
Automated Stress Testing of Web Applications using User Session Data

MSc Project Report

2004/2005

Department of Computer Science,

King’s College London

Degree:

MSc Advanced Software Engineering

Student:

Mohammed Sidat

Supervisor:

Professor Mark Harman

Date:

2nd September 2005

Abstract

Consumers have on many occasions, surfed a web site to accomplish a task only to give up and go to a different site because the home page took too long to download. According to Juniper Communications [1] 46% of users will leave a preferred site if they experience technical or performance problems. In other words, if a site is slow, its users will find another, less frustrating way to do business.

With so many people relying on the Internet to perform a wide range of operations, application dependability has become vital to the success of any web business. As a result, many software companies have developed tools and methodologies to test and tune applications for functionality and performance, many of which have focused on optimizing system metrics rather than user experience.
In order to help test web applications from a functional and performance standpoint, this project focuses on leveraging user session data captured as users operate web sites. A test environment is established with many testing conditions. At each step, a test script based on a user session exercises the web application and detects faults. Also, more and more user sessions can be added, all simultaneously load testing the application.

Conventional performance load testing tools work correctly when test are carried out in isolation but this cannot reveal how web applications really cope under circumstances similar to actual multi-user activity [2]. Testing the load using user sessions to test the load will provide results that are more comprehensive and detect conflict between one or more tests.

To summarize, this project has four distinct achievements:

· Functionality: Tests appropriate paths and parameters of web applications to test complex functions such as credit card processing etc.

· Page Structures: Tests if appropriate pages contain specific elements such as text, scripts, forms, images and streaming media content.

· Security: Tests authenticated and protected areas of a web application.
· Performance: Mimics realistic user traffic and specifies response times during different load levels.
Acknowledgments

Before we begin, I would first like to express my thanks to the following people who helped make this project possible:

· Professor Mark Harman from the Computer Science Department at King’s College London, for his tremendous supervision and support.
· Andrew MacInnes from the New Media Department at the BBC, for his great support and comments.
· My friends who provided suggestions.
Contents

	1
	Introduction
	6

	
	
	
	

	
	1.1
	British Broadcasting Corporation (BBC)……………………………………..
	6

	
	1.2
	Background and Context……………………………………………………...
	6

	
	1.3
	Project Inspiration…………………………………………………………….
	7

	
	1.4
	Aims of This Project………………………………………………………….
	8

	
	1.5
	Summary……………………………………………………………………...
	8

	
	
	
	

	2
	Background
	9

	
	
	
	

	
	2.1
	Web Applications……………………………………………………………..
	9

	
	2.2
	Testing Web Applications…………………………………………………….
	10

	
	2.3
	Load Testing…………………………………………………………………..
	11

	
	2.4
	Choosing which Tests to Run…………………………………………………
	13

	
	2.5
	User Session Based Technique…………………………………………..…...
	13

	
	2.6
	Modelling Individual User Delays……………………………………………
	14

	
	2.7
	Test case Generation………………………………………………………….
	15

	
	2.8
	Automated Testing……………………………………………………………
	16

	
	2.9
	Extensible Mark-Up Language (XML)……………………………………….
	16

	
	3.0
	Regular Expressions (RegExp)……………………………………………….
	17

	
	3.1
	XML Path Language (XPath)………………………………………………...
	18

	
	3.2
	JTidy Pretty Printer…………………………………………………………...
	18

	
	
	
	

	3
	Design and Implementation
	20

	
	
	

	
	3.1
	Approach……………………………………………………………………...
	20

	
	3.2
	Capturing User Sessions Using HttpUnit……………………………………..
	20

	
	3.3
	User Sessions as Test Cases…………………………………………………..
	23

	
	3.4
	Performance Load Testing with User Sessions……………………………….
	24

	
	3.5
	Regular Expression Matching using XPath analysis………………………….
	25

	
	3.6
	Security Testing……………………………………………………………….
	27

	
	3.7
	Test Result…………………………………………………………………….
	28

	
	3.8
	Prototype Implementation…………………………………………………….
	28

	
	
	
	

	4
	Evaluation
	31

	
	
	
	

	
	4.1
	Overview……………………………………………………………………...
	31

	
	4.2
	E-Commerce Site……………………………………………………………..
	31

	
	4.3
	Fault Detection………………………………………………………………..
	32

	
	4.4
	Table of Results………………………………………………………………
	33

	
	4.5
	Charts……………………………………………………………………….…
	33

	
	
	
	

	5
	Conclusion
	36

	
	
	

	Bibliography
	37

	
	
	

	A
	System Class Diagram
	

	B
	Source Code
	

	C
	User Session
	

List of Figures

	1
	Sequence diagram of a web application……………………………………………...
	9

	
	
	

	2
	Testing approach for performance and functional testing……………………………
	10

	
	
	

	3
	Web load stress testing environment…………………………………………………
	12

	
	
	

	4
	Testing Approach…………………………………………………………………….
	20

	
	
	

	5
	HttpUnit classes used………………………………………………………………...
	21

	
	
	

	6
	Configurable test case implementation………………………………………………
	22

	
	
	

	7
	TestCase applying the Command Pattern……………………………………………
	24

	
	
	

	8
	TestResult applying the Collecting Parameter Pattern……………………………….
	28

	
	
	

	9
	Implementation overview of the system……………………………………………..
	29

	
	
	

	10
	Screenshot of the main system interface……………………………………………..
	29

	
	
	

	11
	Screenshot of Load testing interface.………………………………………………...
	30

	
	
	

	12
	Screenshot of bbc.co.uk site used in the experiment…………………………………
	31

	
	
	

	13
	Screenshot of online dating agency site used in the experiment……………………..
	32

	
	
	

	14
	BBC User Session 1 performance graph……………………………………………..
	34

	
	
	

	15
	BBC User Session 2 performance graph……………………………………………..
	34

	
	
	

	16
	Response-time degradation curve chart……………………………………………...
	35

List of Tables

	1
	Web application testing techniques…………………………………………………..
	7

	
	
	

	2
	Data from NetRatings - January 2004 (Average global web usage)…………………
	15

	
	
	

	3
	Test Report…………………………………………………………………………...
	33

Chapter 1 - Introduction

	Definition: User Session - Begins when a request from a new IP address reaches the server and ends when the user leaves the web site or the session times out. Each user session is a related sequence of events performed by the user through interaction with the web application.

1.1 British Broadcasting Corporation (BBC)

Professor Mark Harman from the Computer Science Department at King’s College London has developed a link with the BBC. Their New Media Department have an extensive amount of user session data and several highly demanding testing issues. This presented the opportunity of scoping a project to work on testing web applications, based on real session data, from one of the largest and most widely used websites in the world.

A demonstration of the tool developed for this project was given to Andrew MacInnes from the New Media Department at the BBC on the 26th August 2005, with very positive results. A future presentation will be held about the work carried out in this project at the BBC Headquarters in London, with the possibility of further collaboration in this new and emerging area of software testing.
1.2 Background and Context
Faulty web applications can cause many problems to businesses, economies and scientific progress. Therefore, it is important that web applications are reliable and to help with this they should be thoroughly tested [1]. Due to the lack of adequate web testing solutions, the need to develop relevant tools and methodologies becomes essential.
There are many types of tools and methodologies. However, many focus on various static analyses such as broken link detection, but do not directly address the testing of functional and performance requirements [1]. Functional testing checks whether the web application actually functions as intended. For example, testing whether or not certain pages contain relevant information or whether a request with certain parameters gets the required response [3].

Performance testing is aimed at discovering under what conditions an application's performance becomes unacceptable. This is done by changing the application inputs to place a heavier load on the application, measuring how performance changes with the variation in those inputs [4]. This activity is also called load testing. There are conventional load testing tools that work correctly when tests are carried out in isolation but this cannot reveal how web applications really cope under circumstances similar to actual multi-user activity [2].

Web applications typically involve complex, multi-tiered, heterogeneous architectures including web servers, application servers, database servers, and clients acting as interpreters. Testing approaches must be able to handle the various components in this architecture.

