PAGE
128

Learning Python

[image: image70.bmp]
Student Course Workbook

March, 2005

HTML Workbook Version 2.4.1

Copyright © Mark Lutz, 1997—2005

Contents

The paper workbook handouts (if provided) are essentially the same as the electronic HTML version of the workbook on the CD. The paper workbook is simply a printed version of the HTML workbook on CD, but with minor formatting changes and some optional-reading items deleted to save space. However, the HTML workbook also contains active hyperlinks to sections and related information. In addition, the HTML workbook allows examples to be cut-and-paste into a text editor or the Python command-line (some example code is not in the CD's Examples directory). Therefore, the paper workbook is generally used only for taking notes; students are encouraged to follow along by viewing the HTML workbook in a web browser.

1Contents

2Preface

61. General Python Introduction

242. Using the interpreter

343. Types and operators

624. Basic Statements

815. Functions

996. Modules

1147. Classes

1418. Exceptions

1519. Built-in Tools Overview

16010. System interfaces

17111. GUI programming

19212. Databases and persistence

20113. Text processing

20614. Internet scripting

23315. Extending Python in C/C++

25316. Embedding Python in C/C++

27317. Resources

288Laboratory exercises

309Selected exercise solutions

Preface

About this class

[image: image2.png]
This 2 or 3-day class introduces students to the Python programming language, and common Python applications. Through lectures and hands-on laboratory work, students learn the basics of Python programming. We’ll cover the Python language, study C/C++ integration topics, and introduce common Python application domains such as GUIs, databases, web sites, and system tools.
This class presents Python in a bottom-up fashion – we start with small details and build to larger and larger examples as we move along. This class is also designed to provide an in-depth look at Python itself, and a general and broad survey of Python applications – although we will study some advanced Python application domains, we won’t have time to do full justice to most. Specialized domains (e.g., Tkinter GUIs, numeric programming, Internet scripting) can be more thoroughly covered in follow-up books and classes.

There are no real prerequisites for most of this course, though the last two modules on C integration will be more meaningful if you have basic C programming skills. Any prior programming or scripting experience applies, no matter how minor. For more details about this course, see my training webpage.

About the program examples

[image: image3.png]
The examples in this course are based on Python versions 2.4 and later (at this writing). We will look at some cutting edge new features of Python along the way; but since later releases are generally backward compatible with earlier ones, most of the material here should apply earlier Python releases as well.

Source code for all the lecture examples and laboratory exercises is available on this CD. You may also cut and paste code from these web pages, and at the end of unit web pages you will find links to source-code file directories on this CD-ROM for exercise solutions and lecture examples. In fact, if you are using this HTML form of the workbook, you don’t need the hardcopy paper workbook at all; it’s all in this package. Simply follow the links in the table of contents page.

Suggested supplemental books

[image: image4.png]

Because this class workbook is a self-contained document, there are no additional required texts for this class. However, students may wish to obtain related books to serve as supplemental resources. Here are some suggestions:
Directly related books

The core language sections of this class parallel the book Learning Python 2nd Edition, and the more advanced applications-level material in this class parallel the book Programming Python 2nd Edition, both published by O’Reilly & Associates. The first of these two is largely based upon the main portion of this class. The latter book is an advanced continuation of the former, and will likely be available in a 3rd Edition by Fall 2005.
Some clients may wish to provide students with copies of either or both of these texts for use after the class, depending upon student interest and skill levels. If you need to obtain copies of these books, they can be purchased from most large or technical bookstores, directly from O’Reilly (see URL http://www.oreilly.com/), or through the Python web site (http://www.python.org/) or amazon.com.

Recommended books

Though not required for this class, O’Reilly’s Python Pocket Reference 3rd Edition is also suggested as a reference supplement that will prove handy after the class. I also recommend the text Python Essential Reference 2nd Edition by David Beazley, as well as Python in a Nutshell and Python Cookbook from O’Reilly, as supplemental reference books. In addition, there are now some 50 Python books on the market that may be of interest as well, depending upon your Python applications; see the (slightly dates) books list in the Packages and Resources lecture page for a list.
About the instructor

Mark Lutz is the world leader in Python training, the author of Python's earliest and best-selling texts, and a pioneering figure in the Python community.

Mark is the author of the O'Reilly books Programming Python and Python Pocket Reference, and co-author of Learning Python, all currently in 2nd or 3rd Editions. He has been involved with Python since 1992, began teaching Python classes in 1997, and has instructed over 125 Python training sessions as of early 2005.

In addition, he holds BS and MS degrees in computer science from the University of Wisconsin, and over the last two decades has worked on compilers, programming tools, scripting applications, and assorted client/server systems.

Whenever Mark gets a break from spreading the Python word, he leads an ordinary, average life in Colorado. Mark can be reached by email at lutz@rmi.net, or on the web at http://www.rmi.net/~lutz.
Daily schedule

Each class proceeds at a slightly different rate, and our schedule is going to vary each day. Typically, there will four to six lectures sessions per day, with laboratory work time after each, and an hour for lunch. The exact session schedule depends on student needs and interests, and on how much interaction students desire; questions and comments at any time are encouraged.

Also note that we never cover all the material in this workbook in a 3-day class. In general, the workbook contains a superset of topics to be presented, and some of its examples are included for student self-study only. Material skipped is either of minor importance, or optional reading. We may also sometimes depart from the workbook to explore special topics of interest to students. This is your class – please ask about topics not listed above.
Course topics

Introducing Python
General Python introduction [Day 1?]

Python Basics

Using the interpreter

Types and operators

Basic statements

Functions [Day 2?]

Modules

Classes

Exceptions

Built-in tools

Python Applications

System interfaces [Day 3?]

GUI programming

Databases and persistence

Text processing

Internet scripting

Extending Python in C/C++

Embedding Python in C/C++

Where to go from here?

Python resources

1. General Python Introduction

Topics

· So what’s Python?

· Why do peope use Python?

· A Python’s history lesson

· Advocacy news

· What’s Python good for?

· What’s Python not good for?

· Python technical features

· Python portability

So What’s Python?

“An open source, object-oriented, scripting language”

· An “open source” software project

· A BDFL, plus a cast of thousands

· You are not held hostage by a vendor (VB!)

· An “object-oriented” language

· OOP is an option, but a nice one

· Supports code reuse

· A “scripting” language

· But not just for shell tools—general purpose

· Control language: C libs, Com, .NET, Java

· Easy to use: 3x ~ 4x less code than Java, C++

Plus…

· General purpose
· Tactical or strategic
· Stand alone or embedded
· Very high-level, dynamic
Why Do People Use Python?

Software Quality

· Readable syntax: maintainable
· Coherent design, fewer interactions
· Simple enough to remember
Developer Productivity

· Smaller programs, flexible code (“agile”)
· Rapid turnaround, code reuse
· Tactical and strategic roles
· Good in boom and bust times
And other reasons…

· Program portability
· Component integration
· Vast application libraries
· Open source
Some Quotable Quotes

· “Python looks like it was designed, not accumulated.”

· “It bridges the gap between scripting languages and C.”

· “It’s as easy or as powerful as you want it to be.”

· “Python: less filling, tastes great. :-)”

· “Python fits your brain.”

A more formal definition?

Seen on comp.lang.python…

“python, (Gr. Myth. An enormous serpent that lurked in the cave of Mount Parnassus and was slain by Apollo) 1. any of a genus of large, non-poisonous snakes of Asia, Africa and Australia that crush their prey to death. 2. popularly, any large snake that crushes its prey. 3. totally awesome, bitchin’ language invented by that rad computer geek Guido van Rossum that will someday crush the $'s out of certain *other* so-called VHLLs ;-)”

A Python History Lesson

· Created by Guido van Rossum in Amsterdam, 1990

[image: image5.png]
· USENET newsgroup started in 1994

· comp.lang.python, www.python.org
· 3rd party add-ons: Vaults of Parnassus, PyPI
[image: image6.png]
· Python Software Foundation (PSF): O’Reilly, ActiveState, Zope

[image: image7.png]
· First Python books appeared Fall, 1996, over 50 available by 2003

[image: image8.png]
· International following: US, Europe, Asia, Australia

[image: image9.png]
· Community: 750K to 1M users worldwide (guesstimate), user groups, two annual US conferences (PyCon, OSCON), European conferences (EuroPy, PythonUK)

[image: image10.png]
· Named after 70s BBC comedy group “Monty Python's Flying Circus”

[image: image11.png]
Advocacy News

Noteworthy users

Animation: Industrial Light & Magic, ImageWorks, Disney

Web services: Google, Yahoo
Hardware Testing: Intel, Hewlett-Packard, Seagate

Numerics: National Weather Service, Los Alamos, NASA

P2P downloads: BitTorrent (32M DLs, 1/3 of all inet traffic!)

Other: Red Hat, Origin, Zope & Plone, Jet Propulsion Labs

Domains

IronPython for .NET/Mono (Msoft),

Windows COM
Jython Java port

Zope & Plone web site frameworks

Mac OS X Cocoa integration

Sun’s Coyote project?

Cellphone ports

Compilers

IronPython (Microsoft), Python.net for C#/“.NET”

Jython for Java

Standard C-Python

PyPy & Psyco

Parrot
Group therapy

Python user groups: Oregon, Bay Area, DC, Colorado, Italy, England, Korea,…

Books

Over 50 Python books available, 40+ English language, a dozen non-English books, more on the way (see Resources)

Press

O’Reilly’s Python Success Stories; Pythonology users list; Guido on the cover of Linux Journal, Dr. Dobbs Journal, in Washington Post

Education

Guido’s Computer Programming For Everybody (CP4E), edu-sig, tutors list

Services

Commercial support, training; pre-packaged distributions; standard on Linux and Mac OS X

Jobs

Python job board; hundreds of hits on monster and dice

Other

30% increase in python.org traffic for year ended March ‘05

PyCon conference attendence increase: 400-500 ’05 vs 200-300 ‘04

Jolt productivity award given to Python 2.4 in early ‘05

InfoWorld: 6% gain in popularity ’05 (14% use rate ‘05 vs 8% ’04)

Google open source site, Python projects

What’s Python Good For?

General purpose:

 => Almost anything computers can do

· System programming: shell tools, test scripts
sockets, regex, POSIX calls, threads, streams

· Graphical user interfaces

Tk, wxPython, Qt, Gtk, MFC, X11, Swing (Jython)

· Internet scripting

CGI, email, FTP, Telnet, Jython applets, XML-RPC, SOAP, ActiveScripting, mod_Python (Apache)

· Database programming
Persistent objecs, ZODB, Oracle, Informix, Sybase, MySQL,…

· Component integration

Product customization and testing, embedded scripting, system front-ends

· Rapid Application Development

Prototype-and-migrate, fast turnaround, deliverable prototypes

· And more specific domains: general purpose

COM (win32all), Numeric programming (NumPy), Gaming (PyGame), graphics (OpenGL, Blender), AI, CORBA,...

What’s Python Not Good For?

· Fast enough for most tasks as is

· Most real tasks run linked-in C code

· Exception truly speed-critical components

· Solution: implement in C and export to Python

· Python is optimized for speed-of-development

· Python is designed for multi-language systems

· Example: Python Numeric Programming

· Psyco JIT may improve the speed story

[image: image1.png]

Python Technical Features

· No compile or link steps

Rapid development-cycle turnaround

· No type declarations

Programs are simpler, shorter, and flexible

· Automatic memory management

Garbage collection avoids bookkeeping code

· High-level datatypes and operations

Fast development using built-in object types

· Object-oriented programming

Code structuring and reuse, C++ integration

· Extending and embedding in C

Optimization, customization, system ‘glue’

· Classes, modules, exceptions

Modular ‘programming-in-the-large’ support

· A simple, clear syntax and design

Readability, maintainability, ease of learning

· Dynamic loading of C modules

Simplified extensions, smaller binary files

· Dynamic reloading of Python modules

Programs can be modified without stopping

· Universal ‘first-class’ object model

Fewer restrictions and special-case rules

· Interactive, dynamic nature

Incremental testing, runtime program coding/construction

· Access to interpreter information

Metaprogramming, introspective objects

· Wide interpreter portability

Cross-platform systems without ports

· Compilation to portable byte-code

Execution speed, protecting source-code

· Built-in interfaces to external services

O/S, GUI, persistence, DBMS, regular expressions...

· True ‘freeware’: Open Source software

May be embedded/shipped without copyright restrictions

Python Portability

· Core Language + Standard Library

· Unix, Linux, Windows, Macs

· Cray supers, IBM mainframes, VxWorks realtime

· PDAs: PalmOS, PocketPC, Zaurus

· OS/2, VMS, Next, BeOS, QNX, Itanium

· Amiga, AtariST

· PlayStation, XBox, Gamecube

· Nokia Series 60 cellphones

· …

· Platform-specific Extensions

· COM (Windows—win32all extension)

· General Portability

· Bytecode is platform-neutral

· Tkinter GUI library: X (Unix), Windows, Macs

· Standard library system calls (module “os”)

On Apples and Oranges

	Versus
	Python advantage
	Description

	Tcl
	Power
	Python better at “programming in the large”: module, OOP, exceptions, etc.

	Perl
	Coherence
	Python has a readable, maintainable syntax, fewer special variables, etc.

	Java
	Simplicity Turnaround
	Built-in objects, dynamic typing, etc.; can be freely shipped with products.

	C++
	Simplicity Turnaround
	Interpreted language turnaround; avoids C++ language complexity.

	Smalltalk
	Conventional
	In Python, “if” statements are not message-receiver objects.

	Scheme, Lisp
	Conventional
	Python’s syntax is closer to traditional languages like C and Pascal.

	Visual Basic
	Power, Portability
	Python is powerful, cross-platform, and not controlled by one company (Python cannot be discontinued!)

· But your mileage may vary

· Different language design goals

· Programmers matter too

· Many languages are a Good Thing

· Python coding may be too easy: design and brains still matter

[image: image12.png]
Summary: Why Python?

· It’s object-oriented

· Powerful OO support

· But OO is an option

· It’s free

· Can freely embed and ship in products

· Can even sell the source-code!

· It’s portable

· Runs everywhere: Unix, Windows, Mac,…

· Portable byte-code, portable Tkinter GUI interface

· It’s powerful

· Built-in types and operations

· Dynamic typing, libraries, modules, garbage collection, …

· It’s mixable

· Python/C, Python/C++, Python/Java, COM

· It’s easy to use

· Fast turnaround after changes

· A simple language and syntax
· It’s easy to learn

· For developers and product customers

=> Quality and Productivity
A scripting language doesn't have to look like one

A morality tale of Perl versus Python

(The following was posted recently to the rec.humor.funny USENET newsgroup, by Larry Hastings, and is reprinted here with the original author’s permission. I don’t necessarily condone language wars.)

This has been percolating in the back of my mind for a while. It's a scene from The Empire Strikes Back, reinterpreted to serve a valuable moral lesson for aspiring programmers.

EXTERIOR: DAGOBAH--DAY

With Yoda strapped to his back, Luke climbs up one of the many thick vines that grow in the swamp until he reaches the Dagobah statistics lab. Panting heavily, he continues his exercises--grepping, installing new packages, logging in as root, and writing replacements for two-year-old shell scripts in Python.

YODA:
Code! Yes. A programmer's strength flows from code

maintainability. But beware of Perl. Terse syntax... more

than one way to do it... default variables. The dark side of

code maintainability are they. Easily they flow, quick to join

you when code you write. If once you start down the dark

path, forever will it dominate your destiny, consume you

it will.

LUKE:
Is Perl better than Python?

YODA:
No... no... no. Quicker, easier, more seductive.

LUKE:
But how will I know why Python is better than Perl?

YODA:
You will know. When your code you try to read six

months from now.

2. Using the interpreter

Topics

· How Python runs programs

· How you run programs

· Example program launches

· Python configuration details

· A first look at module files

· The IDLE interface

· Other Python IDEs

How Python runs programs

· Execution Model

· A “script”: text file of statements, “mod.py”

· Mod.py (sourcecode) =>

Mod.pyc (bytecode) =>

Python Virtual Machine

 SHAPE * MERGEFORMAT

Execution Variations

· Psyco: a just-in-time compiler for Python bytecode

· Frozen binary packaging options: Py2Exe, Installer, Freeze (Vaults)

4 Implementations Today

· C Python:
the standard

· Jython:

for scripting Java

· IronPython:
for scripting C#/.Net

· Python.net:
for scripting C#/.Net (ActiveState?)

How you run programs

· Program architecture

· Program = multiple .py text files

· One is the “main” top-level file: launch to run

· Others are “modules”: libraries of tools

Some modules come from the “standard library”

· Modules accessed and linked by imports: “import module”

Import = find it, compile it (maybe), run it (once)

· Attributes fetched from objects: “module.attr”

· Variables inside objects

 SHAPE * MERGEFORMAT

b.py

def f():

 ...

a.py

import b

b.f()

· Program launch options

· Interactive coding (“>>>”)

· Shell/DOS command lines

· Double-click icons (raw_input trick)

· IDLE: a free IDE (Windows Start button, Runscript)

· Module imports, reloads

· Embedding calls

· Unix executable scripts (#!)

· Other IDEs: Komodo, PythonWare,…

Example program launches

· UNIX-style scripts

file: brian

#!/usr/local/bin/python #or: /bin/env python

print 'The Bright Side of Life...' # another comment

% brian

· Command lines, module files

% python spam.py -i eggs -o bacon

· Interactive command line

% python

>>> print 'Hello world!'

Hello world!

>>> lumberjack = "okay" # ctrl-D or ctrl-Z to exit

· Embedded code/objects (day 3)

Py_Initialize();

PyRun_SimpleString("x = brave + sir + robin");

· Platform-specific startup methods

· Command-line interfaces

· GUI start-up interfaces: .pyw files

Configuration details

· Module search path, for importing from other directories (only!)

· PYTHONPATH shell/environment variable

· “.pth” configuration files: C:\Python24\mypath.pth

· sys.path builtin list changes , but temporary

· Module search path = [main file’s home directory + PYTHONPATH + standard libraries + .pth file contents]

· Only add user-defined directories to search path (e.g. PYTHONPATH), not home directory or standard libs

· Other settings

· Interactive startup file:
PYTHONSTARTUP

· GUI variables (not on Windows): TCL_LIBRARY, TK_LIBRARY

· System search path, to find python: PATH

Installation details

· Python comes in binary or C source-code forms

· Windows self-installer: simple double-click, includes Tk

· Linux, Mac OS X: Python is a standard component

· C source code configures/builds automatically

· See Python source distribution “Readme” for install details

A UNIX config file (~/.cshrc or ~/.login)

#!/bin/csh

set path = (/usr/local/bin $path)

setenv PYTHONPATH /usr/home/pycode/utilities

setenv PYTHONPATH /usr/lib/pycode/package1:$PYTHONPATH

A Windows config file (C:\autoexec.bat)

· Reboot after autoexec.bat changes

· Use the ControlPanel/System/Advanced GUI to set this in recent versions of Windows (and restart Python)

· “cd C:\Python24”, if you don’t want to set your PATH

doskey /insert

PATH %PATH%;C:\Python24

set PYTHONPATH=C:\pycode\utilities

set PYTHONPATH=D:\pycode\package1;%PYTHONPATH%

A path file (C:\Python24\mypath.pth)

c:\pycode\utilities

d:\pycode\package1

A GUI test session

· Type this to test your Python/GUI configuration

· On Linux, Mac OS X: may need extra packages (CD)

% python

>>> from Tkinter import *

>>> w = Button(text="Hello", command='exit')

>>> w.pack()

>>> w.mainloop() # don’t type this line in IDLE!

[image: image15.png]
Module files: a first look

· To avoid retyping code interactively

· ‘.py’ filename suffix needed if imported

· Import and use names at top-level of module file

· “dir(module)” lists a module’s attributes

· “help(module)” gives help

· “reload(module)” reruns an already-loaded file’s code again; import won’t!

file myfile.py

name = "The Meaning of Life"

% python (Start Python
>>> import myfile (Load module file
>>> print myfile.name (Use its names
The Meaning of Life

% python (Start Python
>>> from myfile import name (Load names
>>> print name (Use name directly
The Meaning of Life

The IDLE interface (new in 1.5.2)

· A simple integrated development environment

· Shipped and installed as part of the Python package

· Editor, syntax coloring, debugging, class browser, etc.

· Alternative to shell command line + editor, or clicking

· Written in Python, using the Tkinter GUI API

· See Python “Tools” directory, or Windows “Start” button entry

· Requires Python 1.5.2 or later, Tk 8.0 or later

· HINT: Alt-P/Alt-N scroll through command history

[image: image16.jpg]
[image: image17.jpg]
Other Python IDEs

· IDLE: ships with Python

· ActiveState: Komodo, VisualPython, PythonWin (http://www.activestate.com/)

· PythonWare: Pythonworks (still active?) (http://www.pythonware.com/)

· Others: WingIDE, eclipse,… (http://www.python.org/ editors page)

· Basic: text editor (Notepad, vi) + command-line window (DOS, xterm)

· Komodo and PythonWare include interactive GUI builders, generate Tkinter code
· Other GUI builders for wxPython, PyQt: BoaConstructor, BlackAdder
Time to start coding

· Lab exercises are at the end of your handbook
· Source code for lecture examples and lab solutions on disk

· Some solution write-ups appear after the labs section
· You are encouraged to "cheat": see solutions

· Ask the instructor for hints, tips, and help

Lab Session 1

3. Types and operators

Preview: built-in objects

	Object type
	Example constants/usage

	Numbers
	3.14, 1234, 999L, 3+4j, decimal

	Strings
	'spam', "guido's"

	Lists
	[1, [2, 'three'], 4]

	Dictionaries
	{'food':'spam', 'taste':'yum'}

	Tuples
	(1,'spam', 4, 'U')

	Files
	text = open('eggs', 'r').read()

The ‘big picture’

Python program structure

· Programs are composed of modules

· Modules contain statements

· Statements contain expressions

· Expressions create and process objects
Why use built-in types?

· Python provides objects and supports extensions

· Built-in objects make simple programs easy to write

· Built-in objects are components of extensions

· Often more efficient than custom data structures

Numbers

Standard types and operators

· Integer, floating-point, hex/octal constants

· ‘long’ integer type with unlimited precision

· Built-in mathematical functions: ‘pow’, ‘abs’

· Utility modules: ‘random’, ‘math’

· Complex numbers, ‘**’ power operator

Numeric Python (NumPy)

· An optional extension

· For advanced numeric programming

· Matrix object, interfaces to numeric libraries, etc.

Numeric constants

	Constant
	Interpretation

	1234, -24
	normal integers (C longs)

	99999999L
	long integers (unlimited size)

	1.23, 3.14e-10
	floating-point (C doubles)

	0177, 0x9ff
	octal and hex constants

	3+4j, 3.0+4.0j
	complex number constants

	Decimal('0.11')
	fixed-precision decimal (2.4)

Python expressions

· Usual algebraic operators: ‘+’ , ‘-’, ‘*’, ‘/’, . . .

· C’s bitwise operators: “<<”, “&”, . . .

· Mixed types: converted up just as in C

· Parenthesis group sub-expressions

Numbers in action

· Variables created when assigned

· Variables replaced with their value when used

· Variables must be assigned before used

· Expression results echoed back

· Mixed integer/float: casts up to float

· Integer division truncates (until 3.0?)

% python

>>> a = 3 # name created

>>> b = 4

>>> b / 2 + a # same as ((4 / 2) + 3)

5

>>> b / (2.0 + a) # same as (4 / (2.0 + 3))

0.8

· Hint: use print if you don’t want all the precision:

>>> 4 / 5.0

0.80000000000000004

>>> print 4 / 5.0

0.8

The dynamic typing interlude

· Names versus objects

· Names are always “references” to objects

· Names created when first assigned (or so)

· Objects have type, names do not

· Each value is a distinct object (normally)

· Shared references to mutables: side effects

 SHAPE * MERGEFORMAT

Back to numbers: bitwise operations

>>> x = 1

>>> x << 2 # shift left 2 bits

4

>>> x | 2 # bitwise OR

3

>>> x & 1 # bitwise AND

1

Long integers

· Via ‘L’ suffix

· Some performance penalty

· As of 2.2, integers auto-converted to long if too big (“L” optional)

>>> 9999999999999999999999999999L + 1

10000000000000000000000000000L

>>> 9999999999999999999999999999 + 1

10000000000000000000000000000L

before 2.2:

>>> 9999999999999999999999999999 + 1

OverflowError: integer literal too large

Decimal type (2.4)

>>> 0.1 + 0.1 + 0.1 - 0.3
5.5511151231257827e-017

>>> print 0.1 + 0.1 + 0.1 - 0.3

5.55111512313e-017

>>> from decimal import Decimal

>>> Decimal('0.1') + Decimal('0.1') + Decimal('0.1') - Decimal('0.3')

Decimal("0.0")

>>> Decimal('0.1') + Decimal('0.10') + Decimal('0.10') - Decimal('0.30')

Decimal("0.00")

Python operators and precedence

· Operators bind tighter lower in the table

· Preview: all Python operators may be overloaded by Python classes and C extension types

· New in Python 2.0: +=. *=, &=, … augmented assignment statements, not operators
	Operators
	Description

	x or y,

lambda args: expr
	Logical ‘or’ (y is only evaluated if x is false), anonymous function

	x and y
	Logical ‘and’ (y is only evaluated if x is true)

	not x
	Logical negation

	<, <=, >, >=, ==, <>, !=,

is, is not, in, not in
	Comparison operators,

sequence membership

	x | y
	Bitwise ‘or’

	x ^ y
	Bitwise ‘exclusive or’

	x & y
	Bitwise ‘and’

	x << y, x >> y
	Shift x left or right by y bits

	x + y, x – y
	Addition/concatenation, subtraction

	x * y, x / y, x % y, x // y
	Multiply/repetition, divide, remainder/format, floor divide

	x ** y, -x, +x, ~x
	Power, unary negation, identity, bitwise compliment

	x[i], x[i:j], x.y, x(...)
	Indexing, slicing, qualification, function calls

	(...), [...], {...}, `...`
	Tuple, list, dictionary, conversion to string

Strings

· Ordered collections of characters

· No ‘char’ in Python, just 1-character strings

· Constants, operators, utility modules (‘string’, ‘re’)

· Strings are ‘immutable sequences’

· See ‘re’ module for pattern-based text processing

Common string operations

	Operation
	Interpretation

	s1 = ''
	empty strings

	s2 = "spam's"
	double quotes

	block = """..."""
	triple-quoted blocks

	S3 = r"C:\d1\d2\file"
	raw strings (\ kept)

	s1 + s2, s2 * 3
	concatenate, repeat

	s2[i], s2[i:j], len(s2)
	index, slice, length

	"a %s parrot" % 'dead'
	string formatting

	for x in s2, 'm' in s2
	iteration/membership

Newer extensions

· String methods:

X.split('+') same as older string.split(X, '+')
string module requires import, methods do not
methods now faster, preferred to string module
· Unicode strings:

Multi-byte characters, for internationalization (I18N)

U'xxxx' constants, Unicode modules, auto conversions

Can mix with normal strings, or convert: str(U), unicode(S)
· Template formatting: string module, see ahead

Strings in action

% python

>>> 'abc' + 'def' # concatenation: a new string

'abcdef'

>>> 'Ni!' * 4 # like "Ni!" + "Ni!" + ...

'Ni!Ni!Ni!Ni!'

Indexing and slicing

>>> S = 'spam'

>>> S[0], S[-2] # indexing from from or end

('s', 'a')

>>> S[1:3], S[1:], S[:-1] # slicing: extract section

('pa', 'pam', 'spa')

Changing and formatting

>>> S = S + 'Spam!' # to change a string, make a new one

>>> S

'spamSpam!'

>>> 'That is %d %s bird!' % (1, 'dead') # like C sprintf

That is 1 dead bird!

Advanced formatting examples

>>> res = "integers: ...%d...%-6d...%06d" % (x, x, x)

>>> res

'integers: ...1234...1234 ...001234'

>>> x = 1.23456789

>>> x

1.2345678899999999

>>> '%e | %f | %g' % (x, x, x)

'1.234568e+000 | 1.234568 | 1.23457'

>>> '%-6.2f | %05.2f | %+06.1f' % (x, x, x)

'1.23 | 01.23 | +001.2'

>>> int(x)

1

>>> round(x, 2)

1.23

>>> x = 1.236

>>> round(x, 2)

1.24

>>> "%o %x %X" % (64, 64, 255)

'100 40 FF'

>>> hex(255), int('0xff', 16), eval('0xFF')

('0xff', 255, 255)

>>> ord('s'), chr(115)

(115, 's')

Formatting with dictionaries

>>> D = {'xx': 1, 'yy': 2}

>>> "%(xx)d => %(yy)s" % D

'1 => 2'

>>> aa = 3

>>> bb = 4

>>> "%(aa)d => %(bb)s" % vars()

'3 => 4'

Template formatting (2.4+)

>>> ('%(page)i: %(title)s' %
 {'page':2, 'title': 'The Best of Times'})

'2: The Best of Times'

>>> import string

>>> t = string.Template('$page: $title')

>>> t.substitute({'page':2, 'title': 'The Best of Times'})

'2: The Best of Times'

>>> s = string.Template('$who likes $what')

>>> s.substitute(who='bob', what=3.14)

'bob likes 3.14'

>>> s.substitute(dict(who='bob', what=’pie’))

'bob likes pie'

Common string tools

>>> S = "spammify"

>>> S.upper() # convert to uppercase

'SPAMMIFY'

>>> S.find("mm") # return index of substring

3

>>> int("42"), str(42) # convert from/to string

(42, '42')

>>> S.split('mm') # splitting and joining

['spa', 'ify']

>>> 'XX'.join(S.split("mm"), "XX")

'spaXXify'

Example: replacing text

replace method

>>> S = 'spammy'

>>> S = S.replace('mm', 'xx')

>>> S

'spaxxy'

>>> S = 'xxxxSPAMxxxxSPAMxxxx'

>>> S.replace('SPAM', 'EGG') # replace all

'xxxxEGGxxxxEGGxxxx'

finding and slicing

>>> S = 'xxxxSPAMxxxxSPAMxxxx'

>>> where = S.find('SPAM') # search for position

>>> where # occurs at offset 4

4

>>> S = S[:where] + 'EGGS' + S[(where+4):]

>>> S

'xxxxEGGSxxxxSPAMxxxx'

exploding to/from list

>>> S = 'spammy'

>>> L = list(S) # explode to list

>>> L

['s', 'p', 'a', 'm', 'm', 'y']

>>> L[3] = 'x' # multiple in-place changes

>>> L[4] = 'x' # cant do this for strings

>>> L

['s', 'p', 'a', 'x', 'x', 'y']

>>> S = ''.join(L) # implode back to string

>>> S

'spaxxy'

Example: parsing with slices

>>> line = 'aaa bbb ccc'

>>> col1 = line[0:3] # columns at fixed offsets

>>> col3 = line[8:]

>>> col1

'aaa'

>>> col3

'ccc'

Example: parsing with splits

>>> line = 'aaa bbb ccc' # split around whitespace

>>> cols = line.split()

>>> cols

['aaa', 'bbb', 'ccc']

>>> line = 'bob,hacker,40' # split around commas

>>> line.split(',')

['bob', 'hacker', '40']

Generic type concepts

· Types share operation sets by categories

· Numbers support addition, multiplication, . . .

· Sequences support indexing, slicing, concatenation, . . .

· Mappings support indexing by key, . . .

· Mutable types can be changed in place

· Strings are ‘immutable sequences’

Concatenation and repetition

· ‘X + Y’ makes a new sequence object with the contents of both operands

· ‘X * N’ makes a new sequence object with N copies of the sequence operand

Indexing and slicing

· Indexing

· Fetches components via offsets: zero-based

· Negative indexes: adds length to offset

· S[0]
is the first item

· S[-2]
is the second from the end (4 - 2)

· Also works on mappings, but index is a key

· Slicing

· Extracts contiguous sections of a sequence

· Slices default to 0 and the sequence length if omitted

· S[1:3]
fetches from offsets 1 upto but not including 3

· S[1:]
fetches from offsets 1 through the end (length)

· S[:-1]
fetches from offsets 0 upto but not including last

· S[I:J:K] newer, I to J by K, K is a stride/step (S[::2])

[image: image19.wmf]S[3]

S[1:3]

Start+1

Start+3

Start

S[0]

S[1]

S[2]

S[-1]

S[-2]

S[-3]

S[-4]

S[-3:-1]

End-3

End-1

End

Lists

· Arrays of object references

· Access by offset

· Variable length, heterogeneous, arbitrarily nestable

· Category: ‘mutable sequence’

· Ordered collections of arbitrary objects

Common list operations

	Operation
	Interpretation

	L1 = []
	an empty list

	L2 = [0, 1, 2, 3]
	4-items: indexes 0..3

	['abc', ['def', 'ghi']]
	nested sublists

	L2[i], L2[i:j], len(L2)
	index, slice, length

	L1 + L2, L2 * 3
	concatenate, repeat

	L1.sort(), L2.append(4)
	methods: sort, grow

	del L2[k], L2[i:j] = []
	shrinking

	L2[i:j] = [1,2,3]
	slice assignment

	range(4), xrange(0, 4)
	make integer lists

	for x in L2, 3 in L2
	iteration/membership

Lists in action

% python

>>> [1, 2, 3] + [4, 5, 6] # concatenation

[1, 2, 3, 4, 5, 6]

>>> ['Ni!'] * 4 # repetition

['Ni!', 'Ni!', 'Ni!', 'Ni!']

Indexing and slicing

>>> L = ['spam', 'Spam', 'SPAM!']

>>> L[2]

'SPAM!'

>>> L[1:]

['Spam', 'SPAM!']

Changing lists in-place

>>> L[1] = 'eggs' # index assignment

>>> L

['spam', 'eggs', 'SPAM!']

>>> L[0:2] = ['eat', 'more'] # slice assignment

>>> L # replace items 0,1

['eat', 'more', 'SPAM!']

>>> L.append('please') # append method call

>>> L

['eat', 'more', 'SPAM!', 'please']

· Only works for ‘mutable’ objects: not strings

· Index assignment replaces an object reference

· Slice assignment deletes a slice and inserts new items

· Append method inserts a new item on the end (‘realloc’)

Preview: iteration/membership

>>> for x in L: print x,

...

eat more SPAM! please

Example: 2-dimensional array

>>> matrix = [[1, 2, 3],

... [4, 5, 6],

... [7, 8, 9]]

...

>>> matrix[1]

[4, 5, 6]

>>> matrix[1][1]

5

>>> matrix[2][0]

7

Dictionaries

· Tables of object references

· Access by key, not offset (hash-tables)

· Variable length, heterogeneous, arbitrarily nestable

· Category: ‘mutable mappings’ (not a sequence)

· Unordered collections of arbitrary objects

Common dictionary operations

	Operation
	Interpretation

	d1 = {}
	empty dictionary

	d2 = {'spam': 2, 'eggs': 3}
	2 items

	d3 = {'food': {'ham': 1, 'egg': 2}}
	nesting

	d2['eggs'], d3['food']['ham']
	indexing by key

	d2.has_key('eggs'), d2.keys()
	methods

	d2.get('eggs', default)
	default values

	len(d1)
	length (entries)

	d2[key] = new, del d2[key]
	adding/changing

Dictionaries in action

% python

>>> d2 = {'spam': 2, 'ham': 1, 'eggs': 3}

>>> d2['spam']

2

>>> len(d2) # number entries

3

>>> d2.keys() # list of keys

['eggs', 'spam', 'ham']

Changing dictionaries

>>> d2['ham'] = ['grill', 'bake', 'fry']

>>> d2

{'eggs': 3, 'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> del d2['eggs']

>>> d2

{'spam': 2, 'ham': ['grill', 'bake', 'fry']}

Making dictionaries

literals

>>> D = {'name': 'Bob', 'age': 42, 'job': 'dev'}

>>> D

{'job': 'dev', 'age': 42, 'name': 'Bob'}

keywords

>>> D = dict(name='Bob', age=42, job='dev')

>>> D

{'job': 'dev', 'age': 42, 'name': 'Bob'}

field by field

>>> D = {}

>>> D['name'] = 'Bob'

>>> D['age'] = 42

>>> D['job'] = 'dev'

>>> D

{'job': 'dev', 'age': 42, 'name': 'Bob'}

zipped keys/values

>>> pairs = zip(['name', 'age', 'job'], ('Bob', 42, 'dev'))

>>> pairs

[('name', 'Bob'), ('age', 42), ('job', 'dev')]

>>> D = dict(pairs)

>>> D

{'job': 'dev', 'age': 42, 'name': 'Bob'}

key lists

>>> D = dict.fromkeys(['name', 'age', 'job'], '?')

>>> D

{'job': '?', 'age': '?', 'name': '?'}

A language table

>>> table = {'Perl': 'Larry Wall',

... 'Tcl': 'John Ousterhout',

... 'Python': 'Guido van Rossum' }

...

>>> language = 'Python'

>>> creator = table[language]

>>> creator

'Guido van Rossum'

>>> for lang in table.keys(): print lang,

...

Tcl Python Perl

Dictionary usage notes

· Sequence operations don’t work!

· Assigning to new indexes adds entries

· Keys need not always be strings

Example: simulating auto-grown lists

>>> L = [] # L=[0]*100 would help

>>> L[99] = 'spam'

IndexError: list assignment index out of range

>>> D = {}

>>> D[99] = 'spam'

>>> D[99]

'spam'

>>> D

{99: 'spam'}

Example: dictionary-based “records”

>>> rec = {}

>>> rec['name'] = 'mel'

>>> rec['age'] = 40

>>> rec['job'] = 'trainer/writer'

>>>

>>> print rec['name']

mel

>>> mel = {'name': 'Mark',

... 'jobs': ['trainer', 'writer'],

... 'web': 'www.rmi.net/~lutz',

... 'home': {'state': 'CO', 'zip':80503}}

>>> mel['jobs']

['trainer', 'writer']

>>> mel['jobs'][1]

'writer'

>>> mel['home']['zip']

80503

Example: dictionary-based sparse matrix

>>> Matrix = {}

>>> Matrix[(2,3,4)] = 88 # tuple key is coordinates

>>> Matrix[(7,8,9)] = 99

>>> X = 2; Y = 3; Z = 4 # ; separates statements

>>> Matrix[(X,Y,Z)]

88

>>> Matrix

{(2, 3, 4): 88, (7, 8, 9): 99}

>>> Matrix.get((0, 1, 2), 'Missing')

'Missing'

Tuples

· Arrays of object references

· Access by offset

· Fixed length, heterogeneous, arbitrarily nestable

· Category: ‘immutable sequences’ (can’t be changed)

· Ordered collections of arbitrary objects

Common tuple operations

	Operation
	Interpretation

	()
	an empty tuple

	T1 = (0,)
	a one-item tuple

	T2 = (0, 1, 2, 3)
	a 4-item tuple

	T2 = 0, 1, 2, 3
	another 4-item tuple

	T3 = ('abc', ('def', 'ghi'))
	nested tuples

	T1[i], t1[i:j], len(t1)
	index, slice, length

	T1 + t2, t2 * 3
	concatenate, repeat

	for x in t2, 3 in t2
	iteration/membership

Tuples in action

>>> T1 = (1, 'spam')

>>> T2 = (2, 'ni')

>>> T1 + T2

(1, 'spam', 2, 'ni')

>>> T1 * 4

(1, 'spam', 1, 'spam', 1, 'spam', 1, 'spam')

>>> T2[1]

'ni'

>>> T2[1:]

('ni',)

Why lists and tuples?

