Microsoft Passport Technical Overview

Microsoft .NET Passport
Technical Overview

September 2001

Abstract

This document provides a technical overview of the Microsoft® .NET Passport service.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, IN THIS DOCUMENT.

© 1999-2001 Microsoft Corporation. All rights reserved.

Microsoft, MSN, Hotmail, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Other company and product names mentioned herein may be the trademarks of their respective owners.

Contents

1Introduction

2How .NET Passport Works

2.NET Passport Account

3.NET Passport Account Creation and Sharing Options

7Microsoft .NET Passport Single Sign-In

8Standard Sign-In

14Secure Channel Sign-In

15Strong Credential Sign-In

17Microsoft .NET Passport Express Purchase

18The Kids .NET Passport Service

18.NET Passport and Mobile Devices

19PocketPC and Stinger Phones

20Mobile Phones

22.NET Passport and Windows XP

24.NET Passport Benefits

24For Users

25For Businesses

25Implementing .NET Passport

26Appendix: Glossary of Technology Terms

Introduction

Microsoft® .NET Passport is an online service providing a common Internet authentication across Web sites. By creating a .NET Passport account, users can move easily among participating sites without the need to remember a specific set of credentials for each of them. This means that users need only one sign-in name and password for all participating sites and that the users' credentials are stored in a unique secure place.

Sites become participating .NET Passport sites by implementing the .NET Passport authentication service called the .NET Passport single sign-in (SSI). Participating .NET Passport sites rely on .NET Passport to authenticate users and save time and money by relieving of the need to build, host and maintain their own proprietary authentication system. Developers can concentrate instead on their sites' own value-added features. However, .NET Passport does not authorize or deny a specific user's access to individual participating sites. Web sites that implement .NET Passport maintain control over permissions.

In their .NET Passport Profile, .NET Passport users can also store additional optional information such as demographic or preference data (for example, gender, occupation, ZIP code, or language preference) or their first and last names in their .NET Passport account. Depending on their choices, users can share part of this profile information with participating sites during the authentication process.

In addition, .NET Passport users can also store credit cards and addresses in their .NET Passport wallet and make quick, secure purchases online through the .NET Passport express purchase service.

.NET Passport was initially released in 1999 and is the most widely used service of its kind, with more than 165 million accounts as of July 2001. Microsoft entrusts its own online properties to .NET Passport for authentication, as do a fast growing number of Web sites and services.

A .NET Passport goal is to provide the best Internet-wide user authentication system—a system that provides an optimal balance of security, privacy, flexibility, and usability.

Because trust is a central issue for users and participating sites, a key factor in .NET Passport success lies in ensuring the highest possible levels of security and privacy. Because .NET Passport uses an elaborate authentication model, users can visit participating sites without sharing their credentials (such as their e-mail name, phone number, or password) or personal data.

In addition to the standard sign in, participating sites can request two security levels, secure channel sign-in and strong credential sign-in, to get the most secure and flexible authentication available on the Internet today.

Maintaining online privacy and security require reliable technology, all-inclusive policies, and user responsibility. To ensure privacy and the protection of personal information, Microsoft is committed to following the strongest recommendations and industry standards and to expanding users' control over their information and other parties' access to it.

Finally, no amount of technical security can prevent a user from writing a password on a scrap of paper and keeping it under the keyboard or on the monitor. That is why .NET Passport aims not only to provide the best technology but also to educate users on good practices.

.NET Passport’s authentication features also make it a foundation service of the emerging Microsoft .NET platform. Identifying and authenticating users as unique in order to connect them securely to their information and Web services and allow different online sites and services to collaborate on the user's behalf, anywhere, using any Web device, is fundamental to the .NET goal of secure, distributed computing between the Internet and client environments. .NET Passport

.NET Passport and .NET will help users unlock the Internet's full potential by enabling them to control their information and personalize their Web experience to an extent never before possible.

This document describes the current version of .NET Passport.

How .NET Passport Works

.NET Passport supports authentication across multiple sites and services by hosting a secure central database that contains users' authentication credential, an associated unique identifier called the .NET Passport Unique ID (PUID), and the registration and sign-in/sign-out pages, which participating .NET Passport sites can cobrand.

When users sign in to a site, they are redirected to a secure .NET Passport Login server. .NET Passport first verifies that the site requesting the authentication is a valid participating site. Then it displays a page that asks users for their credentials. When .NET Passport verifies that this credential corresponds to a valid .NET Passport user, the user is authenticated. The user's PUID is sent to the site in a ticket encrypted using a key specific to the site. The .NET Passport password is never sent to participating sites.

When the site receives the encrypted ticket, it decrypts it using its private key, it extracts the PUID, and the user is authenticated against this site. The site can then use this PUID as a key to access other information it can gather from the user. At this point, the site’s privacy policy controls data usage. The site can then deliver personalized content or services.

The following section describes what a .NET Passport account is and how users can create one. Then it details how this account is used during the single sign-in authentication process.

.NET Passport Account

A .NET Passport user account is made of four parts:

· The .NET Passport Unique Identifier (PUID) is assigned by the .NET Passport service during the .NET Passport account creation. The PUID is a 64-bit numeric value.

The .NET Passport User Profile contains:

· The .NET Passport user's e-mail address or phone number. This is the only required profile information needed to sign up for a .NET Passport account at www.passport.com.

· The .NET Passport user's first and last names (optional).

The .NET Passport user's demographic information such as postal code, country, and state or region (optional).

The .NET Passport Credential contains:

· The Standard .NET Passport Credential. The user's e-mail address or phone number, which is stored in the .NET Passport user profile, and a password (or PIN) of at least six characters. An optional secret question and answer is used to reset the password. The standard credential is the minimum requirements needed to have a .NET Passport account and to use the .NET Passport authentication service.

An additional four-digit security key. This key is used when the user accesses sites requiring a strong credential sign-in. When created, the security key requires three associated secret questions and answers to reset it. The security key is created the first time the user access a site requiring strong credential authentication. (For more information, see "Strong Credential Sign-In" later in this paper.)

The optional .NET Passport wallet used by .NET Passport express purchase contains:

· The user's credit card numbers and the associated expiration dates, billing address, and friendly names.

The user's shipping addresses and associated friendly names.

To operate the .NET Passport service, .NET Passport also stores some operational data about the user account. This includes the version number, whether the account contains a .NET Passport wallet, and so on.