Approaches for testing the functional and performance requirements of web applications have been proposed [3, 4]. These are mainly white-box approaches, which involve identifying test requirements from system models. The problem with these approaches is that extensive human participation is required in the generation of test cases [3]. A limiting factor also is the cost of finding inputs that exercise the system as desired and selecting such inputs is slow and must be accomplished manually.
A UML based representation of a web application has been developed [5], which performs all-uses, and all-paths testing. This tool generates and executes test cases from user session data. However, significant intervention is required by the user for generating input. Another technique developed involves functional testing based on decision tables [6], which help in generating effective test cases. However, the process of generating test input in this manner is not automated.

To address these problems, this project proposes a testing approach for automated testing of web applications that utilises data captured in user sessions to create test cases that can effectively test the fault detection effectiveness, functionality, security and performance of a web application.
1.3 Project Inspiration
The inspiration for undertaking of this work is a research paper titled ‘Improving Web Application Testing with User Session Data’ [1]. In this paper, two approaches, “user session” and “white box”, were compared to assess their ability to detect faults in a web application.

The user session approach captures authentic user interactions as data for use in deriving test cases. The white-box approach requires testers to identify test requirements from a UML model of the web application to generate test cases.

An experiment on two techniques of each approach and a hybrid technique combining both of these approaches was undertaken. The two user-session based techniques are US-1 and US-2. The two white-box based techniques are WB-1 and WB-2. The hybrid-based technique is HYB as summarized in Table 1.

	WB-1
	Simplest white-box implementation

	WB-2
	WB-1 with boundary values

	US-1
	Transform individual user session into test cases

	US-2
	Combine interactions from different user sessions

	HYB
	Insert user session values into WB-1

Table 1. Web application testing techniques.
The results of the experiment showed that WB-1 and WB-2 used the fewest test cases, while HYB used the greatest number. WB-2 provided the greatest fault detection and coverage. US-1 and US-2 performed similarly, not as effectively as WB-2, but slightly better than WB-1. US-2 did not discover more faults than US-1 and HYB did not provide additional fault detection or coverage. US-2 found errors caused by conflicting data from different users.
Therefore, user session based techniques can be as effective as white-box based techniques, but at less expense. However, the types of faults detected differ, suggesting that white-box based techniques can be more successful if they make use of user sessions data. The effectiveness of user session based techniques improves as the number of collected user sessions increases. However, collecting and maintaining it is costly. Therefore removing redundant test cases and combining it with user session techniques is helpful for handling large number of requests found in commercial e-commerce sites [1].

1.4 Aims of This Project

At the outset of this project, there are four primary objectives:

1. Capture the sequence of user events or interactions during their usage of the web application using HTTPUnit.

2. Generate XML based test cases from these user sessions, leading to a reduction in required tester participation. Additional users will provide more inputs, thus creating a pool of data from which test cases can be generated automatically.

3. Develop a prototype tool allowing users to run the test cases to test the functionality, security and find faults in the web application. The test cases should specify the input conditions and expected output of each test as specified. It should be generated to be extensible and allow enhancements to be made for more complex and customizable tests.

4. Load test the newly generated test cases to test the performance of the web application and generate a test report.

The system to be developed will need a web application used by many that resembles as closely as possible to those found in the real world. An open source web application will be used to capture relevant user sessions to generate a test suite. The BBC website will also be used for testing purposes.

1.5 Summary

This approach can perform web application testing automatically once the test script is loaded and run. The same test can be repeated for regression testing purposes to see how the web application can cope under such loads. The tool has been tested on the large scale BBC website to prove the validity and effectiveness of the developed system.
Chapter 2 covers the background and literature review of the work undertaken in this project. Chapter 3 covers the design and implementation of the test suite, including the different technologies used in the development process. Then it goes on to cover the testing and results of the work undertaken in Chapter 4. Finally, Chapter 5 covers the conclusion and future work of this project.
Chapter 2 - Background

2.1 Web applications

Figure 1 shows how a simple web application functions. A user (client) sends a request through a web browser. The web server responds by delivering content to the client. This usually takes the form of a mark-up language such as HTML that can be interpreted by the browser to render a web page for the user to view. For example, if a request consists of merely a URL (a web site address), the server may return just a static web page [7].

Other requests are more complex and require further infrastructure. For example, in an e-commerce site, a request may include not just a URL, but also data provided by the user. This data is mainly through forms consisting of input fields (textboxes, checkboxes, selection lists) contained in a web page [7]. This information is translated into a set of name-value pairs (input field names and values), which becomes part of the request.

[image: image1.emf]
Figure 1. Sequence diagram of a web application.

Additional elements are needed to process the request received by the web server. A group of scripts or an application server may parse the request, queries a database server to retrieve information, and then use further scripts to generate HTML code to address the user request.

The application server, database, and scripts collaborate to assemble a response that fits the request. There are many varied technical components behind the web server and the technologies supporting them change often, as apparent in the common emergence of new standards for web protocols such as XML, XSL, SOAP and CCS [8].

2.2 Testing Web Applications

In a typical enterprise web application, some areas require the following types of testing:

· Integration Testing: Starting from the simplest components, classes, the developers need to program unit tests to ensure that the application's smallest units behave correctly - as part of a subsystem, and as part of the whole application.

· Load Testing: In some projects, performance requirements must be fulfilled, so the quality assurance engineers perform load tests to verify and document how the application performs under various conditions.

· Functional Testing: During application development, quality assurance engineers perform automated and manual functional tests to test the application's behavior from the user's viewpoint.

· Acceptance Testing: When a development project nearly completes a specific milestone, acceptance tests can be performed to verify that the application fulfilled the requirements.

[image: image2.jpg]TAVA APT

Functional

&

sen o,

Resource
Usa

Web Services

Memory
Analyzer

Figure 2. Testing approach for performance and functional testing.

An important factor influencing web applications is how the different pieces are connected. Figure 2 shows the approach taken in this project and is highlighted. Web application testing can be categorized in terms of the following connections [9]:

· Static links: Focuses on link validation and does not address any software or dynamic issues.

· Dynamic links: HTML links call software components to execute some process. This kind of coupling is difficult to test because of the networked nature of the software.

· Dynamic form links: HTML forms send data to software components that process the data. One issue with testing dynamic links is that data must be found or created for the forms.

· Dynamically created HTML: Web software usually responds to the user with HTML documents. The contents of the HTML documents often depend on inputs.

· State specific GUI: The content of HTML documents is determined not just by inputs but also by the state of the server such as data or time or session information.

· Software connections: This includes connections among back-end software components such as method calls.

· Off-site software connections: Some web applications will access software components that are available at a remote site. This type of connection is difficult to test because little is known about the off-site software.

· Dynamic connections: Both the J2EE platform and .NET allows new web components to be installed. These types of components are especially difficult to test because the tester cannot be sure how they will behave before deployment and execution.

System-wide testing is an important part of deployment of web applications. However, the tools available are either cost prohibitive or overly complex, often to the point that a human being is forced to test each area manually. Improving the automation can free the tester to focus on the most complex functionality [10].

Most testing tools are technology specific, making changes to the underlying technology difficult. In addition, most people either write unmaintainable scripts to test the web application, or worse, rely 100 percent on human testing.

What is needed is a tool that allows for:

· End-to-end system testing with dynamically created test actions based on user sessions.

· The same test data to test the same functionality regardless of the web application underlying technology.

· Automating the scripting process for ease of use.

· Using a standard such as XML for scripting the test case for extensibility and flexibility.

2.3 Load Testing
Ensuring that mission-critical web applications effectively handle all levels of user traffic is essential. Whether they are serving tens or thousands of users, web applications must always be prepared to provide swift and seamless service. Therefore, it is necessary to stress test those applications thoroughly [11].

The aim of load testing is to find the scalability of a web application once the number of accessing clients increases. What needs to be known is whether the web application can cope with 10, 100, 1000 or millions of users simultaneously. Response time is an important criterion when load testing a web application.

Suppose a web application is expecting a significant increase in the number of visitors or the site is adding new functionality, or the web pages have been redesigned. Potential performance problems such as these should be detected and fixed before making the web application available to users.

