PAGE

JAVA PETSTORE: A CASE STUDY

By

ROHIT NAMBIAR

B.E., Bhartidasan University, India, 2002
A REPORT

Submitted in partial fulfillment of the

Requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2005

 Approved by:

 Major Professor

 Dr. William J. Hankley

ABSTRACT
The Java PetStore application (an open source application) is Sun Microsystem’s model example of a web application. The Java PetStore is an implementation of a distributed application according to the J2EE blueprints maintained by Sun and its source code can be freely downloaded from the Sun Website. The application consists of a Web site through which it presents an interface to customers where the customers can buy pets online. According to “Sun Microsystem’s Java Blueprints”, the Java Pet Store application demonstrates certain models and design patterns and documents best practices and architectural ideas for J2EE applications. The application also helps developers and architects understand J2EE technologies, and how each of the J2EE platform components fit together. But the main problem in Sun's primary J2EE blueprint application lies in the poor documentation that fails to explain in detail how the design goals, architectural design/patterns are mapped on to a real web application. Morover giving just the source code for the application devoid of any class diagrams and lack of enough diagrammatic representation makes it extremely difficult for an end user to understand the design concepts of the PetStore.
 The purpose of this case study is to take Sun's primary J2EE blueprint application, the Sun Java Pet Store (Open Source), and study the java petstore applications, its architecture, its respective designs by the way of dividing it into functional modules, representing them in detail with the help of class diagrams and analyzing how it presents a good material for a case study. Based on Sun's J2EE best-practice sample application, we learn the recommended design patterns for building flexible, scalable, cross-platform Web-based applications. We have taken into account what quality goal has been achieved by the application and how the design/architecture affected the design goals and vice versa. We also added thoughts about the performance of an equivalent, revised, and fully optimized J2EE Petstore Web application by looking into some testing statistics performed on the application.
TABLE OF CONTENTS

 LIST OF FIGURES …………………………………………...
 iii
 LIST OF TABLES……………………………………………..
 iv
 ACKNOWLEDGEMENT ……………………………………. v
1 INTRODUCTION ………………………………………………
 1

2 BACKGROUND …………………….. 2

 2.1 Webservice Applications ……………………………………. 2
 2.1.1 Architecture of J2ee Application…………………….. 2
 2.2 J2ee Design Patterns Blueprints……………………………... 4
3 PETSTORE ARCHITECTURE AND DESIGN………………. 4
 3.1 General PetStore Overview………………………………….. 4
 3.2 Requirement & Specifications ………………………………. 7

 3.3 Model View Controller Architecture…………………………. 8
 3.4 Structural View Architecture………………………………….. 10
 3.4.1 Modular Design and its Implementations………………
 12
 3.4.2 Entity Bean and Session Bean Class Diagrams………… 19
4 PETSTORE IMPLEMENTATION ……………………………… 21

 4.1 Page Flow Diagram…………………………………………….. 21
 4.1.1 Page Screenshots………………………………………… 22
 4.2 Petstore JSP pages……………………………………………….. 25
 4.3 Petstore XML Files………………………………………………. 26
 5 TESTING…………………………………………………………….. 26

 5.1 Unit Testing……………………………………………………… 26

 5.2 Java Profiling……………………………………………………. 27
 5.2.1 CPU Profiling……………………………………………. 27
 5.2.3 Memory Profiling………………………………………... 27
 5.3 Load Testing……………………………………………………… 27
6 EVALUATIONS AND ENHANCEMENTS ………………………. 28
 6.1 Testing Results…………………………………………………… 28
 6.2 Evaluation………………………………………………………… 34
 6.3 Enhancements ………………….………………………………… 36
7 CONCLUSION………………………………………………………. 36
8 BIBLIOGRAPHY…………………………………………………..... 38
LIST OF FIGURES
Figure 1 J2ee Architecture Diagram ………………………………...……….. 3

Figure 2 Use Case Diagram for the Customer ………….…………………….. 7
Figure 3 Model View Controller Architecture for Java Petstore..………….… 9
Figure 4 Model View Controller Sequence Diagram………………………… 10
Figure 5 Petstore Functional Modules ……………………………………….. 11
Figure 6 Class Diagram for SignOn Module…………………………………. 12
Figure 7 Class Diagram for Product Catalog Module………………………... 13
Figure 8 Class Diagram for Shopping Cart Module…………………………. 14
Figure 9 Class Diagram for Mail Module……………………………………. 15
Figure 10 Class Diagram for Customer Module……………………………… 16
Figure 11 Control Module - Web Application Framework………………….... 18
Figure 12 Entity Bean Class Diagram for Petstore……………………………. 19
Figure 13 Session Bean Class Diagram for Petstore………………………….. 20
Figure 14 Page Flow Diagram………………………………………………...
21
Figure 15 Screen shot representing applicationHome page…………………..
22
Figure 16 Screen shot representing Category Screen…………………………
22
Figure 17 Screen Shot representing Product Items Screen…………………...
23
Figure 18 Screen Shot representing Cart Screen……………………………..
23
Figure 19 Screen Shot representing SignOn Screen………………………….
24
Figure 20 Screen shot representing Billing Information……………………..
24
Figure 21 Screen shot representing Order Confirmation…………………….
25
Figure 22 testMethod() generated for testing cart.jsp………………………..
28
Figure 23 Result for Unit test…………………………………………………
29
Figure 24 Graph showing Heap Memory Usage……………………………..
30
Figure 25 Graph showing the number of Objects & Array created…………. 30
Figure 26 Results for Memory Profiling…………………………………….. 31
Figure 27 Results for CPU Profiling………………………………………… 32
Figure 28 Results for Load Testing………………………………………… 33
LIST OF TABLES

Table 1 Actions and the Description for the customer……………………. 6
Table 2 Petstore Modules and their Functionality………………………… 11
Table 3 Entity Beans for the Application………………………………. 19
Table 4 Session Beans for the Application…………………………….. 20
Table 5 Petstore JSP Pages………………………………………………… 25
Table 6 Petstore XML Files………………………………………………. 26
ACKNOWLEDGEMENTS
I sincerely thank my major professor, Dr. William J. Hankley for his continuous support and guidance throughout the development of this project. His patience and critical review has helped me in evaluating and finishing my work.
I would also like to thank Dr Daniel Andresen and Dr Scott A. Deloach for serving in my committee.

