www.bookspar.com | Website for students | VTU NOTES

I Evolution of Microprocessors

We divide the years of development of microprocessors as 5 generations

First generation (1971 – 73)

Intel Corporation introduced 4004, the first microprocessor in 1971. It is evolved from the development effort while designing a calculator chip.

There were three other microprocessors in the market during the same period:

· Rockwell International’s PPS-4 (4 bits)

· Intel’s 8008 (8 bits)

· National Semiconductor’s IMP-16 (16 bits)

They were fabricated using PMOS technology which provided low cost, slow speed and low output currents

They were not compatible with TTL.

Second Generation (1974 – 1978)

Marked the beginning of very efficient 8 – bit microprocessors.

Some of the popular processors were:

· Motorola’s 6800 and 6809

· Intel’s 8085

· Zilog’s Z80

They were manufactured using NMOS technology.

This technology offered faster speed and higher density than PMOS

It is TTL compatible

Third generation microprocessors (1979 – 80)

This age is dominated by 16 – bits microprocessors

Some of them were:

· Intel’s 8086/80186/80286

· Motorolla’s 68000/68010

They were designed using HMOS technology

HMOS provides some advantages over NMOS as

Speed-power-product of HMOS is four times better than that of NMOS

HMOS can accommodate twice the circuit density compared to NMOS

Intel used HMOS technology to recreate 8085A and named it as 8085AH with a higher price tag.

Fourth Generation (1981 – 1995)

· This era marked the beginning of 32 bits microprocessors

· Intel introduced 432, which was bit problematic

· Then a clean 80386 in launched.

· Motorola introduced 68020/68030.

They were fabricated using low-power version of the HMOS technology called HCMOS.

Motorola introduced 32-bit RISC processors called MC88100

Fifth Generation (1995 – till date)

This age the emphasis is on introducing chips that carry on-chip functionalities and improvements in the speed of memory and I/O devices along with introduction of 64-bit microprocessors.

Intel leads the show here with Pentium, Celeron and very recently dual and quad core processors working with up to 3.5GHz speed.

II Microcomputer Hardware:

[image: image28.jpg]8085

Microprocessor

Ag

ALE

AD;

AD,

AD,

AD;

AD,y

—AD;|
AD,

AD,

ADf

High-Order
Address Bus

Low-Order
Address Bus

Data Bus

The micro computer consists of

1. System Bus

2. Microprocessor

3 Memory unit

4 Input/Output unit

1. The System Bus:

This is further divided into

· Address Bus,

· Data Bus, and

· Control Bus

They together connect microprocessor to each of memory and I/O elements which facilitates the information transformation between them.

Address Bus:

· Unidirectional – from microprocessor to memory or I/O elements

· Usually 8 to 32 bits wide

· The number of unique addresses a microprocessor can generate depends on the width of this bus

For example, 8085 has 16 – bits address bus. So, it can generate 216 = 65,536 different addresses.

A different memory location or an I/O element can be represented by these addresses

Data Bus:

· Bidirectional – data is brought on these lines prior to an operation and results are sent back to selected memory location or I/O using these lines only.

· The width determines the amount of information that can be brought/sent at once, more precisely in one machine cycle into or out of processor.

For Example, 8085 microprocessor has 8-bit data bus. Only one byte of information can be fetched in or sent out of processor using this data bus.

Control Bus:

· Some signals are unidirectional and some are bidirectional

· Transmits signals that are used to synchronize the operation of the individual microcomputer elements.

· Typical control signals include READ, WRITE, and RESET

2. The Microprocessor

The Microprocessor is fabricated on a single chip using MOS technology.

It comprises of

i) Register section

ii) One or more ALU, and

iii) A control unit

i) Register Section

Classification of processors based on register section:

Accumulator based microprocessors – Intel’s 8085, Motorola’s 6809

· Here, one of the operands is assumed to be held a special register called “accumulator”.

· All arithmetic and logic operations are performed using this register as one of the data source and result is stored back in the accumulator.

· One-operand instructions are predominant in this organization

The general-purpose register based microprocessors – Intel’s 8086/386, Motorola’s 68000/020

· These processors have a set of registers which can be used to hold data, memory addresses or the results of an arithmetic or logic operations for indefinite amount of time.

· The number and size of these registers vary from processor to processor

· Some registers are general purpose while others are earmarked with some functions.

· General purpose registers are used to store addresses or data for an indefinite time and are capable of manipulating data by shift or rotate operations.

· Typical dedicated registers include,

a. Program Counter (PC)

b. Instruction Register (IR)

c. Status Register or Flag Register

d. Stack Pointer (SP)

e. Barrel Shifter

The PC always contains the address of the next instruction to be executed. Its contents are automatically updated by ALU. The microcomputer executes a program sequentially unless it encounters a jump/branch/call instruction. At that time, PC will be loaded with the address present in the instruction. The size of the PC itself varies from one processor to another. For example, the 8085 has a 16-bit PC, while 68029 has 32-bits PC.

The Instruction register contains the instruction to be executed. After fetching the instruction from memory, microprocessor places it in IR for translation.

The Status Register contains individual bits each having a special meaning. The bits are termed as flags. Each flag is set or reset by an ALU operation. These flags or used by Conditional branch instructions. Typical flags include carry, sign, zero and overflow.

· The carry (C) flag is used to reflect whether or not an arithmetic operation such as ADD generates a carry. If carry is generated then CF = 1 else CF = 0. The carry is generated out of 8th bit for byte operations, 16th bit for word operations etc. Carry is used as Borrow flag for subtraction.

· The Zero (Z) flag is used to indicate whether the result of an arithmetic or logic operation is zero. ZF = 1 for zero result and ZF = 0 for a non-zero result.

· The Sign(S) flag indicates whether the result is positive or negative. SF = 1 indicates negative result means the most significant bit of the result is 1. If SF = 0, the result is a positive number. It is observed only for signed operations. This flag can be ignored for the result on an unsigned arithmetic or logic operations.

· The Overflow (O) flag is set if the result of an arithmetic and logical operation on signed numbers is too large for the microprocessor’s maximum word size. OF can be shown as OF = C7 (C8 where C7 is the final carry and C6 is the previous carry. Once again, this applies to signed numbers only.

The Stack Pointer (SP) register addresses the stack.

· A stack is a Last-In-First-Out read/write memory. The items that go in last will come out first. This is because all read (POP) and write (PUSH) operations will take place from one end called top of the stack(tos).

· Stack is implemented using hardware or software.

· The hardware stack is designed by using a set of high speed registers to provide a fast response. The disadvantage is that stack size is limited. But push and pop operations are very fast. Intel’s 4040, an 8 – bit processor used hardware stack.

· The software stack on the other hand, is implemented using a portion of memory. Some RAM locations are earmarked as stack. The advantage is that they provide unlimited space for stack, depends on the amount of memory we interface to microprocessor, though. But it is slower than hardware stack.

· The SP always contains the memory address of the last byte of the currently pushed item on tos i.e. it always points to the tos. Stack is normally used by subroutines or interrupts for saving certain registers such as the program counter and status register.

PUSH and POP operations:

· If the stack is accessed from the top, the stack pointer is decremented after a PUSH operation and incremented before POP.

· On the other hand, if the stack is accessed from the bottom, SP is incremented after a PUSH and decremented after a POP.

· Typical microprocessors access stack from top.

· Depending upon the microprocessor, 8-, 16- or 32-bits can be pushed onto or popped from the stack.

· The value by which the SP is incremented or decremented after PUSH or POP operations depends on the register size.

· For example, in 8086 microprocessor, PUSH and POP operations can be done only on 16-bit data. Hence, SP is incremented or decremented by a value of 2 always.

[image: image1][image: image22.wmf]INTA

[image: image23.wmf]M

[image: image24.wmf]WR

[image: image25.wmf]RD

[image: image26.wmf]INTA

[image: image27.jpg]CLK

Ais
Ax
AD,

AD,

ALE

10/M

T, T,

fe— . Opcode Fetch —
=

o Memor

Low-Order

05H =
Memory Address

High-Order

o

y Address

/ Opcode Fetch

Consider the PUSH operation as shown in the fig. when the stack is accessed from the top. SP is decremented by 2 after PUSH.

Similarly, after POP operation SP is incremented by 2, since we are accessing stack from top.

Index Register:

Index register is useful with instructions where tables or arrays of date are accessed. Here, Index Register can be used to manipulate the address portion of the instruction.. Thus appropriate data in the table can be accessed. The actual address called physical address of the data is calculated by adding address portion in the instruction with contents of the index register.

In 8086: MOV AL, 200[SI] means one byte present at an address (DS) + 200 + (SI) will be moved into AL register. (DS – Data Segment register).
Barrel Shifter:

32-bit processors include a special type of register called Barrel Shifter. This register provides faster shift operation. For example, Intel’s 80386 barrel shifter can shift a number from 0 through 64 positions in one clock period.

ALU (Arithmetic and Logical Unit)
· ALU performs all arithmetic and logic operations on data.

· The size of ALU defines the size of the microprocessor.

· For example Intel 8086 is a 16-bit microprocessor since its ALU 16-bits wide. Intel 8088 is also a 16-bit microprocessor even though its data bus is 8-bits wide. That is because of its 16-bit ALU

· Some 32-bit microprocessors like Motorola 68030 include multiple ALUs for parallel operations to achieve faster speed.