· Immutability provides integrity

· Some built-in operations require tuples (argument lists)

· Guido is a mathematician: sets versus data structures

Files

· A wrapper around C’s “stdio” file system

· The builtin ‘open’ function returns a file object

· File objects export methods for file operations

· Files are not sequences or mappings (methods only)

· Files are a built-in C extension type

Common file operations

	Operation
	Interpretation

	O = open('/tmp/spam', 'w')
	create output file

	I = open('data', 'r')
	create input file

	I.read(), I.read(1)
	read file, byte

	I.readline(), I.readlines()
	read line, lines list

	O.write(S), O.writelines(L)
	write string, lines

	O.close()
	manual close (or on free)

Files in action

more at the end of the next section

>>> newfile = open('test.txt', 'w')

>>> newfile.write(('spam' * 5) + '\n')

>>> newfile.close()

>>> myfile = open('test.txt')

>>> text = myfile.read()

>>> text

'spamspamspamspamspam\n'

Related Python tools (day 2 or 3)

· Descriptor based files: os module

· DBM keyed files

· Persistent object shelves

Pipes, fifos

General object properties

Type categories revisited

· Objects share operations according to their category

· Only mutable objects may be changed in-place

	Object type
	Category
	Mutable?

	Numbers
	Numeric
	No

	Strings
	Sequence
	No

	Lists
	Sequence
	Yes

	Dictionaries
	Mapping
	Yes

	Tuples
	Sequence
	No

	Files
	Extension
	n/a

Generality

· Lists, dictionaries, and tuples can hold any kind of object

· Lists, dictionaries, and tuples can be arbitrarily nested

· Lists and dictionaries can dynamically grow and shrink

Nesting example

>>> L = ['abc', [(1, 2), ([3], 4)], 5]

>>> L[1][1]

([3], 4)

>>> L[1][1][0]

[3]

>>> L[1][1][0][0]

3

 [image: image20.png]
Shared references

· Assignments always create references to objects

· Can generate shared references to the same object

· Changing a mutable object impacts all references

· To avoid effect: make copies with X[:], list(X), etc.

· Tip: distinguish between names and objects!

· Names have no "type", but objects do

>>> X = [1, 2, 3]

>>> L = ['a', X, 'b']

>>> D = {'x':X, 'y':2}

>>> X[1] = 'surprise' # changes all 3 references!

>>> L

['a', [1, 'surprise', 3], 'b']

>>> D

{'x': [1, 'surprise', 3], 'y': 2}

Equality and truth

· Applied recursively for nested data structures

· ‘is’ tests identity (object address)

· True: non-zero number or non-empty data structure

· “None” is a special empty/false object

>>> L1 = [1, ('a', 3)] # same value, unique objects

>>> L3 = [1, ('a', 3)]

>>> L1 == L3, L1 is L3 # equivalent?, same object?

(True, False) # (True==1, False==0)

Other comparisons

· Applied recursively for nested data structures

· Strings compared lexicographically

· Lists and tuples compared depth-first, left-to-right

· Dictionaries compared by sorted (key, value) lists

>>> L1 = [1, ('a', 3)]

>>> L2 = [1, ('a', 2)]

>>> L1 < L2, L1 == L2, L1 > L2

(False, False, True)

Summary: Python’s type hierarchies

· Everything is an ‘object’ type in Python: “first class”

· Types are objects too: “type(X)” returns type object of X

· Preview: C extension modules and types use same mechanisms as Python types

Newer types

Decimal (decimal module): 2.4, see above

Boolean (bool, True, False): 2.3-ish, see next section

Sets: 2.4 (module in 2.3)

>>> x = set('abcde')

>>> y = set('bdxyz')

>>> x

set(['a', 'c', 'b', 'e', 'd'])

>>> 'e' in x # membership

True

>>> x – y # difference

set(['a', 'c', 'e'])

>>> x | y # union

set(['a', 'c', 'b', 'e', 'd', 'y', 'x', 'z'])

>>> x & y # intersection

set(['b', 'd'])

Built-in type gotchas

· Assignment creates references, not copies

>>> L = [1, 2, 3]

>>> M = ['X', L, 'Y']

>>> M

['X', [1, 2, 3], 'Y']

>>> L[1] = 0

>>> M

['X', [1, 0, 3], 'Y']

· Repetition adds 1-level deep

>>> L = [4, 5, 6]

>>> X = L * 4 # like [4, 5, 6] + [4, 5, 6] + ...

>>> Y = [L] * 4 # [L] + [L] + ... = [L, L,...]

>>> X

[4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6]

>>> Y

[[4, 5, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]

>>> L[1] = 0

>>> X

[4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6]

>>> Y

[[4, 0, 6], [4, 0, 6], [4, 0, 6], [4, 0, 6]]

· Cyclic structures can’t be printed (till 1.5.1)

>>> L = ['hi.']; L.append(L) # append reference to self

>>> L # loop! (ctrl-c breaks)

· Immutable types can’t be changed in-place

T = (1, 2, 3)

T[2] = 4 # error!

T = T[:2] + (4,) # okay: (1, 2, 4)
Lab Session 2

4. Basic Statements

Python program structure

· Programs are composed of modules

· Modules contain statements

· Statements contain expressions: logic

· Expressions create and process objects

	Statement
	Examples

	Assignment
	curly, moe, larry = 'good', 'bad', 'ugly'

	Calls
	stdout.write("spam, ham, toast\n")

	Print
	print 1, "spam", 4, 'u',

	If/elif/else
	if "python" in text: mail(poster, spam)

	For/else
	for peteSake in spam: print peteSake

	While/else
	while 1: print 'spam',i; i=i+1

	Pass
	while 1: pass

	Break, Continue
	while 1: break

	Try/except/finally
	try: spam() except: print 'spam error'

	Raise
	raise overWorked, cause

	Import, From
	import chips; from refrigerator import beer

	Def, Return,Yield
	def f(a, b, c=1, *d): return a+b+c+d[0]

	Class
	class subclass(superclass): staticData = []

	Global
	def function(): global x, y; x = 'new'

	Del
	del spam[k]; del spam[i:j]; del spam.attr

	Exec
	exec "import " + moduleName in gdict, ldict

	Assert
	assert name != "", "empty name field"

General concepts

Python syntax

· No variable/type declarations

· No braces or semicolons

· The “what you see is what you get” of languages

Python assignment

· Assignments create object references

· Names are created when first assigned

· Names must be assigned before being referenced

C++/Java:

if (x) {

 x = y + z; // braces, semicolons, parens

}

Python:

if x:

 x = y + z # indented blocks, end of line, colon

Assignment

· ‘=’ assigns object references to names or components

· Implicit assignments: import, from, def, class, for, calls

	Operation
	Interpretation

	spam = 'SPAM'
	basic form

	spam, ham = 'yum', 'YUM'
	tuple assignment

	[spam, ham] = ['yum', 'YUM']
	list assignment

	a, b, c, d = 'spam'
	sequence assign

	spam = ham = 'lunch'
	multiple-target

	spam += 42; ham *= 12
	Augmented (2.0)

Variable name rules

· (‘_’ or letter) + (any number of letters, digits, ‘_’s)

· Case matters: ‘SPAM’ is not ‘spam’

· But can’t use reserved words:

· + new “yield”, for generators (2.3 and later)

	and

	assert
	break
	class

	continue
	def
	del
	elif

	else
	except
	exec
	finally

	for
	from
	global
	if

	import
	in
	is
	lambda

	not
	or
	pass
	print

	raise
	return
	try
	while

Expressions

· Useful for calls, and interactive prints

· Expressions can be used as statements

· Statements cannot be used as expressions (‘=’)

	Operation
	Interpretation

	spam(eggs, ham)
	function calls

	spam.ham(eggs)
	method calls

	spam
	interactive print

	spam < ham and ham != eggs
	compound expr's

	spam < ham < eggs
	range tests

· Python 2.0 “list comprehension” expressions (covered in Functions)

· Similar to map/lambda combination (result=[0,1,4,9])

[i**2 for i in range(4)] …like… map((lamba x: x**2), range(4))
Print

· ‘print’ statement writes objects to the ‘stdout’ stream

· File object ‘write’ methods write strings to files

· Adding a trailing comma suppresses line-feed

· Reset ‘sys.stdout’ to catch print output

	Operation
	Interpretation

	print spam, ham
	print objects to sys.stdout

	print spam, ham,
	don’t add linefeed at end

	print>>file, spam
	Python 2.0: not to stdout

The Python ‘Hello world’ program

· Expression results don’t need to be printed at top-level

>>> print 'hello world'

hello world

>>> 'hello world'

'hello world'

· The hard way

>>> x = 'hello world'

>>> import sys

>>> sys.stdout.write(str(x) + '\n')

· sys.stdout can be assigned

>>> sys.stdout = open('log', 'a') # or a class with .write

>>> print x

If selections

· Python’s main selection construct

· No ‘switch’: via if/elif/else, dictionaries, or lists

General format

if <test1>:

 <statements1>

elif <test2>: # optional elif’s

 <statements2>

else: # optional else

 <statements3>

Examples

>>> if 3 > 2:

... print 'yep'

...

yep

>>> x = 'killer rabbit'

>>> if x == 'bunny':

... print 'hello little bunny'

... elif x == 'bugs':

... print "what's up doc?"

... else:

... print 'Run away!... Run away!...'

...

Run away!... Run away!...

>>> choice = 'ham'

>>> print {'spam': 1.25, # dictionary switch

... 'ham': 1.99,

... 'eggs': 0.99,

... 'bacon': 1.10}[choice]

1.99

with actions

{'spam': (lambda: …),

 'ham': (lambda: …),

 …}[choice]()

Python syntax rules

· Compound statements = header, ‘:’, indented statements

· Block and statement boundaries detected automatically

· Comments run from “#” through end of line

· Documentation strings at top of file, class, function

Block delimiters

· Block boundaries detected by line indentation

· Indentation is any combination of spaces and tabs

· Tabs = N spaces up to multiple of 8 (but don’t mix)

Statement delimiters

· Statement normally end at end-of-line, or ';'

· Statements may span lines if open syntactic pair: (), { }, []

· Statements may span lines if end in backslash (outdated feature)

· Some string constants span lines too (triple-quotes)

Special cases

L = ["Good",

 "Bad",

 "Ugly"] # open pairs may span lines

x = 1; y = 2; print x # more than 1 simple statement

if 1: print 'hello' # simple statement on header line

Nesting code blocks

x = 1 # block0

if x:

 y = 2 # block1

 if y:

 print 'block2'

 print 'block1'

print 'block0'

Documentation Sources Interlude

	Form
	Role

	# comments
	In-file documentation

	The dir function
	Lists of attributes available on objects

	Docstrings: __doc__
	In-file documentation attached to objects

	PyDoc: The help function
	Interactive help for objects

	PyDoc: HTML reports
	Module documentation in a browser

	Standard manual set
	Official language and library descriptions

	Web resources
	Online tutorial, examples, and so on

	Published books
	Commercially-available texts (see Resources)

>>> import sys

>>> dir(sys) # also works on types, objects, etc.

['__displayhook__', '__doc__', '__excepthook__', '__name__', …

>>> print sys.__doc__

This module provides access to some objects …

>>> help(sys)

Help on built-in module sys: …

Start/Python24/ModuleDocs (or pydocgui.pyw):

[image: image21.jpg]
File: docstrings.py

"""

Module documentation

Words Go Here

"""

spam = 40

def square(x):

 """

 function documentation

 can we have your liver then?

 """

 return x **2

Truth tests revisited

· True = non-zero number, or non-empty object

· Comparisons operators return “True” (1) or “False” (0)
· Boolean operators short-circuit

· Boolean operators return an operand object
	Object
	Value

	"spam"
	true

	""
	false

	[]
	false

	{}
	false

	1
	true

	0.0
	false

	None
	false

Examples

>>> 2 < 3, 3 < 2 # return True (1) or False (0)

(True, False)

>>> 2 or 3, 3 or 2 # return left operand if true

(2, 3) # else return right operand (T|F)

>>> [] or 3

3

>>> [] or {}

{}

>>> 2 and 3, 3 and 2 # return left operand if false

(3, 2) # else return right operand (T|F)

>>> [] and {}

[]

>>> 3 and []

[]

Boolean type (2.3+)

bool is a subclass of int

bool has two instances: True and False

True,False are 1,0 but print differently

>>> 1 > 0

True

>>> True == 1, True is 1

(True, False)

>>> True + 1

2

While loops

· Python’s most general iteration construct

· One of two looping statements: while, for
· Implicit looping tools: map, reduce, filter, in
General format

while <test>:
 <statements>

else: # optional else

 <statements2> # run if didn’t exit with break

Examples

>>> while True:

... print 'Type Ctrl-C to stop me!'

>>> count = 5

>>> while count:

... print count,

... count -= 1

...

5 4 3 2 1

>>> x = 'spam'

>>> while x:

... print x,

... x = x[1:] # strip first char off x

...

spam pam am m

>>> a=0; b=10

>>> while a < b: # one way to code counter loops

... print a,

... a = a+1

...

0 1 2 3 4 5 6 7 8 9

Break, continue, pass, and the loop else

· break

jumps out of the closest enclosing loop

· continue
jumps to the top of the closest enclosing loop

· pass

does nothing: an empty statement placeholder

· loop else

run if loop exits normally: without a ‘break’

General loop format

while <test>:

 <statements>

 if <test>: break # exit loop now, skip else

 if <test>: continue # go to top of loop now

else:

 <statements> # if we didn’t hit a ‘break’

Examples

· Pass: an infinite loop

while True: pass # ctrl-C to stop!

· Continue: print even numbers

· Avoids statement nesting (but use sparingly!)

x = 10

while x:

 x = x-1

 if x % 2 != 0: continue # odd?--skip

 print x,

· Break: find factors

· Avoids search status flags

x = y / 2

while x > 1:

 if y % x == 0: # remainder

 print y, 'has factor', x

 break # skip else

 x = x-1

else: # normal exit

 print y, 'is prime'

For loops

· A general sequence iterator

· Works on strings, lists, tuples

· Replaces most ‘counter’ style loops

· Repeatedly indexes object until IndexError detected

· Preview: also works on Python classes and C types

General format

for <target> in <object>: # assign object items to target

 <statements>

 if <test>: break # exit loop now, skip else

 if <test>: continue # go to top of loop now

else:

 <statements> # if we didn’t hit a ‘break’

Examples

>>> for x in ["spam", "eggs", "spam"]:

... print x,

...

spam eggs spam

>>> prod = 1

>>> for i in (1, 2, 3, 4): prod *= i # tuples

...

>>> prod

24

>>> S = 'spam'

>>> for c in S: print c # strings

...

s

p

a

m

Loop coding techniques

· for subsumes most counter loops

· range generates a list of integers to iterate over

· xrange similar, but doesn’t create a real list

The easy (and fast) way

>>> X = 'spam'

>>> for item in X: print item, # step through items

...

s p a m

The hard way: a C-style for loop

>>> i = 0

>>> while i < len(X): # manual while indexing

... print X[i],; i += 1

...

s p a m

Range and fixed repitions

>>> range(5), range(2, 5)

([0, 1, 2, 3, 4], [2, 3, 4])

>>> for i in range(4): print 'A shrubbery!'

...

A shrubbery!

A shrubbery!

A shrubbery!

A shrubbery!

Using range to generate offsets (not items!)

>>> X

'spam'

>>> len(X)

4

>>> range(len(X))

[0, 1, 2, 3]

>>> for i in range(len(X)): print X[i], # step through offsets

...

s p a m

Using range and slicing for non-exhaustive traversals

>>> range(2,10,2)

[2, 4, 6, 8]

>>> S = 'abcdefghijk'

>>> for i in range(0,len(S),2): print S[i],

...

a c e g i k

in recent releases…

>>> for c in S[::2]: print c,

...

a c e g i k

Using range and enumerate to change a list in-place

>>> L = [1, 2, 3, 4]

>>> for x in L: x += 10

>>> L

[1, 2, 3, 4]

>>> for i in range(len(L)): L[i] += 10

>>> L

[11, 12, 13, 14]

in recent releases…

>>> for (i, x) in enumerate(L):

L[i] = x * 2

>>> L

[22, 24, 26, 28]

>>> enumerate(L)

<enumerate object at 0x00B48440>

>>> list(enumerate(L))

[(0, 22), (1, 24), (2, 26), (3, 28)]

>>> E = enumerate(L)

>>> E.next()

(0, 22)

>>> E.next() # see generators in next section

(1, 24)

Traversing sequences in parallel with zip

>>> L1 = [1,2,3,4]

>>> L2 = [5,6,7,8]

>>>

>>> zip(L1,L2)

[(1, 5), (2, 6), (3, 7), (4, 8)]

>>>

>>> for (x,y) in zip(L1, L2):

... print x, y, '--', x+y

...

1 5 -- 6

2 6 -- 8

3 7 -- 10

4 8 -- 12

Traversing dictionaries by sorted keys

>>> D = {'a':1, 'b':2, 'c':3}

>>> D

{'a': 1, 'c': 3, 'b': 2}

>>> Ks = D.keys()

>>> Ks.sort()

>>> for k in Ks: print D[k],

1 2 3

in recent releases…

>>> D

{'a': 1, 'c': 3, 'b': 2}

>>> for k in sorted(D): print D[k],

1 2 3

Comprehensive examples

Common ways to read from files

file creation

>>> myfile = open('myfile.txt', 'w')

>>> for i in range(3):

 myfile.write(('spam' * (i+1)) + '\n')

>>> myfile.close()

all at once

>>> print open('myfile.txt').read()

spam

spamspam

spamspamspam

line by line

>>> myfile = open('myfile.txt')

>>> while True:

 line = myfile.readline()

 if not line: break

 print line,

spam

spamspam

spamspamspam

all lines at once

>>> for line in open('myfile.txt').readlines():

 print line,

spam

spamspam

spamspamspam

file iterators: line by line

>>> for line in open('myfile.txt'):

 print line,

spam

spamspam

spamspamspam

by byte counts

>>> myfile = open('myfile.txt')

>>> while True:

 line = myfile.read(10)

 if not line: break

 print '[' + line + ']',

[spam

spams] [pam

spamsp] [amspam

]

Summing data file columns

>>> print open('data.txt').read()

001.1 002.2 003.3

010.1 020.2 030.3 040.4

100.1 200.2 300.3

>>> sums = {}

>>> for line in open('data.txt'):

 cols = [float(col) for col in line.split()] # next!

 for pos, val in enumerate(cols):

 sums[pos] = sums.get(pos, 0.0) + val

>>> for key in sorted(sums):

 print key, '=', sums[key]

0 = 111.3

1 = 222.6

2 = 333.9

3 = 40.4

>>> sums

{0: 111.3, 1: 222.59999999999999, 2: 333.90000000000003,

3: 40.399999999999999}

Basic coding gotchas

· Don’t forget to type a “:” at the end of compound statement headers

· Be sure to start top-level (unnested) code in column 1

· Blank lines in compound statements are ignored in files, but end the statement at the interactive prompt

· Avoid mixing tabs and spaces in indentation, unless you’re sure what your editor does with tabs

· C programmers: you don’t need “()” around tests in “if” and “while”; you can’t use “{ }” around blocks

· In-place change operations like list.append() and list.sort() don’t return a value (really, they return “None”); call them without assigning the result.

· Add parens to call a function: “file.close()” is a call, “file.close” is a reference only

Preview: program unit statements

· Create and process higher-level program components

	Unit
	Role

	Functions
	procedural units

	Modules
	code/data packages

	Exceptions
	errors and special cases

	Classes
	new objects

	C modules
	optimization, customization, integration

Lab Session 3

5. Functions

Why use functions?

· Code reuse

· Procedural decomposition

· Alternative to cut-and-paste: redundancy

Function topics

· The basics

· Scope rules

· Argument matching modes

· Odds and ends

· Design concepts

· Functions are objects

· Function gotchas

Function basics

· def is an executable statement; usually run during import

· def creates a function object and assigns to a name

· return sends a result object back to the caller

· Arguments are passed by object reference (assignment)

· Arguments, return types, and variables are not declared

· Polymorphism: code to object interfaces, not datatypes

General form

def <name>(arg1, arg2,… argN):

 <statements>

 return <value>

Definition

>>> def times(x, y): # create and assign function

... return x * y # body executed when called

...

Calls

>>> times(2, 4) # arguments in parenthesis

8

>>> times('Ni', 4) # functions are 'typeless'

'NiNiNiNi'

Example: intersecting sequences

· Definition

def intersect(seq1, seq2):

 res = [] # start empty

 for x in seq1: # scan seq1

 if x in seq2: # common item?

 res.append(x) # add to end

 return res

· Calls

>>> s1 = "SPAM"

>>> s2 = "SCAM"

>>> intersect(s1, s2) # strings

['S', 'A', 'M']

>>> intersect([1, 2, 3], (1, 4)) # mixed types

[1]

Scope rules in functions

· Enclosing module is a ‘global’ scope

· Each call to a function is a new ‘local’ scope

· Assigned names are local, unless declared “global”

· All other names are global or builtin
· New in 2.2: enclosing function locals (if any) searched before global

Name resolution: the “LEGB” rule

· References search up to 4 scopes:

1. Local (function)

2. Enclosing functions (if any)

3. Global (module)

4. Builtin (__builtin__)

· Assignments create or change local names by default

· “global” declarations map assigned names to module

Example

· Global names: ‘X’, ‘func’

· Local names: ‘Y’, ‘Z’

· Interactive prompt: module ‘__main__’

X = 99 # X and func assigned in module

def func(Y): # Y and Z assigned in function

 Z = X + Y # X not assigned: global

 return Z

func(1) # func in module: result=100

Enclosing Function Scopes (2.2+)

def f1():

 x = 88

 def f2():

 print x # 2.2: x found in enclosing function

 f2()

f1() # prints 88

def f1():

 x = 88

 def f2(x=x): # before 2.2: pass in values with defaults (ahead)

 print x

 f2()

f1()

More useful with lambda (ahead)

def func():

 x = 42

 action = (lambda n: x ** n) # 2.2

def func():

 x = 42

 action = (lambda n, x=x: x ** n) # before 2.2

More on “global”

· ‘global’ means assigned at top-level of a module file

· Global names must be declared only if assigned

· Global names may be referenced without being declared

y, z = 1, 2 # global variables in module

def all_global():

 global x # declare globals assigned

 x = y + z # no need to declare y,z: 3-scope rule

More on “return”

· Return sends back an object as value of call

· Can return multiple arguments in a tuple

· Can return modified argument name values

>>> def multiple(x, y):

... x = 2

... y = [3, 4]

... return x, y

...

>>> X = 1

>>> L = [1, 2]

>>> X, L = multiple(X, L)

>>> X, L

(2, [3, 4])

More on argument passing

· Passed by assigning shared object to local name

· Assigning to argument name doesn’t effect caller

· Changing mutable object argument may impact caller

· Not pass ‘by reference’ (C++), but:

· immutables act like ‘by value’ (C)

· mutables act like ‘by pointer’ (C)

>>> def changer(x, y):

... x = 2 # changes local name's value only

... y[0] = 'spam' # changes shared object in-place

...

>>> X = 1

>>> L = [1, 2]

>>> changer(X, L)

>>> X, L

(1, ['spam', 2])

Special argument matching modes

· Positional
matched left-to-right in header (normal)

· Keywords
matched by name in header

· Varargs
catch unmatched positional or keyword args

· Defaults
header can provide default argument values

	Operation
	Location
	Interpretation

	func(value)
	caller
	normal argument: matched by position

	func(name=value)
	caller
	keyword argument: matched by name

	def func(name)
	function
	normal argument: matches any by name or position

	def func(name=value)
	function
	default argument value, if not passed in call

	def func(*name)
	function
	matches remaining positional args (tuple)

	def func(**name)
	function
	matches remaining keyword args (dictionary)

Examples

Positionals and keywords

>>> def f(a, b, c): print a, b, c
>>> f(1, 2, 3)

1 2 3

>>> f(c=3, b=2, a=1)

1 2 3

>>> f(1, c=3, b=2)

1 2 3

Defaults

>>> def f(a, b=2, c=3): print a, b, c
>>> f(1)

1 2 3

>>> f(1, 4, 5)

1 4 5

>>> f(1, c=6)

1 2 6

Arbitrary positionals

>>> def f(*args): print args
>>> f(1)

(1,)

>>> f(1,2,3,4)

(1, 2, 3, 4)

Arbitrary keywords

>>> def f(**args): print args
>>> f()

{}

>>> f(a=1, b=2)

{'a': 1, 'b': 2}

>>> def f(a, *pargs, **kargs): print a, pargs, kargs

>>> f(1, 2, 3, x=1, y=2)

1 (2, 3) {'y': 2, 'x': 1}

Example

· Only deals with matching: still passed by assignment

· Defaults retain an object: may change if mutable

def func(spam, eggs, toast=0, ham=0): # first 2 required

 print (spam, eggs, toast, ham)

func(1, 2) # output: (1, 2, 0, 0)

func(1, ham=1, eggs=0) # output: (1, 0, 0, 1)

func(spam=1, eggs=0) # output: (1, 0, 0, 0)

func(toast=1, eggs=2, spam=3) # output: (3, 2, 1, 0)

func(1, 2, 3, 4) # output: (1, 2, 3, 4)

Ordering rules

· Call: keyword arguments after non-keyword arguments

· Header: normals, then defaults, then *name, then **name

Matching algorithm (see exercise)

· Assign non-keyword arguments by position

· Assign keyword arguments by matching names

· Assign extra non-keyword arguments to *name tuple

· Assign extra keyword arguments to **name dictionary

· Unassigned arguments in header assigned default values

Odds and ends

· lambda expression creates anonymous functions

· list comprehensions, map, filter apply expressions to sequences

· Generator expressions (2.4+)

· Generators functions and iterators (new in 2.2, 2.3)

· apply function calls functions with arguments tuple

· Functions return ‘None’ if they don’t use a real ‘return’

· Lambda expressions

>>> def func(x, y, z): return x + y + z

...

>>> func(2, 3, 4)

9

>>> f = lambda x, y, z: x + y + z

>>> f(2, 3, 4)

9

hint: embedding logic in a lambda body

(A and B) or C

((A and [B]) or [C])[0] # like if A: B else: C

hint: embedding loops in a lambda body...next topic

· List comprehensions (added in 2.0)

>>> ord('s')

115

>>> res = []

>>> for x in 'spam': res.append(ord(x))

...

>>> res

[115, 112, 97, 109]

>>> map(ord, 'spam') # apply func to sequence

[115, 112, 97, 109]

>>> [ord(x) for x in 'spam'] # apply expr to sequence

[115, 112, 97, 109]

adding arbitrary expressions

>>> [x ** 2 for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> map((lambda x: x**2), range(10))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> lines = [line[:-1] for line in open('README.txt')]

>>> lines[:2]

['This is Python version 2.4 alpha 3', '==================================']

adding if tests

>>> [x for x in range(10) if x % 2 == 0]

[0, 2, 4, 6, 8]

>>> filter((lambda x: x % 2 == 0), range(10))

[0, 2, 4, 6, 8]

advanced usage

>>> [x**2 for x in range(10) if x % 2 == 0]

[0, 4, 16, 36, 64]

>>> [x+y for x in 'abc' for y in 'lmn']

['al', 'am', 'an', 'bl', 'bm', 'bn', 'cl', 'cm', 'cn']

>>> res = []

>>> for x in 'abc':

... for y in 'lmn':

... res.append(x+y)

...

>>> res

['al', 'am', 'an', 'bl', 'bm', 'bn', 'cl', 'cm', 'cn']

List comprehensions can become incomprehensible when nested, but map and list comprehensions may be faster than simple for loops

(In 2.4, comprehensions are twice as fast as for loops, and for loops are now quicker than map: see middle of this page, and CD’s Extras\Misc\timerseqs.py)

· Generator expressions (2.4+)

list comrehensions generate entire list in memory

>>> squares = [x**2 for x in range(5)]

>>> squares

[0, 1, 4, 9, 16]

generator expressions yield 1 result at a time

>>> squares = (x**2 for x in range(5))

>>> squares

<generator object at 0x00B2EC88>

>>> squares.next()

0

>>> squares.next()

1

>>> squares.next()

4

>>> list(squares)

[9, 16]

iteration contexts automatically call next()

>>> for x in (x**2 for x in range(5)):

 print x,

0 1 4 9 16

>>> sum(x**2 for x in range(5))

30

· Generator functions and iterators

Generators implement iterator protocol: .next()

Retains local scope when suspended

Distributes work over time (see also: threads)

In 2.2, must enable with: from __future__ import generators

Related: generator expressions, enumerate function, file iterators

functions compiled specially when yield

>>> def gensquares(N):

... for i in range(N): # suspends and resumes itself

... yield i ** 2 # <- return value and resume here later

generator objects support iteration protocol: .next()

>>> x = gensquares(10)

>>> x # also retain all local variables between calls

<generator object at 0x0086C378> # classes define __iter__ to return iter object

>>> x.next()

0

>>> x.next()

1

>>> x.next()

4

…

>>> x.next()

…StopIteration exception raised at end…

for loops (and others) automatically call .next()

>>> for i in gensquares(5): # resume the function each time

... print i, ':', # print last yielded value

...

0 : 1 : 4 : 9 : 16 :

· Apply built-in and syntax

>>> apply(func, (2, 3, 4))

9

>>> apply(f, (2, 3, 4))

9

See also Python 2.0+ apply-like call syntax:

func(*a, **b) …like… apply(func, a, b)

>>> def func(a, b, c, d): return a + b + c + d

>>> args1 = (1, 2)

>>> args2 = {'c': 3, 'd': 4}

>>> func(*args1, **args2)

10

>>> func(1, *(2,), **args2)

10

· Default return values

>>> def proc(x):

... print x

...

>>> x = proc('testing 123...')

testing 123...

>>> print x

None

Function design concepts

· Use global variables only when absolutely necessary

· Use arguments for input, ‘return’ for outputs

· Don’t change mutable arguments unless expected

· But globals are only state-retention tool without classes

· But classes depend on mutable arguments (‘self’)

[image: image22.wmf]Function

Arguments

Files/streams

Return statement

Mutable arguments

Global variables

Inputs

Outputs

Other functions

Local

Variables

Global variables

Files/streams

Functions are objects: indirect calls

· Function objects can be assigned, passed, etc.

· Can call objects generically: function, bound method,...

def echo(message): print message

x = echo

x('Hello world!')

def indirect(func, arg):

 func(arg)

indirect(echo, 'Hello world!')

schedule = [(echo, 'Hello!'), (echo, 'Ni!')]

for (func, arg) in schedule:

 apply(func, (arg,)) # func(arg) works too

File scanners

file: scanfile.py

def scanner(name, function):

 file = open(name, 'r') # create file

 for line in file.readlines():

 function(line) # call function

 file.close()

file: commands.py

import string

from scanfile import scanner

def processLine(line):

 print string.upper(line)

scanner("data.txt", processLine) # start scanner

Function gotchas

Local names are detected statically

cant use same name as local+global unless use module

>>> X = 99

>>> def selector(): # X used but not assigned

... print X # X found in global scope

...

>>> selector()

99

>>> def selector():

... print X # does not yet exist!

... X = 88 # X classified as a local name

...

>>> selector()

Traceback (innermost last):

 File "<stdin>", line 1, in ?

 File "<stdin>", line 2, in selector

NameError: X

>>> def selector():

... global X # force X to be global

... print X

... X = 88

...

>>> selector()

99

Mutable defaults created just once

to avoid: check for None and set to [] in function body

>>> def grow(A, B=[]):

 B.append(A)

 return B

>>> grow(1)

[1]

>>> grow(1)

[1, 1]

>>> grow(1)

[1, 1, 1]

Nested functions weren’t nested scopes

this works as of 2.2 – enclosing function scopes!

>>> def outer(x):

... def inner(i): # assign in outer’s local

... print i, # i is in inner’s local

... if i: inner(i-1) # not in my local or global!

... inner(x)

...

>>> outer(3)

3

Traceback (innermost last):

 File "<stdin>", line 1, in ?

 File "<stdin>", line 6, in outer

 File "<stdin>", line 5, in inner

NameError: inner

>>> def outer(x):

... global inner

... def inner(i): # assign in enclosing module

... print i,

... if i: inner(i-1) # found in my global scope

... inner(x)

...

>>> outer(3)

3 2 1 0

Use defaults to save references

no longer necessary as of 2.2: enclosing function scopes

>>> def outer(x, y):

 def inner():

 return x ** y

 return inner

>>> x = outer(2, 4)

>>> x()

16

code before 2.2

>>> def outer(x, y):

... def inner(a=x, b=y): # save x,y bindings/objects

... return a**b # from the enclosing scope

... return inner

...

>>> x = outer(2, 4)

>>> x()

16

>>> def outer(x, y):

... return lambda a=x, b=y: a**b

...

>>> y = outer(2, 5)

>>> y()

32

Optional reading: set functions (see HTML version)
Lab Session 4

6. Modules

Why use modules?

· Code reuse

· System name-space partitioning

· Implementing shared services or data

Module topics

· The basics

· Import variations

· Reloading modules

· Design concepts

· Modules are objects

· Package imports

· Odds and ends

· Module gotchas

Module basics

· Creating modules:
Python files, C extensions; Java classes (Jython)

· Using modules:
import, from, reload()

· Module search path:
$PYTHONPATH

file: module1.py

def printer(x): # module attribute

 print x

Module usage

% python

>>> import module1 # get module

>>> module1.printer('Hello world!')

Hello world!

>>> from module1 import printer # get an export

>>> printer('Hello world!')

>>> from module1 import * # get all exports

>>> printer('Hello world!')

Module files are a namespace

· A single scope: local==global

· Module statements run on first import

· Top-level assignments create module attributes

· Module namespace: attribute ‘__dict__’, or dir()

file: module2.py

print 'starting to load...'

import sys

name = 42

def func(): pass

class klass: pass

print 'done loading.'

Usage

>>> import module2

starting to load...

done loading.

>>> module2.sys

<module 'sys'>

>>> module2.name

42

>>> module2.func, module2.klass

(<function func at 765f20>, <class klass at 76df60>)

>>> module2.__dict__.keys()

['__file__', 'name', '__name__', 'sys', '__doc__', '__builtins__', 'klass', 'func']

Name qualification

· Simple variables

· ‘X’ searches for name ‘X’ in current scopes

· Qualification

· ‘X.Y’ searches for attribute ‘Y’ in object ‘X’

· Paths

· ‘X.Y.Z’ gives a path of objects to be searched

· Generality

· Qualification works on all objects with attributes: modules, classes, C types, etc.

 1) find “sys” in the current name-space (scope)
 2) find “stdin” in the “sys” object’s name-space
 3) find “readlines” in the “sys.stdin” object
Import variants

· Module import model

· module loaded and run on first import or from

· running a module’s code creates its top-level names

· later import/from fetches already-loaded module

· import and from are assignments

· import assigns an entire module object to a name

· from assigns selected module attributes to names

	Operation
	Interpretation

	import mod
	fetch a module as a whole

	from mod import name
	fetch a specific name from a module

	from mod import *
	fetch all top-level names from a module

	reload(mod)
	force a reload of module’s code

Reloading modules

· Imports only load/run module code first time

· Later imports use already-loaded module

· reload function forces module code reload/rerun

· Allows programs to be changed without stopping

General form

import module # initial import

[use module.attributes]

... # change module file

...

reload(module) # get updated exports

[use module.attributes]

Usage details

· A function, not a statement

· Requires a module object, not a name

· Changes a module object in-place:

· runs module file’s new code in current namespace

· assignments replace top-level names with new values

· impacts all clients that use ‘import’ to fetch module

· impacts future ‘from’ clients

Reload example

· Changes and reload file without stopping Python

· Other common uses: GUI callbacks, embedded code, etc.

% cat changer.py

message = "First version"

def printer():

 print message

% python

>>> import changer

>>> changer.printer()

First version

>>>

[modify changer.py without stopping python]

% vi changer.py

% cat changer.py

message = "After editing"

def printer():

 print 'reloaded:', message

[back to the python interpreter/program]

>>> import changer

>>> changer.printer() # no effect: uses loaded module

First version

>>> reload(changer) # forces new code to load/run

<module 'changer'>

>>> changer.printer()

reloaded: After editing

Package imports

Module package (directory) imports

· module name == “dir.dir.dir” in import statements and reloads

· “import dir1.dir2.module” => load dir1\dir2\mod.py

· “from dir1.dir2.mod import name”

· dir1 must be contained by a directory on PYTHONPATH

· each dir must have a “__init__.py” file, possibly empty

· __init__.py gives directory’s namespace, __all__ for “from*”

· simplifies path, disambiguates same-named modules files

Example

For:

dir0\dir1\dir2\mod.py

And:

import dir1.dir2.mod

· dir0 (container) must be listed on the module search path

· dir1 and dir2 both must contain an __init__.py file

· dir0 does not require an __init__.py

dir0\

 dir1\

 __init__.py

 dir2\

 __init__.py

 mod.py

Another example tree

root\

 system1\

 __init__.py

 utilities.py

 main.py

 other.py

 system2\

 __init__.py

 utilities.py

 main.py

 other.py

 system3\ (here or elsewhere)

 __init__.py (your new code here)

 myfile.py

Odds and ends

· Python 2.0: “import module as name”

· Like “import module” + “name = module”

· Loading modules by name string

· exec ‘import ‘ + name

· __import__(name)

· Modules are compiled to byte code on first import

· ‘.pyc’ files serve as recompile dependency

· compilation is automatic and hidden

· Data hiding is a convention

· Exports all names defined at the top-level of a module

· Special case: __all__ list gives names exported by “from *”

· Special case: “_X” names aren’t imported by a “from*”

· __name__ and ‘__main__’

· name set to ‘__main__’ when run as a script

· allows modules to be imported and/or run

file: runme.py

def tester():

 print "It's Christmas in Heaven"

if __name__ == '__main__': # only when run

 tester() # not when imported

Usage modes

% python

>>> import runme

>>> runme.tester()

It's Christmas in Heaven

% python runme.py

It's Christmas in Heaven

Module design concepts

· Always in a module: interactive = module __main__

· Minimize module coupling: global variables

· Maximize module cohesion: unified purpose

· Modules should rarely change other module’s variables

mod.py

X = 99 # reader sees only this

import mod

print mod.X ** 2 # always okay to use

import mod

mod.X = 88 # almost always a Bad Idea!

import mod

result = mod.func(88) # better: isolates coupling

[image: image23.wmf]Modules

Classes

Members

Functions

Other

Modules

Other

Modules

Variables

Variables

Methods

(Python or C)

(Python or C)

import

import

Variables

Functions

Classes/Types

Variables

Functions

Classes/Types

Modules are objects: metaprograms

· A module which lists namespaces of other modules

· Special attributes: module.__name__, __file__, __dict__

· getattr(object, name) fetches attributes by string name

· Add to $PYTHONSTARTUP to preload automatically

File mydir.py

verbose = 1

def listing(module):

 if verbose:

 print "-"*30

 print ("name: %s file: %s" %

 (module.__name__, module.__file__))

 print "-"*30

 count = 0

 for attr in module.__dict__.keys(): # scan names

 print "%02d) %s" % (count, attr),

 if attr[0:2] == "__":

 print "<built-in name>" # skip specials

 else:

 print getattr(module, attr) #__dict__[attr]

 count = count+1

 if verbose:

 print "-"*30

 print module.__name__, "has %d names" % count

 print "-"*30

if __name__ == "__main__":

 import mydir

 listing(mydir) # self-test code: list myself

· Running the module on itself

C:\python> python mydir.py

name: mydir file: mydir.py

00) __file__ <built-in name>

01) __name__ <built-in name>

02) listing <function listing at 885450>

03) __doc__ <built-in name>

04) __builtins__ <built-in name>

05) verbose 1

mydir has 6 names

Another program about programs

· ‘exec’ runs strings of Python code

· ‘os.system’ runs a system shell command

· __dict__ attribute is module namespace dictionary

· ‘sys.modules’ is the loaded-module dictionary

file: fixer.py

editor = 'vi' # your editor's name

def python(cmd):

 import __main__

 namespace = __main__.__dict__

 exec cmd in namespace, namespace

def edit(filename):

 import os

 os.system(editor + ' ' + filename)

def fix(modname):

 import sys # edit,(re)load

 edit(modname + '.py')

 if modname in sys.modules.keys():

 python('reload(' + modname + ')')

 else:

 python('import ' + modname)

% python

>>> from fixer import fix

>>> fix("spam") # browse/edit, import by name

>>> spam.function() # spam was imported in __main__

>>> fix("spam") # edit and reload() by name

>>> spam.function() # test new version of function

Module gotchas

“from” copies names but doesn’t link

nested1.py

X = 99

def printer(): print X

nested2.py

from nested1 import X, printer # copy names out

X = 88 # changes my "X" only!

printer()

nested3.py

import nested1 # get module as a whole

nested1.X = 88 # change nested1's X

nested1.printer()

% python nested2.py

99

% python nested3.py

88

Statement order matters at top-level

file: order1.py

func1() # error: "func1" not yet assigned

def func1():

 print func2() # okay: "func2" looked up later

func1() # error: "func2" not yet assihned

def func2():

 return "Hello"

func1() # okay: "func1" and "func2" assigned

Recursive “from” import gotchas

· Solution: use “import”, or “from” inside functions

file: recur1.py

X = 1

import recur2 # run recur2 now if doesn't exist

Y = 2

file recur2.py

from recur1 import X # okay: "X" already assigned

from recur1 import Y # error: "Y" not yet assigned

>>> import recur1

Traceback (innermost last):

 File "<stdin>", line 1, in ?