.NET Passport Account Creation and Sharing Options

Users create their .NET Passport account the first time they register for a .NET Passport. There are several ways to register:

· By opening an e-mail account on MSN® Hotmail.com or MSN.com. These accounts are automatically registered as .NET Passports.

· By registering at a Web site that uses .NET Passport single sign-in, referred to in this paper as a "participating site." Participating sites automatically redirect users to a cobranded, centrally hosted .NET Passport registration page.

· By registering directly at http://www.Passport.com/.

By using the Microsoft® Windows® XP Registration Wizard.

By registering for a .NET Passport, the user creates unique online authentication credentials valid at any .NET Passport single sign-in site. This credential is linked to a .NET Passport Unique Identifier (PUID) assigned by the .NET Passport service.

The amount of information the user is asked for to sign up for a .NET Passport depends on the site where the user registers. For example, users registering at the .NET Passport site (http://www.passport.com/) are asked only for their e-mail address and password.

The minimum information needed is an e-mail address and a password (or phone number and PIN). If the participating site asks for additional non-.NET Passport information, this icon ([image: image1.png]

) indicates the information that will be stored in the users' .NET Passport accounts. Information typed in fields not followed by this icon is not stored in the users' .NET Passport account.

During .NET Passport creation, users have the following choices regarding the information they want to share with Web sites during subsequent sign-ins:

· Whether to share their e-mail address.

· Whether to share their first and last names. This option is available only if the first and last names are asked for during registration.

Whether to share all other .NET Passport profile information. This option is available only if additional profile information is asked for during registration.

The site users register from can store all of the information the site required during .NET Passport registration. Other participating .NET Passport sites receive only the information users have decided to share. For example, users can decide not to share their e-mail address and their user profile information. In this case, when the users are authenticated, the participating Web sites receive only the users' PUID and certain operational data.

For legacy technical reasons, e-mail addresses associated with Microsoft® Hotmail®, such as “@hotmail.com” and “@msn.com,” are an exception and users' profile information stored in Hotmail-operated accounts is always shared with MSN sites when users sign in to those sites. This exception will disappear next year.

When registering from the .NET Passport site or when accessing the Member Services pages, users have the option of creating a .NET Passport wallet to store credit card information and billing and shipping addresses. Wallet information is shared only when users use .NET Passport express purchase, described later in this paper.

At the end of the .NET Passport account creation, the .NET Passport service starts a process to validate the e-mail address typed during registration. This process sends a message containing a URL to the e-mail address. By clicking this URL, users are redirected to a .NET Passport page where they can validate their e-mail address. This process ensures that the .NET Passport holder owns this .NET Passport e-mail address, and that the .NET Passport service flags this .NET Passport account as having a valid e-mail address. A .NET Passport is still usable even if the e-mail address is not validated, but in the near future .NET Passport will enable users to reclaim a .NET Passport if they own an e-mail address that has previously been registered as a .NET Passport.

The following table exhaustively lists all the information a user can enter in a .NET Passport account. It also details the information required to create a .NET Passport when registering at the .NET Passport site (http://www.passport.com) and what profile information is shared at sign-in by default.

	.NET Passport account data
	Required during registration
	Shared during sign-in

	PUID
	.NET Passport Unique ID
	.NET Passport-defined
	Yes

	User profile
	User’s e-mail address or phone number
	Yes
	User-defined; default=No

	
	First and last names

Country/region, postal code, and state

Time zone, preferred language, gender, accessibility, occupation

Full birth date, birth year or age indication (age >= 18, age < 18, age < 13, 13 <= age < 18)
	No
	User-defined;
default=No

	Credentials
	Standard
	User’s e-mail address from user profile
	Yes
	User-defined;
default=No

	
	
	.NET Passport or PIN of at least six characters
	Yes
	No; never shared

	
	
	Secret question and answer
	No
	No; never shared

	
	Strong (optional)
	Four-digit security key
	No
	No; never shared

	
	
	Three secret questions and answers
	No
	No; never shared

	Wallet
	Card type, card numbers, name on card and associated expiration dates, billing addresses (first and last names, address, city, state, state/region/province, postal code, phone, e-mail) and associated friendly names (or description)

Shipping addresses (first and last names, address, city, state/region/province, postal code, phone, e-mail) and associated friendly names (or description)
	No
	No; shared only when using .NET Passport express purchase

The following figure shows the registration form presented to users at the .NET Passport site (http://www.passport.com).

[image: image2.png]Microsoft: Passport

Member Ser;
— 2.

Registration

Cormpleting this form willregister you with Passport Web Site and with Microsof®
Passport. Passport lets you use the e-mail address and password you provide
below to sign in to any shte that has the Passport sign-in link

Click Passport sign in if you have alieady registered for a
Ssaa 3L, Passpart at another site. (All @hotmail.com and @msn.com
e-mail addresses are Passports.)

Fields marked with (% uill be stored in your Paszport Help

E-mail Address =
Password =

Six-charactar minimurm; no spaces

Ratype Password =

Tired of registration forms? You can speed registration and get
personalized senices at participating Microsoft Passport sites by
sharing your Passport information with thern when you sign in
Check the boxes below to choose how much of your Passport
information Microsoft can share with other companies’ Passport
sites at sigrvin

[Share my e-mail address

More about Passport, privacy. and security

PEEEOrtYy)

Member Semioes Tems of Use Privacy Statement

Some alements @ 199 - 2001 Mictozoft Corparation. Al ights reserved

Figure 1 Registration Form on www.passport.com

Microsoft .NET Passport Single Sign-In

Many authentication methods used by Web sites today do not use advanced security technology. This makes it easier for unauthorized people to gain access to personal information. To counteract this, .NET Passport uses secure communication protocol and powerful Internet security technologies, as described below, to prevent unauthorized access.

Designing an authentication system that provides an optimal balance of security, flexibility, and usability means dealing with multiple contradictory constraints:

· The service must be easy to use. For example, the users' identifier and password should be easy to remember and the service should work without needing any additional software download.

· The service must be easy and cost-effective to implement so that all Web sites can take advantage of the technology.

The service must provide an adequate level of security.

The demands of security, however, often conflict with ease of use and ease of implementation:

· To protect the user's credentials, security can be strengthened by stringent password requirements such as long passwords; mixed-case, numeric, and symbol requirements; and password expiration. However, this increases the possibility of users making typographical errors and forgetting their passwords. Thus, effective security measures can reduce ease of use.