The Control Unit:

The CU performs basically two tasks:

Instruction interpretation:

i) CU reads instruction from memory using PC

ii) It then recognizes the instruction type, gets necessary operands, and routes then to appropriate functional units of execution unit

iii) Necessary signals are issued to perform desired operation

iv) Results are routed to the specified destination.

Instruction Sequencing:

The CU determines the address of the next instruction to be executed and loads it into PC.

The CU is designed using one of the three techniques:

i) Hardwired Control

Designed by physically connecting typical components such as gated and flip-flops. For example, Zilog’s 16-bit Z8000

ii) Microprogramming

This type of CUs include a control ROM for translating the instructions.

Intel’s 8086 is a microprogrammed microprocessor

iii) Nanoprogramming

It includes two ROMs inside CU. The first ROM, which is called microROM stores all the addresses of the second ROM, which is called nanoROM. If the microinstructions repeat many times in a microprogram, use of two level ROMs provides tremendous memory savings.

Motorola’s 68000, 68020 and 68030 are nanoprogrammed.

3. Memory Organization:

i) Memory unit is the integral part of any microcomputer system and its primary purpose is to hold program and data

ii) The major design goal of memory unit is to allow it to operate at a speed close to that of the processor.

iii) The cost factor inhibits the design of entire memory unit with single technology that guarantees high speed.

iv) In order to seek a trade-off between the cost and operating speed, a memory system is usually designed with different technologies such as solid state, magnetic and optical.

In a broad sense, a microcomputer memory can be logically divided into three groups:

i) Processor Memory

ii) Primary or Main Memory

iii) Secondary memory

Processor Memory refers to a set of CPU registers. These registers are useful to hold temporary results when a computation is in progress. Also, there is no speed disparity between the registers and the microprocessor because they are fabricated using the same technology.

The main disadvantage is the cost involved which forces the architect to include very few registers (usually 8 to 16 only) in the microprocessor.

Primary memory –

· is the storage area in which all the programs are executed.

· The processor can directly access only those items that are stored in the primary memory.

· All the programs and corresponding data must be within primary memory prior to execution. MOS technology is normally used in primary memory design.

· The size of primary memory is much larger compared to processor memory but its operating speed is slower than processor registers by a factor of 25.

Secondary memory refers to the storage medium for huge files such as program source codes, compilers, operating systems, RDBMSs etc. These are not needed very frequently. They comprises of slow devices such as magnetic tapes and optical disks.

Sometimes they are referred to as auxiliary or backup store.

Classification of Primary Memory:
Primary memory normally includes ROM (Read Only Memory) and RAM(Random Access Memory).

As the name implies, a ROM permits only a read access. There are many kinds of this category. For example,

· Some ROMS are custom made, their contents are programmed by the manufacturer. They are called mask programmable ROMs. Since they are mass produced, they are inexpensive.

· Sometimes a user has to program the ROM in field. Such types of ROMs which allow this operation are called PROMs (Programmable ROMs). The main disadvantage is that they cannot be reprogrammed.

· In practice, it is necessary to alter the programs before they are put in market. ROMs that allow reprogramming are called Erasable Programmable Read-Only Memories (EPROMs). In an EPROM, programs are entered using electrical impulses and the stored information is erased using UV rays.

· With advances in IC technology, it is possible to achieve an electrical means of erasure. These new ROMs are called Electrically Alterable ROMs (EAROMs) or Electrically Erasable PROMs (EEPROMs).

· These memories are usually called Read Mostly Memories (RMMs), since they have much slower writing times than read times.

Information stored in semiconductor random access memories will be lost if the power is turned off. This property is known as volatility and hence, RAMs are usually called volatile memories. Stored information in a magnetic tape or magnetic disk is not lost when the power is turned off. Therefore these storage devices are called nonvolatile memories. ROM is a nonvolatile memory.

· In a semiconductor memory constructed using bipolar transistors, the information is stored in the form of voltage levels in flip-flops. These voltage levels do not usually get drifted away. Such memories are called static RAMs because stored information remains constant for some period of time.

· On the other hand, semiconductor memories designed using MOS transistors, the information is held in the form of electrical charges in capacitors. Here the stored charge has the tendency o get leaked away. These memories are referred to as dynamic RAMs. In order to prevent any information loss, dynamic RAMS have to be refreshed at regular intervals. Refreshing means boosting the signal level and writing it back. This activity is performed using a hardware unit called “refresh logic”.

· Since the static RAM maintains information in active circuits, power is required even when the chip is inactive or standby mode. Hence, static RAMs require large power supplies. Also each static RAM cell is about four times larger in area than an equivalent dynamic cell.

Differences between static and dynamic RAMs:

	Static RAM

	Dynamic RAM

	1. This semiconductor memory is constructed using bipolar transistors

2. Information is stored in the form of voltage levels in flip-flops

3. These voltage levels do not get drifted away

4. No refresh logic is needed

5. Power is required even when the chip is in standby mode

6. Four time larger in size compared to an equivalent dynamic cell

	1. This semiconductor memory is constructed using MOS transistors

2. Information is stored in the form of electrical charges in capacitors

3. Has tendency of leakage

4. Refresh logic is necessary since leakage of electrical charges

5. Refresh login is inbuilt, so draws less power comparatively.

6. Four times as many bits as a static RAM chip.

Classification of Primary Memories:

· Destructive Readout:

On ferrite core memories, the reading process destroys the stored information. This property is called destructive readout (DRO). Whenever data is read from ferrite core memories, they are first transferred to a buffer, and from this buffer, data are rewritten into the location from where they are originally read.

Main Memory Array Design:
In many applications, a memory of large size capacity is often realized by interconnecting several small size memory blocks.

There are two kinds of techniques used for designing the main memory in such cases.

They are a) linear decoding

 b) Fully decoding

First, let us consider the block diagram of a typical RAM IC.

· The capacity of this chip is 1Kbytes.

· They are organized in the form of 1024 words with 8 bits/word.

· Each word has a unique address and is specified on 10-bit address lines A9 – A0.

· The inputs and outputs are routed through the 8-bit bidirectional data bus (D7 – D0). The operation of this chip is governed by two control inputs:
[image: image2.wmf]WE

 (Write Enable) and
[image: image3.wmf]CS

 (Chip Select).

The following truth table describes the operation of this chip:

	
[image: image4.wmf]CS

	
[image: image5.wmf]WE

	MODE
	Status (D7 – D0)
	Power

	H
	X
	Not selected
	High Impedance
	Standby

	L
	L
	Write
	Input Bus
	Active

	L
	H
	Read
	Output Bus
	Active

i) When
[image: image6.wmf]CS

is high, chip is not selected at all, hence D7 to D0 are driven to high impedance state

ii) When
[image: image7.wmf]CS

 = 0 and
[image: image8.wmf]WE

 = 0, data on lines D7 – D0 are written into the word addressed by A0 through A9.

iii) When
[image: image9.wmf]CS

 = 0 and
[image: image10.wmf]WE

 = 1, the contents of memory word whose address is on A9 – A0 will appear on lines D7 – D0

Linear Decoding:

Consider the problem where we have to connect 6 Kb memory to an 8-bit microprocessor whose address bus width is 16 – bits. The memory chips are available as 1K X 8.

In linear decoding,

i) Address lines A9 through A0 of the microprocessor used as common input to address lines of all memory chips

ii) The data lines of microprocessor are connected to data lines of all memory chips.

iii) The remaining address lines are used to select one of the chips (
[image: image11.wmf]CS

) at a time. For example, 000001 selects chip1, 100000 selects chip 6 etc.

iv) R/W from microprocessor is connected to
[image: image12.wmf]WE

 all RAM Chips

Primary Advantage is – This technique does not need any decoding circuit.

Some of the disadvantages of this approach are easily visible:

i) Although there is an address bus of 16-bits wide, we could connect only 6Kb of RAM. This idea clearly wasted address space

ii) Address map is not contiguous. It is sparsely distributed.

iii) Conflicts occur if two of the select lines become active at the same time.

iv) If all unused address lines are not used as chip selectors, then these unused lines become don’t cares. This results in foldback, meaning a memory location will have its image in memory map. For example, if A15 is don’t care, then address 000016 is same as address 800016. It wastes memory space.

Fully Decoding:

The problems of bus conflict and sparse address distribution are eliminated by the use of fully decoding address technique.

Consider an example where we interface 4Kb of RAM to an 8 – bit microprocessor. The RAM chips are available in the form of 1K X 8.

First we have to write memory map to identify the address lines to be given to decoder logic:

	A15
	A14
	A13
	A12
	A11
	A10
	A9
	A8
	A7
	A6
	A5
	A4
	A3
	A2
	A1
	A0
	Address

	0

.

0
	0

.

0
	0

.

0
	0

.

0
	0

.

0
	0

.

0
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0000

to

03FF

	0

.

0
	0

.

0
	0

.

0
	0

.

0
	0

.

0
	1

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0400

to

07FF

	0

.

0
	0

.

0
	0

.

0
	0

.

0
	1

.

1
	0

.

0
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

0
	0800

to

0BFF

	0

.

0
	0

.

0
	0

.

