the data!

July 25, 2005, a GCG¥ Wisconsin Package™ SeqLab® tutorial supplement for the Woods Hole Marine Biological Laboratory’s Workshop on Molecular Evolution.

Author and Instructor: Steven M. Thompson

Steve Thompson

BioInfo 4U

2538 Winnwood Circle

Valdosta, GA, USA 31601-7953

stevet@bio.fsu.edu

229-249-9751

¥GCG is the Genetics Computer Group, part of Accelrys Inc., a subsidiary of Pharmacopeia Inc.,

producer of the Wisconsin Package( for sequence analysis.

( 2005 BioInfo 4U

Steven M. Thompson

BioInformatics: A SeqLab Introduction

It’s a new field in the last twenty years or so, called various, often misunderstood names, that are largely subsets of one another — computational molecular biology, biocomputing, bioinformatics, sequence analysis, molecular modeling, genomics, and proteomics.  But what does it all mean?  One way to think about computational biology is the reverse biochemistry analogy — biochemists no longer have to begin a research project by isolating and purifying massive amounts of a protein from its native organism in order to characterize a particular gene product.  Rather, now scientists can amplify a section of some genome based on its similarity to other genomes, sequence that piece of DNA, and, using sequence analysis tools, infer all sorts of functional, evolutionary, and, perhaps, structural insight into a gene within it, and then, perhaps, go on to clone that gene, express the gene product, and finally purify the protein.  The process has come full circle.  The computer has become an important tool to be used at the beginning and throughout a research project in assisting experimental design, not just a number cruncher used at the end of the process.  This is only possible because of modern computational speed and power and the tremendous growth of the molecular databases.  Biocomputing’s explosive growth is reflected in and largely a result of the increase in the level of computational processing power available, along with a concurrent exponential growth of the molecular sequence databases.  GenBank doubles in size almost every year!  GenBank version 147, April 2005, has 48,235,738,567 bases, from 44,202,133 reported sequences.

Definitions — Much confusion abounds in the area, even concerning the names of the disciplines themselves.  The terms are often bantered about with little regard to what they really mean.  Here’s my slant on the situation.  All are interdisciplinary by nature, combining elements of computer and information science, mathematics and statistics, and chemistry and biology.  Each has elements of one another.  Biocomputing and computational biology are the most encompassing terms and can be considered synonyms.  They both describe using computers and computational techniques to analyze a biological system, whether that is a biomolecular primary sequence or tertiary structure, or a metabolic pathway, or even a complex system such as the interactions of populations within an ecological niche.

Bioinformatics necessarily intersects with this concept in that it describes using computational techniques to access, analyze, and interpret the biological information in databases.  However, these databases can be the traditionally considered nucleic and amino acid sequence databases as well as three-dimensional molecular structure databases, but can even include such disparate data collections as medical records or population statistics.  Therefore, bioinformatics is a type of biocomputing but also includes topics such as medical informatics that is not usually considered a part of computational biology. 

Within bioinformatics the subdiscipline of sequence analysis has a clearly defined scope.  It is the study of biological molecular sequence data for the purpose of inferring the function, interactions, evolution, and perhaps structure of biological molecules.  Molecular modeling can also be considered a type of bioinformatics, though it often isn’t.  It is necessarily a subdiscipline of computational structural biology, but uses the methodology and techniques of that discipline as well sequence analysis’ similarity searching and alignment algorithms.  That is why it is often referred to as “homology modeling.”

Genomics is the subdiscipline of bioinformatics that is concerned not with individual molecular sequences, but rather with sequences on a genomic scale.  That is, genomics analyzes the context of genes or complete genomes (the total DNA content of an organism) within and across genomes.  Proteomics can be considered the subdivision of genomics concerned with analyzing the complete protein complement, i.e. the proteome, of organisms, both within and between different organisms.  Structural genomics is the acquisition and analysis of the complete set of three-dimensional structure coordinate data for an organism’s entire proteome (or a representative set thereof).  Through these types of analyses it may eventually be possible to predict a completely unknown protein’s structure and function just based on its deduced molecular sequence.  Obviously this could be an incredible boost to the drug-design process and could go a long way toward curing many disease processes.  We have come a long way in structural prediction but are still a long way from this goal.  The comparative method is crucial to all these methods but, perhaps most obvious and key to genomics and proteomics.

I.
Databases: Content and Organization

The first genome sequenced was Haemophilus influenzae, at the Johns Hopkins University School of Medicine (Fleischmann, et al, 1995).  The International Human Genome Sequencing Consortium announced the completion of a "Working Draft" of the human genome in June 2000 (Lander, et al., 2001); independently that same month, the private company Celera Genomics announced that it had completed the first assembly of the human genome (Venter, et al., 2001).  As of May 2005, 22 Archaea, 223 Bacteria, and 17 Eukaryote completely finished genomes were represented, depending on your definition of complete (not even NCBI agrees with itself on this point!), and not counting all the virus and viroid genomes available.  Among them are a cryptomonad, Guillardia theta, flagellates, Leishmania major, apicomplexan, Plasmodium falciparum and yoelli, red algae, Cyanidioschyzon merolae, microsporidium, Encephalitozoon cuniculi, baker’s yeast, Saccharomyces cerevisiae, fission yeast, Schizosaccharomyces pombe, nematode, Caenorhabditis elegans, mosquito, Anopheles gambiae, honeybee, Apis mellifera, fruit fly, Drosophila melanogaster, sea squirt, Ciona intestinalis, zebrafish, Danio rerio, chimp, Pan troglogdytes, human, Homo sapiens, mouse, Mus musculus, rat, Rattus norvegicus, thale cress, Arabidopsis thaliana, oat, Avena sativa, soybean, Glycine max, barley, Hordeum vulgare, tomato, Lycopersicon esculentum, rice, Oryza sativa, bread wheat, Triticum aestivum, and corn, Zea mays. (conflicting statistics between http://www.ncbi.nlm.nih.gov/genomes/static/euk_g.html and  http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html).

Over half of the genes in many of these organisms have predicted functions based solely on previously studied bacterial genes, the comparative method in practice.  The numerous worldwide genome projects have kept the data coming at alarming rates.  The primary nucleotide database in the U.S.A., NCBI’s GenBank, has staggering growth statistics (http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html):

Year
BasePairs
Sequences

1982
680338
606

1983
2274029
2427

1984
3368765
4175

1985
5204420
5700

1986
9615371
9978

1987
15514776
14584

1988
23800000
20579

1989
34762585
28791

1990
49179285
39533

1991
71947426
55627

1992
101008486
78608

1993
157152442
143492

1994
217102462
215273

1995
384939485
555694

1996
651972984
1021211

1997
1160300687
1765847

1998
2008761784
2837897

1999
3841163011
4864570

2000
11101066288
10106023

2001
15849921438
14976310

2002
28507990166
22318883

2003
36553368485
30968418

2004
44575745176
40604319

[image: image1.wmf]

What are primary sequences?

Remember biology’s Central Dogma: DNA ( RNA ( protein.  Primary refers to one dimensional — all of the “symbol” information written in sequential order necessary to specify a particular biological molecular entity, be it polypeptide or nucleotide.  The symbols are the one letter alphabetic codes for all of the biological nitrogenous bases and amino acid residues and their ambiguity codes (see the nice explanatory table at http://virology.wisc.edu/acp/CommonRes/SingleLetterCode.html).  Biological carbohydrates, lipids, and structural information are not included within this sequence; however, much of this type of information is available in the reference documentation annotation associated with primary sequences in the databases.

What are sequence databases?

These databases are an organized way to store the tremendous amount of sequence information that accumulates from laboratories worldwide.  This data is piling up at exponential rates, as seen above.  Each database has its own specific formats and access to this information is most easily handled through various software packages and interfaces, either on the World Wide Web or otherwise.  Three major database organizations worldwide are responsible for maintaining most of this data.