· To avoid brute-force dictionary attacks on users' credentials, you can block access when there are too many unsuccessful attempts to authenticate. However, a malicious user could block the user account by intentionally providing incorrect credentials. This would prevent user access even to content with a low level of security, and it would force the user to go through a lengthy reset process.

While you can force communication to be end-to-end Secure Sockets Layer (SSL) protected, this might create an overload on the servers and lengthen download times for the user.

.NET Passport solves these problems by:

· Using standard Web technologies and techniques such as SSL, HTTP redirects, cookies, and JavaScript. Most administrators of Web sites that conduct e-commerce transactions or require user authentication are familiar with these technologies.

Implementing three security levels. Participating sites can request the secure level of authentication they need based on the sensitivity of content or service they deliver. In all cases, the .NET Passport password is never sent to participating sites, and authentication and profile information is always sent encrypted using a key specific to the site.

Users do not have to download any .NET Passport software. .NET Passport is compatible with current browsers, such as Microsoft® Internet Explorer, Netscape Navigator, and America OnLine (AOL).

To implement .NET Passport single sign-in (SSI) and the optional Kids .NET Passport service, participating sites must install the .NET Passport Manager. .NET Passport Manager is a simple, server-side Component Object Model (COM) object that decrypts .NET Passport cookies, manages authentication and profile access, caches the user's authentication and profile information in cookies on the user's browser, and re-verifies the cookies as the user moves from page to page at the site.

The next sections detail the three security levels of authentication currently provided by .NET Passport.

Standard Sign-In

Standard sign-in is intended to be used by sites that do not require a high security level. For example, when preventing a malicious user from denying access to another user's account is a lower priority than preventing that same malicious user from gaining access to a user's account, standard sign-in would be the appropriate choice. With standard sign-in, participating sites have the option of maintaining better usability scenarios without compromising the security of more secure participating sites. SSL is used only when posting the sign-in name and password to the .NET Passport Login servers. Typical usage scenarios are a site's personalization and non-secure content delivery. Most MSN sites use standard .NET Passport sign-in.

The following steps describe the .NET Passport authentication process when a user who is not authenticated by .NET Passport signs in to a participating site.

1. The user clicks the .NET Passport sign-in link ([image: image3.png]Lazamart,
o

) at the participating site to sign in or to access a page that requires .NET Passport authentication.

2. The user is redirected to the .NET Passport sign-in page. A unique Site ID is used to identify the participating .NET Passport site requesting the authentication. A return URL (generally the same URL as the one the user requested) is added to the .NET Passport Login server URL in query string parameters. (.NET Passport sends the Site ID and a unique encryption key to the site when it registers as a participating site.) The following figure illustrates the process flow during the .NET Passport authentication.

[image: image4.jpg]Passport
Logn
Server

Participating

Site

Passport

Initial page request
Redirect for authentication

Authentication request
(If user is ot signed in to P assport,
the Passport Login server wil redirsct
o the (cobranded) Passport sign-in
page before continuing)

©6e6

® 6

Authentication response and
Passport.cam cookies (ticket and
profile info)

Authenticated request plus licket and
profle info

web page plus authentication and
profile cookies

Figure 2 .NET Passport Flow

Before displaying the sign-in page, the .NET Passport Login server checks the Site ID and return URL. If they do not match an entry in the list of participating .NET Passport sites, the authentication is rejected. This ensures that only valid, registered participating sites can request .NET Passport user authentication.

The .NET Passport Login server then displays a page with a secure form that prompts users to enter their .NET Passport credentials (their e-mail address and password). This page might be cobranded by the participating site (see the following Standard Sign In user experience section for an example). The password is not displayed in literal characters on the form. When the user clicks the .NET Passport sign-in link, the credential is transmitted to the .NET Passport Login server using the powerful Secure Sockets Layer (SSL) protocol.

Note The .NET Passport sign-in page is displayed using either an HTTP or HTTPS URL depending on the participating site request. However, the sign-in form always posts (using the POST method) the credentials over HTTPS (that is, using SSL). Even if a user cannot see it, the .NET Passport e-mail address and password are always sent using a secure connection.

If the users' e-mail address and password match an entry in the .NET Passport database, they are authenticated. Their .NET Passport Unique ID (PUID) is extracted from the .NET Passport database along with the .NET Passport user profile information they have agreed to share with participating sites at sign-in.

The .NET Passport Login server uses this information to create three .NET Passport cookies. The first cookie is the Ticket cookie, which includes the PUID and a time stamp. The second is the Profile cookie, which stores the user profile information. The last cookie is the Visited Sites cookie, which stores a list of the sites the user has signed in to. These three cookies are encrypted using a Triple Data Encryption Standard (DES) algorithm.

Using the site encryption key associated with the Site ID, which is unique to each site, .NET Passport encrypts the ticket and profile data, adds them as query string parameters to the return URL provided in the authentication request, and presents this URL to the user's browser so that it is redirected to the participating site.

The participating site extracts the .NET Passport ticket and profile data from the query string parameters and sends it to the .NET Passport Manager object running at the participating site. The .NET Passport Manager object decrypts this information, receives the PUID and the profile information, and the user is authenticated.

The site can specify the freshness of the authentication ticket by requesting that users have entered their sign-in name and password within a site-specified time window. If the time window has expired, the site displays the cobranded .NET Passport sign-in page with their email name and users are asked to re-enter their password before proceeding.

At this time, the participating site displays the requested page with the sign-out link ([image: image5.png]

) indicating to users that they have been authenticated by the site. To personalize the user's experience in some way, the site might populate the page using information it has already gathered from user or received in the profile cookie (for example, by displaying the user's name or special offers targeted to the user's demographics). The site can also use profile information to create (or upgrade for a returning user) the profile data in its own database. When displaying the page, the participating site also uses the encrypted .NET Passport ticket and profile data to write its own cookies (in its own domain name) on the user's computer.

There is no direct server-to-server communication of users' authentication and profile information between .NET Passport and participating sites. The information exchange occurs through the client's browser using HTTP redirects and cookies. However, the .NET Passport Manager on the participating site's server does periodically download a centrally hosted configuration file. This is an XML document that contains current URLs for the .NET Passport servers and the current .NET Passport profile configuration (or profile schema).

