Table of Contents

1Table of Contents


2List of Tables


3List of Figures


41
Overview of Computers and Programming (Chapter 1)


41.1
Electronic Computers Then and Now (Chapter 1.1)


51.2
Computer Hardware (Chapter 1.2)


81.3
Computer Software (Chapter 1.3)


91.4
The Software Development Method (Chapter 1.4)


121.5
Expressing Algorithms


121.5.1
Narrative Description


131.5.2
Flowchart


141.5.3
Pseudocode


162
Introduction to Programming Languages


162.1
History of Programming Languages


172.2
Overview of C (Chapter 2)


182.3
C Language Elements (Chapter 2.1)


242.4
Variable Declarations and Data Types (Chapter 2.2)


292.5
Executable Statements (Chapter 2.3)


382.6
Arithmetic Expressions (Chapter 2.5)


462.7
Formatting Numbers in Program Output (Chapter 2.6)


493
Top – Down Design with Functions (Chapter 3)


493.1
Building Programs Form Existing Information (Chapter 3.1)


493.2
Library Functions – Built-in Functions (Chapter 3.2)


524
Selection Structures If and Switch Statements (Chapter 4)


524.1
Conditions (Chapter 4.2)


584.2
Control Structures (Chapter 4.1)


594.3
The if Statement (Chapter 4.3)


634.4
if Statements with Compound Statements (Chapter 4.4)


684.5
Nested if Statements and Multiple-Alternative Decisions (Chapter 4.7)


784.6
The switch Statement (Chapter 4.8)


815
Repetition and Loop Statements (Chapter 5)


815.1
Repetition in Programs (Chapter 5.1)


825.2
Counting Loops and the for Statement (Chapter 5.2)


945.3
Sentinel Controlled Loops and the while Statement (Chapter 5.6 and Chapter 5.2)


1025.4
The do-while Statement (Chapter 5.8)


1045.5
Nested Loops (Chapter 5.7)


1105.6
Loop Conversions




List of Tables

13Table 1: Basic Flowcharting Shapes and Symbols


21Table 2: ANSI C Reserved Words


23Table 3: Convention for using Uppercase or Lowercase Letters


25Table 4: Type of int Constants (Integer numbers)


25Table 5: Type of double Constants (Real numbers)


28Table 6: Some of Escape Sequences


29Table 7: Punctuation Symbols


33Table 8: Placeholders in Format Strings


38Table 9: Arithmetic Operators


46Table 10: Displaying 234 and –234 Using Different Placeholders


47Table 11: Formatting Type double Values


50Table 12: Some Mathematical Library functions


53Table 13: Relational and Equality Operators


54Table 14: The && (and) Operator


55Table 15: The | | (or) Operator


55Table 16: The ! (not) Operator


55Table 17: Operator Precedence


57Table 18: Character Comparisons


58Table 19: De Morgan’s Theorem


82Table 20: Comparison of Loop Kinds




List of Figures

4Figure 1: Transforming data into information


6Figure 2: 1000 Memory Cells in Main Memory


7Figure 3: The Control Unit Manages four Basic Operations


12Figure 4: Verification and Validation


14Figure 5: Flowchart to find the square of a number


18Figure 6: Entering, Translating and Running a High Level Language Program


30Figure 7: Effects of kilograms = pounds * KG_PER_POUND;


36Figure 8: Effect of scanf(“%lf”, &miles);


37Figure 9: Scanning Data Line Bob


59Figure 10: Flowcharts of if Statements with  (a) One and (b) Two Alternatives


81Figure 11: Flow Diagram of Loop Choice Process


85Figure 12: Comparison of Prefix and Postfix Increments


96Figure 13: Flowchart for a while loop




1
Overview of Computers and Programming (Chapter 1)

1.1
Electronic Computers Then and Now (Chapter 1.1)

What is Computer?

· An electronic machine, which performs rapid, often complex calculations and complies, communicates and selects data by means of instructions and information (Dictionary definition) 
· A machine that manipulates data in the form suitable for storage, processing, and communication.
· A machine that performs the four basic operations of the information-processing cycle: 

· input 

· processing 

· output 

· storage

Four Basic Operations of the Information-Processing Cycle:

1. Input: Getting Data into the Computer 
Data 
– Unorganized raw materials made up of words, numbers, images, or sounds.


– Particular characters that are used to represent information in a form suitable for 
storage, processing and characters.

· Input devices enable the user to enter data into the computer

· The computer accepts data

Input Devices: Keyboard, mouse, speakers, camera...

2. Processing: Transforming Data into Information

Computers transform data into information 


Processing circuitry:
· Central processing unit (CPU)

· Random access memory (RAM)

[image: image32.wmf] 


Figure 1: Transforming data into information
Processing Devices: Motherboard
, Expansion Card
, Random Access Memory– RAM
, Central Processing Unit – CPU
3. Output: Displaying Information
The computer shows the results of the processing operation in a way people can understand. Output devices show the results of processing operations.
Processing Devices: Monitor, printer...

4. Storage: Holding Programs and Data for Future Use
The computer saves the data or output so that it can be used again later. Storage devices hold all programs and data that the computer uses.

Storage Devices: Floppy disks, hard disk…

Example for Basic Operations: Spell Checking in Microsoft Word.

Input – You enter text in a word
 processing program
. You run the program’s spell 
checker program


Processing – The computer checks and compares all words entered with a list of 
correctly spelled words


Output – The computer provides a list of apparent misspellings


You correct the spelling in your document


Storage – You save the revised document to a disk

What is Computer System?

· Collection of related components designed to work together

· A system includes hardware and software

[image: image33.png]



[image: image34.png]



Exercises: Look at Exercises for Section 1.1 on page 5 from the textbook.

1.2
Computer Hardware (Chapter 1.2)

Computer hardware consists of 

· Main memory

· Secondary memory, which includes storage devices, hard disks, floopy disks, CD, USB

· Input devices such as keyboard, mousse

· Output devices such as monitor, printer…

Hardware performance refers to the amount of data a computer can store and how fast it can process the data.

Main Memory: Main memory stores programs, data and results. Most computers have two types of main memory

· Random Access Memory (RAM) - temporary storage
· Read-only Memory (ROM) - permanent storage
Self Check: Explain the difference between RAM and ROM. Why are both types of memory used in a computer?

Solution: RAM, which means Random access memory, is volatile. The contents of RAM will be erased when a computer is turned off. ROM, which means read-only memory, retains its contents when a computer is turned off. RAM is the working memory of a computer, and it is advantageous to have memory that can easily be erased (changed) when new data is placed in memory. ROM is required when the contents of memory, such as the boot sequence, need to be permanent.

The memory of a computer consists of memory locations called as memory cells. Each memory cell has an address and may have content. Address of a memory cell is the relative position of a cell in the computer’s main memory. Each cell in memory is given an address starting from 0. Thus, a memory with 1000 cells can be visualized as in Figure 1.

	Address
	Contents

	0
	-27.2

	1
	354

	2
	0.005

	3
	-26

	4
	H

	.
	.

	.
	.

	.
	.

	998
	X

	999
	75.62

	
	


Figure 2: 1000 Memory Cells in Main Memory
Secondary Storage Devices: Computer systems provide storage in addition to main memory. CD, Magnetic tapes, floppy disks, hard disks, sip disks, flash disks - USB are some of the most frequently encountered secondary storage devices. 

A disk is a circular sheet of metal or plastic coated with a magnetic material used for secondary data storage in a computer.

Information stored on a disk is organized into separate collections of files.  

Self Check: Explain the differences between main memory and secondary storages? 

Solution: Most important difference is that, data in main memory are volatile, thus, disappear when you switch off the computer, whereas data in a secondary storage device are semi-permanent, thus, do not disappear when the computer is switched off, but disappears only if you delete a file.

Central Processing Unit (CPU): The Central Processor Unit performs all the analytical, computational, and logical functions. It coordinates all computer operations.

The control unit extracts instructions from memory and decodes and executes them. Under the direction of a program, the control unit manages four basic operations (Figure 2):

· Fetch: Retrieves the next program instruction from the computer's memory.

· Decode: Determines what the program is telling the computer to do.

· Execute: Performs the requested instruction, such as adding two numbers or deciding which one of them is larger.

· Store: Stores the results to an internal register (a temporary storage location) or to memory.

[image: image1.jpg]control unit

MEMORY

—INSTRUCTION CYCLE_

Retrieves the next program
instruction from memory

Determines what the program
is telling the computer to do

— EXECUTION CYCLE _

[y

Performs the
requested instruction

Stores the results to an internal
register (a temporary storage
location) or to memory





Figure 3: The Control Unit Manages four Basic Operations
Arithmetic Logic Unit (ALU) consists of special electronic circuits which perform and logic calculations.

Self Check:  MACROBUTTON  AcceptAllChangesInDoc How does the control unit work?

Solution: The control unit extracts instructions from memory and decodes and executes them. Under the direction of a program, the control unit manages four basic operations:

· Fetch: Retrieves the next program instruction from the computer's memory.

· Decode: Determines what the program is telling the computer to do.

· Execute: Performs the requested instruction, such as adding two numbers or deciding which one of them is larger.

· Store: Stores the results to an internal register (a temporary storage location) or to memory.

Input/Output Devices: Data goes into the computer via input devices, (keyboard, mouse…), and leaves by way of output devices (monitor, printer...). The transfer of information to or from these devices is called an input/output operation.

Disk drives work as input devices when they transfer data into the computer and as output devices when they get the information out of the computer.

Representing Data as Numbers: Computers can’t do anything without data work with it. For a computer to work with data, the data must be represented by digits inside the computer. The basic unit of information in a computer is a single-digit binary number (either 0 or 1). An eight bit sequence is sufficient to represent the basic letters, numbers, and punctuation marks in most languages.

Computer Networks: The basic aim of computer network usage is the exchange of data and services. A computer network can provide a powerful communication medium among a widely separated people. There are two types of computer networks: 

· Local Area Networks (LAN) 
· Wide Area Networks (WAN).
In a LAN, computers, printers, scanners, and storage devices are connected by cables for inter-communication.

A WAN, on the other hand, is a network such as the Internet that connects computers and LANs over a large geographic area. The universe of Internet is called as World Wide Web (www). In order to reach Internet, you need a modem and a telephone line connected to your personal computer.

A modem (modulator/demodulator) is a device that converts binary data into audio signals that can be transmitted between computers over telephone lines.

Exercises: Look at Exercises for Section 1.2 on page 13 from the textbook.

1.3
Computer Software (Chapter 1.3)

Program – A list of instructions that tell the computer how to perform the four basic operations to accomplish a task

Software – All the programs that give the computer its instructions

Two categories of software:

· System Software: Operating System (OS) is the most important software needed to make use of a computer. It controls and interaction of user and computer hardware, and manages allocation of computer resources.
· Application Software
: It is used for a specific task such as word processing, 

accounting, database management, etc.

Exercises: Look at Exercises for Section 1.3 on page 21 from the textbook.

1.4
The Software Development Method (Chapter 1.4)

Software Development Method consists of the following six steps:

1. Specify the problem requirements (What the problem is: identify the problem)

· state the problem clearly an unambiguously

· gain a clear understanding of what is required for its solution.

· Eliminate unimportant aspects

2. Analyze the problem: involves identifying the problem

· Inputs: data that you have to work
· Outputs: the desired result
· Additional requirements or constraints on the solution

· Output formats

· Formulas

Example 1.1: Compute and display the total cost of apples given the weight of purchased apples in grams and the cost per kg of apples in YTL. (Problem)

Analyzing the problem:

Inputs: Which data are given in the problem and used to find the output of the problem

weight of purchased apples (in grams)


cost per kg of apples (in YTL)

Output: What is wanted?


total cost of apples (in YTL)

Once you know the problem inputs and outputs, develop a list of formulas that specifies relationships between them. The formula that computes the total cost of apples is

total cost of apples = cost per kg x weight in kg

Notice that, we are given weight in grams, not in kg. Thus, before making this calculation, make conversion from gram to kilogram

weight in kg = weight in gr / 1000

3. Design the algorithm to solve the problem (list of steps to solve the problem)

To solve the problem requires you to develop a list of steps called an algorithm to solve the problem.

Writing the algorithm is often the most difficult part of the problem-solving process. Some tips:

· Don’t attempt to solve every detail of the problem at the beginning

· Divide and conquer (top-down design)

· List major steps or problems

· Solve the original problem by solving each of its subproblems. Most computer algorithms consist of the following subproblems.

· Get the data

· Perform the computation

· Display the result

Top-down design is similar to outline of major topics.

Example from real life: Preparing a meal. In the preparation if it is the first time, you will find a guide that list of ingredients and step by step instructions that describe you how to prepare that meal.

Each algorithm should have a specific beginning and an end that is reached in a reasonable amount of time. In addition, at the completion of one step, the next step must be uniquely determined.

4. Implement the algorithm: implementing the algorithm involves writing it as a program. You must convert each algorithm step into one or more statements in a programming language (a set of rules, symbols, and special words used to construct a program. e.g: C, Pascal, Java, C++, etc.).

5. Test and verify the completed program: Testing and verifying the program requires testing the completed program to verify that is the works as desired. Don’t rely on just one test case.
To be sure that the results are correct, you must compare them with what is expected. There are some testing techniques. All of the techniques don’t rely on just one test case. One of the testing techniques is to run the program several times using different sets of data, making sure that it works correctly for every possible situation. If an error find in testing step, this means that a revision is needed, and it can be done by returning to the previous steps.

6. Maintain and update the program: Maintaining and updating the program involves modifying a program to remove previously undetected errors and keep it up-to date.
Example 1.2 (from Textbook page: 25: Converting Miles to Kilometers): Applying the Software Development Method.

Problem: Your summer surveying Job requires you to study some maps that give distance in kilometers and some that use miles. You and your coworkers prefer to deal in metric measurements. Write a program that performs the necessary conversion.

Analysis: 
if the problem input is in miles then the output is in kilometers.



if the problem input is in kilometers then the output is in miles.

Data requirements (for if the problem input is in miles then the output is in kilometers):

Problem Input: 

miles

/* the distance in miles */

Problem Output: 

kilometers
/* the distance in kilometers */

Relevant Formula: 

1 mile = 1609 kilometers

Design: Formulate the algorithm that solves the problem. Begin by listing the three major steps, or subproblems of the algorithm.

	Algorithm: 

	1. Get the distance in miles.

2. Convert the distance to kilometers.

3. Display the distance in kilometers.


Implementation: You must write the algorithm as a C program.

Testing: You should always examine program result carefully to make sure that they make sense.

	Self check:


	1. What is Software testing?

2. What is the testing process?

3. What is the difference between testing and debugging?

4. What is the difference between structural and functional testing?
5. What is a bug? What types of bugs do you know?

6. What is the difference between verification and validation?




Solution 1: Software Testing Software testing is a process used to identify the correctness, completeness and quality of developed computer software.

Solution 2: Verifying that an input data produce the expected output.

Solution 3: Big difference is that debugging is conducted by a programmer and the programmer fixes the errors during debugging phase. Tester never fixes the errors, but rather find them and return to programmer.


Solution 4: Structural is a "white box" testing and based on the algorithm or code. Functional testing is a "black box" (behavioral) testing where the tester verifies the functional specification. 

Solution 5: Bug is an error during execution of the program. There are two types of bugs: syntax and logical.

Solution 6: Two important qualities of software, correctness and correspondence to the software process. By verifying the solution statement with respect to the problem statement we find if we build the product right, by validating the system with respect to the need we find if we built the right product. Validation can begin as soon as the project starts. One can develop prototypes or models to be examined by the customer. It is always subjective as the need is not formal. Verification activity can begin after the problem statement. It can be objective if we have a formal specification of the system. 


[image: image2]
Figure 4: Verification and Validation
Exercises: Look at Exercises for Section 1.4 and 1.5 on page 25 and 28-31 from the textbook.

1.5
Expressing Algorithms
There are several methods of expressing an algorithm.

1.5.1
Narrative Description

A straightforward method of expressing an algorithm is simply to outline its steps verbally. 

Example 1.3: The algorithm for Example 1.1 (Apple problem) 

1. Get the data

1.1. Get the weight of purchased apples in grams.

1.2. Get the cost per kg of apples.

2. Perform the computations

2.1. Calculate the total cost of apples

2.1.1. Calculate the weight in kg

2.1.2. weight in kg = weight in gr/1000

2.2. Calculate the total cost

2.2.1. Total cost = cost per kg x weight in kg

3. Display the result

3.1. Display the total cost of apples.

1.5.2
Flowchart

A Flowchart is a schematic representation of an algorithm or a process Flowcharts use special shapes to represent different types of actions or steps in a process. Lines and arrows show the sequence of the steps, and the relationships among them.