Last but not the least I would like to thank my Parents, Sister for their constant support and patience and all my friends who always help me out whenever I am in need.
1. INTRODUCTION
The Sun Java Blueprints lay down a set of design goals and architectural design patterns for building reliable, scalable cross-platform applications. The Java PetStore is one such sample application developed by Sun Blueprint team to teach developers of best practices used to develop J2ee applications. Although Sun claims that the Blueprints help a real developer to build a large and complex J2ee Web applications it does not prove its claim by giving any analysis of the internal design patterns, class diagrams or general application frameworks. The Main Objective for taking up this case study was to go through various design patterns that the Sun Java Blueprints recommend as the best architectural and design patterns for building a flexible, scalable, cross-platform web application. The next step involved studying how those design patterns or goals are mapped on to live web applications like the java petstore application. For better understanding of the best architectural practices and the design patterns of the blueprint guidelines we looked into the architecture of the java petstore and discuss the consistent Petstore design conforming to the J2ee Design Patterns. Describing the PetStore Architecture conforming to the Model View Controller architecture and structurally decomposing the application to modules with class diagrams helps a developer to better understand how to build similar applications with reuse. We also gave an overview as to how the petstore application benefits from such architectural design. We could not have discussed so much detail about the petstore application without building and running the application. We further ran some performance tests to give a general idea of how the petstore application could be further enhanced in the future.
 The contributions in the remaining sections are as follows: Section 2 gives background information regarding the WebService applications, general J2ee application architecture and the blueprints for J2ee design patterns. Section 3 gives the PetStore architecture and design. We went through the general PetStore Overview, the requirement and specifications for the application followed by the Model View Controller Architecture conforming to PetStore. We further studied the PetStore design by dividing the structural architecture into functional modules and drawing class diagrams corresponding to each module. The modular design and its implementations in PetStore application is discussed followed by describing some of the entity bean and session bean used in the application. Section 4 shows the PetStore Implementations including the Screen Shots with some JSP and XML files used in the application. Section 5 Describes the various Performance tests like Unit Testing, Memory Profiling and Load testing run on the PetStore application. Section 6 describes the Overall evaluations and the Enhancements possible on the case study conducted. Section 7 describes some of the conclusion for this case study
2 BACKGROUND
2.1 Webservice Application
Webservices can be defined as self-contained, self-describing modular applications
that can be published, located, and invoked across the Web. Web services are also termed as building blocks for creating open distributed systems. Web Services perform functions, which can be anything from simple requests to complicated business processes. Once a Web service is deployed, other applications (and other Web services) can discover and invoke the deployed service.
 Background J2EE is an evolution of existing application server technology used to build usable web services systems that exhibit the features like reliability, security, transactions, scalability. There are a lot of features that goes in building web services, such as XML interoperability, load-balancing, and transactions. Hence we make a thorough case study studying the J2EE web services using the classic example of the java pet store.
2.1.1 Architecture of J2ee Application
The J2EE architecture is used for building server-side deployments in the Java programming language and for build traditional web sites, software components, or packaged applications. J2EE application is hosted within a container, which provides qualities of service necessary for enterprise applications, such as transactions, security, and persistence services.

 The business layer performs business processing and data logic. In large-scale J2EE applications, business logic is built using Enterprise JavaBeans (EJB) components. This layer performs business processing and data logic. It connects to databases using Java Database Connectivity (JDBC) or SQL/J, or existing systems using the Java Connector Architecture (JCA). It can also connect to business partners using web services technologies (SOAP, UDDI, WSDL, ebXML) through the Java APIs for XML (the JAX APIs).

 Business partners can connect with J2EE applications through web services technologies (SOAP, UDDI, WSDL, ebXML). A servlet, which is a request/response oriented Java object, can accept web service requests from business partners. The servlet uses the JAX APIs to perform web services operations. Shared context services will be standardized in the future through shared context standards that will be included with J2EE. The basic J2EE web service is shown below Figure.
[image: image35.png]User
Interface

il

Control

Product Catalog

Y2

Customer

Order Processing

Mail

7N

DATABASE

Figure 1 J2ee Architecture Diagram
2.2 J2ee Design Goals: There are a common set of design goals described by the j2ee blueprints. Some of those J2EE design goals are:
· Structural decomposition - Decomposing an application into different modules, or classes, makes it easier for developer to understand the application. This also helps for maintenance and modifiability.

· Separating Data presentation, representation and Buisness logic - In applications, the areas of the code that deal with the user interface are more likely to have more frequent changes, while the underlying business logic might have less or no changes.

· Extensibility: The application should be easy to modify and update with a renewed set of features

· Security: There should be absolute safety of transactions, in a web application.

· Minimize network traffic: The amount of data in a web application that needs to be transmitted should be minimized.

· Design reusability: Helps in reduced development costs and improvements in quality over a long period
3. PetStore Architecture and Design:
3.1 Petstore Overview :

The Java PetStore is a typical e-commerce application: an online pet store that sells customers products, types of pet from dogs to reptiles. The Java Pet Store consists of Enterprise Java Beans (EJB) architecture, Java Server Pages (JSP) technology, tag libraries, and servlets that build the application.
 A customer shops, places orders, manages her user account. The application has a Web site through which it presents an interface to customers. The users view of how he interacts with the petstore application can be seen by the shopping interface described above, that allows shoppers to buy items online. The interaction can be summarized as follows:

 A customer connects to the application, by pointing the browser to the URL for the application's home page. The customer can browse through the catalog or search for products. At any point during the whole interaction, the customer can sign into the application by providing an account identifier and a password. When the customer signs in, the application can recall information about the customer such as a preferred shipping address and billing information, buying preferences, and so on. Customers who don't have an account can create one at any time by providing an account identifier, customer name, password and some other personal details. The customer browses through the catalog to see a list of all the products in that category. For example, the customer can select the category Dogs to view all dogs that the pet store sells. The customer then selects a particular product in the list resulting in the detailed information like image of the product along with pricing information of the product. When the customer decides to purchase a particular item he clicks a button to add the item to the shopping cart. As the customer browses through the catalog, the application remembers all the items placed in the cart and the customer can recall the shopping cart at any time during the interaction to review or revise the contents of the cart. A checkout button is presented along with the shopping cart so that a customer can choose to order the items in the shopping cart at any time. This brings up a signin/signup screen. When the customer asks to check out, the application presents a summary of all items that would be ordered along with their costs and then he confirms the order. When the customer confirms the order, the application begins to gather shipping and billing information for the order. First it presents a form, where the customer can enter shipping information. If the customer is signed into the application at this time, the form comes up filled in with the customer's preferred shipping address else he is asked to enter billing information, including credit card details and a billing address. Finally the customer confirms the order and the application accepts the order for delivery. A receipt including a unique order number and other order details is presented to the customer. The application validates credit card and other information, updates its inventory database, and optionally sends a confirmation message via email.
	
 ACTOR
	
 ACTION
	
 DESCRIPTION

	Customer
	Browse catalog
	Each category has several products associated to it

	Customer
	Browse Detail
	Each product variant has detailed view that displays the product description, a product image, price, and the quantity in stock.

	Customer
	Browse Item
	Each Item is viewed.

	Customer
	Browse Products
	If we now select a product the application will display all variants of the product.

	Customer
	Update Cart
	This allows the user to manipulate the shopping cart (add, remove, and update line items).

	Customer
	Update Personal Info
	This allows user to update his personal information

	Customer
	Update Account
	The checkout page displays the shopping cart.

	Customer
	Submit Order
	The billing and the shipping addresses are displayed.

	Customer
	Purchase Order
	The final step wherein the order is committed to the database.