 File "recur1.py", line 2, in ?

 import recur2

 File "recur2.py", line 2, in ?

 from recur1 import Y # error: "Y" not yet assigned

ImportError: cannot import name Y

“reload” may not impact “from” imports

· “reload” overwrites existing module object

· But “from” names have no link back to module

· Use “import” to make reloads more effective

import module (module.X reflects module reloads

from module import X (X may not reflect module reloads!

“reload” isn’t applied transitively

· Use multiple “reloads” to update subcomponents

· Or use recursion to traverse import dependencies

See CD’s Extras\Misc\reloadall.py

Optional reading: stack module (see HTML version)
Lab Session 5

7. Classes

Why use classes?

· Implementing new objects

· Multiple instances

· Customization via inheritance

· Operator overloading

Class topics

· Class basics

· The class statement

· Class methods

· Attribute inheritance

· Operator overloading

· Name spaces and scopes

· OOP, inheritance, and composition

· Classes and methods are objects

· Odds and ends

· Class gotchas

OOP: The Big Picture

How it works

· All about: “object.attr”

· Kicks off a search for first “attr” => “inheritance”

· Searches trees of linked namespace objects

· Class objects: supers and subs

· Instance objects: generated form a class

· Classes can also define expression behavior

 SHAPE * MERGEFORMAT

class C2: … # make class objects (ovals)

class C3: …

class C1(C2, C3): … # links to superclasses

I1 = C1() # make instance objects (rectangles)

I2 = C1() # linked to their class

I1.x # finds customized version in C1

Why OOP?

· Inheritance: basis of specializing, customizing software -- lower in tree means customization

· Program by customizing in new levels of hierarchy, not changing

· OOP great at code reuse, encapsulation, structure

· Example: an employee database app

A first look: class basics

1. Classes generate multiple instance objects

· Classes implement new objects: state + behavior

· Calling a class like a function makes a new instance

· Each instance inherits class attributes, and gets its own

· Assignments in class statements make class attributes

· Assignments to “self.attr” make per-instance attributes

>>> class FirstClass: # define a class object

... def setdata(self, value): # define class methods

... self.data = value # self is the instance

... def display(self):

... print self.data # self.data: per instance

>>> x = FirstClass() # make two instances

>>> y = FirstClass() # each is a new namespace

>>> x.setdata("King Arthur") # call methods: self=x/y

>>> y.setdata(3.14159)

>>> x.display() # self.data differs in each

King Arthur

>>> y.display()

3.14159

>>> x.data = "New value" # can get/set attributes

>>> x.display() # outside the class too

New value

2. Classes are specialized by inheritance

· Superclasses listed in parenthesis in class's header

· Classes inherit attributes from their superclasses

· Instances inherit attributes from all accessible classes

· Logic changes made in subclasses, not in-place

>>> class SecondClass(FirstClass): # inherits setdata

... def display(self): # changes display

... print 'Current value = "%s"' % self.data

>>> z = SecondClass()

>>> z.setdata(42) # setdata found in FirstClass

>>> z.display() # finds/calls overridden method

Current value = "42"

>>> x.display() # x is a FirstClass instance

New value

3. Classes can intercept Python operators

· Methods with names like "__X__" are special hooks

· Called automatically when Python evaluates operators

· Classes may override most built-in type operations

· Allows classes to integrate with Python's object model

>>> class ThirdClass(SecondClass): # isa SecondClass

... def __init__(self, value): # "ThirdClass(x)"

... self.data = value

... def __add__(self, other): # "self + other"

... return ThirdClass(self.data + other)

... def __mul__(self, other):

... self.data = self.data * other # "self * other"

>>> a = ThirdClass("abc") # new __init__ called

>>> a.display() # inherited method

Current value = "abc"

>>> b = a + 'xyz' # new __add__ called

>>> b.display()

Current value = "abcxyz"

>>> a * 3 # new __mul__ called

>>> a.display()

Current value = "abcabcabc"

A More Realistic Example:

using classes as database records

 see CD’s Extras\people

A closer look: class terminology

· Class

· An object (and statement) which defines inherited members and methods

· Instance

· Objects created from a class, which inherit its attributes; each instance is a new namespace

· Member

· An attribute of a class or instance object, that’s bound to an object

· Method

· An attribute of a class object, that’s bound to a function object (a callable member)

· Self

· By convention, the name given to the implied instance object in methods

· Inheritance

· When an instance or class accesses a class’s attributes

· Superclass

· Class or classes another class inherits attributes from

· Subclass

· Class which inherits attribute names from another class

Using the class statement

· Python’s main OOP tool (like C++)

· Superclasses are listed in parenthesis

· Special protocols, operator overloading: __X__

· Multiple inheritance: “class X(A, B, C)” (df, l-to-r)

General form

class <name>(superclass,…): # assign to name

 data = value # shared class data

 def method(self,…): # methods

 self.member = value # per-instance data

Example

· “class” introduces a new local scope

· Assignments in “class” create class object attributes

· “self.name = X” creates/changes instance attribute

class Subclass(Superclass): # define subclass

 data = 'spam' # assign class attr

 def __init__(self, value): # assign class attr

 self.data = value # assign instance attr

 def display(self):

 print self.data, Subclass.data # instance, class

>>> x, y = Subclass(1), Subclass(2)

>>> x.display(); y.display()

1 spam

2 spam

Using class methods

· “class” statement creates and assigns a class object

· Calling a class object generates an instance object

· Class methods provide behavior for instance objects

· Methods are nested “def” functions, with a ‘self’

· ‘self’ is passed the implied instance object

· Methods are all ‘public’ and ‘virtual’ in C++ terms

Example

class NextClass: # define class

 def printer(self, text): # define method

 print text

>>> x = NextClass() # make instance

>>> x.printer('Hello world!') # call its method

Hello world!

>>> NextClass.printer(x, 'Hello world!') # class method

Hello world!

Commonly used for calling superclass constructors

class Super:

 def __init__(self, x):

 …default code…

class Sub(Super):

 def __init__(self, x, y):

 Super.__init__(self, x) # run superclass init

 …custom code… # do my init actions

I = Sub(1, 2)

Customization via inheritance

· Inheritance uses attribute definition tree (namespaces)

· “object.attr” searches up namespace tree for first “attr”

· Lower definitions in the tree override higher ones

Attribute tree construction:

1. Instance (assignments to ‘self’ attributes

2. Class (statements (assignments) in class statements

3. Superclasses (classes listed in parenthesis in header

Specializing inherited methods

· Inheritance finds names in subclass before superclass

· Subclasses may inherit, replace, extend, or provide
· Direct superclass method calls: Class.method(self,…)

>>> class Super:

... def method(self):

... print 'in Super.method'

...

>>> class Sub(Super):

... def method(self):

... print 'starting Sub.method'

... Super.method(self)

... print 'ending Sub.method'

...

>>> x = Super()

>>> x.method()

in Super.method

>>> x = Sub()

>>> x.method()

starting Sub.method

in Super.method

ending Sub.method

file: specialize.py

class Super:

 def method(self):

 print 'in Super.method' # default

 def delegate(self):

 self.action() # expected

class Inheritor(Super):

 pass

class Replacer(Super):

 def method(self):

 print 'in Replacer.method'

class Extender(Super):

 def method(self):

 print 'starting Extender.method'

 Super.method(self)

 print 'ending Extender.method'

class Provider(Super):

 def action(self):

 print 'in Provider.action'

if __name__ == '__main__':

 for klass in (Inheritor, Replacer, Extender):

 print '\n' + klass.__name__ + '...'

 klass().method()

 print '\nProvider...'

 Provider().delegate()

% python specialize.py

Inheritor...

in Super.method

Replacer...

in Replacer.method

Extender...

starting Extender.method

in Super.method

ending Extender.method

Provider...

in Provider.action

Operator overloading in classes

· Lets classes intercept normal Python operations

· Can overload all Python expression operators

· Can overload object operations: print, call, qualify,...

· Makes class instances more like built-in types

· Via providing specially-names class methods

class Number:

 def __init__(self, start): # on Number()

 self.data = start

 def __add__(self, other): # on x + other

 return Number(self.data + other)

>>> X = Number(4)

>>> Y = X + 2

>>> Y.data

6

Common operator overloading methods

· Special method names have 2 “_” before and after

· See Python manuals or reference books for the full set

	Method
	Overloads
	Called for

	__init__
	constructor
	object creation: X()

	__del__
	destructor
	object reclamation

	__add__
	operator ‘+’
	X + Y

	__or__
	operator ‘|’
	X | Y

	__repr__
	printing
	print X, `X`

	__call__
	function calls
	X()

	__getattr__
	qualification
	X.undefined

	__getitem__
	indexing
	X[key], iteration, in

	__setitem__
	qualification
	X[key] = value

	__len__
	length
	len(X), truth tests

	__cmp__
	comparison
	X == Y, X < Y

	__radd__
	operator ‘+’
	non-instance + X

Examples

· getitem intercepts all index references

>>> class indexer:

... def __getitem__(self, index):

... return index ** 2

...

>>> X = indexer()

>>> for i in range(5):

... print X[i], # __getitem__

...

0 1 4 9 16

· getattr catches undefined attribute references

>>> class empty:

... def __getattr__(self, attrname):

... return attrname + ' not supported!'

...

>>> X = empty()

>>> X.age # __getattr__

'age not supported!'

· init
called on instance creation

· add
intercepts ‘+’ expressions

· repr
returns a string when called by ‘print’

>>> class adder:

... def __init__(self, value=0):

... self.data = value # init data

... def __add__(self, other):

... self.data = self.data + other # add other

... def __repr__(self):

... return `self.data` # to string

...

>>> X = adder(1) # __init__

>>> X + 2; X + 2 # __add__

>>> X # __repr__

5

Namespace rules: the whole story

· Unqualified names (“X”) deal with lexical scopes

· Qualified names (“O.X”) use object namespaces

· Scopes initialize object namespaces: modules, classes

The “Zen” of Python Namespaces

mod.py

all 5 Xs are different variables

X = 1 # global

def f():

 X = 2 # local

class C:

 X = 3 # class

 def m(self):
 X = 4 # local

 self.X = 5 # instance

Unqualified names: global unless assigned

· Assignment: “X = value”

· Makes names local: creates or changes name in the current local scope, unless declared ‘global’
· Reference: “X”

· Looks for names in the current local scope, then the current global scope, then the outer built-in scope

Qualified names: object name-spaces

· Assignment: “X.name = value”

· Creates or alters the attribute name in the namespace of the object being qualified

· Reference: “X.name”

· Searches for the attribute name in the object, and then all accessible classes above it (none for modules)

Namespace dictionaries

· Object name-spaces: built-in “__dict__” attributes

· Qualification == indexing a name-space dictionary

· To get a ‘name’ from a module “M”:

· M.name

· M.__dict__[’name’]

· sys.modules['M'].name

· sys.modules['M'].__dict__['name']

· sys.__dict__['modules']['M'].__dict__['name']

· Attribute inheritance == searching dictionaries

>>> class super:

... def hello(self):

... self.data = 'spam' # in self.__dict__

...

>>> class sub(super):

... def howdy(self): pass

...

>>> X = sub()

>>> X.__dict__ # a new name-space/dict

{}

>>> X.hola = 42 # add member to X object

>>> X.__dict__

{'hola': 42}

>>> sub.__dict__

{'__doc__': None, 'howdy': <function howdy at 762100>}

>>> super.__dict__

{'hello': <function hello at 769fd0>, '__doc__': None}

>>> X.hello()

>>> X.__dict__

{'data': 'spam', 'hola': 42}

Optional reading: OOP and inheritance

· Inheritance based on attribute qualification

· In OOP terminology: ‘is-a’ relationship

· On “X.name”, looks for “name” in:

· Instance
(X’s own name-space

· Class
(class that X was made from

· Superclasses (depth-first, left-to-right

Example: a zoo hierarchy in Python

file: zoo.py

class Animal:

 def reply(self): self.speak()

 def speak(self): print 'spam'

class Mammal(Animal):

 def speak(self): print 'huh?'

class Cat(Mammal):

 def speak(self): print 'meow'

class Dog(Mammal):

 def speak(self): print 'bark'

class Primate(Mammal):

 def speak(self): print 'Hello world!'

class Hacker(Primate): pass

[image: image25.wmf]Animal

Mammal

Cat

Dog

Primate

Hacker

% python

>>> from zoo import Cat, Hacker

>>> spot = Cat()

>>> spot.reply() # Animal.reply, Cat.speak

meow

>>> data = Hacker() # Animal.reply, Primate.speak

>>> data.reply()

Hello world!

Optional reading: OOP and composition

· Class instances simulate objects in a domain

· Nouns(classes, verbs(methods

· Class objects embed and activate other objects

· In OOP terminology: ‘has-a’ relationship

Example: the dead-parrot skit in Python

file: parrot.py

class Actor:

 def line(self): print self.name + ':', `self.says()`

class Customer(Actor):

 name = 'customer'

 def says(self): return "that's one ex-bird!"

class Clerk(Actor):

 name = 'clerk'

 def says(self): return "no it isn't..."

class Parrot(Actor):

 name = 'parrot'

 def says(self): return None

class Scene:

 def __init__(self):

 self.clerk = Clerk() # embed some instances

 self.customer = Customer() # Scene is a composite

 self.subject = Parrot()

 def action(self):

 self.customer.line() # delegate to embedded

 self.clerk.line()

 self.subject.line()

[image: image26.wmf] Scene

Clerk

Customer

action

line

Parrot

% python

>>> import parrot

>>> parrot.Scene().action() # activate nested objects

customer: "that's one ex-bird!"

clerk: "no it isn't..."

parrot: None

 Classes are objects: factories

· Everything is a first-class ‘object’

· Only objects derived from classes are OOP ‘objects’

· Classes can be passed around as data objects

def factory(aClass, *args): # varargs tuple

 return apply(aClass, args) # call aClass

class Spam:

 def doit(self, message):

 print message

class Person:

 def __init__(self, name, job):

 self.name = name

 self.job = job

object1 = factory(Spam) # make a Spam

object2 = factory(Person, "Guido", "guru") # make a Person

Methods are objects: bound or unbound

· Unbound class methods: call with a ‘self’

· Bound instance methods: instance + method pairs

object1 = Spam()

x = object1.doit # bound method object

x('hello world') # instance is implied

t = Spam.doit # unbound method object

t(object1, 'howdy') # pass in instance

Odds and ends

Pseudo-private attributes

· Data hiding is a convention (until Python1.5 or later)

· “We’re all consenting adults” –Guido van Rossum

· 1.5 name mangling: “self.__X” (“self._Class__X”

· Class name prefix makes names unique in “self” instance

· Only works in class, and only if at most 1 trailing “_”

· Mostly for larger, multi-programmer, OO projects

class C1:

 def meth1(self): self.__X = 88 # now X is mine

 def meth2(self): print self.__X # becomes _C1__X in I

class C2:

 def metha(self): self.__X = 99 # me too

 def methb(self): print self.__X # becomes _C2__X in I

class C3(C1, C2): pass

I = C3() # two X names in I

I.meth1(); I.metha()

print I.__dict__

I.meth2(); I.methb()

% python private.py

{'_C2__X': 99, '_C1__X': 88}

88

99

Documentation strings

· Still not universally used

· Woks for classes, modules, functions, methods

· String constant before any statements

· Stored in object’s __doc__ attribute

file: docstr.py

"I am: docstr.__doc__"

class spam:

 "I am: spam.__doc__ or docstr.spam.__doc__"

 def method(self, arg):

 "I am: spam.method.__doc__ or self.method.__doc__"

 code...

def func(args):

 "I am: docstr.func.__doc__"

 code...

Classes versus modules

· Modules…

Are data/logic packages

Creation: files or extensions

Usage: imported

· Classes…

Implement new objects

Always live in a module

Creation: statements

Usage: called

OOP and Python

· Inheritance

· Based on attribute lookup: “X.name”

· Polymorphism

· In “X.method()”, the meaning of ‘method’ depends on the type (class) of ‘X’

· Encapsulation

· Methods and operators implement behavior; data hiding is a convention (for now)

class C:

 def meth(self, x): # like x=1; x=2

 …

 def meth(self, x, y, z): # the last one wins!

 …

class C:

 def meth(self, *args):

 if len(args) == 1:

 …

 elif type(arg[0]) == int:

 …

class C:

 def meth(self, x): # the python way:

 x.operation() # assume x does the right thing

Python’s dynamic nature

· Members may be added/changed outside class methods

>>> class C: pass

...

>>> X = C()

>>> X.name = 'bob'

>>> X.job = 'psychologist'

· Scopes may be expanded dynamically: run-time binding

file: delayed.py

def printer():

 print message # name resolved when referenced

% python

>>> import delayed

>>> delayed.message = "Hello" # set message now

>>> delayed.printer()

Hello

Subclassing builtin types in 2.2 (Advanced)

· All types now behave like classes: list, str, tuple, dict,…

· Subclass to custoimize builtin object behavior

· Alternative to writing “wrapper” code

subclass builtin list type/class

map 1..N to 0..N-1, call back to built-in version

class MyList(list):

 def __getitem__(self, offset):

 print '(indexing %s at %s)' % (self, offset)

 return list.__getitem__(self, offset - 1)

if __name__ == '__main__':

 print list('abc')

 x = MyList('abc') # __init__ inherited from list

 print x # __repr__ inherited from list

 print x[1] # MyList.__getitem__

 print x[3] # customizes list superclass method

 x.append('spam'); print x # attributes from list superclass

 x.reverse(); print x

% python typesubclass.py

['a', 'b', 'c']

['a', 'b', 'c']

(indexing ['a', 'b', 'c'] at 1)

a

(indexing ['a', 'b', 'c'] at 3)

c

['a', 'b', 'c', 'spam']

['spam', 'c', 'b', 'a']

“New Style” Classes in 2.2 (Advanced)

· Adds new feature, changes one inheritance case

· Only if “object”” or a builtin type as a superclass

class newstyle(object):

 …normal code…

· Adds: slots, limits legal attributes set

>>> class limiter(object):

... __slots__ = ['age', 'name', 'job']

...

>>> x.ape = 1000

AttributeError: 'limiter' object has no attribute

· Adds: properties, computed attributes alternative

>>> class classic:

... def __getattr__(self, name):

... if name == 'age':

... return 40

... else:

... raise AttributeError

...

>>> x = classic()

>>> x.age # runs __getattr__

40

>>> class newprops(object):

... def getage(self):

... return 40

... age = property(getage, None, None, None) # get,set,del

...

>>> x = newprops()

>>> x.age # runs getage

40

· Adds: static and class methods, new calling patterns

class Spam: # static: no self

 numInstances = 0 # class: class, not instance

 def __init__(self):

 Spam.numInstances += 1

 def printNumInstances():

 print "Number of instances:", Spam.numInstances

 printNumInstances = staticmethod(printNumInstances)

>>> a = Spam()

>>> b = Spam()

>>> c = Spam()

>>> Spam.printNumInstances()

Number of instances: 3

· Function decorators (2.4+)

class C:

 @staticmethod

 def meth():

 ...

is equivalent to…

class C:

 def meth():

 ...

 meth = staticmethod(meth) # rebind name

@A @B @C

def f (): ...

is equivalent to…

def f(): ...

f = A(B(C(f)))

· Changes: behavior of “diamond” multiple inheritance

>>> class A: attr = 1 # classic

>>> class B(A): pass

>>> class C(A): attr = 2

>>> class D(B,C): pass # tries A before C

>>> x = D() # more depth-first

>>> x.attr

1

>>> class A(object): attr = 1 # new style

>>> class B(A): pass

>>> class C(A): attr = 2

>>> class D(B,C): pass # tries C before A

>>> x = D() # more breadth-first

>>> x.attr

2

Class gotchas

· Multiple inheritance: order matters

· Solution: use sparingly and/or carefully

file: mi.py

class Super1:

 def method2(self): # a 'mixin' superclass

 print 'in Super1.method2'

class Super2:

 def method1(self):

 self.method2() # calls my method2??

 def method2(self):

 print 'in Super2.method2'

class Sub1(Super1, Super2):

 pass # gets Super1's method2

class Sub2(Super2, Super1):

 pass # gets Super2's method2

class Sub3(Super1, Super2):

 method2 = Super2.method2 # pick method manually

Sub1().method1()

Sub2().method1()

Sub3().method1()

% python mi.py

in Super1.method2

in Super2.method2

in Super2.method2

Optional reading: a set class (see HTML version)
Summary: OOP in Python

· Class objects provide default behavior

· Classes support multiple copies, attribute inheritance, and operator overloading

· The class statement creates a class object and assigns it to a name

· Assignments inside class statements create class attributes, which export object state and behavior

· Class methods are nested defs, with special first arguments to receive the instance

· Instance objects are generated from classes

· Calling a class object like a function makes a new instance object

· Each instance object inherits class attributes, and gets its own attribute namespace

· Assignments to the first argument ("self") in methods create per-instance attributes

· Inheritance supports specialization

· Inheritance happens at attribute qualification time: on “object.attribute”, if object is a class or instance

· Classes inherit attributes from all classes listed in their class statement header line (superclasses)

· Instances inherit attributes from the class they are generated from, plus all its superclasses

· Inheritance searches the instance, then its class, then all accessible superclasses (depth-first, left-to-right)

Lab Session 6

8. Exceptions

Why use exceptions?

· Error handling

· Event notification

· Special-case handling

· Unusual control-flows

Exception topics

· The basics

· Exception idioms

· Exception catching modes

· Class exceptions

· Exception gotchas

Exception basics

· A high-level control flow device

· try statements catch exceptions

· raise statements trigger exceptions

· Exceptions are raised by Python or programs

Basic forms

· try/except/else

try:
 <statements> # run/call actions

except <name>:

 <statements> # if name raised during try block

except <name>, <data>:
 <statements> # if 'name' raised; get extra data

else:

 <statements> # if no exception was raised

· try/finally

try:

 <statements>

finally:

 <statements> # always run 'on the way out'

· raise

raise <name> # manually trigger an exception

raise <name>, <data> # pass extra data to catcher too

· assert

assert <test>, <message> # raise with msg if test false

First examples

Builtin exceptions

· Python triggers builtin exceptions on errors

· Displays message at top-level if not caught

def kaboom(list, n):

 print list[n] # trigger IndexError

try:

 kaboom([0, 1, 2], 3)

except IndexError: # catch exception here

 print 'Hello world!'

User-defined exceptions

· Python (and C) programs raise exceptions too

· User-defined exceptions are objects

MyError = "my error"

def stuff(file):

 raise MyError

file = open('data', 'r') # open a file

try:

 stuff(file) # raises exception

finally:

 file.close() # always close file

Exception idioms

· EOFError sometimes signals end-of-file

while 1:

 try:

 line = raw_input() # read from stdin

 except EOFError:

 break

 else:

 <process next ‘line’ here>

· Searches sometimes signal success by ‘raise’

Found = "Item found"

def searcher():

 <raise Found or return>

try:

 searcher()

except Found:

 <success>

else:

 <failure>

· Outer ‘try’ statements can be used to debug code

try:

 <run program>

except: # all uncaught exceptions come here

 import sys

 print 'uncaught!', sys.exc_info()[:2] # type, value

Exception catching modes

· Try statements nest (are stacked) at runtime

· Python selects first clause that matches exception

· Try blocks can contain a variety of clauses

· Multiple excepts: catch 1-of-N exceptions

· Try can contain ‘except’ or ‘finally’, but not both

Try block clauses

	Operation
	Interpretation

	except:
	catch all exception types

	except name:
	catch a specific exception only

	except name, value:
	catch exception and its extra data

	except (name1, name2):
	catch any of the listed exceptions

	else:
	run block if no exceptions raised

	finally:
	always perform block

· Exceptions nest at run-time

· Runs most recent matching except clause

file: nestexc.py

def action2():

 print 1 + [] # generate TypeError

def action1():

 try:

 action2()

 except TypeError: # most recent matching try

 print 'inner try'

try:

 action1()

except TypeError: # here iff action1 re-raises

 print 'outer try'

% python nestexc.py

inner try

· Catching 1-of-N exceptions

· Runs first match: top-to-bottom, left-to-right

· See manuals or reference text for a complete list

try:
 action()

except NameError:

 ...

except IndexError

 ...

except KeyError:
 ...

except (AttributeError, TypeError, SyntaxError):

 ...

else:

 ...

· ‘finally’ clause executed on the way out

· useful for ‘cleanup’ actions: closing files,...

· block executed whether exception occurs or not

· Python propagates exception after block finishes

· but exception lost if finally runs a raise, return, or break

file: finally.py

def divide(x, y):

 return x / y # divide-by-zero error?

def tester(y):

 try:

 print divide(8, y)

 finally:

 print 'on the way out...'

print '\nTest 1:'; tester(2)

print '\nTest 2:'; tester(0) # trigger error

% python finally.py

Test 1:

4

on the way out...

Test 2:

on the way out...

Traceback (innermost last):

 File "finally.py", line 11, in ?

 print 'Test 2:'; tester(0)

 File "finally.py", line 6, in tester

 print divide(8, y)

 File "finally.py", line 2, in divide

 return x / y # divide-by-zero error?

ZeroDivisionError: integer division or modulo

· Optional data

· Provides extra exception details

· Python passes None if no explicit data

file: helloexc.py

myException = 'Error' # string object

def raiser1():

 raise myException, "hello" # raise, pass data

def raiser2():

 raise myException # raise, None implied

def tryer(func):

 try:

 func()

 except myException, extraInfo:

 print 'got this:', extraInfo

% python

>>> from helloexc import *

>>> tryer(raiser1)

got this: hello

>>> tryer(raiser2)

got this: None

Class exceptions

· Useful for catching categories of exceptions

· String exception match: same object (‘is’ identity)

· Class exception match: named class or subclass of it

· Class exceptions support exception hierarchies

General raise forms

raise string # matches same string object

raise string, data # optional extra data (default=None)

raise class, instance # matches class or its superclass

raise instance # = instance.__class__, instance

Example

file: classexc.py

class Super: pass

class Sub(Super): pass

def raiser1():

 X = Super() # raise listed class instance

 raise X

def raiser2():

 X = Sub() # raise instance of subclass

 raise X

for func in (raiser1, raiser2):

 try:

 func()

 except Super: # match Super or a subclass

 import sys

 print 'caught:', sys.exc_info()[0]
% python classexc.py

caught: <class Super at 770580>

caught: <class Sub at 7707f0>

Example: numeric library

class NumErr: pass

class Divzero(NumErr): pass

class Oflow(NumErr): pass

raise DivZero()

import mathlib

try:

 mathlib.func(…)

except mathlib.NumErr:

 …report and recover…

Example: using raised instance

class MyBad:

 def __init__(self, file, line):

 self.file = file

 self.line = line

 def display(self):

 print self.file * 2

def parser():

 raise MyBad('spam.txt', 5)

try:

 parser()

except MyBad, X:

 print X.file, X.line

 X.display()

built-in file error numbers

def parser():

 open('nonesuch')

try:

 parser()

except IOError, X:

 print X.errno, '=>', X.strerror

Exception gotchas

What to wrap in a try statement?

· Things that commonly fail: files, sockets, etc.

· Calls to large functions, not code inside the function

· Anything that shouldn’t kill your script

· Simple top-level scripts often should die on errors

· See also atexit module for shutdown time actions

Catching too much?

· Empty except clauses catch everything

· But may intercept error expected elsewhere

try:

 [...]

except:

 [...] # everything comes here: even sys.exit()!

Catching too little?

· Specific except clauses only catch listed exceptions

· But need to be updated if add new exceptions later

· Class exceptions would help here: category name

try:

 [...]

except (myerror1, myerror2): # what if I add a myerror3?

 [...] # non-errors

else:

 [...] # assumed to be an error

Solution: exception protocol design

Lab Session 7

9. Built-in Tools Overview

· Python's tool box

· Types and operations: lists, dictionaries, files, slices,…

· Functions: len, range, apply, getattr…

· Modules (Python and C): string, os, Tkinter, pickle,…

· Exceptions: IndexError, KeyError,…

· Attributes: __dict__, __name__,…

· Peripheral tools: NumPy, SWIG, JPython, PythonWin,…

Topics

· Debugging options
· Inspecting name-spaces

· Dynamic coding tools

· Timing and profiling Python programs

· Packaging Python programs

· Development tools for larger projects

· Summary: Python tool set layers

But first, the secret handshake…

Debugging options
· Imported modules, written in Python

· May also be run as scripts, in latest release

· ‘pdb’ debugger: dbx-like command line interface

· New: ‘IDLE’ Tkinter-based debugger GUI

· See library manuals for pdb commands and usage

Other error-handling tricks

· Top-level stack tracebacks

· Inserting print statements

· Outer exception handlers

def safe(entry, *args):

 try:

 apply(entry, args) # catch everything else

 except:

 import sys

 print sys.exc_info()[0], sys.exc_info()[1] # type, value
Debugging example

file: boom.py

def func(x, y):

 return x / y

Session

>>> import boom

>>> boom.func(1, 0)

Traceback (innermost last):

 File "<stdin>", line 1, in ?

 File "boom.py", line 3, in func

 return x / y

ZeroDivisionError: integer division or modulo

>>>

>>> import pdb

>>> pdb.run('boom.func(1, 0)') (run/debug code

> <string>(0)?()

(Pdb) b boom.func (set breakpoint

(Pdb) c (continue program

> boom.py(2)func()

-> def func(x, y):

(Pdb) s (step 1 line

> boom.py(3)func()

-> return x / y

(Pdb) s

ZeroDivisionError: 'integer division or modulo'

> boom.py(3)func()

-> return x / y

(Pdb) where (stack trace

 <string>(1)?()

> boom.py(3)func()

-> return x / y

(Pdb) p y (print variables

0

Inspecting name-spaces

· Python lookups use 3-scope rule: local, global, built-in

· locals(), globals(): return name-spaces as dictionaries

% python

>>> def func(x):

... a = 1

... print locals() # on function call

... print globals().keys()

...

>>> class klass:

... def __init__(self):

... print locals() # on instance creation

... print globals().keys()

... print locals() # on class creation

... print globals().keys()

...

{'__init__': <function __init__ at 76ed00>}

['__builtins__', '__name__', 'func', '__doc__']

>>> func(1)

{'a': 2, 'x': 1}

['__builtins__', '__name__', 'func', 'klass', '__doc__']

>>> x = klass()

{'self': <klass instance at 76f8d0>, 'arg': None}

['__builtins__', '__name__', 'func', 'klass', '__doc__']

>>> def nester(L, M, N):

... class nested: # assigns class to name

... def __init__(self):

... pass

... print locals() # local=class global=mod

... print globals().keys() # no access to L/M/N!

... return nested

...

>>> nester(1, 2, 3)

{'__init__': <function __init__ at 761e30>}

['__doc__', 'nester', '__name__', 'x', 'func', 'klass',...]

<class nested at 762960>

Dynamic coding tools

· apply
runs functions with argument tuples

· eval
evaluates a Python expression code-string

· exec
runs a Python statement code-string

· getattr
fetches an object’s attribute by name string

· Supports run-time program construction

· Supports embedding Python in Python

Basic usage

>>> x = "2 ** 5"

>>> a = eval(x)

>>> a

32

>>> exec "print a / 2"

16

>>> def echo(a, b, c): print a, b, c

...

>>> apply(echo, (1, 2, 3))

1 2 3

>>> import string

>>> getattr(string, "uppercase")

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

>>> D = {}

>>> exec "import math\nx = math.pi" in D, D

>>> D['x']

3.14159265359

Example

· Import module by name, run function by name/args

· Runs: [message.printer(‘sir’, ‘robin’)]

· Also see: new __import__ function

· Preview: will revisit model to embed Python in C

file: message.py

def printer(str1, str2):

 return 'brave', str1, str2

file: dynamic.py

def runFunction(moduleName, functionName, argsTuple):

 exec 'import ' + moduleName

 module = eval(moduleName)

 function = getattr(module, functionName)

 return apply(function, argsTuple)

if __name__ == '__main__':

 from sys import argv

 print runFunction(argv[1], argv[2], tuple(argv[3:]))

Command line

% python dynamic.py message printer sir robin

('brave', 'sir', 'robin')

Timing and profiling Python programs

· time module contains C library type tools

· Useful for performance tweaking (along with profiler)

· Warning: be careful to compare apples to apples!

Example: inline stack alternatives

· List based stacks

['spam0', 'spam1', 'spam2'] (top
· Use list in-place changes: append/del

· Lists resized on demand: grown in increments

· Tuple-pair based stacks

top(('spam2', ('spam1', ('spam0', None)))

· Use tuple packing/unpacking assignments

· Build a tree of 2-item tuples: (item, tree)

· Like Lisp ‘cons’ cells/linked lists: avoids copies

file: testinline.py

#!/opt/local/bin/python

import time

from sys import argv, exit

numtests = 20

try:

 pushes, pops = eval(argv[1]), eval(argv[2])

except:

 print 'usage: testinline.py <pushes> <pops>'; exit(1)

def test(reps, func):

 start_cpu = time.clock()

 for i in xrange(reps): # call N times

 x = func()

 return time.clock() - start_cpu

def inline1(): # builtin lists

 x = []

 for i in range(pushes): x.append('spam' + `i`)

 for i in range(pops): del x[-1]

def inline2(): # builtin tuples

 x = None

 for i in range(pushes): x = ('spam' + `i`, x)

 for i in range(pops): (top, x) = x

print 'lists: ', test(numtests, inline1) # run 20 times

print 'tuples:', test(numtests, inline2)

Results

% testinline.py 500 500 --20*(500 pushes + 500 pops)

lists: 0.77 --lists: append/del

tuples: 0.43 --tuples: pack/unpack

% testinline.py 1000 1000 --20K pushes + 20K pops

lists: 1.54

tuples: 0.87

% testinline.py 200 200

lists: 0.31

tuples: 0.17

% testinline.py 5000 5000

lists: 7.72

tuples: 4.5

Related Modules

datetime

>>> from datetime import datetime, timedelta

>>> x = datetime(2004, 11, 21)

>>> y = datetime(2005, 3, 19)

>>>

>>> y - x

datetime.timedelta(118)

>>>

>>> x + timedelta(30)

datetime.datetime(2004, 12, 21, 0, 0)
profile

>>> import profile

>>> profile.run('import test1')

 35 function calls in 0.027 CPU seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)

 16 0.001 0.000 0.001 0.000 :0(range)

 1 0.005 0.005 0.005 0.005 :0(setprofile)

 1 0.002 0.002 0.022 0.022 <string>:1(?)

 1 0.000 0.000 0.027 0.027 profile:0(import test1)

 0 0.000 0.000 profile:0(profiler)

 1 0.000 0.000 0.020 0.020 test1.py:2(?)

 15 0.019 0.001 0.020 0.001 test1.py:2(myfun)

Packaging programs for delivery

Byte code

Modules compiled to portable byte-code on import: .pyc

compileall module forces imports, to make .pyc’s

.pyo files created and run with –O command-line flag

Frozen Binaries

Package byte-code + Python in an executable

Don’t require Python to be installed

Protect your program code

Other options

Import hooks support zip files, decryption, etc.

Pickler converts objects to/from text stream (serializer)

	Format
	Medium

	Source files
	.py files, scripts

	Source files, no console
	.pyw files (Windows,GUI)

	Compiled byte-code files
	.pyc files, .pyo files(1.5+)

	Encrypted byte-code files
	Import hooks, rotor

	Frozen binaries
	Py2Exe, Installer, Freeze

	Installer, distutils
	single package format

	Zip files of modules
	zipimport module (2.3)

	Squeezed bytes-code files
	.pyz files

	Pickled/marshaled objects
	raw objects

	Embedding mediums
	databases, etc.

	Jython: Java bytecode
	network downloads, etc.

Development tools for larger projects

	PyDoc
	Displaying docstrings, program structure

	PyChecker
	Pre-run error checking (a “lint” for Python)

	PyUnit
	Unit testing framework (a.k.a. unittest)

	Doctest
	docstring-based regression test system

	IDEs
	IDLE, Komodo, PythonWin, PythonWorks

	Profilers
	profile, hotshot

	Debuggers
	pdb, IDLE point-and-click, print

	Optimization
	Psyco, .pyo bytecode, C extensions, SWIG

	Packaging
	Py2Exe, Installer, Freeze (above)

	Distutils
	packaging, install, build script system

	Language tools
	module packages, private attributes, class exceptions, __name__==__main__, docstrings

Summary: Python tool-set layers

· Built-ins

· Lists, dictionaries, strings, library modules, etc.

· High-level tools for simple, fast programming
· Python extensions

· Functions, classes, modules

· For adding extra features, and new object types

C extensions

· C modules, C types

· For integrating external systems, optimizing components, customization

Lab Session 7

10. System interfaces

System modules overview

Python tools: sys
· Python-related exports

· path: initialized from PYTHONPATH, changeable

· platform: ‘sunos’, ‘win32’, ‘linux2’, etc.

>>> import sys

>>> sys.path

['.', '/usr/local/lib/python', ...]

>>> sys.platform

'sunos4'

System tools: os
· POSIX bindings: operating system exports

· ~200 attributes on some platforms

Content survey

· Shell environment variables

os.environ

· Running shell commands, programs:

os.system, os.popen

· Spawning processes:

os.fork, os.pipe, os.exec, os.waitpid, os.kill

· Descriptor files, with locking:

os.open, os.read, os.write

· File processing:

os.remove,os.rename,os.mkfifo,os.mkdir,os.rmdir

· Administrative tools:

os.getcwd,os.chdir,os.chmod,os.getpid,os.listdir

· Portability tools:

os.sep, os.pathsep, os.curdir, os.path.split/join

· os.path nested submodule: pathname tools

os.path.exists('filepathname')

os.path.isdir('filepathname')

os.path.getsize('filepathname')

Running shell commands

>>> import os

>>> listing = os.popen("ls *.py").readlines()

>>> for name in listing: print name,

...

cheader1.py

finder1.py

summer.py

>>> for name in listing: os.system("vi " + name)

...

Variations:

os.popen('cmd', 'w').write('data')

(i, o) = os.popen2('cmd')

(i, o, e) = os.popen3('cmd')

(i, o_e) = os.popen4('cmd')

os.startfile('file')

Others: glob, socket, select, thread, fcntl,…

· See Python library manual for the full story

Arguments, streams, shell variables

Shell environment variables: os
· os.environ: read/write access to shell variables

>>> import os

>>> os.environ['USER']

'mlutz'

>>> os.environ['USER'] = 'Bob' # changes for process and its children

Arguments and streams: sys
· sys.argv: command-line arguments

· sys.stdin/stdout/stderr: standard stream files

% cat play.py

#!/usr/local/bin/python

import sys

print sys.argv

sys.stdout.write("ta da!\n") # same as: print 'ta da!'

% play.py -x -i spammify

['play.py', '-x', '-i', 'spammify']

ta da!

File tools

· Built-in file objects

For most file applications

· Processing binary data on Windows

Use “rb” and “wb” to suppress line-end translations

· Module os descriptor-based file tools

For special/advanced file processing modes

· Module os filename tools

Deletions, renamings, etc.