In the United States the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/), a division of the National Library of Medicine (NLM), at the National Institute of Health (NIH), supports and distributes the GenBank nucleic acid sequence database and GenPept CDS (CoDing Sequence) translations database.  The National Biomedical Research Foundation (NBRF, http://www-nbrf.georgetown.edu/home.shtml), an affiliate of Georgetown University Medical Center, maintains the Protein Identification Resource (PIR) database of polypeptide sequences, and the NRL_3D database of the peptide sequences whose three-dimensional structure has been solved and deposited to the Protein Data Bank (PDB).  NRL_3D was initiated by the U.S. Naval Research Labs, and then taken over by NBRF.  Unfortunately is has not been maintained — the most recent update is September 2000.  Nonetheless, it is a small database, quick and easy to search, serving as a ‘bridge’ between primary and tertiary information.

The European Molecular Biology Laboratory (EMBL http://www.embl-heidelberg.de/) maintains the EMBL nucleic acid sequence database and the excellently annotated Swiss-Prot protein sequence database (also supported by the Swiss Institute of Bioinformatics, SIB, at ExPASy http://www.expasy.org/), as well as the minimally annotated TrEMBL (Translations from EMBL — those EMBL translations not yet in Swiss-Prot) protein sequence databases, in Cambridge, UK; Heidelberg, Germany; and Geneva, Switzerland.  Additional, less well known, sequence databases include sites with the military, with private industry, and in Japan (the DNA Data Bank of Japan, DDBJ http://www.ddbj.nig.ac.jp/).  In most cases data is openly exchanged between the databases so that many sites ‘mirror’ one another.  This is particularly true with GenBank, EMBL, and DDBJ; there is never a need to look in all three places.

What information do they contain, how is it organized, and how is it accessed?

Sequence databases are often mixtures of ASCII and binary data; however, they usually aren’t true relational or object oriented data structures.  Though expensive proprietary ones are, and some public domain ones are MySQL.  It’s a complicated mess with little standardization.  Typical sequence databases contain several very long ASCII text files that contain information of all the same type, such as all of the sequences themselves, versus all of the title lines, or all of the reference sections.  Binary files usually help ‘tie together’ all of the files by providing indexing functions.  Software specific routines, as exemplified by genome browsers and text search tools, are by far the most convenient method to successfully interact with these databases.

Nucleic acid databases (and TrEMBL) are split into subdivisions based on taxonomy (historical).  Protein databases are often split into subdivisions based on the level of annotation that the sequences have.  Reference headers include much extremely valuable information — author and journal citations, organism and organ of origin, and the FEATURES table.  The features table annotation lists all sorts of important regulatory, transcriptional and translational (CDS coding sequence), catalytic, and structural sites, depending on the database.  Actual sequence data follows the annotation.

Becoming familiar with the general format of sequence files for the type of software you want to use can save a lot of grief.  Unfortunately most databases and many different software packages have conflicting format requirements.  Fortunately there are many excellent format converters available such as ReadSeq (Gilbert, 193 and 1999).  However, most sequence analysis software requires that you specify a proper sequence name and/or database identifier.  These are usually discovered with some sort of text searching program, either on the World Wide Web or not.  This brings a point, locus names versus accession numbers.  The LOCUS, ID, and ENTRY names category in the various databases are different than the Accession number category.  Each sequence is given a unique accession number upon submission to the database.  This number allows tracking of the data when entries are merged or split; it will always be associated with its particular data.  Entry names may change; accession numbers are forever; they just pile up, primary becomes secondary, ad infinitum.

What changes have occurred in the databases — history and development?

The first well recognized sequence database was Margaret Dayhoff’s Atlas of Protein Sequence and Structure begun in the mid sixties (Dayhoff, et al., 1965–1978), which later became PIR (George, et al., 1986).  GenBank began in 1982 (Bilofsky, et al., 1986), EMBL in 1980 (Hamm and Cameron, 1986).  They have all been attempts at establishing an organized, reliable, comprehensive, and openly available library of genetic sequences.  Databases have long-since outgrown a hardbound atlas.  They have become huge and have evolved through many changes.  Changes in format over the years are a major source of grief for software designers and program users.  Each program needs to be able to recognize particular aspects of the sequence files; whenever they change, it's liable to throw a wrench in the works.  People have argued for particular standards such as XML, but it’s almost impossible to enforce.  NCBI’s ASN.1 format and its Entrez interface attempt to circumvent these frustrations somewhat.  Entrez, EMBL’s SRS (Sequence Retrieval System, Etzold and Argos, 1993) found on the World Wide Web at all EMBL outstations, and the Wisconsin Package’s LookUp derivative of SRS all search for text in, interact with, and allow users  to browse in the sequence databases.  Both SRS and Entrez provide ‘links’ to associated databases so that you can jump from, for instance, a chromosomal map location, to a DNA sequence, to its translated protein sequence, to a corresponding structure, and then to a MedLine reference, and so on.  They are very helpful!

What other types of bioinformatics databases are used?

Specialized versions of sequence databases include sequence pattern databases such as restriction enzyme (e.g. http://rebase.neb.com/) and protease (e.g. http://merops.sanger.ac.uk/) cleavage sites, promoter sequences and their binding regions (e.g. http://www.gene-regulation.com/pub/databases.html and http://www.epd.isb-sib.ch/), and protein motifs  (e.g. http://us.expasy.org/prosite/) and profiles (e.g. http://www.sanger.ac.uk/Software/Pfam/); and organism or system specific databases such as the sequence portions of ACeDb (A C. elegans Database  http://www.acedb.org/), FlyBase (Drosophila database  http://www.yeastgenome.org/http://flybase.bio.indiana.edu/

), SGD (Saccharomyces Genome Database  ), and the Ribosomal Database Project  (RDP http://rdp.cme.msu.edu/).  Many of these organism specific databases present their data in the context of a genome map browser (e.g. human Genome Database, http://gdbwww.gdb.org/, the University of California, Santa Cruz, bioinformatics group’s human genome browser, http://genome.ucsc.edu/, and the Ensembl project, http://www.ensembl.org/, jointly hosted by the Welcome Trust Sanger Institute and the European Bioinformatics Institute).  Map browsers attempt to tie together as many data types as possible using a physical map of a particular genome as a framework.

Two other types of databases are commonly accessed in bioinformatics: reference and three-dimensional structure.  Reference databases run the gamut from OMIM (Online Mendelian Inheritance In Man, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM), that catalogs human genes and phenotypes, particularly those associated with human disease states, to PubMed access of MedLine bibliographic references (the National Library of Medicne’s citation and author abstract bibliographic database of over 4,800 biomedical research and review journals, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed).  Other databases that could be put in this class include things like proprietary medical records databases and population studies databases.

Finally, the Research Collaboratory for Structural Bioinformatics (RCSB http://www.rcsb.org/index.html, a consortium of five institutions: Rutgers University, the State University of New Jersey; the San Diego Supercomputer Center, University of California, San Diego; the University of Maryland Biotechnology Institute; University of Wisconsin-Madison; and the National Institute of Standards and Technology) supports the three-dimensional structure Protein Data Bank (PDB http://www.rcsb.org/pdb/).  The National Institute of Health maintains “Molecules To Go” at http://molbio.info.nih.gov/cgi-bin/pdb as a very easy to use interface to PDB.  Other three-dimensional structure databases include the Nucleic Acid Databank at Rutgers (NDB http://ndbserver.rutgers.edu/) and the proprietary Cambridge small molecule Crystallographic Structural Database (CSD http://www.ccdc.cam.ac.uk/products/csd/).