Standard sign-in if the user is already authenticated by .NET Passport

If users are already authenticated by .NET Passport but then visit a participating site that they are not signed in to, they click the .NET Passport sign-in link on the site and are silently redirected to the .NET Passport Login server. The Site ID and return URL of the participating site are sent for authentication. The .NET Passport Login server checks the validity of the Site ID and ticket data (PUID and time stamp) and silently returns encrypted ticket and profile data to the site to authenticate the user. In this way, after the first sign-in to any participating .NET Passport site, the user can be authenticated for other participating sites with just one click. If a participating site wants to ensure a recent authentication for added security, it can ask the .NET Passport Login server to force a physical authentication. This requires the user to re-enter the password regardless of the user's authentication state.

Users can also choose to be signed in automatically by saving their .NET Passport sign-in name and password on a given computer. This option keeps users signed in to .NET Passport at all times on that computer, even if they disconnect from the Internet, close the browser, or turn off the computer.

Standard sign-in user interface

This section describes the user experience when using a computer without Microsoft® Windows® XP. For users using Windows XP mobile devices, see ".NET Passport and Windows XP" and ".NET Passport and Mobile Devices" later in this paper.

The sign-in link is generally positioned in the upper-right corner of a participating Web site. When users click this link they are redirected to the .NET Passport sign-in page. As with most .NET Passport-hosted pages (registration, sign-out, and express purchase), participating sites can cobrand this page so that the user experience is consistent with the participating site.

Participating .NET Passport sites can control certain areas of the cobranded sign-in page, including locations for logos and blocks of text.

Figure 3 shows an example of a cobranded .NET Passport sign-in page (Adventure Works is a sample .NET Passport site provided with the .NET Passport software development kit.)

[image: image6.png]- Microsoft Internet Evplorer

[t et yon ravortes Took teb

| ook - o - Q[B Qeach (ElFavortes

| aress [

adventure wovks

@

Welcome to Aﬂvlnlure works!
Passport Sign-in

Email Address

—

™ Sign e in sutomatial

Tt using a publc computer
PaSEHY)

Dorthave ona e,

Adverture Works would like to
personalize your visit. By signin in
with a Microsofte .NET Passport, you
can see pages customized with your
order status, purchasing information,
and more!

Already have a NET Passport? Flease
sign in

Need 3 .NET Passport? Click Get

[ET0me

(KN

Figure 3 Cobranded .NET Passport Sign-In Page

Inline sign-in

Inline sign-in is an optional feature participating sites can use to make .NET Passport authentication more transparent to the user. Instead of redirecting the user to the .NET Passport sign-in page, inline sign-in provides a small sign-in module that participating sites can arbitrarily embed in their page. In this way authentication can be accomplished transparently within the participating site page. This solution provides participating sites with the ultimate control of their users' experience: they can choose where to include the small inline sign-in box; they can control the structure and entire look and feel of the page; the partner doesn’t have to create a separate co-branding file; and because the module is smaller than the standard sign in module, the page is loaded quicker.

Figure 4 shows the Inline Sign In module as it will appear on a participating site web page:

[image: image7.png]() adventure works

Our
mountain bike

ith Hanson Brarhers
Binoculars!

S

ORDER STATUS

We.

Thank you for choosing Adventure
Works as your adventure gear resource
From bicycles to binoculars, from wet
suits to backpacks, Adventure Works has
been serving adventure enthusiasts for
over 50 years

Cheek it m.’,
ioller litzrs!

Gontoso Inline Skates

Take a glide by the waterfront,
through the park, or down your street
with Contosa iline skates.
Experienced skaters like this model

for its speed, style and com fort

Password

T~ sign me in sutomatically.

SignIn

[I'm using 2 public
computer.

PESEBonLy)

Some slements @ 1999 - 2001
Mictosoft Corporation. Al ights
rsenved.

Outdoor Geal

Backpacks
Inline skates
Binoulars
more

© 2000 Adventure Works All rights reserved.

Legal and Privacy Statement

Figure 4 Inline Sign-In Page

The sign-in box might be slightly different if the user has already been authenticated (his e-mail address will appear in the module).

.NET Passport sign-out feature and cookie handling

When users click the .NET Passport sign-out link ([image: image8.png]

) on any participating site, the .NET Passport server checks the Visited Sites list cookie and launches a script executed by each site to delete the cookies created at sign-in. The URL for the script for deleting a cookie is provided by each site during the site registration process. Only the site that has created the cookies can delete them.

In addition, unless users choose the option on the sign-in page to automatically sign in to .NET Passport, all .NET Passport cookies are temporary cookies that are deleted when the browser session is closed.

Even if users do not sign out of .NET Passport or close their browser, .NET Passport cookies are time sensitive. They expire at the end of a time period specified by .NET Passport or the participating site. If the user does not re-enter a password after the time period has expired, access to the .NET Passport service is denied. Participating sites can also enforce a physical authentication when they manipulate sensitive information.

Password protection

Even though a user can use a .NET Passport at multiple sites, passwords are stored only in the secured .NET Passport database and are shared only with .NET Passport servers for authentication.

If a user or someone else makes several incorrect attempts at guessing the user's password during sign-in, .NET Passport automatically blocks access to the user's account for a few minutes. This makes it significantly more difficult for password-cracking programs to gain access to a Password account by using thousands of common passwords in conjunction with the user's sign-in name.

Secure Channel Sign-In

Secure channel sign-in improves the standard sign-in by providing an end-to-end SSL-secure channel during authentication. Using .NET Passport standard sign-in, as with any Web-based authentication system that does not require a secure channel, it is possible, though technically difficult, for a hacker to impersonate another user. .NET Passport standard sign-in is currently vulnerable to a replay attack because the participating site receives the encrypted ticket and profile over an HTTP connection. The participating site then writes the encrypted ticket and profile as cookies to the user's browser over the same open connection.

Hackers listening to network traffic could capture these encrypted tickets. The user's credentials are not at risk because all .NET Passport cookies are encrypted using a .NET Passport key or the site's key. However, hackers who capture the authentication ticket could replay it against the participating site. They would then appear to be the user for the life of the ticket. To help minimize this replay risk, .NET Passport provides the ability for participating sites to limit the lifetime of the .NET Passport authentication ticket. In this case, users are requested to re-enter their credentials, ensuring that they are valid .NET Passport users.

For more information on the .NET Passport standard sign-in authentication process, see "Standard Sign-In" earlier in this paper, particularly steps 5 and 6.

With Secure Channel Sign In, even a malicious person listening to the online traffic won’t be able to get the authentication ticket because all communication is end to end SSL protected, including writing of cookies. (or the entire conversation occurs over a secure SSL connection). The .NET Passport ticket used in Secure Channel Sign In has a secure format sufficiently different from the standard ticket to ensure that no client-side manipulation of the standard ticket could produce a false version of the secure ticket to replay against a secure site.