0
	0

.

0
	1

.

1
	1

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0

.

1
	0CFF

to

0FFF

If we observe A10 and A11, 2-to-4 decoder would be an obvious choice for CS signals. We can write the truth table as follows:

	A11
	A10
	Device selected

	0

0

1

1
	0

1

0

1
	RAM chip1

RAM chip2

RAM chip3

RAM chip4

Here, when we observe the memory map, there are no windowing between memory addresses and the fold bask is also removed. Above that, address space is not wasted since the unused lines can be used in future by making use of higher decoder.

4. INPUT/OUTPUT (I/O)

i) One communicates with the microcomputer system via the I/O devices interfaced to it.

ii) The user can enter the program and data using the keyboard on the terminal and execute the program to obtain the results.

iii) Thus, I/O devices provide the efficient means of communication between the computer and the outside world.

iv) I/O devices are commonly called peripherals and include key board, CRT display, printers, disks etc.

v) The characteristics of I/O devices are normally different from those of microcomputer. For example, the speed of operation of peripherals is usually slower compared to the microcomputer.

vi) Word length of the microcomputer may be different from the data format of the peripheral device.

vii) To make these characteristics compatible, interface hardware circuitry is used in between them. They provide all type of input/output transfers between microcomputer and peripherals by using an I/O bus which carries three types of signals: device address, data and command status.

viii) For 16 – and 23- bit microprocessors, a separate intelligent I/O processor or data channel is provided to route all I/O transfers.

ix) To make 8-bit microprocessors inexpensive, a separate interface is provided with I/O device.

x) The microprocessor uses I/O bus when it executes an I/O instruction.

xi) A typical I/O instruction has three fields

xii) When the microcomputer executes an I/O instruction, the control unit decodes the opcode field and identifies it as an I/O instruction.

xiii) Then the microprocessor places the device address and command from the respective fields of the I/O instruction on to the I/O bus.

xiv) The interfaces of various devices connected to this I/O bus decode this address, and appropriate interface is selected.

xv) The identified interface decodes the command line and determines the function to be performed. Typical functions include receiving data from an input device into the microprocessor or sending data to an output device from the microprocessor.

In a typical microcomputer system, the user gets involved with to types of I/O devices: physical I/O and Virtual I/O.
When the microcomputer has no operating system, the user must work directly with physical I/O devices and perform detailed I/O design.

There are three ways of transferring data between the microprocessor and a physical I/O device.

i) Programmed I/O

ii) Interrupt driven I/O

iii) Direct Memory Access (DMA)

· The microprocessor executes a program to communicate with an external device via a register called I/O port for programmed I/O.

· An external device requests microprocessor to transfer data by activating a signal on the microprocessor’s interrupt line during interrupt I/O. In response, the microprocessor executes a program called the interrupt-service routine to carry out the function desired by the external device.

· Data transfer between microcomputer’s memory and an external device occurs without microprocessors involvement in Direct Memory Access.

For a microcomputer with an operating system, the user works with virtual I/O devices. The user does not have to be familiar with the characteristics of the physical I/O device. Instead the user performs data transfers between the microcomputer and the physical I/O device indirectly by calling the I/O routines provided by operating system using virtual I/O instructions.

Programmed I/O:

i) The microcomputer communicates with an external device via one or more registers called I/O ports.

ii) I/O ports are occasionally fabricated by the manufacturer in the same chip as the memory chip to achieve minimum chip count.

iii) I/O ports are usually 2 types

a. Each bit in the port can be individually configured as either input or output port

b. For the other type, all bits in a port can be set up as either all parallel outputs or parallel inputs. Each port can be configured as an input or output port by another register called command or data direction register. The port contains the actual data. The command register says whether they are inputs or outputs.

In the first method, the command register is loaded with 0s and 1s to indicate how the corresponding port bits act. For example, consider the command register is loaded with 65H. Then the corresponding port acts as follows:

In the preceding example, since 65H is sent as output into data direction register, bits1, 3, 4, and 8 of the port are set up as outputs and bits 0, 2, 5, and 6 at set as outputs.

For parallel I/O, there I sonly one data-direction register for all ports. A particular bit in command register configures all bits in a port as either inputs or outputs.

The following figure gives clear idea of this type of configuring I/O ports:

Standard I/O Versus Memory – mapped I/O

I/O ports are addressed using either standard I/O or memory mapped I/O.

The standard I/O is also called isolated I/O.

It uses IO/
[image: image13.wmf]M

control pin on the microprocessor. Processor outputs high on this pin to indicate an I/O operation is taking place. A low on this pin indicates a memory operation.

Address will be of 8 – bits and hence can address up to 256 different devices. Here we can use only IN and OUT instructions

In memory mapped I/O, the processor does not differentiate between I/O and memory.

The processor uses a portion of memory address to represent I/O ports. The I/O ports are mapped into the processors main memory. Hence are called memory mapped I/O. Here we can use all instructions that are used to work with memory. The address bus width is same as that of microprocessor and hence decoding logic becomes bit complicated.

Unconditional and Conditional I/O:

The processor can send data to the device at any time in unconditional I/O. The external device must always be ready for data transfer. A typical example is when the processor outputs seven segment code through an I/O port to drive a seven segment display connect to this I/O port.

In conditional I/O, the processor outputs data to an external device via handshaking. Data transfer occurs by the exchanging of the control signals between the processor and the external device. Data transfer takes place only when the device is ready.

Interrupt Driver I/O

A disadvantage of conditional programmed I/O is that the microcomputer needs to check the status bit (BUSY signal for the A/D converter) by waiting in a loop. This type of I/O transfer is dependent on the speed of the external device. For a slow device, this waiting may slow down the capability of the microprocessor to process other data. The interrupt I/O technique is efficient in this type of situation.

Interrupt I/O is a device-initiated I/O transfer. The external device is connected to a pin called the interrupt (INT) pin on the processor chip. When the device needs an I/O transfer with the microcomputer, it activates the interrupt pin of the processor chip. The microcomputer usually completes the current instruction and saves at least the contents of the current program counter on the stack.

The microcomputer then automatically loads an address into the program counter to branch to a subroutine like program called the interrupt service routine. This program is written by the user. The external device wants the microcomputer to execute this program to transfer data. The last instruction of the service routine is a RETURN, which is typically the same instruction used at the end of a subroutine. This instruction normally loads the address (saved in the stack before going to the service routine) in the program counter. Then, the microcomputer continues executing the main program.

Interrupt Types:

There are typically three types of interrupts : external interrupts, traps or internal interrupts, and software interrupts.

External interrupts are initiated through the microcomputer’s interrupt pins by external devices such as A/D converters. A simple example of an external interrupt was given in the previous section.

External interrupts can further be divided into two types: maskable and nonmaskable. A maskable interrupt is enabled or disabled by executing instructions such as EI or DI. If the microcomputer’s interrupt is disabled, the microcomputer ignores the maskable interrupt. Some processors, such as the Intel 8086, have an interrupt flag bit in the processor status register. When the interrupt is disabled, the interrupt flat bit is 1, so no maskable interrupts are recognized by the processor. The interrupt flag bit resets to zero when the interrupt is enabled.

The nonmaskable interrupt has higher priority than the maskable interrupt. If both maskable and nonmaskable interrupts are activated at the same time, the processor will service the nonmaskable interrupt first.

Internal interrupts, or traps, are activated internally by exceptional conditions such as overflow, division by zero, or execution of an illegal op-code. Traps are handled the

same way as external interrupts. The user writes a service routine to take corrective measures and provide an indication to inform the user that an exceptional condition has occurred.

Many processors include software interrupts, or system calls. When one of these instructions is executed, the processor is interrupted and serviced similarly to external or internal interrupts. Software interrupt instructions are normally used to call the operating system. Software interrupt instructions allow the user to switch from user to supervisor mode.

Interrupt Address Vector:

The technique used to find the starting address of the service routine (commonly known as the interrupt address vector) varies from one processor to another. With some processors, the manufacturers define the fixed starting address for each interrupt. Other manufacturers use an indirect approach by defining fixed locations where the interrupt address vector is stored.

Saving the Microprocessor Registers:

When a processor is interrupted, it saves at least the program counter on the stack so tae processor can return to the main program after executing the service routine. Some processors save only one or two registers, such as the program counter and status register. Other processors save all microprocessor registers before going to the service routine. The user should know the specific registers the processor saves prior to executing the service routine. This will enable the user to use the appropriate return instruction at the end of the service routine to restore the original conditions upon return to the main program.

Interrupt Priorities:

A processor is typically provided with one or more interrupt pins on the chip. Therefore, a special mechanism is necessary to handle interrupts from several devices that share on of these interrupt lines. There are two ways of servicing multiple interrupts: polled and daisy chain techniques.

Polled interrupts are handled by software and therefore are slower when compared with daisy chaining. The processor responds to an interrupt by executing one general service routine for all devices. The priorities of devices are determined by the order in which the routine polls each device. The processor checks the status of each device in the general service routine, starting with the highest priority device to service an interrupt. Once the processor determines the source of the interrupt, it branches to the service routine for the device.