· Module os.path tools

File existence, directory tests, size, etc.

· See also

Sockets, pipes, fifos, shelves, DBM files

Directory tools

Single directories

1) Running directory listing commands: non-portable

C:\temp>python
>>> import os
>>> os.popen('dir /B').readlines()
['about-pp.html\012', 'python1.5.tar.gz\012', 'about-pp2e.html\012',

'about-ppr2e.html\012', 'newdir\012']

>>> os.popen('ls C:\PP2ndEd').readlines()

['README.txt\012', 'cdrom\012', 'chapters\012', 'etc\012', 'examples\012',

'examples.tar.gz\012', 'figures\012', 'shots\012']

2) The glob module: patterns

>>> import glob

>>> glob.glob('C:\PP2ndEd*')

['C:\\PP2ndEd\\examples.tar.gz', 'C:\\PP2ndEd\\README.txt',

'C:\\PP2ndEd\\shots', 'C:\\PP2ndEd\\figures', 'C:\\PP2ndEd\\examples',

'C:\\PP2ndEd\\etc', 'C:\\PP2ndEd\\chapters', 'C:\\PP2ndEd\\cdrom']

3) The os.listdir call: quick, portable

>>> os.listdir('C:\PP2ndEd')

['examples.tar.gz', 'README.txt', 'shots', 'figures', 'examples', 'etc',

'chapters', 'cdrom']

>>> os.listdir(".")

['summer.out', 'summer.py', 'table1.txt', ...]

Directory trees

1) os.path.walk

>>> import os

>>> def lister(dummy, dirname, filesindir):

... print '[' + dirname + ']'

... for fname in filesindir:

... print os.path.join(dirname, fname) # handle one file

...

>>> os.path.walk('.', lister, None)

[.]

.\about-pp.html

.\python1.5.tar.gz

.\about-pp2e.html

.\about-ppr2e.html

.\newdir

[.\newdir]

.\newdir\temp1

.\newdir\temp2

.\newdir\temp3

.\newdir\more

[.\newdir\more]

.\newdir\more\xxx.txt

.\newdir\more\yyy.txt

2) os.walk generator (2.3+)

>>> import os

>>> for (thisDir, dirsHere, filesHere) in os.walk('.'):

 print thisDir, '=>'

 for filename in filesHere:

 print '\t', filename

. =>

w9xpopen.exe

py.ico

pyc.ico

README.txt

NEWS.txt

…

3) The find module: deprecated in 2.0, gone today (see below)

C:\temp>python

>>> import find

>>> find.find('*')

['.\\about-pp.html', '.\\about-pp2e.html', '.\\about-ppr2e.html',

'.\\newdir', '.\\newdir\\more', '.\\newdir\\more\\xxx.txt',

'.\\newdir\\more\\yyy.txt', '.\\newdir\\temp1', '.\\newdir\\temp2',

'.\\newdir\\temp3', '.\\python1.5.tar.gz']

4) Recursive traversals

list files in dir tree by recursion

import sys, os

def mylister(currdir):

 print '[' + currdir + ']'

 for file in os.listdir(currdir): # list files here

 path = os.path.join(currdir, file) # add dir path back

 if not os.path.isdir(path):

 print path

 else:

 mylister(path) # recur into subdirs

if __name__ == '__main__':

 mylister(sys.argv[1]) # dir name in cmdline

Renaming a set of files

>>> import glob, string, os

>>> glob.glob("*.py")

['cheader1.py', 'finder1.py', 'summer.py']

>>> for name in glob.glob("*.py"):

... os.rename(name, string.upper(name))

...

>>> glob.glob("*.PY")

['FINDER1.PY', 'SUMMER.PY', 'CHEADER1.PY']

Rolling your own find module (Extras dir)

#!/usr/bin/python

##

custom version of the now deprecated find module

in the standard library--import as "PyTools.find";

equivalent to the original, but uses os.path.walk,

has no support for pruning subdirs in the tree, and

is instrumented to be runnable as a top-level script;

results list sort differs slightly for some trees;

exploits tuple unpacking in function argument lists;

##

import fnmatch, os

def find(pattern, startdir=os.curdir):

 matches = []

 os.path.walk(startdir, findvisitor, (matches, pattern))

 matches.sort()

 return matches

def findvisitor((matches, pattern), thisdir, nameshere):

 for name in nameshere:

 if fnmatch.fnmatch(name, pattern):

 fullpath = os.path.join(thisdir, name)

 matches.append(fullpath)

if __name__ == '__main__':

 import sys

 namepattern, startdir = sys.argv[1], sys.argv[2]

 for name in find(namepattern, startdir): print name

Forking processes

· Spawns (copies) a program

· Parent and child run independently

· fork spawns processes; system/popen spawn commands

· Not on Windows, today (use threads or spawnv)

starts programs until you type 'q'

import os

parm = 0

while 1:

 parm = parm+1

 pid = os.fork()

 if pid == 0: # copy process

 os.execlp('python', 'python', 'child.py', str(parm)) # overlay program

 assert 0, 'error starting program' # shouldn't return

 else:

 print 'Child is', pid

 if raw_input() == 'q': break

Example: cross-linking streams

· Input (
connect stdin to program’s stdout: raw_input

· Output (
connect stdout to program’s stdin: print

· Also see: os.popen2 call

file: ipc.py

import os

def spawn(prog, args):

 pipe1 = os.pipe() # (parent input, child output)

 pipe2 = os.pipe() # (child input, parent output)

 pid = os.fork() # make a copy of this process

 if pid:

 # in parent process

 os.close(pipe1[1]) # close child ends here

 os.close(pipe2[0])

 os.dup2(pipe1[0], 0) # sys.stdin = pipe1[0]

 os.dup2(pipe2[1], 1) # sys.stdout = pipe2[1]

 else:

 # in child process

 os.close(pipe1[0]) # close parent ends here

 os.close(pipe2[1])

 os.dup2(pipe2[0], 0) # sys.stdin = pipe2[0]

 os.dup2(pipe1[1], 1) # sys.stdout = pipe1[1]

 cmd = (prog,) + args

 os.execv(prog, cmd) # overlay new program

Python thread modules

· Runs function calls in parallel, share global (module) memory

· Portable: runs on Windows, Solaris, any with pthreads

· Global interpreter lock: one thread running code at a time

· Thread switches on bytecode counter and long-running calls

· Must still synchronize concurrent updates with thread locks

· C extensions release and acquire global lock too

import thread

def counter(myId, count):

 # synchronize stdout access to avoid multi prints on 1 line

 for i in range(count):

 mutex.acquire()

 print '[%s] => %s' % (myId, i)

 mutex.release()

mutex = thread.allocate_lock()

for i in range(10):

 thread.start_new(counter, (i, 100))

import time

time.sleep(10)

print 'Main thread exiting.'

Output

.

.

.

[3] => 98

[4] => 98

[5] => 98

[7] => 98

[8] => 98

[0] => 99

[9] => 98

[6] => 99

[1] => 99

[2] => 99

[3] => 99

[4] => 99

[5] => 99

[7] => 99

[8] => 99

[9] => 99

Main thread exiting.

Locking concurrent updaters

Fails:

fails on windows due to concurrent updates;

works if check-interval set higher or lock

acquire/release calls made around the adds

import thread, time

count = 0

def adder():

 global count

 count = count + 1 # update shared global

 count = count + 1 # thread swapped out before returns

for i in range(100):

 thread.start_new(adder, ()) # start 100 update threads

time.sleep(5)

print count

Works:

import thread, time, sys

mutex = thread.allocate_lock()

count = 0

def adder():

 global count

 mutex.acquire()

 count = count + 1 # update shared global

 count = count + 1 # thread swapped out before returns

 mutex.release()

for i in range(100):

 thread.start_new(adder, ()) # start 100 update threads

time.sleep(5)

print count

See also:

“threading” module’s class-based interface

“queue” module’s thread-safe queue get/put

import threading

class mythread(threading.Thread): # subclass Thread object

 def __init__(self, myId, count):

 self.myId = myId

 self.count = count

 threading.Thread.__init__(self)

 def run(self): # run provides thread logic

 for i in range(self.count): # still synch stdout access

 stdoutmutex.acquire()

 print '[%s] => %s' % (self.myId, i)

 stdoutmutex.release()

stdoutmutex = threading.Lock() # same as thread.allocate_lock()

thread = mythread()

thread.start()

thread.join() # wait for exit

Fork versus spawnv

· For starting programs on Windows

· Spawnv like fork+exec for Unix

· See also: os.system(“start file.py”)

##

do something simlar by forking process instead of threads

this doesn't currently work on Windows, because it has no

os.fork call; use os.spawnv to start programs on Windows

instead; spawnv is roughly like a fork+exec combination;

##

import os, sys

for i in range(10):

 if sys.platform[:3] == 'win':

 path = r'C:\program files\python\python.exe'

 os.spawnv(os.P_DETACH, path,

 ('python', 'thread-basics6.py'))

 else:

 pid = os.fork()

 if pid != 0:

 print 'Process %d spawned' % pid

 else:

 os.execlp('python', 'python', 'thread-basics6.py')

print 'Main process exiting.'

Optional supplemental examples (see HTML version)
Lab Session 8

11. GUI programming

What makes Python good at GUIs?

· Rapid turnaround…
easy to experiment

· Very high-level…

fast to code GUIs

· Object-oriented…

code reusability

· Dynamic reloading…
changes without stopping

Python GUI Options

· Tkinter

· Python’s OO interface to the portable Tk API

· Part of Python, lightweight, well documented, robust

· Meshes well with a scripting language: from Tcl

· Runs with native look-and-feel on X, MS-Windows, Macs

· Structure: Tkinter + Tk lib + (X, Windows, Mac libs)

· A de-facto standard: Tk used by Python, Perl, and TCL

· An open source system, supported by Scriptics
· Base API originally developed by John Ousterhout

[image: image27.png]
· wxPython

· Second most popular GUI API for Python (?)

· Portable GUI class library written in C++ (X, Windows, Mac?)

· Wraps a C++ API: wxWindows + wxPython

· Rich widget set: trees, html viewers, notebooks

· Tends to be more complex: C++ API (wx) verses scripting API (Tk)

· Tends to be less well documented: C++ oriented docs

· Tkinter + PMW package roughly as rich as wxPython

· PyQt, PyGTK

· From KDE & Gnome Linux libraries, but now portable

· PyQt third most popular GUI API for Python (?)

· PyQt: works on Sharp Zaurus PDAs, open source book

· PyQt: not completely open source (still true?)

· PythonWin (win32all extension)

· MFC integration for Python on Windows (only)

· Jython (a.k.a. Jpython)

· Access to Java GUI APIs: AWT, Swing, etc.

· Python .NET ports?

· IronPython, Python.NET may provide GUI tools

· Anygui

· Portable API implemented on top of Tk, wx, Qt

· PythonCard

· API + drag-and-drop buider built on top of wxPython

· WPY

· Portable MFC-like API (very dated today)

· Runs on top of Tkinter (UNIX) or MFC (PCs)

See: Extras\Gui\wxPython\wxPython.doc on CD for Tkinter, wxPython comparisons

The Tkinter ‘hello world’ program

· Widgets: class instances

· Options: keyword arguments

· Tkinter exports classes and constants

· Widgets must be packed (or gridded, placed)

· ‘mainloop’ shows widgets, catches events
file: gui1.py

from Tkinter import * # get widget classes

Label(text="Hello GUI world!").pack() # make a label

mainloop() # show, catch events

% python gui1.py

[image: image28.png]
Adding buttons, frames, and callbacks

· Frames are widget containers

· Widgets attach to sides of a parent

· Event handlers are any callable object

· Button handlers are registered as ‘command’ options

file: gui2.py

from Tkinter import * # get widgets

def callback(): # define handler

 print 'hello stdout world...'

top = Frame() # make a container

top.pack()

Label(top, text="Hello callback world").pack(side=TOP)

Button(top, text="press me",

 command=callback).pack(side=BOTTOM)

top.mainloop()

% python gui2.py

hello stdout world...

hello stdout world...

[image: image29.png]
Getting input from a user

· Entry is a one-line input field

· lambda defers call to add an input argument

· showinfo is one of a set of common dialog calls

· Tk main window & Toplevel popups have icon, title

· + multi-line text, menus, radio/check buttons, dialogs,…

file: gui3.py

from Tkinter import *

from tkMessageBox import showinfo

def reply(name):

 showinfo(title='Reply', message='Hello %s!' % name)

top = Tk()

top.title('Echo')

top.iconbitmap('py-blue-trans-out.ico')

Label(top, text="Enter your name:").pack(side=TOP)

ent = Entry(top)

ent.pack(side=TOP)

btn = Button(top, text="Submit",

 command=(lambda: reply(ent.get())))

btn.pack(side=LEFT)

top.mainloop()

[image: image30.png]
More details

Other event interfaces

· widget.bind(“<B1-Motion>”, func) [CD bind.py]

· widget.after(msecs, func)

· slider/widget linkage, data stream conditions

GUI construction

· “What you build is what you get”

· Layout = build order + pack options

· Each Toplevel instance is a window

· Default Toplevel window if no parent

· Widgets nest in Frames, Frames nest in other Frames

· Object trees: Tkinter cross-links parents to children

“Decreasing Cavity Model”

· pack gives widget entire side

· widgets packed later get side of what’s left

· grid, place: alternative geometry managers

OOP: Building GUIs by subclassing frames

· Organization framework: namespace, inheritance

· Methods attach widgets to ‘self’

· Callbacks are bound methods of ‘self’

file: hello.py

#!/usr/local/bin/python

from Tkinter import * # get widgets

class Hello(Frame): # container subclass

 def __init__(self, parent=None):

 Frame.__init__(self, parent) # superclass init

 self.pack()

 self.make_widgets() # attach to self

 def make_widgets(self):

 widget = Button(self, text='Hello',

 command=self.onPress)

 widget.pack(side=LEFT)

 def onPress(self):

 print 'Hi.' # write to stdout

if __name__ == '__main__': Hello().mainloop()

% hello.py

Hi.

Hi.

[image: image31.png]
OOP: Reusing GUIs by subclassing, ‘is-a’

· GUI classes can be extended by inheritance

· Subclasses may extend, or replace methods

· In OOP terms: a ‘is-a’ relationship

file: hellosub.py

#!/usr/local/bin/python

from hello import Hello # get superclass

from Tkinter import * # get Tkinter widgets

class HelloExtender(Hello): # is-a hello.Hello

 def make_widgets(self): # extend method

 Hello.make_widgets(self)

 mine = Button(self, text='Extend',

 command=self.quit)

 mine.pack(side=RIGHT)

 def onPress(self):

 print 'Greetings!' # replace method

if __name__ == '__main__': HelloExtender().mainloop()

% python hellosub.py

Greetings!

Greetings!

[image: image32.png]
OOP: Reusing GUIs by attaching, ‘has-a’

· Frames can be attached to other Frames

· Tkinter records object tree internally

· In OOP terms: a ‘has-a’ relationship

file: hellouse.py

#!/usr/local/bin/python

from hello import Hello # get class to attach

from Tkinter import * # get Tkinter widgets

class HelloContainer(Frame): # has-a hello.Hello

 def __init__(self, parent=None):

 Frame.__init__(self, parent)

 self.pack()

 self.make_widgets()

 def make_widgets(self):

 mine = Button(self, text='Attach',

 command=self.quit)

 mine.pack(side=LEFT)

 Hello(self) # attach a Hello to me

if __name__ == '__main__': HelloContainer().mainloop()

% hellouse.py

Hi.

Hi.

[image: image33.png]
Images

See “Extras\Gui” directory on class CD to run this example
from Tkinter import * # get base widget set

from glob import glob # file name expansion

import hellouseCheck # attach the last example to "me"

import random # pick a picture at random

gifdir = '../../../Part3/Gui/gifs/' # where to look for gif files

def draw():

 name, photo = random.choice(images)

 lbl.config(text=name)

 pix.config(image=photo)

root=Tk()

lbl = Label(root, text="none", bg='blue', fg='red')

pix = Button(root, text="Press me", command=draw, bg='white')

lbl.pack(fill=BOTH)

pix.pack(pady=10)

hellouseCheck.HelloContainer(root, relief=SUNKEN, bd=2).pack(fill=BOTH)

files = glob(gifdir + "*.gif")

images = map(lambda x: (x, PhotoImage(file=x)), files)

print files

root.mainloop()

[image: image34.png]
Grid layouts

2d table of input fields

from Tkinter import *

rows = []

for i in range(5):

 cols = []

 for j in range(4):

 e = Entry(relief=RIDGE)

 e.grid(row=i, column=j, sticky=NSEW)

 e.insert(END, '%d.%d' % (i, j))

 cols.append(e)

 rows.append(cols)

def onPress():

 for row in rows:

 for col in row:

 print col.get(),

 print

Button(text='Fetch', command=onPress).grid()

mainloop()

[image: image35.png]
Canvas, Text, dialogs, and Toplevel

See Extras\Gui\Code to run this example
[image: image36.png]
See Extras\Gui\Code to run this example
[image: image37.png]
See Extras\Gui\Code to run this example
[image: image38.png]
See Extras\Gui\Code to run this example
[image: image39.png]
Sexier examples: Programming Python, Editions 2+
Shipped in source-code form on that book’s CD

May also be available at examples.oreilly.com
A clock drawn on a canvas and updated with a timer, embedded picture

[image: image40.png]
A calculator: frames of buttons, popup history, command lines, key bindings

[image: image41.png]
An artificially intelligent tic-tac-toe game: labels and mouse event bindings

[image: image42.png]
A text editor object/program: menus, text, scrollbars, toolbar frame

[image: image43.png]
A demo launcher button bar: os.fork() on Linux, os.spawnv() on Windows

[image: image44.png]
A generic tree data structure drawer: canvas, lines, event bindings

[image: image45.png]
An image file slideshow: embeds text editor, picture, scale, timer, etc.

[image: image46.png]
A table browser GUI: listboxes, forms, persistence, etc.

[image: image47.png]
A drawing program: draw and move graphic objects

[image: image48.png]
A POP/SMTP email client in Python/Tk, embeds text editor

(a beta version is included in the class Internet Examples directory)

[image: image49.png]
[image: image50.png]
Tkinter odds and ends

· Portability

· Tkinter programs run with native look-and-feel on X, MS-Windows, Macintosh

· Other GUI widgets

· 21 widgets + dialogs, etc,: Text, Canvas, Listbox, Scrollbar, Image, Menu, Entry, Radiobutton, Checkbutton, Scale,…

· Other Tkinter tools

· File handlers, scheduled events, “grid” manager

· Pmw (Python Mega Widgets), PIL (imaging), etc.; see Vaults site

· Interactive GUI builders: PythonWorks, ActiveState Komodo
· BoaConstructor, BlackAdder Gui buildes for wxPython, PyQt

· Implementation structure

· Tk + C extension module + Python wrapper classes module

· Uses extending (Tk lib) plus embedding (route events to handlers)

· Documentation

· “Programming Python 2nd Edition”, Part II, 250 pages

· Other books: Manning book, upcoming O'Reilly book?

· Tutorial, reference: http://www.pythonware.com/library.htm
· “Programming Python 1st Edition” basics only (ch11, 12, 16)

· Tcl/Tk books and manuals provide basic widget docs

· Other links

Extras\Gui\wxPython\wxPython.doc (Tkinter/wxPython comparison)

Extras\Gui\Code (additional Tkinter examples)

http://examples.oreilly.com (PP book GUI examples, and others)

Lab Session 8

12. Databases and persistence

Topics

· Persistent object shelves

· Storing class instances

· Pickling without shelves

· DBM-style files

· Shelve gotchas

· Python SQL database API

· ZODB object-oriented database

· Odds and ends

Object persistence: shelves

· Shelve = dbm file + object pickling (serialization)

· Stores arbitrary Python objects by string key

· Shelves are processed with normal Python code

· Pickler handles nested and circular objects

Basic usage

· Shelves are dictionaries that must be opened
 import shelve

 dbase = shelve.open("mydbase")

· Assigning to a shelve key stores an object

 dbase['key'] = object

· Indexing a shelve fetches a stored object

 value = dbase['key']

· Most dictionary operations supported

 len(dbase) # number items stored

 dbase.keys() # stored item key index

· Creating a new shelve

· Creates dbm file(s) to store objects

· Manual ‘close’ only needed for bsddb

% python

>>> import shelve

>>> dbase = shelve.open("mydbase")

>>> object1 = ['The', 'bright', ('side', 'of'), ['life']]

>>> object2 = {'name': 'Brian', 'age': 33, 'motto': object1}

>>> dbase['brian'] = object2

>>> dbase['knight'] = {'name': 'Knight', 'motto': 'Ni!'}

>>> dbase.close()

· Using an existing shelve

% python

>>> import shelve

>>> dbase = shelve.open("mydbase")

>>> len(dbase) # entries

2

>>> dbase.keys() # index

['knight', 'brian']

>>> dbase['knight'] # fetch

{'motto': 'Ni!', 'name': 'Knight'}

>>> for row in dbase.keys():

... print row, '=>'

... for field in dbase[row].keys():

... print ' ', field, '=', dbase[row][field]

...

knight =>

 motto = Ni!

 name = Knight

brian =>

 motto = ['The', 'bright', ('side', 'of'), ['life']]

 age = 33

 name = Brian

Storing class instances

· Classes defined at top-level of module

· No non-default constructor arguments (until 1.5.1!)

· Python stores instance __dict__, not class

· Changing class changes stored object behavior

file: person.py

a person object: fields + behavior

class Person:

 def __init__(self, name='', job='', pay=0):

 self.name = name

 self.job = job

 self.pay = pay # real instance data

 def tax(self):

 return self.pay * 0.25 # computed on call

 def info(self):

 return self.name, self.job, self.pay, self.tax()

% python

>>> from person import Person

>>> bob = Person('bob', 'psychologist', 70000)

>>> emily = Person('emily', 'teacher', 40000)

>>>

>>> import shelve

>>> dbase = shelve.open('cast') # make new shelve

>>> for obj in (bob, emily): # store objects

>>> dbase[obj.name] = obj

>>> dbase.close() # need for bsddb

% python

>>> import shelve

>>> dbase = shelve.open('cast') # reopen shelve

>>> print dbase['bob'].tax() # call: bob's tax

17500.0

Changing classes changes behavior

· Classes = records + processing programs

· Example: changing the Person.tax method

file: person.py

a person object: fields + behavior

change: the tax method is now a virtual member

class Person:

 def __init__(self, name='', job='', pay=0):

 self.name = name

 self.job = job

 self.pay = pay # real instance data

 def __getattr__(self, attr): # on person.attr

 if attr == 'tax':

 return self.pay * 0.30 # computed on access

 else:

 raise AttributeError # other unknown names

 def info(self):

 return self.name, self.job, self.pay, self.tax

% python

>>> import shelve

>>> dbase = shelve.open('cast') # reopen shelve

>>> print dbase['bob'].tax # no need to call tax()

21000.0

Pickling objects without shelves

· Shelve = dbm file + object pickler
· Pickler serializes Python objects into text streams

· Streams may be sent to flat file, dbm file, socket, etc.

· Also see: ‘marshal’ module (object limitations)

file: testpickle.py

import pickle

def saveDbase(filename, table):

 file = open(filename, 'w')

 pickle.dump(table, file) # pickle to file

 file.close()

def loadDbase(filename):

 file = open(filename, 'r')

 table = pickle.load(file) # unpickle from file

 file.close()

 return table

% python

>>> from testpickle import *

>>> L = [0]

>>> D = {'x':0, 'y':L}

>>> table = {'A':L, 'B':D} # L appears twice (D)

>>> saveDbase('myfile', table) # serialize to file

% python

>>> from testpickle import *

>>> table = loadDbase('myfile') # reload/unpickle

>>> print table

{'B': {'x': 0, 'y': [0]}, 'A': [0]}

>>> table['A'][0] = 1 # change shared list

>>> saveDbase('myfile', table)

% python

>>> from testpickle import *

>>> print loadDbase('myfile') # both L’s updated!

{'B': {'x': 0, 'y': [1]}, 'A': [1]}

Using simple dbm files

· Shelve = dbm file + object pickler

· Dbm files can only store strings (not any object)

· ‘anydbm’ selects from dbhash, gdbm, dbm or dumbdbm

· Dictionary-like interface like shelve (shelve uses dbm)

% python

>>> import anydbm

>>> file = anydbm.open('languages', 'c') # create, in+out

>>> file['perl'] = "Text processing" # store

>>> file['tcl'] = "Simple glue"

>>> file['python'] = "OO scripting"

>>> file.close()

% python

>>> import anydbm

>>> file = anydbm.open('languages', 'c') # existing file

>>> file['python'] # fetch

'OO scripting'

>>> for lang in file.keys(): # index

... print lang + ':', file[lang]

...

perl: Text processing

tcl: Simple glue

python: OO scripting

>>> del file['tcl'] # delete

% python

>>> import anydbm

>>> anydbm.open('languages', 'c').keys() # sorry, tcl!

['python', 'perl']

Shelve gotchas

· Keys must still be strings

 dbase[42] = value # fails

· Shared objects are only noticed within a given slot

 dbase[key] = object # store parts just once

 dbase[key] = object # two copies of object!

· Updates must treat as fetch-modify-store mappings

 dbase[key].attr = value # shelve unchanged!

 object = dbase[key] # fetch it

 object.attr = value # modify it

 dbase[key] = object # store back

· Doesn't support simultaneous updates (e.g. CGI scripts)

Plus class pickling rules

· At the top-level of a module (importable)

· No non-default constructor arguments (until 1.5.1!)

· Class changes must be backward-compatible

· Classes can use special methods to break constructor rule

Python SQL database API

· Support for Oracle, Sybase, Informix, ODBC, Postgres, mySql,…

· Portable API Implemented by vendor-specific extension modules

Connection objects

represent a connection to a database

are the interface to rollback and commit operations

generate cursor objects

Cursor objects

represent a single SQL statement submitted as a string

can be used to step through SQL statement results

can execute DDL (create), DML (insert), and DQL (select) statements

Query results

SQL select results returned to scripts as Python data

Tables of rows are Python lists of tuples

Field values within rows are normal Python objects

An example query result: [('bob',38), ('emily',37)]

##

example of portable database API usage

##

from dcoracle import Connect

connobj = Connect("user/password@system")

cursobj = connobj.cursor()

value1,value2 ='developer', 40

query = 'SELECT name, shoesize FROM empl WHERE job = ? AND age = ?'

cursobj.execute(query, (value1, value2))

results = cursobj.fetchall()

for (name, size) in results:

 print name, size

Other DB API concepts

· Select results: fetchall(), fetchone(), fetchmany()

· Transactions: commit, rollback on connection object

· Executing update, insert, delete statements: rowcount

· Stored procedure methods

· Full API online at python.org

ZODB object-oriented database

· Full-blown OODB, 3rd party add-on

· ZODB – Zope’s advanced OODB, available by itself

· Adds object identifiers to Python pickling: write-thru on change

· Supports concurrent update, transaction commit/rollback

· Like shelve, but extra boilerplate code

creating a zodb database

from ZODB import Persistent

class BookMark(Persistent):

 def __init__(self, title, url):

 self.editBookMark(self, url)

 def editBookMark(self, title, url):

 self.title = title

 self.url = url

def addobject():

 mybookmark = BookMark('Oreilly', 'http://www.oreilly.com')

 from ZODB import FileStorage, DB

 storage= FileStorage.FileStorage(r"C:\temp\class.fs")

 db = DB(storage)

 connection = db.open()

 root = connection.root()

 root['bookmark1'] = mybookmark

 get_transaction().commit()

 storage.close()

using a zodb database

from ZODB import FileStorage, DB

storage= FileStorage.FileStorage(r"C:\temp\class.fs")

db = DB(storage)

connection = db.open()

root = connection.root()

print root['bookmark1'].url

root['bookmark1'].editBookMark('Python', 'www.python.org')

get_transaction().commit()

storage.close()

Persistence odds and ends

· Flat files

· Objects and descriptors

· ‘marshal’ module

· Serializes objects like pickler, but only simple types

· Performance

· ‘cPickle’ module is 1 to 3 orders of magnitude faster than ‘pickle’

· Database interfaces available

· At python.org: Oracle, Sybase, Informix, ODBC, MySQL, etc.

· (See above) Portable database API: works on many systems

· All-Python “gadfly” SQL database system (in memory)

Lab Session 9

13. Text processing

Topics

· String objects

· Splitting strings

· Regular expressions

· Parsing languages

String objects: review

· Handle basic text processing tasks

· Operations: slicing, concatenation, indexing, etc.

· String methods: searching, replacement, splitting, etc.

· Built-in string functions: ord()

· Running code strings: ‘eval’, ‘exec’, ‘execfile’

· Unicode (16-bit char) wide strings supported in Python 2.0

>>> text = "Hello world"

>>> text = 'M' + text[1:6] + 'World'

>>> text

'Mello World'

>>> exec 'print "J" + text[1:]'

Jello World

Splitting and joining strings

· str.split returns a list of columns: around whitespace

· str.split allows arbitrary delimiters to used

· str.join puts string lists back together

· eval converts column strings to Python objects

Example: summing columns in a file

see also: newer column summer code at end of Basic Statements chapter

file: summer.py

import sys

def summer(numCols, fileName):

 sums = [0] * numCols

 for line in open(fileName, 'r'):

 cols = line.split()

 for i in range(numCols):

 sums[i] += eval(cols[i]) # any expression will work!

 return sums

if __name__ == '__main__':

 print summer(eval(sys.argv[1]), sys.argv[2])

Example: replacing substrings

file: replace.py

manual global substitution

def replace(str, old, new):

 list = str.split(old) # XoldY -> [X, Y]

 return new.join(list) # [X, Y] -> XnewY

Example: analyzing data files

· Collect all entries for keys on right

· Data file contains “histogram” data

% cat histo1.txt

1 one

2 one

3 two

7 three

8 two

10 one

14 three

19 three

20 three

30 three

% cat histo.py

#!/usr/bin/env python

import sys

entries = {}

for line in open(sys.argv[1]):

 [left, right] = line.split()

 try:

 entries[right].append(left) # or use has_key, or get

 except KeyError: # e[r] = e.get(r, []) + [l]

 entries[right] = [left]

for (right, lefts) in entries.items():

 print "%04d '%s'\titems => %s" % (len(lefts), right,lefts)

% histo.py histo1.txt

0003 'one' items => ['1', '2', '10']

0005 'three' items => ['7', '14', '19', '20', '30']

0002 'two' items => ['3', '8']

Regular expressions

· For matching patterns in strings

· Matched substrings may extracted after a match as “groups”

· Compiled regular expressions are first-class objects: optimization

· Now supported by the ‘re’ standard module: Perl5-style patterns

· Suports non-greedy operators, character classes, etc.

· Older options: the “regex”, ‘regsub’ modules: emacs/awk/grep patterns

Basic interface

>>> import re

>>> mobj = re.match('Hello(.*)world', 'Hello---spam---world')

>>> mobj.group(1)

'---spam---'

>>> pobj = re.compile('Hello[\t]*(.*)')

>>> mobj = pobj.match('Hello SPAM!')

>>> mobj.group(1)

'SPAM!'

Example: searching C files

· Finds #include and #define lines in a C file
Operators
· X+
repeat X one or more times

· X*

repeat X zero or more times

· [abc]
any of a or b or c

· (X)
keep substring that matches X (“group”)

· ^X
match X at start of line

Methods
· re.compile

precompiles expression into pattern object

· patternobj.match

returns match object, or None if match fails

· matchobj.group

returns matched substring[i] (part in parens)

· matchobj.span

returns start/stop indexes of match substring[i]

· also has methods for replacement, nongreedy match operators,…

file: cheader.py

#! /usr/local/bin/python

import sys, re

pattDefine = re.compile(# compile to pattobj

 '^#[\t]*define[\t]+([a-zA-Z0-9_]+)[\t]*(.*)') # "# define xxx yyy..."

pattInclude = re.compile(

 '^#[\t]*include[\t]+[<"]([a-zA-Z0-9_/\.]+)') # "# include <xxx>..."

def scan(file):

 count = 0

 while 1: # scan line-by-line

 line = file.readline()

 if not line: break

 count = count + 1

 matchobj = pattDefine.match(line) # None if match fails

 if matchobj:

 name = matchobj.group(1) # substrings for (...) parts

 body = matchobj.group(2)

 print count, 'defined', name, '=', body.strip()

 continue

 matchobj = pattInclude.match(line)

 if matchobj:

 start, stop = matchobj.span(1) # start/stop indexes of (...)

 filename = line[start:stop] # slice out of line

 print count, 'include', filename # same as matchobj.group(1)

if len(sys.argv) == 1:

 scan(sys.stdin) # no args: read stdin

else:

 scan(open(sys.argv[1], 'r')) # arg: input file name
Parsing languages

· For more demanding languages: regular expressions have no “memory”

· Recursive descent parsers: see YAPPS parser generator

· Builds trees of ‘smart’ objects: interpreter pattern

· Parser generators: ‘bison’ wrapper, SPARK, kwParsing, etc. (see python.org)

Lab Session 10

14. Internet scripting

Topics

· Sockets in Python

· The FTP module

· Email processing

· CGI scripts (server)

· Grail applets (client)

· Jython: Python for Java systems

· Active Scripting and COM

· Other tools: urllib, HTMLgen, XML, Zope

Using sockets in Python

· At the heart of Internet communications

· A standard C extension type: BSD socket wrapper

· C functions become socket object methods
· Python also supports “select” multiplex processing

Basic client/server example

· Server: echoes all data that it receives back

· Client: sends data to the server

· Client calls: “socket”, “connect”

· Server calls: “socket”, “bind”, “listen”, “accept”

file: echoserver.py

###

Server side: open a socket on a port, listen for

a message from a client, and send an echo reply;

this is a simple one-shot listen/reply per client,

but it goes into an infinite loop to listen for

more clients as long as this server script runs;

###

from socket import * # get socket constructor and constants

myHost = '' # server machine, '' means local host

myPort = 50007 # listen on a non-reserved port number

sockobj = socket(AF_INET, SOCK_STREAM) # make a TCP socket object

sockobj.bind((myHost, myPort)) # bind it to server port number

sockobj.listen(5) # listen, allow 5 pending connects

while 1: # listen until process killed

 connection, address = sockobj.accept() # wait for next client connect

 print 'Server connected by', address # connection is a new socket

 while 1:

 data = connection.recv(1024) # read next line on client socket

 if not data: break # send a reply line to the client

 connection.send('Echo=>' + data) # until eof when socket closed

 connection.close()

file: echoclient.py

###

Client side: use sockets to send data to the server, and

print server's reply to each message line; 'localhost'

means that the server is running on the same machine as

the client, which lets us test client and server on one

machine; to test over the net, run server on a remote

machine, set serverHost to machine's domain name or IP addr;

###

import sys

from socket import * # portable socket interface plus constants

serverHost = 'localhost' # server name, or: 'starship.python.net'

serverPort = 50007 # non-reserved port used by the server

message = ['Hello network world'] # text to send to server

sockobj = socket(AF_INET, SOCK_STREAM) # make a TCP/IP socket object

sockobj.connect((serverHost, serverPort)) # connect to serve and port

for line in message:

 sockobj.send(line) # send line to server over socket

 data = sockobj.recv(1024) # receive from server: up to 1k

 print 'Client received:', `data`

sockobj.close() # close to send eof to server

Forking socket servers

import os, time, sys, signal, signal

from socket import * # get socket constructor and constants

myHost = '' # server machine, '' means local host

myPort = 50007 # listen on a non-reserved port number

sockobj = socket(AF_INET, SOCK_STREAM) # make a TCP socket object

sockobj.bind((myHost, myPort)) # bind to server port number

sockobj.listen(5) # up to 5 pending connects

signal.signal(signal.SIGCHLD, signal.SIG_IGN) # avoid child zombie processes

def now(): # time on server machine

 return time.ctime(time.time())

def handleClient(connection): # child process replies, exits

 time.sleep(5) # simulate a blocking activity

 while 1: # read, write a client socket

 data = connection.recv(1024)

 if not data: break

 connection.send('Echo=>%s at %s' % (data, now()))

 connection.close()

 os._exit(0)

def dispatcher(): # listen until process killed

 while 1: # wait for next connection,

 connection, address = sockobj.accept() # pass to process for service

 print 'Server connected by', address,

 print 'at', now()

 childPid = os.fork() # copy this process

 if childPid == 0: # if in child process: handle

 handleClient(connection) # else: go accept next connect

dispatcher()

Threading socket servers

import thread, time

from socket import * # get socket constructor and constants

myHost = '' # server machine, '' means local host

myPort = 50007 # listen on a non-reserved port number

sockobj = socket(AF_INET, SOCK_STREAM) # make a TCP/IP socket object

sockobj.bind((myHost, myPort)) # bind to server port number

sockobj.listen(5) # upto 5 pending connects

def now():

 return time.ctime(time.time()) # current time on the server

def handleClient(connection): # in spawned thread: reply

 time.sleep(5) # simulate a blocking activity

 while 1: # read, write a client socket

 data = connection.recv(1024)

 if not data: break

 connection.send('Echo=>%s at %s' % (data, now()))

 connection.close()

def dispatcher(): # listen until process killd

 while 1: # wait for next connection,

 connection, address = sockobj.accept() # pass to thread for service

 print 'Server connected by', address,

 print 'at', now()

 thread.start_new(handleClient, (connection,))

dispatcher()

Select socket servers

event loop: listen and multiplex until server process killed

print 'select-server loop starting'

while 1:

 readables, writeables, exceptions = select(readsocks, writesocks, [])

 for sockobj in readables:

 if sockobj in mainsocks: # for ready input sockets

 # port socket: accept new client

 newsock, address = sockobj.accept() # accept should not block

 print 'Connect:', address, id(newsock) # newsock is a new socket

 readsocks.append(newsock) # add to select list, wait

 else:

 # client socket: read next line

 data = sockobj.recv(1024) # recv should not block

 print '\tgot', data, 'on', id(sockobj)

 if not data: # if closed by the clients

 sockobj.close() # close here and remv from

 readsocks.remove(sockobj) # del list else reselected

 else:

 # this may block: should really select for writes too

 sockobj.send('Echo=>%s at %s' % (data, now()))

Standard library server types

Threading/Forking TCP/UDP server classes

See also: HTTP/CGI webserver.py in CGI section below

See also: Twisted 3rd party system

import SocketServer, time # get socket server, handler objects
myHost = '' # server machine, '' means local host

myPort = 50007 # listen on a non-reserved port number

def now():

 return time.ctime(time.time())

class MyClientHandler(SocketServer.BaseRequestHandler):

 def handle(self): # on each client connect

 print self.client_address, now() # show this client's addr

 time.sleep(5) # simulate blocking activity

 while 1: # self.request is client socket

 data = self.request.recv(1024) # read, write a client socket

 if not data: break

 self.request.send('Echo=>%s at %s' % (data, now()))

 self.request.close()

make a threaded server, listen/handle clients forever

myaddr = (myHost, myPort)

server = SocketServer.ThreadingTCPServer(myaddr, MyClientHandler)

server.serve_forever()

The FTP module

· ftplib library module uses sockets to transfer files

· Supports both binary and text retrieve/store operations

· Handles all handshaking with the remote site

· See Python library manual for more details

Example: fetch Python

file: getpython.py

#!/usr/local/bin/python

A Python script to dowload Python source code

import os, sys

from ftplib import FTP # socket-based ftp tools

tarname = 'python1.4.tar.gz' # remote/local file name

fetch file

output = open(tarname, 'w')

ftp = FTP('ftp.python.org') # connect to ftp site

ftp.login() # use anonymous login

ftp.cwd('pub/python/src')

ftp.retrbinary('RETR ' + tarname, output.write, 1024)

ftp.quit()

output.close()

unpack it

os.system('gzip -d ' + tarname)

os.system('tar -xvf ' + tarname[:-3]) # plus cd/config/make

Example: fetch sousa.au

file: sousa_fetch.py

#!/usr/local/bin/python

Usage: % python sousa_fetch.py

Fetch the Monty Python theme song.