	Symbol
	Use in Flowchart

	

	Start / End:  The terminator symbol marks the starting or ending point of the system. It usually contains the word "Start" or "End."

	

	Compute (Action or Process): Computational steps or processing function of a program.

	
	Decision: A decision or branching point. Lines representing different decisions emerge from different points of the diamond. (e.g. IF/THEN/ELSE)

	

	Input: Represents material or information entering or leaving the system.

	

	Output: Represents material or information leaving the system, 

	
	Flow Line or Arrow: Denotes the direction of logic flow in a program.


Table 1: Basic Flowcharting Shapes and Symbols
Example 1.4: Write Narrative Description to find the square of a number



Draw the Flowchart to find the square of a number

	Narrative Description:


	1. Get the data

1.1. Get the number

2. Perform the computations

2.1. Calculate the square of the number

2.1.1. square = number x number

3. Display the result

3.1. Display the number and its square





FlowChart:

Get (read) number

Calculate its square

Display number and its square

Figure 5: Flowchart to find the square of a number

1.5.3
Pseudocode

Pseudocode is a compact and informal high-level description of a computer programming algorithm that uses that the structural conventions of programming languages but omits detailed subroutines, variable declarations or language specific syntax. The programming language is augmented with natural language descriptions of the details where convenient.

Pseudocode is a kind of structured english for describing algorithms. It allows the designer to focus on the logic of the algorithm without being distracted by details of language syntax.  At the same time, the pseudocode needs to be complete.  It describes the entire logic of the algorithm so that implementation becomes a rote mechanical task of translating line by line into source code.

A programmer who needs to implement a specific algorithm, especially unfamiliar one, will often start with a pseudocode description, and then simply “translate” that description into the target programming language and modify it to interact correctly with the rest of the program.

Example 1.5: Write Pseuodoce to check validity of a credit card.

if credit card number is valid

    execute transaction based on number and order

else
    show a generic failure message

end if
Example 1.6: Write Pseuodoce to find square of a number
Input 
number


Square = number * number

Output
number, square
Example 1.7: Write Pseuodoce to find the sum of n number

Get a value for n

Set the value of sum to 0

While n > 0 do


Set the value of sum to sum + n


Set the value of n to n-1

End of the loop

Return the value of sum

Example 1.8: Write Pseuodoce to find the smallest number

Get a value for n 

Get a value for S1, ... , Sn 

Set the value of smallest to S1 

Set the value of i to 2 

While i <= n do 

If Si < smallest then 

Set the value of smallest to Si 

Set the value of i to i + 1 

End of the loop 

Return the value of smallest 

	Self check:
	1. Write Pseuodoce to find the largest number
2. Write Pseuodoce to find the minimum number
3. Write Pseuodoce to find the Factorial


Solution 1: 
Get a value for n 

Get a value for L1, ... , Ln 

Set the value of largest to L1 

Set the value of i to 2 

While i <= n do 

If Li > largest then 

Set the value of largest to Li 

Set the value of i to i + 1 

End of the loop 

Return the value of largest 

Solution 2: 
Get a value for X, Y

If  X <= Y then


return the value of X 
else 


return the value of Y


Solution 3: 
Get a value for n 



Set the value of fact to 1 



While n > 0 do 

Set the value of fact to fact * n 

Set the value of n to n - 1 

End of the loop 

Return the value of fact 

2
Introduction to Programming Languages

2.1
History of Programming Languages
Electronic computers were invented in 1940’s. They are huge and expensive. Machine language is used (0’s and 1’s). The Machine Language for each computer is specific to only that computer. 

Later, Assembly Language is invented. It has simple instructions such as ADD A, B, C. It is easier than Machine Language. However, the time and effort required for programming were enormous, and it is still machine dependent.

The next step in the evolution of programming languages was the invention of High Level Languages that are machine independent and easier to use.

Self Check: 1. What are the differences between assembly languages (machine language) 
and high level programming languages? Give example of those languages. 



2. What type of language is C?

To run or execute high level languages, they are converted to the machine languages by the help of translator programs (interpreters and compliers)

Self Check: What are the differences between interpreters and compliers? When to use 
which one, why? 

An interpreter translates a single source code statement into its object code equivalent, executes the object code, and then goes on to the next source code statement, translates and runs it, and so on.

A compiler, on the other hand, translates the entire source code program, producing an object code file which can then be executed.

Interpreted programs tend to run slower than their compiled equivalents. On the other hand, it is easier to debug a program (find and correct errors) in an interpreted environment than when using a compiler.

Languages like LISP and BASIC are often interpreted, while more complex languages like PASCAL and C are generally compiled. There are also some languages, such as Java, which are first compiled and then interpreted.

2.2
Overview of C (Chapter 2)
When you are implementing the algorithm, C (programming language) will be used in this course.

· High Level language program
Source Program

· Source Code
Source File (text file with extension  .c or .cpp)

Processing a high level program means conversion to the machine language equivalent and making other preparations to execute.

C language uses a compiler as translator to convert source code to machine language, and this task is called as compilation. 

The compiler takes the source code as an input and produces another file containing the machine language equivalent of the program. The machine language equivalent of a source code is called the object code and the file containing this object code is called the object file. It is a binary file, and has the extension .obj. 
What to do, if the compiler fails in translating any part of the source code:
· Read the error message carefully and try to understand the failure reason.

· Correct the code and them compile it to see if the code is correct.

Using Library: Library is as a collection of useful functions and symbols that may be accessed by a program. The ANSI (American National Standards Institute) standard for C requires certain standard libraries to be provided in every C implementation.

If you want to use such functions in your program, to be able to execute your program, the libraries containing those object files have to be linked to your program. This process is called linking and it is done by another software called linker.

The linker resolves cross-references among object files, and produces the executable file. It is a binary file, and has the extension .exe.

The last step is the loading of your program into the computer’s memory. Loader copies the executable file into memory, and initiates execution of the instructions (Figure 6).

Why C? 

C is a small language. A small language is a beautiful language in programming. C has fewer keywords than Pascal, where they are known as reserved words, yet it is arguably the more powerful language. C gets its power by carefully including the right control structures and data types, and allowing their uses to be nearly unrestricted where meaningfully used. The language is readily learned as a consequence of its functional minimality.  Other reasons:

· Portable

· Terse: C has powerful set of operators

· Modular: supports one style of routine, the external function that calls parameters by value.
[image: image3.png]Word Processor (editor)
used to type in program
and corrections

Compiler

Unsuccessfill

v

Attempts to translate program
into machine code

Error messages

Successful

Linker
Resolves Cross references

among object fles

Executable File (Load Module]

Tnput data

Loader
Copies executable fle into

memory, iniiates cxecution of

instructions

Results





Figure 6: Entering, Translating and Running a High Level Language Program

2.3
C Language Elements (Chapter 2.1)
1. Comments: Used for giving information about the program code to the reader of the program. Therefore, helpful to understand the program.
· Comments begin with /* and end with */ (no space between slashes and stars)
· // is used for a line to make it a comment line.
Complier ignores the comments. Nesting of comments is not possible. It will cause errors.

Why to use comments: 

· Comments is helpful to understand the program (e.g. usage of variable, purpose of program) 

· Useful for documenting the program (helpful in the software development methods last step- maintaining and updating)

· Comments serve as an ongoing dialogue with the programmer, indicating the structure and contributing to program clarity and correctness.


Necessary Places to Write Comments:
· Header
· Variable dictionary

· Algorithm steps
2. Preprocessor and Preprocessor Directives: The C language relies to a great degree on the preprocessor to extend its power and notion.  Preprocessor is a feature of C Language, which is not found in most of the other high-level programming languages and is a part of the C compilation process. It is a system program that modifies a C program prior to its compilation. 
Lines begin with a # in column 1 are called control lines and these lines communicate with the preprocessor. The syntax for control lines independent of the rest of the C language. A control line has an effect that continues from its pal in a file until the end of that file.

Syntax Displays for Preprocessor Directives

Include Directive:

· #include “filename”: Causes the preprocessor to replace line with a copy of the content of the named file. A search for the file is made first in the current folder (directory) and then in the standard places. 

· #include <filename>: The preprocessor looks for the file only in the standard places and not in the current folder. 

There is no restriction on what an included file can contain. In particular, it can contain other control lines, which will be expanded by the preprocessor in turn.

The people who have written the C Compiler and presented to us in libraries have programmed many frequently used tasks. All the necessary information about these programs is saved in header files. In order to be able to make use of these programs, we have to include the header file of the library containing them to our source code. h is extension used for header files.

	#include Directive for Defining Identifiers From Standard Libraries:

	Syntax: 
#include <standard header file>


To input something typed from the keyboard or output something to the screen, the necessary commands must be given. It is not very easy to write all these hardware dependent commands. scanf function for inputting values from the keyboard and printf function to output values to the screen have been programmed and presented to us. We can make use of them by including the header file stdio.h with the use of include preprocessor directive, as in example 2.1.

Example 2.1: #include <stdio.h>

Interpretation of Example 2.1: stdio is the name of the library containing Standard Input/Output Functions and the letter h means that this is a header file. The meaning of this is "Please include the standard input output functions to my program'".  

Example 2.2: #include <math.h>

Descriptions of common mathematical functions are found in the header file math.h.

Define Directive:

The define directive is used to create constant macros. A constant macro is a name that is replaced by a particular constant value before the program is sent to the compiler.

The define directive tells the preprocessor to replace every occurrence of the name in the source code with the value it is representing. 

Only data values that never change during the execution of our program should be given names through the define directive because a program cannot change the value of a name defined as a constant.

· #define NAME value: The C preprocessor is notified that it is to replace each use of the identifier NAME by value. C program statement cannot change the value associated with NAME.
	#define Directive for Creating Constant Macros:

	Syntax: 
#define NAME value


Example 2.3: #idefine KG_PER_POUND 0.453592
/* Conversion constant
*/

Interpretation of Example 2.1: Assume that the program has the following line


kilograms = pounds * KG_PER_POUND

Before compilation, The preprocessor will replace the defined KG_PER_POUND found in the program statement as:


kilograms = pounds * 0.453592

When should we make use of defined constants?

· For constant values that never change (e.g. PI  3.1415926)

· For big numbers that appear many times in your program in order to avoid typing again and again (also reduces the danger of mistyping!) – decreases typing mistakes
· For values that will make our programs readable (e.g. TRUE 1 and FALSE 0) – increase readability.
· For values indicating limits that appear many times (e.g. MAX 10 and MIN 1) (also when you want to change the limit, you just change the defined constant instead of making a change wherever that value appears in your program) – easy to make changes
	Remark: It is a common convention among C Programmers to use capital letters for names indicating defined constants!


3. Main Function Prototype: The two line heading
int

main(void)

marks the beginning of the main function where program execution begins. Every C program has a main function. The remaining lines of the program form the body of the function which is enclosed in curly braces { , }.

	Main Function Definition

	Syntax: 
int



main(void)



{




/*
function body

*/



}


A function body has two parts:

· declarations: tell the compiler the names of memory cells in a program.

· executable statements: program lines that are converted to machine language instructions and executed by the computer.

Self Check: Look at Exercises for Section 2.1 on page 41 from the text book.
Reserved Words: Reserved word is a word that has a special meaning in C. They cannot be used for other purposes from their special meaning in C. 

	ANSI C RESERVED WORDS

	auto
	double
	int
	struct

	break
	else
	long
	switch

	case
	enum
	register
	typedef

	char
	extern
	return
	union

	const
	float
	short
	unsigned

	continue
	for
	signed
	void

	default
	goto
	sizeof
	volatile

	do
	if
	static
	while


Table 2: ANSI C Reserved Words

	Remark: All the reserved words appear in lowercase


Identifiers: Identifiers are arbitrary names of any length given to functions, variables, user-defined data types, etc.

There are two types of identifier

· Standard identifiers

· User-defined identifiers 

Standard Identifiers: a word having special meaning. The standard identifiers printf and scanf are names of the operations defined in the standard input/output library. 

Unlike reserved words, standard identifiers can be redefined and used by the programmer for other purposes. However, redefinition is not recommended. If you redefine a standard identifier, C will no longer be able to use it for its original purpose.

User-Defined Identifiers: We choose our own identifiers (called user-defined identifier) to name memory cells that will hold data and program results and to name operations that we define.

They are the name s of constants, variables, functions, etc. The syntax and some valid identifiers follow;

1. An identifier can consist of only letters, digits and underscore.

2. An identifier cannot begin with a digit.

3. A C reserved word cannot be used as an identifier.

4. An identifier defined in a C standard library should not be redefined.
Example 2.4: Examine the following identifiers and state if they are valid or not by giving the reasons.

	1Letter

double

int

TWO*FOUR
	2007_year

year_2007

x

what?
	_no_of_students 

my name 

Joe’s


	Solution:
	Identifier
	Valid or Invalid (reason)

	
	1Letter
	Invalid since begins with a digit

	
	double
	Invalid since reserved word

	
	int
	Invalid since reserved word

	
	TWO*FOUR
	Invalid since character * not allowed

	
	2007_year
	Invalid since begins with a digit

	
	Year_2007
	Valid (

	
	Identifier
	Valid or Invalid (reason)

	
	x
	Valid ( - but not recommended.

	
	what?
	Invalid since character ? not allowed

	
	_no_of_students
	Valid (. but not recommended.

	
	my name
	Invalid since blank is not allowed

	
	Joe’s
	Invalid since character ’ not allowed


	Remark: C language does not have a limit on the length of identifiers. However, only the first 31 characters are taken account into consideration.


Example 2.5: If you use the following identifiers in a program, what will be the problem?

per_capita_meat_composition_in1980

per_capita_meat_composition_in1985

Solution: Since the first 31 characters of the identifiers are same, C compiler does not consider two identifiers as different identifiers.

Uppercase and Lowercase Letters: The C programmer must take great care in the use of uppercase and lowercase letters because the C compiler considers such usage significant. The C compiler views the names Rate, rate and RATE as different identifiers. C is case sensitive. 

It is better to choose a consistent pattern in the way you use uppercase and lowercase letters. C programmers in general use the following conventions:

	Convention for using Uppercase or Lowercase Letters

	Reserved words
	Lowercase

	Standard identifiers
	Lowercase

	Names of constants
	Uppercase

	Variables
	Lowercase


Table 3: Convention for using Uppercase or Lowercase Letters

Program Style (Choosing Identifier Names): A good program is easier to read and understand than one that is sloppy. In industry, programmers spend considerably more time on program maintenance (that is updating and modifying the program) than they do on its original design or coding. A program that is neatly stated and whose meaning is clear makes everyone’s job simpler.

Exercises: Look at Exercises for Section 2.1 on page 41 from the textbook.

2.4
Variable Declarations and Data Types (Chapter 2.2)
Variable Declarations: The memory cells used for storing a program’s input data and its computational results are called variables because the values stored in variables can change as program executes.

The variable declarations in a C program communicate to the C compiler the names of all variables used in a program. They also tell the compiler what kind of information will be stored in each variable and how that information will be represented in the memory.

Every variable has a name, type and a value. The variable declarations:


double miles; 

/* input – distance in miles */


double kilograms;
/*  output – distance in kilometers */

	Syntax Display for Variable Declarations

	Syntax: 
int variable_list;



Double variable_list;



Char varaible_list;


Example 2.6: 
int
count,




large;



double x, y, z;



char
first_initial ;



char
ans;

Interpretation for Example 2.6: A memory cell is allocated for each name in the variable_list. Type of the data (double, int, char) to be stored in each variable is specified at the beginning of the statement. One statement may extend over multiple lines. A single data type can appear in more than one variable declaration so the following declaration section is equally accepted ways of declaring the variables of Example 2.5:


int
count;


int
large;
/* declaration of large is divided in another section */


double
x, y;


double 
z;

/* declaration of z is divided in another section */


char
first_initial;


char
ans;

Data Types: A data type is a set of values and a set of operations on those values. A standard data type in C is a data type that is predefined such as

· int: In mathematics, integer are whole numbers. The int data type is used to represent integers in C. Because of finite size of a memory cell, not all integers can be represented by type int. 

Type int must include at least the values –32767 through 32767 (specified by ANSI C).  You can perform the common arithmetic operations (add, subtract, multiply and divide), and compare two integers.

	Variable int Constants
	Invalid int Constants

	1000
	1,000 (comma is not allowed)

	-12
	-12.0 (not integer)

	+12
	

	012 (same with 12, 000012)
	


Table 4: Type of int Constants (Integer numbers)

· double: This data type is used to store real numbers. A real number has an integral part and a fractional part that are separated by a decimal point. In C data type double is used to represent real numbers. As in the data type int, you can perform the common arithmetic operations (add, subtract, multiply and divide), and compare them.