In a daisy chain priority system, devices are connected in a daisy chain fashion to set up a priority system. Suppose one or more devices interrupt the processor. In response, the

processor pushes at lease the PC and generates an interrupt acknowledge (INTA) signal to the highest priority device. If this device has generated the interrupt, it will accept the INTA. Otherwise, it will pass the INTA onto the next device until INTA is accepted. Once accepted, the device provides a means for the processor to find an interrupt address vector by using external hardware. The daisy chain priority scheme is based on mostly hardware and is therefore faster than the polled interrupt.

Direct Memory Access (DMA)

Direct Memory Access (DMA) is a technique that transfers data between a microcomputer’s memory and I/O device without involving the microprocessor. DMA is widely used in transferring large blocks of data between a peripheral device and the microcomputer’s memory. The DMA technique uses a DMA controller chip for the data transfer operation. The main functions of a typical DMA controller are summarized as follows:

· The I/O devices request DMA operation via the DMA request line of the controller chip.

· The controller chip activates the microprocessor HOLD pin, requesting the CPU to release the bus.

· The processor sends HLDA (hold acknowledge) back to the DMA controller, indicating that the bus is disabled. The DMA controller places the current value of its internal registers, such as the address register and counter, on the system bus and sends a DMA acknowledge to the peripheral device. The DMA controller completes the DMA transfer.

There are three basic types of DMA: block transfer, cycle stealing, and interleaved DMA.

For block transfer DMA, the DMA controller chip takes the bus from the microcomputer to transfer data between the memory and I/O device. The microprocessor has no access to the bus until the transfer is completed. During this time, the microprocessor can perform internal operations that do not need the bus. This method is popular with microprocessors. Using this technique, blocks of data can be transferred.

Data transfer between the microcomputer memory and an I/O device occurs on a word-by-word basis with cycle stealing. Typically, the microprocessor clock is enabled by ANDing an INHIBIT signal with the system clock. The system clock has the same frequency as the microprocessor clock. The DMA controller controls the INHIBIT line. During normal operation, the INHIBIT line is HIGH, providing the microprocessor clock. When DMA operation is desired, the controller makes the INHIBIT line LOW for one clock cycle. The microprocessor is then stopped completely for the cycle. Data transfer between the memory and I/O takes place during this cycle. This method is called cycle

stealing because the DMA controller takes away or steals a cycle without microprocessor recognition. Data transfer takes place over a period of time.

With interleaved DMA, the DMA controller chip takes over the system bus when the microprocessor is not using it. For example, the microprocessor does not use the bus while incrementing the program counter or performing an ALU operation. The DMA controller chip identifies these cycles and allows transfer of data between the memory and I/O device. Data transfer takes place over a period for time for this method.

Coprocessors:

In typical 8-bit microprocessors such as the Intel 8085 and Z-80, technology places a limit on the chip area. In consequence, these microprocessors include no hardware or firmware for performing scientific computations such as floating – point arithmetic, matrix manipulation, and graphic data processing. Therefore, users of these systems must write these programs. Unfortunately, this approach is unacceptable in high speed applications, since program execution takes a significant amount of time. To eliminate this problem, coprocessors are used.

In this approach, a single chip is built for performing scientific computations at high speed. However, the chip is regarded as a companion to the original or host microprocessor. Typically, each special operation is encoded as an instruction that can be interpreted only by the companion processor. When the companion microprocessor encounters one of these special instructions, it assumes the processing functions independent of the host microprocessor. The companion microprocessor that operates in this manner is called the coprocessor. Therefore, this concept not only extends the capabilities of the host microprocessor, but also increases the processing rate of the system. The coprocessor concept is widely used with typical 32 bit microprocessors such as the Motorola 68020 and Intel 80386.

Functionally, the coprocessor provides a logical extension of the programmer’s model in the way of instructions, registers, and operand types. This extension is transparent to the programmer.

It is important to make the distinction between standard peripheral hardware and a coprocessor. A coprocessor is a device that has the capability of communicating with the main processor through the protocol defined as the coprocessor interface. As mentioned before, the coprocessor also adds additional instructions, registers, and data types that are not directly supported by the main processor. The coprocessor provides capabilities to the user without appearing to be hardware external to the main processor.

Standard peripheral hardware, on the other hand, is generally accessed through the use of interface registers mapped into the memory space of the main processor. The programmer uses standard processor instructions to access the peripheral interface registers and thus utilize the services provided by the peripheral. It should be pointed out that even though a peripheral can provide capabilities equivalent to a coprocessor for

many applications, the programmer must implement the communication protocol between the main processor and the peripheral necessary to use the peripheral hardware. Two main techniques may be used to pass commands to a coprocessor.

System Software:

Typical microcomputer system software includes editors, assemblers, compilers, interpreters, debuggers, and an operating system. The editor is used to create and change source programs. Source programs can be written in assembly language, a high level language such as Pascal, or be data tables. The editor has commands to change, delete or insert lines or characters. The text editor is a special type of editor that is used to enter and edit text in a general purpose computer, whether the text is a report, a letter, or a program.

An assembler translates a source text that was created using the editor into a target language such as binary or object doe.

High level language contains English like commands that the readily understandable by the programmer. High level languages normally combine a number of assembly level statements into a single high level statement. A compiler is used to translate the high level languages such as Pascal into machine languages. The advantages of high level languages over assembly language are ease of readability and maintainability. Also, the code multiplicity of high level languages increases the productivity.

Like a compiler, an interpreter usually processes a high level language program. Unlike a compiler, an interpreter actually executes the high level language program one statement at a time, rather than translating the whole program into a sequence of machine instructions.

The debugger provides an interactive method of executing and debugging the user’s software one or a few instructions at a time, allowing the user to see the effects of small pieces of the program and thereby isolate programming errors.

An operating system performs resource management and human to machine translation functions. A resource may be microprocessor, memory, or an I/O device. Basically, an operating system is another program that tells that the machine what to do under a variety of conditions. Major operating system functions include efficient sharing of memory, I/O peripherals, and the microprocessor among several users. An operating system is

1. The interface between hardware and users

2. The manager of system resources in accordance with system policy to achieve system objectives.

8085 Microprocessor

Architecture of 8085 Microprocessor

Architecture reveals the internal logic of a microprocessor. The 8085 architecture comprises of the following blocks:

1. ALU logic

2. Register logic

3. Timing and Execution logic

4. Interrupt logic

5. Serial I/O logic

1. ALU Logic:

The Arithmetic and Logic Unit performs arithmetic and logic operations. It comprises of the accumulator, temporary registers, flag register and arithmetic and logic circuits

Accumulator:

· It is an 8-bit register

· Stores one of the operands during arithmetic and logic operations

· Stores result of the operation

Temporary Register:

· It is used to hold another operand during arithmetic and logic operations.

· It is not accessible to the programmer

Flag Register:

· It is an 8-bit register

· It makes use of only five bits, each one is called a flag

· They reflect the result of an arithmetic or logic operation

X – don’t care

Sign(S) flag: set/reset after the execution of an arithmetic or logic operation

1 (set) – if bit d7 of result is 1 (negative number)

0 (reset) – if bit d7 of result is 0 (positive number)

Zero(Z) flag: set/reset after the execution of an arithmetic or logic operation

1 – result is zero

0 – result is non – zero

Auxiliary Carry(AC) flag: set/reset after the execution of an arithmetic or logic operation

1 – if carry is generated by bit d3

0 – if there is no carry out of bit d3

It is used internally for BCD operations and is not available to the programmer

Parity(P) flag: set/reset after the execution of an arithmetic or logic operation

1 – Even number of 1s in the result

0 – Odd number of 1s in the result

Carry(C) flag: set/reset after the execution of an arithmetic or logic operation

1 – if an arithmetic operation results in carry/borrow

0 – if no carry/borrow

The ALU of 8085 provides

Arithmetic operations – Addition, subtraction, incrementing and decrementing operations

Logical operations – AND, OR, EXOR & NOT

2. Register Logic: This logic provides a set of registers and the circuits for accessing these registers. They are broadly classified as –

1. General purpose registers

2. Special function registers

1. General Purpose registers:

These are the ones that are accessible to the programmer.

They are 8-bit registers – A, B, C, D, E, H, and L

Some of them are used in combination to form 16-bit register pairs. The following combinations are possible – BC, DE and HL

2. Special Function registers:

Specific functions are assigned to the registers in this group.

Program Counter (PC): This is used for sequencing the execution of instructions. It is always pointing to the memory address from where the next byte is to be fetched

Stack Pointer (SP): This is a pointer register. Its always pointing to the top of the stack.

PC and SP are 16-bit registers.

Timing and Execution logic:

Interrupt Logic:

This logic supports 5 interrupts with the following features:

· Priority

· Masking and Non-masking

· Vectoring and Non-vectoring

The five interrupt signals are:

TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR

One signal called Interrupt acknowledge (INTA) is an output signal. This is to acknowledge the acceptance to service the interrupt.

Serial I/O Logic:

This logic supports serial communication with the help of 2 signals: SID (input) and SOD (output).