This feature enables sites to perform a more secure sign-in of a .NET Passport user. Using this new mechanism, a secure sign-in using .NET Passport can be just as secure as any SSL-based Web site in existence today.

Potential participating sites that have sensitive data can be assured that the .NET Passport authentication system is just as secure as anything they could build themselves.

The secure channel sign-in user interface is the same as the standard sign-in user interface except that the .NET Passport sign-in page is always displayed using SSL.

Strong Credential Sign-In

If anyone using secure channel sign-in makes several incorrect attempts at guessing the user's password during sign-in, .NET Passport automatically blocks access to the user's account for a few minutes. This makes it significantly more difficult for password-cracking programs, such as a brute-force dictionary attack, to use thousands of common passwords in conjunction with the user's e-mail address. However, even using secure channel sign-in, a determined brute-force attack still represents a risk.

There are many ways to solve this problem, but each has its disadvantages.

· Making the password stronger would adversely affect the usability of the base .NET Passport service because of stringent password requirements such as long passwords; mixed-case, numeric and symbol requirements; and password expirations.

Blocking the account after a given number of unsuccessful attempts to sign in could result in a denial of service, even for accessing such low-sensitivity information as a user's portal preferences.

The .NET Passport solution for protecting secure content is to provide a two-stage sign-in process. The first stage is identical to the Secure Channel sign-in process described in the preceding section. The second stage involves a second sign-in page that requires the user to enter a secure four-digit security key. The second sign-in page is displayed only through an SSL connection and incorporates a persistent failed-attempts counter for each user. This counter is reset upon a successful sign-in.

In the event that five consecutive failed attempts are made, regardless of the time interval involved, the user's security key will be disabled. The user will still be able to use the normal sign-in, but will have to go through a secure process to reset the security key. If further attempts are made, users will be redirected to a .NET Passport Member Services page where they can initiate the security key reset process. Since the security key will be locked after five failed sign-in attempts and then must be reset to restore access, it is not vulnerable to a dictionary attack and therefore constitutes a strong credential.

Strong credential sign-in is currently the highest level of security sites can request and will be used by sites for which preventing malicious access to a user's account is more important than ease of use. By using a relatively weak password combined with an additional key with persistent lockout after a small number of failed attempts, .NET Passport provides resistance to brute-force attacks. This resistance is equivalent to a strong password combined with an expiration timeout. This maintains ease of use because users can still use their standard credentials to access less-protected content.

Strong credential user interface

When a participating site requests a strong credential sign-in, users already authenticated with their standard credentials are redirected to a .NET Passport page where they are asked for their security key. Because these users are already .NET Passport-authenticated, the user interface displays this .NET Passport e-mail address and as for other .NET Passport-hosted pages, the strong credential sign-in page can be cobranded, as shown in the following figure:

[image: image9.png]adventure work

The ultimate source for outdoor equipment

Security Key Sign-in

E-mail Address sylviamo@microsoft.com

Sian in using 3 difterent Passpor

evis]9

=

Reset vour security key.

Member Semices Tems of Use Privscy Statement

Some alements @ 1999 - 2001 Mictozoft® Corparation. All
fights resenved.

Figure 5 Security Key Sign-In

Strong credential creation

To protect their content or service, participating sites can request strong credential sign-in. When users attempt to access strongly protected content for the first time, they are redirected to a .NET Passport registration page where they can select a security key. Because this security key is very sensitive, the reset process involves answering three secret questions that the user was required to select during the registration process.

A .NET Passport user who visits a secure site for the first time is redirected during the sign-in process to a registration page that asks the user to do the following:

· Provide a four-character security key.

Select and answer three out of ten secret questions. The answers to these questions are used to facilitate the security key reset process.

To ensure that users will remember the answers to these three questions, and that they did not submit incorrect answers, they are challenged on a separate page during the registration process to re-enter the answers. The security key will not be activated until the user can successfully answer all three questions on the separate verification page.

Microsoft .NET Passport Express Purchase

The .NET Passport wallet stores credit card numbers and their associated expiration dates, billing addresses, and friendly names. It also stores shipping addresses and their associated friendly names. .NET Passport express purchase enables users to transfer this information securely to a merchant who will use it to complete an online purchase. It provides users with an easy, reproducible, and predictable process to purchase goods at participating sites.

 .NET Passport express purchase uses the same redirection mechanism described in "Microsoft .NET Passport Single Sign-In" earlier in this paper. Participating sites do not have to install any additional .NET Passport software to implement .NET Passport express purchase. They simply have to accept labels for e-commerce POST data that comply with Electronic Commerce Modeling Language (ECML) and add the .NET Passport express purchase button that redirects .NET Passport users to the appropriate .NET Passport-hosted pages.

When users click the .NET Passport express purchase link or button on the checkout page of a participating site, they are redirected to their .NET Passport wallet page through a secure SSL connection. The Site ID and return URL, supplied to .NET Passport by the participating site during registration for express purchase, are passed to the .NET Passport Wallet server as query string parameters during the redirection. Both the Site ID and the return URL are checked by the .NET Passport Wallet server to identify the site and verify that it is a valid participating .NET Passport site. If it is not valid, the request is rejected.

Users not signed in to .NET Passport are required to do so. Even if they are already signed in, for security reasons users must enter their password again before using their wallet. Furthermore, if several minutes have passed since they last signed in, .NET Passport will require users to retype the password.

If correctly authenticated, users can select the credit card, billing address, and shipping address they want to use for this purchase. By clicking the Continue button on the .NET Passport wallet page, they send their selected information to the participating site. The information is encrypted using the key of the participating site so that only this participating .NET Passport site can decrypt it using the .NET Passport Manager object. Furthermore, the return URL provided by the site must be a secure URL using SSL.

When a user chooses a stored credit card in a .NET Passport wallet, the complete credit card number is never displayed on the screen. The .NET Passport wallet pages display only the first six digits of the credit card number to help the user identify it while preventing others from seeing the card's entire number.

.NET Passport does not receive or track the purchase price or product information when processing .NET Passport express purchase (EP) transactions. In addition, .NET Passport EP is not a credit card or debit card processing solution. Participating sites are still required to process the transaction directly or through a third-party service. In addition, while .NET Passport uses a basic Luhn checksum to determine the validity of the credit card or debit card number provided by the user, it does not perform card authorization. (The Luhn formula, also called modulus 10, is an algorithm used to validate the number on a credit card.)