In normal scientific notation, the real number 2.34 x 103 is equivalent to 2340.0 where exponent 3 means move the decimal point 3 places to the right. In C scientific notation we write this number as 2.34e5 or 2.34E5 read the letter e or E as times 10 to the power.

	Variable double Constants
	Invalid double Constants

	3.14159
	150 (no decimal point)

	0.005
	0,005 (comma is not allowed)

	12345.0
	.12345e (missing exponent)

	15.0e-04 (value is 0.0015)
	15e-0.3 (0.3 is invalid exponent)

	12e+5 (value is 1200000.0)
	1,200,000.0 (comma is not allowed)

	2.345e2 (value is 234.5)
	2.345e2.1 (the part after e must be integer)

	1.15e-3 (value is 0.00115)
	

	5. (equal to 5.0)
	

	.25 (equal to 0.25) 
	


Table 5: Type of double Constants (Real numbers)

· char: Data type char represents an individual characters value: a letter, a digit or a special symbol. Each type char value is enclosed in apostrophes (single quotes) as 

‘A’, ‘x’, ‘2’, ‘7’, ‘*’, ‘:’, ‘ ’

Although a type character value in a program requires apostrophes, a type char data value should not have them. Thus, for example, when entering the letter R as a character data item to be read by a program, press the R key instead of the sequence ‘R’.

Example 2.7: What happens if you forget to put apostrophes (single quotes) around a character value in a program?

Solution: It will be treated as an identifier, and most probably the program will give an error message.

You can store a character in a type char variable and compare character data. C even allows you to perform arithmetic operations on type data, but you should use this facility with care.

Example 2.8: What is the difference between 5 and ‘5’ appearing in a program?

Solution: It is very important to understand the difference between 5 and ‘5’ appearing in a program. The first one is an integer, thus, it has an arithmetic value, and it can be used in arithmetic operations. On the other hand, the second one is a character, and has no arithmetic value. It cannot be used in arithmetic operations. Thus, for example, you cannot multiply it by another character or number. E.g., 5*2 = 10, but ‘5’*2 and ‘5’*’2’ are invalid.

Some points for choosing variable names;

· Pick a meaningful name for a user-defined identifier.

· If an identifier consists of two or more words, placing the underscore (_) character between words.

· Choose identifiers long enough to convey your meaning but avoid excessively long names due to the typing error in a longer name.

· Do not choose names that are similar to each other.

· Avoid selecting two names that are different only in their use of uppercase and lowercase.

Example 2.9: For the following situation find appropriate variable name.

1. To store a person’s salary
2. To store the price of a book price

3. To store student information (student id, student name, etc.)

Solution 1:  The name salary will be a good name for a memory location that will be used to store a person’s salary, whereas the name s is a bad choice.

Solution 2:  Price will be an appropriate name if your program does not use any other price information. But, if your program also uses the information about prices of pens and pencils, adding some more information like book_price, pen_price and pencil_price may be more appropriate.

If you want to use a name consisting of two or more words, placing the underscore character between words will improve the readability of the name. Thus, book_price is a better choice than bookprice. 

Solution 3:  When using more than one variable name with the same word abbreviated, try to be consistent. For example, the same program should not have variable names such as first_student, next_stud, std_id, st_number, where student, stud, std, and st all mean the same thing: student. It is better to choose those names as first_std, next_std, std_id, std_number, thus choosing only one abbreviation for the word student.

	Remark: Do not use double underscore.


Example 2.10: For the following cases, decide the type of a variable in a program 

1. To store an exam grade.

2. To store number of students.

3. To store the mass of an atom in grams

4. To store earth population

Solution 1: Since the value for the variable is exam grade. It is a number. Therefore, it can be double or integer. It depends on how the exam is graded. If the used decimal places in grading, you must choose double type, otherwise integer type. Thus, the choice depends on the nature of the problem.

Solution 2: Since the value for the variable number of student is an integer number. It must be declared as int.

Solution 3: The mass of an atom in grams can be a real number. Therefore, it must be double.

Solution 4: Although it is a whole number, since it is more than 2 billion, we cannot use integer type. It should be declared as double.

Exercises: Look at Exercises for Section 2.2 on page 44 from the textbook.

Constants: A constant is a value that does not change during the execution of a program. 

C manipulates various kinds of values. An integer such as 29 and floating numbers such as 3.14159 are examples of constants. Strings such as “I am a….” are constants of a particular kind. Also, there are character constants such as ‘a’, ‘b’, … and they are distinctly different form strings.

To give names to constant values by using #define preprocessor directive, and use those names in the statements. 

For example;
#define PI 3.14159;


#define MAX 1000;


#define BLANK ' ';

The appearance of the constant's value indicates its data type. For instance, in the above definitions, PI is a double constant, MAX is integer and BLANK is character.

There are special character constants that are not printable but have special meanings like new line or the system bell. These are called escape sequences. Escape sequences start with backslash characters and followed by a character (Table 6).

	Sequence
	Char
	Hex Value
	Decimal Value
	Function

	\a
	BEL
	0x07
	07
	Audible bell

	\b
	BS
	0x08
	08
	Back-space

	\n
	LF
	0x0A
	10
	Line Feed

	\t
	HT
	0x09
	09
	Horizontal Tab

	\\
	\
	0x5C
	92
	Backslash

	\’
	’
	0x27
	49
	Single Quote

	\”
	”
	0x22
	34
	Double Quote


Table 6: Some of Escape Sequences

String Constants: A sequence of zero or more characters enclosed within double quotes represent a character string constant. Any valid character may be included within the quotes, including any of the escape characters in Table 6.

Strings can be used for printing output. 

	Example Statement
	Output

	printf (“This is a string.”);
	This is a string.

	printf (“This is\n a string.”);
	This is 

a string.

	printf (“Ali said \“Hello\” to you.”);
	Ali said “Hello” to you


Example 2.11: 
Are there any the difference between 2006 and “2006”?
Solution:  The first one 2006 is an integer, thus, it has an arithmetic value, and it can be used in arithmetic operations. On the other hand, the second one “2006” is a string, and has no arithmetic value. 

It simply represents the characters 2, 0, 0, and 6 next to each other. It cannot be used in arithmetic operations. Thus, for example, you cannot divide it to another string or number. E.g., 2006/3 =1003. However, “2006”/3 and “2006”/ “3” are invalid.

Punctuators: Table 7 shows the special characters, which are used as punctuation symbols in C.

	Punctuation Symbol
	Name
	Usage and Meaning

	[ ]
	Brackets
	Indicate array subscripts

	( )
	Parentheses
	· Group expressions

· Isolate conditional expressions

· Indicate function calls

· Indicate function parameters

	{ }
	Braces
	· Indicate start and end of a command statement

· Closing brace serves as a terminator so semicolon is not required after }.



	,
	Comma
	Separates the elements of function arguments

	;
	Semicolon
	Statement terminator

	:
	Colon
	Indicate a labeled statement

	*
	Asterisk
	· Used for multiplication operation

· Denotes creation of pointer

· Used to dereference

	=
	Equality Sign
	Assignment operator

	#
	Pound Sign
	Indicates preprocessor directives


Table 7: Punctuation Symbols

	Remark: C statement ends with a semicolon!


2.5
Executable Statements (Chapter 2.3)
The body of a program contains statements, which are actually the commands that we are going to give to our computer in order to perform the tasks that we want.

The executable statements follow the declarations in a function. They are the C statements used to write or code the algorithm and it refinements. The C compiler translates the executable statements into machine language; the computer executes the machine language version of these statements when we run the program.

Assignment Statements: An assignment statement stores a value or computational result in a variable and is used to perform most arithmetic operations in a program. The assignment statement

kilograms = pounds * KG_PER_POUND;

assign a value to the variable kilograms. The value assigned is the result of the multiple of constant macro KG_PER_POUND by the variable pounds.


Figure 7: Effects of kilograms = pounds * KG_PER_POUND;

The memory cell for pounds must contain valid information (n the case; a real number) before the assignment statement is executed. Figure 7 shows the contents of the memory before and after the assignment statement executes only the value of kilograms is changed.

	Assignment Statement

	FORM: 
variable = expression;


Expressions:  Expressions are combinations of constants, variables, operators, and function calls.  An expression can be a single number, another variable or a calculation. Some examples of expressions are


a + b


3.0 * x – 9.66553


3.75 + sin(3.11 * x – 7.330002)


tan(17.77)

Most expressions have a value. For example, the expression a + b has an obvious value, depending on the values of the variables a and b. If a has value 2 and b has value 5, then a + b has value 7.

The equality sign, =, is the basic assignment operator in C. 

Example 2.12: 
x = y + z + 2.0;

Interpretation for Example 2.12: The variable before the assignment operator is assigned the value of the expression after it. The previous value of variable is destroyed. The expression can be a variable, a constant, or a combination of these connected by appropriate operators (e.g. +, -, /, and *)

Example 2.13: If x and new_x are type double variables, write an assignment statement that assign the value of a single variable or a constant to a variable.

Solution: The statement 





new_x = x; 


or






new_x = -x; 

	Remark: Neither of the above assignment statements changes the value of x.


Self Check:  If we change the type of the variable as int for Example 2.13, what will be the solution? Are there any changes?

	Remark: Before making an assignment statement for a variable, we should make declaration of that variable.


Example 2.14: What is the value of the variables a, b, and c after the execution of the following statements?

int a, b, c;


a = 7;


b = 2;


c = a + b;

Solution: The code is declared a, b and c toe be variables of type int, then assigns the value 7 to a, the value 2 to b, and the values of the expression a + b to c. Since the value of a + b is 9, that is the value that is assigned to c. 

Example 2.15: Examine the following statements and explain what is done and what are the final values of the variables?


double
salary1, salary2;


int
age;


char 
sex;


age = 20;


age = 25;


salary1 = 25E7;


salary2 = salary1;


salary1 = 900;


age = 18.5;


sex = “M”

Solution: The statement 

double salary1, salary2;
/* define data type of salary1 and salary2 that is real numbers */

int
age;


 /* define data type of age that is integer */

char 
sex; 


/* define data type of sex as character */

age = 20;


/* make an assignment to the variable age. The value of age */ 



/* becomes 20 */

age = 25; 


/* change the value of variable age with an assignment. It */ 



/* becomes 25 */

salary1 = 25E7;

/* assign salary1. It becomes 250000000.0 */

salary2 = salary1;

/* assign salary2 to the value of salary 1, 250000000.0 */

salary1 = 900;


 /* change the value of salary1 as 900.0 */

900 is an integer and salary1 is double. However, the above assignment is correct and the value of salary one is 900.0 (real number)

	Remark: All integers are real numbers. Therefore, double variable can be assigned an integer number. However, a real number cannot assign a variable, which is declared as int.

C language allows an assignment of an integer variable to the real number with the lost of fractional part of the real number. This is called truncation


age = 18.5; 


/* There is a truncation and the value of age is 18 */

sex = ‘M’;


/* sex takes the value M*/

Assignment to a character variable requires the character value t be enclosed in single quotation marks. 

Final Values of the variables: age =18, salary1 = 900.0 salary2 = 25E7 and sex = M.

The initial value of a variable can be given during its declarations.


int age = 20;

The value of a named constant cannot be changed using an assignment statement.


#define TOTAL 100;


TOTAL = 200;

Even though assignment statements sometimes resemble mathematical equations, the two notations are distinct and should not be confused. The mathematical equation


x + 2 = 0

does not become an assignment by typing


x + 2 = 0; 

/* wrong: invalid assignment */

The left side of the equal sign is an expression, not a variable, and this expression may not be assigned a value. Now consider the assignment statement


x = x + 1;

The interpretation is that the current value of x is assigned the old value of x plus 1. If the old value of x is 2, then the value of x after execution of the statement will be 3. 

Input/Output Operations and Functions: Data can be stored in memory in two different ways; either by assignment to a variable or copying the data from an input device into a variable using a function like scanf. You copy data into a variable if you want a program to manipulate different data each time it executes. The data transfer from outside world into memory is called an input operation.
As it executes, a program performs computations and stores the results in memory. These program results can be displayed to the program user by an output operation.

All input/output operations in C are performed by special program units called input/output functions. The most common standard input/output library to which we gain access through the preprocessor directive


#include <stdio.h>

The Printf Funtion: To see the results of a program, we must have a way to specify what variable values should be displayed.

printf(“That equals %f  kilometers.\n”, kilometers);

A function call consists of two parts: the function name and the function arguments enclosed in parentheses.  The arguments for printf consist of a format string (in quotes) and print list (the variable kilometers). 

Example 2.16: What is the executable statement of the following output?


Enter weight in pounds:

Solution: The executable statement is


printf(“Enter weight in pounds: ”);

Placeholder: A placeholder is a symbol beginning with % in a format string that indicates where to display the output value. 

	Placeholder
	Variable Type
	Function Use

	%c
	char
	printf / scanf

	%d
	int
	printf / scanf

	%f
	double
	printf

	%lf
	double
	scanf


Table 8: Placeholders in Format Strings

Example 2.17: What is displayed for the following function call?

// if  the statement is


kilometers = KMS_PER_MILE*miles;

/* where KMS_PER_MILE = 1.609 and miles = 10.00 /*


printf(“That equals %f  kilometers.\n”, kilometers);

Solution: The function call above display the line;


That equals 16.0900000 kilometers.

Multiple Placeholders: Format strings can have multiple placeholders. If the print list of a printf call has several variables the format string should contain the same number of placeholders. C matches the variables with placeholders in the left-to-right order.

Example 2.18: If the letter_1, letter_2 and letter3 are type char variables and age is type int, the printf call

printf(“Hi %c%c%c – your age is %d\n”, letter_1, letter_2, letter_3, age);

What will be displayed, If letter_1 = E, letter_1 = B, letter_1 = K, and age = 35?

Solution: Hi EBK – your age is 35

The placeholder %c%c%c indicates the display position of the letters (E, B, and K) stored in the three type char variables, and the placeholder %d indicates the position of the value of age (35).

	Syntax Display for printf Function Call

	Syntax: 
printf( format string, print list);



printf( format string);




Example 2.19: What is displayed for the following function call?

printf(“I am %d years old, and my gpa is %f\n”, age, gpa);

printf(“Enter the object mass in grams> ”);

Solution: The printf function displays the value of its format string after substituting in the left-to-right order the values of the expressions in the print list for their placeholders in the format string and after replacing escape sequences such as \n by their meanings.

More About \n: The cursor is a moving place marker that indicates the next position on the screen where information will be displayed. When executing a printf function call, the cursor is advanced to the start of the next line on the screen if the \n escape sequence is encountered in the format string.

Example 2.20: What is displayed for the following function call?

printf(“Here is the first line\n”);

printf(“\nand this is the second.\n ”);

Solution: The above function calls produce two lines of text and a blank line in between:


Here is the first line

and this is the second.

Notice that because the format strings of these calls to printf contain no placeholders, no print list of variables is needed.

Example 2.21: What is displayed after the execution of the following program segment?


int 

a = 10, b = 3;


char

e = ‘A’;


double 
c = 2.5;


printf(“\n a = %d \ t c = %f\nb = %d \ te = %c”, a, c, b, e);


printf(“\n Total = % d”, a + b);
	Solution:
	-
a = 10
c = 2.500000

b = 3
e = A

Total = 13


Example 2.22: What is displayed for the following function call?


printf(“This sentence appears \non two lines.\n”);

	Solution:
	This sentence appears

on two lines.


Displaying Prompts: Prompt (prompting message) is a message displayed to indicate what data to enter and in what form.

When input data are needed in an interactive program. You should use the printf function to display a prompting message or prompt. The printf statement below:

printf(“Enter the distance in miles> ”);

scanf(“%lf”, &miles);

displays a prompt for square meters (a numeric value). The ptintf statement displays the format string and advances the cursor to the screen position following this string. The program user can then type in the data value requested, which is processed by the scanf function as described next. The cursor is advanced to the next line when the user presses the <return< key.

The scanf Function: The statement

scanf(“%lf”, &miles);

calls function scanf to copy data into the variable miles.

It copies the data from the standard input device. In most cases the standard input device is the keyboard; consequently, the computer will attempt to store in miles whatever data the program user types at the keyboard.

Example 2.23 What is the use of %f in the following statement?

scanf(“%lf”, &miles);

Solution: The format string “%lf” consists of a single placeholder that tells scanf what kind of data to copy into the variable miles. Because the placeholder is %lf, the input operation will proceed without error only if the input data is a number. Figure shows the effect of the scanf operation.