8085 Pin Details:

The 8085 microprocessor:

· Is a 40 pin LSI chip

· Is 8 – bit general purpose microprocessor with addressing capacity of 64K

· Operates with 3MHz single phase clock

The 8085 signal are grouped as follows:

1. Address bus

2. Address/data bus

3. Control and status signals

4. Interrupt signals

5. DMA signals

6. Timing and synchronization signals

7. Serial I/O signals

8. Power supply

(1) Address signals: A15 – A8
These signals form the higher order address lines

(2) Address/Data signals: AD7 – AD0
This is a time multiplexed address and data bus used for carrying both

· lower order address signals

· Data signal
at different time intervals

Address bus is unidirectional and data bus is bidirectional

(3) Control and Status signals:

(a) Control Signals:

*
[image: image14.wmf]RD

 - This is an active low signal. This signal indicates that selected I/O or memory device is to be read and that the data is available on the data lines.

*
[image: image15.wmf]WR

- This is also an active low signal. This signal indicates that the data on the data bus is to be written into the selected memory or I/O location.

(b) Status Signals:

* IO/
[image: image16.wmf]M

- used to differentiate between I/O and memory operation.

1 – I/O operation
0 – Memory operation

* S1, S0 – These signals along with IO/
[image: image17.wmf]M

 are used to identify various operations of microprocessor.

* ALE – This signal is generated during the first clock period of every machine cycle. It is used to demultiplex the multiplexed lower order address and data bus.

(4) Interrupt Signals:

An interrupt is a request to the microprocessor to suspend the execution of the main program temporarily and execute another program called Interrupt Service Routine (ISR) corresponding to a device which has requested microprocessor through any of the e5 interrupt lines.
[image: image18.wmf]INTA

 is acknowledgement to a maskable interrupt.

(5) DMA Signals:

DMA (Direct Memory Access) is the process of transferring data from the I/O device to memory without the interference of the microprocessor. We must keep in mind that for initiating the DMA process microprocessor is needed.

HOLD – This signal indicates a peripheral such as DMA controller is requesting for the use of address and data bus.

HLDA – This output signal acknowledges the HOLD request.

(6) Timing and synchronization signals:

*
[image: image19.wmf]RESETIN

 - when the signal on this pin goes low, the program counter is set to 0, buses are tristated and microprocessor is reset.

* RESET OUT – This signal indicates that the microprocessor is reset and can be used to reset other devices.

* CLKOUT – This signal can be used as system clock for other devices.

* X1 and X2 – The crystal is connected across these pins. The frequency is internally divide by 2. Thus, to operate a system at 3MHz, the crystal must have a frequency of 6MKz.

* READY – This input signal is used to delay the microprocessor read/write cycles until an I/O device is ready to send/accept data.

(7) Serial I/O signals:

* SID – serial input data: The data on this line is loaded into accumulator bit – 7 whenever a RIM instruction is executed.

* SOD – Serial output data: This line is set or reset as specified by the SIM instruction.

These two signals are used to establish serial communication between the microprocessor and external serial I/O devices.

(8) Power supply signals:

VCC - +5V Power supply

VSS – ground reference
Microprocessor Communication and Bus Timings:

We have to examine the process of communication between the microprocessor and memory to understand the functions of various signals.

The first step in the communication process is reading from memory or fetching an instruction. This process is called fetch cycle. We need to understand timings of various signals in relation to the system clock. It can be better understood through timing diagram as shown below.

Consider the example of fetching the machine code of instruction MOV C, A (0100 1111 = 4F) stored at the address 2005

Step1: Program Counter places the 16-bit memory address on the address bus.

In Timing diagram, during the T-state T1 the higher order memory address 20H is placed on the address lines A15-A8, the lower order address 05H is placed on the bus AD7-AD0, and ALE signal goes high. The status signal IO/M goes low, indicating this is a memory-related operation.

Step2: The control unit sends the control signal RD to enable the memory chip

The control signal RD is sent out during the clock period T2, thus enabling the memory chip. This signal is active for two clock periods.

Step3: The byte from the memory location is placed on the data bus.

When the memory is enabled, the instruction byte (4F) is placed on the bus AD7 – AD0 and transferred to the microprocessor. The RD signal causes 4F to be placed on the multiplexed bus and when RD goes high, it causes the bus to go into high impedance

Step4: The byte is placed in the instruction decoder of the microprocessor and the task is carried out according to the instruction.

The instruction decoder decodes the machine code and the contents of the accumulator are copied into register C. This task is performed during periodT4.

Demultiplexing the Bus AD7 – AD0:

If we observe the timing diagram above, demultiplexing AD7 – AD0 becomes apparent. It clearly shows that, lower order address (05H) is lost after the first clock period. This address needs to be latched and used for identifying the memory address. If the bus AD7 – AD0 is used to identify the memory location 2005H, the address will change to 204FH after the first clock period.

The following figure shows a schematic that uses a latch and ALE signal to demultiplex the bus. The bus AD7 – AD0 is connected as the input to the latch 74LS373. The ALE signal is connected to the enable pin of the latch and the output control signal of latch is grounded.

ALE goes high during T1. When ALE is high, the latch is transparent and output changes according to input. During T1, the output of the latch is 05H. When ALE goes low, the data byte 05H is latched until next ALE. And the output of latch represents the lower order address bus A7 – A0.

Some definitions:

After carefully observing timing diagram of instruction fetch shown above, we can make following observations:

1) The machine code 4FH is one-byte instruction that copies the contents of the accumulator into register C

2) The 8085 microprocessor requires one external operation – fetching the machine code from memory location 2005h

3) The entire operation, fetching, decoding and executing requires four clock periods.

Now, we can define following terms:

1) Instruction cycle – it is the time required to complete the execution of an instruction. 8085 has instructions which consume one to six machine cycles.

2) Machine Cycle – it is defined as the time required to complete one operation of accessing memory, I/O, or acknowledging an external request. This cycle may consists of three to six T-states

3) T – state – It is defined as one subdivision of the operation performed in one clock period. These subdivisions are internal states synchronized with the system clock and each T – state is precisely equal to one clock period.

Tristate Devices:

Tri-state logic devices have three stages: logic 1, logic 0 and high impedance. The term TRI – STATE is a trade mark of National Semiconductor and is used to represent three logic states. A tri-state device has has a third line called enable. When this line is activated, the device functions the same way as ordinary logic devices. When this third line is disabled, the logic device goes into high impedance state – as if it were disconnected from the system. Ordinarily, current is required to drive a device in logic 0 or logic 1 states. In high impedance state, practically no current is drawn from the system.

Assembler Directives

Assembler directives are the commands to the assembler that direct the assembly process. They indicate how an operand is treated by the assembler and how assembler handles the program. They also direct the assembler how program and data should be arranged in the memory. The important point to be noted here is they do not generate any machine code i.e. they do not contribute to the final size of machine code. And, they are assembler specific.

Some assembler directives are defined below:

TITLE directive:

This directive is used to give a maximum 60 characters wide title to the assembly language program. The title immediately follows the directive.

For example, TITLE ALP to find gcd of two numbers

.MODEL directive

This directive is used to specify how many code and data segments are necessary for the program.

The syntax is: .MODEL memory_model. The memory model can be chosen based on our requirement as follows:

	Model
	No. of code segments
	No. of Data Segments

	SMALL

MEDIUM

COMPACT

LARGE
	1

More than 1

1

More than 1
	1

1

More than 1

More than 1

.STACK directive

This directive is optional and is used to define the size of the stack segment.

Syntax: .STACK <size>
For example, we can define a 100 bytes stack segment as .STACK 100d

.DATA directive

This directive is used to define data segment necessary for our program.

Data can be of different types like byte, word, double word or quad word. They can be declared using directives as follows:

DB – Define Byte

DW – Define Word

DD – Define Double Word

DQ – Define Quad Word

DT – Define Ten Bytes

There is one special directive to define blocks of larger size. It is DUP.

Syntax: label
type
size
DUP (value to initialize in all locations)

They are all used in data segment as follows:

.data

A DB 10H

X DW 1234H

Y DD 11112222H

Z DQ 10H
; 0 will be stored in higher bytes

STR DB 100 DUP (0)
; 100 bytes are reserved with a value of 0 in each location

.CODE directive

This directive is used to indicate the beginning of instructions i.e. the assembly code.

The assembly language program is end with END directive

ALIGN directive
The ALIGN directive forces the assembler to start the next segment at address which is divisible by the number mentioned immediately after ALIGN directives.

Number can be 2, 4, 6, 8, or 16

For example, ALIGN 16 forces the assembler to align the next segment at an address that is divisible by 16.

Assembler fills the unused bytes with 0 for data and NOP instructions for code.

DOS loads CODE segment first and then only it loads DATA segment to memory. Hence ALIGN directive is used usually at the end of code segment.

ASSUME directive

This is specific to MASM Assembler. It is used to give symbolic names to the different segments.

For example, Assume cs:code, ds:data, ss:stack at the first line of your program indicates there are three segments in the program and data is the name given to data segment, code is the name of code segment and stack is the name for stack segment. Remember data, code and stack are user given names.

SEGMENT and ENDS directives
They are used to mark the beginning and end of the particular segment.

Syntax:

segment_name SEGMENT

.

.

.

segment_name ENDS

For example, data segment can be declared as:

DATA SEGMENT

X DB 10H

Y DB 20H

Z DB ?

DATA ENDS

Similarly code and data segments can also be declared.

PROC and ENDP directives
They are used to define procedures in assembly language programs. They mark the beginning and end of the procedure.