The Kids .NET Passport Service

Kids .NET Passport, which can be implemented with .NET Passport single sign-in (SSI), helps parents and guardians protect their children's online privacy. It gives participating Web sites an easy way to comply with the Children's Online Privacy Protection Act (COPPA), which went into effect in April, 2000. COPPA requires that operators of online services or Web sites obtain parental consent prior to the collection, use, disclosure, or display of children's personal information.

Many Web sites routinely collect personal information from visitors of all ages. .NET Passport users can register children under the age of 13 for special Kids .NET Passports that let parents and guardians control what information their children can share with participating Kids .NET Passport Web sites, and what those sites can do with that information. Kids .NET Passport enables parents and guardians make specific choices for each child and for each site in one convenient, centralized location.

As with a standard .NET Passport account, a Kids .NET Passport account can store Personally Identifiable Information such as a name, date of birth, and e-mail address that can be shared with participating .NET Passport sites. When a child with a Kids .NET Passport signs in at a participating site, .NET Passport checks the birth-date fields in the child's profile. If the child is younger than 13, .NET Passport checks the account to determine whether the parent or guardian has granted consent for that site, and at what level. The following table describes these consent levels.

	Consent level
	Description

	Deny
	The site or service cannot collect Personally Identifiable Information from the child. Many sites do not let children use their services if this option is chosen.

	Limited
	The site or service can collect, store, and use the information it collects from the child, but it cannot disclose the information to a third party (individual or company) except as necessary to operate the participating site or service.

	Full
	The site or service can collect, store, and use the information it collects from the child, and it can disclose the information to a third party (individual or company).

If the child's profile indicates that consent at one of the three levels has been granted for that site, the child is allowed to proceed. If consent has not been granted, .NET Passport displays a notification message that the child must request consent from a parent or guardian before proceeding.

For more information on Kids .NET Passport, see http://kids.passport.com/.

.NET Passport and Mobile Devices

Mobile devices are increasingly used to access the Internet as a primary or secondary device. .NET Passport has been improved to support both wireless cell phones and PocketPC devices.

Dealing with mobile devices is not easy because they implement many different browsers' technologies and are limited in terms of screen size, input mechanism, and graphics capabilities. That is why some .NET Passport features (such as strong credential sign-in and inline sign-in) are not supported in the current version of .NET Passport. Nevertheless, mobile users have access to key .NET Passport features such as .NET Passport registration, standard sign-in, Kids .NET Passport (except the consent process), and sign-out.

.NET Passport supports the following browsers and devices:

OpenWave (formerly Phone.com) 3.x and 4.x browsers. Note that for 3.x browsers, the .NET Passport content is in Handheld Device Markup Language (HDML) and for 4.x browsers it is in Wireless Markup Language (WML). .NET Passport has tested OpenWave on the following devices, carriers, and markets:

· United States: All major carriers and all major phones

· Japan: Carrier: KDDI. Phones: Sony AU C406S and Panasonic TU-KA TP11 (using the 3.2 browser)

Korea: Carrier: LGT. Phones: LG ibook (using the 3.2 browser)

· NTT Docomo's i-mode browser. .NET Passport works only on model 503 phones. 503 phones are the first i-mode devices that support SSL, and .NET Passport requires SSL. Specific phones tested include N503i, D503i, P503i, F503i, and SO503i. As new i-mode phone models become available with SSL capabilities, .NET Passport should work on those as well.

· Nokia WAP browser, but only those with SSL enabled. Note that both end-to-end SSL and WTLS-SSL conversion at the gateway are supported. At the time of development of the current version of .NET Passport, no Nokia browsers supported SSL. Testing was done exclusively on the Nokia WAP emulator.

· PocketPC 3.x OS.

· Microsoft "Stinger" smart phones (Stinger phones use Microsoft® Windows CE and a relatively large screen compared to cell phones and are considered PocketPC devices).

· WinCE 3.x (not necessarily mobile devices).

Microsoft Mobile Explorer (MME) 3.x.

To address the differences between these devices, .NET Passport has two new user interfaces (UI) using different markup languages that will be used for the following types of browsers and devices.

	Browsers
	UI design
	Markup language

	All WAP browsers
	Phone UI
	WML

	i-mode and MME
	Phone UI
	cHTML

	PocketPC and Stinger
	Pocket UI
	HTML 3.2

	Phone.com 3.2
	Phone UI
	HDML

PocketPC and Stinger Phones

Because PocketPC and Stinger phones support current Internet technologies used in .NET Passport authentication, the only modification has been to develop smaller sign-in and registration pages. .NET Passport fits these pages on PocketPC and Stinger phone screens by restricting them to a width of 176 pixels and by preventing horizontal scrolling.

This Pocket UI is used on all devices with an alphanumeric keyboard (physical or virtual), a browser screen size no smaller than 176x220 (Stinger size), and UI capabilities similar to HTML (for example, pull-down menus and option buttons).

The Pocket UI registration page asks for all of the currently requested profile attributes. It uses a standard registration process as opposed to the combined phone number and PIN used for phones.

The current version of .NET Passport supports only the basic functionality of Kids .NET Passport on PocketPC and Stinger phones. It does not support parental consent, which parents must grant using a computer. This means that .NET Passport signs the user into sites if the user is older than 13. If accessing a site requires a parent's consent, .NET Passport shows a page explaining that parental consent must be granted using a computer.

Mobile Phones

To support .NET Passport authentication from mobile phones, the following changes have been made to .NET Passport.

First, because of the input limitation, the .NET Passport user credential can consist of a phone number and PIN instead of an e-mail address and password. If users already have an e-mail/password credential, they can use either their phone number or their e-mail address to sign in. The phone number must be the full international number with the country code, and the PIN must be at least six digits long.

Second, because of screen size limitation, .NET Passport offers a new Phone UI. The Phone UI is intended to be used on devices with numeric keypads only and small screens with primitive UI capabilities. Because vertical scrolling is very difficult for most phone users, it is used only under rare circumstances. The Phone UI supports .NET Passport registration, standard sign-in, and limited Kids .NET Passport.

The Phone UI registration page enables users to register with a phone number for their account name and a numeric PIN for a password. No other data is required to register. Users who already have a .NET Passport can use the Member Services pages to add a phone number and PIN as an alternate credential.