A key concept in load testing is the concept of a virtual user who simulates what a real user does. A load test can only be valid and comprehensive if the behaviour of virtual users is similar to those of actual users [11]. This can be accomplished by using user session data as shown in Figure 3.

[image: image3.png]

Figure 3. Web load stress testing environment.

The ultimate goal of load testing is to reassure, and confirm if the web application will respond acceptably for up to x clients making y requests a second. Unpredictable user behaviour and system variables expose the web application to the risk of failure. Load testing offers the following advantages [11]:

· Predictable costs.

· Avoidance of costly fixes.

· More accurate scalability projections.

· Optimal performance leading to an increased return on investment.

Despite copious testing, unforeseen problems can still occur once a system is placed into the production environment and made available to users. To stem these problems, some companies have implemented 'early warning' systems to continuously monitor key transactions and business functions [13].

Running load tests for a large number of virtual users and workload mixes may be very time consuming and expensive. Therefore, an automated way of achieving this would be the ideal solution and generating test cases rather than relying on manual tester input would be far easier.

2.4 Choosing which tests to run

When load testing is not done properly, the results are, at best, useless and, in the worst case, misleading, causing a company to either underestimate or overestimate a site's capacity [23]. A wrong result could cause unnecessary expenses, delays or potentially disastrous business decisions. From this, is clear that the tester's responsibility is to conduct performance tests that will yield both accurate and useful results. Furthermore, conducting the right test for each stage of the development effort will limit the total amount of work needed to complete the effort.

The categories below represent a good cross-section of types tests named by a wide variety of sources ranging from the Rational Unified Process to the software testing standards of the British Computer Society Specialist Interest Group in Software Testing.

· Low-load: Executed at not more than 15% of the expected production user load.

· Load: Executed at expected production user loads. Used to validate the actual performance of the system as experienced by users in production. Examples of load tests are response-time, scalability, and component-based tests.

· Heavy-load: Executed at greater-than-expected user loads. Most often used to test application and system stability and recovery, and to collect data for capacity planning. Examples of heavy-load tests are stress, spike, and hammer tests.

· Specialty: Specialty tests are generally created at the request of a developer or architect to help resolve a particular performance bottleneck.

Any of the tests mentioned here can be conducted at various connection rates. These tests will always provide "best case" results for connection rates slower than the network being connected to such as 100 MB/sec LAN or with a dial-up 56.6 KB/sec modem. Typically, only user-experience tests are executed at various connection rates. Valuable results can be gathered by conducting the same test under the same load several times, each with a different connection rate, and then comparing the results.

2.5 User Session based technique

In this testing technique, data is collected from users of a web application by the web server. Because a web application runs in just one environment with the organization performing the testing controls, the collection of client requests can be accomplished easily. Therefore, additional infrastructure to collect this data is not required.

Multiple user sessions can be created quickly that match a known user’s behaviour. By doing so, testers can ensure that traffic generated matches real world user traffic. Load-testing tools based on user session data can be quickly configured accommodate this using multiple user profiles. In addition, the effectiveness of user session techniques improves as the number of collected session’s increases. However, the cost of collecting, analyzing, and replaying test cases also increases.

The BBC has provided two sets of anonymous user session logs taken from specific periods between 2003 and 2005 an example of which is shown below. The logs contain information about every user request such as the time stamp, anonymous user ID, URL for page accessed, URL parameters values and HTTP request and response codes.

[image: image4.png]& Mozilla Firefox

Ele Edt View Go Bookmarks Toos Help

G- - &) @) [Aesiic:ocuments z2nandsizusettingsiadninstatoriDeskiop| Codelcheck_postcader_ive sl
-
$I: check_postoodex live.sml,v 1.4 2005/02/03 15:00:00 lauzence Exp §
-
- <multihttp>
<tifle>Posteoder, ive</tifle>
- <description>
Checks returmed content from posteod, changing user's postcods
<fdescription>
- <config>

<useragent cookies="keep"/>
<basewl>hitpfrww.bbe.co.uk<fbasem>
<fconfig>
<i-- Get a BBC UID cookie —->
- <transaction deseription="Collect BBC UID cookis">
<request type="GET" document=""itpfswvww bbe.co.uldradiofindes shiml'f>
<response/>
<fansaction>
- <transaction deseription="Simple postcoder test, data retumed from postode request”>
- <request type="GET" document="htip:/fsww.bbe.co.ukcgi-perliwhereilive/serveripostcodedata pl'>
<key name="loc">¢h10+5sn</key>
<key name="customer">ican<fley>
<frequest>

- <response>
<test type="content"><name>Scotland<name> <ftest>
<fresponse>
<fansaction>
- <transaction description="Change user's home posicods">
- <request type="POST" document="hiip:fww.bbe.co.uk/cgi-perliwhereilvelquerylwi_select pl">
<key name="loc">wla+laa<fkey>
<key name="type">home=/key>
<frequest>

- <response>
<test type="stanus">200<test>

¥ 0« G

Done

2.6 Modelling individual user delays

Variance in user delays is not relevant to actual test results, and that delaying 20 seconds between each user activity provides the same results across a large user community [20].

Several methods can be used to get an idea of the user delay times associated with user activities on a web site. The best method is to use real data collected from the web application. There is sometimes a need to make educated guesses or approximations regarding activity on the site. The four most acceptable methods of determining this are as follows:
· When testing a web site, the actual values and distribution can be determined by extracting the average and standard deviation for the viewing time from the user session for each page. With this information, the user delay time can easily be determined.

· In the absence of user sessions, leveraging metrics and statistics already available by companies such as Nielsen/NetRatings, Keynote, or MediaMetrix would be suitable. These statistics provide data on average page-viewing times and user session duration based on an impersonal sample of users and web sites. Although these numbers are not from specific web sites, they can work quite well as first approximations. Table 2 is an example of data from the NetRatings site.

[image: image5.png]Global Internet Index Average Usage,
January 2004, Home

Universe Estimate

Sessions/Visits per |30 29 5.43%
Person per Month

Dormains Visited per |59 57 4.22%
Person per Month

Web Pages per 1,007 956 5.34%
Person per Month

Page Views per 33 33 0.00
Surfing Session

PC Time Spent 25:51:38 |2415:12 |6.63%
per Month

Time Spent During |D:5Li11 |0:50:36 | 1.14%
Surfing Session

Duration of 3 0:00:48 |0:00:47 |1.08%
Web Page Viewsd

Active Digital 294,478,251|277,079,105|6.28%
Media Universe

Current Digital Media| 447,904,386 421,901,767 |6.16%

Table 2. Data from NetRatings - January 2004

(Average global web usage).

This is very high-level information that may or may not be useful in modelling actual users. The most relevant piece of information is "Duration of a Page Viewed" which reports the average amount of time users spend viewing all types of web pages. The remainder of the statistics are consolidated across a huge user community surfing to any combination of web sites.

Creating load tests, in which every user spends exactly the same amount of time on each page is not realistic and will generate misleading results.

2.7 Test-case generation

To transform a user session into a test case, each logged request of the user session is changed into an HTTP request that can be sent to a web server. A test case consists of a set of HTTP requests that are associated with each user session. Different strategies are applied to construct test cases for the collected user sessions. A key advantage is the minimal configuration changes that need to be made to the web server to collect user requests [16].

It is possible to just simulate the behaviour of a casual website visitor by just clicking on interesting links and reading pages in a random order, but the result of these random scripts would not describe the application's completeness and quality.
Each test case describes a scenario that can be accomplished by a web visitor through a web browser. Given the collected URL and name-value pairs, test cases could be generated in many ways. The simplest approach is to sequentially replay individual user sessions. A second approach is to replay a mixture of interactions from several users. A third approach is to replay sessions in parallel so that requests are handled concurrently. A fourth approach is to mix regular user requests with requests that are likely to be problematic (e.g., navigating backward and forward while submitting a form).

A complicating factor for these approaches involves web application state. When a specific user request is made of a web application, the outcome of that request depends on factors not completely captured in URL and name-value pairs alone. The ability to execute subsequent tests may depend on the system state achieved by preceding tests [2].

An alternative, which is adopted for this project is to ignore state when generating test cases. The resulting test cases may not precisely reproduce the user activity on which they are based, but may still usefully distribute testing effort relative to one aspect of the users’ operational profile.