Syntax:

Proc_name
PROC

<NEAR/FAR>

.

.

.

body of the procedure

.

.

.

RET

Proc_name
ENDP

Observe ENDP is always preceded by either RET or IRET instruction.

MACRO and ENDM directives

They are used to define macros in assembly language programs. MACROS are a set of instructions which are intended to do a particular task. Where ever assembler finds the name of the macro in the main program, it replaces the set of instructions present in the macro at that place.

Syntax:

Macro_name MACRO <set of parameters>

.

.
body of the macro

.

.

ENDM

Some Simple Assembly Language Programs:

P1: Write an ALP to find the GCD of two bytes and store the result in a memory location:

Assume cs:code, ds:data

data segment

n1
db 1BH
; 27d

n2
db 15H

; 21d

gcd
db ?

; byte reserved to store gcd

data ends

code segment

start:

mov ax, data

mov ds, ax
; initializing ds register

mov al, n1

comp_again:

cmp al, n2
; is (n1) = (n2) ?

je success

jg next

; is (n1) > (n2) ?

sub n2, al
; no!, then do this

jmp comp_again ; compare again to check for equality

sub al, n2

jmp comp_again

success:

mov gcd, al
; store gcd in the byte reserved

code ends

end start

P2: Let us continue the same program to make it find LCM of those numbers.
Logic used is very simple. We will find the product of those numbers whose GCD is to be found and divide the product by GCD. The quotient we get will be the LCM.

Continued code would be something like this:

mov al, n1
; take the first byte into al register

mul n2

; ax ((al) x (n1)

div gcd

; (ax)/gcd, (ah) (remainder, (al) (quotient

mov lcm, al
; so, we have to declare space for lcm in data segment

A1: Write an ALP to find LCM using addition logic.

P3: Let’s discuss an ALP to transfer a block of bytes from one memory location to another.

P4: ALP to exchange the contents of two blocks of bytes.

P5: Let’s use XCHG instruction to do the same.

The changes in “rpt loop” are as follows:

mov al, [si]

xchg al, [di]
; exchange (si) with (di). (right now al contains (si))

mov [si], al
; put the (di) at location pointed by si. Now al contains (di)

P6: Write an ALP to search for a byte using linear search

Solution:

Assume cs:code, ds:data

Data segment

a db 10h, 20h, 0ah, 05h, 33h

n dw $-a

key db 0ah

msg1 db “Found the key$”

msg2 db “key Is not found$”

data ends

code segment

start:

mov ax, data

mov ds, ax

mov cx, n

lea si, a
; offset of array

mov al, key
; key will be in al reg

cmp al, [si]

je success
; if (al) is equal to contents of location pointed by si, display success

lea dx, msg2
; else unsuccessful msg

jmp disp

success:

lea dx, msg1

disp:

mov ah,9

int 21h

mov ah, 4ch

int 21h

code ends

end start

P7: Search a key element in a list of n numbers using the Binary Search algorithm
assume cs:code,ds:data

data segment

 a db 10h,20h,30h,40h,50h
; Sorting only bytes. Try for words also.

n db n-a

key db 20h

msg1 db "key not found$"

msg2 db "key found at position: "

pos db ?,"$"

; msg2 continues till here!!!

data ends

code segment

start:

 mov ax,data

 mov ds,ax

 mov al,0

; low

 mov dl,n

 dec dl

; high

again:

 cmp al,dl

 ja failed

 mov cl,al

 add al,dl

 shr al,1
; mid

 mov ah,00h

 mov si,ax

 mov bl,[si]

; [mid] in bl

 cmp bl,key

 jae loc1

; [mid] >= key ?

 inc al

; no, low = mid+1, to search in second half

 jmp again

loc1:

 je success

; [mid] = key ?

 dec al

; no, high = mid – 1, to search in first half

 mov dl,al

 mov al,cl

 jmp again

failed:

 lea dx,msg1

; key not found

 jmp display

success:

 inc al

 add al,30h

; store ASCII value at pos. guess why ????

 mov pos,al

 lea dx,msg2

display:

 mov ah,9

 int 21h

 mov ah,4ch

 int 21h

code ends

end start

P8: Write an ALP to sort the given array using bubble sort

assume cs:code,ds:data

data segment

 x db 60h,10h,20h,30h,40h,50h ;array that might get sorted immediately

 ; after first pass

 n dw n-x ; no. of elements

data ends

code segment

start:

 mov ax,data

 mov ds,ax

 mov bx, n

 dec bx ; no. of passes needed

next_pass:

 mov ah,00 ; a flag. can u guess why?

 mov cx,bx ; no. of comparisons = no of passes left

 lea si,x

next_comp:

 mov al,[si]

 cmp al,[si+1] ; [si] Vs [si+1]

 jle do_nothing ; ascending order, for descending jge

 xchg al,[si+1]

 mov [si],al

 mov ah,1

do_nothing:

 inc si

 loop next_comp

 cmp ah,00

 je finish ; array is already sorted

 dec bx

 jnz next_pass

finish:

 mov ah,4ch

 int 21h

 code ends

end start

P9: Write an ALP to sort the given array using insertion sort

assume cs:code,ds:data

data segment

 a dw 55h,44h,33h,22h,11h

 n dw (n-a)/2

data ends

code segment

start:

 mov ax,data

 mov ds, ax

 mov cx,2

; element at this position to be sorted

next_pass:

 mov bx, cx
; no of comparisons needed

 dec bx

 mov si,bx

 add si,si

; offset of number to be sorted

 mov ax,a[si]

next_comp:

 cmp a[si-2],ax

 jbe no_change
; if [si] > [si-2], then pass is over

 mov dx,a[si-2]

 mov a[si],dx

 dec si

 dec si

 dec bx

 jnz next_comp

no_change:

 mov a[si],ax

 inc cx

 cmp cx,n

 jbe next_pass

 mov ah,4ch

 int 21h

 code ends

 end start

P10: Reverse a given string and check whether it is a palindrome or not.

assume cs:code,ds:data

data segment

 str1 db 'madam'

 n dw n – str

 str2 db 5 dup(?)

 msg1 db "pallindrome$"

 msg2 db "not a palindrome$"

data ends

code segment

start:

 mov ax,data

 mov ds,ax

 mov es,ax

; please observe this !!!!!!

 mov cx,n

 lea si,n

; a simple trick to make si pointing to last character of main string

 dec si

 lea di,str2

nextchar:mov al,[si]

 mov [di],al

 dec si

 inc di

 loop nextchar

 lea si,str1

 lea di,str2

 cld

; so that si and di will be incremented

 mov cx,n

 rep cmpsb

 jnz unsuccess

 lea dx,msg1

 jmp disp

unsuccess:lea dx,msg2

 disp:mov ah,9h

 int 21h

 mov ah,07h

 int 21h

 code ends

 end start

MODULAR PROGRAMMING in 8086/8088:

Modularity increases the efficiency of programming. Instead of writing big monolithic programs, the task can be divided as subtasks and can be developed in parallel which saves times. And the modules can be used in different programs which reduce even the testing time since they are all tested with all possible inputs earlier.
Modularity in 8086 is achieved using i) Procedures (Subroutines) and ii) Macros

i) Procedures or subroutines:

Procedure is a group of instructions that usually performs one given task and is important because it is used many times by a program. But, it is stored only once in the memory. This saves memory space and also makes the task of programming much simpler because it takes less time to code a program that contain subroutines.

The only disadvantage with subroutines is that it takes the computer a small amount of time to link to the subroutine (CALL) and return from it (RET). Stack is used to store the return address so that subroutine may return to the program at that point after the CALL instruction.

Two new assembler directives appear in the list: PROC and ENDP, they mark the beginning and end of the procedure. FAR/NEAR is specified along with PROC directive to indicate whether the procedure is in the different segment or in the same code segment respectively.

Example:

Add_2_nos PROC NEAR

mov ax, bx

add ax, cx

RET

Add_2_nos ENDP

Default access specifier is NEAR.

We can use the above procedure in a main program using CALL instruction as:

.

.

.

CALL Add_2_nos

.

.

If the procedure is present in a different code segment, then it should be declared in the current code segment using EXTRN directive.

For Example: EXTRN Add_2_nos
; should be present at the beginning of code segment

ii) Macros:

Macro is also a set of instructions that is intended to perform one particular task. The difference here is unlike procedures which are stored only once in the memory. Macro definition appears at all the places of its invocation. That is, in entire set of instructions are will appear in the place its invocation. So, macros take more space in memory. As there is no need for the control to jump to a different memory location and since there is no need to remember the return address, macros are bit faster compare to procedure/subroutines.

We use two directives to write macros: MACRO and ENDM

Example:

Display MACRO msg1

mov ah,9

lea dx,msg1

int 21h

ENDM

Here, msg1 is a parameter. The macro can be invoked by simply specifying its name as:

.

.

 Display str1

.

.