II.
So how does one do bioinformatics?

A.
Often bioinformatics is done on the Internet through the World Wide Web.  This is possible and easy and fun, but, beside being a bit too easy too get sidetracked upon . . . the World Wide Web can not readily handle large datasets or large multiple sequence alignments.  These types of datasets quickly become intractable.  You’ll know you’re there when you try.  In spite of that . . .

BioInformatics and the InterNet: the World Wide Web.

Some of my favorite World Wide Web sites for molecular biology and bioinformatics:

	Site
	URL (Uniform Resource Locator)
	Content

	
	
	

	National Center Biotech' Info'
	http://www.ncbi.nlm.nih.gov/
	databases/analysis/software

	PIR/NBRF
	http://www-nbrf.georgetown.edu/
	protein sequence database

	ProteinDataBank
	http://www.rcsb.org/pdb/
	3D mol' structure database

	Molecules To Go
	http://molbio.info.nih.gov/cgi-bin/pdb/
	3D protein/nuc' visualization

	IUBIO Biology Archive
	http://iubio.bio.indiana.edu/
	database/software archive

	
	
	

	Univ. of Montreal MegaSun
	http://megasun.bch.umontreal.ca/
	database/software archive

	
	
	

	Japan's GenomeNet Server
	http://www.genome.ad.jp/
	databases/analysis/software

	
	
	

	European Mol' Bio' Lab'
	http://www.embl-heidelberg.de/
	databases/analysis/software

	European Bioinformatics Lab'
	http://www.ebi.ac.uk/
	databases/analysis/software

	The Sanger Institute
	http://www.sanger.ac.uk/
	databases/analysis/software

	Univ. of Geneva BioWeb
	http://www.expasy.ch/
	databases/analysis/software

	
	
	

	The Genome DataBase
	http://www.gdb.org/
	Human Genome Project

	Stanford Genomic Resource
	http://genome-www.stanford.edu/
	various genome projects

	Inst. for Genomic Research
	http://www.tigr.org/
	microbial genome projects

	HIV Sequence Database
	http://hiv-web.lanl.gov/
	HIV epidemeology seq' DB

	
	
	

	The Baylor Search Launcher
	http://searchlauncher.bcm.tmc.edu/
	sequence search launcher

	Pedro's BioMol Res' Tools
	http://www.public.iastate.edu/~pedro/research_tools.html
	extensive bookmark list

	Harvard Bio' Laboratories
	http://golgi.harvard.edu/BioLinks.html
	nice bookmark list

	BioToolKit
	http://www.biosupplynet.com/cfdocs/btk/btk.cfm
	annotated molbio tool links

	
	
	

	Felsenstein's PHYLIP site
	http://evolution.genetics.washington.edu/phylip.html
	phylogenetic inference

	The Tree of Life
	http://tolweb.org/tree/
	overview of all phylogeny

	Ribosomal Database Project
	http://rdp.cme.msu.edu/index.jsp
	databases/analysis/software

	
	
	

	PUMA2 Metabolism
	http://compbio.mcs.anl.gov/puma2/cgi-bin/index.cgi
	metabolic reconstructions

	
	
	

	BIOSCI/BIONET
	http://net.bio.net/
	biologists' news groups

	
	
	

	Access Excellence
	http://www.accessexcellence.org/
	biology teaching and learning

	CELLS alive!
	http://www.cellsalive.com/
	animated microphotography

	
	
	

	Genetics Computer Group
	http://www.accelrys.com/products/dstudio/gcg/index.html
	sequence analysis package


B.
So what are the alternatives . . . ?
Desktop software solutions — public domain programs are available, but . . . complicated to install, configure, and maintain.  User must be pretty computer savvy.  So, commercial software packages are available, e.g. MacVector, Sequencher, DNAsis, DNAStar, Discovery Studio, etc.,

but . . . license hassles, big expense per machine, and database access all complicate matters!

C.
Therefore, server-based solutions (e.g. the Wisconsin Package) — UNIX server computers

One license fee for an entire institution and very fast, convenient database access on local server disks.  Connections from any networked terminal or workstation anywhere!

1.
Operating system and command line hassles

Communications software — most all computer systems will have some type of a WWW browser available, be it Explorer, Navigator, Mozilla, Konqueror, Safari, Opera, on ad infinitum; it doesn’t matter.  You can use whatever is on the machine.  Unfortunately a Web browser alone is not enough for serious biocomputing.  More often than not you will need to directly connect to a server computer using a command line, “terminal,” window where you can directly interact with the server computer’s OS.  The ‘old way’ to do this was with a common program called telnet.  However, telnet is an unsecure program from which smart hackers can ‘sniff’ connection account names and passwords.  Therefore, in this age of the hacker, most server computers no longer allow telnet connections.  A newer program named ssh, for ‘secure shell,’ encrypts all connections and is now required for command line access to most servers.  ssh comes preinstalled as a part of all modern UNIX OSs but doesn’t come with pre OS X Macs or any MS Windows machines and, therefore, must be installed on those platforms in order to do most server-based biocomputing.

File transfer — along the lines of secure connections, there are often times when you’ll need to move files back and forth between your own computer and a server computer located somewhere else.  The ‘old’ unsecure way of doing this was a program named ftp, for file transfer protocol.  Just like telnet it has the unfortunate attribute of allowing hackers to ‘sniff’ account names and passwords.  Therefore, an encrypted file transfer counterpart to ssh is now required by most servers.  That counterpart is called sftp and scp, for ‘secure file transfer protocol’ and ‘secure copy’ respectively.  It’s also included in all modern UNIX OSs, but not in pre OS X Macs nor in MS Windows, so has to be installed on those computers.

X graphics — furthermore, since ssh is strictly a non-graphical terminal program, and since all Web browsers’ graphics capability is inadequate for the truly interactive graphics that much biocomputing software requires, another type of graphical system needs to be present on the computer that you use for much biocomputing.  That graphical interface is called the X Window System (a.k.a. X11).  It was developed at MIT (the Massachusetts Institute of Technology) in the 1980’s, back in the early days of UNIX, as a distributed, hardware independent way of exchanging graphical information between different UNIX computers.  Unfortunately the X worldview is a bit backwards from the standard client/server computing model.  In the standard model a local client, for instance a Web browser, displays information from a file on a remote server, for instance a particular WWW site, also called a Uniform Resource Locator (URL).  In the world of X, an X-server program on the machine that you are sitting at (the local machine) displays the graphics from an X-client program that could be located on either your own machine or on a remote server machine that you are connected to.  Confused yet?

X-server graphics windows take a bit of getting used to in other ways too.  For one thing, they are only active when your mouse cursor is in the window.  And, rather than holding mouse buttons down, to activate X items, just <click> on the icon. Furthermore, X buttons are turned on when they are pushed in and shaded, sometimes it’s just kind’a hard to tell.  Cutting and pasting is real easy, once you get used to it — select your desired text with the left mouse button, paste with the middle.  Finally, always close X Windows when you are through with them to conserve system memory, but don’t force them to close with the X-server software’s close icon in the upper right- or left-hand window corner, rather, always, if available, use the client program’s own “File” menu “Exit” choice, or a “Close,” “Cancel,” or “OK” button.

Nearly all UNIX computers, including Linux, but not including Mac OS X, include a genuine X Window System in their default configuration.  MS Windows computers, including the ones in the Biology Labs, are often loaded with X-server emulation software, such as the commercial programs XWin32 or eXceed, to provide X-server functionality.  Macintosh computers prior to OS X required a commercial X solution; often the program MacX or eXodus was used.  However, since OS X Macs are true UNIX machines, they can use one of a variety of free open source packages such as XDarwin to provide true X Windowing.  Perhaps the best X solution for Max OS X is Apple’s own X11 package distributed for free from their support pages: http://www.apple.com/downloads/macosx/apple/x11formacosx.html.