When users sign up for a .NET Passport account from a phone, .NET Passport first displays a page that asks them to select a country. They are then presented with a page asking for their mobile phone number with the proper country code pre-filled as the first digits in the form field. Users are then asked for a 6-to-16 digit PIN number. Last, a confirmation page is displayed confirming the users' new member name.

The following shows the three successive screens users will see on their phone when registering for a .NET Passport:

[image: image10.wmf]Mobile phone#

with country

code:

[numeric form field]

Next

Back

Create 6

-

16

digit PIN

[form field]

Next

Back

Your Passport

sign

-

in name is:

339325560504

Next

Back

Figure 6 .NET Passport Mobile Phone Registration

The UI for signing in with a phone number/PIN appear as follows on the phone screen:

[image: image11.wmf]PIN:

[numeric form field]

Next

Back

 [image: image12.wmf]Phone # with

country & area

code:

[form field]

Next

Back

Figure 7 .NET Passport Mobile Phone Sign-In

.NET Passport limitations and changes on mobile phones

Because of mobile phone browsers' limitations, some .NET Passport behavior is changed when using a mobile phone.

Cookie limitations and work-around

.NET Passport uses cookies to store authentication and profile tickets, the profile cookie being the largest one. Because of size limitations and depending on the browser used, .NET Passport returns the full profile for HDML devices only and no profile for all other devices.

If a device (such as an i-mode phone) does not support cookies, .NET Passport works without them, although with some limitations. .NET Passport Manager can look for credentials in the URL query string instead of in cookies. As long as the participating site passes the credentials from page to page on the query string, and the site is using .NET Passport Manager, .NET Passport authenticates just as it does with cookies as far as authentication is concerned. However, a user must sign in again with each new browsing session.

Automatic sign-in

Another way to make it easier to sign in on a phone is to not require users to sign in every time they restart their phone. The goal is for users to sign in once and only once. When the default time elapses, users must validate their password again.

Forcing users to re-enter a password can be avoided by always writing permanent .NET Passport cookies, thereby automatically signing users in each time. Users are prompted to enter their credentials after the initial sign-in only if they sign out manually, or if a participating site requires a forced sign-in.

This is not a security problem because multiple users rarely share phones, security-conscious users can either sign out or lock their phone using the phone's built-in PIN, and security-conscious sites can require a forced sign-in with a short time-window.

Note that automatic sign-in is not available on phones that do not support cookies (such as i-mode phones).

Member Services pages not available on phones

Member services pages are not available on phones. Users must use a computer to edit their profile or change their phone number or PIN.

Phone number not verified

Unlike the e-mail verification that occurs when a user registers on a computer, .NET Passport does not verify the phone number for users who register on a phone or add a phone number and PIN credential to an existing .NET Passport. This will be done in future releases.

Kids .NET Passport on phones

.NET Passport supports only the basic functionality of Kids .NET Passport on phones. Because .NET Passport does not support the consent process on phones, parents must give their consent using a computer. .NET Passport signs users into sites if they are over 13. If accessing a site requires the parents' consent, .NET Passport displays a page explaining that the parents' consent must be obtained from a computer.

.NET Passport and Windows XP

Before the current version, the .NET Passport authentication method used browser redirections only to pass information between the .NET Passport Login servers and the participating site. This meant that other client-side applications could not use the .NET Passport authentication mechanism.

To enable other HTTP applications to use the .NET Passport authentication, the current version of .NET Passport provides a new HTTP authentication protocol that is included in the WinInet code version 6.0, a key Microsoft® Windows® network component that is available in Internet Explorer 6.0. This new protocol enables client applications to implement .NET Passport authentication using a standard application programming interface (API). The API integrates with client operating system features, provides a standard interface—based on Microsoft® Win32®—to the user, and insulates client applications from future changes to the protocol. Using .NET Passport, authentication becomes as easy as using other Windows authentication methods (for example, NTLM, basic authentication, MD5, and Kerberos). Windows XP uses this new version of WinInet.

Web sites can benefit from this new feature when using the current version of the .NET Passport SDK. For example, a Web site can ask for .NET Passport credentials using a Windows XP dialog box. A Web site can also ask for redirections used by the .NET Passport authentication protocol to be managed by the WinInet component of Windows XP instead of taking place in the browser.

This means that instead of entering their .NET Passport credentials in an HTML sign-in page to which the participating site has redirected them, users enter credentials locally in the Windows XP dialog box shown in the following figure.

[image: image13.png]Connect to www. passport.com

Connesting to uwi.passpott com

PEsEFort Y

E-mail address: a v|

Passward:

[Sign me in automatically
o

m

Gieta NET Passport Help

Figure 8 .NET Passport Sign-In Dialog Box in Microsoft Windows XP

Windows XP users can also store their standard .NET Passport credentials in the Windows XP Credential Manager so that they will not have to enter them again. When users sign in to a participating site, the Windows Credential Manager either automatically signs them in or displays a sign-in dialog box, depending on the users' preference and how recently their sign-in has been authenticated.

Windows XP also provides a .NET Passport registration wizard (shown in the following figure) that helps users sign up for a .NET Passport account directly from Windows XP.

[image: image14.png]Add a .NET Passport to your
Windows XP user account

With a Passport, you cani
« Have arline conversatians with friends and famly
Create your own personal Web pages

+ Sign innstartly to al NET Passpart-enabled stes and

and more, allwith just one signin name and passwordi

Mirasoft i committed to protecting yaur privacy.
e the privacy statemert,

‘Adding a Passport to your user account is quick and sasy.

To continue, cick Next

(s>] (o |

Figure 9 .NET Passport Registration Wizard in Windows XP.

.NET Passport Benefits

This section enumerates the benefits of .NET Passport, both to users and to businesses that implement .NET Passport on their sites.

For Users

Because all .NET Passport profiles are stored on secure .NET Passport servers, .NET Passport users can:

· Use a single e-mail address and password to sign in at all participating .NET Passport sites and services.

· Use the same trustable and well-known authentication system on all participating sites.

· Store frequently requested personal information in their .NET Passport profiles to avoid having to enter it at each site.

· Take advantage of the optional .NET Passport wallet to make fast, secure online purchases using a predictable and well-known process with .NET Passport express purchase (EP).

Help protect their children's online privacy by controlling what information their children share with participating .NET Passport sites.