This only fetches and saves the audio file,

so it works anywhere you have an Internet

connection. I've even used it from a DOS

box command line on Windows98, by dialing

in to an ISP via modem--it automatically

dials out if necessary; arguably amazing.

On Windows, you may be able to pass the

filename on a browser command line instead

of piping it in to stdin; attempted here

for windows, but this scheme is portable.

###

import os, sys

from ftplib import FTP # socket-based ftp tools

from posixpath import exists # file existence test

sample = 'sousa.au'

ftp the audio file

if exists(sample):

 print sample, 'already fetched'

else:

 print 'Downloading.'

 theme = open(sample, 'w')

 ftp = FTP('ftp.python.org') # connect to ftp site

 ftp.login() # use anonymous login

 ftp.cwd('pub/python/misc')

 ftp.retrbinary('RETR ' + sample, theme.write, 1024)

 ftp.quit()

 theme.close()

 print 'Done.'

if sys.platform[:3] == 'win':

 cwd = os.getcwd()

 brw = r'c:\"Program Files"\Netscape\Communicator\Program\netscape.exe'

 os.system('%s file://%s/%s' % (brw, cwd, sample))

Example: simple FTP site mirror (PP book)

#!/bin/env python

##

use ftp to copy all files from a remote site/directory to a local dir;

e.g., run me periodically from a unix cron job to mirror an ftp site;

script assumes this is a flat directory--see the mirror program in

Python's Tools directory for a version that handles subdirectories;

##

import os, sys, ftplib

from getpass import getpass

remotesite = 'home.rmi.net'

remotedir = 'public_html'

remoteuser = 'lutz'

remotepass = getpass('Please enter password for %s: ' % remotesite)

localdir = (len(sys.argv) > 1 and sys.argv[1]) or '.'

cleanall = raw_input('Clean local directory first? ')[:1] in ['y', 'Y']

print 'connecting...'

connection = ftplib.FTP(remotesite) # connect to ftp site

connection.login(remoteuser, remotepass) # login as user/password

connection.cwd(remotedir) # cd to directory to copy

if cleanall:

 for localname in os.listdir(localdir): # try to delete all locals

 try: # to remove old files

 print 'deleting local', localname

 os.remove(os.path.join(localdir, localname))

 except:

 print 'cannot delete local', localname

count = 0 # download remote files

remotefiles = connection.nlst() # nlst() gives files list

 # dir() gives all details

for remotename in remotefiles:

 localname = os.path.join(localdir, remotename)

 print 'copying', remotename, 'to', localname

 if remotename[-4:] == 'html' or remotename[-3:] == 'txt':

 # use ascii mode xfer

 localfile = open(localname, 'w')

 callback = lambda line, file=localfile: file.write(line + '\n')

 connection.retrlines('RETR ' + remotename, callback)

 else:

 # use binary mode xfer

 localfile = open(localname, 'wb')

 connection.retrbinary('RETR ' + remotename, localfile.write)

 localfile.close()

 count = count+1

connection.quit()

print 'Done:', count, 'files downloaded.'

Example: upload site by FTP (PP book)

#!/bin/env python

##

use ftp to upload all files from a local dir to a remote site/directory;

e.g., run me to copy an ftp site's files from your machine to your ISP,

especially handy if you only have ftp access to your website, not a

telnet/shell account access (else you could tar up all files and

transfer in a single step to the remote machine and untar there);

to upload subdirectories too, use os.path.isdir(path), FTP().mkd(path),

and recursion--see uploadall.py for a version that supports subdirs.

##

import os, sys, ftplib, getpass

remotesite = 'starship.python.net' # upload to starship site

remotedir = 'public_html/home' # from win laptop or other

remoteuser = 'lutz'

remotepass = getpass.getpass('Please enter password for %s: ' % remotesite)

localdir = (len(sys.argv) > 1 and sys.argv[1]) or '.'

cleanall = raw_input('Clean remote directory first? ')[:1] in ['y', 'Y']

print 'connecting...'

connection = ftplib.FTP(remotesite) # connect to ftp site

connection.login(remoteuser, remotepass) # login as user/password

connection.cwd(remotedir) # cd to directory to copy

if cleanall:

 for remotename in connection.nlst(): # try to delete remotes

 try: # to remove old files

 print 'deleting remote', remotename

 connection.delete(remotename)

 except:

 print 'cannot delete remote', remotename

count = 0

localfiles = os.listdir(localdir) # upload all local files

 # listdir() strips dirpath

for localname in localfiles:

 localpath = os.path.join(localdir, localname)

 print 'uploading', localpath, 'to', localname

 if localname[-4:] == 'html' or localname[-3:] == 'txt':

 # use ascii mode xfer

 localfile = open(localpath, 'r')

 connection.storlines('STOR ' + localname, localfile)

 else:

 # use binary mode xfer

 localfile = open(localpath, 'rb')

 connection.storbinary('STOR ' + localname, localfile, 1024)

 localfile.close()

 count = count+1

connection.quit()

print 'Done:', count, 'files uploaded.'
Email processing

· POP, IMAP (retrieve) SMTP (send), on top of sockets

· New email module package: parse+compose, attachments, en/decoding …

· See also library modules: rfc822 headers, multifile, uu/base64 decoders

Reading a POP email account

#!/usr/local/bin/python

##

use the Python POP3 mail interface module to view

your pop email account messages; this is just a

simple listing--see pymail.py for a client with

more user interaction features, and smtpmail.py

for a script which sends mail; pop is used to

retrive mail, and runs on a socket using port

number 110 on the server machine, but Python's

poplib hides all protocol details; to send mail,

use the smtplib module (or os.popen('mail...').

see also: unix mailfile reader in App framework.

##

import poplib, getpass, sys, mailconfig

mailserver = mailconfig.popservername # ex: 'pop.rmi.net'

mailuser = mailconfig.popusername # ex: 'lutz'

mailpasswd = getpass.getpass('Password for %s?' % mailserver)

print 'Connecting...'

server = poplib.POP3(mailserver)

server.user(mailuser) # connect,login to server

server.pass_(mailpasswd) # pass is a reserved word

try:

 print server.getwelcome() # print greeting message

 msgCount, msgBytes = server.stat()

 print 'There are', msgCount, 'mail messages in', msgBytes, 'bytes'

 print '-'*80

 if sys.platform[:3] == 'win': raw_input() # windows keeps endline

 raw_input('[Press Enter key]')

 for i in range(msgCount):

 hdr, message, octets = server.retr(i+1)

 for line in message: print line # retrieve, print all

 print '-'*80 # mbox locked till quit

 if i < msgCount - 1:

 raw_input('[Press Enter key]')

finally:

 server.quit() # make sure to unlock

print 'Bye.'

Sending email via a SMTP server

#!/usr/local/bin/python

##

use the Python SMTP mail interface module to send

email messages; this is just a simple one-shot

send script--see pymail.py for a client with more

user interaction features, and popmail.py for a

script which retrieves mail; smtp is used to

send mail, and runs on a socket using port

number 25 on the server machine, but Python's

smtplib hides all protocol details; to fetch

mail, use the poplib or imaplib modules instead;

on some systems, you can also send email with:

os.popen('mail -s "xxx" a@b.c', 'w').write(text),

but smtp is more portable/powerful (see PyErrata).

##

import smtplib, string, sys, time, mailconfig

mailserver = mailconfig.smtpservername # ex: starship.python.net

From = string.strip(raw_input('From? ')) # ex: lutz@rmi.net

To = string.strip(raw_input('To? ')) # ex: guido@python.org

To = string.split(To, ',') # allow a list of tos

Subj = string.strip(raw_input('Subj? '))

prepend standard headers

date = time.ctime(time.time())

text = ('From: %s\nTo: %s\nDate: %s\nSubject: %s\n'

 % (From, string.join(To, ','), date, Subj))

text = text + '\n' # blank line between hdrs,body

print 'Type message text, end with line=(ctrl + D or Z)'

while 1:

 line = sys.stdin.readline()

 if not line:

 break # exit on ctrl-d

 text = text + line # servers do this auto

if sys.platform[:3] == 'win': print

print 'Connecting...'

server = smtplib.SMTP(mailserver) # connect, no login step

errors = server.sendmail(From, To, text)

server.quit()

if errors: # smtplib also raises excepts

 print 'Errors:', errors

else:

 print 'No errors.'

print 'Bye.'

Running the email examples

See also: pymail.py and PyMailGui.py in examples directory

PyMailGui is a Python/Tk mail client (screen shots in GUI unit)

C:\examples\Part3\Internet\Email>python smtpmail.py

From? lutz@rmi.net

To? lutz@rmi.net

Subj? testing 1 2 3

Type message text, end with line=(ctrl + D or Z)

words

Connecting...

No errors.

Bye.

C:\examples\Part3\Internet\Email>python popmail.py

Password for pop.rmi.net?

Connecting...

+OK Cubic Circle's v1.31 1998/05/13 POP3 ready

There are 1 mail messages in 780 bytes

[Press Enter key]

Received: by chevalier (mbox lutz)

 (with Cubic Circle's cucipop (v1.31 1998/05/13) Sun Feb 13 13:56:44 2000)

X-From_: lutz@rmi.net Sun Feb 13 13:43:01 2000

Return-Path: <lutz@chevalier.rmi.net>

Received: from server.python.net (server.python.net [209.50.192.113])

 by chevalier.rmi.net (8.9.3/8.9.3) with SMTP id NAA16859

 for <lutz@rmi.net>; Sun, 13 Feb 2000 13:43:00 -0700 (MST)

Message-Id: <200002132043.NAA16859@chevalier.rmi.net>

Received: (qmail 31944 invoked from network); 13 Feb 2000 20:43:22 -0000

Received: from dial-67.73.denco.rmi.net (166.93.67.73)

 by server.python.net with SMTP; 13 Feb 2000 20:43:22 -0000

From: lutz@rmi.net

To: lutz@rmi.net

Date: Sun Feb 13 13:44:16 2000

Subject: testing 1 2 3

words

--

Bye.

Other client-side tools

· urllib: fetching web pages

· nntplib: reading and posting usenet news

· httplib: lower-level web conversations

· telnet, gopher, imap,…

· htmllib, xml package: parsing fetched web pages and data (soap)

· Active Scripting: embedded Python in HTML

· Jython: client-side applets in Python

Writing server-side CGI scripts

· Server-side scripts referenced from HTML pages

· Run on server, connected to client/browser via sockets

· cgi module handles input parsing, output formatting

Typical operation

· Inputs: fetch info typed into forms (cgi.FieldStorage)

· cgi scripts get input from stdin plus environment info

· cgi library module

· provides dictionary interface to parsed form data

· Outputs: sesults in browser (cgi.escape, urllib.quote)

· cgi scripts write HTML to stdout to display results

Basic CGI interfaces

· FieldStorage class

· Reads the form contents from standard input or the environment

print "Content-type: text/html" # HTML text follows

print # blank line: end headers

print "<TITLE>CGI script output</TITLE>"

form = cgi.FieldStorage()

form_ok = 0

if form.has_key("name") and form.has_key("addr"):

 if (form["name"].value != "" and

 form["addr"].value != ""):

 form_ok = 1

if not form_ok:

 print "<H1>Error</H1>"

 print "Please fill in the name and addr fields."

 return

...more form processing here...

· FormContent class

· A (now) outdated interface: same functionality, but FieldStorage above is preferred scheme

import cgi # see library manual

. . .

form = cgi.FormContent() # parse input stream

if form.has_key("fieldname"):

 data = form["fieldname"][0]

Basic CGI example

input form: cgi101.html

<html><body>

<title>Interactive Page</title>

<form method=POST action="cgi-bin/cgi101.py">

 <P>Enter your name:

 <P><input type=text name=user>

 <P><input type=submit>

</form>

</body></html>

[image: image51.png]
reply script: cgi-bin/cgi101.py

#!/usr/bin/python

import cgi

form = cgi.FieldStorage() # parse form data

print "Content-type: text/html\n" # hdr plus blank line

print "<title>Reply Page</title>" # html reply page

if not form.has_key('user'):

 print "<h1>Who are you?</h1>"

else:

 print "<h1>Hello <i>%s</i>!</h1>" % cgi.escape(form['user'].value)

[image: image52.png]
running a local webserver: Extras\Misc\webserver.py

###

implement HTTP server in Python which

knows how to run server-side CGI scripts;

serves files/scripts from current working dir;

scripts must be in webdir\cgi-bin or htbin

###

webdir = '.'

import os, sys

from BaseHTTPServer import HTTPServer

from CGIHTTPServer import CGIHTTPRequestHandler

hack for Windows: os.environ not propogated

to subprocess by os.popen2, force in-process

if sys.platform[:3] == 'win':

 CGIHTTPRequestHandler.have_popen2 = False

 CGIHTTPRequestHandler.have_popen3 = False

os.chdir(webdir) # run in html root dir

srvraddr = ("", 80) # my hostname, portnumber

srvrobj = HTTPServer(srvraddr, CGIHTTPRequestHandler)

srvrobj.serve_forever() # run as perpetual demon

testing with query strings and urllib

>>> from urllib import urlopen

>>> conn = urlopen('http://localhost/cgi-bin/cgi101.py?user=Sue+Smith')

>>> reply = conn.read()

>>> reply

'<title>Reply Page</title>\n<h1>Hello <i>Sue Smith</i>!</h1>\n'

>>> urlopen('http://localhost/cgi-bin/cgi101.py').read()

'<title>Reply Page</title>\n<h1>Who are you?</h1>\n'

>>> urlopen('http://localhost/cgi-bin/cgi101.py?user=Bob').read()

'<title>Reply Page</title>\n<h1>Hello <i>Bob</i>!</h1>\n'

CGI controls: test5.html/.cgi (PP book)

Note: these examples live at http://starship.python.net/~lutz/PyInternetDemos.html. Visit that site to view the HTML that generates this and other pages--select ‘view source’ in your browser.

test5b.html
<HTML><BODY>

<TITLE>CGI 101</TITLE>

<H1>Common input devices: alternative layout</H1>

<P>Use the same test5.cgi server side script, but change the

layout of the form itself. Notice the separation of user interface

and processing logic here; the CGI script is independent of the

HTML used to interact with the user/client.</P><HR>

<FORM method=POST action="http://starship.python.net/~lutz/test5.cgi">

 <H3>Please complete the following form and click Submit</H3>

 <P><TABLE border cellpadding=3>

 <TR>

 <TH align=right>Name:

 <TD><input type=text name=name>

 <TR>

 <TH align=right>Shoe size:

 <TD><input type=radio name=shoesize value=small>Small

 <input type=radio name=shoesize value=medium>Medium

 <input type=radio name=shoesize value=large>Large

 <TR>

 <TH align=right>Occupation:

 <TD><select name=job>

 <option>Developer

 <option>Manager

 <option>Student

 <option>Evangelist

 <option>Other

 </select>

 <TR>

 <TH align=right>Political affiliations:

 <TD><P><input type=checkbox name=language value=Python>Pythonista

 <P><input type=checkbox name=language value=Perl>Perlmonger

 <P><input type=checkbox name=language value=Tcl>Tcler

 <TR>

 <TH align=right>Comments:

 <TD><textarea name=comment cols=30 rows=2>Enter spam here</textarea>

 <TR>

 <TD colspan=2 align=center>

 <input type=submit value="Submit">

 <input type=reset value="Reset">

 </TABLE>

</FORM>

</BODY></HTML>

[image: image53.png]
test5.cgi

#!/usr/local/bin/python

runs on the server, reads form input, prints html;

executable privileges, stored in ~/public_html,

import cgi, sys, string

form = cgi.FieldStorage() # parse form data

print "Content-type: text/html" # plus blank line

html = """

<TITLE>test4.cgi</TITLE>

<H1>Greetings</H1>

<HR>

<H4>Your name is %(name)s</H4>

<H4>You wear rather %(shoesize)s shoes</H4>

<H4>Your current job: %(job)s</H4>

<H4>You program in %(language)s</H4>

<H4>You also said:</H4>

<P>%(comment)s</P>

<HR>"""

data = {}

for field in ['name', 'shoesize', 'job', 'language', 'comment']:

 if not form.has_key(field):

 data[field] = '(unknown)'

 else:

 if type(form[field]) != type([]):

 data[field] = form[field].value

 else:

 values = map(lambda x: x.value, form[field])

 data[field] = string.join(values, ' and ')

print html % data

[image: image54.png]
In typical interactions, a user directs a browser to a HTML file, which includes a form action that automatically invokes the server-side CGI script on submit button press. It’s also possible to invoke a CGI script directly, provided that input fields are given values within the referencing URL address itself:

test5c.html

<HTML><BODY>

<TITLE>CGI 101</TITLE>

<H1>Common input devices: URL parameters</H1>

<P>

This demo invokes the test5.cgi server-side script again,

but hardcodes input data to the end of the script's URL,

within a simple hyperlink (instead of packaging up a form's

inputs). Click your browser's "show page source" button

to view the links associated with each list item below.

<P>This is really more about CGI than Python, but notice that

Python's cgi module handles both this form of input (which is

also produced by GET form actions), as well as POST-ed forms;

they look the same to the Python CGI script. In other words,

cgi module users are independent of the method used to submit

data.

<P>Also notice that URLs with appended input values like this

can be generated as part of the page output by another CGI script,

to direct a next user click to the right place and context; together

with type 'hidden' input fields, they provide one way to

save state between clicks.

</P><HR>

<A href=

"http://starship.python.net/~lutz/test5.cgi?name=Bob&shoesize=small">

Send Bob, small

<A href=

"http://starship.python.net/~lutz/test5.cgi?name=Tom&language=Python">

Send Tom, Python

<A href=

"http://starship.python.net/~lutz/test5.cgi?job=Evangelist&comment=spam">

Send Evangelist, spam

<HR>

</BODY></HTML>

The Grail web browser

· Portable: written in Python, uses Tkinter as browser GUI

· Browser downloads/runs applets referenced in HTML

· Applets more powerful than HTML+CGI: a full GUI API

· Python also supports ActiveX, Netscape plug-ins,…

HTML file

<HEAD>

<TITLE>Grail Applet Test Page</TITLE>

</HEAD>

<BODY>

<H1>Test an Applet Here!</H1>

Click this button!

<APP CLASS=Question>

</BODY>

file: Question.py

Python applet file: Question.py

in the same location (URL) as the html file

that references it; adds widgets to browser;

from Tkinter import *

class Question: # run by grail?

 def __init__(self, parent): # parent=browser

 self.button = Button(parent,

 bitmap='question',

 command=self.action)

 self.button.pack()

 def action(self):

 if self.button['bitmap'] == 'question':

 self.button.config(bitmap='questhead')

 else:

 self.button.config(bitmap='question')

if __name__ == '__main__':

 root = Tk() # run stand-alone?

 button = Question(root) # parent=Tk: top-level

 root.mainloop()

Grail sample screen: a Python/Tk GUI

[image: image55.png]
Jython: Python for Java systems

· An independent implementation of Python

· Python for Java-based applications

· Python scripting complements Java systems language

· Renamed from “JPython” to “Jython” (2000: copyright)

Structure

· A collection of Java classes that compile and run Python code

· “jython” program: equivalent to “python”, interactive, scripts

· “jythonc” compiler/packager program: makes .jar, .class files

· Embedding: “PythonInterpreter” class runs Python from Java

· Extending: automatic, Python coded imports, uses Java classes

Advantages

· Compiles Python code to JVM byte-code

· “100% Pure Java” (written in Java, generates JVM)

· More seamless than Tcl and Perl approaches

· Can run as client-side applets in Java-aware browsers

· Includes Python/Java integration support

· Python can access Java classes

· Java can embed/call Python scripts

· Access to AWT and Swing from Python for GUIs

Examples

Hello World

from java.applet import Applet

class HelloWorld(Applet):

 def paint(self, gc):

 gc.drawString("Hello world", 20, 30)

A simple calculator

from java import awt

from pawt import swing

labels = ['7', '8', '9', '+',

 '4', '5', '6', '-',

 '1', '2', '3', '*',

 '0', '.', '=', '/']

keys = swing.JPanel(awt.GridLayout(4, 4))

display = swing.JTextField()

def push(event): # Callback for regular keys

 display.replaceSelection(event.actionCommand)

def enter(event): # Callback for '=' key

 display.text = str(eval(display.text))

 display.selectAll()

for label in labels:

 key = swing.JButton(label)

 if label == '=':

 key.actionPerformed = enter

 else:

 key.actionPerformed = push

 keys.add(key)

panel = swing.JPanel(awt.BorderLayout())

panel.add("North", display)

panel.add("Center", keys)

swing.test(panel)

[image: image56.png]
[image: image57.png]
Jython downsides

· Not yet fully compatible with standard Python

· Only applicable where a JVM is installed or shipped

· Requires users to learn Java too (environment, libs)

· Doesn’t support standard C/C++ extension modules

Slower than C Python (1.7x, 10x, 100X), for now?

Active Scripting and COM

· Active Scripting: Python embedded in HTML, like JavaScript or VBScript

· Extracted and run on client (browser object module) or server (form and reply object models)

· Windows only, IE and IIS only today, requires Python + win32all package installs

· More useful on server side: only one machine requires Python + win32all installs, any browser will work

· COM and DCOM: Microsoft component object models; DCOM allows client and server to be remote

· Host uses Active Scripting to export COM object interfaces for use in Python code

· Future: Python port to C#/.Net framework; see also Python Soap, XML-RPC support for web services

Active Scripting example

<HTML>

<BODY>

<H1>Embedded code demo: Python</H1>

<SCRIPT Language=Python>

embedded python code shows three alert boxes

as page is loaded; any Python code works here,

and uses auto-imported global funcs and objects

def message(i):

 if i == 2:

 alert("Finished!")

 else:

 alert("A Python-generated alert => %d" % i)

for count in range(3): message(count)

</SCRIPT>

</BODY></HTML>

A Python COM client

from sys import argv

docdir = 'C:\\temp\\'

if len(argv) == 2: docdir = argv[1] # ex: comclient.py a:\

from win32com.client import Dispatch # early or late binding

word = Dispatch('Word.Application') # connect/start word

word.Visible = 1 # else word runs hidden

create and save new doc file

newdoc = word.Documents.Add() # call word methods

spot = newdoc.Range(0,0)

spot.InsertBefore('Hello COM client world!') # insert some text

newdoc.SaveAs(docdir + 'pycom.doc') # save in doc file

newdoc.SaveAs(docdir + 'copy.doc')

newdoc.Close()

A Python COM server

import sys

from win32com.server.exception import COMException # what to raise

import win32com.server.util # server tools

globhellos = 0

class MyServer:

 # com info settings

 _reg_clsid_ = '{1BA63CC0-7CF8-11D4-98D8-BB74DD3DDE3C}'

 _reg_desc_ = 'Example Python Server'

 _reg_progid_ = 'PythonServers.MyServer' # external name

 _reg_class_spec_ = 'comserver.MyServer' # internal name

 _public_methods_ = ['Hello', 'Square']

 _public_attrs_ = ['version']

 # python methods

 def __init__(self):

 self.version = 1.0

 self.hellos = 0

 def Square(self, arg): # exported methods

 return arg ** 2

 def Hello(self): # global variables

 global globhellos # retain state, but

 globhellos = globhellos + 1 # self vars don't

 self.hellos = self.hellos + 1

 return 'Hello COM server world [%d, %d]' % (globhellos, self.hellos)

registration functions

def Register(pyclass=MyServer):

 from win32com.server.register import UseCommandLine

 UseCommandLine(pyclass)

def Unregister(classid=MyServer._reg_clsid_):

 from win32com.server.register import UnregisterServer

 UnregisterServer(classid)

if __name__ == '__main__': # register server if file run or clicked

 Register() # unregisters if --unregister cmd-line arg

Other Internet-related tools

See Extras\Internet directory on the class CD for more examples

· XML: SAX parsers, DOM objects, XML-RPC, SOAP

· See Extras\XML examples on class CD

· O’Reilly book: Python & XML

· HTMLgen

· generates HTML from class-based page descriptions (see CD)

· HTML, SGML parsers

· useful for extracting information from web pages

· rfc822 module, email package

· parses standard message headers

· ILU, fnorb, and OmniORB packages

· can be used for CORBA networking

· urllib module

· opens URL, returns file-like object: read, readline (see CD)

· Parse fetched page with htmllib, string.find, xml package

· Restricted execution mode (security issue)

· See Extras\Internet directory on CD

· for running code fetched from untrusted sources

· modules “rexec” and “bastion”

· may be withdrawn in future: security concerns

· Other Internet protocol support

· mod_python (Apache)

· web server classes (see Extras\Internet on CD)

· telnetlib, nntplib (news), SSL sockets,

· Zope & Plone (www.zope.org)

· An open-source web application framework

· Written in and customized with Python

· Plone runs on Zope: workflow-based content management

· “http://server/module/func?arg1=val1&arg2=val2” URL becomes

“module.func(arg1=val1, arg2=val2)” call on server-side Python

· Supplemental Zope/Plone CD available

· Other web frameworks

· CherryPy, WebWare, Quixote, Twisted,… see Vaults of Parnassus

Want to see a few Python-powered sites right now? Visit:

http://maps.yahoo.com
http://yp.yahoo.com
http://www.egroups.com

http://starship.python.net/~lutz/PyInternetDemos.html

http://www.zope.org
Lab Session 10

15. Extending Python in C/C++

· C/C++ registers functions to Python

· For optimization and integration

Extending topics

· Integration overview

· C extension modules

· C extension types

· Wrapper classes

· SWIG glue code generator

Review: Python tool-set layers

· Built-ins

· Lists, dictionaries, strings, library modules, etc.

· High-level tools for simple, fast programming

· Python extensions

· Functions, classes, modules

· For adding extra features, and new object types

· C extensions and embedding (
· C modules, C types, runtime API

· For integrating external systems, optimizing components, customization

Stuff Guido already wrote

· Files

· Tkinter GUI integration

· DBM files and shelves

· System POSIX interfaces

· And everything else: Python built-in object types

Why integration?

· Optimization

· time-critical components

· Customization

· on-site/end-user changes

· Component reuse

· wrapping C libraries in a Python front-end

“Hybrid development”

· Python is optimized for speed-of-development

· Python is designed for multi-language systems

· Leverages both development and execution speed

The ‘big picture’ revisited

Integration modes

· Extending

· Python (C/C++

· For optimization, library integration

· Via registering C function pointers

· Embedding

· C/C++ (Python

· For system customizations, callbacks

· Via calling Python API functions

· May be mixed arbitrarily

· Python (C/C++ (Python (C/C++ . . .

A simple C extension module

· C extension module for Python, called “environ”

· Wraps (exports) the C library’s ‘getenv’ function

file: environ.c

#include <Python.h>

#include <stdlib.h>

/* Functions */

static PyObject * /* returns object */

wrap_getenv(PyObject *self, PyObject *args)

{ /* args from python */

 char *varName, *varValue;

 PyObject *returnObj = NULL; /* null=exception */

 if (PyArg_Parse(args, "s", &varName)) { /*P->C*/

 varValue = getenv(varName);

 if (varValue != NULL)

 returnObj = Py_BuildValue("s", varValue); /*C->P*/

 else

 PyErr_SetString(PyExc_SystemError, "bad getenv");

 }

 return returnObj;

}

/* Registration */

static struct PyMethodDef environ_methods[] = {

 {"getenv", wrap_getenv}, /* name, address */

 {NULL, NULL}

};

/* Initialization */

void initenviron() /* called by Python */

{ /* on first import */

 (void) Py_InitModule("environ", environ_methods);

}

Using the C module in Python

· Used just like Python modules

· Serve same roles: name-space

· C functions handle all data conversions

· C raises exceptions by returning ‘NULL’

% python

>>> import environ

>>> environ.getenv("USER")

'mlutz'

>>> environ.getenv("PYTHONPATH")

'.:/opt/local/src/Python-1.4/Lib'

>>> dir(environ)

['__doc__', '__file__', '__name__', 'getenv']

>>> environ.__file__

'./environ.so'

C module structure

· API tools

· Python API symbols start with a ‘Py’ prefix

· ‘PyArg_Parse’ converts arguments to C

· ‘Py_BuildValue’ C data to Python return object

· ‘PyObject*’ for generic Python objects in C

· Module method functions

· ‘self’ argument (not used for modules)

· ‘args’—Python tuple containing passed arguments

· Name-to-address registration table

· Maps name strings to C function address

· Null table terminator

· Module initialization function

· Called by Python when the module is first imported

· ‘Py_InitModule’ initializes module attributes dictionary

· ‘initenviron’ called by name (non-static)

Binding C extensions to Python

· Static binding…
rebuild Python

· Dynamic binding…
load when imported

Static binding

1. Add file to Python tree

Put (or link to) the source or object file in Modules directory of Python source tree

2. Add line to Modules/Setup

Add a line to the Modules/Setup file in the Python source tree: "environ environ.c" (config table)

3. Rebuild Python

Rerun the ‘make’ command at the top-level of Python’s source tree directory

Dynamic Binding

· Loaded into process on first import

· Doesn’t require access to Python source

· Doesn’t require rebuilding Python

· Makes for smaller executable/process

· Compile/link details are platform-specific

1. Compile into shareable

Compile C module into a sharable (dynamic-load) object file: .so, .sl, .dll, etc. (see makefiles below and in embedding unit)

2. Add to module search path

Put the shareable object file in a directory named on the ‘$PYTHONPATH’ environment variable

Makefile example, dynamic binding on Linux
File makefile.environ

##

Compile environ.c into a shareable object file on

Linux, to be loaded dynamically when first imported,

whether from interactive, stand-alone, or embedded code.

To use, type make -f makefile.environ, at your shell;

to run, make sure environ.so is on a dir on PYTHONPATH.

#

To link statically with Python instead, add line like:

environ ~/examples/Part1/Preview/Integrate/environ.c

to Modules/Setup (or add a link to environ.c in Modules,

and add a line like environ environ.c) and re-make

python itself; this works on any platform, and no extra

makefile like this one is needed;

#

To make a shareable on Solaris, you might instead say:

#
cc xxx.c -c -KPIC -o xxx.o

#
ld -G xxx.o -o xxx.so

rm xxx.o

On other platforms, it's more different still; see

your c or c++ compiler's documentation for details

##

PY = /home/mark/python1.5.2-ddjcd/Python-1.5.2

environ.so: environ.c

gcc environ.c -g -I$(PY)/Include -I$(PY) -fpic -shared -o environ.so

clean:

rm -f environ.so

#or-- environ.so: environ.c

#
gcc environ.c -c -g -fpic -I$(PY)/Include -I$(PY) -o environ.o

#
gcc -shared environ.o -o environ.so

#
rm -f environ.o

Data conversions: Python (C

· ‘PyArg_Parse’ converts arguments to C

· ‘Py_BuildValue’ C data to Python return object

· ‘PyArg_ParseTuple’ assumes it’s converting a tuple

· Other API tools handle type-specific conversions

Common conversion codes

	Format code
	C data-type
	Python object-type

	“s”
	char*
	string

	“s#”
	char*, int
	string, length

	“i”
	int
	integer

	“l”
	long int
	integer

	“c”
	char (or int for build)
	string

	“f”
	float
	floating-point

	“d”
	double
	floating-point

	“O”
	PyObject*
	a raw object

	“(items)”
	targets or values
	nested tuple

	“[items]”
	series of arg/value
	list

	“{items}”
	series of “key,value”
	dictionary

· Warning:

· “s” returns pointer to string in Python: use it or lose it

C extension types

· Creation of multiple instances

Each is a new C ‘struct’, not a dictionary

· Overloading operators and type operations

Via type-descriptor tables, not method names

· Don’t support inheritance like classes

Type file components

1. A C ‘struct’ used to hold per-instance data

2. Instance method functions and registration table

3. Functions to handle general type operations

4. Functions to handle specific type category operations

5. Type-descriptor tables: register operation handlers

6. A C extension module: exports instance constructor

A ‘skeleton’ C extension type

· A C string-stack type

· Implements push/pop methods

· Overloads sequence and type operators

file: stacktyp.c

/**

 * stacktyp.c: a character-string stack data-type;

 * a C extension type, for use in Python programs;

 * stacktype module clients can make multiple stacks;

 * similar to stackmod, but 'self' is the instance,

 * and we can overload sequence operators here;

 **/

#include "Python.h"

static PyObject *ErrorObject; /* local exception */

#define onError(message) \

 { PyErr_SetString(ErrorObject, message); return NULL; }

/**

 * STACK-TYPE INFORMATION

 **/

#define MAXCHARS 2048

#define MAXSTACK MAXCHARS

typedef struct { /* stack instance object */

 PyObject_HEAD /* python header */

 int top, len; /* + per-instance info */

 char *stack[MAXSTACK];

 char strings[MAXCHARS];

} stackobject;

staticforward PyTypeObject Stacktype; /* type descriptor */

#define is_stackobject(v) ((v)->ob_type == &Stacktype)

/**

 * INSTANCE METHODS

 **/

static PyObject * /* on "instance.push(arg)" */

stack_push(self, args) /* 'self' is the instance */

 stackobject *self; /* 'args' passed to method */

 PyObject *args;

{

 char *pstr;

 if (!PyArg_ParseTuple(args, "s", &pstr))

 return NULL;

 [. . .]

 Py_INCREF(Py_None);

 return Py_None;

}

static PyObject *

stack_pop(self, args)

 stackobject *self;

 PyObject *args; /* on "instance.pop()" */

{ [. . .]

 return Py_BuildValue("s", "not implemented");

}

static PyObject *

stack_top(self, args)

 stackobject *self;

 PyObject *args;

{ [. . .]

}

static PyObject *

stack_empty(self, args)

 stackobject *self;

 PyObject *args;

{ [. . .]

}

/* instance methods */

static struct PyMethodDef stack_methods[] = {

 {"push", stack_push, 1}, /* name, addr */

 {"pop", stack_pop, 1},

 {"top", stack_top, 1},

 {"empty", stack_empty, 1},

 {NULL, NULL}

};

/**

 * BASIC TYPE-OPERATIONS

 **/

static stackobject * /* on "x = stacktype.Stack()" */

newstackobject() /* instance constructor */

{

 stackobject *self;

 self = PyObject_NEW(stackobject, &Stacktype);

 if (self == NULL)

 return NULL; /* raise exception */

 self->top = 0;

 self->len = 0;

 return self; /* a new type-instance */

}

static void /* instance destructor */

stack_dealloc(self) /* frees instance struct */

 stackobject *self;

{

 PyMem_DEL(self);

}

static int

stack_print(self, fp, flags)

 stackobject *self;

 FILE *fp;

 int flags; /* print self to file */

{ [. . .]

}

static PyObject *

stack_getattr(self, name) /* on "instance.attr" */

 stackobject *self; /* bound-method or member */

 char *name;

{

 if (strcmp(name, "len") == 0)

 return Py_BuildValue("i", self->len);

 return

 Py_FindMethod(stack_methods, (PyObject *)self, name);

}

static int

stack_compare(v, w)

 stackobject *v, *w; /* return -1, 0 or 1 */

{ [. . .]

}

/**

 * SEQUENCE TYPE-OPERATIONS

 **/

static int

stack_length(self)

 stackobject *self; /* on "len(instance)" */

{

 [. . .]

}

static PyObject *

stack_concat(self, other)

 stackobject *self; /* on "instance + other" */

 PyObject *other;

{ [. . .] /* return new stack instance */

}

static PyObject *

stack_repeat(self, n) /* on "instance * N" */

 stackobject *self;

 int n;

{ [. . .]

}

static PyObject *

stack_item(self, index) /* on x[i], for, in */

 stackobject *self;

 int index;

{

 if (index < 0 || index >= self->top) {

 PyErr_SetString(PyExc_IndexError, "out-of-bounds");

 return NULL;

 }

 else

 return Py_BuildValue("s", self->stack[index]);

}

static PyObject *

stack_slice(self, ilow, ihigh)

 stackobject *self;

 int ilow, ihigh;

{

 /* return ilow..ihigh slice of self--new object */

 onError("slicing not yet implemented")

}

/**

 * TYPE DESCRIPTORS: MORE REGISTRATION

 **/

static PySequenceMethods stack_as_sequence = {

 (inquiry) stack_length,

 (binaryfunc) stack_concat,

 (intargfunc) stack_repeat,

 (intargfunc) stack_item,

 (intintargfunc) stack_slice,

 (intobjargproc) 0, /* setitem */

 (intintobjargproc) 0, /* setslice */

};

static PyTypeObject Stacktype = { /* type descriptor */

 /* type header */

 PyObject_HEAD_INIT(&PyType_Type)

 0, /* ob_size */

 "stack", /* name */

 sizeof(stackobject), /* basicsize */

 0, /* itemsize */

 /* standard methods */

 (destructor) stack_dealloc, /* dealloc */

 (printfunc) stack_print, /* print */

 (getattrfunc) stack_getattr, /* getattr */

 (setattrfunc) 0, /* setattr */

 (cmpfunc) stack_compare, /* compare */

 (reprfunc) 0, /* repr */

 /* type categories */

 0, /* number ops */

 &stack_as_sequence, /* sequence ops */

 0, /* mapping ops */

 /* more methods */

 (hashfunc) 0, /* "dict[x]" */

 (binaryfunc) 0, /* "x()" */

 (reprfunc) 0, /* "str(x)" */

}; /* plus others: see Include/object.h */

/***

 * MODULE LOGIC: CONSTRUCTOR FUNCTION

 **/

static PyObject *

stacktype_new(self, args) /* on "x = stacktype.Stack()" */

 PyObject *self;

 PyObject *args;

{

 if (!PyArg_ParseTuple(args, "")) /* Module func */

 return NULL;

 return (PyObject *)newstackobject();

}

static struct PyMethodDef stacktype_methods[] = {

 {"Stack", stacktype_new, 1},

 {NULL, NULL}

};

void

initstacktype() /* on first "import stacktype" */

{

 PyObject *m, *d;

 m = Py_InitModule("stacktype", stacktype_methods);

 d = PyModule_GetDict(m);

 ErrorObject = Py_BuildValue("s", "stacktype.error");

 PyDict_SetItemString(d, "error", ErrorObject);

 if (PyErr_Occurred())

 Py_FatalError("can't initialize module stacktype");

}

Using C extension types in Python

Basic usage

% python

>>> import stacktype # load the type's module

>>> x = stacktype.Stack() # make a type-instance

>>> x.push('new') # call type-instance methods

>>> x # call the print handler

Sequence operators

>>> x[0] # stack_item

'new'

>>> x[1] # raise IndexError

Traceback (innermost last):

 File "<stdin>", line 1, in ?

IndexError: out-of-bounds

>>> x[0:1] # stack_slice

>>> y = stacktype.Stack() # stacktype_new

>>> for c in 'SPAM': y.push(c) # stack_getattr ->

... # stack_push

>>> z = x + y # stack_concat

>>> z * 4 # stack_repeat

Comparisons, exceptions

>>> t = stacktype.Stack()

>>> t == y, t is y, t > y, t >= y # stack_compare

>>> for i in range(1000): y.push('hello' + `i`)

...

Traceback (innermost last):

 File "<stdin>", line 1, in ?

stacktype.error: string-space overflow

Wrapping C extensions in Python

· C types don’t support inheritance

· Wrapper classes add inheritance

· Wrappers can be specialized in Python

file: oopstack.py

import stacktype # get C type

class Stack:

 def __init__(self, start=None): # wrap | make

 self._base = start or stacktype.Stack()

 def __getattr__(self, name):

 return getattr(self._base, name) # attributes

 def __cmp__(self, other):

 return cmp(self._base, other)

 def __repr__(self): # 'print'

 print self._base,; return ''

 def __add__(self, other): # operators

 return Stack(self._base + other._base)

 def __mul__(self, n):

 return Stack(self._base * n) # new Stack

 def __getitem__(self, i):

 return self._base[i] # [i],in,for

 def __len__(self):

 return len(self._base)

file: substack.py

from oopstack import Stack # get wrapper class

class Substack(Stack):

 def __init__(self, start=[]): # extend it in Python

 Stack.__init__(self)

 [. . .]