Text editing — at some point you will have to edit a file; text editing is often a necessary part of computing.  This is never that much fun, but always very important.  The UNIX OS always has vi installed.  It’s a part of the OS and is very powerful, but quite intimidating.  Emacs or pico are often provided as alternatives.  Or you can use your favorite desktop word processing software like MS Word, if you would like, followed by file transfer.  Just be sure to “Save As” “Text Only” with “Line Breaks,” and don’t be surprised if you have subsequent line break problems.  Native word processing format contains binary control data in it specifying format and so forth; the UNIX OS can’t read it.  Saving as text avoids this problem.  Editing this way is a two-step process though.  After the editing is done, the file needs to be transferred to the UNIX server with scp or sftp.  Therefore, it makes sense to get comfortable with at least one UNIX text editor.  That will avoid the file transfer step, saving some hassle.  There are several around, including many driven though a GUI, but minimally I recommend learning pico 

Because this is all somewhat confusing to newcomers, here’s a UNIX tutorial that we won’t take the time to go through today, but I encourage you to do so at some point.

A basic guide to UNIX for neophytes

An introduction and cheat sheet graciously stolen from the Internet and modified for bioinformatics use.  I am indebted to the countless, but unnamed, contributors to this summary — I apologize for my lack of credit giving and flagrant copyright infringement.  Hundreds of users worldwide are forever grateful; thank you.  Steve Thompson, July, 1995 (and updated several times since).

The original UNIX OS was developed in the USA, first by BELL, then licensed to AT&T, and now used in various implementations, on many different types of computers the world over.  UNIX is a line-oriented system similar to the old MS-DOS OS, though many GUIs exist to help drive it.  It is possible to use many UNIX computers without ever using command line mode; however, becoming familiar with some basic UNIX commands will make your computing experience much less frustrating.

The UNIX command line interface is often characterized as being very unfriendly compared to other OSs.  Actually UNIX is quite straightforward, especially regarding its file systems.  UNIX is the precursor of most tree structured file systems including those used by MS-DOS, MS Windows, and the Macintosh OS.  These file systems all consist of a tree of directories and subdirectories.  The OS allows you to move about within and to manipulate this file system.  A useful analogy is the file cabinet metaphor — your account is analogous to the entire file cabinet.  Your directories are like the drawers of the cabinet, and subdirectories are like hanging folders of files within those drawers.  Each hanging folder could have a number of manila folders within it, and so on, on down to individual files.  Hopefully all arranged with some sort of logical organizational plan.  Your computer account should be similarly arranged.

In command line mode each command is terminated by the ‘return’ or ‘enter’ key.  UNIX uses the ASCII character set and unlike some OSs, it supports both upper and lower case.  A disadvantage of using both upper and lower case is that commands and file names must be typed in the correct case.  Most UNIX commands and file names are in lower case.  Commands and file names should not include spaces nor any punctuation other than periods (.), hyphens (–), or underscores (_).  UNIX command options are specified by a required space and the hyphen character ( -).  UNIX does not use or directly support function keys.  Special functions are generally invoked using the ‘Control’ key.  For example a running command can be aborted by pressing the “Control” key [sometimes labeled “CTRL” or denoted with the karat symbol (^)] and the letter “c.” The short form for this is generally written CTRL-C or ^C.  Using control keys instead of special function keys for special commands is sometimes difficult to remember, the advantage is that nearly every terminal program supports the control key, allowing UNIX to be used from a wide variety of different platforms that might connect to the server.

The general command syntax for UNIX is a command followed by some options, and then some parameters.  If a command reads input, the default input for the command will generally come from the interactive terminal window.  The output from a system level command (if any) will generally be printed back to your terminal window.  General command syntax follows:

cmd

cmd -options

cmd -options parameters

The command syntax allows the input and outputs for a program to be redirected into a file or the output of one program can be passed as the input to another program.  To cause a command to read from a file rather than from the terminal, the “<” sign is used on the command line and the “>” sign causes the program to write its output to a file (for those programs that do not do this by default):

cmd -options parameters < input

cmd -options parameters > output

cmd -options parameters < input > output

To cause the output from one program to be passed to another program as input a vertical bar (|), known as the “pipe,” is used.

cmd1 -options parameters | cmd2

This feature is called “piping” the output of one program into the input of another.
Certain printing (non-control) characters, called “shell metacharacters,” have special meanings to the UNIX shell.  You rarely type shell metacharacters on the command line because they are punctuation characters.  However, if you need to specify a filename accidentally containing one, turn off its special meaning by preceding the metacharacter with a “\” (backslash) character or enclose them in “'” (single quotes).  The metacharacters “*” (asterisk), “?” (question mark), and “~” (tilde) are used for the shell file name “globbing” facility.  When the shell encounters a command line word with a leading “~”, or with “*” or “?” anywhere on the command line, it attempts to expand that word to a list of matching file names using the following rules: A leading “~” expands to the home directory of a particular user.  Each “*” is interpreted as a specification for zero or more of any character.  Each “?” is interpreted as a specification for exactly one of any character.  Two globbing shell metacharacters cause ‘wild card expansion:’

*
matches any string of characters zero or longer,

?
matches any single character.

For example, the pattern “dog*” will access any file that begins with the word dog, regardless of what follows.  It will find matches for, among others, files named “dog,” “‘doggone,” and “doggy.”  The pattern “d?g” matches dog, dig, and dug but not ding, dang, or dogs; “dog?” finds files named “dogs” but not “dog” or “doggy.”  Using an asterisk or question mark in this manner is called using a “wild card.”  Generally when a UNIX command expects a file name, “cmd filename,” it’s possible to specify a group of files using a wild card expression.

A couple of examples using wild card characters along with the pipe and output redirection follow:

cmd */*.data | cmd2

cmd */my.data? > filename

The first example will access all files ending in “.data” in all subdirectories one level below the current directory and pass that output on to the second command.  The second example will access all files named “my.data” that have any single character after the word data in all subdirectories one level below your current directory and output that result to a file named filename.  Wild cards are very flexible in UNIX and this makes them very powerful, but you must be extremely careful when using them with destructive commands like “rm” (remove file).

Getting help in any OS can be very important.  UNIX provides a text-based help system called man pages.  You use man pages by typing the command “man” followed by the name of the command that you want help on.  Before moving any further into UNIX, let’s change our passwords from the initial ones you were given.  Give the command “man tcsh” to see how the man pages work and read about the T shell.  Press the space bar to page through the man pages; type the letter “q” for quit to get back to your command prompt.

When an account is created, your home directory environment variable, “$HOME,” is created and associated with that account.  In any tree structured file system the concept of where you are in the tree is very important.  There are two ways of specifying where things are.  You can refer to things relative to your current directory or by its complete ‘path’ name.  When the complete path name is given by beginning the specification with a slash, the current position in the directory tree is ignored.  To find the complete path in Mendel’s file system to your home directory type the command “pwd:”

thompson@mendel > pwd

/home/thompson

This UNIX command shows you where you are presently located on the server.  It displays the complete UNIX path specification (this always starts with a slash) for the directory structure of your account.  Also notice that UNIX uses forward slashes (/) to differentiate between subdirectories, not backward slashes (\) like MS-DOS.  The pwd command can be used at any point to keep track of your location.  Several commands for working with your directory structure follow: 

pwd


print working directory

ls



list the contents of the directory

mkdir


make a new directory

cd



change directory

To list the files in your home directory, use the “ls” command.  There are many options to the ls command.  Check them out by typing “man ls”.  The most useful options are the “-l” option and the “-a” options.  The command “ls -l” will list the files and directories in your current directory in the ‘long’ form with extended information.  A UNIX convention is that files with a period as the first character in their name are not listed by the ls command unless the “-a” ‘all’ option is given.