Figure 8: Effect of scanf(“%lf”, &miles);

Notice that a call to scanf, the name of each variable that is to be given a value is preceded by the ampersand character (&). The & is the C address-of-operator. In the context this input operation, the & operator tells the scanf function where to find each variable into which is to store a new value.

If the ampersand were omitted, scanf would know only the variable’s current value, not its location in memory, so scanf would be unable to store a new value in the variable.

When scanf executes, the program pauses until the required data entered and the <return< key is pressed. If an incorrect data character is typed, the program user can press the backsapce key to edit the data. However, once <return> key is pressed, the data are proceeded exactly as typed in and it is too late to correct any data entry errors.

The function call


scanf(“%c%c%c, &letter_1, &letter2_, &letter_3);

causes the scanf function to copy data into each of three variables, and format string inclues one %c for each variable. Assuming these variables are declared ad type char, one character will be stored in each variable.

Figure 9 shows the effect of the above statement when the letters Bob are entered.


Figure 9: Scanning Data Line Bob

The number of input characters consumed by the scanf function depends on the current format placeholder, which should reflect the type of the variable which data will be stored. Only one input character is used for %c (type char variable). For %lf or %d (type double or int variable), the program first skips any spaces and then scans characters until it reaches a character that cannot be part of the number. Usually the program user indicates the end of a number by pressing the space bar or by pressing the <return> key.

If you would like scanf to skip spaces before scanning a character, pu a blank in the format string before the %c placeholder.

If you type more data characters on a line than are needed by the current call to scanf, the extra characters will be processed by the next call to scanf.

	Syntax Display for scanf Function Call

	Syntax: 
scanf( format string, input  list);




Example 2.24  
scanf(“%c%d”, &first_initial, &age);

Interpretation of Example 2.22: The scanf function copies into memory data type at the keyboard by the program user during program execution. The format string is “quated string of placeholders, one placeholder for each variables in the input list. Each int, double, or char variable in the input list is preceded by an ampersand (&). Commas are used to separate variable names. The order of the placeholders must correspond to the order of the variables in the input list.

You must enter data in the same order as the variable in the input list. You should insert one or more blank character or carriage returns between numeric items. If you plan to insert blanks or carriage returns between character data, you must include a blank in the format string before the %c placeholder.

The return Statement: The last line in the main function


return (0) ;

transfers control form your program to operating system.

	Syntax Display for return Statement

	Syntax: 
return experssion ;




Example 2.25  return (0) ;
Interpretation of Example 2.23: The return statement transfer control form a function back to the activator of the function. For function main, control is transfer back to the operating system. The value of the expression is returned as the result of the function execution.

Exercises: 
Look at Exercises for Section 2.3 on pages 54 - 55 from the textbook.



Look at both Section 2.4 (pages 55-58) and Exercises for Section 2.4 on page 

58 from the textbook.

2.6
Arithmetic Expressions (Chapter 2.5)
To solve most programming problems, you will need to write arithmetic expressions that manipulate type int and double data.

Arithmetic Operators: Arithmetic operators are * (multiplication), + (addition), - (subtraction), / (division), and % (for modulus or remainder). They are called binary operator because they each take two operands.

	Arithmetic Operator
	Meaning
	Examples

	+
	Addition
	5 + 2 is 7 and 5.0 + 2.0 is 7.0

	-
	Subtraction
	5 – 2 is 3 and 5.0 - 2.0 is 3.0

	*
	Multiplication
	5 * 2 is 10 and 5.0 * 2.0 is 10.0

	/
	Division
	5 / 2 is 2 and 5.0 / 2.0 is 2.5

	%
	Remainder - Modulus
	5 % 2 is 1 (remainder is used for integers)


Table 9: Arithmetic Operators

In some programming languages, a special operator for exponentiation also exists. But in C language, exponentiation has to be carried out through multiplication, or by using a special function pow (power), which we will see later. For ex., r2 is expressed as r * r or as pow(r, 2), and a3 as a * a * a or as pow(a, 3).

All of those operators (except modulus) can operate on both integers and real numbers. When an operator manipulates a mixture of integer and real values, the result of the operation is real. 

Example 2.26 Find the result of the following expressions.

Division (/) examples:

	3 / 15 = 0
	16 / 3 = 5
	18 / 3 = 6
	0 / 4 = 0

	15 / 3 = 5
	17 / 3 = 5
	 16 / -3 varies
	4 / 0 undefined


Remainder – Modulus (%)  examples:

	3 % 5 = 3
	5 % 5 = 0
	7 % 5 = 2
	5 % 3 = 2

	4 % 5 = 4
	6 % 5 = 1
	8 % 5 = 3
	5 % 4 = 1


	15 % 5 = 0
	15 % 6 = 3
	15 % -7 varies
	15 % 0 undefined


	Remark: Division or modulus of an integer to 0 is undefined.

If the / and % operator used with a negative and positive integer, the result may vary from one C implementation to another. For this reason, you should avoid using 7 and % with negative integers.


Example 2.27 Examine the following statements and explain what is done and what are the final values of the variables?

Solution: The statement 

int 
x; 

/* define data type of x as int */
double
y; 
/* define data type of y as double */
x = 11 – 4; 
/* x becomes 7 */

y = 1.5 + 5;
/* y becomes 6.5 */

y = 5 * 2;
/* y becomes 10.0 not 10 */

x = 2.3 * 2; 
/* There is a truncation  and x becomes 4  */

	Remark: To make the program easy to read, put a spade either side of an arithmetic operator.


Some programming languages have different operators for integer and real division operations. For example, Pascal uses / for real division, DIV for integer division. However, in C language, there is only one division operator, and it produces a real result if any of its operands is real, but is an integer result if both operands are integers. 

Example 2.28 Examine the following statements and explain what is done and what are the final values of the variables?

int
x;

double
y;

x = 5 / 2; 


y = 5 / 2;


y = 5.0 / 2;


x = 5.0 / 2;


x = 1 / 3;


	Solution:
	int
x;

double
y;

x = 5 / 2; 
/* There is a truncation  and x becomes 2 */

y = 5 / 2;
/* Since both 5 and 2 are integer the result must be integer. There is a */


/* truncation  and y is double. Therefore, y becomes 2.0 not 2.5*/

y = 5.0 / 2;
/* y becomes 2.5, since 5.0 is real*/

x = 5.0 / 2;
/* There is a truncation  and x becomes 2 */

x = 1 / 3;
/* There is a truncation  and x becomes 0 */




	Remark: 
1 real operand → real result



All operand integers → integer result




Modulus operator % yields the remainder after division. This operator can only be used with integers operands.

Example 2.29 Examine the following statements and explain what is done and what are the final values of the variables?

int x;

double y;

x = 7 % 4;

y = 17 % 5;


	Solution:
	int
x;

double
y;

x = 7 % 4;
/* x becomes 3, 7 / 4 yields 1 as the result, remainder is 3 */

y = 17 % 5;
/* y becomes 2.0, 17 / 5 yields 3 as the result, remainder is 2 */


	Remark: The second operand of the division and modulus operations cannot be zero.


Unary Operators: Arithmetic expressions can also include unary operator that are used with single operand. There are two unary operand: + (plus) and – (minus).

Example 2.30: Examine the following statements and explain what is done and what are the final values of the variables?

int
x;

double
y;

y = 5.6;

x = -y;


	Solution:
	int
x;

double
y;

y = 5.6;

x = -y;

/* x becomes –5 */


Example 2.31: When do we use modular operator?

Solution: A very common usage of the modulus operator is checking whether an integer is even or odd. If the remainder of an integer value when divided by 2 is zero, the value is even.


12 % 2
is 0 
(12 is an even number)


5 % 2 
is 1
(5 is an odd number)

The modulus operator can also be used in some conversion problems, such as converting minutes to hours-minutes. For example, 90 minutes is 1 hour and 30 minutes. Hours will be obtained by dividing minutes to 60. 90 / 60 is 1. Minutes will be obtained by finding the remainder after dividing 90 by 60; that is 90 % 60 which is 30.

Example 2.32: What will the values of declared variables be after the following program segment is executed?

int 
quantity,


amount = 10;

double 
height = 2.5,


width = 3,


area;

area = width * height;


quantity = amount / 3;

width = amount / 4;

quantity = width / 2;

amount = quantity / 10;


quantity = quantity + 1;

	Solution:
	Int 
quantity,


amount = 10;

double 
height = 2.5,


width = 3,


area;

area = width * height;

/* area = 3 * 2,5 = 7.5. x becomes 7.5 */ 

quantity = amount / 3;
/* quantity = 10 / 3 =3.333. quantity becomes 3 */ 
width = amount / 4;

/* width = 10/ 4 =2.5 (integer / integer). width becomes 2,0 */ 
quantity = width / 2; 

/* quantity = 2 / 2=1. quantity becomes 1 */

amount = quantity / 10;
/* amount= 1 / 10 =0.1. quantity becomes 0 */

quantity = quantity + 1;
/* quantity = 1 + 1. quantity becomes 2 */


As in the last statement, it is possible to make an operation using a variable and to store the result into the same variable.

Self Check: Can we convert the type of an expression?

Solution: Type cast is the solution. Look at page 62 an table 2.9 page 63 of textbook.

Expressions with Multiple Operators: It is possible to use more than one operator in an arithmetic expression. However, there are rules for evaluating expressions:

Rules for Evaluating Expressions

· Parentheses Rule: All expressions in parentheses must be evaluated separately. Nested parenthesized expressions must be evaluated form inside out, with the innermost evaluated first.

· Operator Precedence Rule: Operators in the same expression are evaluated in the following order:


unary +, -
first


*, /, %

next


binary +, -
last

· Associativity Rule: Unary operators in the same subexpression and at the same precedence level (such as + and -) are evaluated right to left (right associativity). 

Binary operators in the same sub expression and at the same precedence level (such as + and – are evaluated left to right (left associativity)

	Remark: Use parentheses as needed to specify the order of evaluation.


Example 2.33: Specify the order of evaluation for the following expression.


x + y + z + a / b –c * d

Solution: (x + y + z )+ (a / b) –(c * d)

Example 2.34: Find the values of the following variables.


int x;


double y;

x = 15 / 3 * 4  / 2 * -3;

/* x becomes -30 */

x = 20 +18 / 2 % 3 * 4; 
/* x becomes 20 */

x = 25 – 12 / 2 * 3 - 1;

/* x becomes 6 */ 

x = 10 – 5 / 2 + 4; 

/* x becomes 12 */

x =(10 – 5) / 2 + 4;

/* x becomes 6 */

x = (10 – 5) / (2 + 4); 

/* x becomes 0 */

x = 15 / 3.0 / 2 – 0.3 * -2.0
/* (= 3.1) x becomes 3  */

y = 0.2 + -1.2 * (4.9 + ( 2.1 + 15 / 3));

/* y becomes –14.2 */

y = 5 + 2 * 2 / 3 –15 / 2 +5.0 / 2

/* y becomes 1.5 */ 1.3333


y = 3 + (7 * 2 – 9) / 2.0 * 3 – 31 / 2 ;

/* x becomes 4.5 */ 5.0

Example 2.35: For the following equations, write the C statement and show how the evaluation order of the variables. 
1.  The formula for the area of a circle: area = Πr2 where Π = 3.14159 and r =2.
2.  The formula for the average velocity, v, of a particle traveling on a line between points p1 and p2 in time t1 to t2 is 
[image: image4.wmf]1

2

1

2

t

t

p

p

v

-

-

=

.

Solution 1: The formula can be written and evaluated in C as;

area = PI * radius * radius;

Solution 2: The formula can be written and evaluated in C as;

v = (p2 – p1) / (t2 – t1);


Self Check: write the C statement for variables z = z – (a + b / 2) + w * -y and show how evaluation order.

Solution: Figure 2.11 on page 66 of the textbook.

Example 2.36: What will be assigned to the variables after the following program segment is executed?

int
color = 20, size = 2, number;

double
value = 0.5, result, amount;

result = color * size; 
/* result becomes 40.0 */

number = color * value / 3; 
/* number becomes 3 */
amount = size + value * 3 / 5; 
/* amount becomes 2.3 */

Example 2.37: Which of the following formulas can be used to calculate the average of the numbers 2 and 3:

y = 2 + 3 / 2;
/* wrong, y becomes 3.0 */

y = (2 + 3) / 2;
/* wrong, y becomes 2.0 */

y = (2 + 3) / 2.0;
/* correct, y becomes 5 / 2.0 = 2.5 */ 

y = (2.0 + 3) / 2;
/* correct, y becomes 5.0 / 2 = 2.5 */

To points in finding an average is;

· The result should be double (real number). Therefore, in the calculation there should be a real number to make result real.

· In the evaluation order, first the numbers should be added and then divide. To do that we should use parentheses.

Example 2.38: Which of the following formulas is the C statement of the following expression:


[image: image5.wmf]a

b

a

y

2

1

+

-

=


y = 1 - a + b / 2a;


// wrong, in programming languages, each constant or variable must be separated by an 

// arithmetic operator (2a)... 

y = 1 - a + b / 2*a;
/* wrong, it corresponds to 
[image: image6.wmf]a

b

a

y

2

1

+

-

=

 */

y = 1 – (a + b) / 2*a;

/* wrong, it corresponds to 
[image: image7.wmf]a

b

a

y

2

1

+

-

=

 */
y = 1 – (a + b) / (2*a); 
/* correct */

Example 2.39: Write the C statement for the following expressions:

· 

[image: image8.wmf]b

a

k

ab

y

+

-

=

)

(




/* y = a * b * (-k) / (a + b); */

· 
[image: image9.wmf]x

z

x

z

y

1

3

4

3

+

+

=




/* y = (4 * z + 3 * x * x * x)  / (z + 1/ x)  */

· 

[image: image10.wmf]e

d

c

b

a

y

+

+

+

=

1

1

1



/* y = a / (1 + b / (1+ c / (1+ d / e ))) */

Example 2.40: Convert the given assignment statements in to the arithmetic expressions:

· y = a + b * c / d ;

 

/* 
[image: image11.wmf]d

bc

a

y

+

=

 */

· y = a / d * e +b ;



/* 
[image: image12.wmf]b

e

d

a

y

+

=

 */

· y = a / b + c / a/ 2 – 1 /  b / c; 

/* 
[image: image13.wmf]c

b

a

c

b

a

y

1

1

2

1

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

+

=

 */

· y = a + b * c / 3 – 15 / (a + b) /2 / a;
/* 
[image: image14.wmf]a

b

a

bc

a

y

1

2

1

15

3

÷

ø

ö

ç

è

æ

+

-

+

=

 */

Example 2.41: For the given expressions

· Write an equivalent equation that specify the evaluation order

· Find the value of the expression

	Declarations and Assignments

	int a, b, c, d;

a = 2;
b = -3;

c = 7;

d = -19;

	Expressions
	Equivalent expression
	Value

	a / b
	a / b
	0

	c / b / a
	(c / b) / a
	-1

	c % a
	c % a
	1

	a % b
	a % b
	/* Machine dependent */

	d / b % a
	(d / b) % a
	0

	-a * d
	(-a) * d
	38

	a % -b * c
	(a % (-b)) * c
	14

	9 / c + - 20 / d
	(9 / c) + ((- 20) / d)
	2

	- d % c – b / a * 5 + 5
	((- d) % c) – ((b / a) * 5) + 5
	15

	7 – a % (3 + b)
	7 – (a % (3 + b))
	/* Error */

	- - - a
	- (- (- a))
	-2

	a = b = c = d = -33
	a = (b = (c = (d = (-33))))
	-33


Exercises:
Look at Exercises for Section 2.5 on page 71 from the textbook.



Look at Case Study: Evaluating a Collection of Coins on pages 67 – 71 from 

the textbook.

2.7
Formatting Numbers in Program Output (Chapter 2.6)
C displays all numbers in its default notation unless you instruct it to do otherwise.

Formatting Values of Type int: Specifying the format of a integer value displayed by a C program is fairly easy. You simply add a number between the % and the d of the %d placeholder in the printf format string. This number specifies the field width – the number of columns (digits) to use for the display of the value. The statement

int Result = 21, meters = 68, inches = 11;

printf (“Result: %3d meters = %4d ft. %2 d in. \n”, meters, feet, inches) ;

The program output will be:

Results:     21 meters =  
68 ft. 11 in.

The character 
 represents a blank character. Table 10 shows how the two integer values are displayed using different format string placeholders. 