Table 1 Actions and the Description for the customer

[image: image2.png]

Figure 2 Use Case between the Customer and the Web Site
3.2 Requirement & Specifications:
In the java petstore other than the customer, there are other potential users which include the administrators responsible for maintaining inventory and performing other managerial tasks, and associated businesses such as suppliers. Each class of users has access to specific categories of functionality, and interaction with it using specific user interface. Hence
to understand the petstore architecture we first describe some basic specification required by each class of user.
· Customer: A Customer will need some links on the page so as to get quick access to all tasks. It also requires a catalog and a search mechanism to get an organized view of items and providing a way to locate items. For the products all the detail showing their price availability, picture should be available. A shopping cart to add and remove items and a checkout bill showing the total order cost and billing information.
· Administrator: An administrator requires all the features of a customer plus some modifying options for the product and the inventory status. He would require an update option so that a changed inventory is committed to the database.
· Business: The business user requirement and specifications are mostly related to security. Hence user authentication is important so that a user is identified to access a protected area. Some kind of user information, such as a credit card number, must be transmitted confidentially to the application and some kind of user administrations must be present for growing number of users.
Once the petstore application requirements are satisfied we go on to designing the application and thus discuss the architectural details.
3.3 Model View Controller Architecture:
The PetStore application is based on the Model View Controller Architecture. This kind of Architecture separates data presentation, data representation, and application behavior. The architecture consists of three components: the model, the view and the controller. The model encapsulates the core data and business functionality of the application. The view encapsulates the task of displaying the information to the user i.e. data presentation. Each view has an associated controller, which encapsulates the interaction of the user with the system, and abstracts the system behavior by sending service requests to the model for some operation on the data. By separating business and control logic from data presentation, the architecture provides the flexibility to handle such application complexity. The architecture provides flexibility, reusability, testability, extensibility, and clear design roles for application components
 In the java petstore the model, view and controller represent, divisions for the entire petstore application. The model consists of a group of classes: CartEJBAction, InventoryEJB, CustomerEJB, etc. ModelManager.java provides the access to these classes. The view is provided by a browser, stand-alone applications that provide this functionality and interfaces to spreadsheet programs. The controller consists of MainServlet.java, which sends requests to other controller objects such as ShoppingClientController.java, AdminClientController.java, and their related support classes.
[image: image3.png]Browser Client

Sees

Yo Diaiay

(=

Uses

MODEL

CONTROLLER

I

JL

<

‘manipulates

Figure 3 Model View Controller Architecture for Java Petstore
[image: image4.png]Controller Model

HandleEvent

Queryinformation

[ResultSet]

Dovalidation()

NotifyUser()

Figure 4 Sequence Diagram for Model view Controller

3.4 Structural View Architecture:
The petstore applications can be divided into smaller modules with each module supporting a particular action in the petstore. The division is based on the shopping interaction scenarios, with various behavior captured during the interaction organized as modules as scenarios correspond to the functionality provided by the application itself. The modular structure can be subdivided depending upon the functionality of each sub modules. The modular view of the pet store application is reflected in the subpackages of PetStore application's top-level package com.sun.j2ee.blueprints.petstore
	
 MODULES
	
FUNCTIONALITY

	SignOn
	It helps a user to sign on before accessing certain screens, and manages the sign on process

	Control
	Sends request to the business logic, controls screen flow, also coordinates component interactions.

	Product Catalog
	User can search for products and also shows the descriptions of the selected items

	Customer
	This module helps in representing customer information like address, credit card info and contact info.

	Mail
	Used for sending confirmation messages to the user.

	Shopping Cart
	It tracks the items a user has selected for purchase.

Table 2 Petstore Modules and their Functionality

[image: image5]
Figure 5 Petstore Functional Module
According to the input from the User interface, the Control module will either invoke information using the Product Catalog Module or store information in the SignOn, Customer module. In terms of the Model View architecture, the view element is the user component, the Control component and the interfaces manifest the operations of the controller and the databases where the information is stored provide the notion of Model.
3.4.1 Module Designs and Module Implementation:
We will discuss the various classes involved in each module of the Petstore Application and this will later be shown using the class diagrams and their interactions.
SignOn Module: The SignOn module is controlled by the SignOnFilter component com.sun.j2ee.blueprints.signon.web. The user signon process is coordinated by the web application framework component SignOnFilter, which detects requests for protected pages, signs on users, and forwards requests to appropriate URLs.
[image: image6.png]RegesPracessr s
pf e T e Mad
— etControter Ert
] et ——
) " e
| ! Elfhcion
! |]
|
i)
I | !
i ! i
e ! i i
HiiActin 1 ! -
| L
] i A [Froppogeria | [rmtswind
T oo
1 o] i
| |
| |
| |
I
! i v
L . Sgon | et
CatlseTHLAcin] cratlseen] i
s ey
o) ey

Figure 6 Class Diagram for SignOn Module
Based on the request URL, the RequestProcessor creates and executes an HTML action CreateUserHTMLAction that performs business logic. CreateUserHTMLAction returns an Event CreateUserEvent, which the RequestProcessor passes to the EJBControllerLocalEJB by way of the interface WebController, implemented by class DefaultWebController. An Event represents a command to be executed by the EJB controller which is a stateful session bean EJBControllerLocalEJB extended by class ShoppingControllerEJB. The EJB controller builds and evaluates an EJBAction subclass CreateUserEJBAction that creates the User entity.
Product Catalog Module:
 [image: image7.png]‘CotaogLocal

s
-
e | s
oo e Caoaoao.
e vemeores s
e s | ncagores
qostanomenpage soscrgnon Somaio. Semoaio
e ethems. qermems

Figure 7 Class Diagram for Product Catalog Module
One accesses the catalog to retrieve information about catalog entries like categories, products, and items. The CatalogLocal interface is implemented by the CatalogEJB stateless session bean, which is created by CatalogLocalHome. The CatalogLocal methods return instances of Category, Product, and Item, either individually or grouped by page. The CatalogEJB gets its data from a CatalogDAO and CatalogDAO retrieves the data from a relational database using JDBC.
ShoppingCart Module: One can use ShoppingCartLocalHome to create a ShoppingCartLocal bean. ShoppingCartLocalEJB contains methods that perform all of the operations and is the enterprise bean for the interface. The Implementation of the ShoppingCart Module consists of a stateless session bean which maintains a collection of CartItem objects. The Session bean methods are used to add, remove, get, and update items, as well as to empty the cart.
[image: image8.png]ShoppingCartEJB ‘ShoppingCartLoc:

[Fadaem [Fadaemy
[-settocale([-setLocaio0
[-getitems) L-getitem(y
|-deleteitems() [-doioteltom(
[-UdatentemQuantity([-Updatetemauantityy
[-getsubTotal() |-getsubTotal0
[-getGounto) [-getCount)
[remptyo [-empy0
[
Giient
Cartitern s
Freatogory)
ftemid
[-productid) _—
o0 ShoppingGariLocaitiome
l-cuantty) —
unitcost) oo
[rotalcost o0

Figure 8 Class Diagram for Shopping Cart Module
Mail Module: The Petstore and the order processing center communicate through the help of Java Messaging service. Also Purchase orders are represented as XML messages. The purchase order is created using Web actions, EJB events and EJB actions. When a user first sends a purchase order the SignOn module ensures he is already signed in. The Web Application Framework then creates an OrderHTMLAction and assembles it into an OrderEvent which is sent to the EJB Tier. The OrderEJBAction builds and transmits a purchase order. The Action class then creates a new purchase order. The UniqueGeneratorEJB creates a unique orderedID for the purchase order, sets the shipping , biling address and the credit card information. The OrderEJBAction iterates over the collection of items in the shopping cart, adding the items to the purchase order. It then sends the purchase order to the order processing control. AsyncSender EJB is a stateless session bean which handles looking up the messaging service and sending the purchase order XML document. PurchaseOrderMDB is a message-driven bean which receives the purchase order message

[image: image9.emf]EJBAction

EJBActionSupport

OrderEJBAction

+getQueueConnectionFactory()

+getQueue()

+getLocalHome()

ServiceLocator

UniqueIdGeneratorEJB

PurchaseOrder

+sendMessage()

AsyncSenderEJB

+OnMessage()