2.8 Automated Testing
As the technology underlying business-critical web applications becomes more complex, automated testing becomes essential. To provide real value, an automated testing solution must help keep pace with applications that can change rapidly [22].

Testers should be allowed to write comprehensive tests without programming in a proprietary scripting language. Such testing tool should maximize productivity by virtually eliminating the need for programming and provide multiple ways to create tests. The most important question to ask in planning for test automation is whether to automate at all. There are certain aspects of testing - such as performance and stress testing - that require automation.

Responses to inputs can be categorized as "pass" or "fail" and do not require human interpretation. It is far less resource intensive, time consuming, and expensive for a software design engineer in test to write, maintain, and run test automations than to employ multiple software test engineers to perform manual testing.

However, these tests should also execute automatically from time to time. Based on the development method, these tests could run after a daily build or during a testing period. However, the best option executes the full test suite or at least a subset many times a day, hourly for example, or after each commit in the version control system.

2.9 Extensible Mark-up Language (XML)

W3C’s Extensible Mark-up Language is used as the test specification document format. XML is a widely used mark-up language for representing hierarchical data items. It is well suited to represent test specifications because it adheres to a standard developed by an independent organization responsible for several other widely accepted standards. It has achieved broad acceptance across the industry, leading to the development of editors and parsers for a variety of platforms and operating systems. Further, XML’s developers designed the language to provide structured documents, which support test specifications well [21].

The features of XML that make it well suited for this project are [21]:

· Human and machine-readable format.

· Support for Unicode, allowing almost any information in any human language to be communicated.

· Represents the records, lists and trees.

· Strict syntax and parsing allows the necessary data to remain simple, efficient, and consistent.

XML is also heavily used as a format for document storage and processing, both online and offline, and offers the following benefits [21]:

· Robust, because it is based on international standards.

· Has a hierarchical structure and is suitable for almost all types of documents.

· Platform-independent.

There are many APIs for working with XML. The two most popular - the Document Object Model (DOM) and the Simple API for XML (SAX), have generated a tremendous amount of interest, and JDOM and data-binding APIs have followed. However, more and more Java developers are finding that they no longer need extensive knowledge of SAX and DOM - thanks largely to Sun Microsystems' JAXP toolkit. The Java API for XML Processing (JAXP) makes XML manageable for even beginning Java programmers while still providing plenty of heft for advanced developers [21].

Strictly speaking, JAXP is an abstraction layer. It does not provide a new means of parsing XML, nor does it add to SAX or DOM, or give new functionality to Java and XML handling. Instead, JAXP makes it easier to use DOM and SAX to deal with some difficult tasks. It also makes it possible to handle some vendor-specific tasks. Without SAX or DOM, XML cannot be parsed [21].

3.0 Regular Expressions (RegExp)

A regular expression (regexp) is a string that describes or matches a set of strings, according to certain syntax rules. Regular expressions are used by many text editors and utilities to search and manipulate bodies of text based on certain patterns. Many programming languages support regular expressions for string manipulation. For example.

They are usually used to give a concise description of a set without having to list all elements. For example, the set containing the strings Boblingen, Böblingen, and Boeblingen can be described by the pattern “B(ö|oe?)blingen”, which matches each of the three strings.

A quantifier after a character or group specifies how often that preceding expression is allowed to occur. The most common quantifiers are:

· ? - Indicates that the preceding character may be present only once.

· * - Indicates that the preceding character may be present 0 or more times.

· + - Indicates that the preceding character must be present at least once.

3.1 XML Path Language (XPath)
The most common kind of expression in XPath is a path expression. A path expression contains a sequence of steps to get from one set of nodes to another. The steps are separated by "/" characters. Each step has three components:

· Axis Specifier

· Node Test

· Predicate

This is designed to mimic the syntax of a URI or file name. More complex expressions can be constructed, for example, the expression /A/B/following-sibling::*[1] selects all elements (whatever their name) that immediately follow a B element that is a child of the outermost A element.

As well as path expressions, XPath also allows more conventional expressions involving arithmetic and boolean operators, and a range of functions to perform string manipulation. These expressions are usually encoutered within a predicate of a path expression. Thus the expression //item[@price > 2*@discount] selects items whose price attribute is at least twice the numeric value of the discount attribute.

3.2 JTidy Pretty Printer

One the challenges that webmasters face when converting from pure HTML to XML is the preservation of their web sites. It would be too costly to dump the old site and start again from scratch, some sort of automated procedure that brings the HTML site to XML is required.

JTidy, a powerful tool to help convert old HTML pages to newer standards, such as XML, which can then be used for functional testing [27]. HTML and XML are both mark-up languages derived from SGML, so have a lot in common. Still there are two major differences:

· XML syntax is far more restrictive; most importantly, in XML you must remember to close the tags

· HTML coding often has been relatively careless, so the files are rarely trouble-free to start with

Poor coding practices caused all kind of incompatibilities and can affect testing. JTidy was originally designed to address this. It rewrites HTML pages to be conformant with the latest W3C standards. In the process, it fixes many common errors such as unclosed tags. It also supports XHTML, an XML vocabulary [27].

The main differences between HTML and XHTML are that:

· XML elements must have opening and closing tags (HTML does not require the closing tag for many elements).

· Empty elements follow the XML convention (for example, the line break is written as
 instead of
).

· Attribute values are always quoted (for example, instead of).

Listing 2 is the file that JTidy produces when Listing 1 is provided as input.

	<HTML>

 <HEAD>

 <TITLE>Journey to Windsor</TITLE>

 </HEAD>

<BODY>

<TABLE>

 <TR>

 <TD width=15></TD>

 <TD>

 Journey to Windsor

 Benoît Marchal

 July 2003

 bmarchal@pineapplesoft.com

 </TD>

 </TR>

</TABLE>

<CENTER><TABLE border=3>

 <TR><TD>

 dscn0824.jpg

 A bright, red mailbox inside the castle. It seems oddly familiar

 in an historic setting.

 Windsor Castle

 © 2003, Benoît Marchal

 </TD></TR>

</TABLE></CENTER>

</BODY>

</HTML>

Listing 1. index.html (before)

	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta name="generator" content= "HTML Tidy for Mac OS X (vers 1st June 2003), see www.w3.org" />

<title>Journey to Windsor</title>

</head>

<body>

<table>

<tr>

<td width="15"></td>

<td>Journey to Windsor

Benoît Marchal

July 2003

bmarchal@pineapplesoft.com</td>

</tr>

</table>

<center>

<table border="3">

<tr>

<td><img src=

"thumbnails/dscn0824.jpg" border="0" alt="dscn0824" />

dscn0824.jpg

A bright, red mailbox inside the castle. It seems oddly familiar in

an historic setting.

Windsor Castle

© 2003, Benoît Marchal</td>

</tr>

</table>

</center>

</body>

</html>

Listing 2. index.xml (after)

Chapter 3 - Design and Implementation

3.1 Approach

A test engine will take user sessions as input, generate suitable test cases as customizable XML scripts, perform the test, and give a test report as shown in Figure 4. The newly generated test cases specify the input conditions and expected outputs; these are executed and validated against the expected results.

Figure 4. Testing Approach.
The test cases can be effectively used to load test the application in order to observe its performance under different stresses whilst under a combination of various user behaviour. The test engine generates a test report describing the result of all test cases to the user. The report also details the performance of the web application.

3.2 Capturing user sessions using HttpUnit

HttpUnit is a framework based on JUnit, which allows the implementation of automated test scripts for web applications.

Ideally, the test tool should behave exactly as the user’s web browser. The test target application should not be aware of any difference when serving up pages to a web browser or the test tool. This is exactly what HttpUnit provides: it simulates a normal browser's GET and POST requests, and provides a nice object model with which to code tests [14] as shown in Figure 5.

The HttpUnit API can emulate a number of browser behaviours, including:

· Form submission

· JavaScript

· HTTP authentication

· Cookies

Many commercial test products hit the market with elaborate GUIs to guide the developer through the testing process. The open-source HttpUnit, on the other hand, is free of licensing fees and very simple to use. This simplicity makes it so popular. The availability of the HttpUnit Java source code and its simple API let developers create their own testing solutions fit for the needs of their particular organization. Using HttpUnit as a foundation, can build complex test suites at minimal cost.