Differences between Procedures and Macros:

	Procedures

	Macros

	1. Use PROC and ENDP directives

2. Stored only once in the memory , hence take less memory

3. Control is required to be transmitted to the place where procedure is present, hence more time needed for execution

4. Makes use of stack to store the return address

5. Difficult to pass parameters

6. CALL instruction is used to call a procedure
	1. Use MACRO and ENDM directives

2. Instructions replace all invocations hence more memory

3. Since, instructions are copied at all invocations, no need to transfer the control, hence comparatively lee time is needed

4. No need of stack as no control transfer

5. Easy to pass parameters

6. No instruction is needed to invoke a macro

P11: Write an ALP to find the factorial of a byte data using recursion.

assume cs:code,ds:data

data segment

 x db 5

 res db ?

data ends

code segment

start:

 mov ax,data

 mov ds,ax

 mov al,x

 call facto

 mov ah,4ch

 int 21h

; procedure to find factorial of a byte

facto proc

 cmp al,00

 je finish

 push ax

 dec al

 call facto
; recursively calling facto

 pop ax

; first return is to this address

 mul res

 mov res,al

 ret

finish:

 mov res,01
; recursion breaking condition

 ret

; first return instruction

facto endp

 code ends

end start

P12: Compute nCr using recursive procedure. Assume that ‘n’ and ‘r’ are non-negative integers.

Recurcive procedure: if r = 0 and r = n then nCr = 1

 Else if r = 1 and r = n – 1, then nCr = n

 Else nCr = n-1Cr + n-1Cr-1

assume cs:code,ds:data

data segment

 n db 5

 r db 5

 res db ?

data ends

code segment

start:

 mov ax,data

 mov ds,ax

 mov al,n

 mov bl,r

 call encear

 mov ah,4ch

 int 21h

encear proc

 cmp bl,00

 je ncr_1

 cmp bl,al

 je ncr_1

 cmp bl,01

 je ncr_n

 dec al

 cmp bl,al

 je ncr_n_1

 push ax

 push bx

 call encear

 pop bx

 pop ax

 dec bl

 push ax

 push bx

 call encear

 pop bx

 pop ax

 ret

ncr_1:

 mov res,01

 ret

ncr_n_1:

 inc al

ncr_n:

 add res,al

 ret

encear endp

code ends

end start

DOS And BIOS services
A typical PC system consists of many components besides the 80x86 CPU and memory. MS-DOS and the PC’s BIOS provide a software connection between your application programs and the underlying hardware. Although it is sometimes necessary to program the hardware directly yourself, more often than not it’s best to let the system software (MS-DOS and the BIOS) handle this for you. Furthermore, it’s much easier for you to simply call a routine built into your system than to write the routine yourself.

You can access the IBM PC system hardware at one of three general levels from assembly language. You can program the hardware directly, you can use ROM BIOS routines to access the hardware for you, or you can make MS-DOS calls to access the hardware. Each level of system access has its own set of advantages and disadvantages. Programming the hardware directly offers two advantages over the other schemes: control and efficiency. If you’re controlling the hardware modes, you can get that last drop of performance out of the system by taking advantage of special hardware tricks or other details which a general purpose routine cannot. For some programs, like screen editors which must have high speed access to the video display), accessing the hardware directly the only way to achieve reasonable performance levels.

On the other hand, programming the hardware directly has its drawbacks as well. The screen editor which directly accesses video memory may not work if a new type of video display card appears for the IBM PC. Multiple display drivers may be necessary for such a program, increasing the amount of work to create and maintain the program. Furthermore, had you written several programs which access the screen memory directly and IBM produced a new, incompatible, display adapter, you’d have to rewrite all your programs to work with the new display card.

Your work load would be reduced tremendously if IBM supplied, in a fixed, known, location, some routines which did all the screen I/O operations for you. Your programs would all call these routines. When a manufacturer introduces a new display adapter, it supplies a new set of video display routines with the adapter card. These new routines would patch into the old ones (replacing or augmenting them) so that calls to the old routines would now call the new routines. If the program interface is the same between the two set of routines, your programs will still work with the new routines. IBM has implemented such a mechanism in the PC system firmware. Up at the high end of the one megabyte memory space in the PC are some addresses dedicated to ROM data storage. These ROM memory chips contain special software called the PC Basic Input Output System, or BIOS. The BIOS routines provide a hardware-independent interface to various devices in the IBM PC system. For example, one of the BIOS services is a video display driver. By making various calls to the BIOS video routines, your software will be able to write characters to the screen regardless of the actual display board installed.

At one level up is MS-DOS. While the BIOS allow you to manipulate devices in a very low level fashion, MS-DOS provides a high-level interface to many devices. For example, one of the BIOS routines allows you to access the floppy disk drive. With this BIOS routine you may read or write blocks on the diskette. Unfortunately, the BIOS don’t know about things like files and directories. It only knows about blocks. If you want to access a file on the disk drive using a BIOS call, you’ll have to know exactly where that file appears on the diskette surface. On the other hand, calls to MS-DOS allow you to deal with filenames rather than file disk addresses. MS-DOS keeps track of where files are on the disk surface and makes calls to the ROM BIOS to read the appropriate blocks for you. This high-level interface greatly reduces the amount of effort your software need expend in order to access data on the disk drive.

Some DOS functions:

Function 01: Read a character with echo

Input:
AH – 01

Returns: AL – ASCII value of the key pressed

For Example:

MOV AH, 01H

INT 21H
; (AL) = ASCII value of key pressed

Function 02: Print a character on screen

Input: AH – 02

DL – ASCII value of character to be printed

Returns: Nothing

For example:

MOV AH, 02

MOV DL, 41H
; ASCII value of ‘a’

INT 21H

; prints ‘a’ on console

Function 07: Read a character without echo

Input: AH – 07

DL – ASCII value of character read

Returns: Nothing

For example:

MOV AH, 07

INT 21H

; ASCII value of character will be in AL

Function 09: Print a character string

Input: AH – 09

DS:DX – offset of string

Returns: Nothing

For example:

MOV AH, 09

LEA DX, msg

; msg is the starting offset of msg in data segment

INT 21H

; prints msg on console

Some BIOS functions:

Function 00: setting screen resolution

Input:
AH – 00

AL – 0 to 9, representing video mode

Returns: Nothing

For example:

MOV AH, 00

MOV AL, 02
; Sets the video mode to 80 X 25 in grey mode ie. 25 lines/screen and

; 80 characters/line

INT 10H
; observe the int number it is 10h not 21h

Function 02: sets the cursor position

Input:
AH – 02

DH – line number i.e. y coordinate

DL – character number within line i.e. x coordinate

Returns: Nothing

For example:

MOV AH, 02

MOV DL, 40d
; placing cursor at the center of the screen

MOV DH, 12d

INT 10H

P13: Find out whether a given sub string is present or not in a main string of characters.

assume cs:code,ds:data

data segment

 ms db "Angels and demons"

 lms db lms-ms

 str db "demons"

 lss dw lss-str

 msg1 db "substring has found$"

 msg2 db "substring not found$"

data ends

code segment

start:

 mov ax,data

 mov ds,ax

 mov es,ax

 mov dl,lms

 lea di,ms

search:

 mov bx,di

 lea si,str

 mov cx,lss

 cld

 rep cmpsb

 jz success

 inc bx

 mov di,bx

 dec dl

 jnz search

 jmp failure

success:

 lea dx,msg1

 mov ah,09h

 int 21h

 jmp exit

failure:

 lea dx,msg2

 mov ah,09h

 int 21h

exit: mov ah,4ch

 int 21h

code ends

end start

P14: Program to simulate a Decimal Up-Counter to display 00-99

assume cs:code

code segment

start:

 mov cx,100d

 mov bl,00

next_digit: mov al,bl

 aam

 add ax,3030h

 mov dl,ah

 mov ah,2

 push ax

 int 21h

 pop ax

 mov dl,al

 mov ah,2

 int 21h

 mov dl,0dh

 mov ah,2

 int 21h

 call delay

 inc bl

 loop next_digit

 mov ah,4ch

 int 21h

delay proc

 mov si,02202h

 l1:mov di,0ffffh

 l2:dec di

 jnz l2

 dec si

 jnz l1

 ret

delay endp

code ends

end start

P15: Program to create a file (input file) and to delete an existing file.

assume cs:code, ds:data

data segment

 fname2 db "shashi.txt"

 msg1 db "File created successfully$"

 fname1 db "emp.dat"

 msg2 db "File deleted successfully$"

.code

 mov ax,@data

 mov ds,ax

 mov ah,3ch

 mov cx,00

 lea dx,fname2

 int 21h

 jc next

 disp msg1

next:

 mov ah,41h

 lea dx,fname1

 int 21h

 jc finish

 disp msg2

finish:

 mov ah,4ch

 int 21h

code ends

end start

Timings and delays

· we know that each instruction take some machine cycles to execute

· Each machine cycle has certain number of clock periods

· Each clock period lasts for the period exactly equal to t = 1/f where f is the frequency with which processor works

· So, finally each instruction take definite amount of time to execute

· We can make use of this time to generate delays in programs

We need not to use more number of instructions to generate required delay. We can make use of loops which make a set of instructions execute repeatedly to generate delays. In loops, procedures and interrupt service routines the number of instructions may be less but they actually have capacity to produce required delays.

We can divide the procedure to find the delay into following convenient steps:

Step 1: Determine the exact delay required. Let’s call it as Td
Step 2: Choose the instructions to be used in delay loop. Care must be taken not to use instructions or registers that affect the main program calling the delay procedure.