	Value
	Format
	Displayed Output
	Value
	Format
	Displayed Output

	234
	%4 d
	234
	-234
	%4 d
	-234

	234
	%5 d
	234
	-234
	%5 d
	-234

	234
	%6 d
	234
	-234
	%6 d
	-234

	234
	%1 d
	234
	-234
	%1 d
	-234


Table 10: Displaying 234 and –234 Using Different Placeholders

Formatting Values of Type double: To describe the format specification for a type double value, we must include both the total field width needed and the number of decimal places desired.

The form of the format string placeholder is %n.mf where n is a number resenting the total text filed and m is the desired number of decimal points.

Rules for formatting type of double %n.mf:

· If n = 0 or less than the minimum filed width necessary to display the number, the value will be printed with no leading blanks.

· If m < digits required, the fractional part is rounded to fit m.

· If m = 0, the closest integer value will be printed.

· If m > digits, extra zeroes are appended.

Table 11 shows different values of formatting type of double Values

	Value
	Format
	Displayed Output
	Value
	Format
	Displayed Output

	3.14159
	%5.2f
	3.14
	3.14159
	%4.2f
	3.14

	3.14159
	%3.2f
	3.14
	3.14159
	%5.1f
	3.1

	3.14159
	%5.3f
	3.142
	3.14159
	%8.5f
	3.14159

	.1234
	%4.2f
	0.12
	-.006
	%4.2f
	-0.01

	-.006
	%8.3f
	-0.006
	-.006
	%8.5f
	-0.00600

	-.006
	%.3f
	-0.006
	-3.14159
	%.4f
	-3.1416


Table 11: Formatting Type double Values

Example 2.42: Find the Displayed output of the value of x by using the placeholder %6.2f

	Value
	Displayed Output
	Value
	Displayed Output

	-99.42
	 -99.42
	-25.554
	-25.55

	.123
	0.12
	99.999
	100.00

	-9.536
	-9.54
	999.4
	999.40


Example 2.43: What will be the output of the following C statements?

double x = 25.69;


printf(“\n%f” , x) ;


printf(“\n%7.2f” , x) ;


printf(“\n%0.2f” , x) ;


printf(“\n%6.1f” , x) ;


printf(“\n%8.0f” , x) ;


printf(“\n%8.4f” , x) ;
	Solution :
	25.690000


25.69

25.69


25.7


26



25.6900


Example 2.44: State what is done in the following C code. To do that put comments to each line.

/*

* Purpose: Convert distance form miles to kilometers.

*/

#include <stdio.h>
/* printf, scanf definition
*/

#define KMS_PER_MILES 1.609
/* define conversion constant
*/

int

main(void)

{


double miles,
/* distance in miles – define input variable
*/



kms; 
/* equivalent distance in kilometers – define output variable
*/

// Get the input: the distance in miles


printf(“Enter the distance in miles> ”);


scanf(“%f”, &miles);

// Convert the distance to kilometers.


kms = KMS_PER_MILES * miles;

// Display the distance in kilometers.


printf(“That eauals %f kilometers.\n”, kms);


return (0);

}

Self Check: Write a C program to find the square of a given number.

/**************************************************************************/

/* CTIS 151 Introduction to Programming
*/

/*
*/

/* Purpose: Find square of a given number
*/

/*
*/

/*Created by: Duygu Albayrak, 08. 15. 2007
*/

/**************************************************************************/

#include <stdio.h>

int main(void)

{


double number,
/* defineinput variable – number */



square;
/* define output variable – number */

// Get the number


printf(“Enter the number:”);


scanf(“%lf, &number);

// Calculate its square


square = number * number;

// Display the number and its square


printf(“the square of %f is %f”, number, square);


return (0);

}

Exercises: Look at Exercises for Section 2.6 on page 75 from the textbook.


Look at Section 2.8 Common Programming Errors on pages 80 - 86.


Look at Chapter Review Exercises on pages 87 - 93.

3
Top – Down Design with Functions (Chapter 3)

3.1
Building Programs Form Existing Information (Chapter 3.1)
Programmers seldom start off with a blank state (empty screen) when they develop a program. Other some or all of the solution can be developed from information that already exists or from the solution to another problem.

Exercises: Look at both Section 3.1 (pages: 96-104) and Exercises for Section 3.1 on pages 104 - 105 from the textbook.
3.2
Library Functions – Built-in Functions (Chapter 3.2)
C promotes reuse by providing many predefined function that can be used to perform mathematical computations. 

There are two types of functions

· Built-in functions

· Programmer-defined functions

Built-in functions are also named as library functions. They are already defined in the language, and put into libraries. Whenever you need to use them in your programs, you can easily refer to them by including the standard header files for those functions. The only thing you need is to obtain the list of the built-in functions provided by the programming language you are using.

For example, C’s standard math library defines function named sqrt that performs the square root computation. The function call is the assignment statement



#include <math.h>




y =  sqrt(x);

activates the code for sqrt, passing the argument x to the function.

Sqrt function takes positive, double numbers as argument. If the argument is negative, it will cause an error. Since the argument of srq cannot be negative. In other words, the square roots of negative numbers are not defined.

Table 12 list the names and descriptions of some of the most commonly used functions along with the name of standard header file to #include to have access to each functions.

	Function
	Standard

Header File
	Purpose: Example
	Argument (s)
	Result data type

	abs(x)
	<stdlib.h>
<math.h>
	Returns the absolute value of its integer argument: if x is -5, abs(x) is 5
	int
	int

	ceil (x)
	<math.h>
	Returns the smallest integral value that is not less than x: if x is 45.23, ceil(x) is 46.0
	double
	double

	cos(x)
	<math.h>
	Returns the cosine of angle x: if x is 0.0, cos(x) is 1.0
	double (radians)
	double

	exp(x)
	<math.h>
	Returns ex where e=2.71828…: if x is 1.0, exp(x) is 2.71828
	double
	double

	fabs(x)
	<math.h>
	Returns the absolute value of its type double argument: if x is -8.432, fabs(x) is 8.432
	double
	double

	floor(x)
	<math.h>
	Returns the largest integral value that is not greater than x: if x is 45.23, floor(x) is 45.0
	double
	double

	log(x)
	<math.h>
	Returns the natural logarithm of x for x > 0.0: if x is 2.71828, log(x) is 1.0
	double
	double

	log10(x)
	<math.h>
	Returns the base-10 logarithm of x for x > 0.0: if x is 100.0, log10(x) is 2.0
	double
	double

	pow (x, y)
	<math.h>
	Returns xy. If x is negative, y must be integral: if x is 0.16 and y is 0.5, pow(x, y) is 0.4
	double
	double

	sin(x)
	<math.h>
	Returns the sine of angle x: if x is 1.5708, sin(x) is 1.0 
	double (radians)
	double

	sqrt(x)
	<math.h>
	Returns the non-negative square root of x for x ( 0.0: if x is 2.25, sqrt(x) is 1.5
	double
	double

	tan(x)
	<math.h>
	Returns the tangent of angle x: if x is 0.0, tan(x) is 0.0
	double (radians)
	double


Table 12: Some Mathematical Library functions (page 109)
If one of the functions in table 12 is called with a numeric argument that is not of the argument type listed, the argument value is converted to the required type before it is used. Conversion of type int to type double causes no problems. However, a conversion of type double to type int leads to the loss of any fractional part, just as in a mixed assignment.

Example 3.1: State what is done in the following C code. To do that put comments to each line.


#include <stdlib.h>
/* definitions of abs
*/


#include <math.h>
/ definitions of fabs 
*/


x = abs(-3.47);
/* the result of abs is integer. Therefore, x is 3. */


x = fabs(-3.27);
/*  x becomes 3.47

*/

Exercises: Look at Appendix B from the textbook and learn which function use and return what kind of data.

Example 3.2: Write a C program to find the fourth root of a given number.

/**************************************************************************/

/* CTIS 151 Introduction to Programming
*/

/*
*/

/* Purpose: Find fourth root of a given number
*/

/*
*/

/*Created by: Duygu Albayrak, 08. 15. 2007
*/

/**************************************************************************/

#include <stdio.h>
/* definitions of printf, scanf
*/

#include <math.h>
/* definition of sqrt
*/

int 

main(void)

{


double number,
/* defineinput variable – number */



fourth_root;
/* define output variable – fourth_root */

// Get the number


printf(“Enter the number:”);


scanf(“%lf, &number);

// Calculate fourth root of the number


fourth_root = sqrt(sqrt(number)); 

/* by using pow, fourth_rooot = pow(number, 0.25) */

// Display the number and its fourth root.


printf(“the fourth root of %f is %f”, number, fourth_root);


return (0);

}

There is another function named ad pow(x,y) in math library of C can be used to find fourth root of a number. It takes two double numbers as arguments and returns a double number, which is equal to xy. 

When the second argument of por is real number, the first argument must be positive.

Example 3.3: Write an assignment statement for the following arithmetic expression.


[image: image15.wmf]a

b

a

y

+

-

=

1


Solution: y = 1 – (a + fabs(b)) / sqrt(fabs(a));

Example 3.4:  The length of two sides (b and c) of a triangle and the angle between them in degrees (α) are known. Write an assignment statement to find the third side (a) using the following formula:


[image: image16.wmf])

cos(

2

2

2

2

a

bc

c

b

a

-

+

=


Solution: 
a = sqrt(pow(b, 2) + pow(c, 2)) – 2 * b * c * cos (alpha * PI /180)


Exercises:  Look at Example 3.1 on page 106, Figure 3.7 on page 107 Example 3.2 on page 110 and Exercises for Section 3.2 on page 111 from the textbook.

4
Selection Structures If and Switch Statements (Chapter 4)

4.1
Conditions (Chapter 4.2)
Condition is an expression that is either false (represented by 0) or true (represented by 1). To write conditions, Boolean expressions are used. A Boolean Expression is an expression that can take 1 or 0 values.

Relational and Equality Operators: Most conditions that we use to perform will have one of these forms:

variable relational-operator variable

variable relational-operator constant

variable equality-operator variable

variable equality-operator constant

Table 13 shows the list of relational and equality operators.

	Operator
	Meaning
	Type

	<
	Less than
	relational

	>
	Greater than
	relational

	<=
	Less than or equal
	relational

	>=
	Greater than or equal
	relational

	==
	Equal to
	equality

	!=
	Not equal
	equality


Table 13: Relational and Equality Operators

	Remark: To check equality two equal sign are used, rather than one. Since for assignment statements one equal sign is used.


Relational expressions can take value 1 or 0 depending on the result of the comparison. Therefore, the result of a Boolean expression can be assigned to an integer variable.

Example 4.1: State the values of the variables of the following C statements. 



int test1, test2, test3;


int num1, num2;


num1 = 10;


num2 = 7;


test1 = num2 > num1;
/* Boolean expression is false. Therefore, test1 is 0. */


test2 = num1 <= 10;
/* Boolean expression is true. Therefore, test2 is 1. */


test3 = num2 == 0; 
/* Boolean expression is false. Therefore, test3 is 0. */

Example 4.2: State the values of conditions by using the following constant values.

	x
	
	power
	
	MAX_POW
	
	y
	
	item
	
	MIN_ITEM
	
	mom_or_dad
	
	num
	
	SENTINEL

	-5
	
	1024
	
	1024
	
	7
	
	1.5
	
	-999.0
	
	‘M’
	
	999
	
	999


	Operator
	Condition
	Meaning
	Value

	<=
	x <= 0
	x less than or equal to 0
	1 (true)

	<
	power < MAX_POW
	power less than MAX_POW
	0 (false)

	>=
	x >= y
	x greater of equal to y
	0 (false)

	>
	item > MIN_ITEM
	item greater than MIN_ITEM
	1 (true)

	==
	mom_or_dad == ‘M’
	mom_or_dad equals to ‘M’
	1 (true)

	!=
	num != SENTINEL
	Num is not equal to SENTINEL
	0 (false)


It is possible to compare results of calculations by using relational and equality operators.

Example 4.3: State the values of variables x and y by using the following constant values.


int
num1, x, y;


/* define the data type of num1, x and y */


double num2;



/* define the data type of num2 */


num1= 10;




/* num1 becomes 10 */


num2 = 7;




/* num2 becomes 7 */


num3 = num2 / 2.0;



/* num3 becomes 3.5 */


x = num3 < 10;



/* x becomes 1 */


y = num1 != num3 ;



/* y becomes 0 */


x = 28 / 3 / 3.0 + 1 > 11 – 15 / 6 –3;

/* x becomes 0 */


y = num1 / 2 * 2 == num1;


/* y becomes 1 */

Example 4.4: Write an assignment statement by using relational or equality operators which can be used to state a integer number is even or not?

Solution:
int number, even_check;



even_check = number /2 * 2 == number
/* if even_check is 1 it is even */

Remember the modulus operator we can also use it:



even_check = number % 2 == 0; 

/* if even_check is 1 it is even */

Logical Operators: Logical expression is an expression that uses one or more of the logical operators  - && (and), || (or), ! (not, logical complement or negation). The result of logical expression is 1 or 0. 

	Remark: The result of logical expressions can be 1 or 0, however, C accepts any nonzero value as a representation of true, 1.


Table 14 shows that the && (and) operator yields a true result only when both operands are true. Table 15 shows that the || (or) operator yields a false result only when both its operands are false. Table 16 shows the ! (not) operator.

	Operand 1
	Operand 2
	Operand 1 && Operand 2

	nonzero - 1  (true)

nonzero - 1  (true)

0 (false)

0 (false)
	nonzero - 1  (true)

0 (false)

nonzero - 1  (true)

0 (false)
	1 (true)

0 (false)

0 (false)

0 (false)


Table 14: The && (and) Operator

	Operand 1
	Operand 2
	Operand 1 | | Operand 2

	nonzero - 1  (true)

nonzero - 1  (true)

0 (false)

0 (false)
	nonzero - 1  (true)

0 (false)

nonzero - 1  (true)

0 (false)
	1 (true)

1 (true)

1 (true)

0 (false)


Table 15: The | | (or) Operator

	Operand 1
	!Operand 1

	nonzero - 1  (true)

0 (false)
	0 (false)

1 (true)


Table 16: The ! (not) Operator

Operator Precedence: A unary operator is an operator that has one operand. Table 17 shows the operator precedence.

	Operator
	Precedence

	Function call

! + - & (unary operators)

* / %

+ -

< <= >= >

== !=

&&

||

=
	Highest


Lowest


Table 17: Operator Precedence

Example 4.3: Expressions 1 to 4 below contain different operands and operators. Find each expression’s value, assuming x, y, and z are type double, flag is type int and the variables have the values

	x
	
	y
	
	flag

	3.0
	
	4.0
	
	0


1.  !flag



/* !0 is 1 (true)

*/

2. x + y / z <= 3.5

/* 5.0 <=3.5 is 0 (false)
*/

3.  !flag | | (y + z >= x – z)
/* 1 | | 1 is 1 (true)

*/

4.  !(flag | | (y + z >= x – z))
/* ! (0 | | 1) is 0 (false)
*/

Example 4.4: Show the evaluation order of expression 3 in Example 4.3.


!flag 
| | 
(y  +  z >= x  –  z)


Example 4.5: Write an expression to check the following expression.



min_num <= number <=  max_num

Solution:
test = number >=min_num && number <= max_num;


or



test = (min_num <= number) && (number <=  max_num);

It is not necessary to take operands of a logical operator in parentheses. However, it is better to use parentheses.

Example 4.6: For the following Conditions write the corresponding logical expressions and result of the evaluation where x is 3.0, y is 4.0 and z is 2.0.

	Condition
	Logical Expression
	Evalution

	x and y are greater than z
	x > z && y > z
	1 && 1 is 1 (true)

	x is equal to 1.0 or 3.0
	x == 1.0  | |  x == 3.0
	0 | | 1 is 1 (true)

	x is in the range z to y, inclusive
	z <= x && x <= y 
	1 && 1 is 1 (true)

	x is outside the range z to y
	! (z <= x && x <= y)

z > x  | |  x > y
	! (1 && 1) is 0 (false)

0 | | 0 is 0 is (false)


Example 4.7: Write the result of the following statement

int x = 2, y = 3, z = 4;

int test1, test2, test3 ;

test1 = (x > 0) || !(y < 0) && (z == 0);



/* 1 || 0 test1 is true */

test2 = 26 >= abs(x – z) * 13 && !(z + 20 / x == 14) || z / (x – y) > 0; 
/* test1 is false */

test3 = !test1 || !test2 && test1 && test2;



/* test1 is false */

test3 = !test1 || !(test2 && test1 && test2);



/* test1 is true */

test3 = !(test1 || !test2) && test1 && test2;



/* test1 is false */

Self Check: Write logical expressions to check the following conditions.