PurchaseOrderMDB

PurchaseOrder

Figure 9 Class Diagram for Mail Module
Customer Module: The customer module is implemented as a collection of entity beans. The reason for choosing the entity beans over the java classes comes from the fact that the entity beans combine the benefits of enterprise beans with better performance to that of java classes. Also very little code was necessary to create the entity beans, because the EJB container
manages the persistence of attributes and relationships It also helps in simplifying the design. We now represent the diagram representing the entity bean which tracks the customer data like his account information, credit card information etc. The customer module is separate from the user signon module.
[image: image10.png]Custoner

=

Accou
ce
cantactinfo
credtinfo

rofle
coount

Profile

FereredLanguage
imvouriecategory
vistpreforence
ernerpretrence

Contactinfo]

[E—

CroditCard

Cardumber
CardType
ExpiryDate

miiame
[aiveriiame

Helephone:

[emai
[acress

faraces
Interfacet

Figure 10 Class Diagram for Customer Module
Control Module: The Control Module consists of the Web Application Framework and the files and the classes that extend the framework. The main function of Control Module is to coordinate the actions of the other modules. The user or a client only interacts with the control module. In accordance with the J2ee Blueprints, the petstore application uses of a Web Application Framework. The main functions of the Web Application Framework are :

· Filter client request and provide services like security, logging etc. The pet store uses two such servlet filters: EncodingFilter, which ensures that request and response encoding match; and SignOnFilter, which enforces security and performs user signon.

· The Front Controller servlet, MainServlet.java processes all requests coming into for the website. It handles request dispatch, screen flow, and view generation..

· Map each request to Html Actions which implements the requested service. An HTML action is a developer-defined class implementing interface
com.sun.j2ee.blueprints.waf.controller.web.action.HTMLAction, that performs Web-tier business operations. Each time the RequestProcessor receives a request, it uses the URL to look up the corresponding HTML action class in the request map, creates an instance of that class, and executes the action by invoking the action’s perform method. The HTML action is implemented using the interface HTMLAction having the following methods - public void doStart(HttpServletRequest req) which initializes the action, public Event void perform(HttpServletRequest req) throws HTMLActionException which performs the action’s business function and public void doEnd(HttpServletRequest req, EventResponse evr) which is called only if perform does not throw an exception

· After Executing the Html Action if an EJB event is returned which requests operations in the EJB tier. To access the EJB tier, petstore defines two classes: an Event, implementing interface com.sun.j2ee.blueprints.waf.event.Event and an EJBAction interface com.sun.j2ee.blueprints.waf.controller.ejb.action. EJBAction

· After executing the business logic Web Application Framework select’s the Next view to display based on the current view. A developer can programmatically determine the next screen to display using a Web Application Framework screen flow handler com.sun.j2ee.blueprints.waf.controller.web.flow.FlowHandler.com. The Web Application Framework WAF specifies the screen flow map and the request map in a single file, mappings.xml. A url-mapping element in the mappings.xml file defines both the next screen to display and the action to perform in response to a particular request URL.

· Generates the selected view and gives it to the client.

[image: image11.png]s

Seviet Fiter

Front

[———| contrler

Sy

[Template

e

Racuest

=y

Screenflow

Wel Applicaton Framerk

Wb,
Controler

EB
Gonirolier

Figure 11 Control Module - Web Application Framework
3.4.2 Entity Bean And Session Bean Class Diagrams
Entity Beans:

[image: image12.png]'
h
h
h
Counter s

Accountess

T

|

|

|

|
CustomerETa

CroaicaraEs

[Gontactintor 76

Figure 12 Class Diagram for Entity Beans
	Entity Bean
	Functionality

	CustomerEJB
	Tracks customer id, account, and profile

	AccountEJB
	Tracks account status, credit card, and contact info

	ContactInfoEJB
	Tracks family and user name, email, and address

	CreditCardEJB
	Tracks card number, card type, and expiration date

	AddressEJB
	Tracks lines of street address, state, zip code, and country

	UserEJB
	Tracks a user name and password

	CounterEJB
	Used only by UniqueIdGeneratorEJB to manage series of unique numbers

Table 3 Entity Bean for the Application
Session Beans:
[image: image13.png][Rssynessndoress.

cataiogess.

e

UniqueiaGeneratore

Sigroness

ShoppingCientracadeEss|

Shoppingcariess|

ShoppingControerE s

[FesTomraCaEaaeT

frgetseray
[eousarisy
[rgeiCusiomert
[reratoCusiomer

bgstshoppingCarto

Figure 13 Class Diagram for Session beans
	Session Bean
	Functionality

	AssyncSenderEJB
	Converts shopping cart contents and customer data into an XML message representing an order, and sends the message to the Order Processing Center

	CatalogEJB
	Provides an interface to the catalog

	ShoppingCartEJB
	Maintains the contents of user’s virtual shopping cart

	ShoppingControllerEJB
	Provides access to the Shopping Client Façade

	ShoppingClientFacadeEJB
	Provides unified access to customer, shopping cart, and user id

	SignOnEJB
	Creates and authenticates system use

	UniqueidGeneratorEJB
	Creates globally unique object identifiers

Table 4 Session Beans for the Application
4 Petstore Implementation: The Petstore application was implemented on the Sun J2ee 1.4 Application Server with pointbase 4.5 database server as the default database for the application. The pointbase database server includes a prepopulated database containing the tables and data required by the petstore applications. For recompile, reassemble and redeploy the petstore we make use of build.xml that uses the Java based Ant build facility. The build.xml file can define various targets that are used to compile and assemble the application for e.g. it compiles all java source code, assembles the ear and war files and deploys the full application.
4.1 Page Flow Diagram:
[image: image14.png]¢ ¢ e e

ByDag

on Signin ©0os)

Praduct Screen

(SunCategories) Home

adto Cart

Cart Sreen

Vo

| SEE p—]

Screen
on

NewUser Confrmation

Bilhg

Sereen on Submit

Figure 14 Page Flow Diagram
4.1.1 Page Screenshots:
[image: image15.png]=

Welcome to the BluePrints Petstore - Microsoft Internet Explorer

Oui- © [@ G| Lot Frreon ©]3-% 3 -UBH DS
G5

e €] e focaoscocojpetsorema,sreen

V] st - @ | Srovthded o Fdoptons

Google - [
Y - 2 ~|(searchweb [-]E3- @4+ | Eamai - @y vahoo! F] Games + pastetbal - §” Personals +) Music + il Finence ~ Signin |~
[(Search |
Java™ Pet Store
J2EE™ BluePrints Sample Application Accourt| Cat Sianin
=g]

3

CIETe™

 Figure 15 Screen shot representing Home for petstore
[image: image16.png]£ Items - Microsoft Internet Explorer

)=
o B Wen Fowries Toh o 13
Qo - © (%] B @ Psewcr Fprawres € (2- 2 G - [JWEH @B
ddress |] httpsflocalhost:B080/petstarefcateqory screen?category_id=DOGS.