This convention has lead to a number of special configuration files having periods as the first character in their name.  Some of these files are executed automatically when a user logs in, much like “autoexec.bat” and “config.sys” are executed in MS-DOS upon log in.  On many UNIX systems there is a file executed upon every login called “.login” and another one that sets up the shell environment called “.cshrc”.  In general you do not want to mess with these files in your account until you are very comfortable with the OS.  Following are three examples of the ls command in my account:
thompson@mendel > ls

bin      gcg        mail     patterns    seqlab      temp.epsf  tutorials

db_info  login.bak  molevol  ribo_files  snap_files  temp.ps    working

thompson@mendel > ls -l

total 80

drwxr-xr-x    3 thompson gcg          4096 Feb 22  2002 bin

drwxr-xr-x    2 thompson gcg          4096 Jan 16  2001 db_info

drwxr-xr-x    2 thompson gcg          4096 Dec 11 18:05 gcg

-rwxr-xr-x    1 thompson gcg          1797 Jun  8  1998 login.bak

drwx------    2 thompson gcg          4096 Mar  8  2002 mail

drwxr-xr-x    9 thompson gcg          4096 Aug 16 09:43 molevol

drwxr-xr-x    4 thompson gcg          4096 Jun  3  1999 patterns

drwxr-xr-x   15 thompson gcg          4096 Oct 16  2001 ribo_files

drwxrwxr-x    2 thompson gcg          4096 Nov 14 10:34 seqlab

drwxr-xr-x    5 thompson gcg          4096 Oct 16  2001 snap_files

-rw-r--r--    1 thompson gcg         21798 Nov 14 11:42 temp.epsf

-rw-r--r--    1 thompson gcg          5724 Nov 13 20:52 temp.ps

drwxr-xr-x    6 thompson gcg          4096 Apr 30  2002 tutorials

drwxr-xr-x   12 thompson gcg          4096 Apr  8  2002 working

thompson@mendel > ls -a

.              .forward           molevol       .seqlab-history  temp.ps

..             gcg                .netscape     .seqlab-mendel   tutorials

.bash_history  .gcgmydevices      patterns      .sh_history      working

bin            .gcgmydevices.old  .pauphistory  snap_files       .Xauthority

.cshrc.OFF     login.bak          .pinerc       .ssh

db_info        .login.OFF         .profile.OFF  .ssh2

.dt            .login.ORIGINAL    ribo_files    .sysman

.dtprofile     mail               seqlab        temp.epsf

In the output from “ls -l” additional information regarding the file permissions, owner of the file, size, modification date, and file name is shown.  In the output from “ls -a” those ‘dot’ system files are now seen. Nearly all OSs have some way to customize your login environment with editable configuration files; these are them.  The experienced user can place commands in these special files to customize their individual login environment.

Subdirectories are generally used to group files associated with one particular project or files of a particular type.  For example, you might store all of your memorandums in a directory called “memo.”  The “mkdir” command is used to create directories and the “cd” command is used to move into directories.  The special placeholder file “..” allows you to move back up the directory tree.  Note its use below with the cd command to go back up to the parent of the current directory:
thompson@mendel > mkdir memo

thompson@mendel > ls

bin      gcg        mail  molevol   ribo_files  snap_files  temp.ps    working

db_info  login.bak  memo  patterns  seqlab      temp.epsf   tutorials

thompson@mendel > cd memo

thompson@mendel > pwd

/home/thompson/memo

thompson@mendel > cd ..

thompson@mendel > pwd

/home/thompson

After the “cd ..” command pwd shows that we are ‘back’ in the home directory.  The GCG commands ‘up,’ ‘down,’ ‘over,’ ‘home,’ and ‘to GCG_logical_directory_name’ can also be used to move about the directory structure in lieu of the UNIX command ‘cd.’  Next we’ll look at several commands that deal with files, rather than directories:

rm



remove (delete) a file,

mv



move (rename) a file,

cp



copy a file to another file or a file or set of files into a directory,

more or less

page through a file, moving from one page to another with the space bar.

Below are some examples of these commands, and of command redirection and piping with ls and more to allow paging through directory listings.  Issue the following commands:

> ls -la | more

> ls -la /usr/X11R6/bin > tmp

> more tmp

> cp tmp memo/tmp.out

> mv tmp tmp.txt

> rm memo/tmp.out

A very useful command that allows searching through files for a pattern is called grep.  The first parameter to grep is a search pattern; the second is the file or files that you want searched.  For example if you had a bunch of different data files whose file names all ended with the word data in several different subdirectories and wanted to find the one that mentioned zebra, you could use the following command:

grep zebra */*data

Important UNIX Commands and Keystroke Conventions

< . >


Current working directory.

< .. >


Parent directory of current working directory.

< ~ >


User’s home directory (C shell and tcsh only, also $HOME).

< & >


Execute the specified command in another process.

Most commands have on-line documentation available through the man pages:

man man


Pages through the manual pages of the man help system.

man -k batch

Gets you the title lines for every command with the word batch in the title.

Command to change your password:

passwd


Change your login password

Commands for looking at the system, other users, your login sessions, jobs you are running, and command execution:

uptime
Shows the time since the system was last rebooted.  Also shows the “load average”.  Load average indicates the number of jobs in the system ready to run.  The higher the load average the slower the system will run.

w or who
Shows who is logged in to the system doing what.

top
Shows the most active processes on the entire machine and the portion of CPU cycles assigned to running processes.  Press “q” to quit.

ps
Shows your current processes and their status (running, sleeping, idle, terminated, etc.); (use the man ps pages as options widely vary, see especially the a, e, l, f, u, and U options).

at
Submit script to the at queue for execution later.

bg
Resumes a suspended job in background mode.

fg
Brings a background job back into interactive mode.

The following commands affect the file system and access files.  The basic file commands:

cat tmp.txt
Shows the contents of the file “tmp.txt” on your screen, also concatenates files, for example:  “cat file1 file2 > file3.”

more tmp.txt
Shows the contents of the file “tmp.txt” at the terminal one page at a time; press the space bar to continue.  Type a “?” when the scrolling stops for viewing options (less often available; it is more powerful than more).

head tmp.txt
Shows the first few lines of the file “tmp.txt.”

tail tmp.txt
Show the last few lines of the file “tmp.txt.”

grep xterm tmp.txt
Show the lines in the “tmp.txt” that contain the specified pattern, here the word “xterm.”

wc tmp.txt
Counts the number of characters, words, and lines in the file “tmp.txt.”

cp tmp.txt tmp
Copies the file “tmp.txt” to the file “tmp.”  Any previous contents of the file “tmp” are lost.

mv tmp.txt tmp
Renames (moves) the file “tmp.txt” to the file “tmp.”  Any previous contents of the file “tmp” are lost.

mv tmp memo
Since “memo” is a directory name not a file name, this command moves the specified file, “tmp,” into the specified directory, “memo,” keeping the original file name intact.

rm memo/tmp
Deletes (removes) the file “tmp” in the directory  “memo.”  It is unrecoverable!

chmod perm
Changes the permissions of a file.  See “man chmod” and also “man chown” for further details.

lpr file
Prints the specified file on the default system printer.  Will need to specify a particular print queue with the “-P” option to send it elsewhere.

Directory commands:

pwd
Print Working Directory.  Shows you where you are at in the file system.  Very useful when you get confused.  (Also see “whoami” if really confused!)

ls
Shows (lists) your files’ names.

ls -l
Shows your files’ names in extended (long) format including file size, ownership, and permissions.

ls -al
Shows all files including the system files (.files) in your directory in the long format.

mkdir newdir
Makes a new directory in your current directory.

rmdir newdir
Removes a subdirectory from your current directory.  Directory must be empty to remove the directory.

rm -r dir
Removes all  the files, and subdirectories of a directory and then removes the directory.  Very convenient, useful and dangerous.

cd
Move back into your home directory from anywhere.

cd memo
Move down into a directory named “memo” from your current directory.