Writing extensions in C++

· Python is coded in portable ANSI C

· Normal C (C++ mixing rules apply

· Python header files

· Automatically wrapped in extern “C”, and may be included in C++ extensions freely

· Exported functions

· Wrap functions to be called by Python in extern “C” declarations

· Includes module initialization functions and (usually) method functions

· Static initializers

· C++ global or static object constructors (initializers) may not work correctly, if main program is linked by C

See Also:

· Wrapper class techniques: stubs for C++ class types

· C++ class (Python type integration work underway

· SWIG code generator: http://www.swig.org/
SWIG example (PP book)

SWIG is designed to export (‘wrap’) existing C/C++ components to Python programs. It generates complete extension modules with type conversion code based on C/C++ type signatures. It can also exprt C global variables, and do Python shadow class generation for C++ classes.

Also see “Extras” directory on the class CD for more examples

Module definition file

/* File : hellolib.i */

/**

 * Swig module description file, for a C lib file.

 * Generate by saying "swig -python hellolib.i".

 * - %module sets name as known to Python importers

 * - %{...%} encloses code added to wrapper verbatim

 * - extern stmts declare exports in ANSI C syntax

 * You could parse the whole header file by using a

 * %include directive instead of the extern here,

 * but externs let you select what is wrapped/exported;

 * use '-Idir' swig args to specify .h search paths;

 **/

%module hellowrap

%{

#include <hellolib.h>

%}

extern char *message(char*); /* or: %include "../HelloLib/hellolib.h" */

 /* or: %include hellolib.h, and use -I arg */

Makefile, dynamic binding

##

Use SWIG to integrate the hellolib.c examples for use

in Python programs. Using type signature information

in .h files (or separate .i input files), SWIG generates

the sort of logic we manually coded in the earlier example's

hellolib_wrapper.c. SWIG creates hellolib_wrap.c when run;

this makefile creates a hellowrap.so extension module file.

#

To build, we run SWIG on hellolib.i, then compile and

link with its output file. Note: you may need to first

get and build the 'swig' executable if it's not already

present on your machine: unpack, and run a './configure'

and 'make', just like building Python from its source.

You may also need to modify and source ./setup-swig.csh if

you didn't 'make install' to put swig in standard places.

See HelloLib/ makefiles for more details; the hellolib

.c and .h files live in that dir, not here.

##

unless you've run make install

SWIG = ./myswig

PY = /home/mark/python1.5.2-ddjcd/Python-1.5.2

LIB = ../HelloLib

hellowrap.so: hellolib_wrap.o $(LIB)/hellolib.o

ld -shared hellolib_wrap.o $(LIB)/hellolib.o -o hellowrap.so

generated wrapper module code

hellolib_wrap.o: hellolib_wrap.c $(LIB)/hellolib.h

gcc hellolib_wrap.c -c -g -I$(LIB) -I$(PY)/Include -I$(PY)

hellolib_wrap.c: hellolib.i

$(SWIG) -python -I$(LIB) hellolib.i

C library code in another directory

$(LIB)/hellolib.o:

cd $(LIB); make -f makefile.hellolib-o hellolib.o

clean:

rm -f *.o *.so core

force:

rm -f *.o *.so core hellolib_wrap.c hellolib_wrap.doc

Python and rapid development

· Prototype-and-migrate

· Code in Python initially

· Move selected Python modules to C/C++

· Use profiler to pick components to migrate

· Seamless migration path

· C modules look just like Python modules

· C types look almost like Python classes

· Wrappers add inheritance to types

· Hybrid designs

· Python front-end, C/C++ back-end

· C/C++ application, Python customizations

The RAD slider

Prototyping with Python

Lab Session 11

16. Embedding Python in C/C++

· C/C++ runs Python code via API calls

· For dynamic system customization

Embedding topics

· Calling objects

· Running code strings

· Registration techniques

· Other topics: errors, tools, etc.

General embedding concepts

Embedded code forms

· Code strings

· Running expressions, statements

· Callable objects

· Calling functions, classes, methods

· Code files

· Importing modules, executing scripts

Embedded code sources

	Source
	Description

	Modules
	fetching code by importing modules

	Text files
	fetching code from simple text files

	Registration
	letting Python pass code to a C extension

	HTML tags
	extracting code from web pages

	Databases
	fetching code from a database table

	Processes
	receiving code over sockets

	Construction
	building Python code in C at runtime

	And so on
	system registries, etc.

Common code sources

· Callable objects…
modules, registration

· Code strings…
files, registration, HTML,…

· Code files…
files, modules, scripts

Data communication techniques

	Code form
	Technique
	Mode

	Objects
	function arguments
	In/out

	Objects
	function return values
	Out

	Strings
	expression results
	Out

	Strings, Objects
	global module-level variables
	In/out

	Strings, Objects
	C extension get/set functions
	In/out

	Strings, Objects
	files, stdin/stdout, sockets,…
	In/out

Running simple code strings

· ‘Py_Initialize’ initializes Python libraries

· ‘PyRun_SimpleString’ runs Python statements

· Runs in module ‘__main__’, no result from code

· Python code uses ‘environ’ extension module too

file: main1.c

#include <Python.h>

main(argc, argv)

int argc;

char **argv;

{

 /* This is the simplest embedding mode. */

 /* Other API functions return results, */

 /* accept namespace arguments, allow */

 /* access to real Python objects, etc. */

 /* Strings may be precompiled for speed. */

 Py_Initialize(); /* init python */

 PyRun_SimpleString("print 'Hello embedded world!'");

 /* use C extension module above */

 PyRun_SimpleString("from environ import *");

 PyRun_SimpleString(

 "for i in range(4):\n"

 "\tprint i,\n"

 "\tprint 'Hello, %s' % getenv('USER')\n\n");

 PyRun_SimpleString("print 'Bye embedded world!'");

}

Running the C program

% main1

Hello embedded world!

0 Hello, mlutz

1 Hello, mlutz

2 Hello, mlutz

3 Hello, mlutz

Bye embedded world!

Same as typing at “>>>” prompt:

print 'Hello embedded world!'

from environ import *

for i in range(4):

 print i,

 print 'Hello, %s' % getenv('USER')

print 'Bye embedded world!

Building programs that embed Python

· Link with Python library (1), and your main()

· Add any libs referenced by Python lib (Modules/Setup)

· Older scheme (1.4): 4 Python .a libs + 2 Python .o files

file: Makefile.main1

this file builds a C executable that embeds Python

assuming no external module libs must be linked in

works on Linux with a custom Python build tree

PY = /home/mark/python1.5.2-ddjcd/Python-1.5.2

PYLIB = $(PY)/libpython1.5.a

PYINC = -I$(PY)/Include -I$(PY)

basic1: basic1.o

 cc basic1.o $(PYLIB) -g -export-dynamic -lm -ldl -o basic1

basic1.o: basic1.c

 cc basic1.c -c -g $(PYINC)

Calling objects and methods

The example task

· Make an instance of a Python class in a module file

· Call a method of that instance by name

· Python equivalent:

import <module>

object = <module>.<class>()

result = object.<method>(..args..)

Python API tools to be used

	Tool
	Description

	PyObject*
	The type of a generic Python object in C

	PyImport_ImportModule
	Imports a Python module, much like the Python ‘import’

	PyObject_GetAttrString
	Performs attribute qualifications: ‘object.name’, like ‘getattr’

	PyEval_CallObject
	Calls any callable object (class, function, method), like ‘apply’

	Py_BuildValue
	Converts C data to Python form, based on a format string

	PyArg_Parse
	Converts Python data to C form, based on a format string

	Py_DECREF
	Release ownership of object passed to C from the API

The task implementation

file: module.py (on $PYTHONPATH)
class klass:

 def method(self, x, y):

 return "brave %s %s" % (x, y) # run me from C

file: objects1.c

#include <Python.h>

#include <stdio.h>

main() {

 char *arg1="sir", *arg2="robin", *cstr;

 PyObject *pmod, *pclass, *pargs, *pinst, *pmeth, *pres;

 /* instance = module.klass() */

 Py_Initialize();

 pmod = PyImport_ImportModule("module");

 pclass = PyObject_GetAttrString(pmod, "klass");

 Py_DECREF(pmod);

 pargs = Py_BuildValue("()");

 pinst = PyEval_CallObject(pclass, pargs);

 Py_DECREF(pclass);

 Py_DECREF(pargs);

 /* result = instance.method(x,y) */

 pmeth = PyObject_GetAttrString(pinst, "method");

 Py_DECREF(pinst);

 pargs = Py_BuildValue("(ss)", arg1, arg2);

 pres = PyEval_CallObject(pmeth, pargs);

 Py_DECREF(pmeth);

 Py_DECREF(pargs);

 PyArg_Parse(pres, "s", &cstr); /* convert to C */

 printf("%s\n", cstr);

 Py_DECREF(pres);

}

% objects1

brave sir robin

With full error checking (!)

file: objects1err.c

#include <Python.h>

#include <stdio.h>

#define error(msg) do { printf("%s\n", msg); exit(1); } while (1)

main() {

 char *arg1="sir", *arg2="robin", *cstr;

 PyObject *pmod, *pclass, *pargs, *pinst, *pmeth, *pres;

 /* instance = module.klass() */

 Py_Initialize();

 pmod = PyImport_ImportModule("module");

 if (pmod == NULL)

 error("Can't load module");

 pclass = PyObject_GetAttrString(pmod, "klass");

 Py_DECREF(pmod);

 if (pclass == NULL)

 error("Can't get module.klass");

 pargs = Py_BuildValue("()");

 if (pargs == NULL) {

 Py_DECREF(pclass);

 error("Can't build arguments list");

 }

 pinst = PyEval_CallObject(pclass, pargs);

 Py_DECREF(pclass);

 Py_DECREF(pargs);

 if (pinst == NULL)

 error("Error calling module.klass()");

 /* result = instance.method(x,y) */

 pmeth = PyObject_GetAttrString(pinst, "method");

 Py_DECREF(pinst);

 if (pmeth == NULL)

 error("Can't fetch klass.method");

 pargs = Py_BuildValue("(ss)", arg1, arg2);

 if (pargs == NULL) {

 Py_DECREF(pmeth);

 error("Can't build arguments list");

 }

 pres = PyEval_CallObject(pmeth, pargs);

 Py_DECREF(pmeth);

 Py_DECREF(pargs);

 if (pres == NULL)

 error("Error calling klass.method");

 if (!PyArg_Parse(pres, "s", &cstr)) /* convert to C */

 error("Can't convert klass.method result");

 printf("%s\n", cstr);

 Py_DECREF(pres);

}

The easy way: an extended API

· Higher-level interface from “Programming Python”

· Automates errors, reference counts, conversions

· Supports reloading and debugging embedded code

· Link with Python libs/objects + “pyembed*” files

file: objects2.c

#include <stdio.h>

#include "pyembed.h"

main () {

 int failflag;

 PyObject *pinst;

 char *arg1="sir", *arg2="robin", *cstr;

 failflag =

 Run_Function("module", "klass", /* module.klass() */

 "O", &pinst, "()") /* result, args */

 ||

 Run_Method(pinst, "method", /* pinst.method() */

 "s", &cstr, /* result fmt/ptr */

 "(ss)", arg1, arg2); /* args fmt/values*/

 printf("%s\n", (!failflag) ? cstr : "Can't call objects");

 Py_XDECREF(pinst);

}

% objects2

brave sir robin

Running strings: results & name-spaces

Runs: [upper('spam') + '!'] in string module

Expression result comes back as a Python object

‘PyModule_GetDict’: module’s name-space dictionary

‘PyRun_String’: runs a code string in name-spaces

Parse-mode flag: ‘Py_eval_input’ = expression

file codestring1.c

#include <Python.h> /* standard API defs */

main() {

 /* error checking omitted! */

 char *cstr;

 PyObject *pstr, *pmod, *pdict;

 Py_Initialize();

 /* result = string.upper('spam') + '!' */

 pmod = PyImport_ImportModule("string"); /* namespace */

 pdict = PyModule_GetDict(pmod);

 pstr = PyRun_String("upper('spam') + '!'",

 Py_eval_input, pdict, pdict);

 /* convert result to C */

 PyArg_Parse(pstr, "s", &cstr);

 printf("%s\n", cstr);

 Py_DECREF(pmod);

 Py_DECREF(pstr); /* free exported objects */

}

% codestring1

SPAM!

The easy way, part II: extended API

· Automates code strings, object calls, and methods

· Also supports running strings without modules

file: codestring2.c

#include "pyembed.h"

#include <stdio.h>

main() {

 char *cstr;

 int err =

 Run_Codestr(

 PY_EXPRESSION, /* expr|stmt? */

 "upper('spam') + '!'", "string", /* code,module */

 "s", &cstr); /* expr result */

 printf("%s\n", (!err) ? cstr : "Can't run string");

}

% codestring2

SPAM!

Other code string possibilities

· Making new dictionaries for string name-spaces

· Fetching strings from files, modules, HTML, databases

· Exporting C extension functions for communication

· Global variables for communication: ‘copy-in-copy-out’

Copy-in-copy-out

validate.py

use QUANTITY, ORDERTYPE

set QUANTITY, MESSAGES

[. . .]

C code…

 /* set input vars */

 char *string = . . .

 Set_Global("validate", "QUANTITY", "i", quantity);

 Set_Global("validate", "ORDERTYPE", "s", ordertype);

 /* run code string */

 status = Run_Codestr(PY_STATEMENT,

 string, "validate", "", NULL);

 if (status == -1)

 PyErr_Print(); /* stack traceback */

 else {

 /* fetch output vars */

 Get_Global("validate", "QUANTITY", "i", &quantity);

 Get_Global("validate", "MESSAGES", "s", &messages);

 }

Making namespace dictionaries

· Shamelessly stolen from “Programming Python”

· Same as using built-in ‘eval’/‘exec’, ‘{}’, ‘X[key]’:

dict = {}

dict['Y'] = 2

exec 'X = 99' in dict, dict

exec 'X = X+Y' in dict, dict

print dict['X'] # => 101

file: basic4.c

#include <Python.h>

main() {

 int cval;

 PyObject *pdict, *pval;

 Py_Initialize();

 /* make a new namespace */

 pdict = PyDict_New();

 PyDict_SetItemString(pdict, "__builtins__",

 PyEval_GetBuiltins());

 /* dict['Y'] = 2 */

 PyDict_SetItemString(pdict, "Y", PyInt_FromLong(2));

 PyRun_String("X = 99", Py_file_input, pdict, pdict);

 PyRun_String("X = X+Y", Py_file_input, pdict, pdict);

 /* fetch dict['X'] */

 pval = PyDict_GetItemString(pdict, "X");

 PyArg_Parse(pval, "i", &cval); /* convert to C */

 printf("%d\n", cval); /* result=101 */

 Py_DECREF(pdict);

}

Registering Python objects and strings

· A strategy for code location/source

· Python passes code to a C extension

· C saves the code and runs it later

· May register objects or code strings

· Works best if Python is ‘on top’

Components: extending + embedding

· A C extension module

· Exports a registration function to Python (‘setHandler’)

· A C event routing function

· Calls the registered Python object in response to events

· A Python client program

· Registers functions, triggers events

Registration implementation

file: cregister.c

#include <Python.h>

#include <stdlib.h>

/***/

/* 1) code to route events to Python object */

/* note that we could run strings here instead */

/***/

static PyObject *Handler = NULL; /* Python object in C */

void Route_Event(char *label, int count)

{

 char *cres;

 PyObject *args, *pres;

 /* call Python handler */

 args = Py_BuildValue("(si)", label, count);

 pres = PyEval_CallObject(Handler, args);

 Py_DECREF(args);

 if (pres != NULL) {

 /* use and decref handler result */

 PyArg_Parse(pres, "s", &cres);

 printf("%s\n", cres);

 Py_DECREF(pres);

 }

}

/***/

/* 2) python extension module to register handlers */

/* python imports this module to set handler objects */

/***/

static PyObject *

Register_Handler(PyObject *self, PyObject *args)

{

 /* save Python callable object */

 Py_XDECREF(Handler); /* called before? */

 PyArg_Parse(args, "O", &Handler); /* one argument? */

 Py_XINCREF(Handler); /* add reference */

 Py_INCREF(Py_None); /* None=success */

 return Py_None;

}

static PyObject *

Trigger_Event(PyObject *self, PyObject *args)

{

 /* let Python simulate event caught by C */

 static count = 0;

 Route_Event("spam", count++);

 Py_INCREF(Py_None);

 return Py_None;

}

static struct PyMethodDef cregister_methods[] = {

 {"setHandler", Register_Handler}, /* name, addr */

 {"triggerEvent", Trigger_Event},

 {NULL, NULL}

};

void initcregister() /* this is called by Python */

{ /* on first "import cregister" */

 (void) Py_InitModule("cregister", cregister_methods);

}

Python client program

· Combines extending and embedding

· Extending:
Python encloses C

· Embedding:
C calls Python on events

· C may also call embedded python code to register

file: register.py

handle an event, return a result (or None)

def function1(label, count):

 return "%s number %i..." % (label, count)

def function2(label, count):

 return label * count

register handlers, trigger events

import cregister

cregister.setHandler(function1)

for i in range(3):

 cregister.triggerEvent() # simulate events caught by C

cregister.setHandler(function2)

for i in range(3):

 cregister.triggerEvent() # routes events to function2

% python register.py

spam number 0...

spam number 1...

spam number 2...

spamspamspam

spamspamspamspam

spamspamspamspamspam

Registration tradeoffs

· +: Granularity

Associating actions with objects without external files

· -: Application structure

Requires Python on top, or extra embedding logic

· -: Complexity

Might require extra coding step to register code

· -: Reloading code

Difficult to reload without going through modules

Building the example

Solaris

add the extension modules as dynamically linked modules;

when first imported, they are located in a dir on

$PYTHONPATH, and loaded into the process.

cregister.so: cregister.c

 $(Cc) cregister.c $(CFLAGS) -DDEBIG -KPIC -o cregister.o

 ld -G cregister.o -o $@

environ.so: environ.c

 $(Cc) environ.c $(CFLAGS) -KPIC -o environ.o

 ld -G environ.o -o $@

Linux
PY = /home/mark/python1.5.2-ddjcd/Python-1.5.2

PYINC = -I$(PY)/Include -I$(PY)

cregister.so: cregister.c

gcc cregister.c -g $(PYINC) -fpic -shared

Accessing C variables in Python

· Using an extension module

import cvars # import C variable wrapper module

cvars.setX(24) # set C's X from Python

print cvars.getY() # fetch C's Y from Python

· Using an extension type

import cvars # import C variable wrapper module

c = cvars.interace() # make interface object instance

c.X = (24) # set attributes -> C variable

print c.Y # get attributes -> C variable

· Using copy-in-copy-out

1. C copies X and Y values to variables in module M

2. C runs embedded code in module M’s name-space

3. C fetches the final values of the Python variables

C API equivalents in Python

· Python may be embedded in C or Python

· See section “Dynamic coding” for Python tools

	C API tool
	Python tool

	PyImport_ImportModule
	import

	PyEval_CallObject
	apply

	PyRun_String
	exec/eval

	PyObject_GetAttrString
	getattr

Running code files from C

· ‘PyRun_File’, ‘PyRun_SimpleFile’

· Module imports and reloads

· system, popen, fork/exec

Precompiling strings into byte-code

· Modules are compiled once, on first import

· Raw strings compiled when run, unless precompile

· Compile to byte code object

 PyCodeObject*

 Py_CompileString(char *string,

 char *filename, int parsemode);

· Run byte-code object

 PyObject*

 PyEval_EvalCode(PyCodeObject *code,

 PyObject *globalnamesdict,

 PyObject *localnamesdict);

Embedding under C++

· Python is coded in portable ANSI C

· Normal C++ (C mixing rules apply

· No special considerations when embedding

· Python header files

· Automatically wrapped in extern “C”, and may be included in C++ programs freely

· Python libraries

· Don’t need to be recompiled by the C++ compiler to link: API entry points are all extern “C”
More on object reference counts

· Python uses reference-count garbage collection

· New objects returned to C with a reference

· C must INCREF other objects to retain them

· C must DECREF objects it no longer needs

· XINCREF/XDECREF ignore NULL pointers

Resources:

· New API documentation

· http://www.python.org/doc, Python/C API manual

· Older API documentation

· http://www.python.org/doc/ext/ext.html

· Other references

· Programming Python, 2nd Edition

· Abstract object API

· Tools in "abstract.h" header file are well-defined

· Extended API in chapter 15 of “Programming Python”

· Run_Function, etc., handle most details

· Embedding examples in books, on the ‘net, etc.

· http://rmi.net/~lutz/newex.html

· Check the C source code of the API

· Not as hard as you may think!

Common API calls

	New Name (1.3+)
	INCREFs?
	Python Equivalent

	PyImport_AddModule
	No
	n/a

	PyImport_ImportModule
	Yes
	import module

	PyImport_ReloadModule
	Yes
	reload(module)

	PyImport_GetModuleDict
	No
	sys.modules

	PyModule_GetDict
	No
	module.__dict__

	PyDict_GetItemString
	No
	dict[key]

	PyDict_SetItemString
	n/a
	dict[key]=val

	PyObject_GetAttrString
	Yes
	getattr(obj, attr)

	PyObject_SetAttrString
	n/a
	setattr(obj, attr, val)

	PyArg_ParseTuple
	n/a
	n/a

	Py_BuildValue
	Yes
	n/a

	PyEval_CallObject
	Yes
	apply(func, argtuple)

	PyRun_String
	Yes
	eval(expr), exec stmt

	PyErr_Print
	n/a
	traceback.print_exc

	PyDict_New
	Yes
	{}

Integration error handling

· Extending: sending errors to Python

· C extensions raise exceptions by returning NULL

· ‘PyErr_SetString’ sets exception’s name and data

· C may propagate error instead of setting

· Embedding: catching Python errors

· API return values: NULL, or integer status codes

· ‘PyErr_Fetch’ fetches exception info

· ‘PyErr_Print’ shows Python stack traceback on stderr

· Extended API functions return -1 or NULL on first error

Fetching exception information in C

file: pyerrors.c

#include <Python.h>

#include <stdio.h>

char save_error_type[1024], save_error_info[1024];

PyerrorHandler(char *msgFromC)

{

 /* process Python-related errors */

 /* call after Python API raises an exception */

 PyObject *errobj, *errdata, *errtraceback, *pystring;

 printf("%s\n", msgFromC);

 /* get latest python exception info */

 PyErr_Fetch(&errobj, &errdata, &errtraceback);

 pystring = NULL;

 if (errobj != NULL &&

 (pystring = PyObject_Str(errobj)) != NULL &&

 (PyString_Check(pystring))

)

 strcpy(save_error_type, PyString_AsString(pystring));

 else

 strcpy(save_error_type, "<unknown exception type>");

 Py_XDECREF(pystring);

 pystring = NULL;

 if (errdata != NULL &&

 (pystring = PyObject_Str(errdata)) != NULL &&

 (PyString_Check(pystring))

)

 strcpy(save_error_info, PyString_AsString(pystring));

 else

 strcpy(save_error_info, "<unknown exception data>");

 Py_XDECREF(pystring);

 printf("%s\n%s\n", save_error_type, save_error_info);

 Py_XDECREF(errobj);

 Py_XDECREF(errdata); /* caller owns all 3 */

 Py_XDECREF(errtraceback); /* already NULL'd out */

}

Automated integration tools

· SWIG

· Generates Python interfaces to external C/C++ libraries

· Uses C/C++ declarations and interface description files

· For C++ class: generates C type + Python wrapper class

· See unit 15, Programming Python 2nd edition, and http://www.swig.org/
· ILU

· Implements CORBA distributed-object systems

· Uses interface description files

· Platform and language independent

· Abstract object API

· C API to create/process Python objects generically

· In Python’s “abstract.h”: exports slicing, concatenation, etc.

· Embedded call API

· C API to simplify common embedding tasks

· In chapter 15 of “Programming Python” 1st Edition

· Modulator

· Tkinter GUI: generates skeleton C module/type files

· Users fill in the blanks with application-specific logic

· Other: ActiveX/COM interfaces

Modulator in action

[image: image58.png]
Lab Session 12

17. Resources

Topics

· Python portability

· Major Python packages

· Internet resources

· Books and articles

· Conferences and services

Python portability

Interpreter portability

· UNIX, Linux

· Windows 3.1, 95, 98, ME, 2000, NT, CE

· MS-DOS

· Macintosh classic and OS X

· OS/2

· VMS

· Next

· Be OS

· Amiga

· Atari ST

· 64-bit Intel chips

· And others: AS400, MVS, PalmPilot (Pippy), PocketPC, game consoles, cellphones,…

General portability

· Compiled to portable byte-code (on import)

· Tkinter GUI API: runs on X11, MS-Windows, Macs

Platform extensions

· PythonWin: COM, ActiveX, ASP, MFC, IDE, DLLs. C#/.Net

· MacPython: PPC, 68K, AppleEvents

The PythonWin IDE

[image: image59.png]

A PythonWin COM code sample

See Learning Python, and upcoming O’Reilly Python for Win32 book for more details.

formletter.py

from win32com.client import constants, Dispatch

WORD = 'Word.Application.8'

False, True = 0, -1

import string

class Word:

 def __init__(self):

 self.app = Dispatch(WORD)

 def open(self, doc):

 self.app.Documents.Open(FileName=doc)

 def replace(self, source, target):

 self.app.Selection.HomeKey(Unit=constants.wdLine)

 find = self.app.Selection.Find

 find.Text = "%"+source+"%"

 self.app.Selection.Find.Execute()

 self.app.Selection.TypeText(Text=target)

 def printdoc(self):

 self.app.Application.PrintOut()

 def close(self):

 self.app.ActiveDocument.Close(SaveChanges=False)

def print_formletter(data):

 word.open(r"h:\David\Book\tofutemplate.doc")

 word.replace("name", data.name)

 word.replace("address", data.address)

 word.replace("firstname", string.split(data.name)[0])

 word.printdoc()

 word.close()

if __name__ == '__main__':

 import os, pickle

 from feedback import DIRECTORY, FormData, FeedbackData

 word = Word()

 for filename in os.listdir(DIRECTORY):

 data = pickle.load(

 open(os.path.join(DIRECTORY, filename)))

 if data.type == 'complaint':

 print "Letter for %(name)s." % vars(data)

 print_formletter(data)

 else:

 print "Msg by %(name)s, no letter." % vars(data)

The Macintosh Debugger

[image: image60.png]
Assorted python packages

· Tkinter:
Tk GUI API (OO)

· WPY:
portable GUI API

· wxPython:
portable GUI API

· PIL:

imaging library

http://www.pythonware.com/
· ILU:

distributed objects (CORBA)

· SWIG:

C/C++ wrapper generator

http://www.swig.org/
· Grail:

A Python-based Internet browser

· NumPy:

Numeric extensions: matrix object, libraries (LLNL)

· Zope:

A web application framework

http://www.zope.org/
The WPY GUI API at work

· WPY: MFC-like class library for MS-Windows and UNIX

· Example: the 'Scribble" MSVC++ demo in Python

· PythonWin provides more Windows-specific tools

· Tkinter also runs on Windows (plus Macs, X)

 [image: image61.png]
Internet resources

	Source
	Address

	Python’s web site
	http://www.python.org/

	Python’s FTP site
	ftp://ftp.python.org/pub/python

	Python’s newsgroup
	comp.lang.python (python-list@cwi.nl)

	Instructor’s web site
	http://www.rmi.net/~lutz

	O’Reilly’s web site
	http://www.oreilly.com/

	Python’s support mail-list
	mailto:python-help@python.org

	Python online docs
	http://www.python.org/doc

	Python starship site
	http://starship.python.net/

	Vaults of Parnassus site
	http://www.vex.net/parnassus/

	JPython site
	http://www.jpython.org/

	SWIG site
	http://www.swig.org/

	Tk site
	http://www.scriptics.com/

	ActiveState tools site
	http://www.activestate.com/

	PythonWare tools site
	http://www.pythonware.com/

	Python 2.0 changes
	http://www.python.org/2.0

	Python locator search
	http://www.python.org/, 'search’ button

	CompuServe Python forum
	go python

	Special interest groups
	(see www.python.org)

	Python tutors mail list
	(see www.python.org)

	German-language email list
	(see www.python.org)

The Python Web Site - www.python.org
Go here and click stuff. The ‘Search’ link at the top allows you to search the website and past newsgroup articles, and the ‘Documentation’ link leads to online Python manuals.

[image: image62.jpg]
Python books (as of late 2002)

[See http://www.rmi.net/~lutz/pybooks.html for an up-to-date list]

English Books

· Learning Python, O'Reilly, by Mark Lutz and David Ascher, April 1999

· Programming Python, O'Reilly, by Mark Lutz, October 1996

· Programming Python, 2nd Edition, O'Reilly, by Mark Lutz, March 2001

· Python Pocket Reference, O'Reilly, by Mark Lutz, November 1998

· Python Pocket Reference, 2nd Edition, O'Reilly, by Mark Lutz, November 2001

· Python Essential Reference, New Riders, by David Beazley, October 1999

· Python Essential Reference (Second Edition), New Riders, by David Beazley, June 2001

· Python Programming on Win 32, O'Reilly, by Mark Hammond and Andy Robinson, January 2000

· Python and Tkinter Programming, Manning, by John Grayson, February 2000

· Jython, New Riders, by Robert Bill, January 2002

· Perl to Python Migration, Addison Wesley, by Martin Brown, November 2001

· Learn to Program Using Python, Addison Wesley, Alan Gauld, January 2001

· The Quick Python Book, Manning, by Daryl Harms and Kenneth McDonald, October 1999

· Sams Teach Yourself Python in 24 Hours, Sams, by Ivan Van Laningham, April 2000

· Core Python Programming, Prentice Hall, Wesley Chun, December 2000

· Python Annotated Archives, McGraw-Hill, by Martin Brown, November 1999

· Programming with Python, Prima Publishing, by Tim Altom, December 1999

· Python Standard Library, O'Reilly, by Fredrik Lundh, May 2001

· Python 2.1 Bible, Hungry Minds, by David Brueck and Stephen Tanner, June 2001

· Python Programming Patterns, Prentice Hall, by Thomas Christopher, January 2002

· Python: Developers Handbook, Sams, by Andre DOS Santos Lessa, Andre S. Lessa, December 2000

· Python: The Complete Reference, McGraw-Hill, by Martin Brown, September 2001

· Python: Visual Quickstart Guide, Peachpit Press, by Chris Fehily, October 2001

· Python: How to Program, Prentice Hall, by Deitel, Deitel, and Wiedermann, February 2002

· The Zope Book, New Riders, by Amos Latteier and Michel Pelletier, July 2001

· Zope: Web Application Development and..., New Riders, by Spicklemire, Friedly, Spicklemire, and Brand, December 2001

· The Book of Zope, No Starch Press, by Beehive (editor), October 2001

· Internet Programming with Python, MIS Press, by Aaron Watters et. al., October 1996 (out of print)

· Web Programming in Python: Techniques..., Prentice Hall, by Thiruvathukal et. al., October 2001

· Python Web Programming, New Riders, by Steve Holden, January 2002

· XML Processing With Python, Prentice Hall, by Sean Mcgrath, Summer 2000

· Python & XML, O'Reilly, by Fred Drake and Chris Jones, December 2001

· Jython Essentials, O'Reilly, by Pedroni and Rappin, early 2002

· Python Cookbook, O'Reilly, by the Python community, mid 2002

Expected

· Python in a Nutshell, O'Reilly, by Alex Martelli, March 2003

· Learning Python 2nd Edition, O’Reilly, Lutz & Ascher, May 2003?

· Python for the World Wide Web, Peachpit Press, by Fehily and Vick, 2001?

· Python for the Web, No Starch Press, by Dustin Mitchell, 2002?

· Python Programming with the Java Class Libraries, Addison-Wesley, by Richard Hightower, July 2002?

· Text Processing with Python, Sybex, by David Mertz, 2002?

Other

· GUI programming with Python and Qt, OpenDocs, by Boudewijn Rempt, Jan. 2002, from www.opendocs.org

· Python: Library Reference, Prime Time Freeware's documentation series, from www.ptf.com/dossier

· Python: Miscellanea, Prime Time Freeware's documentation series, from www.ptf.com/dossier

· Handbook of Programming Languages, Volume III, Macmillan, by Mark Lutz, Summer 1998, 120 page Python chapter

· Python Library Reference, toExcel.com prints the Library and Language References and Tutorial

· The Standard Python Library (the eff-bot guide to), eBook, by Fredrik Lundh, October 1999, available from fatbrain.com

· MySQL and mSQL (with Python coverage), O'Reilly, by Yarger, Reese, and King, August 1999

· Programming Web Services with XML-RPC (with Python coverage), O'Reilly, by Laurent, Johnston, and Dumbill, June 2001

· Professional Linux Programming (with Python coverage), Wrox Press, by Matthes and Stones, et al, September 2000

· XML Scripting with Perl and Python, Sybex, by Martin Brown, 2001?

· (Various Zope books, with Python coverage), Search amazon.com for a full list of Zope titles

Non-English Publications

· Einstieg in Python, German, Galileo Press, by Thomas Theis, September 2002

· Das Python-Buch, German, Addison-Wesley-Longman, by Martin von Löwis and Nils Fischbeck, 1997

· Mit Python programmieren, German, dpunkt.verlag, by Tobias Himstedt and Klaus Mänzel, 1999

· Programming Python, 2nd Edition, Russian translation, 2002

· Programming Python, 2nd Edition, Dutch translation, 2002

· Python Pocket Reference, 2nd Edition, German translation, 2002

· Programming Python, Japanese translation, Volumes I and II, 1998

· Python Pocket Reference, German translation, 1999

· Python Pocket Reference, Japanese translation, 1999

· Python Pocket Reference, French translation, May 2000

· Learning Python, German translation, January 2000

· Learning Python, French translation, February 2000

· Learning Python, Japanese translation, Summer 2000

· Larning Python, Korean translation, 2001?

· Learning Python, Chinese translation, 2002

· Learning Python, Polish translation, 2002

· Python & XML, German translation, to appear 2002
Rumored

· Python/Tkinter Programming, O'Reilly

· Jython Cookbook, O'Reilly

· Thinking in Python, Bruce Eckel (www.bruceeckel.com)

· A SWIG book (with Python coverage), O'Reilly

Also useful

· The FAQ: online at Python's web site

· Python's standard reference manuals: online at web site

· Python library modules and demos: in source tree

· Python manuals at toExcel.com

· eBooks at fatbrain.com

· "The Fairly Incomplete & Rather Badly Illustrated Monty Python Song Book", HarperCollins

O’Reilly Translations

[image: image63.png]
[image: image64.png]
[image: image65.png]
Python in the news: articles, chapters

[image: image66.jpg]
· (May 00) Python supplement in Linux Journal

· (Jun 99) Guido on the cover of Dr. Dobbs Journal

· (Spring 99) Python article in LinuxWorld
· (Apr 99) Dr. Dobb's Journal article on JPython

· (Spring 99) Guido on front page of the Washington Post
· (Jan 99) ;login: Python overview article

· (Dec 98) JavaPro magazine article on JPython

· (Nov 98) Guido on the cover of Linux Journal

· (Nov-Dec 98) Dr. Dobbs, PC Week (?)

· (Aug 98) 120-page Python Chapter in the Handbook of Programming Languages, Volume 3, Macmillan

· (Aug 98) www.developer.com, JPython article

· (Jun 98) BYTE, scripting languages article

· (May 98) Linux Journal, Python’s portable database API

· (April 98) Software Development, scripting languages article

· (Feb 98) Dr. Dobbs Journal, 3 Python-related articles

· (Feb 98) Web Techniques, Python for Web work

· (Feb 98) Sunworld Online, Intro to Python

· (Apr 97) World Wide Web Journal: Scripting Languages

· Plus prior articles in BYTE (2/97), Linux Journal (2,5/97), DDJ

Python conferences and services

· 2005 conferences

· Python conference at O’Reilly Open Source Convention, Portland, Summer

· PyCon community organized conference, March, DC Area

· EuroPython

· 2003 conferences

· 11th IPC, at O’Reilly Open Source Convention, July 03, Portland OR

· Smaller Pycon seminar, March 03, DC area

· Annual gatherings (IPCn): see www.python.org

· 9th International Python Conference: March '01, Long Beach

· 8th International Python Conference: January '00, D.C.

· 7th International Python Conference: Nov '98, Houston

· O'Reilly Python Conference, Open Source Convention

· July ’01, San Diego

· July '00, Monterey

· August '99, Monterey

· Local Python user groups ("PIGgies")

· Bay area, Washington D.C, Colorado, Oregon, Italy, England, Korea

· European Python Day (annual)

· Korean Python convention: 1000 attendees

· Commercial support, consulting: see www.python.org

Lab Session 12

And finally…

Click the link below to play audio file “sousa.au”—the Monty Python theme song. This file is shipped with the class materials, so the link should work provided your machine is setup to play audio files. If necessary, you can re-fetch the file by running program “Exercises\Lab10\sousa_fetch.py”, on a machine with an Internet connection. You can run this program by clicking it in Windows, and a simple modem and ISP will suffice for an Internet connection. When run, this Python program downloads the file from Python’s FTP site; see the Internet unit for details.

“Roll the closing credits.”

[image: image67.png]
Laboratory exercises

The lab exercises below ask students to write original programs, as well as modify pre-coded examples. Later exercises demonstrate more advanced concepts and tools: simple Tkinter GUIs, C integration, etc. The final lab also points users to online Python resources (the web page, etc.), provided the lab machines have Internet access. Lecture examples source-code, as well as answers to lab exercises, are provided on this CD; click on the links in this paragraph to go to these resources, or ask the instructor for assistance.

Note: don’t expect to finish all the questions in each lab. Some of these exercises are more involved than others, and most of the labs have more exercises than you’ll probably be able to finish in a half or full hour. Students are encouraged to skip around if they find they need more or less time for some questions. Feel free to return to prior labs at any time, regardless of where we are at in the lecture schedule.

Lab 1: Using the interpreter

Go to solutions
Go to solution files
1. Interaction. Using a system command-line, IDLE, or other, start the Python interactive command line (>>> prompt), and type the expression: "Hello World!" (including the quotes). The string should be echoed back to you. The purpose of this exercise is to get your environment configured to run Python. In some scenarios, you may need to first run a cd shell command, type the full path to the python executable, or add its path to your PATH environment variable. Set it in your .cshrc or .kshrc file to make Python permanently available on Unix systems; use a setup.bat, autoexec.bat, or the environment variable GUI on Windows.

2. Programs. With the text editor of your choice, write a simple module file—a file containing the single statement: print 'Hello module world!'. Store this statement in a file named module1.py. Now, run this file by using any launch option you like: running it in IDLE, clicking on its file icon, passing it to the Python interpreter program on the system shell’s command line, and so on. In fact, experiment by running your file with as many of the launch techniques we’ve seen in this unit as you can. Which technique seems easiest (there is no right answer to this one, of course)?

3. Modules. Next, start the Python interactive command line (>>> prompt) and import the module you wrote in the prior exercise. Does your PYTHONPATH setting need to include the directory where the file is stored? Try moving the file to a different directory and importing it again from its original directory; what happens? (Hint: is there still a file named module1.pyc in the original directory?)

4. Scripts. If your platform supports it, add the #! line to the top of your module1.py module, give the file executable privileges, and run it directly as an executable. What does the first line need to contain? Skip that if you are working on a Windows machine (#! usually only has meaning on Unix and Linux); instead try running your file by listing just its name in a DOS console window (this works on recent flavors of Windows), or the “Start/Run…” dialog box.

5. Errors. Experiment with typing mathematical expressions and assignments at the Python interactive command line. First type the expression: 1 / 0; what happens? Next, type a variable name you haven’t assigned a value to yet; what happens this time?

You may not know it yet, but you’re doing exception processing, a topic we’ll explore in depth in a later unit. As we’ll learn then, you are technically triggering what’s known as the default exception handler—logic that prints a standard error message.