Google - ™~

Be
Gosearhweb -) [Ga7 bloced 24 options
Y - 2 ~|(searchweb [+)E3~ @~ | cma ~ @ my Yahoo!] Games - @ asketball ~ " Personals ~ § Music v il Finance ~ (Signin |~

Java™ Pet Store

J2EE™ BluePrints Sample Application

Account | Cart] Signin
=gy |

Products for this Category

Bulldog

Friendly dog from England
Chihuahua

Great companion dog

F

The Java Pet Store Derma is a fictional sample application from the Java BluPrints for the Enterpise. For more information, visit the Java BluePrints for the Enterprise

Web Site at heep.//4sve. cun. con/blucpzines envezprize,

Java BluePrints for the Enterprise | Java Software | Sun Microsystems
001 Sun Microsystems Inc. Al ights resenved. Use is subject to license terms

Elowe

CIETe™

Figure 16 Screen shot representing Category Screen for petstore
[image: image17.png]&1 Product - Microsoft Internet Explorer =J=e3
Bl Edt Yew Favortes ook Hep &

Q- © ¥ [Pseach Seraoes @) (- s @ - JKWEH @B

Address |] http:/flocalhast:B080/petstorejpraduct. screen?product_id=K3-CW-01 Go
Google- [v] Gpseacnen - | | E257beced #d optens
Y- 2 [semchweb [<) B3~ - | o - @y Yohoo! [Gomes - @ Bosketbll 57" Persondls = D tusic - il Finerce - [g01n |

Java™ Pet Store

J2EE™ BluePrints Sample Application

Account | Cart] Signin
=gy |

Items for this Product

[Adult Male Chihuahua

§12550
Little yapper Add to Cart
|Adult Fernale Chihuahua §155.29
Great companion dog Add to Cart

The Java Pet Store Derma is a fictional sample application from the Java BluPrints for the Enterpise. For more information, visit the Java BluePrints for the Enterprise

Web Site at heep.//4sve. cun. con/blucpzines envezprize,

Java BluePrints for the Enterprise | Java Software | Sun Microsystems
©2001 Sun Microsysterns Inc. Al rights reserved. Use is subject to license terms.

CIETe™

 Figure 17 Screen Shot representing Product Items for petstore
[image: image18.png]&1 Cart - Microsoft Internet Explorer

)=
He £ Yew Fawrtes Dok tep

L

Qo - © (%] B @ Psewcr Fprawres € (2- 2 G - [JWEH @B

cress €] htpflocaihost:E080 petstorecat doPaction=purchasetitemId—EST-27)
Google - [¥] @ searchvet | B | E57blocked 7 options
Y - 2 ~|(searchweb [+)E3~ @~ | cma ~ @ my Yahoo!] Games - @ asketball ~ " Personals ~ § Music v il Finance ~ (Signin |~

Java™ Pet Store

J2EE™ BluePrints Sample Application

Account | Cart] Signin
=gy |

Shopping Cart

|Adult Ferale Chihuahua Rernove 1 @ $155.29)
Update Cart Total: §155.29
Check Out

The Java Pet Store Derma is a fictional sample application from the Java BluPrints for the Enterpise. For more information, visit the Java BluePrints for the Enterprise

Web Site at heep.//4sve. cun. con/blucpzines envezprize,

Java BluePrints for the Enterprise | Java Software | Sun Microsystems
©2001 Sun Microsysterns Inc. Al rights reserved. Use is subject to license terms.

Elowe

CIETe™

 Figure 18 Screen shot representing Cart Screen for petstore
[image: image19.png]21 Sign On - Microsoft Internet Explorer

[BEX]
o £5 fon Fawie Dok thb [

O O HEG P e @3 % 8- LU DS

e €] tpffocahst s080)petstoreerter rder_infornatonsren @
Google - [v] @osearchwes ~ | 8 | Eho7biocked
X! T lcanwn o) @i | Cval - @y verool Fcancs - @ seskeival - & Personds - P s - il Frence - (gnin |-

2 Java™ Pet Store

J2EE™ BluePrints Sample Application

Account | Cart| Si
<] &

sign In

Are you a returning customer?

Yes. No. I would like to sign up for an
account.
User.
Name: 2o

. User Name:
Password:

Password:

Password

Repeat):

Rermember My User Name [] (Repeat

Create New Account

The Java Pet Store Derma is a fictional sample application from the Java BluPrints for the Enterpise. For more information, visit the Java BluePrints for the Enterprise
Wioh site At oot

CIETe™

 Figure 19 Screen shot representing SignOn for petstore
[image: image20.png]2] Enter Order Information - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Q- © [@] P frrow @) 2-5 9 LUH P B

(MEX
&

L [e ——

M

Google - [v] @osearchvet - | 3 | £57blocked Yl Auorl | i Options
X1 - 2 [search web [-) 3~ @t~ | omai

1«

@y vahoo! [Games - @ castetbal - 7 Personsl - § Musc il Fnance - [sgnin |-

Java™ Pet Store

J2EE™ BluePrints Sample Application

[(Search |

Account | Cart| Sign out
=gy |

Billing Information

First Name

Last Name

SuectAddioss 1234 Anywhere Steet

cy PaoA
State/Province [v Zip Code B33

Country v

Telephone [FE5E655EE5
EMail [saa@bbbcce

Shipping Information

Elowe

 Figure 20 Screen shot representing Billing Information for petstore
[image: image21.png]&1 Order Placed - Microsoft Internet Explorer

)=
He £ Yew Fawrtes Dok tep

L
Q- © ¥ [D seach Sl raortes) (- L g 93
Adress | @) httpsfflocalhost:a080jpetstoreforder.do
Google - [v

Be
Gosearhiweb -) [Ga7 bloced 24 options
Y - 2 ~|(searchweb [+)E3~ @~ | cma ~ @ my Yahoo!] Games - @ asketball ~ " Personals ~ § Music v il Finance ~ (Signin |~

Java™ Pet Store

J2EE™ BluePrints Sample Application

Account | Cart| Sign out
=gy |

Your Order is Complete

Your order Id is 10016

You should receive a confirmation e-mail soon at aaa@bbb.ccc

‘Thank you for shopping with the Java Pet Store Demo.

The Java Pet Store Derma is a fictional sample application from the Java BluPrints for the Enterpise. For more information, visit the Java BluePrints for the Enterprise

Web Site at heep.//4sve. cun. con/blucpzines envezprize,

Java BluePrints for the Enterprise | Java Software | Sun Microsystems
©2001 Sun Microsysterns Inc. Al rights reserved. Use is subject to license terms.

Elowe

CIETe™

 Figure 21 Screen shot representing Order Confirmation for petstore
4.2 Petstore JSP Pages: The JSP pages basically provide a user interface for the application. We define a few JSP pages used for the petstore.
	index.jsp
	The main page for the petstore

	banner.jsp
	Shows the banner on the top of the page.

	footer.jsp
	Shows the footer on the bottom page.

	cart.jsp
	Shows the shopping cart

	product.jsp
	Gives the product for a category

	item.jsp
	Displays the items in the category

	search.jsp
	Shows a search form

	Signon.jsp
	Displays the user signin

	Signoff.jsp
	Displays the user signout

Table 5 JSP Pages
4.3 Petstore XML Files:
	application.xml
	deployment descriptor for the petstore application

	mappings.xml
	helps in mapping the petstore screen flow

	screendefination.xml
	defines the screen for English

	web.xml
	deployment descriptor for the petstore Web Tier components

	signon-conFigure.xml
	configures the signon filter

	Populate-UTF8.xml
	helps in populating the database

	PopulateSQL.xml
	cloudscape & oracle sql command to create sample database.