	Condition
	Logical Expression

	Are a and b greater than c?
	a > c && b > c (not  a && b > c)

	Is a equal to 20 or 40?
	a == 20 || a == 40 (not a == 20 || 40)

	Is a in the range c to b, inclusive?
	a >= c && a <= b (not c <= a <= b)

	Is a outside the range c to b?
	a < c  || a > b (or !(a >= c && a <= b))

	Is ch an uppercase letter?
	ch >= 'A' && ch <= 'Z'

	Is ch a letter?
	(ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z')


Comparing Characters: We can also compare characters in C using the relational and equality operators. The result will depend on the ASCII order of them. Table in Appendix A of the textbook has the ASCII order of characters.

In ASCII order, digits come before letters, uppercase letters come before lowercase letters and letters are in alphabetic order. For example, ‘5’ is less than ‘A’, ‘A’ is less than ‘Z’ and ‘Z’ is less than ‘a’.

Table 18 shows some examples of these comparisons.

	Expression
	Value

	‘9’ >= ‘0’
	1 (true)

	‘a’ < ‘e’
	1 (true)

	‘B’ <= ‘A’
	0 (false)

	‘Z’ == ‘z’
	0 (false)

	‘a’ <= ‘A’
	System dependent

	‘a’ <= ch && ch <= ‘z’
	1 (true) if ch is a lowercase letter


Table 18: Character Comparisons

Example 4.8: State the values of variables x, y and z in the following program segment.


int 
x, y, z;
/* definitions of  variables x, y and z */


char
ch;
/* definition of variable ch */


ch = ‘M’;
/* ch become ‘M’ */


x = ch < ‘F’;
/* x becomes 0 */


y = ch == ‘m’;
/* y becomes 0 */


z = ch >= ‘1’ ;
/* z becomes 1 */

Complementing a Condition: You can use  complement a single condition by just changing its operator.

Example 4.9: Write the complement of the following conditon


item == SENT

Solution: We have two condition that is the complement of the condtion


!(item == SENT) 

or 


item != SENT 

Example 4.10: Write the complement of the following conditon


status == ‘S’ && age >25

Solution: We have two condition that is the complement of the condtion


!(status == ‘S’ && age >25) 

De Morgan’s Theorem: De Morgan’s theorem gives us a way of simplifying the logical expressions as in the Table 19.

	De Morgan’s Law
	Logical Expression

	
[image: image17.wmf](

)

b

a

b

a

¢

Ú

¢

=

¢

Ù


	
[image: image18.wmf]b

a

b

a

||!

!

)

&

&

(

!

=



	
[image: image19.wmf]b

a

b

a

¢

Ù

¢

=

¢

Ú

)

(


	
[image: image20.wmf]b

a

b

a

&

&

!

)

||

(

!

=




Table 19: De Morgan’s Theorem

Exercises:  Look at Example 4.4 on page 154, Example 4.5 – 4.6 on page 155, Example 4.7 – 4.8 on page 156 and Exercises for Section 4.2 on page 157 from the textbook.

4.2
Control Structures (Chapter 4.1)
Control structures control the flow of execution in a program. The C control structures enable you to combine individual instructions into a single logical unit with one entry point and one exit point.

Instructions are organized into three kinds of control structures:

· sequence

· selection

· repetition.

A selection structure is a control that chooses among alternative program statements. 

4.3
The if Statement (Chapter 4.3)
A program chooses among alternative statements by testing the value of the key variables. In C, the if statement is the primary selection control structure. It is used to make program to do something only when a certain condition is true.

	If Statement (One Alternative)

	FORM: 
if (condition)



statementT;




Example 4.11: 
if (x > 0.0)




printf(“%f is positive\n”, x);

Interpretation of Example 4.11: If condition value evaluates to true (a nonzero value), then the statementT is executed. Otherwise,  statementT is skipped.

	If Statement (Two Alternatives)

	FORM: 
if (condition)



statementT;


else



statementF;




Figure 10 shows the flowcharts of both if statements with  (a) one alternative and (b) two alternatives:


Figure 10: Flowcharts of if Statements with (a) One and (b) Two Alternatives

Example 4.12: 
if (x > 0.0)




printf(“positive\n”);



else




printf(“negative\n”);

Interpretation of Example 4.12: If condition value evaluates to true (a nonzero value), then the statementT is executed. Otherwise, statementT is skipped and statementF is executed..

Example 4.12: 
Write if statement that compare x and y and if x is greater than y it give a message that x is greater than y. x and y are real numbers and show only two digit after points.

Solution: 
if (x > y);





printf(“0.2% is greater than %0.2f \n”, x, y);

Example 4.13: 
State the output of the Example 4.12 if 

1. x = 3.5 and y =3

2. x = 3.5 and y =4.5

Solution 1:  3.50 is greater than 3.00

Solution 2:  The condition is false. Therefore, No message will be displayed.

Example 4.14: People younger than 18 are not allowed to enter a bar. Write a program that gets the person age and display the message “You cannot enter!” if it is not allowed.

Solution: First, lets draw the Flowchart of the problem to make the problem more clear:


/**************************************************************************/

/* CTIS 151 Introduction to Programming
*/

/*
*/

/* Purpose: Display the message “You cannot enter” if the person is younger than 18.
*/

/*
*/

/*Created by: Duygu Albayrak, 09. 15. 2007
*/

/**************************************************************************/

#include <stdio.h>

int

main(void)

{


int number;
/* defineinput variable – age */

// Get the age of the person


printf(“\nEnter the your age: ”);


scanf(“%d”, &age);

// Check if the person is allowed to enter


if (age <18)



printf((“\nYou cannot enter!\n”);


return (0);

}

Example 4.15: Change the problem of Example 14 as People younger than 18 are not allowed to enter a bar. Write a program that gets the person age and display the message “You cannot enter!” if it is not allowed. Otherwise display the message “Welcome!”

Solution: First, lets draw the Flowchart of the problem to make the problem more clear:


/**************************************************************************/

/* CTIS 151 Introduction to Programming
*/

/*
*/

/* Purpose: Display the message “You cannot enter” if the person is younger than 18. 
*/

/* 
Otherwise display the message “Wellcome!”
*/

/*
*/

/*Created by: Duygu Albayrak, 09. 15. 2007
*/

/**************************************************************************/

#include <stdio.h>

int

main(void)

{


int number;
/* defineinput variable – age */

// Get the age of the person


printf(“\nEnter the your age: ”);


scanf(“%d”, &age);

// Check if the person is allowed to enter


if (age <18)



printf(“\nYou cannot enter!\n”);


else



printf(“\nWellcome!\n”);


return (0);

}

Program Style Format of the if statement: All if statement indents statementT and statementF. The word else is typed without indentation on a separate line. The Format of the if statement makes its meaning apparent and is used solely to improve program readability; the format makes no difference to the compiler.

Example 4.16: Write an equivalent if … else statement for Example 15.

	Solution: 
	if (age >=18)


printf(“\nWellcome!\n”);

else


printf(“\nYou cannot enter!\n”);

return (0);




Example 4.17: What will be the output of the following program segment?


num1 = 15.0;


num2 = 25.2;


if (num2 <= 2 * num1)



printf(“successful\n”);


else



printf(“unsuccessful\n”);

Solution: successful

Exercises:  Look at Exercises for Section 4.3 on pages 161 - 162 from the textbook.

Self Check: One indicator of the health of a person’s heart is the resting heart rate. Generally a resting heart rate of 75 beats per minutes or less indicates a healthy heart, but a resting heart rate over 75 indicates a potential problem.

Write a program gets person’s resting heart rate, as a data should compare that value and display a warning message if the rate is over 75.

4.4
if Statements with Compound Statements (Chapter 4.4)
Compound statement is a group of statements bracketed by { and } that are executed sequentially. 

	Compound Statements

	Syntax: 
{



statement 1;



statement 2;



…



statement n;


}




The statements within a compound statement are separated by semicolons. The entire segment of the code is treated as a single action. 

Compound statements are frequently used as apart of selection statement.

Example 4.18: What will be the output of the following program segment? 


if ( x > y)



{




printf(“%0.2f is greater than %0.2f\n”, x, y);




sum = x + y;





printf( “Sum of %0.2f and %0.2f is %0.lf\n”, sum);



}

For the following inputs

1. x = 2.5 and y = 1.5

2. x = 2.5 and y = 3.5

Solution 1: 
2.50 is greater than 1.50



Sum of 2.50 and 1.50 is 4.0

Solution 1:  Since condition is not satisfied, No message will be displayed.

Example 4.19: What will be the output of the program segment of Example 4.18 without curly braces? 

Solution:  If there is no curly braces, then only the 1st printf statement will belong to the if statement. The assignment statement of sum and 2nd printf will be executed no matter what the condition is.

Example 4.20: What will be the result of the following C statements.

int n1, n2;

n1 = 25;

n2 = 50;

if ((n1 < n2) && !(n2 != 2 * n1))


{



n1 = n2 / 5;



n2 = 3 * n1;




}

else


n2 = n1 / 5;

printf("%d  %d\n", n1, n2);

if ((n2 <= 2 * n1) || (n1 == n2))


n1 = 0;

n2 = 5;



printf("%d  %d\n", n1, n2);

Solution: 
10
30



10 
5

Example 4.21: A bank gives 25% interest for the annual accounts. However, if the money in the account is 10 billion TL or more, the bank increases the interest to 30%. In both cases, 12% of that interest is cut as the tax. 

Write a program for given the amount of money a customer uses to open an annual account in that bank, calculate the amount of money he will have after one year.
Solution: Let’ first write pseudocode of the program and convert it to the C program.


Get a value for the customer’s initial money 


Set the value of the customer money as initial_money



Calculate interest checking the initial money
If (initial_money < 10E9) then 




Set the interest = initial_money * 0.25



else 


Set the interest =  initial_money * 0.3


Calculate the tax

tax = interest * 0.12

Calculate the final_money = initial_money + interest – tax

Display the final money

Input: Initial money

Output: Final money

Other Variables: interest, tax

Formulas:  interest = initial_money * 0.25 If (initial_money < 10E9)


interest =  initial_money * 0.3 If (initial_money >= 10E9)


tax = interest * 0.12


final_money = initial_money + interest – tax

/**************************************************************************/

/* CTIS 151 Introduction to Programming
*/

/*
*/

/* Purpose: Calculate money in the account after one year 
*/

/*
*/

/*Created by: Duygu Albayrak, 09. 15. 2007
*/

/**************************************************************************/

#include <stdio.h>

int

main(void)

{


double initial_money;
/* defineinput variable – initial money */


double final_money;
/* define output variable – final money */


double interest;
/* define variable – interest */


double tax;
/* define variable – tax */

// Get the customer’s initial money


printf(“\nEnter the money the costumer has:  ”);


scanf(“%f”, &initial_money);

// Calculate interest checking the initial money
If (initial_money < 10E9)




interest = initial_money * 0.25;



else 


interest =  initial_money * 0.3;

// Calculate the tax
tax = interest * 0.12;

// Calculate final money

final_money = initial_money + interest – tax;

// Display the final money


printf(“\nThe customer will have %5.2f YTL after one year.\n”, final_money);


return (0);

}

Self Check: Write a program which given two numbers, divides the 1st number to the 2nd number. And show the result of the division or if there is a problem say it. Notice that we have to check whether the 2nd number is 0 not to cause a division by zero error.

Solution: Let’ first write pseudocode of the program and convert it to the C program.


Get a value for numbers 


Set the value of the numbers

Check if division is allowed

If (number2 = 0) then 




Display  “Division is not possible since denominator is 0.”


Calculate division


else 


result =  number1 / number2




Display the result

Input: number1, number2

Output: result

Formula:  result = number1 / number2

/**************************************************************************/

/* CTIS 151 Introduction to Programming
*/

/*
*/

/* Purpose: Calculate division of two number 
*/

/*
*/

/*Created by: Duygu Albayrak, 09. 15. 2007
*/

/**************************************************************************/

#include <stdio.h>

int

main(void)

{


double number1, number2;
/* define input variables: number1 and number2 */


double result;
/* define ouput variable: result */

// Get a value for numbers 


printf(“\nEnter two numbers: ”);


scanf(“%f %f”, &number1, &number2);

// Check if division is allowed


If (number2 == 0)



printf( “\nDivision is not possible since denominator is 0\n.”);

//Calculate and show the result


else 


{

result =  number1 / number2;



printf(“\nDivision of these two numbers is %5.2f\n”, result);


}


return (0);

}

Exercises:  Look at Exercises for Section 4.4 on pages 165 – 166, Section 4.5, 4.6 between pages 166 –177, Exercise for Section 4.5 on page 176 and Section 4.6 on page179 and Case study on pages 177-179 from the textbook.

Example 4.22: Write a C program that finds maximum of two numbers.

Solution: 
input: two numbers: number1 and number2



Output: maximum number


Formula: maximum_num = number1 if number1 > number2. otherwise, 


maximum_num = number2

/**************************************************************************/

/* CTIS 151 Introduction to Programming
*/

/*
*/

/* Purpose: Find maximum of given two numbers 
*/

/*
*/

/*Created by: Duygu Albayrak, 09. 15. 2007
*/

/**************************************************************************/

#include <stdio.h>

int

main(void)

{


double number1, number2;
/* define input variables: number1 and number2 */


double maximum_num;
/* define ouput variable: maximum_num */

// Get a value for numbers 


printf(“\nEnter two numbers: ”);


scanf(“%f %f”, &number1, &number2);

// Compare two numbers


If (number1 > number2) 



printf( “\nMaximum of the above numbers: %0.2f \n.”, number1);


else 



printf( “\nMaximum of the above numbers: %0.2f\n.”, number2);


return (0);

}

4.5
Nested if Statements and Multiple-Alternative Decisions (Chapter 4.7)
Notice that Solution of Example4.22 program displays the second number even if the numbers are equal, because else means if number1 is less than or equal to number2. If we want to display a different message when the numbers are equal, we need to write a nested if statement, and change the if statement as follows:

/* Display the larger one
*/


if (number1 > number2)



printf ("%0.2f is larger than %0.2f\n", number1, number2);


else if (number1 < number2)



printf ("%0.2f is larger than %0.2f\n", number2, number1);


else



printf ("They are equal.\n");

if … else statement is used to make a two-way selection, where a nested if statement is used to make a multi-way selection. The various combinations of if and if … else statements can occur to code decisions with multiple alternatives. Nested if statement is an if statement with another if statement as it true task or its false task.

	Multiple Alternative Decision

	Syntax: 
if (condition)


statement1;


else if (condition)



statement2;


.


.


.


else if (condition)



statementn;


else



statemente;




The conditions in a multiple-alternative decision are evaluated in sequence until a true condition is reached. If a condition is true, the statement following is executed, and the rest of the multiple alternative decision is skipped. If a condition is false, the statement following is skipped, and the next condition is tested. If all conditions are false then statemente following else is executed.

Comparison of Nested if and sequence of ifs: Beginning programmers sometimes prefer to use a sequence of if statements rather than a single if statement.

Notice that Solution of Example4.22 program can be written with sequences of ifs as:


if (number1 > number2)



printf ("%0.2f is larger than %0.2f\n", number1, number2);


if (number1 < number2)



printf ("%0.2f is larger than %0.2f\n", number2, number1);


if (numbe1 == number2)



printf ("They are equal.\n");

Unlike the nested if statement, the sequence does not clearly show that exactly one of the three-assignment statement is executed for a particular x. 

Sequences of ifs are less efficient because all three of the conditions are always tested. In the nested if statements, only the first condition is tested when number1 is greater than number2. Thus, the nested if statements are faster than sequences of ifs.

Tracing is following a program step by step and understand what is happening in then memory to find out what is displayed as the output. Tracing is very important in checking whether the program is working correctly.

If trace the Solution of Example 4.22 with both nested if and sequences of if, you will see that both will give the same result. However, sequences of ifs make more checks and spend more times.

Example 4.23: Trace the following program segment for x = - 7.


if (x > 0)



num_pos =num_pos +1;


else if (x < 0)



num_neg =num_neg +1;



else


num_zero =num_zero +1;

Solution: Trace of the Example 4.23 code is as;

	Statement Part
	Effect

	if (x > 0)
	-7 > 0 is false

	if (x < 0)
	- 7 < 0 is true

	num_neg =num_neg +1;
	Add 1 to num_neg


Example 4.24: Write a program to show the overall grade of a student, display the letter grade that student, based on the following criteria:

	Letter
	Grade Range

	A
	
[image: image21.wmf]Grade

£

90



	B
	
[image: image22.wmf]90

80

<

£

Grade



	C
	
[image: image23.wmf]80

70

<

£

Grade



	D
	
[image: image24.wmf]70

60

<

£

Grade



	F
	
[image: image25.wmf]60

<

Grade




/* This program displays the letter grade for a student
*/

#include <stdio.h>
/* defininition of printf, scanf */

int

main(void)

{


double grade;
/* define the input variable: grade */

// Get the overall grade


prinf(“\nEnter the student’s overall grade: ”);


scanf(“%lf”, &grade);

// Display the corresponding letter grade


if (grade >= 90)



prinf(“\nThe letter of the student is A\n”);


else if (grade >= 80)



prinf(“\nThe letter of the student is B\n”);


else if (grade >= 70)



prinf(“\nThe letter of the student is C\n”);


else if (grade >= 60)



prinf(“\nThe letter of the student is D\n”);


else



prinf(“\nThe letter of the student is F\n”);


return (0);

}

Example 4.25: Write the Solution of Example 4.24 by using sequences of ifs.