HttpUnit can be broken down into two core components:

· A Web client that sends requests and receives responses

· A collection of methods that analyze and verify response content

A user session is encapsulated within a WebConversation. WebRequests are constructed, to configure the URL and its parameters. These parameters are sent down through WebConversation. The framework then returns a WebResponse, containing the returned page and attributes from the server.

[image: image6.png]‘WebConversation

ey —
Jsn

WebForm
a0

—

[g |z=URL Strine 0.

e —

Jsing vat)
Jssmcns 0
JsCrattes (g oams,

Jootess s

WebRequest

S ———
e Eima oo . Upleiape 19

HitpUnitOptions.

JsmscepicnonscrpEaor (osian)

Figure 5. HttpUnit classes.
The following piece of code verifies that submitting the login form with the correct login information results in a page containing the text "Local Homepage for DCS" as intended.

public void testGoodLogin() throws Exception

{

WebConversation conversation = new WebConversation();

WebRequest request = new GetMethodWebRequest(
"http://www.dcs.kcl.ac.uk/local/index.html");

WebResponse response = conversation.getResponse(request);

WebForm loginForm = response.getForms()[0];

request = loginForm.getRequest();

request.setParameter("username", "******");

response = conversation.getResponse(request);

assertTrue("Login not accepted");

assertEquals("Page title", "Local Homepage for DCS",
response.getTitle());

}
The test cases are typically fragile. If a developer changes a URL, reorganizes the layout's <table> structure, or changes a form element's ID, the visitor will probably not see any difference, but the test scripts will be unusable. Rework and change may be required in some cases for each test case implementation. Object oriented design could reduce the effort of reworking common parts in the test cases, but from a quality assurance perspective, a simple and sequential script that interacts with a website would be easier to maintain and fix.

Traceability is also crucial for the test cases. If something goes wrong, or, for example, a calculation result is wrong, it is important to point the developer to the corresponding test case specification for a quick bug resolution. Each test case implementation extends the ConfigurableTestCase class as shown in Figure 6. This class typically contains the common methods and initialization code for the test case.

[image: image7.png]junic framework TestCase.

[=0

== T ———
[———visieatos: %
[oga WenComvaraion cone
[rosishicss mossy
iozou on)
|oescomn mtsocs
xoTestCaze
_——

Case seznscios

[eizo

=

Figure 6. Configurable test-case implementations.

The following piece of code shows the class extending ConfigurableTestCase. The login details are handled in the base class. The page verifies that submitting the login form with the correct information results in a page containing the text “KCL Home” as intended.

public void testGoodLogin() throws Exception

{

WebConversation conversation = new WebConversation();
 WebResponse response = login(conversation,
LoginMode.ADMIN_MODE);

assertTrue("Login not accepted",
 response.getText().indexOf("Welcome!") != -1);

assertEquals("Page title", "KCL Home",

response.getTitle());

}
Many tools recording browser activity tend to record every insignificant detail this leads to large and hard-to-modify user sessions. HttpUnit will allow a developer to create readable, concise, and cleanly structured code, which can focus on validating the important details.

3.3 User Sessions as Test Cases

To supply user sessions to the test engine, a standard and portable way of specifying test cases is required. The test cases derived from the user sessions must be:

· Simple and easy to use.

· Use a commonly accepted standard for portability.

· Support regression testing.

To achieve these goals XML is used as the test specification document format. XML is a widely used mark-up language for representing hierarchical data items and is well suited to represent test specifications because it adheres to a standard developed by W3C, an organization responsible for several widely accepted standards [15].

By formally specifying the user sessions in test cases, tests can be performed by comparing actual functionality with the intended functionality. This is the key part of the approach taken in this project. The test case specification contains a hierarchy of elements designed to make regression testing simple and efficient and specifies the following:

· usersession: A specification consists of one or more user sessions. Each user session contains a set of test cases for one feature of a web application that the user accessed. Different user sessions can contain different aspect of web functionality, security and performance according to the user behaviour captured during their interaction with the web site.

· testcase: A test case is designed to test a specific aspect of the web application. It is in the form of a tree made up of transactions. From the root, each path of the tree represents a test sequence. Each test sequence may contain one or more transactions. A child node represents a transaction to be taken.
· transaction: A transaction specifies a step in the interaction of a web application. Each test step consists of a pair of request and response scenarios

The following code is an example of an XML test script derived from a user session:

<usersession>

<testcase name="tc1">

<transaction name="t1">

 Request and Response elements of transaction t1

</transaction>

<transaction name="t2">

 Request and Response elements of transaction t2

</transaction>

</testcase>

<testcase name=”tc2”>

<transaction name=”t3”>

 Request and Response elements of transaction t3

</transaction>

</testcase>

</usersession>
To manipulate test cases easily, they have to be made into objects. Object developers are used to developing with objects, so the decision to make tests into objects supports the goal of making test writing more customizable.

The Command pattern [18] is the most suitable choice. This design pattern encapsulates a request as an object, thereby allowing log requests to be queued. Command creates an object for an operation and gives it a method "execute". Here is the code for the class definition:

public abstract class TestCase implements Test {

 …
}

This class is expected to be reused through inheritance, therefore it is declared as "public abstract". Every TestCase is created with a name, so if a test fails, it can be identified as a failure.

public abstract class TestCase implements Test {

private final String username;

public TestCase(String name) {

username = name;

}

public abstract void run();

…

}
Figure 7 shows the TestCase. Since this is a single class and there can be no ambiguities, just the pattern name is shown.

[image: image8.png]TestCase

ran)

Command

Figure 7. TestCase applying Command.

3.4 Performance Load Testing with User Sessions

Stress testing deals with the quality of the application. The idea is to create an environment more demanding of the application than the application would experience under normal conditions. This is the hardest and most complex category of testing to accomplish and it requires a joint effort from all teams [11].

A test environment is established with many testing conditions. At each step, a script is exercising the system. These scripts which are based on the captured user sessions allow more and more test cases to be added, all simultaneous hammering on the system, until the system breaks. The system is repaired and the stress test is repeated until a level of stress is reached that is higher than expected to be present at a site.

Conventional load testing tools do work correctly when tests are carried out in isolation but this cannot reveal how web applications can really cope under circumstances similar to real world scenarios. Using user sessions to test the load would provide much more comprehensive results and “race conditions” are also often found under these circumstances. A race condition is a conflict between one or more tests. When the two tests are run in parallel, one or both of the tests may fail.

The test case specifications incorporate request and response elements, mimicking realistic user traffic and specifying response times during different load levels. The request element represents HTTP requests consisting of URLs specified by the document. The response element specifies the assertions on the HTTP response generated from the HTTP request in the same transaction. Each request element consists of a list of name value pairs as predicates related to the URL request as shown in the following example of a simple link checking test case:

<testcase name=”link check”>

<transaction name=”transaction one”>

<request document=”http://www.dcs.kcl.ac.uk””/>

<response statuscode=”200”/>

</transaction>

</testcase>

Hyperlink validity is an important aspect of web application functionality testing. It uses the request element to specify the testing page. This test case named “link check” has one transaction. The test case requests a web page with URL “http://www.dcs.kcl.ac.uk”. The response element only specified the ‘statuscode=”200”’ which means the test specification is expecting a status code of 200 for the response.

3.5 Regular Expression matching using XPath analysis

XPath is a language for addressing parts of an XML document. It also provides basic facilities for manipulation of strings, numbers and booleans. XPath uses a compact, non-XML syntax to facilitate use of XPath within URIs and XML attribute values [17].
Each transaction contains a pair of request and response elements. A transaction element may also contain a boolean XPath expression, which is a condition attribute that will be taken only if the condition is true. If the attribute is absent, the default value is true. The response elements contain predicates that give detailed justifications of testing results. There are two primitive predicates:

· match: Checks the contents of the response document.

· contain: Checks the presence and the contents of elements such as href, form and table and any other elements within the HTML tree hierarchy.