Table 6 XML Files
5. Testing:
5.1 Unit Testing:
Unit testing involves execution of the unit test cases to evaluate implemented subprogram units, and tracking and resolving unit-level errors. This is accomplished as subprogram units are developed, and before they are integrated into larger components and programs units. Each module is tested alone in an attempt to discover any errors in its code. In the java petstore each of the java or the jsp pages are unit tested using AppPerfect testing tool. During Unit Testing .java files, the JUnit framework is used and for .jsp files, the HttpUnit framework is used. We tested the cart.jsp file for the java petstore. The tool allows you to specify details of the Test Classes and also lets you select the various TestCase options. To generate test cases we manually navigate to the page in a browser. The tool is able the necessary Http request and response objects needed to unit test the page. If error code is detected in any of the responses it is displayed as a failed test case in the Results tab. If there are any failed assertions in the test, it will be displayed against the testMethod of the failed testclass.
5.2 Java Profiling:
Java Profiling provides a full view of the petstore application and its environment and helps in better understanding the application's profile. Testing the petstore with the profiler shows us various profiling metrics such as heap memory usage, object instance count and CPU usage.
5.2.1 CPU Profiling:
CPU Profiling helps to understand the breakdown of how time is used by the CPU when an action is processed. Other results using the tool include details on all classes and their methods, including the number of invocations, CPU time consumed, details on how the application's processing breaks down for CPU usage, identifying classes and methods that take the bulk of the processing time.
5.2.2 Memory Profiling:
The Heap Memory Profiling helps in detailed information about the profiled JVM's heap memory. The results for this type of profiling involves Chart displaying the current and maximum memory size, a chart of count of live objects over time in the application, charts are displayed showing details on each call to the Garbage collector and Possible memory leaks in the application.
5.3 Load Testing:
Load testing can identify failures involving scalability requirements as well as involving how the performance of a system varies under normal conditions of utilization eg, as the load increases and becomes heavy.
6 Evaluations And Enhancements:
6.1 Testing Results:
Unit Testing: We tested the cart.jsp file for the java petstore. To generate test cases we manually navigate to the page in a browser. The tool is able the necessary Http request and response objects needed to unit test the page. If error code is detected in any of the responses it is displayed as a failed test case in the Results tab. If there are any failed assertions in the test, it will be displayed against the testMethod of the failed testclass. We filter out the methods to be tested based on their access specifiers. For example, Private methods are called from other methods of the same class; hence we choose to not test them initially.
[image: image22.png]public void testMethod() thraws IOException, MalformedURLException, SAXException
4

String [] values = nul;

req = new GetMethodwebRequest (hitps flocahost:080jpetstore);
. getResponse(rea);)
new GetMethodWebRequest("http:flocalhost:8080 petstore');

. getResponse(rea);)
req = new GetMethodWebRegquest htp: flocalost:8080]petstorefpopulating.Jsp');
J* setting request parameter(<)*|
valles = new string [1{

“false",

B
regsetparameter(‘forcefuly’, valuss);
resp = we. getResponsereq);
req = new GetMethodWebRequest ('htp: flocalost 8080]petstore{Populat
J* setting request parameter(<)*|
valles = new string [1{
"fbetstoreimain screenvfarcefuly=faie’,

req,setPerameter("success_page", values);
Ve = newstrng (14
e
5
vea setParameteorcefuly’, vaues);
resy ic.getResponse(req);
120 new GetMethodWebfequestitp focahos 8080 petstoreproduct screen
¥ Seting recuest prametery
ek e (11
"RP-SN-01",
5
req.setParameter("product _i
resp = we.getRespanse(req); .
req = new GetMethodwebRequest("http: /localhost:8080/petstorejcart.do");
¥ Seting recuest prametery
vakes ~new s (11
purchose’,

) values);

N

[image: image23.png]Number of Core Java Classes for which Instances are generated &
Number of User Classes for which Instances are generated 0
Number of Mack Classes for which Instances are generated 0

Number of Object Instances generated for Core Java Classes 21
Number of Object Instances generated for User Java Classes 0
Number of Obiect Instances qenerated for Mock Java Classes 0

Figure 22 testMethod() generated for testing cart.jsp

This results obtained can be summarized by analyzing the Figure below. Server Pages shows the number and percentage of server pages whose Test Cases failed and is shown in the Figure as a horizontal bar graph.The table in shows the following columns:

· File Name: This is the name of the JSP file i.e. cart.jsp.

· Test Classes: The number of Test Classes created for cart.jsp i.e. 1
· Test Cases: The number of Test Cases generated for the cart.jsp i.e. 1
[image: image24.png]AppPerfect Unit Tester

rofessional

[NewProject]

File View Project Tooks

CDOHPEG @B@

|97 (%2 2% OE (09

3, summary

Code Coverage
B Server Pages
@ source Fles
22 Developers
X Exceptions
i Assertion Fares
5 Memory Leakage

Editor | @ Repostory E

Server Pages Summary

erver pages|

e lases|

Sk © 2 1212 k2. | B)repon updat - iros

AppPerfect Ut Test,

O @l

Ten s
D B T S I B T I R R R R
R)
T e Faled e Taal
Server pages 100% (1) 0% (0) 100% (1) 1
Test Classes. 100% (1) 0% (0) 100% (1) 1
Test Cases. 100% (1) 0% (0) 100% (1) 1
etls
= Ftane s e e
Fl=i fi fi 5
Tt cxotion srted T
Exccutng s o cortTest
Eeii Tok o st
T Test Conpeted [wose [s amsizam

2:23 P10

Figure 23 Results for Unit Test
Memory Profiling: The Memory chart below shows how much of the total memory is allocated on the heap. Figure is plotted with the time stamp on the X-axis and memory used by the petstore application (in Kilobytes) on the Y-axis. The total size of the heap is also plotted against the Y-axis to provide an indication of the amount of memory being consumed. The Figure 22 below indicates that the memory usage of the petstore application is within safe levels as the memory usage within the total memory constraints.
[image: image25.png]KB

Heap Memory

sese
saae
s
e
P
P
pree
e
e
peee
3759
3589
3a1g
324
307
230
273
258
e
2229
pre=
165
s
o
179
125
1]

e

e

52

354

1)

W

W

w0

oy

WEL_om on o n@ ow

Jsed Memory & Total Memory Free Memor,

;=)

i

i

e

Figure 24 Graph for Heap Memory Usage
[image: image26.png]Live Instances

Obiject Instances

saan
es7es
a1z
anars
7720
75188
7254
esans
7250
e
e
saatg
se670
sz
e
a3
e
P
o
prees
35510
e
et
27579
240
2221
1sea
16508
16350
11708

a0g0

ean

)

et

e

(3

e

[

o)

[y

T TR

w0

=0

(23

B3

W

Figure 25 Graph showing the number of Objects & Array created
 The Figure 23 gives an idea of the number of objects and arrays being created by the petstore application at any given point in time. The Figure 23 is plotted with the time stamp against the number of objects created by the application. If the charts are rising steadily and there is no decline, it may indicate that the objects and arrays created are not getting garbage collected and there may be a memory leak.
 We were also able to detect some of the most heavily used objects and the amount of memory that they are consuming. We chose one of the such packages com.sun.j2ee.blueprints.signon.web and were able to pull out information like the Classes present within them, number of Live Objects, Size of the Objects, total number of Objects and total size of Objects in bytes, created for the petstore application.
[image: image27.png]Package Name Live Objects | ¥ Live Size(Bytes) | Total Objects | Total Size(Bytes)

com.sun j2es. blusprints.waf visw.template 129 3104 129 3104
com.sun 2ee.blusprints.waf controlerweb 16 440 16 440
comsun j2es.blusprints.signon.web 5 128 6 152
com.sun 2ee.blueprints. . controler.webs... 1 %2 2 @
com.sunj2ee.blueprints.petstore.controler.... 2 2 2 2
com.sun 2ee.blueprins.encodingfiter.web 1 16 1 16
com.sun.j2ee blueprints.servicelocator.web 1 8 1 8