Step 3: Determine the number of clock cycles needed to execute each instruction chosen. Also calculate the total number of clock cycles required to execute the loop once. Let’s call it ‘n’

Step 4: Find t, the time required for one clock period. i.e. t = 1/f

Step 5: Determine the time required to execute the loop once using n * t

Step 6: Find N, number of times the loop has to be executed to generate Td delay using

N =
[image: image20.wmf]ú

û

ù

ê

ë

é

t

n

T

d

*

Q: Write a procedure to generate a delay of 100 ms in a microprocessor which works with 10 MHz frequency.

Step 1: Exact delay needed Td = 100ms

Step 2: Instructions chosen –

MOV CX, N

NOP

DEC CX

JNZ label

Step 3:
The above mentioned instructions take 4, 3, 2 and 16/4 clock period respectively. 16/ 4 says if there is jump to label then 16 clock periods else only 4 clock periods.

So, n = 3 + 2 + 16 = 21 (MOV CX, N not included in loop).

Step 4: Here, t = 1/10 MHz = 0.1 (sec

Step 5: n * t = 2.1 (sec

 Step 6:

N = 100ms/2.1 (sec = 47619 = BA03H

Now, the procedure

Delay Proc

mov cx, 0ba03h

loc1:

nop

dec cx

jnz loc1

ret

Delay Endp

Let’s manually verify whether this procedure is creating 100ms delay:

Exact delay
= 4 * 0.1 + (2 + 3 + 16) * 47618 * 0.1 + 4 * 0.1 + 8 * 0.1 (last one is from ret instruction which consumes 8 clock periods)

= 99.999 ms

Here the error is by 0.1ms which is very small. So, these delays can be practically used anywhere. If high precision delays are required then can be generated using programmable timers or counters.

The procedure described above cannot generate delays of the order of minutes. We could continue the procedure adding more number of instructions. Instead, we can put this loop inside an outer loop and increase the number of times the instructions are executed. This gives us a procedure which could generate minutes of delays.

Sample procedure and corresponding calculations are as follows:

[image: image21]

Microprocessor

Memory

(RAM/ROM)

I/O

System Bus

16-bit register

to be PUSHed

After PUSH

Before PUSH

SP after

PUSH

10H

55H

33H

10H

20H

16-bit register

PUSHed

50006H

50005H

50004H

50003H

50002H

50001H

50000H

SP before

PUSH

50006H

50005H

50004H

50003H

50002H

50001H

50000H

10H

55H

33H

1020H

50004H

1020H

50002H

(SP) = (SP) – 2

50004H

1020H

(SP) = (SP) + 2

50002H

SP before

POP

16-bit register into which tos to be POPed

50006H

50005H

50004H

50003H

50002H

50001H

50000H

10H

55H

33H

ABH

CDH

After POP

Before POP

SP after

POP

(16-bit register)

after POP

50006H

50005H

50004H

50003H

50002H

50001H

50000H

10H

55H

33H

XXXX

Primary Memory

RAM

ROM

Magnetic

Core

Semiconductor

Bipolar

MOS

Static

Dynamic

Mask ROM

PROM

Mask ROM

PROM

EPROM & EAPROM

CS

WE

D7 – D0

A9 – A0

	1K X 8

RAM chip

8 – BIT MICROPROCESSOR BUS

D7 – D0

A15

A14

A13

A12

A11

A10

A9 – A0

R/W

RAM1

A9 – A0

WE

D7 – D0

 CS

RAM2

A9 – A0

WE

D7 – D0

 CS

RAM3

A9 – A0

WE

D7 – D0

 CS

RAM4

A9 – A0

WE

D7 – D0

 CS

RAM5

A9 – A0

WE

D7 – D0

 CS

RAM6

A9 – A0

WE

D7 – D0

 CS

8 – BIT MICROPROCESSOR BUS

A9 – A0

R/W

WE

WE

D7 – D0

D7 – D0

D7 – D0

D7 – D0

 CS

 CS

 CS

 CS

WE

WE

A9 – A0

A9 – A0

A9 – A0

A9 – A0

RAM4

RAM3

RAM2

RAM1

A15

A14

A13

A10

A12

A11

B

A

Y3

Y2

Y1

Y0

2-to-4

decoder

Data direction register

1

1

0	

1

0

1

0

0

I/O port

	

Data direction register

1

1

0	

	

	

Output device

1

0

1

0

0

Input device

X

C

X

P

AC

X

Z

S

The instruction Register holds the instruction fetched from memory

The Instruction Decoder decodes the instruction in the Instruction Register and passed relevant information to the timing and control unit

Timing and Control Unit synchronizes all microprocessor operations with the clock and generates the control signals necessary for communication between microprocessor and peripherals

Instruction Register

Instruction Decoder

Timing and Control Unit

Accumulator

Temp. Reg.

IR

Address Buffer

Data/adr Buffer

Instruction Decoder & m/c cycle encoding

Flags

Timing and Control

W

Z

B

C

D

E

H

L

Stack Pointer

Program Counter

Inc/Dec Address Latch

MUX

Interrupt Control

ALU

8-bit internal data bus

SID

SOD

INTR

INTA

RST 5.5

RST 6.5

RST 7.5

TRAP

Clk out

READY

RD

WR

ALE

S0

S1

IO/M

HOLD

HLDA

RESET IN

RESET OUT

X0

X1

CLK

 GEN

Control

Status

DMA

Reset

A15 – A8

Address Bus

AD0 – AD7

Address/Data Bus

VSS

VCC

Interrupt Signals

8085

(p

Address Bus

DMA Signals

Serial I/O Signals

Address/Data Bus

Timing and Synchronization Signals

Control & Status Signals

8085

(p

TRAP

RST 7.5

A8 – A15

RST 6.5

RST 5.5

INTR

AD0 – AD7

� EMBED Equation.3 ���

RESETOUT

RESETIN

CLOCKOUT

CRYSTAL

READY

SOD

SID

HLDA

HOLD

S1

S0

ALE

IO/� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

B C

D E

H L

Stack Pointer

Program Counter

Internal Data Bus

ALU

Instruction Decoder

4F

Memory

2000

2005

2005

Address Bus

Control Logic

RD

4F

Data Bus

4F

Accumulator

Temp. Reg.

IR

Address Buffer

Data/adr Buffer

Instruction Decoder & m/c cycle encoding

Flags

Timing and Control

W

Z

B

C

D

E

H

L

Stack Pointer

Program Counter

Inc/Dec Address Latch

MUX

Interrupt Control

Serial I/O

ALU

8-bit internal data bus

SID

SOD

INTR

INTA

RST 5.5

RST 6.5

RST 7.5

TRAP

Clk out

READY

RD

WR

ALE

S0

S1

IO/M

HOLD

HLDA

RESET IN

RESET OUT

X0

X1

CLK

 GEN

Control

Status

DMA

Reset

A15 – A8

Address Bus

AD0 – AD7

Address/Data Bus

START

n1 (num1

n2 (num2

is

(n1) = (n2)

?

GCD (n1

END

yes

(n2) ((n2) – (n1)

is

(n1) > (n2)

?

yes

no

no

(n1) ((n1) – (n2)

Assume cd:code, ds:data

data segment

	x db 10h, 20h, 30h, 40h, 50h

	y db 5 dup(?)

data ends

code segment

start:	mov ax, data

	mov ds, ax

	

	mov cx, 05h

	lea si, x

	lea di, y

	

rpt: 	mov al, [si]

	mov [di], al

	inc si

	inc di	

	

	loop rpt

	

mov ah, 4ch 	; getting back ; to dos prompt

	int 21h		; dos interrupt

	

	code ends

end start

10H

20H

30H

40H

50H

x

y

After execution

Initial Values

Assume cs:code, ds:data

data segment

	x db 10h, 20h, 30h, 40h, 50h

	y db 5 dup(?)

data ends

code segment

start:	mov ax, data

	mov ds, ax

	

	mov cx, 05h

	lea si, x

	lea di, y

rpt: 	mov al, [si]

	mov bl, [di]

	mov [di], al

	mov [si], bl

	inc si

	inc di	

	loop rpt

	

mov ah, 4ch 	; getting back ; to dos prompt

	int 21h		; dos interrupt

	

	code ends

end start

10H

20H

30H

40H

50H

0aaH

0bbH

0ccH

0ddh

0eeh

x

y

After execution

Initial Values

AL

BL

3

AL

SI

SI

2

1

DI

Delay proc

	mov bx, N

loc2:

	mov cx, 0ffffh

loc1:	

	nop

	dec cx

	jnz loc1

	dec bx

	jnz loc2

	ret

Delay endp

Time taken by Inner loop = (3 + 2 + 16) * 65535 * 0.1

				 = .13762 sec

Time taken to execute outer loop once

			 = .13762 + (4+2+16)*10-6 * 0.1

			 = .13764 sec

No. of times the loop to be executed to generate 10 mins. of delay	 = 10 * 60 / .13764

				 N = 4359

www.bookspar.com | Website for students | VTU NOTES

1

_1233555237.unknown

_1233579242.unknown

_1233657071.unknown

_1240120397.unknown

_1233656469.unknown

_1233656432.unknown

_1233555262.unknown

_1231112529.unknown

_1233555163.unknown

_1231112437.unknown

_1231112336.unknown