There are also logical predicates such as: “not”, “and” and “or” that can have different combinations when used. For example, if there were three elements <element1>, <element2> and <element3/>, then the logical predicates would look like the following:

<and>

<element1/>

<or>

<element2/>

</or>

<not>

<element3/>

</not>

</and>

To allow content checking of the test web page using logical predicates, the test cases would contain specifications of the response content. The “match” predicate would be used in the response to specify that the response page will match certain keyword assertions. Each “match” predicates contains four attributes as follows:

· type: Specifies the operation of the “match” predicate and can have four kinds of operations: “contains”, “equals”, “begins” and “ends”.

· select: Specifies a fragment of the response document.

· regexp: Indicates whether the value attribute is a string or a regular expression to be matched against the selected response document fragment.

The following test script shows an example of content checking using the specified predicates:

<testcase name=”Content checking”>

<transaction name=”transaction one”>

<request document=”http://www.dcs.kcl.ac.uk”/>

<response statuscode=”200”>

<and>

<or>

<match type=”contains”

regexp=”false”

select=”/html/body”

value=”Undergraduate Programmes”/>

<match type=”contains”

regexp=”false”

select=”/html/body”

value=”Bioinformatics Group”/>

</or>

<match type=”contains”

regexp=”true”

select=”/html/body”

value=”[M]Sc Programmes 2005/2006”/>

</and>

</response>

</transaction>

</testcase>

The request element specifies the web page “http://www.dcs.kcl.ac.uk” using compound predicates “and” and “or” together with three “match” predicates. The select=”/html/body” reflects the searching within the response page’s body tag. The string value is specified by “value” attribute and indicates that the response page has “Undergraduate Programmes”, “Bioinformatics Group” or “[M]Sc Programmes 2005/2006” as key words. If the value of the “regexp” attribute is specified as true, it specifies that it will match the string e.g. “[M]sc Programmes 2005/2006” ignoring whether “M” is capitalized.

The predicate “all” can also be used in the test specification. This predicate contains the “select” attribute, which specifies an XPath expression of a fragment of the response document. The following test script shows an example of content checking using the “all” attribute:

<testcase name=”Content check using all”>

<transaction name=”transaction one” >

<request document=http://www.dcs.kcl.ac.uk/>

<response>

<all select=”allpaths::href/*”>

<match type=”begins”

 regexp=false

 value=”http://”/>

</all>

</response>

</transaction>

</testcase>

The value ”allpaths::href/*” checks if all the paths in the requested page are using http protocol and absolute URLs. By specifying different request parameters, test specifications can be written to check the web application behaviour dynamically.

3.6 Security testing

A login page is a prerequisite in all web applications that requires security. A test case that checks the security of a web application is one of the main features implemented and by providing this type of testing with user session data, the possibility of users gaining invalid access minimizes, leading to a more robust and secure application.

The user name and password is specifically tested using the “parameter” element to specify the content of fields in the login page. Using the “match” predicate, the response page must contain certain keywords indicating whether the login is successful or not as specified in the following test script example:

<testcase name=”Logon page test”>

<transaction name=”transaction one”>

 <request document =”http://www.dcs.kcl.ac.uk/local”>

 <parameter name=”username” value=”wrongusername”/>

 <parameter name=”password” value=”wrongpassword”/>

 </request>

 <response>

 <match type=”contain” regexp=false

 select=”/html/body” value=”Login Failed”/>

 </response>

 </transaction>

 <transaction name=”transaction two” >

<request url=” http://www.dcs.kcl.ac.uk/local”>

 <parameter name=”name” value=”rightusername”/>

 <parameter name=”password” value=”rightpassword”/>

 </request>

 <response>

 <match type=”contain” regexp=”false”

 select=”/html/body” value=”Login Successful”/>

 </response>

 </teststep>

</testcase>
The request element specifies the web page containing login form with URL “http://www.dcs.kcl.ac.uk/local”. The parameter elements in request specify the content of fields “name” and “password”. The first test step uses a testing username=“wrongusername” and password=“wrongpassword”.

The second test step uses username=“rightusername” and password=“rightpassword” to check if the login page is functional as supposed to. More sophisticated specification can be given to make the test case more powerful. For example, the parameter value can be provided as a value list to test a group of user name and passwords. In the response element, a match predicate will check if the response page contains string “Login Successful” or “Login Failed”.

3.7 Test Result

If tests had equal chances of succeeding or failing, or if only one test is run, a flag can be set in the TestCase object to look for successes or failures. The Collecting Parameter pattern is applicable for this [19]. It suggests that when collecting results over several methods, a parameter is added to the method and passed to an object that will collect the results. This object is called TestResult:

public class TestResult extends Object {

protected int fRunTests;

public TestResult() {

fRunTests= 0;

}

}

A single TestResult can collect the results safely when the tests are run in different threads or loads. Figure 8 shows the design snapshot of TestResult.

[image: image9.png]TestCase

TestResult

Collecting Parameter

run(TestResul)
runTest()
setlpp)
tearDown))

Figure 8. TestResult applies Collecting Parameter.

JUnit distinguishes between failures and errors. The possibility of a failure is anticipated and checked for with assertions. Errors are unanticipated problems like an ArrayIndexOutOfBoundsException. Failures are signalled with an AssertionFailedError error. To distinguish an unanticipated error from a failure, failures are caught in an extra catch clause.

JUnit comes with different implementations of TestResult. The default implementation counts the number of failures and errors and collects the results. TextTestResult collects the results and presents them in a textual form. Finally, UITestResult is used by the graphical version of the JUnit Test Runner to update the graphical test status. TestResult is an extension point of the framework. Clients can define their own custom TestResult classes, for example, an HTMLTestResult reports the results as an HTML document.

3.8 Prototype Implementation

A prototype tool was developed to allow users to load a test specification file based on user sessions, generate and run the test to effectively find faults in the web application and test its performance under heavy concurrent loads. Figure 9 shows the implementation of this approach. The input of a user session is an XML file containing test specifications of actual user behaviour and interactions with the web application. Test Generator and Test Runner together form the Test Engine, which reads the input XML file and generates a Test Report as output.

Figure 9. Implementation overview of system.
Test Generator is a Java program, which reads the XML file parses it and generates the testing source code. It uses available XML processing software such as Java API for XML Processing (JAXP) and Xerces. Both of these API supports processing of XML documents using DOM and SAX. An individual Java runner file is generated by the Test Generator. It uses JUnit, a regression-testing framework to implement tests and uses HttpUnit that accesses web pages without a browser.

Test Report gives the result of test. It contains information such as how many cases are tested, time taken by each of the test case and result of each test case. Figure 10 shows the main interface of the system developed, which contains the test specification and test result window.

[image: image10.png]&

[<oumi versioy
kusersession>
“testease>
<ransaction name="8BC News | Sport'>
<request document="tiiinews.bhe.co.ukisport iidefault s>
<response statuscode="200"l>
“ransaction=
<ransaction name="8BC News | Business'
<request document=""ttpinews bbe.co UK/ filbusinessfdefaul str'f>
<response statuscode="200
<ang>
<match type="contain’ regex;
<and>
<esponse>
<transaction= e
« L Dol

107 B

Talse" select=" value="China-EU talks to contn

Load Test Run Test

Run Test B

Test Result

F

Time: 4.125

There was 1 failure.

1) testCase1 (testoutpubjunit framework AssertionF ailedError: Test Failedl
attestOutputiestCase] (testoutput java 60)
at sun reflect NativelethodAccessorimpl invoken(Native Methoc|
atsun reflect NativeMethodAceessorimpl invoke(NativeMethoda
atsun reflect Delegatinghethodéccessorimpl invoke(Delsgatin
attestOutputmaingestoutputjava:1 1)

FaLURES!!
Tests a3, Failures: 1, Etrors: 0 5
« 0 D

Figure 10. The main system interface.

User can load a test specification using “Load Test” button or customize the test script also before running the test. When the specification is loaded or typed, the user can click “Run Test” to generate test cases according to test specifications.

A load-testing window as shown in Figure 11 allowing the user to mimic realistic user traffic. It requires the number of users to be entered. Subsequent threads are generated and the timing interval between each user request uses the Gaussian Random Timer available in Java.