[image: image28.png]Class Name. Live Objects | ¥ Live Size(Bytes) _| Total Objects | Total Size(Bytes)

comsun j2ee.blueprints.signon.web ProtectedResource. 4 % B %
camsun j2ee blueprints.signon.web,SignOnFiter 1 %2 1 2
com.sun.j2ee. blueprints. signon. web. SignOnDAC. o o 1 24

[image: image29.png]Class Name. Method Name | Live Objects | ~ _Live Size(Bytes) | Total Objects | Total Size(Bytes

com.sun.j2ee blueprints.signon.web SignONDAG getProtectedResources (org.... 4 a6 4 %

[image: image30.png]Class Name: con.sun.j2ze.blueprints signon web. ProtectecResource

= Ol ot e
= ¥ 100%-aloc: Tota 3-Thread - main
= @ 100%-Alloc: Total 4 { Self 0-com.sun.j2ee.blueprints.signon.web. SignOnFilter init (javax.serviet. FiterConfig arg1) : void
= ® 100%-Alloc: Total 4 / Self 0-com.sun.j2ee. blueprints.signon. web. SignONDAO: <init > (java.net.URL argt) : void
® 100%-Alloc: Total 4 | Self 4-com.sun. j2ee.blueprints. signon.web. SignOnDAO: getProtectedResources (org.wi3c.dom.Element arg) : java.util.HashMap

Figure 26 Results for Memory Profiling
By checking the code of methods that have heavy allocations of objects we can find ways to reduce or reuse the objects that are being created and thereby improve the speed and efficiency of the application. The first level of this tree shows the percentage of total objects allocated in the petstore application i.e. 100%. The next level shows the total number of objects that were allocated by that thread i.e 4 objects. At the next level we have nodes representing different packages. This information is used to identify the proportion of memory utilized by each method in the running threads.

CPU Profiling: The Figure below shows us the number of times a method was invoked and the time it took to execute the method as well as the time it took to execute overall, including execution of any procedures, or method calls.
[image: image31.png]| Method Name Invocation ... | ¥ Execu... | Cumulative .. | Avg. Execut... |

Class Name:
.ot Utls widcardMatch (javalang.5tring ara1, javalang String ... | 2837 o ™ 0
mcsjserver MBeanserverL... <int> (javalang.String argt) : void 1 & 140 @
M) server. MBeanlntrosp... createMBeanDescrinton (mxt.server. MBsantietabata .. 9 W £l 4

6 o0 o0 3

mxdi.server.DefaultMBean... clone () java.lang.Object

[image: image32.png]Class Name. | Method Name | Iwvocation ... | Execution Time(ms) | ¥ %

el Utls widcardMatch (java.lang.String argl, java.lang.String arge) 1 b... 2837 n %84
mcsjserver MBeanserverL... <int> (javalang.String argt) : void 1 & E
mcsjserver.MBeanintrosp... createMBsanDescripton (mxt.server. MBsanetaData arg1) : .. 9 o 2108

. server DefaultMBean... clone () : java.lang.Object 6 20 1053

[image: image33.png]& 100%:220 ms-Root
0%-0 ms-Thread - itp-8080-Processor2s
100%-220 ms-Thvead - main

('
Ex

0%-0 ms-403 inv-mx4}.Iog.Log:getL ogger (javalang.5tring arg1) : mx4;.Iog.Logger
©0%-0 ms-6 invemxé.Iog.Log:createLogger (xt}.log.Logger ara1, java.lang String ag2) : mxtjog Logger
© 0%-0ms-6 inv-mxt].Jog.Logger: <int> () void
© 0%-0ms-6 inv-mx4.Jog.LoggerisetPrioiy (int arg1) : void
© 0%-0ms-6 inv-mx].Iog.LoggerisetCategory (java.lang.String) : void
0%-0 ms-1 inv-mxt.log Log: <clt> () : void
0%-0ms-1 inv-mxt}.Jog.Logi2irun () :java.lang.Object
0%-0 ms-1 inv-mxt] Jog.Log§2: <ine> () : void
0%-0ms-1 inv-mxt}.Jog.Log§ :run () :java.lang.Object
0%-0ms-1 inv-mxt] Jog.Log§ s <ine> () : void
1.82%-70 ms-70 nv-hes server MBeanServerlmplregisterMBan (javalang.Objec argl, javax.management.Objectame arq2) : avax.management.Objectinstance
31,829%70 ms-70 nv-Mhes server MBeanServerlmplregisterMBsanimpl (java.Jang. Object arg1, javax.management.Objectilame a2, boolsan a1g3) Javax.managen
© 50%-110 ms-75 inv-med] server MBeanServerlmpkreisterlmpl (mxd.server. MBeaniletaata arql, boslean arg2) : void
. ® 4.55%-10 ms-75 inv-mx.server.MBeanServerimplcreateMBeanhitaData () : mxd]server MBeanletaData
4.55%-10 ms-78 inv-mxt.server. MBeanServerlmplisRegistered (javax management. Objectame argt) : boclean
©4.55%-L0 578 inv-mxt].sorver. MBsanerver IpfindeanietaData (javax. management. Objecthame argt) :) server MBeanietsData
0%-0 ms-364 inv-mx4.Iog.Logger sEnablecFor (it arg1) : boslean
© 0%-0ms-364 v log.Logger:getPriarity () : int
0%-0 ms-1 inv-mxt.server. MBsanServerlmpl: <clnit> () : void
©0%-0 ms-1 invrmxct.server. DefaulClassLoaderRepository: <> () : void
63.64%-140 ms-1 inv-mx4].Server MBeanServerImpl: <init> (java.lang.String arg1) : void

Figure 27 Results for CPU Profiling
5.3 Load Testing:

The Figure below gives the details of the total hits of the total number of users i.e. 450. A pie chart is used to depict the distribution of the number of hits that were executed as part of the selected project. User Count Chart is used to depict the User Count at different points of time while running the test and is plotted with the Time on the X-axis and the User Count on the Y-axis. Response Time chart show the response time in milliseconds plotted against time . Three values are plotted in the chart, that is Minimum is showed using a green line, whereas the Maximum is depicted by a red line and the average is plotted with a yellow line. Hit Count at Different Times: A bar chart is used to show the number of hits at various times while running the test. The chart is plotted with Time on the X-Axis and Hit Count on the Y-Axis. Throughput graph shows Time on the X-Axis and bytes received (in Kilobytes) on the Y-Axis. This chart shows the bytes received at different times during while the test was running.
[image: image34.png]Hit Count

Response Time:

Hit Count Wait Periods At Different Times

o4 o

pr s

e o

e sosd

P o

o feom

o e

e i

s ol bt wh oo wH op ok o o W _wh_ovm b wE o
[Success ® Fai ¥ ineout

s Tcoue] Rosporse Tine [Seconcs

Succossd 709 i (520 000

Faied 0 W Gec) a0

Timed Out o Awvg (Sec) 3.92

rrntal 7096

Nomber of rtua Users o Diferet Ties Throughputper second
User Count Throughput (KB)

S0 19665]

456 17480

“ plo

= i

B e

220 a4

e e

o o

| e

o oo oL _mm Wk wm wh o o ool b wh wh e w0

[s Receied

Figure 28 Results for the Load Test
6.2 Overall Evaluation:
On the positive side of things there are number of things to be learnt and evaluated from this case study:

· The foremost would be to understand the Model View Controller Architecture and how the use of such architecture would help us in building reliable scalable j2ee Applications. The separation of Data presentation, representation and Buisness logic helps because in applications, the areas of the code that deal with the user interface (or data presentation) are more likely to have more frequent changes, while the underlying buisness logic might have less or no changes. Morover according to the divide in the architecture we can separate of the tasks according to the skill set. The decomposition should result in a set of objects that can be assigned to various subteams based on their particular skills. This division of labor allows work on each object to proceed in parallel. For e.g. a person good in graphic design will be better designing the view part of the architecture while an application developer is better off developing the buisness logic of the application.
· The Structural decomposition of the application according to their functionalities and decomposing an application into different modules, or classes, makes it easier for a developer to understand the application. This also helps for maintenance and modifiability of the application. Also the modules are decoupled so that each module can be developed independent of the other. Modularity of an application has many advantages including ease of testing, easier maintainability and changeability, and also aids in reuse of code.