For full-blown source-code debugging chores, IDLE includes a GUI debugging interface (select Debug before running your script), and a Python standard library module named pdb provides a command-line debugging interface (more on pdb later). When first starting out, though, Python’s default error messages will probably be as much error handling as you need—they give the cause of the error, as well as the lines in your code were active when the error occurred.

6. Breaks. At the Python command line, type:

L = [1, 2]

L.append(L)

L

What happens? If you’re using a Python newer than release 1.5, you’ll probably see a strange output. If you’re using a Python version older than 1.5.1, a Ctrl-C key combination will probably help on most platforms. Why do you think this occurs? What does Python report when you type the Ctrl-C key combination? Warning: if you do have a Python older than release 1.5.1, make sure your machine can stop a program with a break-key combination of some sort before running this test, or you may be waiting a long time.

7. Documentation. Spend at least 6 minutes browsing the Python library and language manuals before moving on, to get a feel for the available tools in the standard library, and the structure of the documentation set. It takes at least this long to become familiar with the location of major topics in the manual set; once you do, though, it’s easy to find what you need. You can find this manual in the Python “Start” button entry on Windows, in the “Help” pulldown menu in IDLE, or online at www.python.org. We’ll also have a few more words to say about the manuals, and other documentation sources available (including PyDoc and the help function), in the statements unit. If you still have time to kill, go explore the Python website (www.python.org), and the Vaults of Parnassus site. Especially check out the python.org documentation and search pages; they can be crucial resources in practice.

Lab 2: Types and operators

Go to solutions
Go to solution files
If you have limited time, start with exercise 11 (the most practical), and then work from first to last as time allows. This is all fundamental material, though, so try to do as many of these as you can.
1. The basics. Experiment interactively with the common type operations found in this unit’s tables. To get you started, bring up the Python interactive interpreter, type the expressions below, and try to explain what’s happening in each case:

2 ** 16

2 / 5, 2 / 5.0

"spam" + "eggs"

S = "ham"

"eggs " + S

S * 5

S[:0]

"green %s and %s" % ("eggs", S)

('x',)[0]

('x', 'y')[1]

L = [1,2,3] + [4,5,6]

L, L[:], L[:0], L[-2], L[-2:]

([1,2,3] + [4,5,6])[2:4]

[L[2], L[3]]

L.reverse(); L

L.sort(); L

L.index(4)

{'a':1, 'b':2}['b']

D = {'x':1, 'y':2, 'z':3}

D['w'] = 0

D['x'] + D['w']

D[(1,2,3)] = 4

D.keys(), D.values(), D.has_key((1,2,3))

[[]], ["",[],(),{},None]

2. Indexing and slicing. At the interactive prompt, define a list named L that contains four strings or numbers (e.g., L=[0,1,2,3]). Now, let’s experiment with some boundary cases.

a) What happens when you try to index out of bounds (e.g., L[4])?

b) What about slicing out of bounds (e.g., L[-1000:100])?

c) Finally, how does Python handle it if you try to extract a sequence in reverse—with the lower bound greater than the higher bound (e.g., L[3:1])? Hint: try assigning to this slice (L[3:1]=['?']) and see where the value is put. Do you think this may be the same phenomenon you saw when slicing out of bounds?

3. Indexing, slicing, and del. Define another list L with four items again, and assign an empty list to one of its offsets (e.g., L[2]=[]): what happens? Then try assigning an empty list to a slice (L[2:3]=[]): what happens now? Recall that slice assignment deletes the slice and inserts the new value where it used to be. The XE "del statement" del statement deletes offsets, keys, attributes, and names: try using it on your list to delete an item (e.g., del L[0]). What happens if you del an entire slice (del L[1:])? What happens when you assign a nonsequence to a slice (L[1:2]=1)?

4. Tuple assignment. What do you think is happening to X and Y when you type this sequence? We’ll return to this construct in the next unit, but it has something to do with the tuples we’ve seen here.

>>> X = 'spam'
>>> Y = 'eggs'
>>> X, Y = Y, X

5. Dictionary keys. Consider the following code fragments:

>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'

We learned that dictionaries aren’t accessed by offsets; what’s going on here? Does the following shed any light on the subject? (Hint: strings, integers, and tuples share which type category?)

>>> D[(1, 2, 3)] = 'c'

>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

6. Dictionary indexing. Create a dictionary named D with three entries, for keys 'a', 'b', and 'c'. What happens if you try to index a nonexistent key (D['d'])? What does Python do if you try to assign to a nonexistent key d (e.g., D['d']='spam')? How does this compare to out-of-bounds assignments and references for lists? Does this sound like the rule for variable names?

7. Generic operations. Run interactive tests to answer the following questions.

a) What happens when you try to use the + operator on different/mixed types (e. g., string + list, list + tuple)?

b) Does + work when one of the operands is a dictionary?

c) Does the append method work for both lists and strings? How about the using the keys method on lists? (Hint: What does append assume about its subject object?)

d) Finally, what type of object do you get back when you slice or concatenate two lists or two strings?

8. String indexing. Define a string S of four characters: S = "spam". Then type the following expression: S[0][0][0][0][0]. Any clues as to what’s happening this time? (Hint: recall that a string is a collection of characters, but Python characters are one-character strings.) Does this indexing expression still work if you apply it to a list such as: ['s', 'p', 'a', 'm']? Why?

9. Immutable types. Define a string S of 4 characters again: S = "spam". Write an assignment that changes the string to "slam", using only slicing and concatenation. Could you perform the same operation using just indexing and concatenation? How about index assignment?

10. Nesting. Write a data-structure that represents your personal information: name (first, middle, last), age, job, address, email ID, and phone number. You may build the data structure with any combination of built-in object types you like: lists, tuples, dictionaries, strings, numbers. Then access the individual components of your data structures by indexing. Do some structures make more sense than others for this object?

11. Files. Write a script that creates a new output file called myfile.txt and writes the string "Hello file world!" in it. Then write another script that opens myfile.txt, and reads and prints its contents. Run your two scripts from the system command line. Does the new file show up in the directory where you ran your scripts? What if you add a different directory path to the filename passed to open? Note: file write methods do not add newline characters to your strings; add an explicit ‘\n’ at the end of the string if you want to fully terminate the line in the file.

12. The dir function. Try typing the following expressions at the interactive prompt. Starting with Version 1.5, the dir builtin function has been generalized to list all attributes of any Python object you’re likely to be interested in. If you’re using an earlier version than 1.5, the __methods__ scheme has the same effect. If you’re using Python 2.2, dir is probably the only of these that will work.

[].__methods__ # 1.4 or 1.5

dir([]) # 1.5 and later

{}.__methods__
dir({})

Lab 3: Basic statements

Go to solutions
Go to solution files
1. Coding basic loops.

a) Write a for loop which prints the ASCII code of each character in a string named S. Use the built-in function ord(character) to convert each character to an ASCII integer (test it interactively to see how it works, or see the Python library manual).

b) Next, change your loop to compute the sum of the ASCII codes of all the characters in a string.

c) Finally, modify your code again to return a new list, which contains the ASCII codes of each character in the string. Does this expression have a similar effect—map(ord, S)? (Hint: map applies a function to all nodes of a sequence in turn, and collects all the results.)

2. Backslash characters. What happens on your machine when you type the following code interactively?

for i in range(50):

 print 'hello %d\n\a' % i

Warning: Outside IDLE, this example may beep at you, so you may not want to run it in a crowded lab (unless you happen to enjoy getting lots of attention). Within IDLE, you’ll get odd characters instead. Hint: see the full set of backslash escape characters in the string literals section of Python’s language reference manual.

3. Sorting dictionaries. In lecture 2, we saw that dictionaries are unordered collections. Write a for loop which prints a dictionary's items in sorted (ascending) order. Hint: use the dictionary keys and list sort methods.

4. Program logic alternatives. Part of learning to program in Python is learning which coding alternatives work better than others. Consider the following code, which uses a while loop and found flag to search a list of powers-of-2, for the value of 2 raised to the power 5 (32). It's stored in a module file called power.py.

L = [1, 2, 4, 8, 16, 32, 64]

X = 5

found = i = 0

while not found and i < len(L):

 if 2 ** X == L[i]:

 found = 1

 else:

 i = i+1

if found:

 print 'at index', i

else:

 print X, 'not found'

C:\book\tests> python power.py
at index 5

As is, the example doesn’t follow normal Python coding techniques. Follow the steps below to improve it; for all of the transformations, you may type your code interactively, or store it in a script file run from the system command line (though using a file will make this exercise much easier).

a) First, rewrite this code with a while loop else, to eliminate the found flag and final if statement.

b) Next, rewrite the example to use a for loop with an else, to eliminate the explicit list indexing logic. Hint: to get the index of an item, use the list index method (L.index(X) returns the offset of the first X in list L).

c) Now, remove the loop completely by rewriting the examples with a simple in operator membership expression (to see how, interactively type this: 2 in [1,2,3]).

d) Finally, use a for loop and the list append method to generate the powers-of-2 list (L), instead of hard-coding a list constant.

e) Deeper thoughts: (1) Do you think it would improve performance to move the 2**X expression outside the loops? How would you code that? (2) As we saw in exercise 1, Python also includes a map(function, list) tool which could be used to generate the powers-of-2 list too, as follows: map((lambda x: 2**x), range(7)). Try typing this code interactively; we’ll meet lambda more formally in the next lecture.

Lab 4: Functions

Go to solutions
Go to solution files
1. Basics. At the Python interactive prompt, write a function which prints its single argument to the screen, and call it interactively, passing a variety of object types: string, integer, list, dictionary. Then try calling it without passing any argument: what happens? What happens when you pass two arguments?

2. Arguments. Write a function called adder in a Python module file. adder should accept two arguments, and return the sum (or concatenation) of its two arguments. Then add code at the bottom of the file to call the function with a variety of object types (two strings, two lists, two floating-points), and run this file as a script from the system command line. Do you have to print the call statement results to see results on the screen?

3. Varargs. Generalize the adder function you wrote in the last exercise to compute the sum of an arbitrary number of arguments, and change the calls to pass more or less than two. What type is the return value sum? (Hints: a slice like S[:0] returns an empty sequence of the same type as S, and the type built-in function can be used to test types, but the max function we wrote in class provides an easier approach). What happens if you pass in arguments of different types? What about passing in dictionaries?

4. Keywords. Change the adder function from exercise (2) to accept and add three arguments: "def adder(good, bad, ugly)". Now, provide default values for each argument, and experiment with calling the function interactively. Try passing 1, 2, 3, and 4 arguments. Then, try passing keyword arguments. Does the call "adder(ugly=1, good=2)" work? Why? Finally, generalize the new adder to accept and add an arbitrary number of keyword arguments, much like exercise (3), but you’ll need to iterate over a dictionary, not a tuple (hint: the dictionary.keys() method returns a list you can step through with a for or while).

5. Write a function called copyDict(dict), which copies its dictionary argument. It should return a new dictionary with all the items in its argument. Use the dictionary keys method to iterate. Copying sequences is easy (X[:] makes a top-level copy); does this work for dictionaries too?

6. Write a function called addDict(dict1, dict2) which computes the union of two dictionaries. It should return a new dictionary, with all the items in both its arguments (assumed to be dictionaries). If the same key appears in both arguments, feel free to pick a value from either. Test your function by writing it in a file and running the file as a script. What happens of you pass lists instead of dictionaries? How could you generalize your function to handle this case too? (Hint: see the type built-in function used earlier). Does the order of arguments passed matter?

7. Argument matching. First, define the following six functions (either interactively, or in an importable module file):

def f1(a, b): print a, b # normal args

def f2(a, *b): print a, b # positional varargs

def f3(a, **b): print a, b # keyword varargs

def f4(a, *b, **c): print a, b, c # mixed modes

def f5(a, b=2, c=3): print a, b, c # defaults

def f6(a, b=2, *c): print a, b, c # defaults + positional varargs

Now, test the following calls interactively, and try to explain each result; in some cases, you'll probably need to fall back on the matching algorithm shown in the lecture. Do you think mixing matching modes is a good idea in general? Can you think of cases where it would be useful anyhow?

>>> f1(1, 2)

>>> f1(b=2, a=1)

>>> f2(1, 2, 3)

>>> f3(1, x=2, y=3)

>>> f4(1, 2, 3, x=2, y=3)

>>> f5(1)

>>> f5(1, 4)

>>> f6(1)

>>> f6(1, 3, 4)

8. List comprehensions. Write code to build a new list containing the square roots of all the numbers in this list: [2, 4, 9, 16, 25]. Code this as a for loop first, then as a map call, and finally as a list comprehension. Use the sqrt function in the builting math module to do the calculation (i.e., import math, and say math.sqrt(x)). Of the three, which approach do you like best?

Lab 5: Modules

Go to solutions
Go to solution files
1. Basics, import. Write a program that counts lines and characters in a file (similar in spirit to “wc” on Unix). With your favorite text editor, code a Python module called mymod.py, which exports three top-level names:

a) A countLines(name) function that reads an input file and counts the number of lines in it (hint: file.readlines() does most of the work for you, and len does the rest)

b) A countChars(name) function that reads an input file and counts the number of characters in it (hint: file.read() returns a single string)

c) A test(name) function that calls both counting functions with a given input filename. Such a filename generally might be passed-in, hard-coded, input with raw_input, or pulled from a command-line via the sys.argv list; for now, assume it’s a passed-in function argument.

All three mymod functions should expect a filename string to be passed in. If you type more than two or three lines per function, you’re working much too hard—use the hints listed above!

Now, test your module interactively, using import and name qualification to fetch your exports. Does your PYTHONPATH need to include the directory where you created mymod.py? Try running your module on itself: e.g., test("mymod.py"). Note that test opens the file twice; if you’re feeling ambitious, you may be able to improve this by passing an open file object into the two count functions (hint: file.seek(0) is a file rewind).

2. from/from*. Test your mymod module from Exercise 1 interactively, by using from to load the exports directly, first by name, then using the from* variant to fetch everything.

3. __main__. Now, add a line in your mymod module that calls the test function automatically only when the module is run as a script, not when it is imported The line you add will probably test the value of __name__ for the string "__main__", as shown in this unit. Try running your module from the system command line; then, import the module and test its functions interactively. Does it still work in both modes?

4. Nested imports. Write a second module, myclient.py, which imports mymod and tests its functions; run myclient from the system command line. If myclient uses from to fetch from mymod, will mymod’s functions be accessible from the top level of myclient? What if it imports with import instead? Try coding both variations in myclient and test interactively, by importing myclient and inspecting its __dict__.

5. Package imports. Finally, import your file from a package. Create a subdirectory called mypkg nested in a directory on your module import search path, move the mymod.py module file you created in exercises 1 or 3 into the new directory, and try to import it with a package import of the form: import mypkg.mymod.

You’ll need to add an __init__.py file in the directory your module was moved to in order to make this go, but it should work on all major Python platforms (that’s part of the reason Python uses “.” as a path separator). The package directory you create can be simply a subdirectory of the one you’re working in; if it is, it will be found via the home directory component of the search path, and you won’t have to configure your path. Add some code to your __init__.py, and see if it runs on each import. XE "modules:(E)"
6. Reload. Experiment with module reloads: perform the tests in the changer.py example, changing the called function’s message and/or behavior repeatedly, without stopping the Python interpreter. Depending on your system, you might be able to edit changer in another window, or suspend the Python interpreter and edit in the same window (on Unix, a Ctrl-Z key combination usually suspends the current process, and a fg command later resumes it).

7. [Optional] Circular imports (and other acts of cruelty). In the section on recursive import gotchas, importing recur1 raised an error. But if we restart Python and import recur2 interactively, the error doesn’t occur: test and see this for yourself. Why do you think it works to import recur2, but not recur1? (Hint: Python stores new modules in the built-in sys.modules table (a dictionary) before running their code; later imports fetch the module from this table first, whether the module is “complete” yet or not.) Now try running recur1 as a top-level script file: % python recur1.py. Do you get the same error that occurs when recur1 is imported interactively? Why? (Hint: when modules are run as programs they aren’t imported, so this case has the same effect as importing recur2 interactively; recur2 is the first module imported.) What happens when you run recur2 as a script?

Lab 6: Classes

Go to solutions
Go to solution files
Note: The last 2 (or 3) are the most fun of this bunch; you might want to start with these first, and then come back to work top down.

1. Inheritance. Write a class called Adder that exports a method add(self, x, y) that prints a “Not Implemented” message. Then define two subclasses of Adder that implement the add method:

a) ListAdder, with an add method that returns the concatenation of its two list arguments

b) DictAdder, with an add method that returns a new dictionary with the items in both its two dictionary arguments (any definition of addition will do)

Experiment by making instances of all three of your classes interactively and calling their add methods.

Now, extend your Adder superclass to save an object in the instance with a constructor (e.g., assign self.data a list or a dictionary) and overload the + operator with an __add__ to automatically dispatch to your add methods (e.g., X+Y triggers X.add(X.data,Y)). Where is the best place to put the constructors and operator overload methods (i.e., in which classes)? What sorts of objects can you add to your class instances?

In practice, you might find it easier to code your add methods to accept just one real argument (e.g., add(self,y)), and add that one argument to the instance’s current data (e.g., self.data+y). Does this make more sense than passing two arguments to add? Would you say this makes your classes more “object-oriented”?

2. Operator overloading. Write a class called Mylist that shadows (“wraps”) a Python list: it should overload most list operators and operations—+, indexing, iteration, slicing, and list methods such as append and sort. See the Python reference manual for a list of all possible methods to support. Also provide a constructor for your class that takes an existing list (or a Mylist instance) and copies its components into an instance member. Experiment with your class interactively. Things to explore:

a) Why is copying the initial value important here?

b) Can you use an empty slice (e.g., start[:]) to copy the initial value if it’s a Mylist instance?

c) Is there a general way to route list method calls to the wrapped list?

d) Can you add a Mylist and a regular list? How about a list and a Mylist instance?

e) What type of object should operations like + and slicing return; how about indexing?

f) If you are working with a more recent Python release (version 2.2 or later), you may implement this sort of wrapper class either by embedding a real list in a stand-alone class, or by extending the built-in list type with a subclass. Which is easier and why?

3. Subclassing. Now, make a subclass of Mylist from Exercise 2 called MylistSub, which extends Mylist to print a message to stdout before each overloaded operation is called and counts the number of calls. MylistSub should inherit basic method behavior from Mylist. For instance, adding a sequence to a MylistSub should print a message, increment the counter for + calls, and perform the superclass’s method. Also introduce a new method that displays the operation counters to stdout and experiment with your class interactively. Do your counters count calls per instance, or per class (for all instances of the class)? How would you program both of these? (Hint: it depends on which object the count members are assigned to: class members are shared by instances, self members are per-instance data.)

4. Metaclass methods. Write a class called Meta with methods that intercept every attribute qualification (both fetches and assignments) and prints a message with their arguments to stdout. Create a Meta instance and experiment with qualifying it interactively. What happens when you try to use the instance in expressions? Try adding, indexing, and slicing the instance of your class.

5. Set objects. Experiment with the set class described in this unit. Run commands to do the following sorts of operations:

a) Create two sets of integers, and compute their intersection and union by using & and | operator expressions.

b) Create a set from a string, and experiment with indexing your set; which methods in the class are called?

c) Try iterating through the items in your string set using a for loop; which methods run this time?

d) Try computing the intersection and union of your string set and a simple Python string; does it work?

e) Now, extend your set by subclassing to handle arbitrarily many operands using a *args argument form (hint: see the function versions of these algorithms in the functions unit). Compute intersections and unions of multiple operands with your set subclass. How can you intersect three or more sets, given that & has only two sides?

f) How would you go about emulating other list operations in the set class? (Hints: __add__ can catch concatenation, and __getattr__ can pass most list method calls off to the wrapped list.)

6. Composition. Simulate a fast-food ordering scenario by defining four classes:

a) Lunch: a container and controller class

b) Customer: the actor that buys food

c) Employee: the actor that a customer orders from

d) Food: what the customer buys

To get you started, here are the classes and methods you’ll be defining:

class Lunch:

 def __init__(self) # make/embed Customer and Employee

 def order(self, foodName) # start a Customer order simulation

 def result(self) # ask the Customer what kind of Food it has

class Customer:

 def __init__(self) # initialize my food to None

 def placeOrder(self, foodName, employee) # place order with an Employee

 def printFood(self) # print the name of my food

class Employee:

 def takeOrder(self, foodName) # return a Food, with requested name

class Food:

 def __init__(self, name) # store food name

The order simulation works as follows:

a) The Lunch class’s constructor should make and embed an instance of Customer and Employee, and export a method called order. When called, this order method should ask the Customer to place an order, by calling its placeOrder method. The Customer’s placeOrder method should in turn ask the Employee object for a new Food object, by calling the Employee’s takeOrder method.

b) Food objects should store a food name string (e.g., "burritos"), passed down from Lunch.order to Customer.placeOrder, to Employee.takeOrder, and finally to Food’s constructor. The top-level Lunch class should also export a method called result, which asks the customer to print the name of the food it received from the Employee via the order (this can be used to test your simulation).

c) Note that Lunch needs to either pass the Employee to the Customer, or pass itself to the Customer, in order to allow the Customer to call Employee methods.

Experiment with your classes interactively by importing the Lunch class, calling its order method to run an interaction, and then calling its result method to verify that the Customer got what he or she ordered. If you prefer, you can also simply code test cases as self-test code in the file where your classes are defined, using the module __name__ trick we met in the modules unit. In this simulation, the Customer is the active agent; how would your classes change if Employee were the object that initiated customer/ employee interaction instead?

7. Zoo Animal Hierarchy: (If this example was skipped in class) Consider the class tree sketched in the figure below. Code a set of 6 class statements to model this taxonomy with Python inheritance. Then, add a speak method to each of your classes which prints a unique message, and a reply method in your top-level Animal superclass which simply calls self.speak to invoke the category-specific message printer in a subclass below (remember, this will kick off an independent inheritance search from self). Finally, remove the speak method from your Hacker class, so that it picks up the default above it. When you’re finished, your classes should work this way:

% python
>>> from zoo import Cat, Hacker

>>> spot = Cat()
>>> spot.reply() # Animal.reply, calls Cat.speak

meow

>>> data = Hacker() # Animal.reply, calls Primate.speak
>>> data.reply()
Hello world!

[image: image68.wmf]Animal

Mammal

Cat

Dog

Primate

Hacker

A Zoo Hierarchy

8. The Dead Parrot Skit: (If this example was skipped in class) Consider the object embedding structure captured in the figure below. Code a set of Python classes to implement this structure with composition. Code your Scene object to define an action method, and embed instances of Customer, Clerk, and Parrot classes—all three of which should define a line method which prints a unique message. The embedded objects may either inherit from a common superclass that defines line and simply provide message text, or define line themselves. In the end, your classes should operate like this:

% python
>>> import parrot
>>> parrot.Scene().action() # activate nested objects

customer: "that's one ex-bird!"

clerk: "no it isn't..."

parrot: None

[image: image69.wmf] Scene

Clerk

Customer

action

line

Parrot

A Scene Composite

Lab 7: Exceptions and built-in tools

Go to solutions
Go to solution files
1. try/except. Write a function called oops that explicitly raises an IndexError exception when called. Then write another function that calls oops inside a try/except statement to catch the error. What happens if you change oops to raise KeyError instead of IndexError? Where do the names KeyError and IndexError come from? (Hint: recall that all unqualified names come from one of four scopes, by the LEGB rule.)

2. Exception objects and lists. Change the oops function you just wrote to raise an exception you define yourself, called MyError, and pass an extra data item along with the exception. You may identify your exception with either a string or a class. Then, extend the try statement in the catcher function to catch this exception and its data in addition to IndexError, and print the extra data item. Finally, if you used a string for your exception, go back and change it be a class instance; what now comes back as the extra data to the handler?

3. Error handling. Write a function called safe(func,*args) that runs any function using apply, catches any exception raised while the function runs, and prints the exception using the exc_info() call in the sys module. Then, use your safe function to run the oops function you wrote in Exercises 1 and/or 2. Put safe in a module file called tools.py, and pass it the oops function interactively. What sort of error messages do you get? Finally, expand safe to also print a Python stack trace when an error occurs by calling the built-in print_exc() function in the standard traceback module (use exc_info()[2], and see the Python library reference manual for details).

4. Error handling: the Pdb debugger. Run the “oops” function from (1) or (2) under the pdb debugger interactively. Import pdb and “oops”, run a call string, and type “c” (continue) commands till the error occurs. Where are you when the debugger stops? Type a ‘where’ command to find out. Now, type ‘quit’ and rerun the program: set a break point on the “oops” function, and single-step up to the error. Experiment with “up” and “down” commands—they climb and descend the Python call stack. See the library manual for more details on pdb debugging, or use the point-and-click debugger interface in the IDLE GUI.

5. Built-in tools. Study the tables of built-in tools in the Python library manual: functions, exceptions, modules, and special attribute names. Experiment interactively with some of the built-in functions we didn’t cover in the lectures yet (e.g., use “raw_input” to prompt for an input string, call “type” to inspect the type of objects, and so on). Python’s library reference manual provides the most up-to-date listing of available tools, but you may need to hunt for some of them the first time around.

6. The sys module. The “sys.path” list is initialized from the PYTHONPATH environment variable. Is it possible to change it from within Python? If so, does it effect where Python looks for module files? Run some interactive tests to find out.

Lab 8: System interfaces and GUIs

Go to solutions
Go to solution files
1. Shell tools. (1) Test the pack/unpack example scripts: run pack to pack files, and unpack to unpack in another directory. (2) Now, modify pack and unpack to package their functionality as functions, instead of top-level code. For instance, add a ‘pack_files’ function in the pack script, which encloses the packing logic, and accepts two arguments: a list of input file-names and an output file-name. Wrap the unpack logic in a function that takes an input file name as its argument. (3) Finally, write code at the bottom of your new pack/unpack files which calls the new functions only when the file is run as a script. Test your new files by running them as scripts, and then by importing them and calling their functions interactively.

2. Shell tools. Set up a directory structure, and run the regression tester (example “regtest.py”) on some of the scripts you’ve developed so far.

3. Basic GUIs. Write a simple script that creates a GUI with three buttons—‘curly’, ‘moe’, and ‘larry’, each of which prints a different message on the ‘stdout’ stream. Use simple Tkinter class calls to build the GUI, but don’t code your GUI as a new class. Run this file as a script, from the system shell’s command line.

4. Frames. Now, rewrite your 3-button GUI from (3) as a subclass of the Frame container class, and test it again.

5. Extending GUIs. Extend the 3-button GUI class from (4) by subclassing it, to include a Label. Pack your Label before the superclass’s widgets; then try packing it after. What happens?

6. Attaching GUIs. Extend the 3-button GUI class from (4) to include a Label, by attaching it to an enclosing frame. You can code the enclosing Frame as another class, or by using simple widget creation calls. Try attaching the original class instance both before and after the label in the containing Frame; what happens this time?

7. File processing: readline. Write a script called “cat.py”, which defines a function called “lister”. The script should take 1 command-line argument—a text file name—and pass it as a function argument to “lister” only when the file is run as a script. The “lister” function should read a text file line-by-line with the “readline” method, and print each line in upper-case, with a line number prefix before each output line. Use the ‘string’ module to do the case conversion. Test your script file by running it on itself: “python cat.py cat.py”. Then import and test lister interactively: “cat.lister(‘cat.py’)”.

8. File processing: readlines, read. Change your “lister” function from (7) to use the “readlines” file method instead of “readline”, and retest. Then change “lister” to read the file all at once with “read”, and detect line boundaries manually. You may either scan for the end-of-line characters yourself by indexing or slicing, use the “string.index/find” functions to find each one, or call “string.split” (see the library manual for more details). Retest with this “read” version. Which of the approaches for finding end-of-lines is easiest? Which may be fastest?

9. Environment variables. Change your ‘USER’ environment variable, by assigning to “os.environ”, and spawn another Python program that prints the value of ‘USER’ (using fork, system, or popen). Is the modified value exported to the spawned process? Try changing a different environment variable and repeating the test.

10. File globbing. Write a script which accepts a directory name as a command-line argument, and prints a listing of all the files in that directory. Then enhance your script to also accept a search-pattern string on the command line, and use it to display matching file names in the directory.

11. Timing programs. Try changing the call order in “timeinline.py” to see if it has any effect: in you test code, call inline2 before inline1. Any effect? (Hint: might it depend on your ‘malloc’?) Then, change the example to allow the number of pushes and pops to be passed in to the “test” function instead of using global variables, and test the inline and inline2 functions interactively as follows:

>>> from testinline import *

>>> test(1000, 1000, inline1)

[results]

>>> test(1000, 1000, inline2)

[results]

Any impact on the results? (Hint: the only way it could, is if you’re also measuring the time it takes to compile the scripts.). See also the CD’s Extras\Misc\timerseqs.py

Lab 9: Persistence

Go to solutions
Go to solution files
1. Shelve basics. (a) Write a function which creates a persistent shelve of lists, from a dictionary-of-lists passed in as an argument. (b) Then write a script file that accepts a shelve file name on the command line, and dumps the shelve to the screen, as “key => value” lines. (c) Now test both components: from the interactive command line, import and call the first function to load the shelve from a dictionary-of-lists you create, then change one of its entries interactively by opening the shelve yourself. Exit the interactive session, and run the script (b) to dump the updated shelve.

2. Shelve processing scripts. Write a script that updates (changes) all the entries in the shelve you created in exercise (1). Open and scan the shelve file, deleting the first node in each of the stored lists, and storing the lists back to the shelve as you go. Use your shelve dumping script from exercise (1) to verify your changes. Can you update a shelve by something like: ‘del file[key][0]’?

3. Storing class instances. Write a class called “Student” in a module called “student.py”. “Student” should model you: it’s constructor should create instance members for ‘name’, ‘age’, ‘job’, and so on, and define a method called ‘info’ which lists the member values in ‘key=>value’ form to stdout. Now, make an instance of this class interactively, and store it in a new shelve file. Exit Python, reopen your shelve, fetch back the object you stored, and inspect it by calling its ‘info’ method. Then, store a new “Student” instance object in the shelve, with fictitious member details. Did you have to import the “student” module in order to use “Student” instances fetched from the shelve? Why?

4. Changing classes. Change the “Student” class you wrote in (3), such that its ‘info’ method now lists members in ‘key…value’ form to stdout. Reopen your shelve, and iterate over all the stored Students (use the dictionary ‘keys’ method to get an index list), calling the ‘info’ method for each. What happens if you repeat this experiment after renaming the “student.py” module that contains the “Student” class?

Lab 10: Text processing and the Internet

Go to solutions
Go to solution files
1. String processing. Write a function which returns the reverse of a string passed in as an argument. You may use iteration and concatenation, or any other approach you think works best. (Suggestion: what about using the built-in list(sequence) conversion function to leverage the list ‘reverse’ method for this job?) Can you generalize your function to reverse any type of sequence? What type should the result be?

2. String conversions. Write a function which converts a string of digit characters (‘0’ through ‘9’) to an integer object with the corresponding numeric value. For instance, “123” should create the integer 123. Hint: use “ord(C) - ord(‘0’)” to convert each digit. Experiment with these tools interactively. Now, how would you go about doing the inverse—converting an integer to a string? Hint ‘X % 10’ returns the remainder of division by 10, and ‘X / 10’ returns the integer part, but built-in tools can help here too.

3. String splits. Write a text file containing columns of numbers, and run the “summer.py” example to tally its columns. Now, write a file of numeric expressions without embedded blanks (e.g. ‘2+1’), and try running summer on that. What happens? Why? Finally, change ‘summer.py’ to split lines on “$” column separators, change your text file to separate columns by “$”, and rerun the tests. Can your expressions contain blanks and tabs now?

4. Regular expressions. Run the “cheader1.py” example on a C file (e.g., ‘.c’ or ‘.h’) of your choosing. For instance, you might run it over a Python include file in the Python source tree. Does it handle both ‘<>’ and quoted file names in #include directives? How about #define macros with arguments and continuation lines? As is, the script doesn’t support transitively included files (it doesn’t also scan files referenced by a #include line). How would you go about adding this too? (Hint: you’ll probably need to make a recursive call, and keep track of files you’ve scanned so far; see “Tools/scripts/h2py.py” in the Python source tree.)

5. The FTP module. Write a program that fetches the file “sousa.au” from site “ftp.python.org”, in directory “pub/python/misc”. Use anonymous FTP, and binary transfer mode, and store the file on your local machine under name “mysousa.au”. If you have an audio filter, you can play this file on your machine after your script finishes. How would you go about playing it automatically from within the FTP script? (Hint: a DOS “start” command can be run by os.system, and spawned web browsers may help too.)

Lab 11: Extending Python in C/C++

Go to solutions
Go to solution files
Note: most of the exercises in the next two labs (extending and embedding Python in C) are complex, and require access to a C compiler and build environment. They’re also almost never worked on during the course itself. Feel free to use these last two lab sessions to go back and finish prior lab exercises you’ve skipped, especially if you’ll be using Python in stand-alone mode (i.e., without coding any C integrations of your own). These exercises can also be tackled after the course is over, at your convenience. Be sure to at least have a look at the last two exercises in these two labs, though; they don’t require C compilation.

1. Extension modules. Add another function to the extension module example, which calls the C library’s ‘putenv’ function. It should accept a single string, and return the ‘None’ object, or a NULL pointer to report errors. Install the modified module in Python using static binding, and test your new extension function from the Python command line. How does your putenv differ from the built-in ‘os.environ’ and ‘os.putenv’? (Hint: does your function update ‘os’?).

2. Dynamic binding. If your platform supports dynamic load libraries, bind the modified ‘environ’ module from (1) to Python using dynamic binding: remove the Modules/Setup entry and remake Python, compile ‘environ.c’ into a shared library, and put the result in a directory names on $PYTHONPATH. Test the binding by importing the module and calling your ‘putenv’ function interactively.

3. Extension types. Code a ‘print’ handler function in the C stack extension type (stacktyp.c), which simply prints a “not implemented” message whenever it is called. Compile your extension type’s module and bind it to Python, either statically or dynamically, and test the handler interactively.

4. Extension types. Code the ‘length’ handler function, and the ‘push’ and ‘pop’ instance methods, and rebuild Python with these extensions. Test the new method interactively: import the stack module, make a Stack instance, and call the instance’s push, pop, length, and item (indexing) functionality. Does the type respond to ‘for’ loop iteration as is?

5. Extension types. Add a ‘set_item’ (index assignment) handler to the stack type. Code a handler function (it may simply print a message), register your function in the type descriptors, and rebuild. Test your new handler interactively, by assignments (“x[i] = value”).

6. Extension wrappers. Expand the extension type wrapper presented in the lecture to include a wrapper for the new ‘set_item’ method you implemented in exercise (5).

7. Inspecting objects. Import your extension module from exercise (1), and call the built-in ‘dir’ function on the module (‘dir(M)’). What do you see? Now, inspect the module’s ‘__dict__’ attribute. How does this differ? Next, import your stack type, make an instance, and inspect the instance’s ‘__members__’ and ‘__methods__’ attributes. What happens when you do a ‘dir’ on a type instance? How do these findings compare to Python modules, classes and class instances? Write a simple class in a module file and run interactive tests to find out.

8. Inspecting objects. Repeat all of the inspections performed in exercise (7) on the built-in ‘regex’ regular expression module: import and inspect the ‘regex’ module itself, then make a compiled expression object (by running an assignment like “x = regex.compile(‘hello’)”) and inspect its members and methods. Regex is a pre-coded C extension module/type which is a standard part of Python; compiling expressions makes a type instance object. The module’s source code is available in the Python source tree’s ‘Module’ directory. Find and study the ‘regexmodule.c’ source file.

9. Built-in type examples. Study the implementations of built-in lists, integers, and dictionaries, in the “Object” directory of the Python source tree. See the source files ‘listobject.c’, ‘intobject.c’, and ‘mappingobject.c’. Can you locate the major type components we studied in the lecture? Why isn’t there a constructor module? (Hint: how do you create lists, integers, and dictionaries?).

Lab 12: Embedding Python in C/C++

Go to solutions
Go to solution files
1. Running code strings. Write a C ‘main’ program which runs a Python code string, to display the value of the “sys.path” module search path in Python. You may implement the embedding in one of three ways:

· By running simple strings like “import sys; print sys.path” (PyRun_SimpleString)

· By running “print path” in module “sys” (PyImport_ImportModule, PyRun_String)

· By using the extended API functions (Run_Codestr)

Build an executable by linking your program with Python libraries and object files, and run it from the system shell’s command line. If you choose to use the extended API tools, also compile with the “ppembed*.c” files from the CD-ROM shipped with the book Programming Python 2nd Edition. Experiment with the other modes above as time allows.

2. Calling objects. Write a C ‘main’ program which calls the “os.getcwd()” function, and prints the returned string to stdout. “os.getcwd()” takes no arguments, and returns the name of the current directory as a Python string (see p.788). Alternative approaches:

· Call getcwd manually (PyImport_ImportModule, PyEval_CallObject)

· Call getcwd with an extended API function (Run_Function)

Build your program and test it from the system command line.

3. Dynamic debugging. If you used the extended API functions in exercises (1) and/or (2), experiment with dynamic debugging of embedded code, by setting the variable “PY_DEBUG = 1” in your C program, before calling the API functions. Where are you in your embedded code, when control stops in the pdb debugger? Would dynamic reloading of the embedded code help in these programs?

4. Registration. In the registration example, suppose we wanted to change the event handlers without stopping the C program. Is there any way to force C to reload the registered function’s module at run-time? (Hint: how does C know the name of the enclosing module? And how would reloading the module update the object?) Does this sound similar to the “from” gotcha for “reload” in Python?

5. Error handling. Add code to the “objects1err.c” example to print a Python stack traceback (PyErr_Print) and fetch exception information using the “pyerrors.c” support file whenever API errors occur. Now, change your PYTHONPATH so it doesn’t include the Python module which holds the “klass” class, and rebuild/rerun your executable to trigger an API error. What happens?

6. Web resources. If you have access to a web browser, point it to URL “http://www.python.org”, Python’s home page. Then click on the ‘Search’ link at the top to invoke the Python locator system. Then search the newsgroup/mailing list archives for topic “Larry Wall”, to see what you can find out about Perl’s creator from old Python posts.

FTP resources. If you have access to a FTP client, use anonymous FTP to manually fetch the file “sousa.au” from URL “ftp://ftp.python.org/pub/python/misc” (doing it from Python was a prior exercise). This is an audio file—the Monty Python television show’s theme song—which you can play on your machine if you have an audio filter program. You may also be able to fetch and play the file with your web browser.

Selected exercise solutions

This section lists solutions to some of the earlier lab's exercises, taken from the book Learning Python. Feel free to consult these answers if you get stuck, and also for pointers on alternative solutions.

Also see the solution file directories for answers to additional lab sessions.

Lab 1: Using the Interpreter

1. Interaction. Assuming your Python is configured properly, you should participate in an interaction that looks something like the following. You can run this any way you like: in IDLE, from a shell prompt, and so on:

% python
...copyright information lines...

>>> "Hello World!"
'Hello World!'

>>> # Ctrl-D, Ctrl-Z, or window close to exit

2. Programs. Here’s what your code (i.e., module) file and shell interactions should look like; again, feel free to run this other ways—by clicking its icon, by IDLE’s Edit/RunScript menu option, and so on:

File: module1.py

print 'Hello module world!'

% python module1.py
Hello module world!

3. Modules. The following interaction listing illustrates running a module file by importing it. Remember that you need to reload it to run again without stopping and restarting the interpreter. The bit about moving the file to a different directory and importing it again is a trick question: if Python generates a module1.pyc file in the original directory, it uses that when you import the module, even if the source code file (.py) has been moved to a directory not on Python’s search path. The .pyc file is written automatically if Python has access to the source file’s directory and contains the compiled bytecode version of a module. We look at how this works again in the modules unit.

% python
>>> import module1
Hello module world!

>>>

4. Scripts. Assuming your platform supports the #! trick, your solution will look like the following (though your #! line may need to list another path on your machine):

File: module1.py

#!/usr/local/bin/python (or #!/usr/bin/env python)

print 'Hello module world!'