[image: image11.png]\PROGRA~1\XINOXS - 1\JCREAT-1\GE2001 .exe

Nunber of Users:

1.047

test)

Figure 11. Load testing interface.

Chapter 4 - Evaluation

4.1 Overview

This chapter aims to answer the following questions:

· How effective is the user-session based technique at exposing faults in a web application?
· How effective is the load testing technique when utilizing user session interactions?

The results of the tests carried out showed the performance and fault detection effectiveness and this was presented to the BBC and has been well received.

4.2 E-Commerce site

The BBC provided some samples of real user session data and this was used in the to detect faults and test the performance of the site under heavy concurrent loads. Figure 12 provides a screenshot of the BBC homepage.

[image: image12.png]@ BBC - bhe.co.uk homepage - Home of the BBC on the Internet - Mozilla Firefox

Ble Edt Vew Go Bookmarks Took

@ D B O B [t

bbc.co.uk

Textonly

Mobile edition

Other people are searching for:
+krypto the superdog

+madagascar

«chelsea

See what's popular and new

Browse

Business & Money
Business News, E-commerce, Your Moner,

Children's
CBRC, CBEC Search, CBasbies,

Entertainment
Collective, Comedy, Film.

Health
Haalthy Living, Parenting, Relationships

tory
Anciant History, Family History, Wars.

Learning
Usnguages, Revision, Schools.

Lifestyle
Faod, Gardening, Holidays.

bbe.couk
[elalc]

Explore bbc.co.uk
bbe.couk @ BBCNews O The web O

home

sas full directory [RGHA Saturday 27th August 201

News Watch /Listen to BEC Naws
+Saudi dissident shuts
down site

*Bush callz for US rezalus on Irag
News in 43 languages «°ls=4

[| what s rss?

Sport Watch/Listen to BEC Sport

A

«England keep Aussies on
back foot
0] ottanham 0-2 chaizas
«Rangars 0-3 Hbemian

[| whatis res?
Television

A2 Index

Make this my homepage

Be a 1Xtra presenter

Competition for 16-19 year-olds

* More about the competition
*Nesha's tips on presenting

* Other 1xtra talent opportunities
* Getcreative with BBC Blast

S Bssic e and revieus

Where | Live

London, Gentral

Change location

Local weather:

Saturday Sunday
max 210 max 240
fin 145C fin 15°C

+Local S-day forecast
«weather for UK & world

Local information:
+BBC London
«Travel updates

© [C

Dore

Figure 12. Screenshot of bbc.co.uk site used in the experiment.

The effectiveness of the user session coupled with the load testing technique could only be measured provided more user sessions were available. Therefore, steps were taken to allow the capturing of user sessions from a web application that was easily accessible for this project.

An online dating agency application available at projects.dcs.kcl.ac.uk was used to capture user sessions and provide tests that are more comprehensive. This application provides two groups of functionalities: member activities and administrative activities. Only the components accessible to members will be concentrated on. Figure 13 provides a screenshot of the application.

The online dating agency records members details (name, email, address, username, age, gender, location, photo, height, weight, hair colour, eye colour, religion, etc, lifestyle details such as smoking) and details of their preferences (age range, location(s), etc).

The system allows new members to join, on payment of a fee, and allows existing members to log in, and perform searches for members matching their preferences, and e-mail’s other members via the system (member’s real e-mail addresses are concealed, e-mail is between usernames). The system also allows members to modify their details and to read/reply to their messages.

[image: image13.png]& Meet and Date - Home - Mozilla Firefox

Ele Edt View Go Bookmarks Toos Help

- -5

@) [vmimores et et -menirst

Its quick and easy to join. You can upload your photo and share your photo with others.

Quick partner search

~ 1ama|Male [v] looking for a| Female [v|

Inthe age range | 18 [v] o 18 [v]

Where are you laoking to find love?
United Kingdorm (v

Show matches with pictures only?

Oves @ No, show everyane

Check out some of our members
H

United Kingdom United Kingdom

) 27
Black Blonde
Blue Brown
Average siim

Figure 13. Screenshot of online dating agency site used in the experiment.

The application contains a web service to simulate a credit card company. This service has details of personal accounts and receives requests from the dating agency system to authorise payment of a given amount to a credit card number of a member, and either confirms this debit if it is valid, or denies it. This functionality is implemented using J2EE and hosted on a separate Apache Tomcat server.

Client functionality is implemented through PHP scripts and modules to handle data and the dynamic generation of HTML pages. MySQL contains a database structure composed of ten tables tracking members, subscriptions, and other data objects and manages the database accesses. JavaScript and Cookies provide the identification and personalization functionality. An Apache HTTP Server hosts the web application.

The database is populated with information from 50 members. The look of the site is adapted so that the registration and login procedure is accelerated, making the navigation process more similar to commercial sites. Finally, to capture the information required as user sessions, the scripts generating dynamic web pages are modified. As a result, the generated web pages include additional code to capture user events and to invoke a logging server-side script.

4.3 Fault Detection

Faults are obtained through a process similar to one defined and used in previous research in testing techniques [28, 29, 30] whereby faults are inserted, which are as realistic as possible and based on user experience. The following fault types are considered:

· Web page faults: This includes addition, deletion, or modification of name-value pairs.

· Database query faults: This includes modification of a query expression, which may possibly affect the type of operation.

Once the web application is set up, the challenge is to have users access the site and behave like typical users of this type of e-commerce site. To select the most appropriate data, participants had to search and browse personal profiles of current members until they found the person(s) that they considered most appropriate. No definition of appropriateness is provided. The objective is to recreate the conditions observed in similar web applications.

4.4 Table of Results

In order to know how the web application responds as increasingly users are simulated, factors such as hardware and networking are kept constant in order to carry out testing in a controlled environment. This is important to produce objective results.

Results from the following types of tests are represented in a tabular format:

· Baseline.

· Benchmark.

· Scalability.

· User-experience-based test.

The first type of table that can deliver this is the table of data used to create the performance report output chart, as shown in Table 3.

[image: image14.png]Unit Tests Results

Designed for use with JUnit and ant.

summary
Tess Falwres Emos SuccessRate Time(s)
7 ' o 5710 a3z

5 o o 1005 ais

s o o 1000 az0

’ o o 0% 0z

' ' o 0o as

Note: faures are antiipated and checked for with assertions while errors are unanticpated.

Table 3. Test Report.

4.5 Charts

The number of users vs. time scatter chart is well suited for displaying patterns in terms of baseline, benchmark, and scalability tests; response-time tests identifying outliers; transaction-specific component-based tests; and all of the heavy-load tests. Figure 14 and Figure 15 represents the total user activity in terms of average response time from the BBC website (http://www.bbc.co.uk) according to various user sessions and different loads. The chart determines which activities take more or less time as the test execution progresses and shows, if there are peaks and/or troughs in overall performance.

[image: image15.emf]0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100

Number of Threads

Response Time (ms)

Figure 14. BBC User Session 1.

[image: image16.emf]0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100

Number of Threads

Response Time (ms)

Figure 15. BBC User Session 2.

These two charts summarize the user-experience and scalability measurements across multiple test runs and are particularly useful for identifying the user load at which performance degrades quickly. In the region between the 80 and 100 user loads, we see that response times start getting longer as the load increases. This is the stress region.

It is evident that the system is being stressed but is still handling the load. The load increases in this region, the response time also increases, but not excessively. When the application is fully tuned, the maximum recommended user load should be the load at the beginning of the stress region, but the system continues to perform relatively well above this load for a period. This means the system is stable and functional.

Finally, the chart in Figure 16 shows a degradation curve, which depicts the testing of streaming media on the BBC website. The BBC have issues relating to response times when accessing files on their News Media Player (NMP) and are looking at ways to increase its performance whilst under heavy concurrent loads.

[image: image17.wmf]0

2000

4000

6000

8000

1

10

25

50

75

100

125

150

175

200

Number of Users

Response Time (ms)

Home Page

NMP

Figure 16. Response-time degradation curve chart.