· As J2ee is designed for multitier application with a client tier, Web tier, EJB tier and the EIS tier. The Web tier accesses the enterprise information system resources directly, or goes through an EJB tier. The decision depends on the functionality, complexity, and scalability requirements of the application. Since such requirements can change as the application evolves, one goal for the design is to make it amenable to migration to an EJB-centric approach. Ease migration from Web-centric to EJB-centric. This provides scalability, reliability, persistence, asynchronous communication, and declarative transaction and security control.

Looking at the drawbacks or the negative aspect of doing this case study is:

· The Petstore application is rather very complex application. Going through the code and making sense of how the Petstore confirms to the Model View Architecture was really tough and cumbersome. Moreover the Model View Architecture is a conceptual way of looking at the Petstore. It claims of giving reusability, testability and extensibility but not of the claims are well supported by their implementation methadoligies.
· The Model View Controller architecture moreover which they claim is the foundational architecture to build J2ee applications is somewhat outdated with MVC for strut based system being introduced.

· It is claimed that structural decomposition of the application helps in decoupling the modules and thus it can be developed individually. But the Petstore is a complex application and some of the modules are not mapped together even though they conform as the subpackage to the top package com.j2ee.blueprints.Petstore.
· The learning curve itself for this type of a case study is quite high. Understanding the code and mapping them to the MVC architecture and further decomposing those to functional modules are difficult.
· The lack of any performance oriented comparisons with applications developed on diffrent technologies makes the assumption difficult that the design patterns give the best reliable, sacalable cross platform application

· The number of lines of code i.e. approximately 14200 lines of code makes the application real complex. The Petstore with same functionality has been implemented
6.3 Enhancement :
Although the Java Petstore is the best architectural and design implementation for a J2ee Application its performance has been much in contention. Although Sun Microsysytem claims that the Petstore Application is not built for showing any performance measures the fact remains that the best claimed architecture and the design indirectly points to some kind of results to show that Petstore performance is better than the applications developed in other technologies.
One such enhancement to this case study would be to study the Architecture of .Net Petshop which is a petstore implementation with same functionality as that of java petstore but implemented in Microsoft.Net. In the recent past there have been many papers with some claiming that .Net implementation gives better performance than the Java Petstore. Other claims including made by Oracle is that the newer version of java Petstore outperforms the performance of the .Net version. Understanding and comparing the architecture and design of java Petstore and then running some performance tests to evaluate the performance statistic will help in better understanding which technology (.NET or J2ee) is more customed to build reliable, scalable and robust Web applications.
7 Conclusions:

This case study studied the recommended design goals for J2EE applications and covered the various architectural and design implementation for the Petstore application. The general implementation of the sample application i.e. Java PetStore was studied comparing it to the different design goals or patterns recommended in the Java Blueprints. The poor documentation, lack of class diagrams and absence of a application framework led us to explain these in detail pertaining to the PetStore application. In this case study we make use of some concepts from the Blueprints Guidelines and explain how the various architectural pattern like the MVC architecture help in building J2ee application. The Class Diagrams were drawn according to the relationship between different classes in a module. The conceptual representation of the Model View Controller architecture corresponding to the PetStore separates presentation, data representation and business logic, so that the module which are more likely to change are separated from the module which change less or do not change. Structural decomposition of the application to functional modules conform to the design goals and thus make a complex application like PetStore with approximately 14200 lines of code more readable, maintainable and easier for a developer. The use of a Web Application Framework used in the control module helps in reuse and even security to the application and helps an end user who has to build a large complex system. The Java PetStore was not built to analyze the performance rather it is a benchmark to build web applications which conform to the best design and coding practices. According to the analysis of the Java Pet Store using some of the testing methods performed in this case study there was a general perception that the performance of the application was good in terms of its functionality, memory usage and the load accommodated on the website. Moreover to get a real performance statistic would require comparing the Java PetStore application build on different technologies. A better way of analyzing the performance of the Petstore application would have certainly helped. There are some drawbacks for this case study like the use of an old Model View Controller architecture without the strut framework, the complexity of the code which has a high learning curve and makes it difficult for structural decomposition of modules. Finally the claims by the Sun Microsystems that the Design patterns and goals help a developer build scalable, reliable and cross platform application cannot be confirmed fully due to the lack of actual implementation of such a web application during the process of this case study but the discussion and advantages of such an implementation is clear by discussing the various architectural and design issues covered in this case study.
8 Biblography:
[1] Sun Microsystems, www.java.sun.com, 1995-2005
[2] Java Blueprints Team, http://java.sun.com/reference/blueprints, April 2005
[3] Java Petstore Source code, http://java.sun.com/j2ee//1.4/download.html#samples,
 June 2005
[4] D. Alur, J. Crupi & D. Malks,” Core J2EE Patterns”, 1996
[5] Model–View–Controller,

 http://java.sun.com/blueprints/patterns/j2ee_patterns/model_view_controller/, 2005
[6] Core j2ee Patterns, http://java.sun.com/blueprints/corej2eepatterns/index.html, 2002
[7] Designing Enterprise Applications with the J2EE Platform,
 http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/ , 2005
[8] Java Pet Store Sample Application Implements Core J2EE Patterns

 http://java.sun.com/blueprints/patterns/catalog.html, 2005
[9] J2EE vs. Microsoft.NET -A comparison of building XML-based web services

 http://www.theserverside.com/articles/article.tss?l=J2EE-vs-DOTNET, 2001
[10] Brass, Clements and Kazman, Addison Wesley, “Software Architecture in
 Practice”, 1998
 [11] AppPerfect DevSuite 5.0 Testing Tool,
 http://www.appperfect.com/products/devsuite/index.html, 2002-2005
 [12] AppPerfect DevSuite 5.0 Tutorial,
 http://www.appperfect.com/support/devsuitetutorial.html, 2002-2005
 [13] openMDX/Example.Petstore API 1.3,
 http://www.openmdx.org/documents/petstore/1.3/java/index.html, 2003
PAGE
i

[image: image1.png]Web Browser
Cliont Tier

/‘\- 3

Firewall

Web Service
Container

o oo sevces g
BackEnd Promeany Protocsi sa Proprtary Protocel [SOAR. UOD! WEOK Se)

Systems.

_1183491630.vsd
EJBAction

EJBActionSupport

OrderEJBAction

+getQueueConnectionFactory()
+getQueue()
+getLocalHome()

ServiceLocator

UniqueIdGeneratorEJB

PurchaseOrder

+sendMessage()

AsyncSenderEJB

+OnMessage()

PurchaseOrderMDB

PurchaseOrder