Solution: // Display the corresponding letter grade


if (grade >= 90)



prinf(“\nThe letter of the student is A\n”);


if ((grade >= 80) && (grade < 90))



prinf(“\nThe letter of the student is B\n”);


if ((grade >= 70) && (grade < 80))



prinf(“\nThe letter of the student is C\n”);


if ((grade >= 60) && (grade < 70))



prinf(“\nThe letter of the student is D\n”);


if (grade < 60)



prinf(“\nThe letter of the student is F\n”);

Example 4.26: Trace solution program of Example 4.24 and 4.25 for overall letter is 95, 80, 77, 63 and 50.

· Trace for overall grade = 95

	Statement executed for Nested if
	Effect

	if (grade >= 90)
	95 >= 90 is true

	prinf(“\nThe letter of the student is A\n”);
	The letter of the student is A


	Statements executed for if sequences
	Effect

	if (grade >= 90)
	95 >= 90 is true

	prinf(“\nThe letter of the student is A\n”);
	The letter of the student is A

	if ((grade >= 80) && (grade < 90))
	false

	if ((grade >= 70) && (grade < 80))
	false

	if ((grade >= 60) && (grade < 70))
	false

	if (grade < 60)
	false


· Trace for overall grade = 80

	Statement executed for Nested if
	Effect

	if (grade >= 90)
	false

	else if (grade >= 80)
	80 >= 80 is true

	prinf(“\nThe letter of the student is B\n”);
	The letter of the student is B


	Statements executed for if sequences
	Effect

	if (grade >= 90)
	false

	if ((grade >= 80) && (grade < 90))
	((80 >=80) && (80 < 90)) is true

	prinf(“\nThe letter of the student is B\n”);
	The letter of the student is B

	if ((grade >= 70) && (grade < 80))
	false

	if ((grade >= 60) && (grade < 70))
	false

	if (grade < 60)
	false


· Trace for overall grade = 77

	Statement executed for Nested if
	Effect

	if (grade >= 90)
	false

	else if (grade >= 80)
	false

	else if (grade >= 70)
	77 >=70 is true

	prinf(“\nThe letter of the student is C\n”);
	The letter of the student is C


	Statements executed for if sequences
	Effect

	if (grade >= 90)
	false

	if ((grade >= 80) && (grade < 90))
	false

	if ((grade >= 70) && (grade < 80))
	((77 >=70) && (77 < 80)) is true

	prinf(“\nThe letter of the student is C\n”);
	The letter of the student is c

	if ((grade >= 60) && (grade < 70))
	false

	if (grade < 60)
	false


· Trace for overall grade = 63

	Statement executed for Nested if
	Effect

	if (grade >= 90)
	false

	else if (grade >= 80)
	false

	else if (grade >= 70)
	false

	else if (grade >= 60)
	63 >= 60 is true

	prinf(“\nThe letter of the student is D\n”);
	The letter of the student is D


	Statements executed for if sequences
	Effect

	if (grade >= 90)
	false

	if ((grade >= 80) && (grade < 90))
	false

	if ((grade >= 70) && (grade < 80))
	false

	if ((grade >= 60) && (grade < 70))
	((63 >=60) && (63 < 60)) is true

	prinf(“\nThe letter of the student is D\n”);
	The letter of the student is D

	if (grade < 60)
	false


· Trace for overall grade = 50

	Statement executed for Nested if
	Effect

	if (grade >= 90)
	false

	else if (grade >= 80)
	false

	else if (grade >= 70)
	false

	else if (grade >= 60)
	false

	else if (grade < 60)
	50 <60 is true

	prinf(“\nThe letter of the student is F\n”);
	The letter of the student is F


	Statements executed for if sequences
	Effect

	if (grade >= 90)
	false

	if ((grade >= 80) && (grade < 90))
	false

	if ((grade >= 70) && (grade < 80))
	false

	if ((grade >= 60) && (grade < 70))
	false

	if (grade < 60)
	50 > 60 is true

	prinf(“\nThe letter of the student is F\n”);
	The letter of the student is F


When writing a program invalid inputs should be considered. This operation is called as data validation. If invalid data is entered, the program should give a proper error message.

Example 4. 27: Are there any invalid data for the overall letter (Example 4.24)?

What about if the user enters a negative number or a number larger than 100, to test what your program does? 

Solution: We should change the nested if statements as:

/* Check if the grade is invalid */

if (grade > 100 || grade < 0)


printf (“Invalid grade!\n”);

else


… /* the nested if statement in the example 4.23 */

Example 4.28: Write a program to associate noise loudness measured in decibels with the effect of noise. The following table shows the relationship between noise levels and human perceptions of noises.

	Loudness in Decibels (db)
	Perception

	50 or lower
	Quite

	51 – 70
	Intrusive

	71 – 90
	Annoying

	91 – 110
	Very annoying

	Above 110
	Uncomfortable


/* Associate noise loudness measured in decibels with the effect of noise. */ 

#include <stdio.h>

/* definition of printf, scanf */

int

main(void)

{


int noise_db ;

/* define the input variable – noise_db */

// Get loudness in decibels


printf(“\n Enter the louidness level in decibel: ”);


scanf(“%d”, &noise_db);

// Display perception of noise loudness


if (noise_db <= 50)



printf(“%d – decibel noise is quiet.\n”, noise_db);


else if (noise_db <= 70)



printf(“%d – decibel noise is intrusive.\n”, noise_db);


else if (noise_db <= 90)



printf(“%d – decibel noise is annoying.\n”, noise_db);


else if (noise_db <= 110)



printf(“%d – decibel noise is very annoying.\n”, noise_db);


else



printf(“%d – decibel noise is uncomfortable.\n”, noise_db);


return (0);

}

Order of Conditions in a Multiple Alternative Decision: When more than one condition in a multiple alternative decision is true, only the task following the first true condition executes. Therefore, the order of the conditions can affect the outcome. For example if we change the solution of example 4.28 as follows
// Incorrect perception of noise loudness


if (noise_db <= 110)



printf(“%d – decibel noise is very annoying.\n”, noise_db);


else if (noise_db <= 90)



printf(“%d – decibel noise is annoying.\n”, noise_db);


else if (noise_db <= 70)



printf(“%d – decibel noise is intrusive.\n”, noise_db);


else if (noise_db <= 50)



printf(“%d – decibel noise is quiet.\n”, noise_db);


else



printf(“%d – decibel noise is uncomfortable.\n”, noise_db);

 if the input is noise is 80 db first if condition is true and the output will be ’80 db noise is very annoying’.

Example 4.29: Remember the bar example (Example 4.14) Let’s modify it again so that if the person is allowed to enter the bar, it also displays the money he/she should pay. Males should pay 10$, but females are allowed to enter the bar without paying. Therefore, we should ask the person’s gender, and decide accordingly.

Solution: Flowchart of the problem:


/* Display the message “You can not enter!” if the person is younger than 18. Otherwise display the message “Welcome!” and the money he/she should pay. */

#include <stdio.h>

int main(void)

{


int
age;

/* (input) age of a person */


char 
gender; 

/* (input) gender of person */


// Get the person's age


printf("\nEnter the age of the person: ");


scanf("%d", &age);


// Check if the person is allowed to enter 


if (age < 18)



printf("\nYou can not enter!\n");


else



{



// Calculate the money to pay according to gender



printf(“\nEnter gender: “);



scanf(“ %c”, &gender);

/* blank or n before %c */



if (gender == ‘F’)


printf(“\nWelcome! You can enter without paying!\n”);



else


printf(“\nWelcome! You should pay 10$\n”);


}


return(0);

}

Example 4.29: Write a C program to calculate the water bill for a customer where the price of water / m3 is 1 YTL for domestic users and 1.5 YTL for industrial users. Input the user-id, consumption (amount of water used), user code (D - domestic, I - industrial), and output the user-id and the amount to be paid.

Solution: Let’ first write pseudocode of the program and convert it to the C program.


Get a value for user_id, user_code and amount of water used


Calculate bill according to the user type
If (user_code = ‘D’) then 




bill = consumption * 1



else 




bill = consumption * 1.5



Display the result: the user_id and amount to be paid.

Input: user_id, consumption (amount of water used), user_code

Output: user_id, bill (amount to be paid)

Formula:  bill = price * consumption




Invalid input: Wrong user_code, lower case user_code.. 

 /* calculate the water bill for a customer */

#include <stdio.h>

#define DOMESTIC 1

#define INDUSTRIAL 1.5

int

main(void)

{


double bill, consumption;
/* define variables – bill, consumption */


char
user_code;

/* define input variable – user_code */


int
user_id;

/* define variable – user_id */

// Get a value for user_id, usercode and amount of water used.


printf("\nEnter the user-id: ");


scanf("%d", &user_id);


printf("\nEnter the user-code (D - domestic, I - industrial): ");


scanf(" %c", &user_code); 
/* blank or \n before %c */


printf("\nEnter the consumption: ");


scanf("%lf", &consumption);

// Calculate bill according to the user type


If ((user_code = ‘D’) | | (user_code = ‘d’))



bill = consumption * DOMESTIC;


else  if ((user_code = ‘I’) | | (user_code = ‘i’))



bill = consumption * INDUSTRAIL;


else




printf("You entered an invalid user code!\n”);

// Display the result: the user_id and amount to be paid.


if ((user_code == ‘D’) | | (user_code == ‘I’) | | (user_code = ‘d’) | | (user_code = ‘i’))


printf("User: %d Bill = %0.2f\n", user_id, bill);


return (0);

}

	Another Nested if Solution:
	If ((user_code = ‘D’) | | (user_code = ‘d’))



bill = consumption * DOMESTIC;


printf("User: %d Bill = %0.2f\n", user_id, bill);

else  if ((user_code = ‘I’) | | (user_code = ‘i’))

bill = consumption * INDUSTRAIL;


printf("User: %d Bill = %0.2f\n", user_id, bill);

else


printf("You entered an invalid user code!\n”);


Exercises:  Look at subjects and Examples on pages 179 -189 Exercises for section 4.7 on pages 189-190 from the textbook

4.6
The switch Statement (Chapter 4.8)
The switch statement may also be used in C to select one of the alternatives. The switch statement is especially useful when the selection is based on the value of a single variable or of a simple expression (called controlling expression) The value of this expression may be of type char or int, but not double. 

	The switch Statement

	Syntax: 
switch (controlling expression) {


label set1

statements1


break;


label set2

statements2


break;


.


.


.

label setn

statementsn


break;


default:


statementsd

}




The controlling expression, an expression with a value of type int or type char, is evaluated and compared to each case labels in the label sets until a match is found. A label set is made of one or more labels of the form case followed by a constant value and a colon. When a match between the value of the controlling expression and a case label value is found, the statements following the case label are executed until a break statement is encountered. Then the rest of the switch statement is skipped.

The statements following a case label may be one or more C statements, so you do not need to make multiple statements into a single compound statement using braces. If no case label value matches the controlling expression, the entire switch statement body is skipped unless it contains a default label if so, the statements following the default label are executed when no other case label value matches the controlling expression. The default part is optional.
Example 4.30: What will be printed by the following switch statement if the value of color is ‘R’?


switch (color) {


case ‘R’:


printf(“red\n”);


break;


case ‘B’:


printf(“blue\n”);


break;


case ‘Y’:


printf(“yellow\n”);


break;


default:


printf(“Wrong entry\n”);


}

Example 4.31 (Self-Check1 on page 195): What will be printed by this carelessly constructed switch statement print if the value of color is ‘R’?


switch (color) { 
/* break statements missing */


case ‘R’:


printf(“red\n”);


case ‘B’:


printf(“blue\n”);


case ‘Y’:


printf(“yellow\n”);


}

Solution: 
red



blue



yellow

Example 4.30: Write a C program to show the Ship Class of for the specified Class ID

	Class ID
	Ship Class

	B or b
	Battleship

	C or c
	Cruiser

	D or d
	Destroyer

	F or f
	Frigate



switch (class) {


case ‘B’:


case ‘b’:


printf(“Battleship\n”);


break;


case ‘C’:


case ‘c’:


printf(“Cruiser\n”);


break;


case ‘D’:


case ‘d’:


printf(“Destroyer\n”);


break;


case ‘F’:


case ‘f’:


printf(“Frigate\n”);


break;


default:


printf(“Unknown ship class %c\n”, class);

}

Example 4.30: Write a C program to solve water bill Example 4.29.

/* Calculate and output the bill according to user type
*/


switch (user_code)


{



case 'D':



case 'd':




bill = consumption * DOMESTIC;




printf("User: %d Bill = %0.2f\n", user_id, bill);




break;



case 'I':



case 'i':




bill = consumption * INDUSTRIAL;




printf("User: %d Bill = %0.2f\n", user_id, bill);




break;



default:




printf("You entered an invalid user code!\n”);


}

Comparison of Nested if Statements and the switch Statement: You can use nested if statement, which is more general to than switch statement to implement any multiple alternative decision. The switch as described in the syntax is more readable in many context and should be used whenever practical. Case labels that contain type double values or strings are not permitted.

You should use the switch label statements, when each label set contains a reasonable number of case labels (maximum of ten). However, if the number of values is large use a nested if statement.

You should include a default label in switch statements wherever possible. The discipline of trying to define a default will help you to consider what will happen if the value of your switch statement’s controlling expression falls outside your set of case label values.

Exercises:  Look at Exercises for section 4.8 on pages 195 -208 from the textbook

5
Repetition and Loop Statements (Chapter 5)

5.1
Repetition in Programs (Chapter 5.1)
Just as ability to make decisions is an important programming tool, so is the ability to specify repetitions of a group of operations. For example, a company that has seven employees will want to repeat the gross pay and net pay computations in its payroll program seven times, once for each employee. 

Writing out solution to a specific case of a problem can be helpful in preparing you to define an algorithm to solve the same problem in general. After you solve the sample case, ask yourself some of the following questions to determine whether loops will be required in the general algorithm:

1. Were there any steps I repeated as I solve the problem? If so, which one?

2. If the answer to the question 1 is yes, did I know in advance how many times to repeat the steps?

3. If your answer to question 2 is no, how did I know how long to keep repeating the steps?

Your answer the first question indicates whether your algorithm needs a loop and what steps in the loop body if it does need one.

Your answer to the other question will help you determine which loop structure to choose for your solution.

A loop is a group of instructions the computer executes repeatedly while some loop-continuation condition remains true. The loop body contains statements to be repeated.

Figure 11 diagrams the relationship between these questions and the type of loop you should choose.

Figure 11: Flow Diagram of Loop Choice Process

Table 20 defines each of the kinds of loops you may need and when to use the specified loops.

	Kind
	When Used
	C implementation Structure

	Counting Loop
	We can determine before loop execution exactly how many loop repetitions will be needed to solve the problem.


	while

for

	Sentinel-controlled Loop
	Input of a list of data of any length ended by a special value


	while, for

	Endfile- controlled Loop
	Input of a single list of data on any length form a data file


	while, for

	Input validation Loop
	Repeated interactive input of a data value until a value within of data until a value within the valid range is entered.


	do - while

	General conditional Loop
	Repeated processing of data until a desired condition is met.


	while, for


Table 20: Comparison of Loop Kinds

Exercises:  Look at Exercises for section 5.1 on page 212 from the textbook

5.2
Counting Loops and the for Statement (Chapter 5.2)
A counter-controlled loop or counting loop is a loop whose required number of iterations can be determined before loop execution. Since its repetition is managed by a loop control variable whose value represents a count. A counter-controlled loop follows the general format:

Set loop control variable to an initial value of 0.

While loop control variable < final value


…


Increase loop control variable by 1.

	Remark: . The control variable is updated (incremented or decremented) each time after the loop body (the group of instructions to be repeated) is executed.


Counter-controlled repetition requires:

· A loop control variable (loop counter).

· An initial value for the loop control variable.

· The updating expression by which the control variable is modified.

· The condition that tests for the final value of the control variable.