% chmod +x module1.py
% module1.py
Hello module world!

5. Errors. The interaction below demonstrates the sort of error messages you get if you complete this exercise. Really, you’re triggering Python exceptions; the default exception handling behavior terminates the running Python program and prints an error message and stack trace on the screen. The stack trace shows where you were at in a program when the exception occurred (it’s not very interesting here, since the exceptions occur at the top level of the interactive prompt; no function calls were in progress). In the exceptions unit, you will see that you can catch exceptions using “try” statements and process them arbitrarily; you’ll also see that Python includes a full-blown source-code debugger for special error detection requirements. For now, notice that Python gives meaningful messages when programming errors occur (instead of crashing silently):

% python
>>> 1 / 0
Traceback (innermost last):

 File "<stdin>", line 1, in ?

ZeroDivisionError: integer division or modulo

>>>

>>> x
Traceback (innermost last):

 File "<stdin>", line 1, in ?

NameError: x

6. Breaks. When you type this code:

L = [1, 2]

L.append(L)

you create a cyclic data-structure in Python. In Python releases before Version 1.5.1, the Python printer wasn’t smart enough to detect cycles in objects, and it would print an unending stream of [1, 2, [1, 2, [1, 2, [1, 2, and so on, until you hit the break key combination on your machine (which, technically, raises a keyboard-interrupt exception that prints a default message at the top level unless you intercept it in a program). Beginning with Python Version 1.5.1, the printer is clever enough to detect cycles and prints [[...]] instead to let you know.

The reason for the cycle is subtle and requires information you’ll gain in the next unit. But in short, assignment in Python always generates references to objects (which you can think of as implicitly followed pointers). When you run the first assignment above, the name L becomes a named reference to a two-item list object. Now, Python lists are really arrays of object references, with an append method that changes the array in-place by tacking on another object reference. Here, the append call adds a reference to the front of L at the end of L, which leads to the cycle illustrated in the figure below. Believe it or not, cyclic data structures can sometimes be useful (but maybe not when printed!). Today, Python can also reclaim (garbage collect) such objects cyclic automatically.

A cyclic list

Lab 2: Types and Operators

1. The basics. Here are the sort of results you should get, along with a few comments about their meaning. Note that “;” is used in a few of these to squeeze more than one stamement on a single line; as we’ll learn in the next unit, the ; is a statement separator.

Numbers

>>> 2 ** 16 # 2 raised to the power 16

65536

>>> 2 / 5, 2 / 5.0 # integer / truncates, float / doesn't
(0, 0.40000000000000002)

Strings

>>> "spam" + "eggs" # concatenation
'spameggs'

>>> S = "ham"
>>> "eggs " + S
'eggs ham'

>>> S * 5 # repetition

'hamhamhamhamham'

>>> S[:0] # an empty slice at the front--[0:0]

''

>>> "green %s and %s" % ("eggs", S) # formatting
'green eggs and ham'

Tuples

>>> ('x',)[0] # indexing a single-item tuple

'x'

>>> ('x', 'y')[1] # indexing a 2-item tuple

'y'

Lists

>>> L = [1,2,3] + [4,5,6] # list operations

>>> L, L[:], L[:0], L[-2], L[-2:]
([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [], 5, [5, 6])

>>> ([1,2,3]+[4,5,6])[2:4]
[3, 4]

>>> [L[2], L[3]] # fetch from offsets, store in a list

[3, 4]

>>> L.reverse(); L # method: reverse list in-place

[6, 5, 4, 3, 2, 1]

>>> L.sort(); L # method: sort list in-place
[1, 2, 3, 4, 5, 6]

>>> L.index(4) # method: offset of first 4 (search)
3

Dictionaries

>>> {'a':1, 'b':2}['b'] # index a dictionary by key

2

>>> D = {'x':1, 'y':2, 'z':3}

>>> D['w'] = 0 # create a new entry

>>> D['x'] + D['w']

1

>>> D[(1,2,3)] = 4 # a tuple used as a key (immutable)
>>> D
{'w': 0, 'z': 3, 'y': 2, (1, 2, 3): 4, 'x': 1}

>>> D.keys(), D.values(), D.has_key((1,2,3)) # methods

(['w', 'z', 'y', (1, 2, 3), 'x'], [0, 3, 2, 4, 1], 1)

Empties

>>> [[]], ["",[],(),{},None] # lots of nothings: empty objects
([[]], ['', [], (), {}, None])

2. Indexing and slicing.

Indexing out-of-bounds (e.g., L[4]) raises an error; Python always checks to make sure that all offsets are within the bounds of a sequence (unlike C, where out-of-bound indexes will happily crash your system).

On the other hand, slicing out of bounds (e.g., L[-1000:100]) works, because Python scales out-of-bounds slices so that they always fit (they’re set to zero and the sequence length, if required).

Extracting a sequence in reverse—with the lower bound > the higher bound (e.g., L[3:1])—doesn’t really work. You get back an empty slice ([]), because Python scales the slice limits to make sure that the lower bound is always less than or equal to the upper bound (e.g., L[3:1] is scaled to L[3:3], the empty insertion point at offset 3). Python slices are always extracted from left to right, even if you use negative indexes (they are first converted to positive indexes by adding the length).

>>> L = [1, 2, 3, 4]
>>> L[4]
Traceback (innermost last):

 File "<stdin>", line 1, in ?

IndexError: list index out of range

>>> L[-1000:100]

[1, 2, 3, 4]

>>> L[3:1]
[]

>>> L
[1, 2, 3, 4]

>>> L[3:1] = ['?']
>>> L
[1, 2, 3, '?', 4]

3. Indexing, slicing, and del. Your interaction with the interpreter should look something like that listed below. Note that assigning an empty list to an offset stores an empty list object there, but assigning an empty list to a slice deletes the slice. Slice assignment expects another sequence, or you’ll get a type error; is assigns inserts items inside the sequence assigned, not the sequence itself:

>>> L = [1,2,3,4]
>>> L[2] = []
>>> L
[1, 2, [], 4]

>>> L[2:3] = []
>>> L
[1, 2, 4]

>>> del L[0]
>>> L
[2, 4]

>>> del L[1:]
>>> L
[2]

>>> L[1:2] = 1
Traceback (innermost last):

 File "<stdin>", line 1, in ?

TypeError: illegal argument type for built-in operation

4. Tuple assignment. The values of X and Y are swapped. When tuples appear on the left and right of an assignment symbol (=), Python assigns objects on the right to targets on the left, according to their positions. This is probably easiest to understand by noting that targets on the left aren’t a real tuple, even though they look like one; they are simply a set of independent assignment targets. The items on the right are a tuple, which get unpacked during the assignment (the tuple provides the temporary assignment needed to achieve the swap effect).

>>> X = 'spam'

>>> Y = 'eggs'

>>> X, Y = Y, X
>>> X
'eggs'

>>> Y
'spam'

5. Dictionary keys. Any immutable object can be used as a dictionary key—integers, tuples, strings, and so on. This really is a dictionary, even though some of its keys look like integer offsets. Mixed type keys work fine too.

>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'
>>> D[(1, 2, 3)] = 'c'

>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

6. Dictionary indexing. Indexing a nonexistent key (D['d']) raises an error; assigning to a nonexistent key (D['d']='spam') creates a new dictionary entry. On the other hand, out-of-bounds indexing for lists raises an error too, but so do out-of-bounds assignments. Variable names work like dictionary keys: they must have already been assigned when referenced, but are created when first assigned. In fact, variable names can be processed as dictionary keys if you wish (they’re made visible in module namespace or stack-frame dictionaries).

>>> D = {'a':1, 'b':2, 'c':3}
>>> D['a']

1

>>> D['d']

Traceback (innermost last):

 File "<stdin>", line 1, in ?

KeyError: d

>>> D['d'] = 4
>>> D
{'b': 2, 'd': 4, 'a': 1, 'c': 3}

>>>

>>> L = [0,1]
>>> L[2]
Traceback (innermost last):

 File "<stdin>", line 1, in ?

IndexError: list index out of range

>>> L[2] = 3
Traceback (innermost last):

 File "<stdin>", line 1, in ?

IndexError: list assignment index out of range

7. Generic operations.

Question answers: The + operator doesn’t work on different/mixed types (e.g., string + list, list + tuple).

+ doesn’t work for dictionaries, because they aren’t sequences.

The append method works only for lists, not strings, and keys works only on dictionaries. append assumes its target is mutable, since it’s an in-place extension; strings are immutable.

Slicing and concatenation always return a new object of the same type as the objects processed.

>>> "x" + 1
Traceback (innermost last):

 File "<stdin>", line 1, in ?

TypeError: illegal argument type for built-in operation

>>>

>>> {} + {}
Traceback (innermost last):

 File "<stdin>", line 1, in ?

TypeError: bad operand type(s) for +

>>>

>>> [].append(9)
>>> "".append('s')
Traceback (innermost last):

 File "<stdin>", line 1, in ?

AttributeError: attribute-less object

>>>

>>> {}.keys()
[]

>>> [].keys()
Traceback (innermost last):

 File "<stdin>", line 1, in ?

AttributeError: keys

>>>

>>> [][:]
[]

>>> ""[:]
''

8. String indexing. Since strings are collections of one-character strings, every time you index a string, you get back a string, which can be indexed again. S[0][0][0][0][0] just keeps indexing the first character over and over. This generally doesn’t work for lists (lists can hold arbitrary objects), unless the list contains strings.

>>> S = "spam"
>>> S[0][0][0][0][0]
's'

>>> L = ['s', 'p']
>>> L[0][0][0]
's'

9. Immutable types. Either of the solutions below work. Index assignment doesn’t, because strings are immutable.

>>> S = "spam"

>>> S = S[0] + 'l' + S[2:]
>>> S
'slam'

>>> S = S[0] + 'l' + S[2] + S[3]
>>> S
'slam'

10. Nesting. Your mileage will vary.

>>> me = {'name':('mark', 'e', 'lutz'), 'age':'?', 'job':'engineer'}
>>> me['job']
'engineer'

>>> me['name'][2]
'lutz'

11. Files. Here’s one way to create and read back a text file in Python (ls is a Unix command; use dir on Windows):

File: maker.py

file = open('myfile.txt', 'w')

file.write('Hello file world!\n') # or: open().write()

file.close() # close not always needed

File: reader.py

file = open('myfile.txt', 'r')

print file.read() # or: print open().read()

% python maker.py
% python reader.py
Hello file world!

% ls -l myfile.txt
-rwxrwxrwa 1 0 0 19 Apr 13 16:33 myfile.txt

12. The dir function: Here’s what you get for lists; dictionaries do the same (but with different method names). Note that the dir result expanded in Python 2.2—you’ll see a large set of additional underscore names that implement expression operators, and support the subclassing we’ll meet in the classes unit. The __methods__ attribute disappeared in 2.2 as well, because it wasn’t consistently implemented—use dir to to fetch attribute lists today instead:

>>> [].__methods__
['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort',…]

>>> dir([])
['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort',…]

Lab 3: Basic Statements

1. Coding basic loops. If you work through this exercise, you'll wind up with code that looks something like the following:

>>> S = 'spam'

>>> for c in S:

... print ord(c)

...

115

112

97

109

>>> x = 0

>>> for c in S: x = x + ord(c) # or: x += ord(c)

...

>>> x

433

>>> x = []

>>> for c in S: x.append(ord(c))

...

>>> x

[115, 112, 97, 109]

>>> map(ord, S)

[115, 112, 97, 109]

2. Backslash characters. The example prints the bell character (\a) 50 times; assuming your machine can handle it, you'll get a series of beeps (or one long tone, if your machine is fast enough). Hey—I warned you.

3. Sorting dictionaries. Here's one way to work through this exercise; see lecture 3 if this doesn't make sense. Remember, you really do have to split the keys and sort calls up like this, because sort returns None.

>>> D = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5, 'f':6, 'g':7}
>>> D
{'f': 6, 'c': 3, 'a': 1, 'g': 7, 'e': 5, 'd': 4, 'b': 2}

>>>

>>> keys = D.keys()

>>> keys.sort()
>>> for key in keys:

... print key, '=>', D[key]
...

a => 1

b => 2

c => 3

d => 4

e => 5

f => 6

g => 7

4. Program logic alternatives. Here's how we coded the solutions; your results may vary a bit. This exercise is mostly just designed to get you playing with code alternaives, so anything reasonable gets full credit:
a) First, rewrite this code with a while loop else, to eliminate the found flag and final if statement.

L = [1, 2, 4, 8, 16, 32, 64]

X = 5

i = 0

while i < len(L):

 if 2 ** X == L[i]:

 print 'at index', i

 break

 i = i+1

else:

 print X, 'not found'

b) Next, rewrite the example to use a for loop with an else, to eliminate the explicit list indexing logic. Hint: to get the index of an item, use the list index method (list.index(X) returns the offset of the first X).

L = [1, 2, 4, 8, 16, 32, 64]

X = 5

for p in L:

 if (2 ** X) == p:

 print (2 ** X), 'was found at', L.index(p)

 break

else:

 print X, 'not found'

c) Now, remove the loop completely by rewriting the examples with a simple in operator membership expression (see lecture 2 for more details, or type this: 2 in [1,2,3]).

L = [1, 2, 4, 8, 16, 32, 64]

X = 5

if (2 ** X) in L:

 print (2 ** X), 'was found at', L.index(2 ** X)

else:

 print X, 'not found'

d) Finally, use a for loop and the list append method to generate the powers-of-2 list (L), instead of hard-coding a list constant.

X = 5

L = []

for i in range(7): L.append(2 ** i)

print L

if (2 ** X) in L:

 print (2 ** X), 'was found at', L.index(2 ** X)

else:

 print X, 'not found'

e) Deeper thoughts: (2) As we saw in exercise 1, Python also provides a map(function, list) built-in tool which could be used to generate the powers-of-2 list too. Consider this a preview of the next lecture.

X = 5

L = map(lambda x: 2**x, range(7))

print L

if (2 ** X) in L:

 print (2 ** X), 'was found at', L.index(2 ** X)

else:

 print X, 'not found'

Lab 4: Functions

1. Basics. There’s not much to this one, but notice that your using the big “P” word—print (and hence your function) is technically a polymorphic operation, which does the right thing for each type of object:

% python
>>> def func(x): print x

...

>>> func("spam")
spam

>>> func(42)
42

>>> func([1, 2, 3])
[1, 2, 3]

>>> func({'food': 'spam'})
{'food': 'spam'}

2. Arguments. Here’s what one solution looks like. Remember that you have to use print to see results in the test calls, because a file isn’t the same as code typed interactively; Python doesn’t normally echo the results of expression statements in files.

File: mod.py

def adder(x, y):

 return x + y

print adder(2, 3)

print adder('spam', 'eggs')

print adder(['a', 'b'], ['c', 'd'])

% python mod.py
5

spameggs

['a', 'b', 'c', 'd']

3. Varargs. Two alternative adder functions are shown in the following code. The hard part here is figuring out how to initialize an accumulator to an empty value of whatever type is passed in. In the first solution, we use manual type testing to look for an integer and an empty slice of the first argument (assumed to be a sequence) otherwise. In the second solution, we just use the first argument to initialize and scan items 2 and beyond, much like one of the max function coded in class.

The second solution is better (and frankly, comes from students in a Python course I taught, who were frustrated with trying to understand the first solution). Both of these assume all arguments are the same type and neither works on dictionaries; as we saw a priore unit, + doesn’t work on mixed types or dictionaries. We could add a type test and special code to add dictionaries too, but that’s extra credit.

File adders.py

def adder1(*args):

 print 'adder1',

 if type(args[0]) == type(0): # integer?

 sum = 0 # init to zero

 else: # else sequence:

 sum = args[0][:0] # use empty slice of arg1

 for arg in args:

 sum = sum + arg

 return sum

def adder2(*args):

 print 'adder2',

 sum = args[0] # init to arg1

 for next in args[1:]:

 sum = sum + next # add items 2..N

 return sum

for func in (adder1, adder2):

 print func(2, 3, 4)

 print func('spam', 'eggs', 'toast')

 print func(['a', 'b'], ['c', 'd'], ['e', 'f'])

% python adders.py
adder1 9

adder1 spameggstoast

adder1 ['a', 'b', 'c', 'd', 'e', 'f']

adder2 9

adder2 spameggstoast

adder2 ['a', 'b', 'c', 'd', 'e', 'f']

4. Keywords. Here is our solution to the first part of this one. To iterate over keyword arguments, use a **args form in the function header and use a loop like: for x in args.keys(): use args[x].

File: mod.py

def adder(good=1, bad=2, ugly=3):

 return good + bad + ugly

print adder()

print adder(5)

print adder(5, 6)

print adder(5, 6, 7)

print adder(ugly=7, good=6, bad=5)

% python mod.py
6

10

14

18

18

5. and 6. Here are our solutions to Exercises 5 and 6. These are just coding exercises, though, because Guido has already made them superfluous—Python 1.5 added new dictionary methods, to do things like copying and adding (merging) dictionaries: D.copy(), and D1.update(D2). See Python’s library manual or the Python Pocket Reference for more details. X[:] doesn’t work for dictionaries, since they’re not sequences. Also remember that if we assign (e = d) rather than copy, we generate a reference to a shared dictionary object; changing d changes e too.

File: dicts.py

def copyDict(old):

 new = {}

 for key in old.keys():

 new[key] = old[key]

 return new

def addDict(d1, d2):

 new = {}

 for key in d1.keys():

 new[key] = d1[key]

 for key in d2.keys():

 new[key] = d2[key]

 return new

% python
>>> from dicts import *
>>> d = {1:1, 2:2}
>>> e = copyDict(d)
>>> d[2] = '?'

>>> d
{1: 1, 2: '?'}

>>> e
{1: 1, 2: 2}

>>> x = {1:1}
>>> y = {2:2}
>>> z = addDict(x, y)
>>> z
{1: 1, 2: 2}

7. Argument matching. Here is the sort of interaction you should get, along with comments that explain the matching that goes on:

def f1(a, b): print a, b # normal args

def f2(a, *b): print a, b # positional varargs

def f3(a, **b): print a, b # keyword varargs

def f4(a, *b, **c): print a, b, c # mixed modes

def f5(a, b=2, c=3): print a, b, c # defaults

def f6(a, b=2, *c): print a, b, c # defaults + positional varargs

% python
>>> f1(1, 2) # matched by position (order matters)

1 2

>>> f1(b=2, a=1) # matched by name (order doesn't matter)

1 2

>>> f2(1, 2, 3) # extra positionals collected in a tuple

1 (2, 3)

>>> f3(1, x=2, y=3) # extra keywords collected in a dictionary

1 {'x': 2, 'y': 3}

>>> f4(1, 2, 3, x=2, y=3) # extra of both kinds

1 (2, 3) {'x': 2, 'y': 3}

>>> f5(1) # both defaults kick in

1 2 3

>>> f5(1, 4) # only one default used

1 4 3

>>> f6(1) # one argument: matches "a"

1 2 ()

>>> f6(1, 3, 4) # extra positional collected

1 3 (4,)

8. List comprehensions. Here is the sort of code you should write; we may have a preference, but we’re not telling.
>>> values = [2, 4, 9, 16, 25]

>>> import math

>>>

>>> res = []

>>> for x in values: res.append(math.sqrt(x))

...

>>> res

[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

>>>

>>> map(math.sqrt, values)

[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

>>>

>>> [math.sqrt(x) for x in values]

[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

Lab 5: Modules

1. Basics, import. This one is simpler than you may think. When you’re done, your file and interaction should look close to the following code; remember that Python can read a whole file into a string or lines list, and the len built-in returns the length of strings and lists:

File: mymod.py

def countLines(name):

 file = open(name, 'r')

 return len(file.readlines())

def countChars(name):

 return len(open(name, 'r').read())

def test(name): # or pass file object

 return countLines(name), countChars(name) # or return a dictionary

% python
>>> import mymod
>>> mymod.test('mymod.py')
(10, 291)

On Unix, you can verify your output with a wc command; on Windows, right-click on your file to views its properties. (But note that your script may report fewer characters than Windows does—for portability, Python converts Windows “\r\n” line-end markers to “\n”, thereby dropping one byte (character) per line. To match byte counts with Windows exactly, you have to open in binary mode—"rb", or add back the number of lines.)

Incidentally, to do the “ambitious” part (passing in a file object, so you only open the file once), you’ll probably need to use the seek method of the built-in file object. We didn’t cover it in the text, but it works just like C’s fseek call (and calls it behind the scenes): seek resets the current position in the file to an offset passed in. After a seek, future input/output operations are relative to the new position. To rewind to the start of a file without closing and reopening, call file.seek(0); the file read methods all pick up at the current position in the file, so you need to rewind to reread. Here’s what this tweak would look like:

File: mymod2.py

def countLines(file):

 file.seek(0) # rewind to start of file

 return len(file.readlines())

def countChars(file):

 file.seek(0) # ditto (rewind if needed)

 return len(file.read())

def test(name):

 file = open(name, 'r') # pass file object

 return countLines(file), countChars(file) # only open file once

>>> import mymod2
>>> mymod2.test("mymod2.py")
(11, 392)

2. from/from*. Here’s the from* bit; replace * with countChars to do the rest:

% python

>>> from mymod import *
>>> countChars("mymod.py")
291

3. __main__. If you code it properly, it works in either mode (program run or module import):

File: mymod.py

def countLines(name):

 file = open(name, 'r')

 return len(file.readlines())

def countChars(name):

 return len(open(name, 'r').read())

def test(name): # or pass file object

 return countLines(name), countChars(name) # or return a dictionary

if __name__ == '__main__':

 print test('mymod.py')

% python mymod.py
(13, 346)

4. Nested imports. Our solution for this appears below:

File: myclient.py

from mymod import countLines, countChars

print countLines('mymod.py'), countChars('mymod.py')

% python myclient.py
13 346

As for the rest of this one: mymod’s functions are accessible (that is, importable) from the top level of myclient, since from simply assigns to names in the importer (it works almost as though mymod’s defs appeared in myclient). For example, another file can say this:

import myclient

myclient.countLines(…)

from myclient import countChars

countChars(…)

If myclient used import instead of from, you’d need to use a path to get to the functions in mymod through myclient:

import myclient

myclient.mymod.countLines(…)

from myclient import mymod

mymod.countChars(…)

In general, you can define collector modules that import all the names from other modules, so they’re available in a single convenience module. Using the following code, you wind up with three different copies of name somename: mod1.somename, collector.somename, and __main__.somename; all three share the same integer object initially, and only the name somename exists at the interative prompt as is:

File: mod1.py

somename = 42

File: collector.py

from mod1 import * # collect lots of names here

from mod2 import * # from assigns to my names

from mod3 import *

>>> from collector import somename

5. Package imports. For this, we put the mymod.py solution file listed for exercise 3 into a directory package. The following is what we did to set up the directory and its required __init__.py file in a Windows console interface; you’ll need to interpolate for other platforms (e.g., use mv and vi instead of move and edit). This works in any directory (we just happened to run our commands in Python’s install directory), and you can do some of this from a file explorer GUI too.

When we were done, we had a mypkg subdirectory, which contained files __init__.py and mymod.py. You need an __init__.py in the mypkg directory, but not in its parent; mypkg is located in the home directory component of the module search path. Notice how a print statement we coded in the directory’s initialization file only fires the first time it is imported, not the second:

C:\python22> mkdir mypkg
C:\Python22> move mymod.py mypkg\mymod.py
C:\Python22> edit mypkg__init__.py
…coded a print statement…

C:\Python22> python
>> import mypkg.mymod
initializing mypkg

>>> mypkg.mymod.countLines('mypkg\mymod.py')

13

>>> from mypkg.mymod import countChars

>>> countChars('mypkg\mymod.py')

346

6. Reload. This exercise just asks you to experiment with changing the changer.py example in the book, so there’s not much for us to show here. If you had some fun with it, give yourself extra points.

7. Circular imports. The short story is that importing recur2 first works, because the recursive import then happens at the import in recur1, not at a from in recur2.

The long story goes like this: importing recur2 first works, because the recursive import from recur1 to recur2 fetches recur2 as a whole, instead of getting specific names. recur2 is incomplete when imported from recur1, but because it uses import instead of from, you’re safe: Python finds and returns the already created recur2 module object and continues to run the rest of recur1 without a glitch. When the recur2 import resumes, the second from finds name Y in recur1 (it’s been run completely), so no error is reported. Running a file as a script is not the same as importing it as a module; these cases are the same as running the first import or from in the script interactively. For instance, running recur1 as a script is the same as importing recur2 interactively, since recur2 is the first module imported in recur1. (E-I-E-I-O!)
Lab 6: Classes

1. Inheritance. Here’s the solution we coded up for this exercise, along with some interactive tests. The __add__ overload has to appear only once, in the superclass, since it invokes type-specific add methods in subclasses.

File: adder.py

class Adder:

 def add(self, x, y):

 print 'not implemented!'

 def __init__(self, start=[]):

 self.data = start

 def __add__(self, other): # or in subclasses?

 return self.add(self.data, other) # or return type?

class ListAdder(Adder):

 def add(self, x, y):

 return x + y

class DictAdder(Adder):

 def add(self, x, y):

 new = {}

 for k in x.keys(): new[k] = x[k]

 for k in y.keys(): new[k] = y[k]

 return new

% python
>>> from adder import *
>>> x = Adder()
>>> x.add(1, 2)
not implemented!

>>> x = ListAdder()

>>> x.add([1], [2])
[1, 2]

>>> x = DictAdder()
>>> x.add({1:1}, {2:2})

{1: 1, 2: 2}

>>> x = Adder([1])
>>> x + [2]
not implemented!

>>>

>>> x = ListAdder([1])
>>> x + [2]
[1, 2]

>>> [2] + x
Traceback (innermost last):

 File "<stdin>", line 1, in ?

TypeError: __add__ nor __radd__ defined for these operands

Notice in the last test that you get an error for expressions where a class instance appears on the right of a +; if you want to fix this, use __radd__ methods as described in this unit’s operator overloading section.

As we suggested, if you are saving a value in the instance anyhow, you might as well rewrite the add method to take just one arguments, in the spirit of other examples in this unit:

class Adder:

 def __init__(self, start=[]):

 self.data = start

 def __add__(self, other): # pass a single argument

 return self.add(other) # the left side is in self

 def add(self, y):

 print 'not implemented!'

class ListAdder(Adder):

 def add(self, y):

 return self.data + y

class DictAdder(Adder):

 def add(self, y):

 pass # change me to use self.data instead of x

x = ListAdder([1,2,3])

y = x + [4,5,6]

print y # prints [1, 2, 3, 4, 5, 6]

Because values are attached to objects rather than passed around, this version is arguably more object-oriented. And once you’ve gotten to this point, you’ll probably see that you could get rid of add altogether, and simply define type-specific __add__ methods in the two subclasses. They’re called exercises for a reason!

2. Operator overloading. Here’s what we came up with for this one. It uses a few operator overload methods we didn’t say much about, but they should be straightforward to understand. Copying the initial value in the constructor is important, because it may be mutable; you don’t want to change or have a reference to an object that’s possibly shared somewhere outside the class. The __getattr__ method routes calls to the wrapped list. For hints on an easier way to code this as of Python 2.2, see this unit’s section on extending built-in types with subclasses.

File: mylist.py

class MyList:

 def __init__(self, start):

 #self.wrapped = start[:] # copy start: no side effects

 self.wrapped = [] # make sure it's a list here

 for x in start: self.wrapped.append(x)

 def __add__(self, other):

 return MyList(self.wrapped + other)

 def __mul__(self, time):

 return MyList(self.wrapped * time)

 def __getitem__(self, offset):

 return self.wrapped[offset]

 def __len__(self):

 return len(self.wrapped)

 def __getslice__(self, low, high):

 return MyList(self.wrapped[low:high])

 def append(self, node):

 self.wrapped.append(node)

 def __getattr__(self, name): # other members: sort/reverse/etc.

 return getattr(self.wrapped, name)

 def __repr__(self):

 return `self.wrapped`

if __name__ == '__main__':

 x = MyList('spam')

 print x

 print x[2]

 print x[1:]

 print x + ['eggs']

 print x * 3

 x.append('a')

 x.sort()

 for c in x: print c,

% python mylist.py
['s', 'p', 'a', 'm']

a

['p', 'a', 'm']

['s', 'p', 'a', 'm', 'eggs']

['s', 'p', 'a', 'm', 's', 'p', 'a', 'm', 's', 'p', 'a', 'm']

a a m p s

3. Subclassing. Our solution appears below. Your solution should appear similar.

File: mysub.py

from mylist import MyList

class MyListSub(MyList):

 calls = 0 # shared by instances

 def __init__(self, start):

 self.adds = 0 # varies in each instance

 MyList.__init__(self, start)

 def __add__(self, other):

 MyListSub.calls = MyListSub.calls + 1 # class-wide counter

 self.adds = self.adds + 1 # per instance counts

 return MyList.__add__(self, other)

 def stats(self):

 return self.calls, self.adds # all adds, my adds

if __name__ == '__main__':

 x = MyListSub('spam')

 y = MyListSub('foo')

 print x[2]

 print x[1:]

 print x + ['eggs']

 print x + ['toast']

 print y + ['bar']

 print x.stats()

% python mysub.py

a

['p', 'a', 'm']

['s', 'p', 'a', 'm', 'eggs']

['s', 'p', 'a', 'm', 'toast']

['f', 'o', 'o', 'bar']

(3, 2)

4. Metaclass methods. We worked through this exercise as follows. Notice that operators try to fetch attributes through __getattr__ too; you need to return a value to make them work.

>>> class Meta:
... def __getattr__(self, name):

... print 'get', name
... def __setattr__(self, name, value):

... print 'set', name, value

...

>>> x = Meta()
>>> x.append
get append

>>> x.spam = "pork"
set spam pork

>>>

>>> x + 2
get __coerce__

Traceback (innermost last):

 File "<stdin>", line 1, in ?

TypeError: call of non-function

>>>

>>> x[1]
get __getitem__

Traceback (innermost last):

 File "<stdin>", line 1, in ?

TypeError: call of non-function

>>> x[1:5]
get __len__

Traceback (innermost last):

 File "<stdin>", line 1, in ?

TypeError: call of non-function

5. Set objects. Here’s the sort of interaction you should get; comments explain which methods are called.

% python
>>> from setwrapper import Set
>>> x = Set([1,2,3,4]) # runs __init__

>>> y = Set([3,4,5])
>>> x & y # __and__, intersect, then __repr__

Set:[3, 4]

>>> x | y # __or__, union, then __repr__

Set:[1, 2, 3, 4, 5]

>>> z = Set("hello") # __init__ removes duplicates

>>> z[0], z[-1] # __getitem__

('h', 'o')

>>> for c in z: print c, # __getitem__

...

h e l o

>>> len(z), z # __len__, __repr__

(4, Set:['h', 'e', 'l', 'o'])

>>> z & "mello", z | "mello"

(Set:['e', 'l', 'o'], Set:['h', 'e', 'l', 'o', 'm'])

Our solution to the multiple-operand extension subclass looks like the class below. It needs only to replace two methods in the original set. The class’s documentation string explains how it works:

File: multiset.py

from setwrapper import Set

class MultiSet(Set):

 """

 inherits all Set names, but extends intersect

 and union to support multiple operands; note

 that "self" is still the first argument (stored

 in the *args argument now); also note that the

 inherited & and | operators call the new methods

 here with 2 arguments, but processing more than

 2 requires a method call, not an expression:

 """

 def intersect(self, *others):

 res = []

 for x in self: # scan first sequence

 for other in others: # for all other args

 if x not in other: break # item in each one?

 else: # no: break out of loop

 res.append(x) # yes: add item to end

 return Set(res)

 def union(*args): # self is args[0]

 res = []

 for seq in args: # for all args

 for x in seq: # for all nodes

 if not x in res:

 res.append(x) # add new items to result

 return Set(res)

Your interaction with the extension will be something along the following lines. Note that you can intersect by using & or calling intersect, but must call intersect for three or more operands; & is a binary (two-sided) operator. Also note that we could have called MutiSet simply Set to make this change more transparent. if we used setwrapper.Set to refer to the original within multiset:

>>> from multiset import *
>>> x = MultiSet([1,2,3,4])

>>> y = MultiSet([3,4,5])
>>> z = MultiSet([0,1,2])
>>> x & y, x | y # 2 operands

(Set:[3, 4], Set:[1, 2, 3, 4, 5])

>>> x.intersect(y, z) # 3 operands

Set:[]

>>> x.union(y, z)

Set:[1, 2, 3, 4, 5, 0]

>>> x.intersect([1,2,3], [2,3,4], [1,2,3]) # 4 operands

Set:[2, 3]

>>> x.union(range(10)) # non-MultiSets work too

Set:[1, 2, 3, 4, 0, 5, 6, 7, 8, 9]

6. Composition. Our solution is below, with comments from the description mixed in with the code. This is one case where it’s probably easier to express a problem in Python than it is in English:

File: lunch.py

class Lunch:

 def __init__(self): # make/embed Customer and Employee

 self.cust = Customer()

 self.empl = Employee()

 def order(self, foodName): # start a Customer order simulation

 self.cust.placeOrder(foodName, self.empl)

 def result(self): # ask the Customer about its Food

 self.cust.printFood()

class Customer:

 def __init__(self): # initialize my food to None

 self.food = None

 def placeOrder(self, foodName, employee): # place order with Employee

 self.food = employee.takeOrder(foodName)

 def printFood(self): # print the name of my food

 print self.food.name

class Employee:

 def takeOrder(self, foodName): # return a Food, with requested name

 return Food(foodName)

class Food:

 def __init__(self, name): # store food name

 self.name = name

if __name__ == '__main__':

 x = Lunch() # self-test code

 x.order('burritos') # if run, not imported

 x.result()

 x.order('pizza')

 x.result()

% python lunch.py

burritos

pizza

7. Zoo Animal Hierarchy. Here is the way we coded the taxonomy on Python; it’s artificial, but the general coding pattern applies to many real structures—form GUIs to employee databases. Notice that the self.speak reference in Animal triggers an independent inheritance search, which finds speak in a subclass. Test this interactively per the exercise description. For more fun, try extending this hierarchy with new classes, and making instances of various classes in the tree:

File: zoo.py

class Animal:

 def reply(self): self.speak() # back to subclass

 def speak(self): print 'spam' # custom message

class Mammal(Animal):

 def speak(self): print 'huh?'

class Cat(Mammal):

 def speak(self): print 'meow'

class Dog(Mammal):

 def speak(self): print 'bark'

class Primate(Mammal):

 def speak(self): print 'Hello world!'

class Hacker(Primate): pass # inherit from Primate

8. The Dead Parrot Skit. Here’s how we implemented this one. Notice how the line method in the Actor superclass works: be accessing self attributes twice, it sends Python back to the instance twice, and hence invokes two inheritance searches—self.name and self.says() find information in the specific subclasses. We’ll leave rounding this out to include the complete text of the Monty Python skit as a suggested exercise:

File: parrot.py

class Actor:

 def line(self): print self.name + ':', `self.says()`

class Customer(Actor):

 name = 'customer'

 def says(self): return "that's one ex-bird!"

class Clerk(Actor):

 name = 'clerk'

 def says(self): return "no it isn't..."

class Parrot(Actor):

 name = 'parrot'

 def says(self): return None

class Scene:

 def __init__(self):

 self.clerk = Clerk() # embed some instances

 self.customer = Customer() # Scene is a composite

 self.subject = Parrot()

 def action(self):

 self.customer.line() # delegate to embedded

 self.clerk.line()

 self.subject.line()

Lab 7: Exceptions and built-in tools

1. try/except. Our version of the oops function follows. As for the noncoding questions, changing oops to raise KeyError instead of IndexError means that the exception won’t be caught by our try handler (it “percolates” to the top level and triggers Python’s default error message). The names KeyError and IndexError come from the outermost built-in names scope. If you don’t believe us, import __builtin__ and pass it as an argument to the dir function to see for yourself.

File: oops.py

def oops():

 raise IndexError

def doomed():

 try:

 oops()

 except IndexError:

 print 'caught an index error!'

 else:

 print 'no error caught...'

if __name__ == '__main__': doomed()

% python oops.py

caught an index error!

2. Exception objects and lists. Here’s the way we extended this module for an exception of our own (here a string, at first):

File: oops.py

MyError = 'hello'

def oops():

 raise MyError, 'world'

def doomed():

 try:

 oops()

 except IndexError:

 print 'caught an index error!'

 except MyError, data:

 print 'caught error:', MyError, data

 else:

 print 'no error caught...'

if __name__ == '__main__':

 doomed()

% python oops.py
caught error: hello world

To identify the exception with a class, we just changed the first part of the file to this:

File: oop_oops.py

class MyError: pass

def oops():

 raise MyError()

…rest unchanged…

Like all class exceptions, the instance comes back as the extra data; our error message now shows both the class, and its instance (<…>).

% python oop_oops.py
caught error: __main__.MyError <__main__.MyError instance at 0x00867550>

Remember, to make this look nicer, you can define a __repr__ method in your class to return a custom print string; see the unit for details.

3. Error handling. Finally, here’s one way to solve this one; we decided to do our tests in a file, rather than interactively, but the results are about the same.

File: safe2.py

import sys, traceback

def safe(entry, *args):

 try:

 apply(entry, args) # catch everything else

 except:

 traceback.print_exc()

 print 'Got', sys.exc_info()[0], sys.exc_info()[1]
import oops

safe(oops.oops)

% python safe2.py

Traceback (innermost last):

 File "safe2.py", line 5, in safe

 apply(entry, args) # catch everything else

 File "oops.py", line 4, in oops

 raise MyError, 'world'

hello: world

Got hello world

Also see the solution file directories for answers to additional lab sessions.

Embedding

Extending

Python

Programs

Compiled extensions

Compiled extensions

Enclosing layer

 Perl

 TCL

 Awk

 C

 C++

 Java

Python

Scripting Languages

Systems Languages

 m.py

m.pyc

PVM

Source

Bytecode

Runtime

a.py

b.py

c.py

Standard

Library

Modules

Top-level

Modules

Names

Objects

a

3

b

a=3

b=a

Objects

L

Names

X

1

?

3

D

Sequences

Immutable

String

Mutable

List

Mappings

Dictionary

Collections

Numbers

Integers

Integer

Long

Float

Complex

Tuple

None

Frame

Internals

Type

Callables

Bound

Method

Class

Function

Unbound

Python

C function

Module

Instance

File

Other

C type

Class

Traceback

Code

1

[1, 2]

X

L

x

y

Names

Objects

caller

function

sys

 . stdin

. readlines

“sys.stdin.readlines”

=

 from M import X

 import M

 X = M.X

 del M

C1

.x

.y

C2

.x

.z

C3

.w

.z

I1

.name

I2

.name

Y

.data

X

.data

FirstClass

.setdata

.display

is-a

is-a

3 objects, and

3 namespaces

is-a

is-a

SecondClass

.display

FirstClass

.setdata

.display

Z (instance)

.data

Z.display ?

a * 3

__mul__(self, other)

calling methods from instances

object.method(arguments...)

class.method(object, arguments...)

calling methods from classes

Superclass

 class S1:

 class S2:

Superclass

Class

Instance

 class X(S1, S2):

 def attr(self,…):

 self.attr = V

 object = X()

object.attr ?

 class Super:

 def method(self, args):

 inherited activity

 class Sub(Super):

 def method(self, args):

 extra activity

 Super.method(self,args)

 extra activity

 object = Sub()

 object.method(args)

1

2

subclass

superclass

instance

instance + value

def __add__(self, other):

 Toplevel

 Frame

Label

Button

Widget packing (

Button

Label

Frame

Toplevel

(Widget tree

Embedding

Extending

Python

Programs

Compiled extensions

Compiled extensions

Enclosing layer

Prototyping

Delivery

Hybrid systems

All Python

All C/C++

RAD

Prototype in Python

Demonstrate

Optimize Python

Move parts to C/C++

Fast enough?

Delivery, Support

Yes

L

1

2

Names

Objects

_1172830578.bin

_1172830619

_1172830620

_1172830918

_1172830598

_1172830545