Usually it is best to leave programs using the quit or exit command; however, occasionally it is necessary to terminate a running program.  Here are some useful commands for doing this:

<Ctrl c>
Aborts a running process (program); no option for restarting it later.

<Ctrl d>
Terminates a UNIX shell, i.e. exit present control level and close the file.  Use “logout” or “exit” to exit from your top level login shell.

<Ctrl z>
Pauses (suspends) a running process and returns the user to the system prompt.  The suspended program can be restarted by typing “fg” (foreground).  If you type “bg” (background) the job will also be started again, but in background mode.

kill –9 psid
Kills a process with the given process ID using the “sure kill” option.  This number is obtained using some variation of the ps command.

The following commands provide simple access to a subset of UNIX networking capabilities (host refers to a computer’s fully qualified Internet name or number, e.g. zen.art.motorcycle.com or 999.999.99.99):

ftp host
File transfer protocol.  Allows a limited set of commands (dir, cd, put, get, help, etc.) for moving files between machines.  Note: unsecure method, so often restricted to “anonymous ftp” only.  See sftp and scp as an alternative.

scp
Secure copy file, syntax: “scp file user@host:path” or “scp user@host:path file.”  Good for moving a few files.

sftp
Secure file transfer protocol.  Allows same subset of commands as ftp, but through an encrypted connection.  Good for moving lots of files.

telnet host
Provides an unsecure terminal connection to another Internet connected host (discouraged and often disabled!).  See ssh for a secure alternative.

ssh user@host
Connect to a host computer using a secure, encrypted protocol.

Three common UNIX editors are described below:

pico newfile
A text editor provided with the pine mailer; appropriate for general text editing but not present on all UNIX systems.  This is a simple to use editor with a command banner presenting a menu of Ctrl Key command options.  Type in your text and then press Ctrl-X to exit and save “newfile.”

vi file
The default UNIX text editor.  This comes with all versions of UNIX and is extremely powerful, but it is quite difficult to master.  I recommend avoiding it entirely unless you are interested in becoming a UNIX expert.

emacs file
This is a very nice alternative text editor available on many UNIX machines.  This editor is also quite powerful but not nearly as difficult to learn as vi.

A quick reference for previous users of VMS who are trying to learn UNIX follows.  Look for a task or VMS command to choose the appropriate UNIX command.

	To ...
	VMS
	UNIX

	end a program
	<Ctrl y>
	<Ctrl c>

	suspend a program
	(none available)
	<Ctrl z>

	exit current command level
	<Ctrl z>
	<Ctrl d>

	display list of files
	DIRECTORY
	ls

	
	DIRECTORY/FULL
	ls -al

	display contents of file
	TYPE
	cat

	display file with pauses
	TYPE/PAGE
	more, less

	display first few lines of file
	
	head

	display last  few lines of file
	
	tail

	edit a file
	EDT, EVE
	pico, vi

	copy file
	COPY
	cp

	compare files
	DIFF
	diff

	
	
	cmp

	rename file
	RENAME
	mv

	delete file or directory
	DELETE
	rm, rmdir

	change file protection
	SET FILE/PROT
	chmod

	change file ownership
	SET FILE/OWNER
	chown

	create directory
	CREATE/DIR
	mkdir

	change working directory
	SET DEFAULT
	cd

	display working directory
	SHOW DEFAULT
	pwd

	get help
	HELP
	man

	
	
	apropos

	display date and time
	SHOW TIME
	date

	display free disk space
	SHOW DEVICE
	df

	stop process
	STOP
	kill

	link program modules
	LINK
	ld

	print file
	PRINT
	lpr

	display print queue
	SHOW QUEUE
	lpq

	display print entries
	SHOW ENTRY
	lpq

	change password
	SET PASSWORD
	passwd

	display logged-in users
	SHOW USERS
	who

	and information
	
	finger

	about them
	
	w

	display processes
	SHOW PROCESS
	ps

	change terminal settings
	SET TERMINAL
	stty

	talk to another user
	PHONE
	talk

	disable messages
	SET NOBROADCAST
	mesg n


This guide is intended to give some perspective on the UNIX operating system and help you learn more about it.  UNIX is not the easiest computer operating system to master.  Have patience, ask questions, and don’t get down on yourself because it doesn’t seem as easy as some other computer operating systems.  The power and flexibility of UNIX is worth the extra effort.  UNIX is becoming the defacto standard operating system in more and more computing environments, particularly scientific computing.  The effort will not be wasted.

Using X between different UNIX computers

These are the bare-minimum instructions necessary for connecting to a UNIX host computer from another UNIX computer using X.  Not all commands are necessary in all cases, as often they are set by your account environment; however, I’ll supply a complete set.  In most cases fully qualified Internet names can be used in these procedures, however, depending on local name servers, you may need to specify IP numbers.  A fictitious example host machine, zen.art.motorcycle.com, has the following name and number:


zen.art.motorcycle.com

999.999.99.99

You will need to know your own machine’s name and/or number as well as the host's.

Log on to your UNIX workstation account in the customary manner.  Depending on the workstation, you may want to specify an xterm terminal window.  On most systems:


Optional:  > /usr/bin/X11/xterm &



On Solaris:  > /usr/openwin/bin/xterm &

Following UNIX X commands with an ampersand, "&," is helpful so that they are run in the background in the new window in order to maintain control of the initial window.  Some helpful options supported in most versions of xterm are “-ls” so that your login script is read, “-sb -sl 100” to give you a 100 line scroll back capability, “-tn vt220” to take advantage of vt220 terminal features, and “-fg Bisque -bg MidnightBlue” to give you nice light colored characters on a dark blue background.

Then at your workstation’s UNIX prompt, authorize X access to the host with the xhost command:

> xhost +zen.art.motorcycle.com


(should not be necessary)

Next connect to the host with the telnet, ssh, or rlogin command, whichever is the preferred route; e.g:

> ssh -X thompson@zen.art.motorcycle.com
(-capital X sets the X environment for you)

This should produce a login window.  Log in as usual, then, if necessary, issue the following command on the host to setup the X environment (for the c shell and its derivatives), where your_IP_node_name represents the Internet name or number of the workstation that you are sitting at:

Host> setenv DISPLAY your_IP_node_name:0
(again, should not be necessary)

It is best to run commands from an X terminal window rather than from a default console window as is sometimes created by a remote connection.  Therefore, after setting up your environment, an option is to launch xterm by minimally issuing the xterm command to the host (as discussed above, many options are available).

After GCG has initialized, you can run “setplot” choosing the appropriate choice to produce a colored GCG X graphics window.  Run commands from the xterm window.  Graphics will be displayed in the graphics window.  Another option is to launch the Wisconsin Package Graphical User Interface by typing “seqlab &.”  This graphical user interface provides GCG functions from a point and click menu interface.  More information on SeqLab is available through GenHelp.

2.
The Genetics Computer Group — the Wisconsin Package for Sequence Analysis

Begun in 1982 in Oliver Smithies’ lab at the Genetics Department at the University of Wisconsin, Madison, then a private company for over 10 years, then acquired by the Oxford Molecular Group, and now owned by Pharmacopeia under the new name Accelrys, Inc., the suite contains almost 150 programs designed to work in a "toolbox" fashion.  Several simple programs used in succession can lead to sophisticated results.  Most importantly, the package has 'internal compatibility,' i.e. once you learn to use one program, all programs can be run similarly, and, the output from many programs can be used as input for other programs.  Used all over the world for more than 20 years by more than 30,000 scientists at over 950 institutions worldwide, so learning it here will most likely be useful anywhere you go.

a.
Specifying Sequences and Logical Terms!