By centralizing the user's information, .NET Passport links this information to users, not to a specific computer or Web access device. While .NET Passport users can access their participating sites and services from any Web-enabled computer and from a variety of mobile devices, only users who have been authenticated can access and edit their profile. The unique e-mail address and password (and/or phone number and PIN) that are part of each profile are never shared, not even with participating sites or services, without the users' consent. Users control which sites they share their .NET Passport profile information with, and participating .NET Passport sites are required to have privacy policies that disclose how they use that information.

For Businesses

By making the Internet easier to use and more secure, .NET Passport can help online businesses increase customer loyalty and revenues and lower their site-development costs. In addition, .NET Passport currently offers online businesses more than 165 million .NET Passport accounts.

Participating sites and services can provide their users with a personalized experience without the burden of repetitive registrations and forgotten passwords. A participating .NET Passport site can use the users' profile information, as well as proprietary information in the site's database mapped to the user's PUID, to offer users a customized Web experience through personalized content, special features, and targeted advertising.

By relying on .NET Passport to authenticate users rather than hosting their own proprietary authentication system, participating sites can focus valuable resources on their services instead of maintaining their proprietary authentication system. In the future, .NET Passport will manage all improvements to the authentication process by providing additional authentication methods and security levels based on smart cards, digital certificates, and biometrics.

Sites that implement .NET Passport EP enable .NET Passport users to complete check-out securely with a few mouse clicks. .NET Passport users can store credit card, billing, and shipping address information in their profiles and send it to .NET Passport EP sites instantly over a secure connection. Thus by reducing the number of forms a user must fill out, fewer shopping carts are likely to be abandoned. (A recent survey found that as many as 78% of online shoppers abandon their online shopping carts, and 32% abandon them upon having to enter billing and shipping information.

Implementing .NET Passport

To implement the .NET Passport single sign-in (SSI) and optional Kids .NET Passport services, participating sites must install the .NET Passport Manager, a simple Component Object Model (COM) library that looks for and decrypts .NET Passport cookies containing user-authentication and profile information.

The Microsoft® Windows® NT® Server version of .NET Passport Manager is implemented as a dual-interfaced COM object. .NET Passport single sign-in (SSI) can also be implemented in UNIX. However, .NET Passport is system code, not application code. Because of the manual, non-GUI nature of system code, implementation in UNIX system code requires substantial expertise to implement in UNIX. Therefore, as with any UNIX system code implementation, implementing .NET Passport in UNIX for Web sites or services requires an implementation team with good skills in UNIX system administration, systems programming, application programming, and Web development.

Participating sites do not have to install any additional proprietary .NET Passport software to implement the .NET Passport express purchase (EP) service. Sites simply add the .NET Passport EP button that redirects .NET Passport users to the appropriate .NET Passport-hosted pages, and they accept ECML-compliant labels for e-commerce POST data. However, .NET Passport EP sites do require a .NET Passport Site ID issued by .NET Passport. The Site ID and a return URL must be included in any request to the EP site access pages on the .NET Passport wallet server.

.NET Passport offers comprehensive developer and technical support resources to help Web sites and services implement .NET Passport services. For more information on licensing and implementing .NET Passport, see http://www.passport.com/business/.

Appendix: Glossary of Technology Terms

The participating .NET Passport services use standard Web technologies and techniques such as cookies, HTTP redirects, and secure sockets layer (SSL) that are supported on nearly all current browsers. This appendix provides brief overviews of these core technologies.

Cookie

A cookie is a small text file that a site's Web server stores on a user's browser. Each time the user requests a Web page from that site, the browser sends the cookie back to the server with the page request. The cookie contains information provided to the site by the user, typically during registration, that identifies the user to the site and enables the site to personalize the user's experience (for example, by displaying the user's name on its Web pages).

The .NET Passport service uses encrypted cookies to store the user's authentication credentials and profile information securely on the browser. This enables the user to sign in and access personal pages at any participating .NET Passport site during a browser session. When the user signs out of .NET Passport, all .NET Passport cookies are deleted from the computer. If a user disables the browser's cookie feature, the participating .NET Passport service will not be available on that computer.

GET and POST

The GET method is used with HTTP redirects to pass data between Web servers by packaging the data and appending it to the URL. For example, if a user goes to http://example.microsoft.com/ and enters "XP" in the Search for box, the browser would retrieve http://search.office.microsoft.com/result.aspx?qu=xp from the server.

The main limitation of the GET method is the size of the data that can be passed in the URL. In conventional browsers and proxy servers, the accepted upper limit is 1,024 characters. More important, GET methods are applicable to hyperlinks and image references.

The POST method is similar to the GET method, except that the data is sent after the request for the document. As a result, there is no practical limitation to the amount of data that can be sent, as long as the server is willing to accept it. POST methods cannot be used with redirects because many browsers do not carry the POST data to the destination server.

HTTP Redirects

Web browsers, such as Microsoft Internet Explorer and Netscape Navigator, request documents from Web servers by means of hypertext transfer protocol (HTTP). For example, a user goes to a URL—a Web address, such as http://www.microsoft.com/ms.htm by entering the URL in the address box or by clicking a link. The browser finds and connects to the computer identified as www.microsoft.com using the HTTP protocol and requests the document (in this example, Ms.htm).

An HTTP redirect enables the Web server to tell the browser to retrieve a different document instead, for example http://www.microsoft.com/windows/default.asp

The redirection is transparent to the user. By using the user's browser as an intermediary to pass query string data between different sites—such as between Passport.com and participating Web sites—HTTP redirects enable sites to communicate with one another without direct connections between the sites' servers.

JavaScript

JavaScript is a Web scripting language that can interact with HTML code to make Web pages more robust and dynamic by adding application logic to them. Almost all current browsers support JavaScript. .NET Passport uses JavaScript to make certain transactions more efficient (because they require fewer redirects), and to enable cobranding for participating sites on most centralized Web pages.

Secure Sockets Layer

Secure Sockets Layer (SSL) is a security protocol that provides data encryption, server authentication, and message integrity for a connection to the Internet. Most current Web browsers support SSL, and many Web sites and services—including .NET Passport—use this protocol when transmitting and receiving confidential user information (for example, passwords or credit card numbers). By convention, addresses of Web pages that require an SSL connection begin with HTTPS instead of HTTP.

Authentication mechanisms in Windows include:

· Microsoft NT LAN Manager (NTLM) the standard challenge/response authentication mechanism

· Message Digest 5 (MD5), a digital signature algorithm that is used to verify data integrity through the creation of a 128-bit message digest from data input that is claimed to be as unique to that specific data.

· Kerberos is a security system based on symmetric key cryptography.

Microsoft Passport 27