This type of shape is normal, whereby response time increases linearly as the number of users does. The following reasons could cause incorrect results:

· The user session is not accurate.

· The scripts are not representative of the user session.

· The system under test cannot handle multiple users at all.

· The test did not actually stress the system.

The shape of a typical response time degradation curve can be broken down into three regions as shown in Figure 16:

· Single-user region

· Performance plateau

· Stress region

Above the 175-user load, the response time starts to climb very quickly. This should be researched in detail and corrected if possible.

Chapter 5 - Conclusion

This project presented an approach to conduct automatic web stress testing by leveraging captured user behavior to generate test cases. The approach is based on formal specification of the web applications functionality, security and performance. The results of a evaluation indicate that effectiveness of this approach is better than conventional load testing techniques and reduces required tester intervention.

The main contribution were:

· This approach can precisely capture user session in order to test the functionality of web applications. This is due to the effectiveness of test case generation.

· The test case specification is extensible and can be enhanced or customized to allow tests that are more powerful.

· This approach is versatile and flexible for testing a wide variety of different aspects of web applications, including link validity, functionality, security, and performance.

· This approach can perform web application test automatically once the user sessions are fed into the test engine. The same tests can be repeated for load test of web applications.

· A prototype tool has been developed to demonstrate the effectiveness of this approach.

The effectiveness of user session based techniques improved as the number of collected sessions increased. However, the costs of collecting and analyzing additional data are high. The BBC has agreed to provide 1GB of captured user session log files after seeing the positive results of previous tests carried out in this project. This will provide the opportunity to further analyze this technique.

There is a problem however with having large amounts of user sessions, since a web application evolves and produces new versions the session can longer be used. Especially in the context of the BBC who make numerous changes frequently.

The combination of established testing techniques and user session data creates a potential that needs to be further exploited. In addition, a large number of captured user sessions produce problems; though they may provide additional fault detection power, larger number of sessions require more test preparation and execution time.

Therefore, techniques for filtering sessions, such as the reduction and clustering techniques will need to be investigated [2]. Combining reduction techniques with user-session techniques could be helpful for handling the large number of requests found in commercial e-commerce sites.

Bibliography

[1]
Juniper Communications. Managing Web Application Performance. http://www.junipercommunications.com/

[2]
S. Elbaum, S. Karre, and G. Rothermel. Improving Web application testing with user session data. In Proceedings of the 25th International Conference on Software Engineering, May 2003.
[3]
B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, NY, 1990.

[4]
A. Avritzer, and EJ. Weyuker. Generating Test Suites for Software Load Testing. In Proceedings of the International Symposium on Software Testing and Analysis, August 1994.
[5]
F. Ricca, and P. Tonella. Analysis and Testing of Web Applications. In Proceedings of the International Conference on Software Engineering, May 2001.

[6]
G. Lucca, A. Fasolino, F. Faralli, and U. Carlini. Testing web applications. In International Conference on Software Maintenance, 2002.
[7]
H. Maruyama, K. Tamura, and N. Uramato. XML and Java - Developing Web Applications. Addison Wesley, 1999.

[8]
P. Coyle. XML, Web Services and the Data Revolution. Addison-Wesley Information Technology Series, 2002.

[9]
E. Hieatt, and R. Mee, Going Faster:Testing the Web Application. IEEE Software, 2002.

[10]
B. Beizer. Black-Box Testing: Techniques for Functional Testing of Software and Systems. Wiley, 1995.

[11]
D. Menasce, Load Testing of Web Sites. IEEE Internet Computing, 2002.

[12]
JUnit. http://www.junit.org/index.htm

[13]
H. Xiao. A Survey on Web Services Testing. University of Illinois. http://www.cs.uic.edu/~hxiao/courses/cs540-finalpaper.pdf

[14]
HttpUnit. http://httpunit.sourceforge.net/

[15]
W3C. http://www.w3.org/

[16]
XML. http://www.w3.org/XML/

[17]
XPath. http://www.w3.org/TR/xpath/

[18]
E. Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[19]
K. Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1996.

[20]
S. Barber. Modeling individual user delays. IBM Developerworks. http://www-128.ibm.com/developerworks/rational/library/4229.html, 2000.

[21]
JAXP. http://java.sun.com/xml/jaxp/index.jsp

[22]
B. Korel. Automated software test data generation. In IEEE Transactions on Software Engineering, 1990.
[23]
A. Savoia. The Science of Web-site Load Testing. Keynote Systems, 2000.

[24]
K. Thompson. Regular Expression Search Algorithm. In Communications of the

ACM, 1968.

[25]
A. Mendelzon, G. Mihaila, and T. Milo. Querying the world wide web. In International Journal on Digital Libraries, 1997.

[26]
G. Mihaila. WebSQL - an SQL-like Query Language for the World Wide Web, University of Toronto, 1996.

[27]
JTidy. http://jtidy.sourceforge.net/

[28]
S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization: A family of empirical studies. IEEE Transactions on Software Engineering, February. 2002.

[29]
M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness of dataflow- and control flow based test adequacy criteria. In Proceedings of the International Conference on Software Engineering, May 1994.

[30]
W. Wong, J. Horgan, S. London, and A. Mathur. Effect of test set minimization on fault detection effectiveness. In Proceedings of the 17th International Conference on SoftwareEngineering, April 1995.

[31]
A. Nikora and J. Munson. Software evolution and the fault process. In Proceedings of the Twenty Third Annual Software Engineering Workshop, NASA/Goddard Space Flight Centre, 1998.
Appendix A – System Class Diagram

[image: image18.png]~<comperert> €]
cookies
(from Component View)

~<comperert> €]
javaseript
(from Component View)

~<comperert> €]
parsing
(from Component View)

~<comperert> €]
scripting
(from Component View)

~<comperert> €]
framework
(from Component View)

~<comperert> €]
textui
(from Component View)

~<comperert> €]
hitpunit
(from Component View)

~<comperert> €]
(from Component View)

~<comperert> €]
tidy.
(from Component View)

== <nemespaces <nemespaces
com junit org
WebTest Stesstest
1 topTertareaTexarea §1 Property testGenerstor
&1 bottonTestareaTexarea P—
&1 buttont: Button .
&1 buttonz Button O i St
(5] etingi newlne:String
(5] <<finai fc.FieChonser=new JFieChoaser()
> wertent Testoutput
O mainin oSt iveid
O testOutputiin e String
O mainin e Stringl*] void
O suite(Test
O it void
oo P
O testCase2 void
outPrintter & resursiveCheskin WebResponse.in -y i veid
oupuiTextareadTexarea
testCourtint

‘efinal=> newine:Strine
document Documert

ereciateflements Hashiable

testGenerstor
testGenerstortn extarea
Strinof]void
pritProgramPrefix void
pritProgramSuftix void
resclTestinputin =:String rvoid

BRDOOC (AR

& readTestSutetin noc-Node vid
@ readTestCaseiin o= Node void
& readTeststepin o Nods rvoid

& readReguestiin noc-Node void

& readParameter(in o Node rvoid
& readResponsein o Nods rvoid
& readPresicatetin noci-MNode)Siring
& recurseliods(in o1 Node rvoid

Generate

testGenerator.java

Capture

Test Report

Load Test

Web

Application

Test Script

(XML)

Test Engine

Test Engine

Test Report

Web Application to test

User Session

Single user region

StressTest.java

User Session

(HttpUnit)

Generate

testOutput.java

Performance plateau

Stress region

PAGE
1

_1187090548

_1187093045.xls
Chart5

		1		1

		10		10

		25		25

		50		50

		75		75

		100		100

		125		125

		150		150

		175		175

		200		200

Home Page

NMP

Number of Users

Response Time (ms)

3210

3560

3350

4250

3670

4140

3600

4480

3810

4630

3710

4890

4190

5560

4701

5880

4850

6890

4850

7440

Sheet1

				Home Page		NMP

		1		3210		3560

		10		3350		4250

		25		3670		4140

		50		3600		4480

		75		3810		4630

		100		3710		4890

		125		4190		5560

		150		4701		5880

		175		4850		6890

		200		4850		7440

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

Home Page

NMP

Number of Users

Response Time (ms)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