To answer the always perplexing GCG question — “What sequence(s)? . . . .”  Specifying sequences, GCG style; in order of increasing power and complexity:

i.
The sequence is in a local GCG format single sequence file in your UNIX account.  This sequence file can be anywhere in your account as long as you supply an appropriate ‘path’ so that the program can find the file.  The sequence file can have any name but it is best to use extensions that tell you what type of molecule it is, e.g. .seq and .pep (my.pep or ~user/subdir/my.seg).  Use the program ‘reformat’ to convert ‘raw’ text format files to GCG format (first use ‘chopup,’ if the sequence is one continuous line without line feeds).

This is a small example of 'raw' GCG single sequence format.

Always put some documentation on top, so in the future you

can figure out what it is you're dealing with!  Two periods

always separate that documentation from the actual data.

..

ACTGACGTCACATACTGGGACTGAGATTTACCGAGTTATACAAGTATACAGATTTAATAGCATGCGATCCCATGGGA

Next the clean GCG format single sequence file after ‘reformat’:

This is a small example of GCG single sequence format.

Always put some documentation on top, so in the future

you can figure out what it is you're dealing with!  The

line with the two periods is converted to the checksum line.

example.seq  Length: 77  July 21, 1999 09:30  Type: N  Check: 4099  ..

 1  ACTGACGTCA CATACTGGGA CTGAGATTTA CCGAGTTATA CAAGTATACA

51  GATTTAATAG CATGCGATCC CATGGGA

ii.
The sequence is in a local GCG database in which case you ‘point’ to it by using any of the GCG database logical names.  These names make sense and are either the name of the database or an abbreviation thereof.  Subcategory logical names can be used for nucleotide databases, such as bacterial.  Most GCG logical database names are listed on the accompanying list.  A colon, “:,” always sets the logical name apart from either an accession code or a proper identifier name or a wildcard expression and they are case insensitive.  Several examples follow:  GenBank:EctufBT, gb:x57091, SwissProt:EFTu_Ecoli, sw:p02990, PIR:EfEcTA, and p:a91475 all refer to the elongation factor Tu in E. coli.  If you know that the database uses consistent naming conventions, then you can use a wild card to specify all of a particular type of sequence.  This works particularly well in SwissProt; e.g. SW:EFTu_* specifies all of the EFTu sequences in SwissProt.  Because all the sequences are available in local GCG databases, it is seldom necessary to put individual sequences in your account.

iii.
The sequence is in a GCG format multiple sequence file, either an MSF (multiple sequence format) file or an RSF (rich sequence format) file.  The difference is that MSF files contain only the sequence names and sequence characters, whereas RSF files contain names, annotation, and actual sequence data.  As in GCG single sequence format, it is always best to retain the suggested GCG extensions, msf or rsf, in order for you to easily recognize what type of file they are without having to look, though it is not required and they could just as well be named Joe.Blow.  To specify sequences contained in a GCG multiple sequence file, supply the file name followed by a pair of braces, “{},” containing the sequence specification.  For example, to specify all of the sequences in an alignment of elongation 1( and Tu factors, one may use a naming system such as the following: ef1a-tu.msf{*}.  Furthermore, one can point to individual members of the alignment or subgroups by specifying their name within the braces, e.g. EF1a-Tu.rsf{eftu_ecoli} to point just to the E coli sequence or EF1a-Tu.rsf{eftu_*} to point at all of the EfTu’s as long as you use a sequence naming convention that retains this convention.

iv.
Finally, the most powerful method of specifying sequences is in a GCG “list” file.  This file can have any name though it is convenient to use the GCG extension “.list” to help identify them in your directory.  It is merely a list of other sequence specifications and can even contain other list files within it.  The convention to use a GCG list file in a program is to precede it with an at sign, “@.”  Furthermore, one can supply attribute information within list files to specify something special about the sequence.  This is especially helpful with length attributes that can restrict an analysis to specific portions of a sequence and can be seen in the example below:

An example GCG list file of many elongation 1( and Tu factors follows.  As with all GCG data files, two periods separate documentation from data.  ..

my-special.pep

begin:24
end:134

SwissProt:EfTu_Ecoli

Ef1a-Tu.msf{*}

/usr/accounts/test/another.rsf{ef1a_*}

@another.list

b.
Logical terms for the Wisconsin Package

	Sequence databases, nucleic acids:
	
	
	

	
	
	
	

	GENEMBLPLUS
	all of GenBank plus abridged EMBL plus EST and GSS
	GB
	all of GenBank except the EST and GSS subdivisions

	GEP
	all of GenBank plus abridged EMBL plus EST and GSS
	GENBANK
	all of GenBank except the EST and GSS subdivisions

	GENEMBL
	all of GenBank plus abridged EMBL except EST and GSS
	GB_BA
	GenBank bacterial subdivision

	GE
	all of GenEMBL
	GB_EST
	GenBank EST (expressed sequence tags) subdivision

	BA
	GenEMBL bacterial subdivisions
	GB_GSS
	GenBank GSS (genome survey sequences) subdivision

	BACTERIAL
	GenEMBL bacterial subdivisions
	GB_IN
	GenBank invertebrate subdivision

	EST
	GenEMBL EST (expressed sequence tags) subdivisions
	GB_OM
	GenBank other mamalian subdivision

	GSS
	GenEMBL GSS (genome survey sequences) subdivisions
	GB_OV
	GenBank other vertebrate subdivision

	IN
	GenEMBL invertebrate subdivisions
	GB_PAT
	GenBank patent subdivision

	INVERTEBRATE
	GenEMBL invertebrate subdivisions
	GB_PH
	GenBank phage subdivision

	OR
	GenEMBL organelle subdivisions
	GB_PL
	GenBank plant subdivision

	ORGANELLE
	GenEMBL organelle subdivisions
	GB_PR
	GenBank primate subdivision

	OM
	GenEMBL other mammalian subdivisions
	GB_RO
	GenBank rodent subdivision

	OTHERMAMM
	GenEMBL other mammalian subdivisions
	GB_ST
	GenBank structrual RNA subdivision

	OTHERMAMMAL
	GenEMBL other mammalian subdivisions
	GB_STS
	GenBank STS (sequence tagged sites) subdivision

	OV
	GenEMBL other vertebrate subdivisions
	GB_SY
	GenBank synthetic subdivision

	OTHERVERT
	GenEMBL other vertebrate subdivisions
	GB_TAGS
	GenBank Tags subdivisions

	OTHERVERTEBRATE
	GenEMBL other vertebrate subdivisions
	GB_UN
	GenBank unannotated subdivision

	PAT
	GenEMBL patent subdivisions
	GB_VI
	GenBank viral subdivision

	PATENT
	GenEMBL patent subdivisions
	
	

	PH
	GenEMBL phage subdivisions
	EM
	all of abridged EMBL except the TAGS subdivisions

	PHAGE
	GenEMBL phage subdivisions
	EMBL
	all of abridged EMBL except the TAGS subdivisions

	PL
	GenEMBL plant subdivisions
	EM_BA
	EMBL bacterial subdivision

	PLANT
	GenEMBL plant subdivisions
	EM_EST
	EMBL EST (expressed sequence tags) subdivision

	PR
	GenEMBL primate subdivisions
	EM_FUN
	EMBL fungal subdivision

	PRIMATE
	GenEMBL primate subdivisions
	EM_GSS
	EMBL GSS subdivision

	RO
	GenEMBL rodent subdivisions
	EM_IN
	EMBL invertebrate subdivision

	RODENT
	GenEMBL rodent subdivisions
	EM_OM
	EMBL other mammalian subdivision

	ST
	GenEMBL structural RNA subdivisions
	EM_OR
	EMBL organelle subdivision

	STRUCTURAL
	GenEMBL structural RNA subdivisions
	EM_OV
	EMBL other vertebrate subdivision