The for Statement: An important feature of for statement in C is that it supplies a designated place for 

· Initialization of the loop control or loop counter variable

· Test of the loop repetition condition, and

· Change (update) of the loop control variable.

	For Statement

	Syntax: 
for (initialization expression;


loop repetition condition;


update expressiın)


statement




First, the initialization expression is executed. Then the loop repetition condition is tested, if it is true, the statement executed and the update expression is evaluated. Then the loop repetition condition is tested. The statement is repeated as long as the loop repetition condition is true. When this condition is tested and found false, the for loop is exited, and the next program statement after the for statement is executed.

	Remark: Although C permits the use of fractional values for counting loop control variables of type double. Counting loops with type double control variables will not always execute the same number of times in different computers. Therefore, try to not to use loop control variable with type double.


Example 5.1: Write a C program to show given number of asterisks.

/* Display given number of asterisks */

#include <stdio.h>

int

main(void)

{


int 
N,


/* define input variables – N */


count_star;

/* define loop control variables – count_star */

// Get a value for N – number of asterisks.


printf("\nEnter the number of asterisks that you want to see: ");


scanf("%d", &N);

// Display N number for asterisks


for 
(count_star = 0;


/* initialization 

*/



count_star < N;


/* loop repetition condition
*/



count_star = count_star + 1)
/* update


*/



printf(‘*’);


return (0);

}

Flowchart of the above program is


For clarity, place each expression of the for heading on a separate line. If all three expressions are very short, place them on one line.

Example 5.2: Write a for loop display nonnegative numbers < max.

/* Display nonnegative numbers < max */


for 
(i = 0; i < max; i = i + 1)


printf (“%d\n”, i);

Increment and Decrement Operators: The counting loops should have assignment expression of the form;


counter = counter + 1;

or


counter + = 1;

The increment operator ++ takes a single variable as its operand. The side effect of applying the ++ operator is that the value of its operand is incremented by one. 

The value of the expression in which the ++ operator is used depends on the position of the operator. When the ++ is placed immediately in front of its operand (prefix increment), the value of the expression is the variable’s value after incrementing. When the ++ is placed immediately after the operand (postfix increment), the expression’s value is the value of the variable before it is incremented. Compare the action of the two code segments in Figure 12 given an initial value of 2 in i.





	
	
	
	i
	
	j
	

	Before…
	
	
	2
	
	?
	

	
	
	
	
	
	
	

	Increments…
	j = ++i;

prefix: increment i and the use it.
	
	
	
	j = i++;

postfix: use I and then increment it.

	
	
	
	
	
	
	

	After …
	i
	
	j
	
	i
	
	j

	
	3
	
	3
	
	3
	
	2


Figure 12: Comparison of Prefix and Postfix Increments

C also provides decrement operator that can be used in either the prefix or postfix position.

Example 5.3: Write a C program to compute factorial of an integer.

/* Computes n!
*/

#include <stdio.h>

int

main(void)

{


int
i, 

/* define loop control variable – i :counter */



N;

/* define input variable – N */


double
product;
/* accumulator for product computation */


product = 1;
/* state initial value for product */


// Get the number whose factorial will be found


printf("\nEnter the number of hat you want to take its factorial: ");


scanf("%d", &N);

// Computes the product n x (n-1) x … x 2 x 1 = n! */


for
(i = N; i >1; --i)



product = product * I;

// Display the result


printf(“\nFactorial of %d is %0.0f\n”, N, product);


return (0);

}

	Remark: In the Example 5.3, product is declared as double, because the factorial of even a small number is very large, and exceeds the integer range. 


Example 5.4: Trace the following program segment for n = 5, n = 6, n = 0 and n = - 2. State what does the for loop do?

scanf ("%d", &n);

for (k = 0; k <= n; k = k + 2)


printf ("%d\n", k);

	Solution:
	Value of n
	Output Values

	
	5
	0, 2, 4

	
	6
	0, 2, 4, 6

	
	0
	0

	
	-2
	Condition is false. Therefore, do not enter the loop. No output


This program segment shows the even numbers from 0 to the specified number and the 
[image: image26.wmf]1

2

+

n

 times repeated.
Example 5.5: Trace the following program segment for n = 5, n = 0 and n = -2.

scanf ("%d", &n);

for (k = 0; k <= n; k = k - 2)


printf ("%d\n", k);

	Solution:
	Value of n
	Output Values

	
	5
	Since the loop counter k is decremented, it will never become 5. Thus the loop becomes infinite loop.

	
	0
	0

	
	-2
	Condition is false. Therefore, do not enter the loop. No output


Changing the value of a loop control variable within the body of for loop is a very important mistake.

Example 5.6: Trace the following program segment.



j = 0;


for
( i = 1; i <=5; i++)


{



printf(“%d %d”, i, j);



j - = 2;


}


Example 5.7: Trace the following program segment.


for
( k =12; k >= 0; k -= 3)



switch (k % 4)




{





case 0:






printf(“%d\n”, k);





case 2:






printf(“%d\n”, k * 2);






break;





case 1:






printf(“%d\n”, k * 3);





default:






printf(“%d\n”, k * 4);




}


Example 5.8: Write a program to read the overall grades of given number of students in a class and display their letter grades. 

	Letter
	Grade Range

	A
	
[image: image27.wmf]Grade

£

90



	B
	
[image: image28.wmf]90

80

<

£

Grade



	C
	
[image: image29.wmf]80

70

<

£

Grade



	D
	
[image: image30.wmf]70

60

<

£

Grade



	F
	
[image: image31.wmf]60

<

Grade




/* Display the letter of given number of student in a class. */

#include <stdio.h>

int

main(void)

{


double
grade;
/* define input variable  - grade */


int
std,
/* define loop counter variable  - std */



std_num;
/* define input variable  - std_num */

// Get the number of student in the class


printf(“\nEnter the number of student: ”);


scanf(“%d”, &stud_num);

// Get the overall grade of students


for 
(std = 0;  std < stud_num; std++)


{
printf(“\nEnter the overall grade of the student: ”);



scanf(“%lf”, &grade);

// Display the corresponding letter grade


if (grade >= 90)



prinf(“\nThe letter of the student is A\n”);


else if (grade >= 80)



prinf(“\nThe letter of the student is B\n”);


else if (grade >= 70)



prinf(“\nThe letter of the student is C\n”);


else if (grade >= 60)



prinf(“\nThe letter of the student is D\n”);


else



prinf(“\nThe letter of the student is F\n”);


}


return (0);

}

The for loop is used very often to solve mathematical equations iteratively.

Example 5.9: Write a program to calculate the result of following equation for given n.

sum =1+ 2+ … +n

/* Display the summation of n number */

#include <stdio.h>

int

main(void)

{


int
n,
/* define input variable – n */



i, 
/* define input loop counter variable – i */



sum;
/* define output variable – sum */

// Get the number to sum


printf(“\nEnter n: ”);


scanf(“%d”, &n);

// Calculate the sum of n numbers


sum = 0;


for
(i = 0; i <= n; i++)



sum = sum + i;

// Display the result


printf(“\nThe sum of %d numbers is: %d\n”, n, sum);


return (0);

}

Example 5.10: Write a program to find and output the sum of all integers from n to m?

/* Display the summation of integers in the given region*/

#include <stdio.h>

int

main(void)

{


int
first_num,
/* define input variable – first_num */



last_num,
/* define input variable – last_num */



i, 
/* define input loop counter variable – i */



sum;
/* define output variable – sum */

// Get the number to sum


printf(“\nEnter the first and last number to sum: ”);


scanf(“%d %d”, &first_num, &last_num);

// Calculate the sum of n numbers


sum = 0;


for
(i = first_num; i <= last_num; i++)



sum = sum + i;

// Display the result


printf(“\nThe sum of numbers between %d and %d is: %d\n”, first_num, last_num, 

sum);


return (0);

}

Example 5.11: Write a program to find and output the sum of all even integers from 2 to n?

/* Display the summation of integers in the given region*/

#include <stdio.h>

int

main(void)

{


int
n,
/* define input variable – n */



i, 
/* define input loop counter variable – i */



sum;
/* define output variable – sum */

// Get the number to sum


printf(“\nEnter the number: ”);


scanf(“%d”, &n);

// Calculate the sum of n numbers


sum = 0;


for
(i = 2; i <= n; i +2= i)



sum = sum + i;

// Display the result


printf(“\nThe sum of even integers between 2 and %d is: %d\n”, n, sum);


return (0);

}

Example 5.12: Trace the solution of Example 5.11 for n = 10.

Solution: The sum of the even integers between 2 and 10 is: 22.

Example 5.13: Write a program to find 2n, for a given non-negative n value

/* Display 2n, for a given non-negative n value */ 

#include <stdio.h>

int

main(viod)

{


int
n,
/* define input variable – n */



i,
/* define loop counter – i */



power;
/* define output variable – power */

// Get value for n


printf(“\nEnter the value for power of 2: ”);


scanf(“%d”, &n);

//Find the Power of 2.


power = 1;


for
(i =1; i <=n; i++);



power = 2 * power;

// Display the result.


printf(“\n 2 to the power %d is %d: ”, n, power);


return (0);

}

Self Check: Write a program to find 2n, for a given integers (both for positive and negative) n value. Hint: 2-n = 1/ 2n.

1st solution:

/* Find 2n, for a given integers (both for positive and negative) n value. */

#include <stdio.h>

int

main(void)

{


int
n,
/* define input variable – n */



i;
/* define loop counter – i */


double
power;
/* define output variable – power */

// Get value for n


printf(“\nEnter the value for power of 2: ”);


scanf(“%d”, &n);


power = 1;

// Check if power is positive or not.


if 
(n > 0)


//Find the positive power of.


for
(i =1; i <=n; i++);



power = 2 * power;

else if


//Find the negative power of.


for
(i =1; i >=n; i--);




power = power / 2;

// Display the result.


printf(“\n 2 to the power %d is %d: ”, n, power);


return (0);

}

2nd solution:

/* Find 2n, for a given integers (both for positive and negative) n value. */

#include <stdio.h>

int

main(void)

{


int
n,
/* define input variable – n */



i;
/* define loop counter – i */


double
power;
/* define output variable – power */

// Get value for n


printf(“\nEnter the value for power of 2: ”);


scanf(“%d”, &n);


power = 1;

// Find the power of 2

for
(i =1; i <=abs(n); i++);



power = 2 * power;

// Display the result


if 
(n >= 0)



printf( “2 to the power %d is %0.0f\n”, n, power);


else



printf( “2 to the power %d is %0.0f\n”, n, 1/power);


return (0);

}

Example 5.14: Write a program to find average of 10 given integers.

/* Find the average of given 10 integers */

#include <stdio.h>

int

main(void)

{


int
numbers,
/* define input variable – numbers */ 



i, 

/* define loop counter variable – i */



sum = 0; 
/* define variable – sum */


double
avg; 

/* define output variable – avg */

// Get input 10 numbers


for 
(i = 1; i <= 10; i++)


{



printf(“\nEnter an integer: ”);



scanf(“%d”, numbers);





sum += numbers;

/* sum = sum +numbers


}

// Find and display the average


avg = sum / 10.0; 


printf(“Average of the entered 10 number is %f\n”, avg);


return (0);

}

Example 5.15: Write a program to input section number and quiz grades of the students in a course with three sections and to output the average of each section.

	Pseudo code:
	Initialize the number of students in each section to 0

Initialize the sum of the quiz grades in each section to 0

Get the number of students

Repeat for each student 


Get section number and quiz grade of one student


If he/she is in section 1



Increment the number of students in section 1



Add his/her quiz grade to the sum of section 1


Else, if he/she is in section 2



Increment the number of students in section 2


Add his/her quiz grade to the sum of section 2


Else, if he/she is in section 3



Increment the number of students in section 3



Add his/her quiz grade to the sum of section 3


Calculate and Display the average of each section.


Input: 
number of students (std_num)


section of students (section)


quiz grades (quiz)

Output: average of each section

Additional Variables:
counter for students (std)



number of students in each section (count1, count2, count3)




sum of the grades in each section (sum1, sum2, sum3)
/* This program inputs section number and quiz grades of the students in a course with three sections and outputs the average of each section. */

#include <stdio.h>

int

main(void)

{


int
std_num,


/* (input) number of students
*/



section, 


/* (input) section of students
*/



count1 , count2, count3,
/* number of stu in each section
*/



std;



/* counter for students
*/


double
quiz,


/* (input) quiz grade
*/



sum1, sum2, sum3;
/* sum of quiz grades in each sec
*/

// Initialize the number of students in each section to 0


count1 = 0; count2 = 0; count3 = 0;

// Initialize the sum of the quiz grades in each section to 0


sum1 = 0.0; sum2 = 0.0; sum3 = 0.0;

// Get the number of students


printf ("\nEnter the number of students: ");


scanf ("%d", &std_num);

 // Repeat for each student


for
(std = 1; std <= std_num; std++)


{



// Get section number and quiz grade of one student */



printf(“\nEnter section and quiz grade of student %d: “, std);



scanf(“%d %lf”, &section, &quiz);



switch (section) {




case 1: 


/* If he/she is in section 1 */





count1++;





sum1 += quiz;





break;




case 2:



 /* If he/she is in section 2 */





count2++;





sum2 += quiz;





break;




case 3:



 /* If he/she is in section 3 */





count3++;





sum3 += quiz;





break;



}  




/* switch


} 





/* for

// Calculate and display the average of each section


printf(“Average of section 1: %5.2f\n”, sum1 / count1);


printf(“Average of section 2: %5.2f\n”, sum2 / count2);


printf(“Average of section 3: %5.2f\n”, sum3 / count3);


return (0);

}

Example 5.16: Write a program segment for Example 5.15 also to state the overall average.

printf(“Overall Average: %5.2f\n”, (sum1 + sum2 + sum3) / std_num); /* add before return.

Self Check:  Change the Example 1.15 as the number of section is an input.




Thing that we cannot touch





physical part of computer





Output





Input





Algorithm For A Programming Problem





Correspondence


Validation





Correctness


Verification








System





Implementation Statements





Problem Statement





Need





End





number, square





square = number x number





number





Start





function arguments





print list





After assignment





Before assignment





4.53592





*





4.53592





10.00





0.453592





kilograms





pounds





KG_PER_POUND





?





10.00





0.453592





kilograms





pounds





KG_PER_POUND





format string





function name





The blank line appears because the newline character terminates the first format string begins the second.





30.5





30.5





miles





number entered





letters entered





letter_1





Bob





B





*





letter_2





o





letter_3





b





*





1





2





area





v





/





1a





3





-





2a





-













































































�









































































































































function name





argument





function call





To find the square root of x, we should include math.h header file. And then call the function.





May be a constant value, variable, an arithmetic expression or even another function call.





The arguments for sin, cos and tan must be expressed in radians, not in degrees. Therefore, we should convert degree to radian.





If we consider num1 and num2 as constant: we can write:





#define num1 10


#define num2 7





-





1.0





>=





6.0





| |





!





+





1





1





1





condition








StatementT








StatementF








“You cannot enter!”





F





condition





F





T





T





  (a)





(b)





Start





age





age <18





End








StatementT





true





false





Start





age





age <18








“You cannot enter!”





End





true





false








“Wellcome!”





“Welcome! You should pay 10$”





false





true





“Welcome! You can enter without paying!”





gender == ‘F’ < 18





gender





false





true





End





age





Start





age < 18





“You can not enter!”








depends on user code


(1 if user_code == 'D', 1.5 if user_code == 'I')








No





Use one of the conditional loops:


Sentinel-controlled


Endfile-controled


Input validation


General conditional





No





No loop required





Use a counting loop





Yes





Yes





Know in advance how many times to repeat?





Any steps repeated?





true





i = i + 1





i = 1





*





false





i < N





0


– 2


– 4


– 6


– 8





12


24


27


36


12


12


0


0





 


printf(“Average is %f\n”, sum / 10.0);





















































37
94
CTIS 151 – Introduction to Programming Lecture Notes

by Duygu ALBAYRAK

_1248856034.unknown

_1249027447.unknown

_1249201893.unknown

_1249332986.unknown

_1249366796.unknown

_1252153353.unknown

_1249332987.unknown

_1249201905.unknown

_1249201858.unknown

_1249201866.unknown

_1249201881.unknown

_1249027485.unknown

_1248958976.unknown

_1249027397.unknown

_1249027408.unknown

_1248959331.unknown

_1248856193.unknown

_1248856311.unknown

_1248856061.unknown

_1248848325.unknown

_1248855678.unknown

_1248855789.unknown

_1248855584.unknown

_1248847993.unknown

_1248848276.unknown

_1248845594.unknown