	STRUCTURAL_RNA
	GenEMBL structural RNA subdivisions
	EM_PAT
	EMBL patent subdivision

	STS
	GenEMBL (sequence tagged sites) subdivision
	EM_PH
	EMBL phage subdivision

	SY
	GenEMBL synthetic subdivisions
	EM_PL
	EMBL plant subdivision

	SYNTHETIC
	GenEMBL synthetic subdivisions
	EM_PR
	EMBL primate subdivision

	TAGS
	GenEMBL EST and GSS subdivisions
	EM_RO
	EMBL rodent subdivision

	UN
	GenEMBL unannotated subdivisions
	EM_STS
	EMBL STS (sequence tagged sites) subdivision

	UNANNOTATED
	GenEMBL unannotated subdivisions
	EM_SY
	EMBL synthetic subdivision

	VI
	GenEMBL viral subdivisions
	EM_TAGS
	EMBL Tags subdivisions

	VIRAL
	GenEMBL viral subdivisions
	EM_UN
	EMBL unannotated subdivision

	
	
	EM_VI
	EMBL viral subdivision

	Sequence databases, amino acids:
	
	General GCG logicals:
	

	Sequence databases, amino acids:
	
	
	

	GENPEPT
	GenBank CDS translations
	GENMOREDATA
	path to GCG optional data files

	GP
	GenBank CDS translations
	GENRUNDATA
	path to GCG default data files

	SWP
	all of Swiss-Prot and all of SPTrEMBL
	TERM
	user’s terminal port (dev/tty)

	SWISS
	all of Swiss-Prot and all of SPTrEMBL
	PRINTPORT
	user’s terminal print port

	SWISSPROT
	all of Swiss-Prot (fully annotated)
	PLOTPORT
	user’s terminal graphics port

	SW
	all of Swiss-Prot (fully annotated)
	
	

	SPTREMBL
	Swiss-Prot preliminary EMBL translations
	
	

	SPT
	Swiss-Prot preliminary EMBL translations
	
	

	P
	all of PIR Protein
	
	

	PIR
	all of PIR Protein
	
	

	PROTEIN
	PIR fully annotated subdivision
	
	

	PIR1
	PIR fully annotated subdivision
	
	

	PIR2
	PIR preliminary subdivision
	
	

	PIR3
	PIR unverified subdivision
	
	

	PIR4
	PIR unencoded subdivision
	
	

	NRL_3D
	PDB 3D protein sequences
	
	

	NRL
	PDB 3D protein sequences
	
	


c.
SeqLab — a brief history — Steve Smith’s GDE + GCG’s WPI

While working on bacterial ribosomal RNA phylogenies with Walter Gilbert and Carl Woese, Steve Smith realized the need for a comprehensive multiple sequence editor.  Nothing existed at the time that satisfied him, so he invented one.  In addition to providing the vital editing function, it also served as a menuing system to external functions such as PHYLIP routines and Clustal alignments.  He called it the “Genetic Data Environment” (Smith, et al., 1994).  Many people were very impressed and he made it freely available.  Coincidentally GCG realized the need for some sort of a ‘point-and-click’ environment for their system.  They were losing lots of business, only being able to provide a command line interface.  Therefore, they started trying to develop a graphical user interface (GUI) for the Wisconsin Package.  They called it the “Wisconsin Package Interface.”  Nobody was impressed — it was a terrible attempt.  It only provided a menu to their programs, hardly anything more than the “-check” option they’ve always had.  So they did a natural and very smart thing.  They hired Steve Smith away from Millipore, where he had newly moved, into their company, so that he could merge his GDE with their WPI.  The offspring was SeqLab, and, thank goodness, they threw away the acronyms.  As ‘they’ say “The rest is history” and once more GCG’s customers are (generally) happy.

SeqLab, an X-based GUI to the Wisconsin Package — and some illustrative examples: Glutathione Reductase, G-protein coupled TM7 receptors, primate prions, Human Papilloma Virus L1 major coat protein, Major Histocompatibility Class II, Vicilin seed storage proteins, and Elongation Factor 1(/Tu.

III.
For more information do the accompanying tutorial
If you still want to learn more, read the Introduction to my tutorial, and then work through the tutorial examples — the Elongation Factor 1( protein from a diverse set of organisms spanning all of life.

References

Bairoch, A. (1991) The Swiss-Prot Protein Sequence Data Bank. Nucleic Acids Research 19, 2247–2249.

Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., and Tasumi, M., (1977) The Protein Data Bank: A computer-based archival file for macromodel structures. Journal of Molecular Biology 112, 535–542.

Bilofsky, H.S., Burks, C., Fickett, J.W., Goad, W.B., Lewitter, F.I., Rindone, W.P., Swindell, C.D., and Tung, C.S. (1986) The GenBank™ Genetic Sequence Data Bank. Nucleic Acids Research 14, 1–4.

Dayhoff, M.O., Eck, R.V., Chang, M.A. and Sochard, M.R. (1965) Atlas of Protein Sequence and Structure, Vol. 1. National Biomedical Research Foundation, Silver Spring, MD, U.S.A.

Etzold, T. and Argos, P. (1993) SRS — an indexing and retrieval tool for flat file data libraries. Computer Applications in the Biosciences 9, 49–57.

Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., et al., (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.

George, D.G., Barker, W.C., and Hunt, L.T. (1986) The Protein Identification Resource (PIR). Nucleic Acids Research 14, 11–16.

Genetics Computer Group (GCG(), (Copyright 1982-2005) Program Manual for the Wisconsin Package(, version 10.3,  http://www.accelrys.com/products/dstudio/gcg/index.html Accelrys, a wholly owned subsidiary of Pharmacopeia Inc., San Diego, California, U.S.A.

Gilbert, D.G. (1993 [C release] and 1999 [Java release]) ReadSeq, public domain software distributed by the author at: http://iubio.bio.indiana.edu/soft/molbio/readseq/ Bioinformatics Group, Biology Department, Indiana University, Bloomington, Indiana, U.S.A.

Hamm, G.H. and Cameron, G.N. (1986) The EMBL Data Library. Nucleic Acids Research 14, 5–10.

Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh ,W., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

National Center for Biotechnology Information (NCBI) Entrez and CN3D, public domain software distributed at: http://www.ncbi.nlm.nih.gov/ National Library of Medicine, National Institutes of Health, Bethesda, Maryland, U.S.A.

Online Mendelian Inheritance in Man, OMIM™. (1996) at: http://www.ncbi.nlm.nih.gov/omim/ Center for Medical Genetics, Johns Hopkins University, Baltimore, Maryland, U.S.A. and National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, U.S.A.

Pattabiraman, N., Namboodiri, K., Lowrey, A., and Gaber, B.P. (1990) NRL_3D: a sequence-structure database derived from the protein data bank (PDB) and searchable within the PIR environment. Protein Sequence and Data Analysis 3, 387–405.

Pearson, P., Francomano, C., Foster, P., Bocchini, C., Li, P., and McKusick, V. (1994) The Status of Online Mendelian Inheritance in Man (OMIM) medio 1994. Nucleic Acids Research 22, 3470–3473.

Schuler, G.D., Epstein, J.A., Ohkawa, H., and Kans, J.A. (1996) Entrez: molecular biology database and retrieval system. Methods in Enzymology 226, 141–162.

Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W., and Gillevet, P.M. (1994) The Genetic Data Environment, an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences 10, 671–675.

Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.

